

Lecture Notes in Artificial Intelligence 6214
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Jürgen Dix Michael Fisher
Peter Novák (Eds.)

Computational Logic
in Multi-Agent Systems
10th International Workshop, CLIMA X
Hamburg, Germany, September 9-10, 2009
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Jürgen Dix
Technische Universität Clausthal, Institut für Informatik
Julius-Albert-Straße 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: dix@tu-clausthal.de

Michael Fisher
University of Liverpool, Department of Computer Science
Ashton Street, Liverpool, L69 3BX, UK
E-mail: MFisher@liverpool.ac.uk

Peter Novák
Technische Universität Clausthal, Institut für Informatik
Julius-Albert-Straße 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: peter.novak@tu-clausthal.de

Library of Congress Control Number: 2010938000

CR Subject Classification (1998): I.2.11, I.2, F.4.1, C.2.4, H.3, H.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-16866-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16866-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

These are the proceedings of the 10th International Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA-X), held September 9–10, 2009 in
Hamburg, co-located with MATES.

The purpose of the CLIMA workshops is to provide a forum for discussing
techniques, based on computational logic, for representing, in a formal way,
programming and reasoning about agents and multi-agent systems.

Multi-agent systems are communities of problem-solving entities that can per-
ceive and act upon their environment in order to achieve both their individual
goals and their joint goals. The work on such systems integrates many technolo-
gies and concepts from artificial intelligence and other areas of computing as well
as other disciplines. Over recent years, the agent paradigm gained popularity,
due to its applicability to a full spectrum of domains, such as search engines,
recommendation systems, educational support, e-procurement, simulation and
routing, electronic commerce and trade, etc. Computational logic provides a well-
defined, general, and rigorous framework for studying the syntax, semantics and
procedures for the various tasks in individual agents, as well as the interaction
between, and integration among, agents in multi-agent systems. It also provides
tools, techniques and standards for implementations and environments, for link-
ing specifications to implementations, and for the verification of properties of
individual agents, multi-agent systems and their implementations.

These proceedings feature nine regular papers (from a total of 18 papers sub-
mitted), as well as one paper based on the invited talk given by Tran Cao Son.

In the invited paper by Tran Cao Son, Enrico Pontelli, and Ngoc-Hieu Nguyen,
“Planning for Multi-Agents Using ASP-Prolog,” the action language B is ex-
tended to the multi-agent case. The used technology is based on answer set
programming.

The contribution by Nils Bulling and Berndt Farwer on “Expressing Prop-
erties of Resource-Bounded Systems: The Logics RTL� and RTL ” investigates
the problem of introducing resources to CTL-like logics. They determine the
boundary between decidable and undecidable fragments.

The paper “Reasoning About Multi-Agent Domains Using Action Language
C: A Preliminary Study” by Chitta Baral, Tran Cao Son, and Enrico Pontelli
extends the action language C, originally developed for single-agent domains, to
the multi-agent case. Limitations of the approach are also discussed.

In “Model Checking Normative Agent Organizations,” Louise Dennis, Nick
Tinnemeier, and John-Jules Meyer introduce the concept of an organization
programmed in a certain language, OOPL, while the agents are implemented in
different BDI languages. The authors also introduce model checking techniques
based on LTL.

VI Preface

The paper “Operational Semantics for BDI Modules in Multi-Agent Pro-
gramming,” by Mehdi Dastani and Bas R. Steunebrink, presents an operational
semantics for BDI modules in arbitrary multi-agent programming languages.
Emphasis is put on allowing software engineering techniques like encapsulation
and information hiding.

“InstQL: A Query Language for Virtual Institutions Using Answer Set Pro-
gramming,” by Luke Hopton, Owen Cliffe, Marina De Vos, and Julian Padget,
introduces a high-level query and constraint language to formalize and describe
institutions. This language is an extension of a domain-specific action language
for normative frameworks. It is implemented using answer set technology from
logic programming.

In “Interacting Answer Sets,” Chiaki Sakama and Tran Cao Son deal with
the problem of modeling agent societies. They approach this problem by using
logic programs under the answer set semantics.

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker deal with intelli-
gent decision support systems: “Argumentation-Based Preference Modeling with
Incomplete Information.” Such systems need information about the preferences
of the users, which is difficult to model. The paper proposes an argumentation
framework, which is well-suited to deal with incomplete information.

The paper “A Characterization of Mixed-Strategy Nash Equilibria in PCTL
Augmented with a Cost Quantifier,” by Pedro Arturo Góngora and David A.
Rosenblueth, considers the problem of characterizing Nash equilibria in suitable
logics. The authors develop an extension of probabilistic CTL to achieve this.

Finally, in “On the Implementation of Speculative Constraint Processing,”
Jiefei Ma, Alessandra Russo, Krysia Broda, Hiroshi Hosobe, and Ken Satoh
extend their approach of speculative computation by introducing a practical
multi-threaded implementation.

We thank all the authors of submissions for CLIMA-X for submitting papers
and for revising their contributions to be included in these proceedings. We
are very grateful to the members of the CLIMA-X Program Committee and
the additional reviewers. Their service ensured the high quality of the accepted
papers. A special thank you goes to the local organizers in Hamburg for their
help and support. We are very grateful to them for handling the registration and
a very enjoyable social program.

July 2010 Jürgen Dix
Michael Fisher

Peter Novák

Conference Organization

Program Chairs

Jürgen Dix Clausthal University of Technology, Germany
Michael Fisher University of Liverpool, UK
Peter Novák Czech Technical University, Czech Republic

Program Committee

Thomas Ågotnes Bergen, Norway
Natasha Alechina Nottingham, UK
Jose Julio Alferes Lisbon, Portugal
Rafael Bordini Durham, UK
Gerhard Brewka Leipzig, Germany
Keith Clark Imperial, UK
Stefania Costantini L’Aquila, Italy
Mehdi Dastani Utrecht, The Netherlands
Louise Dennis Liverpool, UK
Chiara Ghidini Trento, Italy
James Harland RMIT, Australia
Hisashi Hayashi Toshiba, Japan
Koen Hindriks Delft, The Netherlands
Wiebe van der Hoek Liverpool, UK
Katsumi Inoue NII, Japan
Wojtek Jamroga Clausthal, Germany
Viviana Mascardi Genoa, Italy
Paola Mello Bologna, Italy
John-Jules Meyer Utrecht, The Netherlands
Leora Morgenstern Stanford, USA
Naoyuki Nide Nara, Japan
Mehmet Orgun Macquarie, Australia
Maurice Pagnucco NSW, Australia
Jeremy Pitt Imperial, UK
Enrico Pontelli New Mexico, USA
Chiaki Sakama Wakayama, Japan
Renate Schmidt Manchester, UK
Tran Cao Son New Mexico, USA

VIII Conference Organization

Kostas Stathis RHUL, UK
Michael Thielscher Dresden, Germany
Marina de Vos Bath, UK
Cees Witteveen Delft, The Netherlands

External Reviewers

Gauvain Bourgne
Carlos Iván Chesñevar
Agostino Dovier
Rubén Fuentes-Fernández
Ullrich Hustadt

Wojciech Jamroga
Mehrnoosh Sadrzadeh
Christoph Sprenger
Yingqian Zhang

Steering Committee

Jürgen Dix Clausthal University of Technology, Germany
Michael Fisher University of Liverpool, UK
João Leite New University of Lisbon, Portugal
Fariba Sadri Imperial College London, UK
Ken Satoh National Institute of Informatics, Japan
Francesca Toni Imperial College London, UK
Paolo Torroni University of Bologna, Italy

Table of Contents

Planning for Multiagent Using ASP-Prolog . 1
Tran Cao Son, Enrico Pontelli, and Ngoc-Hieu Nguyen

Expressing Properties of Resource-Bounded Systems: The Logics
RTL�and RTL . 22

Nils Bulling and Berndt Farwer

Reasoning about Multi-agent Domains Using Action Language C:
A Preliminary Study . 46

Chitta Baral, Tran Cao Son, and Enrico Pontelli

Model Checking Normative Agent Organisations . 64
Louise Dennis, Nick Tinnemeier, and John-Jules Meyer

Operational Semantics for BDI Modules in Multi-agent
Programming . 83

Mehdi Dastani and Bas R. Steunebrink

InstQL: A Query Language for Virtual Institutions Using Answer Set
Programming . 102

Luke Hopton, Owen Cliffe, Marina De Vos, and Julian Padget

Interacting Answer Sets . 122
Chiaki Sakama and Tran Cao Son

Argumentation-Based Preference Modelling with Incomplete
Information . 141

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

A Characterization of Mixed-Strategy Nash Equilibria in PCTL
Augmented with a Cost Quantifier . 158

Pedro Arturo Góngora and David A. Rosenblueth

On the Implementation of Speculative Constraint Processing 178
Jiefei Ma, Alessandra Russo, Krysia Broda, Hiroshi Hosobe, and
Ken Satoh

Author Index . 197

Planning for Multiagent Using ASP-Prolog

Tran Cao Son, Enrico Pontelli, and Ngoc-Hieu Nguyen

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA

{tson,epontell,nhieu}@cs.nmsu.edu

Abstract. This paper presents an Answer Set Programming based approach to
multiagent planning. The proposed methodology extends the action language B
in [12] to represent and reason about plans with cooperative actions of an in-
dividual agent operating in a multiagent environment. This language is used to
formalize multiagent planning problems and the notion of a joint plan for multi-
agent in the presence of cooperative actions. Finally, the paper presents a system
for computing joint plans based on the ASP-Prolog system.

1 Introduction

Cooperative actions are important for agents operating in a multiagent environment.
Cooperative actions differ from individual actions in that they might affect other agents
or require other agents. Cooperative actions are important not only in situations where
multiple agents have to work together to accomplish a common goal, but also in sit-
uations where each agent has its own goals. The following story,1 taken from [26],
illustrates this point.

Example 1. Three individuals A, B, and C plan to decorate their rooms. Each would
like to hang one of their objects on the wall: A would like to hang a mirror, B a diploma,
and C a painting. A and B can use either a nail or a screw to complete their jobs, while
C can only use a screw. A has neither a nail or a screw; B has both; C has only a nail.
To use a nail, one needs a hammer. Among the three agents, only B has a hammer.

Can all the agents achieve their goals? In other words, do the agents have a joint-
plan that allows each of them to achieve his/her own goal?

Intuitively, we can see that only B can accomplish her job independently from A and
C. The three can achieve their goals if B uses the hammer and the nail to hang her
diploma and then gives A the hammer and C the screw, respectively. C, on the other
hand, should give A the nail and use the screw to hang her painting. A uses the nail
(from C) and the hammer (from B) to hang her mirror. Of course, to avoid unpleasant
moments, A should ask for the nail (from C) and the hammer (from B) and C should
ask for the screw (from B).

It is also easy to see that if neither B nor C want to give out anything, then only B
can achieve her goal. Furthermore, if B decides to use the screw instead of using the
nail in hanging her diploma, then C will have no way of achieving her goal. �

1 This is a modified version of the story in [21].

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 1–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 T.C. Son, E. Pontelli, and N.-H. Nguyen

In the above example, the action of giving a nail, a hammer, or a screw between the in-
dividuals can be considered as cooperative actions. The action of requesting something
from others can also be considered as a cooperative action. It is obvious that without
some cooperative actions, not all agents can achieve their own goals. Even with the
cooperative actions at their disposal, the individuals might still need to coordinate in
creating their corresponding plans. In the rest of this paper, we will often refer to a
cooperative actions as exchange actions and use the two terms interchangeably.

In Example 1, agents (the individuals) maintain their own local worlds and their
actions generally do not affect the world view of other agents. Observe that there are
situations in which an action of an agent might affect the world of another agent. This
can be seen in the following example.

Example 2. Two agents A and B enter a building through different entrances. Near
each entrance there is a light switch that, when flipped, will turn on or off the light of the
building, depending on the status of the light. Let us assume that A and B maintain their
world representation separately. Obviously, if A flips the switch next to the entrance that
she is using, then also the world of B will need to change. �

In this paper, we will study multiagent planning problems in which each agent maintains
its own representation about the world and its capabilities—which include individual
actions and cooperative actions—and has its own goal. We will be mainly interested in
the process of creating a joint plan prior to its execution. We will begin by extending
the language B in [12] to allow cooperative actions for a single agent. The semantics
of the new language is defined by a transition function which maps pairs of actions
and states to states. We then define the multiagent planning problems and the notion
of a joint plan for multiagent in presence of cooperative actions. Finally, we present an
implementation for computing joint plans using the ASP-Prolog system [10].

2 An Action Language with Cooperative Actions

In this section, we present a language for representing and reasoning about plans for an
agent in the multiagent environment with cooperative actions. To this end, we extend
the language B in [12] to allow cooperative actions2. We will call the new language BC .

In this paper, we consider two types of cooperative actions, one that requests the
establishment of a condition in the world of the agent requesting the action execution,
and another establishes some conditions in the world of another agent.

We will assume an arbitrary but fixed set of agent identifiers AG. A planning problem
of an agent in AG is defined over a set of fluents (or state variables) F, a set of individual
actions A, and a set of cooperative actions C. We will assume that A always contains a
special action wait which does not have any effect on the agent’s world.3 Furthermore,

2 Observe that the formalization of cooperative actions can be adapted for any action languages.
For example, using the action language B with concurrent actions [28] will allow us to consider
other types of actions involving multiple agents such as joint actions, coordinated actions, etc.

3 We envision a multiagent environment where agents may have to wait for other agents to finish
some actions before they can go on with their course of actions.

Planning for Multiagent Using ASP-Prolog 3

we will require that actions in C do not appear in A. This highlights the fact that the co-
operative actions are introduced specifically to address the issues of interaction among
different agents.

A fluent literal (or literal) is either a fluent or its negation. Fluent formulae are propo-
sitional formulae constructed from literals and the traditional propositional connectives.

2.1 Specifying Individual Actions

A domain specification DI over F and A describes the individual actions of an agent
and consists of laws of the following forms:

a causes l if ϕ (1)

a executable ϕ (2)

l if ϕ (3)

where a is an individual action (from A), l is a fluent literal and ϕ is a set of fluent literals
(viewed as a conjunction of literals). A law of the form (1), called a dynamic law, states
that if a is executed when ϕ is true then l becomes true. (2) is an executability condition
and says that a can be executed only if ϕ is true. (3) is a static law and states that l
is true whenever ϕ is true. The semantics of a domain specification is defined by the
notion of state and by a transition function Φ, that specifies the result of the execution
of an action a in a state s.

A set of literals S satisfies a literal l (l holds in S), denoted by S |= l, if l ∈ S. For
a set of literals ϕ, S |= ϕ if S |= l for every l ∈ ϕ. A set of fluent literals S satisfies a
static law (l if ϕ) if S |= ϕ implies S |= l; S satisfies set of static laws C if it satisfies
every law in C. A set of fluent literals S is closed under a set of static laws C if S
satisfies C. Given a set of fluent literals S, CnC(S) denotes the minimal set of fluent
literals which is closed under C and contains S.

A state s is a set of fluent literals that is closed under all static laws, consistent,
and complete, i.e., for every f ∈ F, either f ∈ s or ¬f ∈ s but {f, ¬f} �⊆ s. In the
following, l denotes the negation of l, i.e., if l = f and f ∈ F, then l = ¬f ; if l = ¬f
for some f ∈ F, then l = f . For a set of literals S, S = {l | l ∈ S}.

An action a is executable in a state s if there exists an executability condition
(a executable ϕ) in DI such that s |= ϕ.

Let ea(s) = {l | ∃(a causes l if ϕ) ∈ DI s.t. s |= ϕ}. The result of the execution
of a in s is defined next.

Definition 1 (Transition function). Let DI be a domain specification. The transition
function Φ of DI , denoted by ΦDI , is a mapping of pairs of actions and states to sets of
states and is defined as follows. For any pair of a state s and an action a,

• ΦDI(a, s) = ∅ if a is not executable in s; and

• ΦDI(a, s) = {s′ | s′ is a state and s′ = CnCDI ((s∩s′)∪ea(s))} if a is executable
in s and CDI denotes the set of all static laws in DI .

A domain specification DI is consistent if ΦDI(a, s) �= ∅ holds for every pair of action
a and state s such that a is executable in s. DI is deterministic if |ΦDI(a, s)| ≤ 1 for

4 T.C. Son, E. Pontelli, and N.-H. Nguyen

every pair of state s and action a. ΦDI can be extended to reason about the effects of a
sequence of actions as follows.

Definition 2 (Transition function). Let DI be a domain specification, s be a state,
and α = [a1; . . . ; an] be a sequence of actions.

• Φ̂DI(α, s) = {s} if n = 0;

• Φ̂DI(α, s) =
⋃

s′∈Φ̂DI([a1;...;an−1],s) ΦDI(an, s′), otherwise.

An agent can use the transition function to reason about the effects of its actions and to
perform planning. An action sequence α is a plan achieving a set of literals O from a
state I iff O is true in Φ̂DI(α, I).

Example 3. The domain specification DIA for A in Example 1 is defined over FA =
{h nail, h screw, mirror on, h ham} and AA = {hw nail, hw screw} with the set
of laws:4

hw nail causes mirror on hw screw causes mirror on
hw nail causes ¬h nail hw screw causes ¬h screw
hw nail executable h nail, h ham hw screw executable h screw

In all of the above, the prefix “hw” stands for “hang with” and “h” stands for
“has.” �

In the following, we often use Φ instead of ΦDI whenever the domain DI is clear from
the context.

2.2 Specifying Cooperative Actions

The specification of the set of cooperative actions of an agent, denoted byDC, is defined
over C and F and consists of laws of the following form:

a exchanges with Ai gets ϕ gives ψ causes γ (4)

where a is an action name in C, γ, ϕ, and ψ are sets of literals, and Ai is an agent iden-
tifier in AG. a is called an exchange of ψ for ϕ. We will also assume that executability
conditions for actions in C are specified as usual, using laws of the form (2).

Intuitively, laws of the form (4) represent exchanges that can be made by the agent;
if the agent makes the request for ϕ in exchange for ψ directed to agent Ai then γ ∪ ϕ
will become true. This action is similar to the individual actions in A of an agent. The
main difference is that they also change the worlds of other agents.

Example 4. In Example 1, it is reasonable for A to request and/or offer other agents
on the literal h nail. An action for requesting for (offering of) h nail for A can be
specified by

get(nail, X) exchanges with X gets h nail gives true causes true
give(nail, X) exchanges with X gets true gives h nail causes ¬h nail
exchange screw nail(X) exchanges with X gets h nail gives h screw causes ¬h screw

4 To simplify the representation, we often write l1, . . . , ln instead of {l1, . . . , ln} in describing
the domain.

Planning for Multiagent Using ASP-Prolog 5

where X ∈ {B, C}. get(nail, B) allows A to ask B for a nail, give(nail, B) provides
B with a nail without A’s receiving anything in return, and exchange screw nail(B)
describes an exchange of a nail for a screw between A and B.

Observe that it is realistic to assume that A can only give a nail if she has it. As a
result,

give(nail, X) executable h nail

should be included in the domain specification of A. �

Since an agent might agree to an unconditional exchange, i.e., she might give out
something without receiving anything back or she might ask for something and does
not provide anything in return, we will often use the following shorthands:

a gets from(Ai) ϕ causes γ (5)

a gives to(Ai) ψ causes γ (6)

With the introduction of cooperative actions, we define planning problems with coop-
erative actions as follows.

Definition 3 (Planning problem with cooperative actions). A planning problem with
cooperative actions5 P is a tuple 〈DI, I, O, DC〉 where DI is a domain specification,
I is a state representing the initial state, O is a set of literals representing the goal, and
DC is a set of laws of the form (4).

Given a planning problem P = 〈DI, I, O, DC〉, we need to specify what is a “plan”
achieving O in the presence of the cooperative actions. Intuitively, we can consider
these actions as the actions of the agent and use the notion of a plan mentioned in the
previous subsection.

We extend the transition function Φ of the domain specification DI to consider coop-
erative actions. We will use ΦP to denote the transition function of DI∪DC. By assum-
ing that cooperative actions are different from the individual actions (i.e., A∩ C = ∅), it
suffices to specify what is the result of the execution of a cooperative action in a given
state.

For simplicity of the presentation, we assume that each individual agent executes
only one action at a time. The method presented in this paper can be easily extended to
the case where individual agents can execute parallel actions.

Assume that s is a state and a is a cooperative action of the form

a exchanges with Ai gets ϕ gives ψ causes γ

then we define ea(s) = ϕ ∪ γ. The modified transition function is as in Definition 1,
i.e., ΦP(a, s) = {s′ | s′ = CnCDI (ea(s) ∪ (s ∩ s′))} if a is executable in s; otherwise,
ΦP(a, s) = ∅.

The transition function can be extended to reason about plans as follows.

Definition 4 (Plan with cooperative actions). Let P be a planning problem with co-
operative actions 〈DI, I, O, DC〉.

5 For simplicity of presentation, we will use planning problem instead of planning problem with
cooperative actions whenever no confusion is possible.

6 T.C. Son, E. Pontelli, and N.-H. Nguyen

• A sequence s0, a0, s1, . . . , an−1, sn, where si’s are states and aj’s are actions, is
a trajectory if si+1 ∈ ΦP(ai, si) for 0 ≤ i < n.

• Given a trajectory s0, a0, s1, . . . , an−1, sn, this represents a possible plan achiev-
ing O (or a possible solution of P) if s0 = I and sn |= O.

Example 5. Let PA = 〈DIA, IA, OA, DCA〉 be the planning problem for A with DIA

(Example 3), with

IA = {¬h nail,¬h screw, ¬h ham, ¬mirror on}
OA = {mirror on}

DCA is the set of actions give(nail, X) and get(nail, X), whose specifications has
been given earlier (Example 4), and the two additional actions

get(ham, X) gets from(X) h ham causes h ham
give(ham, X) gives to(X) h ham causes ¬h ham
give(ham, X) executable h ham

for X ∈ {B, C}. We can easily check the following:
• For n ≤ 2, the problem has no possible plan.

• For n = 3, PA has a possible plan which is the following trajectory:

sA
0 , get(nail, C), sA

1 , get(ham, B), sA
2 , hw nail, sA

3

where
sA
0 = {¬h nail,¬h ham, ¬h screw, ¬mirror on}

sA
1 = {h nail,¬h ham, ¬h screw, ¬mirror on}

sA
2 = {h nail, h ham, ¬h screw, ¬mirror on}

sA
3 = {¬h nail, h ham, ¬h screw, mirror on}

�

3 Planning for Multiagent

In a multiagent environment, each agent needs to know her capabilities, i.e., what ac-
tions can she do and how does her actions change her world. She also needs to know
whom she can ask for help and/or provide help, if she wishes to do so. Furthermore,
it is also common that groups of agents need to know about their joint capabilities. It
is also possible that agents might talk the same language. This can be summarized as
follows.

• Each agent has her own planning problem, which is described as in the previous
section.

• The agent might or might not share the same world representation. By default, the
world representation of the agent is local. For example, the three agents in Example
1 can use the same set of fluents and actions; agent A has ¬h nail in her initial
state whereas B has h nail in hers, yet this is not a contradictory statement about
the world since the fluents are local. On the other hand, the two agents in Example 2
share certain features (e.g., the status of the light) and therefore the fluents encoding
these features should have the same value in their representations.

Planning for Multiagent Using ASP-Prolog 7

• Agents can exchange the properties in their world representations with each other.
For example, A might ask B to give her the nail or exchange a screw with C for a
nail.

• There might be actions that a set of agents should not execute in parallel. For ex-
ample, two cars—one going north-south and another east-west—cannot cross an
intersection at the same time.

• There might be actions that a set of agents should execute in parallel. For example,
the action of lifting a table by two agents need to be done in parallel.

The language BC can be extended to represent and reason about plans/actions of agents
in a multiagent environment. We define a multiagent planning problem as follows.

Definition 5 (Multiagent planning problem). A multiagent planning problem M is a
tuple 〈AG, {Pi}i∈AG , F , IC, C〉 where

• AG is a set of agents,

• Pi is a planning problem with cooperative actions for each agent i ∈ AG,

• F is a set of tuples of the form (i, j, f) where i, j ∈ AG and f ∈ Fi ∩ Fj , and

• IC and C are sets of sets of agent/action pairs of the form (i, ai), where i is an
agent and ai is an action in Ai.

Intuitively, each tuple (i, j, f) in F indicates that f represents the same state variable
in the worlds of two agents i and j and can be changed by either i or j. This mean
that they should have the same value in every state of i and j. A set of agent/action
pairs {(i1, ai1), . . . , (ik, aik

)} ∈ IC indicates that the agents i1, . . . , ik cannot execute
the actions ai1 , . . . , aik

at the same time. On the other hand, a set of agent/action pairs
{(i1, ai1), . . . , (ik, aik

)} ∈ C indicates that the agents i1, . . . , ik must execute the ac-
tions ai1 , . . . , aik

concurrently for their effects to be materialized. The sets F , IC, and
C are called constraints of M.

Example 6. The planning problem in Example 1 can be represented by

M1 = 〈{A, B, C}, {PA, PB, PC}, ∅, ∅, ∅〉

where
• A, B, and C are the agents from Example 1;

• PA is defined as in Example 5;

• PB = 〈DIB , IB , OB, DCB〉 where DIB is defined over
FB = {h nail, h screw, diploma on, h ham} and AB = {hw nail, hw screw}
with the set of laws:

hw nail causes diploma on hw nail causes ¬h nail
hw nail executable h ham, h nail hw screw causes diploma on
hw screw causes ¬h screw hw screw executable h screw

IB = {h nail, h screw, h ham, ¬diploma on} and OB = {diploma on}, and
DCB contains cooperative actions similar to that in DCA and DCC (below).

8 T.C. Son, E. Pontelli, and N.-H. Nguyen

• PC = 〈DIC , IC , OC , DCC〉 where DIC is defined over

FC = {h nail, h screw, painting on} AC = {hw screw}

with the set of laws:

hw screw causes painting on
hw screw causes ¬h screw
hw screw executable h screw

IC = {h nail,¬h screw, ¬painting on}, OC = {painting on}, and DCC con-
tains the following laws:

get(screw, X) gets from(X) h screw causes h screw
give(screw, X) gives to(X) h screw causes ¬h screw
give(screw, X) executable h screw

�

Example 7. The problem in Example 2 can be represented by M2 as follows. M2 =
〈{A, B}, {PA, PB}, F , IC, ∅〉 where

IC = {{(A, flip1), (B, flip2)}} F = {(A, B, light on)}

PA and PB are the planning problems of A and B, respectively, where
• PA = 〈DIA, IA, OA, ∅〉 where DIA is defined over FA = {light on} and AA =
{flip1} with the set of laws:

flip1 causes light on if ¬light on flip1 causes ¬light on if light on

In this case, IA = {¬light on} and OA = {light on}.

• PB = 〈DIB , IB , OB, ∅〉 where DIB is defined over FB = {light on} and AB =
{flip2} with the set of laws:

flip2 causes light on if ¬light on flip2 causes ¬light on if light on

In this case, IB = {¬light on} and OB = {light on}. �

We now define the notion of a solution for a planning problem.

Definition 6 (Joint plan for Multiagent). Let M = 〈AG, {Pi}i∈AG, F , IC, C〉 be a
multiagent planning problem. For each i ∈ AG, let Si = [si

0a
i
0, . . . , a

i
n−1s

i
n] be a

possible plan of Pi. We say that {Si}i∈AG is a joint plan (or solution) of length n for
M if for every 0 ≤ k ≤ n:

• For each (i, j, f) ∈ F , f ∈ si
k iff f ∈ sj

k;

• For each S ∈ IC, there exists some (i, a) ∈ S such that ai
k �= a; and

• For each S ∈ C, either {a | (i, a) ∈ S and a = ai
k} = {a | (i, a) ∈ S} or

{a | (i, a) ∈ S and a = ai
k} = ∅.

Planning for Multiagent Using ASP-Prolog 9

• For each pair of i, j ∈ AG,

ai
k exchanges with j gets ϕ gives ψ causes γ

is a law in DCi if and only if

aj
k exchanges with i gets ψ gives ϕ causes δ

is a law in DCj .

Intuitively, a joint plan is composed of individual plans which allow the agents to
achieve their own goals and satisfy the various constraints of the problem. In the pro-
cess, agents can help each other in establishing certain conditions. However, if the joint
plan contains a an exchange made by an agent (requestor agent) to another agent (re-
ceiver agent) then there must exist a counter exchange made by the receiver agent to the
requestor agent.

The first item above states that the individual plans must agree with each other on
their effects of shared fluents, i.e., it enforces the constraints in F . The second and third
items make sure that non-parallel and parallel constraints in IC and C are maintained
by the joint plan.

Example 8. For the multiagent planning problem M1 from Example 6, we can easily
check the following:

• For n ≤ 2, M1 has no solution.

• For n = 3, it has a solution consisting of the following plans

◦ SA = [sA
0 , get(nail, C), sA

1 , get(ham, B), sA
2 , hw nail, sA

3 , wait, sA
4]

◦ SB = [sB
0 , hw nail, sB

1 , give(ham, A), sB
2 , give(screw, C), sB

3 , wait, sB
4]

◦ SC = [sC
0 , get(nail, A), sC

1 , wait, sC
2 , give(screw, B), sC

3 , hw screw, sC
4]

where all exchanges are satisfied and the states are uniquely determined by the
initial states and the executed actions, i.e., using the extended transition functions
of PA, PB , and PC . �

The joint plan for the agents in Example 8 requires that each agent executes some
cooperative actions. It is easy to see that any joint plan for the two agents in the problem
M2 requires that only one agent flips the switch next to her while the other agent waits.

4 Computing Joint Plans

In this section, we will present different approaches to computing joint plans. Our ap-
proaches utilize answer set programming [18,19], a declarative programming paradigm
that has recently emerged from the study of logic programming under the answer set
semantics [11].

4.1 Answer Set Semantics of Logic Programs

A logic program Π is a set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an (7)

10 T.C. Son, E. Pontelli, and N.-H. Nguyen

where 0 ≤ m ≤ n, each ai is an atom of a propositional language6 and not represents
negation-as-failure. A negation as failure literal (or naf-literal) is of the form not a
where a is an atom. For a rule of the form (7), the left (right) hand side of the rule is
called the head (body) of the rule. The head and the body can be empty (but not at the
same time). A rule is a constraint if its head is empty; it is a fact if its body is empty.

Consider a set of ground atoms X . The body of a rule of the form (7) is satisfied by
X if {am+1, . . . , an} ∩ X = ∅ and {a1, . . . , am} ⊆ X . A rule of the form (7) with
nonempty head is satisfied by X if either its body is not satisfied by X or a0 ∈ X . In
other words, X satisfies a rule of the form (7) if its head belongs to X whenever X
satisfies its body. A constraint is satisfied by X if its body is not satisfied by X .

For a set of ground atoms S and a program Π , the reduct of Π w.r.t. S, denoted by
ΠS , is the program obtained from the set of all ground instances of Π by deleting
1. each rule that has a naf-literal not a in its body with a∈S, and

2. all naf-literals in the bodies of the remaining rules.
S is an answer set of Π if it satisfies the following conditions:
1. If Π does not contain any naf-literal, i.e., m = n in every rule of Π , then S is the

smallest set of atoms that satisfies all the rules in Π .

2. If the program Π does contain some naf-literal (m < n in some rule of Π), then S
is an answer set of Π if S is the answer set of ΠS . Note that ΠS does not contain
naf-literals, thus its answer set is defined in the first item.

A program Π is said to be consistent if it has an answer set. Otherwise, it is inconsistent.
To make answer set style programming easier, Niemelä et al. [20] introduce a new type
of rules, called cardinality constraint rule (a special form of the weight constraint rule)
of the following form:

A0 ← A1, . . . , Am,not Am+1, . . . ,not An

where each Ai is a choice atom of the form l{b1, . . . , bk}u with bj are atoms and l and
u are two integers, l ≤ u. An atom l{b1, . . . , bk}u is said to be true w.r.t. a set of literals
S iff l ≤ |S ∩ {b1, . . . , bk}| ≤ u. The satisfaction of a rule w.r.t. a set of atoms is
extended in the usual way. Using rules of this type, one can greatly reduce the number
of rules of programs in answer set programming. The semantics of logic programs with
such rules is given in [20].

4.2 Finding a Possible Plan for One Agent

We will represent each individual problem of each agent Pi as a logic program. The
program will consist of rules describing the effects of actions, the initial knowledge of
the agent, and the goal of the agent. Answer set planning [16] refers to the use of answer
set programming in planning. This method has been applied to a variety of problems
[9,27]. Let P = 〈DI, I, O, DC〉 be a planning problem. We will now describe the
program Π(P) that encodes P . The encoding makes use of a parameter denoting the
maximal length of the plan that the agent considers permissible. The key predicates of
Π(P) are:

6 A rule with variables is a shorthand for the set of its ground instances.

Planning for Multiagent Using ASP-Prolog 11

• h(l, t)—fluent literal l holds at the time step t;

• o(a, t)—action a is executed (by the agent) at the time step t;

• possible(a, t)—action a can be executed at the time step t.
h(l, t) can be extended to define h(φ, t) for an arbitrary fluent formula φ, which states
that φ holds at the time moment t. In writing the program, we use h({l1, . . . , lk}, T) as
a shorthand for h(l1, T), . . . , h(lk, T). The rules of the program are divided into groups:

• Group 1: For each fluent f ∈ F, the program contains the rule

fluent(f) ← (8)

and for each action a ∈ A ∪ C, the program contains the rule

action(a) ← (9)

These facts declare the fluents and the actions of the problem. In addition, for each
cooperative action

a exchanges with Ai gets ϕ gives ψ causes γ

in C of an agent j, the program Π(P) contains the fact

exchange(a, j,Ai, ϕ, ψ)

• Group 2: rules for reasoning about effects of actions. For each action a ∈ A ∪ C,

- if DI contains the law (a executable φ) then Π(P) contains the rules

possible(a, T) ← h(φ, T) (10)

← o(a, T),not possible(a, T) (11)

- if DI contains the law (a causes l if φ) then Π(P) contains the rule

h(l, T + 1) ← o(a, T), h(φ, T) (12)

- if DI contains the law (l if φ) then Π(P) contains the rule

h(l, T + 1) ← h(φ, T) (13)

- if DC contains the law

a exchanges with Ai gets ϕ gives ψ causes γ

then Π(P) contains the rules

h(γ ∪ ϕ, T + 1) ← o(a, T) (14)

where (14) is a shorthand for the collection of rules h(l, T + 1) ← o(a, T) for
l ∈ γ ∪ ϕ.

12 T.C. Son, E. Pontelli, and N.-H. Nguyen

• Group 3: rules describing the initial state. For each literal l ∈ I , Π(P) contains the
fact

h(l, 0) ← (15)

• Group 4: rules encoding the goal state. For each literal l ∈ O, Π(P) contains the
rule

← not h(l, n) (16)

where n is the desired length of the plan.

• Group 5: rules for reasoning by inertia. For each fluent F ∈ F, Π(P) contains

h(F, T + 1) ← h(F, T),not h(¬F, T + 1) (17)

h(¬F, T + 1) ← h(¬F, T),not h(F, T + 1) (18)

← h(F, T), h(¬F, T) (19)

• Group 6: rules for generating action occurrences. Π(P) contains the rule

1 {o(A, T) : action(A)} 1 ← T < n (20)

which states that at any time step, the agent must execute one of its actions.7

Example 9. As an example, some of the rules encoding the problem PA in Example 3
is given next

fluent(h nail) ←
h(mirror on, T + 1) ← o(hw nail, T)

h(¬h nail, T + 1) ← o(hw nail, T)
possible(hw nail, T) ← h(h nail, T), h(h ham, T)

← o(hw nail, T),not possible(hw nail, T)
h(¬h nail, 0) ←

h(¬h screw, 0) ←
← not h(mirror on, n)

The first rule defines the fluent h nail. The next four rules encode the executability
condition of the action hw nail and its effects. The next two rules specify a part of the
initial state and the last rule encodes the goal. For the action give(nail, b), we have the
following rules:

possible(give(nail, X), T) ← h(¬h nail, T)
← o(get(nail, b), T),not possible(get(nail, b), T)
h(h nail, T) ← o(get(nail, b), T)

7 Since we assume that wait always belongs to the set of actions of an agent, this is not a strict
requirement as it might sound.

Planning for Multiagent Using ASP-Prolog 13

and for the action give(nail, X), we have the rules:

possible(give(nail, b), T) ← h(h nail, T)
← o(give(nail, b), T), possible(give(nail, b), T)
h(¬h nail, T + 1) ← o(give(nail, b), T)

Let P = 〈DI, I, O, DC〉 be a planning problem and Π(P , n) denote the set of
ground rules of Π(P) in which the variable T is instantiated with integers between 0
to n. Let M be an answer set of Π(P , n). Let st[M] = {l | l is a fluent literal and
h(l, t) ∈ M}. By α[M] we denote the sequence s0[M], a0, s1[M], . . . , an−1, sn[M]
where o(ai, i) ∈ M . We can show the following:

Theorem 1. Let P = 〈DI, I, O, DC〉 be a planning problem. Then,
• For each possible plan α of P there exists an n and an answer set M of Π(P , n)

such that α = α[M];
• For each n, if Π(P , n) has an answer set M then α[M] is a possible solution of
P; and

• For each n, if Π(P , n) is inconsistent then P does not have a solution of length
less than or equal to n.

Proof. (Sketch) The proof of the first two items is similar to the proof of Theorem 3.2
in [23] and relies on the following properties of an answer set M of Π(P , n):

– if o(a, i) ∈ M then a is executable in si[M] and si+1 ∈ ΦP(a, si[M]); and

– O is satisfied by sn[M].
The last item is obvious given the first two items. �

An important special case of Theorem 1 is that of deterministic domains. In this case,
we have that each answer set of Π(P , n) corresponds to a solution of P .

4.3 Compatible Answer Sets and Joint Plan

Individual possible plans can be computed using the program Π(Pi). We will now
discuss an approach for combining them to create a plan for all the agents. Intuitively,
we need to make sure that if a request is assumed to be satisfied by an agent then
there exists an instance of an offer-action matching this request. This can be easily
characterized by the notion of a compatible answer sets.

Definition 7 (Compatible answer sets). Let M = 〈AG, {Pi}i∈AG, F , IC, C〉 be a
multiagent planning problem and M = 〈Mi〉i∈AG be a sequence of answer sets of
〈Π(Pi, n)〉i∈AG where the constant n is fixed. M is a set of compatible answer sets if
for each k ≤ n,

• For each i ∈ AG, if o(ai
k, k) ∈ Mi and

ai
k exchanges with j gets ϕ gives ψ causes γ

is a law of the form (4) in DCi then aj
k, where o(aj

k, k) ∈ Mj , must appear in the
law

aj
k exchanges with i gets ψ gives ϕ causes δ

belonging to DCj .

14 T.C. Son, E. Pontelli, and N.-H. Nguyen

• For each (i, j, f) in F , h(f, k) ∈ Mi (resp. h(¬f, k) ∈ Mi) iff h(f, k) ∈ Mj

(resp. h(¬f, k) ∈ Mj);

• For each S ∈ IC there exists some (i, ai) ∈ S such that o(ai, k) �∈ Mi; and

• For each S ∈ C, either {ai|(i, ai) ∈ S and o(ai, k) ∈ Mi} = {a|(i, a) ∈ S} or
{ai|(i, ai) ∈ S and o(ai, k) ∈ Mi} = ∅.

Intuitively, a set of compatible answer sets corresponds to a joint plan (as we will prove
in the next theorem) similar to the correspondence between answer sets and plans in
the case of a single agent. The first item requires that exchanges have to made in par-
allel, by the parties involved. The conditions imposed on a set of compatible answer
sets make sure that the collection of individual plans extracted from them satisfies the
constraints of the planning problem as well as the requirement that satisfied requests
must be matched with offers.

Theorem 2. Let M = 〈AG, {Pi}i∈AG, F , IC〉 be a multiagent planning problem and
n be an integer.

• A sequence of answer sets M = 〈Mi〉i∈AG is compatible iff there exists a solution
S = 〈αi〉i∈AG such that α[Mi] = αi for every i ∈ AG.

• If 〈Π(Pi, n)〉i∈AG does not have a set of compatible answer sets then M does not
have a solution with length n.

Proof. (Sketch) The conclusion of the first item can be derived from the definition of
compatibility answer sets, Theorem 1, and the definition of a solution. The conclusion
of the second item follows from the first item and Theorem 1. �

Example 10. Let M1 be the multiagent planning problem from Example 6. We can
easily check the following:

• {Π(Pi, n)}i∈{A,B,C} for n ≤ 3 does not have compatible answer sets,

• For n = 4, the three answer sets MA, MB , and MC of Π(PA, 4), Π(PB, 4), and
Π(PC , 4), satisfy the following properties:

{o(get(nail, c), 0), get(ham, b), 1), o(hw nail, 2), o(wait, 3)} ⊆ MA

{o(hw nail, 0), o(give(ham, a), 1), o(give(screw, c), 2), o(wait, 3)} ⊆ MB

{o(give(nail, a), 0), o(wait, 1), o(get(screw, b), 2), o(hw screw, 3)} ⊆ MC

These answer sets are compatible and correspond to the solution in Example 5. �

Definitions 6 and 7 provide us with a way for computing joint plans of length n for a
planning problem M. The process involves (i) computing a set {Mi}i∈AG of answer
sets, where Mi is an answer set of Π(Pi, n); and (ii) checking the compatibility of
{Mi}i∈AG . In what follows, we present a system for computing joint plans.

4.4 ASP-Prolog

The ASP-Prolog system [10,22] has been developed to provide a tight and semanti-
cally well-defined integration of ASP in Prolog. The language of ASP-Prolog has been

Planning for Multiagent Using ASP-Prolog 15

developed using the module and class capabilities of Prolog. ASP-Prolog allows pro-
grammers to assemble a variety of different modules to create a program; along with
the traditional types of modules supported by Prolog, ASP-Prolog allows the presence
of an arbitrary number of ASP modules, each being a collection of ASP rules and facts.
Each Prolog module can access any ASP module (using the traditional module qualifi-
cation of Prolog), read its content, access its models, and modify it (using the traditional
assert and retract).

The language of ASP-Prolog includes a traditional logic programming signature
〈F , V , Π〉, where V is a denumerable set of variables, F is a set of function symbols,
and Π is a set of predicate symbols. In particular, we assume that Π contains the dis-
tinguished predicates {assert,retract,model}.

The ASP-Prolog language redefines the notion of atoms and literals. A qualified
atom is of the form t : A where A is an atom of the language and t is a term. A literal
is either an atom, a qualified atom, the negation not A of an atom or the negation
not t : A of a qualified atom. This allows us to generalize logical rules (referred to as
ASP-Prolog rules) by allowing the presence of qualified atoms in the body of the rules
(negated or not).

An ASP-Prolog module Mt is a set of ASP-Prolog rules, together with a module
interface:

← module : t
← import : t1, . . . , tk
← export : q1, . . . , qm

where t is the name of the module (a ground term), t1, . . . , tk are names of other mod-
ules (ground terms), and q1, . . . , qm ∈ Π .

Each module creates a local knowledge base, and possibly different semantics can
be employed depending on the structure of rules present in the module. If the rules in
module Mt do not contain any qualified atoms, then we denote with NAT (Mt) the
set of interpretations (i.e., sets of ground atoms) that describe the semantics of Mt; for
example, in presence of negation as failure, NAT (Mt) could correspond to the set of
answer sets of Mt.

An ASP-Prolog program P is composed of a collection of modules
{Mt1 , . . . , Mtn}. Given P , we can develop a dependency graph among mod-
ules: module ti depends on module tj if tj is imported by ti. For the sake of simplicity,
we assume that the dependency graph is acyclic; furthermore, when we write the set of
modules composing P , we will assume that t1, . . . , tn represents a topological sorting
of the dependency graph of P . Finally, we assume that the semantics of P is provided
by the semantics of the last module tn—i.e., tn represents the “entry point” to the
program P .

In absence of occurrences of assert and retract, it is possible to provide a
declarative static semantics for a program P . Intuitively, the semantics builds on estab-
lishing a mapping from ground terms to interpretations (i.e., a model naming function).
We will denote with τ an arbitrary function naming interpretations. Whenever a quali-
fied term t : A is used in a rule, if t is not the name of a module, then we are intuitively
testing whether the atom A is satisfied in the interpretation named t. Similarly, if t : A

16 T.C. Son, E. Pontelli, and N.-H. Nguyen

is a qualified atom and t is the name of a module, then we would like to verify whether
A is satisfied in all the possible accepted models of the module Mt. The semantics of
P can be constructed iteratively:

• since Mt1 cannot contain any imports, then its semantics is NAT (Mt1);
• the semantics (i.e., collection of accepted models) of any other module Mti is ob-

tained via a reduction process, where:
◦ if a rule contains a qualified atom t : A (literal not t : A) in the body, t is

the name of an imported module (which must precede ti in the topological
sorting), the predicate of A appears in the export list of Mt, and A is true in
each accepted model of Mt in the semantics of P , then the literal (the rule) is
removed, otherwise the whole rule (the literal) is discarded;

◦ if a rule contains a qualified atom t : A (literal not t : A) in the body, t
is not the name of an imported module, there is an imported module tj such
that one of its accepted models in the semantics of P has name t (i.e., τ(t)
corresponds to such model), the predicate of A is in the export list of Mtj , then
the qualified atom (the whole rule) is removed, otherwise the whole rule (the
literal) is discarded.

The specialized predicate model is used in qualified atoms to identify components
of the model naming function: t : model(s) is entailed if t is the name of a module
(being imported) and τ(s) is an accepted model of module t in the semantics of
the given program. The collection of accepted models for Mti corresponds to the
natural semantics NAT for the reduct of the module.

In presence of assert and retract, it is necessary to develop instead an opera-
tional semantics, where the semantics is expressed with respect to goal entailment and
a dynamically changing program (as described in detail in [10]).

Finally, let us underline that ASP-Prolog allows modules to contain standard Prolog
code, including extra-logical predicates; in this case, the module is going to have Prolog
semantics as its natural NAT semantics.

4.5 Finding Joint Plans

The problem of finding joint plans can be encoded using ASP-Prolog. Let us denote
the ASP encoding of the planning problem of agent Pi as Πi = Π(Pi, n) (constructed
as discussed in section 4.2). Let us also assume that AG contains k agents. We can
generate a ASP-Prolog module Mi which contains:

• all the rules of Πi;
• the module interface:

← module : modi

← import : ε
← export : o, exchange

An additional module Mk+1 is required to provide the services of computing joint
plans—i.e., verifying that the plans individually computed by the different agents can be
combined into a joint plan. Effectively, Mk+1 is in charge of implementing the notion
of compatible answer sets presented earlier.

Planning for Multiagent Using ASP-Prolog 17

The simplest construction for Mk+1 can be expressed by performing a brute force
combination of the plans generated by the various agents. The header of Mk+1 contains

← module : lead
← import : mod1, . . . , modk

← export : o

The module can collect the joint plans by selecting arbitrary answer sets produced by
the other modules and validate them for compatibility. The predicate

collect([X1, . . . , Xk]) ← mod[1] : model(X1), . . . , mod[k] : model(Xk)
generates all possible combinations of answer sets from the different Πi programs. mod
denotes an array used to store the names of the imported modules.

The test for compatibility of a solution we can use the following code:

unmatched(List, I, J, T) ← nth(I,List, P1), nth(J, List, P2),
P1 : o(A1, T), P2 : o(A2, T),
(P1 : exchange(A1, I, J, P rop1, P rop2),

\+ P2 : exchange(A2, J, I, P rop2, P rop1);
P2 : exchange(A2, J, I, P rop2, P rop1),

\+ P1 : exchange(A1, I, J, P rop1, P rop2))
reject(List) ← in(I, 1, n), in(J, 1, n), in(T, 1, length),

unmatched(List, I, J, T)
compatible(List) ← compatible(List), \+ reject(List)

An alternative approach is to use the exchanges generated by one agent to guide the
construction of the plans of the other agents. A main loop will cycle and collect the
names of the answer sets that are compatible, one agent at a time:

1 : compatible(List, List, , k).
2 : compatible(List, F inal, Exchanges, I) ← I < k,
3 : mod[I] : model(New), I1 is I + 1,
4 : collect exchanges(New, Ex),
5 : check past exchanges(Ex, Exchanges, I),
6 : add future exchanges(Ex, I),
7 : append(Ex, Exchanges, NewExchanges),
8 : compatible([New|List], F inal, NewExchanges, I1)
9 : collect exchanges(Model, List) ←
10 : findall([A, T], (Model : o(A, T), Model : exchange(A, , , ,)), List)
11 : check past exchanges(New, Old, Index) ← member([A, T], New),
12 : mod[From] : exchange(B, From, To, P1, P2), T o < Index,
13 : mod[To] : exchange(A1, T o, From, P2, P1),
14 : \ + member([B, T], Old), !, fail
15 : add future exchanges([],)
16 : add future exchanges([[A, T]|Rest], Index) ←
17 : mod[Index] : exchange(A, Index, T o, P1, P2), T o > Index,
18 : mod[To] : exchange(B, To, Index, P2, P1),
19 : mod[To] : assert(o(B, T)),
20 : add future exchanges(Rest, Index)

18 T.C. Son, E. Pontelli, and N.-H. Nguyen

Intuitively:
• The predicate collect exchanges extracts from an answer set (i.e., an agent’s plan),

the list of exchanges required by the plan (lines 9-10);
• The predicate check past exchanges ensures that the plan for the agent does not

impose additional exchanges with the agents whose plans have already been estab-
lished (lines 11-14);

• The predicate add future exchange fixes the steps in the plan of the other agents
requiring exchanges (lines 15-20).

It is easy to generalize the proof of correctness of this code from the results presented
in the earlier sections.

5 Related Works

Our work is strongly related to the work in [26]. In fact, the proposed approach of
computing joint plans in this paper is complementary to the approach of computing
join plans in [26]. The main differences between this work and [26] lie in (i) the use of
a more expressive language for representing and reasoning about actions of individual
agents; (ii) the view of request and provide actions as exchanges between agents, which
allows for a simpler formalization of cooperative actions; and (iii) the use of ASP-
Prolog, a system for integrating of answer set programming and Prolog, in computing
joint plans.

As in [26], the multiagent planning problem considered in this paper could be viewed
as a special case of distributed problem solving [8]. Furthermore, our main goal is to
generate a joint plan for the agents before its execution. In this regards, our work differs
from many distributed continual planning systems that were discussed in the survey [6]
and many papers presented in the recent AAMAS conferences which concentrate on
planning and replanning or dealing with unexpected events during the plan execution.
Nevertheless, the assert and retract capabilities provided by ASP-Prolog can
be used to move the current approach towards continual planning—a topic of future
exploration. Last but not least, ASP-Prolog provides a way to facilitate limited shar-
ing between individual agents, a feature that might be important in various multiagent
planning scenarios.

The proposed method for the generation of joint plans follows the approach pre-
sented in [5] where

Multiagent planning = Planning + Coordination
We use answer set programming [16], a method that has been used for single agent
planning [9,27], in computing the individual plans. As such, our plan representation
allows for the coordination to be done by using time-steps presented in individual plans.
This is different from several other systems in which partial order plans are used for plan
representation and refinement planning is used for coordination (e.g., [3,2] or earlier
works such as the Partial Global Planning framework). Our use of the system ASP-
Prolog is similar to the spirit of that in [7], where an attempt is made to construct joint
plan using SAT-based single agent planners.

Observe that cooperative actions—as defined in this paper—are also suitable for the
modeling of multiagent planning with resources. Requesting a resource and offering

Planning for Multiagent Using ASP-Prolog 19

a resource can be modeled in a similar fashion to that of asking and offering a nail
(Example 4). Since our focus is on the generation of joint plans before execution, the
proposed language is different from the resource logic introduced in [4], whose focus
is on the plan merging phase. The exchange actions can be seen as special case of
negotiation actions discussed in [29].

We use the action language B because of its simple semantics and its close relation-
ship to PDDL [13]. This means that other extensions or variations of A (e.g., C [12],
E [14]) could also be extended to formalize cooperative actions. Observe that there are
subtle differences between request actions and non-deterministic actions. First, a coop-
erative action changes the world of other agents while a non-deterministic action does
not. Second, a cooperative action does not change the world of the agent executing this
action, while a non-deterministic action does. In this sense, a cooperative action of an
agent is like an exogenous action for other agents. Thus, modeling cooperative actions
using non-deterministic actions might not be the most natural way. Finally, we would
like to note that B allows arbitrary static laws which cannot be easily included in other
languages for reasoning about actions and changes (e.g., event calculus [15]) or the
planning language PDDL).

Finally, we observe that the proposed framework differs from approaches to multi-
agent planning based on alternating-time temporal logic (ATL) in a similar way that
domain-independent planning differs from planning with domain specific knowledge.
In our approach, the description of the planning problem is minimal, i.e., it contains
only the initial state, the goal state, and the specification of agents’ actions. A specifica-
tion in ATL is richer in that it can include extra information such as the requirement that
a certain action has to be executed immediately after the execution of a given action.
Our approach can be extended to consider various types of domain specific knowledge
as in [23].

6 Conclusions and Future Works

In this paper, we extended the action language B to define a language for representing
and reasoning about actions and their effects in multiagent domains that considers both
individual and cooperative actions. We defined the notion of a plan in presence of co-
operative actions and used it in formalizing the notion of a joint plan. We also proposed
a prototype system as an application of the ASP-Prolog system, which generates joint
plans.

Our immediate goal for the future is to investigate the scalability and efficiency of
the proposed system and use it in developing a system to integrate multiagent planning
and negotiation, as described in [25]. Additionally, we would like to explore the use of
more expressive languages (e.g., action languages with constraints and sensing actions
and/or preferences [24]) in representing and reasoning about joint plans of Multiagent
by addressing various questions mentioned in [1].

Acknowledgment

The research was partially supported by NSF grants IIS-0812267, CBET-0754525, and
HRD-0420407.

20 T.C. Son, E. Pontelli, and N.-H. Nguyen

References

1. Brenner, M.: Planning for Multiagent Environments: From Individual Perceptions to Coordi-
nated Execution. In: Work. on Multiagent Planning & Scheduling, ICAPS, pp. 80–88 (2005)

2. Cox, J.S., Durfee, E.H.: An efficient algorithm for multiagent plan coordination. In: AAMAS
2005, pp. 828–835 (2005)

3. Cox, J.S., Durfee, E.H., Bartold, T.: A Distributed Framework for Solving the Multiagent
Plan Coordination Problem. In: AAMAS, pp. 821–827. ACM Press, New York (2005)

4. de Weerdt, M., Bos, A., Tonino, H., Witteveen, C.: A resource logic for multi-agent plan
merging. Ann. Math. Artif. Intell. 37(1-2), 93–130 (2003)

5. de Weerdt, M., ter Mors, A., Witteveen, C.: Multi-agent planning: An introduction to plan-
ning and coordination. In: Handouts of the Euro. Agent Summer School, pp. 1–32 (2005)

6. des Jardins, M., Durfee, E.H., Ortiz, C.L., Wolverton, M.: A survey of research in distributed,
continual planning. AI Magazine 20(4), 13–22 (1999)

7. Dimopoulos, Y., Moraitis, P.: Multi-agent coordination and cooperation through classical
planning. In: IEEE/WIC/ACM/IAT, pp. 398–402. IEEE Comp. Society, Los Alamitos (2006)

8. Durfee, E.: Distributed Problem Solving and Planning. In: Multiagent Systems (A Modern
Approach to Distributed Artificial Intelligence), pp. 121–164. MIT Press, Cambridge (1999)

9. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer Set Planning under Action
Costs. Journal of Artificial Intelligence Research 19, 25–71 (2003)

10. El-Khatib, O., Pontelli, E., Son, T.C.: ASP-PROLOG: A System for Reasoning about Answer
Set Programs in Prolog. In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 148–162.
Springer, Heidelberg (2004)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Int. Conf.
on Logic Programming, pp. 1070–1080 (1988)

12. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3(6) (1998)
13. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,

Wilkins, D.: PDDL — the Planning Domain Definition Language. Ver. 1.2. TR1165. Yale,
London (1998)

14. Kakas, A.C., Miller, R., Toni, F.: E-RES: Reasoning about Actions, Events and Observations.
In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp.
254–266. Springer, Heidelberg (2001)

15. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4,
67–95 (1986)

16. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming
Paradigm: a 25-Year Perspective, pp. 357–373. Springer, Heidelberg (1999)

17. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, pp. 23–38 (1994)
18. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Log. Prog. Paradigm: a 25-year Perspective, pp. 375–398 (1999)
19. Niemelä, I.: Logic programming with stable model semantics as a constraint programming

paradigm. AMAI 25(3,4), 241–273 (1999)
20. Niemelä, I., Simons, P., Soininen, T.: Stable model semantics for weight constraint rules. In:

Proc. Logic Programming and Non Monotonic Reasoning, pp. 315–332 (1999)
21. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. J. of

Log. and Comp. 8(3), 261–292 (1998)
22. Pontelli, E., Son, T.C., Baral, C.: A Logic Programming Based Framework for Intelligent

Web Service Composition. In: Managing Web Service Quality: Measuring Outcomes and
Effectiveness. IGI Publisher (2008)

23. Son, T.C., Baral, C., Tran, N., McIlraith, S.: Domain-Dependent Knowledge in Answer Set
Planning. ACM Transactions on Computational Logic 7(4) (2006)

Planning for Multiagent Using ASP-Prolog 21

24. Son, T.C., Pontelli, E.: Planning with Preferences using Logic Programming. Journal of The-
ory and Practice of Logic Programming (TPLP) 6, 559–607 (2006)

25. Son, T.C., Pontelli, E., Sakama, C.: Logic Programming for Multiagent Planning with Nego-
tiation. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 99–114. Springer,
Heidelberg (2009)

26. Son, T.C., Sakama, C.: Reasoning and Planning with Cooperative Actions for Multiagents
Using Answer Set Programming. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 208–227. Springer, Heidelberg (2010)

27. Tu, P.H., Son, T.C., Baral, C.: Reasoning and Planning with Sensing Actions, Incomplete
Information, and Static Causal Laws using Logic Programming. TPLP 7, 1–74 (2006)

28. Tu, P.H., Son, T.C., Gelfond, M., Morales, R.: Approximation of action the-
ories and its application to conformant planning. Artificial Intelligence (2010),
doi:10.1016/j.artint.2010.04.007

29. Wooldridge, M., Parsons, S.: Languages for negotiation. In: Proceedings of ECAI (2000)

Expressing Properties of Resource-Bounded
Systems: The Logics RTL� and RTL

Nils Bulling1 and Berndt Farwer2

1 Department of Informatics, Clausthal University of Technology, Germany
2 School of Engineering and Computing Sciences, Durham University, UK

Abstract. Computation systems and logics for modelling such systems
have been studied to a great extent in the past decades. This paper
introduces resources into the models of systems and discusses the
Resource-Bounded Tree Logics RTL and RTL�, based on the well-known
Computation Tree Logics CTL and CTL�, for reasoning about com-
putations of such systems. We present initial results on the complex-
ity/decidability of model checking.

1 Introduction

The basic idea of rational agents being autonomous entities perceiving changes in
their environment and acting according to a set of rules or plans in the pursuit of
goals does not take resources into account. However, many actions that an agent
would execute in order to achieve a goal can – in real life – only be carried out
in the presence of certain resources. Without sufficient resources some actions
are not available, leading to plan failure. The analysis of agents and (multi-
agent) systems with resources is still in its infancy and has been tackled almost
exclusively in a pragmatic and experimental way. This paper takes first steps
in modelling resource bounded systems (which can be considered as the single-
agent case of the scenario just described). Well-known computational models are
combined with a notion of resource to enable a more systematic and rigorous
specification and analysis of such systems. The main motivation of this paper
is to propose a fundamental formal setting. In the future we plan to focus on a
more practical aspect, i.e., how this setting can be used for the verification of
systems.

The proposed logic builds on Computation Tree Logic [6]. Essentially, the
existential path quantifier Eϕ (there is a computation that satisfies ϕ) is replaced
by 〈ρ〉γ where ρ represents a set of available resources. The intuitive reading of
the formula is that there is a computation feasible with the given resources ρ
that satisfies γ.

Finally, we turn to the decidability of model checking the proposed logics. We
show that RTL (Resource-Bounded Tree Logic), the less expressive version, has
a decidable model checking problem as well as restricted variants of the full logic
RTL� and its models.

The remainder of the paper is structured as follows. In Section 2 we recall the
computation tree logic CTL� and define multisets used as a representation for

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 22–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Expressing Properties of Resource-Bounded Systems 23

resources. Section 3 forms the main part of the paper. We introduce resources
into the computation tree logics and their models. Subsequently, in Section 4 we
show some properties of the logics. Section 5 includes the analysis of the model
checking complexity, and finally, we conclude with an outlook on future work in
Section 6.

2 Preliminaries

In this section we present the computation tree logics CTL and CTL� as well as
multisets which we will use to represent resources.

2.1 Computation Tree Logic and Transition Systems

A Kripke frame T = (Q ,→) consists of a finite set of states Q and a (serial)
binary relation →⊆ Q × Q between states. We say that a state q′ is reachable
from a state q if q → q′. A Kripke model is defined as M = (Q ,→, Props, π)
where (Q ,→) is a transition system, Props a non-empty set of propositions, and
π : Q → P(Props) a labelling function that indicates which propositions are
true in a given state. Such models represent the temporal behaviour of systems.
There are no restrictions on the number of times a transition is used.

A path λ of a transition system is an infinite sequence q0q1 · · · ∈ Qω of states
such that qi → qi+1 for all i = 0, 1, 2, Given a path λ we use λ[i] and λ[i, j]
to refer to state qi and to the path qiqi+1 . . . qj where j = ∞ is permitted,
respectively. A path starting in q is called q-path. The set of all paths in M is
denoted by ΛM and the set of all q-paths by ΛM(q).

Formulae of CTL� [8] are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ where γ ::= ϕ | ¬γ | γ ∧ γ | ϕU ϕ | ©ϕ

and p ∈ Props. Formulae ϕ (resp. γ) are called state (resp. path) formulae. There
are two temporal operators: © (in the next moment in time) and U (until). The
temporal operators ♦ (sometime in the future) and � (always in the future)
can be defined as abbreviations.

CTL� formulae are interpreted over Kripke structures; truth is given by the
satisfaction relation in the usual way: For state formulae we have

M, q |= p iff λ[0] ∈ π(p) and p ∈ Props;
M, q |= ¬ϕ iff M, q �|= ϕ;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;
M, q |= Eϕ iff there is a path λ ∈ ΛM(q) such that M, λ |= ϕ;

and for path formulae

M, λ |= ϕ iff M, λ[0] |= ϕ;
M, λ |= ¬γ iff M, λ �|= γ;
M, λ |= γ ∧ δ iff M, λ |= γ and M, λ |= δ;
M, λ |= ©γ iff λ[1,∞], π |= γ; and

24 N. Bulling and B. Farwer

M, λ |= γ U δ iff there is an i ∈ N0 such that M, λ[i,∞] |= δ and M, λ[j,∞] |= γ
for all 0 ≤ j < i;

A less expressive fragment of CTL� called CTL [6] has become popular due to its
better computational properties. CTL restricts CTL� such that every temporal
operator must directly be preceded by a path quantifier. The formula E� ♦ p,
for instance, is a formula of the full language but not of the restricted version.

2.2 Multisets

We define some variations of multisets used in the following sections. We assume
that N0 = {0, 1, 2, . . .} and Z = {. . . , −2, −1, 0, 1, 2, . . .}.

Definition 1 (Z/Z
∞-multiset,X±

∞, X±, N0/N
∞
0 -multiset, X⊕

∞, X⊕). Let
X be a non-empty set.

(a) A Z-multiset Z : X−→Z over the set X is a mapping from the elements of
X to the integers.
A Z

∞-multiset Z : X−→Z∪{−∞,∞} over the set X is a mapping from the
elements of X to the integers extended by −∞ and ∞.
The set of all Z-multisets (resp. Z

∞-multisets) over X is denoted by X±

(resp. X±∞).
(b) An N0-multiset (resp. N

∞
0 -multiset) N over X is a Z-multiset (resp. Z

∞-
multiset) over X such that for each x ∈ X we have N(x) ≥ 0. The set of all
N0-multisets (resp. N

∞
0 -multisets) over X is denoted by X⊕ (resp. X⊕

∞).

Whenever we speak of a ‘multiset’ without further specification, the argument
is supposed to hold for any variant from Def. 1. In general, we overload the
standard set notation and use it also for multisets, i.e., ⊆ denotes multiset in-
clusion, ∅ is the empty multiset, etc. We assume a global set of resource types
R. The resources of an individual agent form a multiset over this set. Z-multiset
operations are straightforward extensions of N0-multiset operations.

Multisets are frequently written as formal sums, i.e., a multiset M : X−→N0
is written as

∑
x∈X M(x). Given two multisets M : X−→N0 and M′ : X−→N0

over the same set X , multiset union is denoted by +, and is defied as (M +
M′)(x) := M(x) + M′(x) for all x ∈ X . Multiset difference is defined only if
M has at least as many copies of each element as M′. Then, (M − M′)(x) :=
M(x)−M′(x) for all x ∈ X . For Z-multisets, + is defined exactly as for multisets,
but the condition is dropped for multiset difference, since for Z-multisets negative
multiplicities are possible. Finally, for Z

∞-multisets we assume the standard
arithmetic rules for −∞ and ∞ (for example, x + ∞ = ∞, x − ∞ = −∞, etc).

We define multisets with a bound on the number of elements of each type.

Definition 2 (Bounded multisets). Let k, l ∈ Z. We say that a multiset M
over a set X is k-bounded iff ∀x ∈ X (M(x) ≤ k). We use kX±

∞ to denote the
set of all k-bounded Z

∞-multisets over X; and analogously for the other types of
multisets.

Expressing Properties of Resource-Bounded Systems 25

Finally, we define the (positive) restriction of a multiset with respect to an-
other multiset, allowing us to focus on elements with a positive multiplicity.

Definition 3 ((Positive) restriction, M �N). Let M be a multiset over X
and let N be a multiset over Y . The (positive) restriction of M regarding N,
M �N, is the multiset M �N over X ∪ Y defined as follows:

M �N (x) :=

{
M(x) if N(x) ≥ 0 and x ∈ Y

0 otherwise.

So, the multiset M �N equals M for all elements contained in N which have
a non-negative quantity, and 0 for all others elements.

3 Modelling Resource-Bounded Systems

In this section we introduce resource-bounded models (RBMs) for modelling
system with limited resources. Then, we propose the logics RTL� and RTL
(resource-bounded tree logics), for the verification of such systems. Subsequently,
we introduce cover models and graphs and consider several properties and special
cases of RBMs.

3.1 Resource-Bounded Systems

A resource-bounded agent has at its disposal a (limited) repository of resources.
Performing actions reduces some resources and may produce others; thus, an
agent might not always be able to perform all of its available actions. In the
single agent case that we consider here this corresponds to the activation or
deactivation of transitions.

Definition 4 (Resources R, resource quantity (set), feasible)
An element of the non-empty and finite set R is called resource. A tuple (r, c) ∈
R × Z

∞ is called resource quantity and we refer to c as the quantity of r. A
resource-quantity set is a Z

∞-multiset ρ ∈ R±∞. Note that ρ specifies a resource
quantity for each r ∈ R.

Finally, a resource-quantity set ρ is called feasible iff ρ ∈ R⊕
∞; that is, if all

resources have a non-negative quantity.

We model resource-bounded systems by an extension of Kripke frames, allow-
ing each transition to consume and produce resources. We assign pairs (c,p)
of resource-quantity sets to each transition, denoting that a transition labelled
(c,p) produces p and consumes c.

Definition 5 (Resource-bounded model). A resource-bounded model
(RBM) is given by M = (Q ,→, Props, π, R, t) where

– Q, R, and Props are finite sets of states, resources, and propositions, re-
spectively;

26 N. Bulling and B. Farwer

– (Q ,→, Props, π) is a Kripke model; and
– t : Q × Q → R⊕ × R⊕ is a (partial) resource function, assigning to each

transition (i.e., tuple (q, q′) ∈→) a tuple of feasible resource-quantity sets.
Instead of t(q, q′) we sometimes write tq,q′ and for tq,q′ = (c,p) we use •tq,q′

(resp. t •
q,q′) to refer to c (resp. p).

Hence, in order to make a transition from q to q′, where q → q′, the resources
given in •tq,q′ are required ; and in turn, tq,q′ • are produced after executing the
transition. Note, that we only allow finite productions and consumptions.

A path of an RBM is a path of the underlying Kripke structure. We also use
the other notions for paths introduced above.

The consumption and production of resources of a path can now be defined
in terms of the consumptions and productions of the transitions it comprises.
Intuitively, not every path of an RBM is feasible; consider, for instance, a system
consisting of a single state q only where q → q and t •

q,q = •tq,q. It seems that the
transition “comes for free” as it produces the resources it consumes; however,
this is not the case. The path qqq . . . is not feasible as the initial transition is
not enabled due to the lack of initial resources. Hence, in order to enable it, at
least the resources given in •tq,q are necessary. Intuitively, a path is said to be
ρ-feasible if each transition in the sequence can be executed with the resources
available at the time of execution.

Definition 6 (ρ-feasible path, resource-extended path). A path λ =
q1q2q3 · · · ∈ ΛM(q) where q = q1 is called ρ-feasible if for all i ∈ N the resource-
quantity set(

ρ + Σi−1
j=1(t

•
qjqj+1

− •tqjqj+1)
)

�•tqiqi+1
−•tqiqi+1 is feasible.

A resource-extended path is given by λ ∈ (Q ×R±
∞)ω such that the restriction of

λ to states, denoted λ|Q , is a path in the model and the second component keeps
track of the currently available resources; we use λ|R to refer to the projection
to the second component.

3.2 Resource-Bounded Tree Logic

We present a logic based on CTL� which can be used to verify systems with
limited resources. In the logic we replace the CTL� path quantifier E by 〈ρ〉
where ρ is a resource-quantity set. The intuitive reading of a formula 〈ρ〉γ is that
there is a(n) (infinite) ρ-feasible path λ on which γ holds. Note that E (there
is a path in the system) can be defined as 〈ρ∞〉 where ρ∞ is the resource set
assigning ∞ to each resource type. Formally, the language is defined as follows.

Definition 7 (LRTL�). Let R be a set of resources and let Props a set of propo-
sitions. The language LRTL� is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈ρ〉γ where γ ::= ϕ | ¬γ | γ ∧ γ | ϕU ϕ | ©ϕ

and p ∈ Props and ρ ∈ R±∞. Formulae ϕ (resp. γ) are called state (resp. path)
formulae.

Expressing Properties of Resource-Bounded Systems 27

Moreover, we define fragments of LRTL� in which the domain of ρ is restricted.
Let X be any set of multisets over R. Then LRTL�

X
restricts LRTL� in such a

way that ρ ∈ X. Finally, we define [ρ], the dual of 〈ρ〉, as ¬〈ρ〉¬.

Analogously to the language of CTL we define LRTL as the fragment of LRTL�

in which each temporal operator is immediately preceded by a path quantifier.

Definition 8 (LRTL). Let R be a set of resources and let Props a set of propo-
sitions. The language LRTL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈ρ〉©ϕ | 〈ρ〉� ϕ | 〈ρ〉ϕU ϕ

where p ∈ Props, ρ ∈ R±∞. Fragments RTLX are defined in analogy to Def. 7.

As in the language of CTL we define ♦ ϕ as � U ϕ and we use the following
abbreviations for the universal quantifiers (they are not definable as duals in
LRTL as, for example, ¬〈ρ〉¬� ϕ is not an admissible LRTL-formula):

[ρ]©ϕ ≡ ¬〈ρ〉©¬ϕ,
[ρ]� ϕ ≡ ¬〈ρ〉♦ ¬ϕ,
[ρ]ϕU ψ ≡ ¬〈ρ〉((¬ψ)U (¬ϕ ∧ ¬ψ)) ∧ ¬〈ρ〉� ¬ψ,

Next, we give the semantics for both languages.

Definition 9 (Semantics, RTL�). Let M be an RBM, let q be a state in M,
and let λ ∈ ΛM. The semantics of LRTL�-formulae is given by the satisfaction
relation |= which is defined as follows:

M, q |= p iff λ[0] ∈ π(p) and p ∈ Props;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ
M, q |= 〈ρ〉ϕ iff there is a ρ-feasible path λ ∈ Λ(q) such that M, λ |= ϕ
M, λ |= ϕ iff M, λ[0] |= ϕ;

and for path formulae:

M, λ |= ¬γ iff not M, λ |= γ
M, λ |= γ ∧ ψ iff M, λ |= γ and M, λ |= ψ
M, λ |= � ϕ iff for all i ∈ N we have that λ[i,∞] |= ϕ;
M, λ |= ©ϕ iff λ[1,∞] |= ϕ; and
M, λ |= ϕU ψ iff there is an i ≥ 0 such that M, λ[i,∞] |= ψ and M, λ[j,∞] |= ϕ

for all 0 ≤ j < i;

We consider the logic RTL� as the tuple (LRTL� , |=) over all RBMs and analo-
gously for all other fragments. These clauses are also used to define the semantics
for LRTL (therefore, we also stated the clause for � ϕ).

Thus the meaning of [ρ]� p is that proposition p holds in every state on any
ρ-feasible path.

We now discuss some interpretations of the formula 〈ρ〉γ considering various
resource-quantity sets. For ρ ∈ R⊕ it is assumed that ρ consists of an initial
(positive) amount of resources which can be used to achieve γ where the quantity
of each resource is finite. ρ ∈ R⊕

∞ allows to ignore some resources (i.e., it is
assumed that there is an infinite quantity of them). Initial debts of resources
can be modelled by ρ ∈ R±

∞.

28 N. Bulling and B. Farwer

q0

q1q2

p

r

t

(0
, 0

),
(0

, 1
)

(1, 1), (0, 2)

(0
, 3

),
(0

, 0
)

(3, 3), (0, 0)

(0, 0), (0, 2)

(q0, (1, 1))

(q0, (0, 4))

(q1, (0, 2))

(q2, (0, 1))

(q0, (0, 1))

(q0, (1,∞))

(q2, (1,∞))
(q1, (0,∞))

(q0, (0,∞))

(q0, (∞, 1))

(q1, (∞, 2))

(q0, (∞, ω))

(q1, (∞, ω)) (q2, (∞, ω))

(a) (b)

Fig. 1. In Figure (a) a simple RBM M is shown and (b) presents some corresponding
cover graphs

Example 1. Consider the RBM M in Figure 1(a). Each transition is labeled by
(c1, c2), (p1, p2) with the interpretation: The transition consumes ci and produces
pi quantities of resource ri for i = 1, 2. We encode the resource-quantity set by
(a1, a2) to express that there are ai quantities of resoure ri for i = 1, 2.

– If there are infinitely many resources available proposition t can become true
infinitely often: M, q0 |= 〈(∞,∞)〉� ♦ t

– We have M, q0 �|= 〈(1, 1)〉� � as there is no (1, 1)-feasible path. The formula
〈(1,∞)〉� (p ∨ t) holds in q0.

– Is there a way that the system runs forever given specific resources? Yes, if
we assume, for instance, that there are infinitely many resources of r1 and
at least one resource of r2: M, q0 |= 〈(∞, 1)〉�

These simple examples show, that it is not always immediate whether a formula
is satisfied, sometimes a rather tedious calculation might be required.

3.3 Cover Graphs and Cover Models

In this section we introduce a transformation of RBMs into Kripke models.
This allows us, in general, to translate truth in RTL to truth in CTL as shown
in Section 4.1.

We say that a resource-quantity set covers another, if it has at least as many
resources of each type with at least one amount actually exceeding that of the
other resource-quantity set. We are interested in cycles of transition systems that
produce more resources than they consume, thereby giving rise to unbounded
resources of some type(s). This is captured by a cover graph for RBMs, extending
ideas from [11] and requiring an ordering on resource quantities.

Definition 10 (Resource ordering <). Let ρ and ρ′ be resource sets in R±∞.
We say ρ < ρ′ iff (∀r ∈ R (ρ(r) ≤ ρ′(r))) ∧ (∃r ∈ R (ρ(r) < ρ′(r))). We say ρ
has strictly less resources than ρ′ or ρ′ covers ρ.

The ordering is extended to allow values of ω by defining for x ∈ N that ∞+ω =
∞, ∞ − ω = ∞, ω − ∞ = −∞, ω + x = ω, ω − x = ω, and ω < ∞.

Expressing Properties of Resource-Bounded Systems 29

Definition 11 (ρ-feasible transition,
ρ−→). We say that a transition q → q′

is ρ-feasible and write q
ρ−→q′ if for all r ∈ R we have that 0 < •tq,q′ (r) implies

•tq,q′(r) ≤ ρ(r).

So, given a specific amount of resources ρ a transition is said to be ρ-feasible
if it can be traversed given ρ. A node of the cover graph consists of tuples
(q, (xi)i=1,...,|R|) where q is a state of the RBM and (xi)i is a vector representing
the currently available resources. The variable xi denotes that there are xi units
of resource ri.

Definition 12 ((ρ, q)-cover graph of an RBM, path, λ|Q). Let M = (Q ,→,
Props, π, R, t), let q be a state in Q, and let ρ ∈ R±∞. Without loss of generality,
assume R = {r1, . . . , rn} and consider (xi)i as an abbreviation for the sequence
(xi)i=1,...,n. The (ρ, q)-cover graph CG(M, ρ, q) for M with initial state q ∈ Q
and an initial resource-quantity set ρ is the graph (V, E) defined as the least
fixed-point of the following specification:

1. (q, (ρ(ri))i) ∈ V (the root vertex).

2. For (q′, (xi)i) ∈ V and q′′ ∈ Q with q′
(xi)i−−−→q′′ then either:

(a) if there is a vertex (q′′, (x̂i)i) on the path from the root to (q′, (xi)i) in
V , with (x̂i)i < (xi − •tq′,q′′ (ri) + tq′,q′′ •(ri))i then (q′′, (x̃i)i) ∈ V
and ((q′, (xi)i), (q′′, (x̃i)i)) ∈ E where we define

x̃i :=

{
max{ω, xi − •tq′,q′′(ri) + tq′,q′′ •(ri)} if x̂i < xi,

xi − •tq′,q′′ (ri) + tq′,q′′ •(ri) otherwise;

(b) or else (q′′, (xi − •tq′,q′′(ri) + tq′,q′′ •(ri))i) ∈ V and
((q′, (xi)i), (q′′, (xi − •tq′,q′′(ri) + tq′,q′′ •(ri))i) ∈ E.

A path in CG(M, ρ, q) is an infinite sequence of pairwise adjacent states. Given
a path λ = (q1, (x1i)i)(q2, (x2i)i) . . . we use λ|Q to denote the path q1q2 . . . , i.e.,
the states of M are extracted from the states in V .

Cover graphs can be viewed as Kripke frames. It is obvious how they can be
extended to models given an RBM.

Definition 13 ((ρ, q)-cover model of an RBM). Let G = (V, E) be the (ρ, q)-
cover graph of an RBM M = (Q ,→, Props, π, R, t). The (ρ, q)-cover model of
M, CM(M, ρ, q), is given by (V, E, Props, π′) with π′((q, (xi)i)) := π(q) for all
(q, (xi)i) ∈ V .

Figure 2 shows the RBM M in (a) and its cover model CM(M, 0, q0) at the
very top of (b). In the cover model, ω denotes the reachability of unbounded
resources.

In Section 4.1 we analyse the relation between cover models and truth in RTL.
Unfortunately, as illustrated in the next example, “simple” cover models in their
current form are not yet suitable for that.

30 N. Bulling and B. Farwer

q0 q1

(0), (1)

(3), (0)

(1), (0)
p

(q0, (0)) (q0, (ω)) (q1, (ω))

(q0, (0))

(q0, (0))

(q0, (ω2))

(q0, (ωk)) (q1, (ω3
k)) (q1, (ωk−1

k)) (q1, (0))
p

p

M :

CM(M, 0, q0) :

CM2(M, 0, q0) :

CMk(M, 0, q0), k ≥ 3 :

(a)
(b)

Fig. 2. An RBM M (Fig. (a)), its cover model, 2-cover model, and κ-cover model
(Fig. (b))

Example 2. Let λ be the path of CM(M, 0, q0) from Figure 2(b) with λ|Q =
q0q0(q1)ω. Obviously, this path is not 0-feasible in the model M from Fig. 2(a).
The problem is, that subsequent selections of the transition q0 → q0 allows
to generate any finite amount of resources, thus is covered by ω, but any finite
amount is not enough for the subpath (q1)ω. This implies, that we cannot directly
use cover models as alternative models.

Note, however, that the following result is obvious by the definition of a cover
model: Every ρ-feasible path in the model is also a path in the corresponding
cover model. The other direction is the one that causes trouble.

Proposition 1. If λ is a ρ-feasible q-path in M then there is a (q, ρ)-path λ′ in
CM(M, ρ, q) such that λ = λ′|Q.

Proof. Let λ be a ρ-feasible q-path and ηi be the resources available at λ[i]
after λ[0, i], for i = 1, 2, . . . ; particularly, we have that η0 = ρ. By induction on
the number of transitions we show that there is a (q, ρ)-path λ′ in CM(M, ρ, q)
where (V, E) denotes the underlying graph such that λ = λ′|Q. By definition is
(λ[0], ρ(ri)i) ∈ V . For every state q′ with a ρ-feasible transition from λ[0] to q′

we have that (q′, . . .) ∈ V and an edge ((λ[0], ρ), (q′, . . .)) ∈ E (according to the
construction of the cover model). In particular, we have that (λ[1], ζ) ∈ V with
ζ ≥ω η1.

Now suppose the claim is proven up to position k. Let (λ[k], ζ) ∈ V with
ζ ≥ω ηk be the k + 1st state on λ′. Following the same reasoning as above there
is a transition ((λ[k], ζ), (λ[k + 1], ζ′)) ∈ E with ζ′ ≥ω ηk+1. ��

In order to avoid the problem discussed in Example 2 we modify the cover
graph construction as follows. The construction changes for those transitions that
consume from the ω quantified resource type. Instead of using the rule “ω − k =
ω”, we (try to) expand the nodes for a fixed number of times ensuring that other
loop’s resource requirements can be met. But we abstain of introducing ω’s as
done in the cover graphs.

For the construction, we replace ω by κ new symbols ωl
κ for l = 0, . . .κ − 1

and κ ∈ N0. For i ∈ N0 we define: ωl
κ − i = 0 for l + i ≥ κ, ωl

κ − i = ωl+i
κ for

l + i < κ, ωl
κ + i = ω

min{l−i,0}
κ , and we set ωκ = ω0

κ. The symbol ωκ is used

Expressing Properties of Resource-Bounded Systems 31

to represent that at least κ units of some resource type are produced, and ωl
κ

indicates that there are κ − l resources left.
Identifying the symbol ωl

κ with the number κ− l allows to extend the resource
ordering from Definition 10 in a natural way; e.g. we have i ≤ ωl

κ iff i ≤ κ −
l. Moreover, this does also make it possible to lift the notation of ρ-feasible
transition etc. to this extended case. Finally, we define a class of cover models.

Definition 14 (CMκ(M, ρ, q)). The construction of the (ρ, q, κ)-cover graph is
defined as in Definition 12 but ω in 2. is replaced by ωκ; that is,

x̃i :=

{
max{ωκ, xi − •tq′,q′′(ri) + tq′,q′′ •(ri)} if x̂i < xi,

xi − •tq′,q′′(ri) + tq′,q′′ •(ri) otherwise;

The (ρ, q, κ)-cover model, CMκ(M, ρ, q), is defined analogously to Definition 13.

In Figure 2(b) we have also drawn the 2- and κ-cover model of the model M.
In the next example we show that this generalised cover models overcome the
problem discussed in Example 2.

Example 3. The “bad” path λ of Example 2 is neither possible in CM2(M, 0, q0)
nor in CMκ(M, 0, q0) for any κ ≥ 0. This is, because for any fixed κ the path
(q1)ω will eventually have consumed all resources from ωκ.

However, another problem arises. If the κ is chosen too small then we might
abort the construction too early. The cover model CM2(M, 0, q0) illustrates the
problem: Principally, it is possible to reach state q1 if the loop q0 → q0 is tra-
versed at least three times. However, as ω2 does not allow to “remember” more
than two units of resources state q1 is never visited.

In order to avoid this problem we need to find an appropriate κ such that a
theorem similar to Proposition 1 with respect to κ-cover models holds. Indeed,
such a κ is constructible but it is very complex (cf. the proof of Theorem 3).

We end the section with two results.

Proposition 2. Let ρ ∈ R±∞, let M be an RBM, let q be a state in M, and let
G denote the (ρ, q)- or (ρ, q, κ) cover graph of M. Then, for each node (q, (xi)i)
of G the property xi ≥ min{ρ(ri), 0} holds.

Proof. Suppose there is a node (q, (xi)i) in the cover graph G and an index i
such that xi < min{ρ(ri), 0}. We first consider the case in which the minimum
is equal to 0. Then, there must be a transition in G which causes a non-negative
quantity of ri to become negative. But such a transition is not feasible due to
the construction of G! The case in which the minimum is equal to ρ(ri) < 0
yields the same contradiction as a negative quantity of ri reduces even further
which is not allowed in the construction of G. ��

The proposition states that non-positive resource quantities cannot decrease
further. Theorem 1 states that cover models are finite; its proof is similar to the
corresponding proof for Karp-Miller graphs [11].

32 N. Bulling and B. Farwer

Theorem 1 (Finiteness of the (κ-)cover graph). Let ρ ∈ R±
∞ and κ ∈ N.

The (ρ, q)- and (ρ, q, κ)-cover graphs of the RBM M, q ∈ QM, are finite.

Proof. Let G denote the (ρ, q)-cover graph of M and let Q be the set of states
in M. Assume G is infinite (i.e., G has infinitely many nodes). Then, there is
an infinite path l = v1v2 . . . in G that contains infinitely many different states.
Since Q is finite there is some state, say q′ ∈ Q , of M and an infinite subsequence
of distinct states l′ = vi1vi2 . . . on l with vij = (q′, (xj

k)k) and ij < ij+1 for all
j = 1, 2, Due to the construction of the cover graph, it cannot be the case
that (xj

k)k ≤ (xj′
k)k for any 1 ≤ j < j′; otherwise, an ω-node would have been

introduced and the infinite sequence would have collapsed. So, there must be two
distinct indices, o and p, with 1 ≤ o, p ≤ |R| such that, without loss of generality,
xj

o < xj′
o and xj

p > xj′
p . But by Prop. 2 we know that each xj

k ≥ min{ρ(rk), 0};
hence, the previous property cannot hold for all indices o, p, j, j′ but for the
case in which ρ(r) = −∞ for some resource r. However, this would also yield a
contradiction as any non-negative resource quantity is bounded by 0. This proves
that such an infinite path cannot exist and that the cover graph therefore has
to be finite. ��

3.4 Resource-Bounded Models

In Section 5 we show that the model-checking problem is decidable for RTL.
Decidability of model checking for (full) RTL� over arbitrary RBMs is still open.
However, we identify interesting subclasses in which the problem is decidable.
Below we consider some restrictions which may be imposed on RBMs.

Definition 15 (Production free, zero (loop) free, k-bounded)
Let M = (Q ,→, Props, π, R, t) be an RBM.

(a) We say that M is production free if for all q, q′ ∈ Q we have that tq,q′ =
(c, ∅). That is, actions cannot produce resources they only consume them.

(b) We say that M is zero free if there are no states q, q′ ∈ Q with q �= q′ and
tq,q′ = (∅,p). That is, there are no transitions between distinct states which
do not consume any resources.

(c) We say that M is zero-loop free if there are no states q, q′ ∈ Q with tq,q′ =
(∅,p). That is, in addition to zero free models, loops without consumption of
resources are also not allowed.

(d) We say that M is (structurally) k-bounded for ρ ∈ kR±∞ iff the available
resources after any finite prefix of a ρ-feasible path are bounded by k, i.e.,
there is no reachable state in which the agent can have more than k resources
of any resource type.

In the following we summarise some results which are important for the model
checking results presented in Section 5.

Proposition 3. Let M be an RBM and let ρ ∈ R±∞ be a resource-quantity set.
Then, there is an RBM M′ and a ρ′ ∈ R±, both effectively constructible from
M and ρ, such that the following holds: A path is ρ-feasible in M if, and only if,
it is ρ′-feasible in M′.

Expressing Properties of Resource-Bounded Systems 33

Proof. Let ρ′ be equal to ρ but the quantity of each resource r with ρ(r) ∈
{−∞,∞} is 0 in ρ′ and let M′ equal M apart from the following exceptions. For
each transition (q, q′) with tqq′ = (c,p) in M do the following: Set c(r) = 0 in
M′ for each r with ρ(r) = ∞; or remove the transition (q, q′) completely in M′

if c(r) > 0 (in M) and ρ(r) = −∞ for some resource r. Obviously, ρ ∈ R±.
Now, the left-to-right direction of the result is straightforward as only transi-

tions were omitted in M′ which can not occur on any ρ-feasible path in M. The
right-to-left direction is also obvious as only resource quantities in M′ were set
to 0 from which an infinite amount is available in ρ and only those transitions
were removed which can never occur due to an infinite debt of resources. ��

The next proposition presents some properties of special classes of RBMs intro-
duced above. In general there may be infinitely many ρ-feasible paths. We study
some restrictions of RBMs that reduce the number of paths:

Proposition 4. Let M = (Q ,→, Props, π, R, t) be an RBM.

(a) Let ρ ∈ R± and let M be production and zero-loop free; then, there are no
ρ-feasible paths.

(b) Let ρ ∈ R± and let M be production and zero free. Then, for each ρ-feasible
path λ there is an (finite) initial segment λ′ of λ and a state q ∈ Q such that
λ = λ′ ◦ qqq

(c) Let ρ ∈ R± and let M be production free. Then, each ρ-feasible path λ has
the form λ = λ1 ◦ λ2 where λ1 is a finite sequence of states and λ2 is a path
such that no transition in λ2 consumes any resource.

(d) Let ρ ∈ R± and let M be k-bounded for ρ. Then there are only finitely
many state/resource combinations (i.e., elements of Q × R±) possible on
any ρ-feasible path.

Proof (Sketch).
(a) As there are no resources with an infinite amount and each transition is

production free and consumes resources some required resources must be ex-
hausted after finitely many steps.

(b) Apart from (a) loops may come for free and this is the only way how
ρ-feasible paths can result.

(c) Assume the contrary. Then, in any infinite suffix of a path there is a
resource-consuming transition that occurs infinitely often (as there are only
finitely many transitions). But then, as the model is production free, the path
cannot be ρ-feasible.

(d) We show that there cannot be infinitely many state/resource combinations
reachable on any ρ-feasible path. Since the condition of ρ-feasibility requires the
consumed resources to be present, there is no possibility of infinite decreasing
sequences of resource-quantity sets.This gives a lower bound for the initially
available resources ρ. The k-boundedness also gives an upper bound. ��

We show that k-boundedness is decidable for RBMs.

34 N. Bulling and B. Farwer

Proposition 5 (Decidability of k-boundedness). Given a model M and an
initial resource-quantity set ρ, the question whether M is k-bounded for ρ is
decidable.

Proof. First, we check that ρ ∈ kR⊕
∞. If this is not the case, then M is not

k-bounded for ρ. Then we construct the cover graph of M and check whether
there is a state (q, (xi)i) in it so that xi > k for some i. If this is the case M is
not k-bounded; otherwise it is. ��

We end this section with an easy result showing a sufficient condition for a model
to be k-bounded.

Proposition 6. Let ρ ∈ R±. Each production-free RBM is k-bounded for ρ
where k := max{i | ∃r ∈ R (ρ(r) = i)}.

4 Properties of Resource-Bounded Tree Logics

Before discussing specific properties of RTL and RTL� and showing the decid-
ability of the model-checking problem for RTL and for special cases of RTL� and
its models, we note that our logics conservatively extend CTL� and CTL. This is
easily seen by defining the path quantifier E as 〈ρ∞〉 and by setting tqq′ = (∅, ∅)
for all states q and q′ where ρ∞ denotes the resource set assigning ∞ to each
resource type. Hence, every Kripke model has a canonical representation as an
RBM. Moreover, given an RBM we can express the existence of a path (neglect-
ing resources) by E := 〈ρ∞〉. This allows to directly interpret CTL and CTL�

formulae over RBMs.

Proposition 7 (Expressiveness). CTL� (resp. CTL) can be embedded in
RTL� (resp. RTL) over Kripke models and RBMs.

Proof. Given a CTL� formula ϕ and a Kripke model M we replace every ex-
istential path quantifier in ϕ by 〈ρ∞〉 and denote the result by ϕ′. Then, we
extend M to the canonical RBM M′ if it is not already an RBM and have that
M, q |= ϕ iff M′, q |= ϕ′. ��

4.1 RTL and Cover Models

We show that if there is a satisfying path in any κ-cover model; then, there also
is a path in the corresponding RBM. Note however, this result does only hold
for positive formulae of the kind 〈ρ〉γ.

Let λ be a finite sequence of states. Then, we recursively define λn for n ∈ N0
as follows: λ0 := ε and λi := λi−1λ for i ≥ 1. That is, λn is the path which
results from putting λ n-times in sequence.

The following lemma states that for flat LRTL-path formulae1 it does not
matter whether a cycle is traversed just once or many times. It can be proved
by a simple induction on the path formula γ.
1 A formula is said to be flat if it does not contain any path quantifier.

Expressing Properties of Resource-Bounded Systems 35

Lemma 1. Let γ be an LRTL-path formula containing no more path quantifiers,
let M be an RBM and let λ be a path in M. Now, if λ̃ = q1 . . . qn is a finite
subsequence of λ with q1 = qn (note, that a single state is permitted as well),
then, λ can be written as λ1λ̃λ2 where λ1, λ2 are subsequences of λ and we have
that : M, λ |= γ if, and only if, M, λ1λ̃

nλ2 |= γ for all n ∈ {1, 2, . . .}.

The second lemma states that one can always extend a path in the κ-cover model
to a feasible path in the RBM by duplicating loops.

Lemma 2. Let λ be a path in CMκ(M, ρ, q), (q, ρ) and λ′ = λ|Q ; then, there
are tuples (ai, bi, ci) ∈ N

2
0 × N for i = 1, 2, . . . such that for all j = 1, 2, . . . we

have that aj ≤ bj < aj+1 and λ′[aj] = λ′[bj] and the path

(λ′[ai, bi]ci)i=1,2,... is ρ-feasible in M.

Proof. Let a (q, (ρ(ri))i)-path λ = l1l2 . . . in G := CMκ(M, ρ, q) = (V, E) be
given. We extend λ to a path λ′ (having the structure as stated in the lemma)
such that λ′|Q is ρ-feasible in M.

If λ|Q is ρ-feasible we just take λ′ as λ. So, suppose λ|Q = qi1qi2 . . . is not
ρ-feasible. Then, there is a transition in λ that is not feasible in M. Let l1 . . . lk+1
be the minimal length initial subpath of λ such that (l1 . . . lk+1)|Q is not feasible
in M and let lk = (q, (xi)i). According to the construction of cover graphs this
can only be caused by a resource rl such that xl = ωt

κ for 0 ≤ t ≤ κ. Let
lo = (q′, (x′

i)i) with 1 ≤ o ≤ k and o maximal be the state on λ at which x′
l

was set to ωκ most recently. Then, there must be another state lp = (q′, (x′′
i)i),

1 ≤ p < o and p maximal, with (x′′
i)i < (x′

i)i and x′′
l < x′

l. The setting is depicted
in Figure 3.

lk = (q, (xi)i) lk+1

xl = ωi
κ

lo = (q′, (x′
i)i)lp = (q′, (x′′

i)i)l1λ :
x′

l = ωκ(x′′
i)i < (x′

i)i

x′′
l < x′

l
set to ωκ

step not feasibleloop

Fig. 3. Proof of Lemma 2

So, we extend λ to λ′ by duplicating the subsequence lplp+1 . . . lo in l and
adjusting the resources of the states preceding lp accordingly. Thus, we have
that λ′|Q = qi1 . . . qipqip+1 . . . qioqip . . . qioqio+1 We subsequently continue this
procedure (now applied to λ′) and do only duplicate transitions that are also
present in λ (i.e. not the new ones). It remains to show that this procedure does
not force some ci to become infinite.

Suppose that there is some ci that becomes infinite following this construction.
Then, there is a set of resources that requires the resources produced by λ[ai, bi];
and there is no other loop (or set of loops) that starts after λ[bi] that would also
provide the needed resources (otherwise these loops would be duplicated as the

36 N. Bulling and B. Farwer

construction looks for the latest possibility). In a κ-cover model, however, one can
only “remember” κ units of a resource; hence, one can have at most κ transitions
consuming of a specific resource until some other transition has to produce this
very resource again. Thus, in order to ensure that λ is a path in G there must be
a producing transition after λ[bi], in particular, a cycle introducing another ωκ-
node following the same line of argumentation as above, which contradicts our
supposition. Hence, we will actually obtain a path λ′ such that λ′|Q is ρ-feasible
and has the structure (λ|Q [ai, bi]ci)i=1,2,.... ��

Theorem 2. Let ρ ∈ R±∞, let M be an RBM, let q be a state in M. Then, for
any κ and any flat LRTL-formula 〈ρ〉γ we have that:

If CMκ(M, ρ, q), (q, ρ) |= Eγ then M, q |= 〈ρ〉γ.

Proof. The result follows from Lemma 1 and 2. Firstly, the path λ is extended
to a path λ′ such that λ′|Q is ρ-feasible according to Lemma 2; then, Lemma 1
shows that the truth of the flat path formula according to λ′ does not change.

��

Remark 1. Note, that the proof of Theorem 3 gives an algorithm that particu-
larly allows to construct a fixed index κ from an RBM and 〈ρ〉γ such that the
“reverse” of Theorem 2 holds: If CMκ(M, ρ, q), (q, ρ) |= Eγ then M, q |= 〈ρ〉γ.
This construction of κ however does already “solve” the model checking problem
and is computationally very expensive.

4.2 RTL� and Bounded Models

The case for RTL� is more sophisticated as the language is able to characterise
more complex temporal patterns. It is still open whether the general case is
decidable. In the following, we discuss the effects of various properties of RBMs
with respect to RTL�. For a given resource quantity it is possible to transform a
structurally k-bounded RBM into a production-free RBM such that satisfaction
of specific path formulae is preserved.

Proposition 8. Let ρ ∈ R±, let M be a structurally k-bounded RBM for ρ, and
let q be a state in M. Then, we can construct a finite, production-free RBM M′

such that for every LRTL�-path formula γ containing no more path quantifiers
the following holds:

M, q |= 〈ρ〉γ if, and only if, M′, q′ |= 〈∅〉γ.

Proof (Sketch). We essentially take M′ as the reachability graph of M. This
graph is build similar to the cover graph but no ω-nodes are introduced. Because
there are only finitely many distinct state/resource combinations in M (Prop. 4)
the model is finite and obviously also production free.

Let M, q |= 〈ρ〉γ and let λ be a ρ-feasible path satisfying γ. Then, the path
obtained from λ by coupling each state with its available resources is a path in
M′ satisfying γ. Conversely, let λ be a path in M′ satisfying γ. Then, λ|Q is a γ
satisfying ρ-feasible path in M due to the construction of M′. ��

Expressing Properties of Resource-Bounded Systems 37

The following corollary is needed for the model-checking results in Section 5.

Corollary 1. Let ρ ∈ R±, let M be a structurally k-bounded RBM for ρ, and
let q be a state in M. Then, we can construct a finite Kripke model such that for
every LRTL�-path formula γ containing no more path quantifiers the following
holds:

M, q |= 〈ρ〉γ if, and only if, M′, q′ |= Eγ.

Lemma 3 states that loops that do not consume resources can be reduced to
a fixed number of recurrences. For a path λ, we use λ[n] to denote the path
which is equal to λ but each subsequence of states q1q2 . . . qkq occurring in λ
with q′ := q1 = q2 = · · · = qk �= q and k > n where the transition q′ → q′

does not consume any resource (i.e. the first k states represent a consumption-
free loop that is traversed k times) is replaced by q1q2 . . . qnq. That is, states
qn+1qn+2 . . . qk are omitted. Note, that λ[n] is also well-defined for pure Kripke
models.

Lemma 3. (a) Let M be a Kripke model and γ be a path formula of CTL�

containing no path quantifiers and length |γ| = n. For every path λ in ΛM

we have that M, λ |= γ if, and only if, M, λ[n] |= γ.
(b) Let M be a production- and zero-free RBM and γ be an LRTL�-path formula

containing no path quantifiers and length |γ| = n. Then, for each path λ in
ΛM the following holds true: M, λ |= γ if, and only if, M, λ[n] |= γ.

Note that we might want to allow to re-enter loops n-times for cases in which
the formula has the form ©© . . .©♦ ϕ.

5 Model Checking Resource-Bounded Tree Logic

We are mainly interested in the verification of systems. Model checking refers to
the problem whether a formula ϕ is true in an RBM M and a state q in M. For
CTL� this problem is PSPACE-complete and for CTL, the fragment of CTL�

in which every temporal operator is directly preceded by a path quantifier, it is
P-complete [7]. So, we cannot hope for our problem to be computationally any
better than PSPACE in the general setting; actually, it is still open whether it
is decidable at all.

The following result shows that model checking RTL is decidable.

Theorem 3 (Model Checking RTL: Decidability). The model-checking
problem for RTL over RBMs is decidable.

Proof (Idea). A more elaborated proof sketch can be found in Appendix A. The
main idea is to encode an RBM as a Petri net and then use decision procedures
for Petri nets, more precisely a variant of the reachability problem. ��

In the following, we consider the decidability of fragments of the full logic over
special classes of RBMs (which of course, implies decidability of the restricted
version over the same class of models).

38 N. Bulling and B. Farwer

Proposition 9 (Decidability: Production -, zero free). The model-checking
problem for RTL�R± over production- and zero-free RBMs is decidable.

Proof (Sketch). According to Prop. 4 and Lemma 3 there are only finitely many
ρ-feasible paths of interest for ρ ∈ R±. This set can be computed step by step.
Then, for M, q |= 〈ρ〉γ where γ is a path formula one has to check whether γ
holds on one of these finitely many ρ-feasible paths starting in q. The model
checking algorithm proceeds bottom-up. ��

From Corollary 1 we know that we can use a CTL� model checker over k-bounded
models.

Proposition 10 (Decidability: k-bounded). The model-checking problem
for RTL�R± over k-bounded RBMs is decidable and PSPACE-hard.

By Prop. 6 and the observation that resources with an infinite quantity can be
neglected in a production-free RBM we can show the following theorem.

Theorem 4 (Decidability: production free). The model-checking problem
for RTL� over production-free RBMs is decidable and PSPACE-hard.

6 Conclusions, Related and Future Work

In this paper we have introduced resources into CTL� [6], which is arguably
among the most important logics for computer science. The paper showed de-
cidability results in the presence of some limiting constraints on the resource
allocation for transitions in Kripke models.

While most agent models do not come with an explicit notion of resources,
there is some recent work that take resources into account. [12] considers re-
sources in conjunction with reasoning about an agent’s goal-plan tree. Time,
memory, and communication bounds are studied as resources in [2]. In [1] the
abilities of agents under bounded memory are considered. Instead of asking for
an arbitrary winning strategy a winning strategy in their setting has to obey
given memory limitations.

A detailed analysis of the model checking complexity and the decidability
question for the general case is left for future research. We are particularly inter-
ested in finding constraints that would make the extended logic’s model-checking
problem efficiently decidable for a relevant class of MAS.

Moreover, we are interested in the reasoning about and modelling of abilities
of multiple agents having limited resources at their disposal. In [5] we consider
an extension of the resource-bounded setting introduced here in the context of
multi-agent systems (influenced by ATL [4] a logic for reasoning about strategic
abilities of agents). In that paper we show that the problem is undecidable in
general. On the other hand, if productions of resources are not allowed (as in
[2]) it was recently shown that the model checking problem is decidable [3].
The authors of [3] do also propose a sound and complete axiomatisation of their

Expressing Properties of Resource-Bounded Systems 39

resource-based extension of ATL (the logic is called resource-bounded alternating-
time temporal logic).

Another direction is offered by Linear Logic. Although Girard’s linear logic
[9] is not directly suitable for model checking, we will be looking into possible
combinations of linear logic fragments with our approach. One idea is to formalise
resources and their production/consumption by means of linear logic formulae
and hope to come up with an axiomatisation for our logic.

References

1. Ågotnes, T., Walther, D.: A logic of strategic ability under bounded memory. J. of
Logic, Lang. and Inf. 18(1), 55–77 (2009)

2. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time, memory and com-
munication bounds in systems of reasoning agents. In: AAMAS 2008: Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 736–743 (2008)

3. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Resource-bounded alternating-time
temporal logic. In: van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M.,
Sen, S. (eds.) Proceedings of the Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, IFAAMAS (to
appear, May 2010)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002)

5. Bulling, N., Farwer, B.: On the (Un-)Decidability of Model-Checking Resource-
Bounded Agents. In: Coelho, H., Wooldridge, M. (eds.) Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010), Porto, Portugal, Au-
gust 16-20 (to appear, 2010)

6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244–263 (1986)

8. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching
versus linear time temporal logic. In: Proceedings of the Annual ACM Symposium
on Principles of Programming Languages, pp. 151–178 (1982)

9. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
10. Jančar, P.: Decidability of a temporal logic problem for petri nets. Theor. Comput.

Sci. 74(1), 71–93 (1990)
11. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and

System Sciences 3(2), 147–195 (1969)
12. Shaw, P., Farwer, B., Bordini, R.: Theoretical and experimental results on the goal-

plan tree problem (short paper). In: Proceedings of AAMAS 2008, pp. 1379–1382
(2008)

40 N. Bulling and B. Farwer

A Proof of the RTL Model Checking Result

Theorem 5. The model-checking problem for RTLR⊕∞ over RBMs is decidable.

Proof (Sketch). Firstly, we present the proof for feasible resource sets only.
Proposition 3 allows to focus on resource-quantity sets from R⊕. The main
idea is to encode an RBM as a Petri net and then use decision procedures
for Petri nets to solve the model checking problem. A Petri net is a tuple
N = (S, T, W, mI) where S and T are non-empty and disjoint sets of places
and transitions, W : (S × T) ∪ (T × S) → N0 represents arc weights that de-
termine how many tokens are needed by and how many tokens are produced by
each transition. Finally, mI : P → N0 is the initial marking, i.e., a distribution of
tokens on the places of the net. A transition t is said to be enabled in a marking
m : P → N0) if m(s) ≥ W (s, t) for all s ∈ S. In this case, we also say, that t is
m-enabled. Now, an m-enabled marking t may fire resulting in a new marking
m′ := m−W (·, t)+W (t, ·). Recursively, one defines the change that occurs given
a sequence σ of subsequently fired transitions; thus, a run is an infinite sequence
of subsequently enabled and firing transitions.

Now, we can encode an RBM M with respect to a given set Q′ ⊆ QM, and
a feasible resource set ρ as a Petri net NQ′,ρ(M) = (S, T, W, mI). The main
idea of encoding transitions is sketched in Figure 4. States q are encoded as
places pq and transitions between states as transitions between places. For each
resource type a new place is created. For the initial marking function mI we
have that mI(pq) = 1 for all q ∈ Q ′, mI(r) = ρ(r) for r ∈ R, and 0 otherwise.
A complete encoding of an RBM is shown in Figure 5. We denote (the unique)
transition between place pqi and pqj by tqiqj . (Note, that we are economical with
our notation and reuse t already known from RBMs.)

Lemma 4. Let ρ be a feasible resource set, M an RBM, and q ∈ QM. Then,
the following holds:

q0q1 . . . is a ρ-feasible path in (M, q) iff σ = tq0q1tq1q2 . . . a run in N{q0},ρ(M).

In order to model check specific formulae, we need to extend our encoding. For
example, consider the formula 〈ρ〉♦ ϕ where ϕ is a propositional formula and ρ

qi qj

(c1, c2)(p1, p2)

r1 r2

pqi

c2

pqj

tqi,j

c1 p1
p2

M N{qi},ρ(M)

Fig. 4. Petri-net encoding N{qi},ρ(M) of an RBM M. Tokens inside the places rk

represent the amount of that resource (i.e., ρ(r1) = 3 and ρ(r2) = 1). Outgoing paths
consume tokens and incoming paths produce tokens, labeled edges produce/consume
the amount the edge is annotated with. E.g., if there is a token in place pqi and ck

tokens in place rk then the token can be moved to pqj and pk tokens can be moved to
rk for k = 1, 2.

Expressing Properties of Resource-Bounded Systems 41

q0

q2

q1

ϕ

ϕ

pq0

r1

pq1

pq2

M

N{q0},ρ(M)

(c1, p1)

(c 2
, p

2
)

(c
3
, p

3
)

(c
4 , p

4)

c1

c2

c3

c4

p4

p3

p2

p1

Fig. 5. Example of a complete encoding of an RBM M where ρ(r1) = 3

a feasible resource set. We can decompose the model checking problem into two
parts:

1. Find a (finite) sequence of states feasible given ρ to a state in which ϕ holds;
and

2. then arbitrarily extend this (finite) sequence to an infinite ρ-feasible path.

To achieve this, we introduce a new place that tells us (by marking it with
a token) that ϕ has been made true. This place remains marked throughout
the subsequent executions of the net and hence serves as an indicator of item 1
having been satisfied. To achieve this, given a propositional formula ϕ we extend
the encoding N{q0},ρ(M) of M to an encoding N{q0},ρ(M, Q′, ϕ) where Q′ ⊆ Q
as explained in the following. The new Petri net is equal to N{q0},ρ(M) apart
from the following modifications (Figure 6 illustrates the construction):

1. N ′ has two new places pS and pϕ.
2. For each transition t in N(M) that corresponds to a transition q → q′ in M

such that q ∈ Q′ and q′ |=prop ϕ we construct a duplicate with the fresh name
t̂ and include the following arcs: pS is connected to t; t and t̂ are connected
to pϕ; and pϕ is also connected to t̂; i.e. W (pS , t) = W (t, pϕ) = W (pϕ, t̂) =
W (t̂, pϕ) = 1.

3. pS is initially marked.

The constructed Petri net N{q0},ρ(M, {q0}, ϕ) has the following properties.

Proposition 11

1. A transition t can only be enabled if there is a token in pS.
2. Once such a transition t has fired it can never be enabled again and there is

a token in pϕ

3. A transitions t̂ can only be enabled if there is a token in pϕ.
4. Once there is a token in pϕ it remains there forever.
5. pS and pϕ contain at most one token and there is a token in pS iff there is

no token in pϕ.

42 N. Bulling and B. Farwer

pq1pq0
t

t̂

pϕpS

ϕM

N{q0},ρ(M, {q0}, ϕ)

q0 q1

Fig. 6. The encoding N{q0},ρ(M, {q0}, ϕ) of an RBM M. The resource requirements
are left out here.

pq1pq0

tq0q1

t̂q0q1
pϕ

ϕM

q0

pS
q2

q1

pq2

tq0q2

N
�

{q0},ρ(M, {q0}, ϕ)

Fig. 7. The encoding N©
{q0},ρ(M, {q0}, ϕ) of an RBM M. The resource requirements

are left out here.

Additionally, for the next-operator we extend the construction and disable, in
the first step, transition that do not result in a state satisfying ϕ. These transition
are only enabled if there is a token in pϕ. The net is shown in Figure 7.

The next lemma provides the essential step to use decision procedures for
Petri nets in order to solve the model checking problem.

Lemma 5

(a) M, q0 |= 〈ρ〉♦ ϕ iff there is a run in N♦ on which there is a token in pϕ

at some moment where N♦ is the Petri net that equals N{q0},ρ(M, QM, ϕ)
with the exception that the initial token in pS is in pϕ instead iff q0 |=prop ϕ.

(b) M, q0 |= 〈ρ〉©ϕ iff there is a run in N©
{q0},ρ(M, {q0}, ϕ) on which there is a

token in pϕ at some moment.
(c) M, q0 |= 〈ρ〉� ϕ iff there is a run in N� on which there never is a token

in p¬ϕ where N� is the Petri net that equals N{q0},ρ(M, QM, ¬ϕ) with the
exception that the initial token in pS is in p¬ϕ instead iff q0 �|=prop ϕ.

Expressing Properties of Resource-Bounded Systems 43

It remains to link the “until” case to Petri nets. For this, we consider the problem
whether M, q0 |= 〈ρ〉ϕU ψ. Let Mϕ be the restriction of M to states in which ϕ
holds. Now, MU is the model that glues together Mϕ with M as follows: Every
state q in Mϕ is connected to a state q′ ∈ M if q →M q′ and q′ satisfies ψ. The
construction is illustrated in Figure 8.

q0

q2

q1

ϕ

ϕ

M

ψ

q0

q2

ϕ

ϕ

q0

q2

q1

ϕ

ϕ

ψ

ψ ψ

MU

Fig. 8. Extending the RBM M to MU for ϕU ψ

Lemma 6. Suppose q0 |=prop ϕ (the other cases are trivially decidable). M, q0 |=
〈ρ〉ϕU ψ iff there is a run in NU on which there is a token in pψ at some moment
where NU is the Petri net that equals N{q0},ρ(MU , QMU , ψ) with the exception
that the initial token in pS is in pψ instead iff q0 |=prop ψ.

Proof (of Lemma). The construction ensures that only states satisfying ϕ are
visited until a state ψ is visited. The rest follows from Lemma 5(a). ��

Finally, we show that the Petri net part in the previous two lemmata can be
decided. Let a Petri net N and a pair (A, f) such that A ⊆ S and f : A → N0
be given. In [10] the following problem, here denoted by ExtReach, was shown
to be decidable:

Is there a run σ = t1t2 . . . where t1 is enabled by the initial marking m0 =
mI and firing t1 leads to the successor marking m1 and mj enables tj+1
whose fireing leads to mj+1 for all j > 1, such that there are infinitely
many indices i such that the marking mi that occurs after ti restricted
to the states in A equals f (i.e., mi|A = f for infinitely many i)?

We have the following reductions.

Lemma 7. Assume the same notation as in Lemma 5 and 6.

(a) There is a run in N© on which there is a token in pϕ at some moment iff
(N©, ({pϕ}, f1)) is in ExtReach where f1 is the constant function 1.

(b) There is a run in N♦ on which there is a token in pϕ at some moment iff
(N♦ , ({pϕ}, f1)) is in ExtReach where f1 is the constant function 1.

(c) There is a run in N� on which there never is a token in p¬ϕ iff
(N� , ({p¬ϕ}, f0)) is in ExtReach where f0 is the constant function 0.

(d) There is a run in NU on which there is a token in pψ at some moment iff
(NU , ({pψ}, f1)) is in ExtReach where f1 is the constant function 1.

44 N. Bulling and B. Farwer

Proof (of Lemma). (a) The following follows from Proposition 11. There is a run
on which there is a token in pϕ at some moment iff there is a run on which there
is a token in pϕ infinitely often iff there is a run on which there is exactly one
token in pϕ infinitely often iff (N©, ({pϕ}, f1)) is in ExtReach.

(b-d) These cases are handled analogously. ��

The ExtReach problem is solved by applying the reachability problem for Petri
nets. If a marking is reachable an appropriate sequence of transitions is con-
structed. This sequence can also be used to construct κ: One simply takes the
maximum of all markings of all resource types along this sequence. If the state
is not reachable, κ is chosen arbitrarily. ��

Finally, we also include non-feasible resource sets and get the main result.

Theorem 6 (Model CheckingRTL: Decidability). The model-checking
problem for RTL over RBMs is decidable.

Proof (Sketch). We extend the previous construction to be able to deal with
non-feasible resource sets.

For non-feasible initial resource sets, we can still have a feasible path, in case
no resources with negative amount are ever required in the run (note that such
resources can still be produced!).

We encode a non-feasible resource set by splitting each resource place r of the
Petri net into a place for a positive number of resources, r, and a place for a
negative number of resources, r−.

Further, we need to ensure in our net, that whenever resources are produced
a positive number of tokens is placed on the positive resource place (only if
no tokens are present in the negative resource place) or a number of tokens
is removed from the negative resource place. Combinations are possible, if the
number of resources produced is larger than the negative number of resources
currently available. In the latter case all resources are removed from the negative
resource place and the remaining difference is placed into the positive place.
Therefore, we introduce a special resource control state, rctrl, that “deactivates”
the new part of the construction once a non-negative amount of resources is
available.

In the following we will describe the construction in detail. Consider the tran-
sition of an RBM at the left-hand side of Figure 9. For simplicity, we only
consider a single resource-type r. The transition consumes zero units of r and
produces u units (note, that if the transition does also consume of this resource
type we take the standard construction from Theorem 5). Suppose, we would
like to model check a formula 〈ρ〉γ with ρ(r) = −d, that is, there is an initial
debt of d units of resource r. Firstly, we add a transition tqiqj from pqi to qqj

which is only enabled if there are d units in the resource control state rctrl and
a token on pqi . We add u transitions t1, . . . , tu; u − 1 places p1, . . . , pu−1; and
u − 1 intermediate transitions tp

1
, . . . , tp

u−1
. Their connections are shown in the

right-hand part of Figure 9. Each transition ti can only be enabled if there is a
debt of resources (i.e. tokens in r−). Such a transition takes one token from r−

Expressing Properties of Resource-Bounded Systems 45

(0, u)
qi qj

u

u − 1

d
d

d

pqi
pqj

d

r− rrctrl

p1 pu−1
t1 t2 tu

tp
1

tp
u−1

tqiqj

. . .

. . .

. . .
u − (u − 1)

Fig. 9. Example of a PN construction for non-feasible resource sets: The left-hand
RBM with a single resource r with ρ(r) = −d is converted to the right-hand PN

and moves it to the control state rctrl. Once, there are d tokens in the control
state the transitions tp

i

can be enabled (while ti can no longer be enabled) and
the remaining produced resources are added to the resource place r. The net has
the following properties.

Proposition 12

1. There are x tokens in r− iff there are d − x token in rctrl for x ∈ {0, . . . , d}.
(That is, r− and rctrl are complementary places.)

2. Transitions tqiqj and tp
1
, . . . , tp

u−1
can only fire if there are d tokens in rctrl.

3. The number of tokens in rctrl is bounded by d and it is monotonically in-
creasing.

4. The number of tokens in r− is monotonically decreasing.
5. If there is a token in place pqi and there are d tokens in rctrl only the tran-

sition tqiqj is enabled.
6. There can only be tokens in r if there are no tokens in r−.

The next lemma shows that the net works as intended. The result follows from
the previous proposition.

Lemma 8. Let there be a token in pqi , d′ ≤ d tokens in r−, d − d′ tokens in
rctrl, and no tokens in r. Let σ be the minimal length firing sequence such that
there is a token in pqj . Then, after executing σ there are max{0, d′ − u} tokens
in r−, min{d, d − d′ + u} tokens in rctrl, and max{0, u − d′} tokens in r.

On the other hand, if there is a token in pqi , d tokens in rctrl, zero tokens in
r− and k tokens in r then, after executing σ there are k+u tokens in r, d tokens
in rctrl, and zero tokens in r−. ��

Reasoning about Multi-agent Domains Using Action
Language C: A Preliminary Study

Chitta Baral1, Tran Cao Son2, and Enrico Pontelli2

1 Dept. Computer Science & Engineering, Arizona State University
chitta@asu.edu

2 Dept. Computer Science, New Mexico State University
{tson,epontell}@cs.nmsu.edu

Abstract. This paper investigates the use of action languages, originally devel-
oped for representing and reasoning about single-agent domains, in modeling
multi-agent domains. We use the action language C and show that minimal exten-
sions are sufficient to capture several multi-agent domains from the literature. The
paper also exposes some limitations of action languages in modeling a specific
set of features in multi-agent domains.

1 Introduction and Motivation

Representing and reasoning in multi-agent domains are two of the most active research
areas in multi-agent system (MAS) research. The literature in this area is extensive, and
it provides a plethora of logics for representing and reasoning about various aspects of
MAS domains. For example, the authors of [24] combine an action logic and a coop-
eration logic to represent and reason about the capabilities and the forms of coopera-
tion between agents. The work in [16] generalizes this framework to consider domains
where an agent may control only parts of propositions and to reason about strategies
of agents. In [31], an extension of Alternating-time Temporal Logic is developed to
facilitate strategic reasoning in multi-agent domains. The work in [30] suggests that de-
centralized partially observable Markov decision processes could be used to represent
multi-agent domains, and discusses the usefulness of agent communication in multi-
agent planning. In [18], an extension of Alternating-time Temporal Epistemic Logic is
proposed for reasoning about choices. Several other works (e.g., [12,32]) discuss the
problem of reasoning about knowledge in MAS.

Even though a large number of logics have been proposed in the literature for for-
malizing MAS, several of them have been designed to specifically focus on particu-
lar aspects of the problem of modeling MAS, often justified by a specific application
scenario. This makes them suitable to address specific subsets of the general features
required to model real-world MAS domains. Several of these logics are quite complex
and require modelers that are transitioning from work on single agents to adopt a very
different modeling perspective.

The task of generalizing some of these existing proposals to create a uniform and
comprehensive framework for modeling different aspects of MAS domains is, to the
best of our knowledge, still an open problem. Although we do not dispute the possibility

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 46–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reasoning about Multi-agent Domains Using Action Language C 47

of extending these existing proposals in various directions, the task does not seem easy.
On the other hand, the need for a general language for MAS domains, with a formal and
simple semantics that allows the verification of plan correctness, has been extensively
motivated (e.g., [8]).

The state of affairs in formalizing multi-agent systems reflects the same trend that oc-
curred in the early nineties, regarding the formalization of single agent domains. Since
the discovery of the frame problem [22], several formalisms for representing and reason-
ing about dynamic domains have been proposed. Often, the new formalisms responded to
the need to address shortcomings of the previously proposed formalisms within specific
sample domains. For example, the well-known Yale Shooting problem [17] was invented
to show that the earlier solutions to the frame problem were not satisfactory. A simple
solution to the Yale Shooting problem, proposed by [2], was then shown not to work
well with the Stolen Car example [20], etc. Action languages [15] have been one of the
outcomes of this development, and they have been proved to be very useful ever since.

Action description languages, first introduced in [14] and further refined in [15], are
formal models used to describe dynamic domains, by focusing on the representation
of effects of actions. Traditional action languages (e.g., A, B, C) have mostly focused
on domains involving a single agent. In spite of different features and several differ-
ences between these action languages (e.g., concurrent actions, sensing actions, non-
deterministic behavior), there is a general consensus on what are the essential compo-
nents of an action description language in single agent domains. In particular, an action
specification focuses on the direct effects of each action on the state of the world; the
semantics of the language takes care of all the other aspects concerning the evolution of
the world (e.g., the ramification problem).

The analogy between the development of several formalisms for single agent do-
mains and the development of several logics for formalizing multi-agent systems indi-
cates the need for, and the usefulness of, a formalism capable of dealing with multiple
desired features in multi-agent systems. A natural question that arises is whether single
agent action languages can be adapted to describe MAS. This is the main question that
we explore in this paper.

In this paper, we attempt to answer the above question by investigating whether an
action language developed for single agent domains can be used, with minimal modifica-
tions, to model interesting MAS domains. Our starting point is a well-studied and well-
understood single agent action language—the language C [15]. We chose this language
because it already provides a number of features that are necessary to handle multi-agent
domains, such as concurrent interacting actions. The language is used to formalize a
number of examples drawn from the multi-agent literature, describing different types
of problems that can arise when dealing with multiple agents. Whenever necessary, we
identify weaknesses of C and introduce simple extensions that are adequate to model
these domains. The resulting action language provides a unifying framework for mod-
eling several features of multi-agent domains. The language can be used as a foundation
for different forms of reasoning in multi-agent domains (e.g., projection, validation of
plans), which are formalized in the form of a query language. We expect that further de-
velopment in this language will be needed to capture additional aspects such as agents’
knowledge about other agents’ knowledge. We will discuss them in the future.

48 C. Baral, T.C. Son, and E. Pontelli

We would like to note that, in the past, there have been other attempts to use action
description languages to formalize multi-agent domains, e.g., [6]. On the other hand,
the existing proposals address only some of the properties of the multi-agent scenarios
that we deem to be relevant (e.g., focus only on concurrency).

Before we continue, let us discuss the desired features and the assumptions that we
place on the target multi-agent systems. In this paper, we consider MAS domains as
environments in which multiple agents can execute actions to modify the overall state
of the world. We assume that

• Agents can execute actions concurrently;
• Each agent knows its own capabilities—but they may be unaware of the global

effect of their actions;
• Actions executed by different agents can interact;
• Agents can communicate to exchange knowledge; and
• Knowledge can be private to an agent or shared among groups of agents.

The questions that we are interested in answering in a MAS domain involve
• hypothetical reasoning, e.g., what happens if agent A executes the action a; what

happens if agent A executes a1 while B executes b1 at the same time; etc.
• planning/capability, e.g., can a specified group of agents achieve a certain goal

from a given state of the world.
Variations of the above types of questions will also be considered. For example, what
happens if the agents do not have complete information, if the agents do not cooperate,
if the agents have preferences, etc.

To the best of our knowledge, this is the first investigation of how to adapt a single
agent action language to meet the needs of MAS domains. It is also important to stress
that the goal of this work is to create a framework for modeling MAS domains, with
a query language that enables plan validation and various forms of reasoning. In this
work, we do not deal with the issues of distributed plan generation—an aspect exten-
sively explored in the literature. This is certainly an important research topic and worth
pursuing but it is outside of the scope of this paper. We consider the work presented in
this paper a necessary precondition to the exploration of distributed MAS solutions.

The paper is organized as follows. Section 2 reviews the basics of the action language
C. Section 3 describes a straightforward adaptation of C for MAS. The following sec-
tions (Sects. 4–5) show how minor additions to C can address several necessary features
in representation and reasoning about MAS domains. Sect. 6 presents a query language
that can be used with the extended C. Sect. 7 discusses further aspects of MAS that the
proposed extension of C cannot easily deal with. Sect. 8 presents the discussion and
some conclusions.

2 Action Language C

The starting point of our investigation is the action language C [15]—an action descrip-
tion language originally developed to describe single agent domains, where the agent is
capable of performing non-deterministic and concurrent actions. Let us review a slight
adaptation of the language C.

Reasoning about Multi-agent Domains Using Action Language C 49

A domain description in C builds on a language signature 〈F , A〉, where F ∩ A = ∅
and F (resp. A) is a finite collection of fluent (resp. action) names. Both the elements
of F and A are viewed as propositional variables, and they can be used in formulae
constructed using the traditional propositional operators. A propositional formula over
F ∪ A is referred to simply as a formula, while a propositional formula over F is
referred to as a state formula. A fluent literal is of the form f or ¬f for any f ∈ F .

A domain description D in C is a finite collection of axioms of the following forms:

caused � if F (static causal law)
caused � if F after G (dynamic causa laws)

where � is a fluent literal, F is a state formula, while G is a formula. The language also
allows the ability to declare properties of fluents; in particular non inertial � declares
that the fluent literal � is to be treated as a non-inertial literal, i.e., the frame axiom is
not applicable to �.

A problem specification is obtained by adding an initial state description I to a do-
main D, composed of axioms of the form initially �, where � is a fluent literal.

The semantics of the language can be summarized using the following concepts. An
interpretation I is a set of fluent literals, such that {f, ¬f} 	⊆ I for every f ∈ F . Given
an interpretation I and a fluent literal �, we say that I satisfies �, denoted by I |= �, if
� ∈ I . The entailment relation |= is extended to define the entailment I |= F where F
is a state formula in the usual way. An interpretation I is complete if, for each f ∈ F ,
we have that f ∈ I or ¬f ∈ I . An interpretation I is closed w.r.t. a set of static causal
laws SC if, for each static causal law caused � if F , if I |= F then � ∈ I . Given an
interpretation I and a set of static causal laws SC, we denote with ClSC(I) the smallest
set of literals that contains I and that is closed w.r.t. SC. Given a domain description D,
a state s in D is a complete interpretation which is closed w.r.t. the set of static causal
laws in D.

The notions of interpretation and entailment over the language of F ∪ A are defined
in a similar way.

Given a state s, a set of actions A ⊆ A, and a collection of dynamic causal laws DC,
we define

Eff DC(s, A) =
{

� | (caused � if F after G) ∈ DC, s
·
∪ A |= G, s |= F

}
where s

·
∪ A stands for s ∪ A ∪ {¬a | a ∈ A \ A}.

Let D = 〈SC, DC, IN 〉 be a domain, where SC are the static causal laws, DC are
the dynamic causal laws and IN are the non-inertial axioms. The semantics of D is
given by a transition system (StateD, ED), where StateD is the set of all states and
the transitions in ED are of the form 〈s, A, s′〉, where s, s′ are states, A ⊆ A, and s′

satisfies the property

s′ = ClSC(Eff DC(s, A) ∪ ((s \ IFL) ∩ s′) ∪ (IN ∩ s′))

where IFL = {f, ¬f | f ∈ IN or ¬f ∈ IN }.
The original C language supports a query language (called P in [15]). This language

allows queries of the form necessarily F after A1, . . . , Ak, where F is a state formula

50 C. Baral, T.C. Son, and E. Pontelli

and A1, . . . , Ak is a sequence of sets of actions (called a plan). Intuitively, the query
asks whether each state s reached after executing A1, . . . , Ak from the initial state has
the property s |= F .

Formally, an initial state s0 w.r.t. an initial state description I and a domain D is
an element of StateD such that {� | initially � ∈ I} ⊆ s0. The transition function
ΦD : 2A × StateD → 2StateD is defined as ΦD(A, s) = {s′ | 〈s, A, s′〉 ∈ ED}, where
(StateD, ED) is the transition system describing the semantics of D. This function can
be extended to define Φ∗

D , which considers plans, where Φ∗
D([], s) = {s} and

Φ∗
D([A1, . . . , An], s) =

⎧⎨⎩
∅ if Φ∗

D([A1, . . . , An−1], s) = ∅ ∨
∃s′ ∈ Φ∗

D([A1, . . . , An−1], s).[ΦD(An, s′) = ∅]⋃
s′∈Φ∗

D([A1,...,An−1],s) ΦD(An, s′) otherwise

Let us consider an action domain D and an initial state description I. A query
necessarily F after A1, . . . , Ak is entailed by (D, I), denoted by

(D, I) |= necessarily F after A1, . . . , Ak

if for every s0 initial state w.r.t. I, we have that Φ∗
D([A1, . . . , Ak], s0) 	= ∅, and for each

s ∈ Φ∗
D([A1, . . . , Ak], s0) we have that s |= F .

3 C for Multi-agent Domains

In this section, we explore how far one of the most popular action languages developed
for single agent domains, C, can be used and adapted for multi-agent domains. We will
discuss a number of incremental small modifications of C necessary to enable modeling
MAS domains. We expect that similar modifications can be applied to other single-
agent action languages with similar basic characteristics. We will describe each domain
from the perspective of someone (the modeler) who has knowledge of everything, in-
cluding the capabilities and knowledge of each agent. Note that this is only a modeling
perspective—it does not mean that we expect individual agents to have knowledge of
everything, we only expect the modeler to have such knowledge.

We associate to each agent an element of a set of agent identifiers, AG. We will
describe a MAS domain over a set of signatures 〈Fi, Ai〉 for each i ∈ AG, with the
assumption that Ai ∩ Aj = ∅ for i 	= j. Observe that

⋂
i∈S Fi may be not empty for

some S ⊆ AG. This represents the fact that fluents in
⋂

i∈S Fi are relevant to all the
agents in S.

The result is a C domain over the signature 〈
⋃n

i=1 Fi,
⋃n

i=1 Ai〉. We will require the
following condition to be met: if caused � if F after G is a dynamic law and a ∈ Ai

appears in G, then the literal � belongs to Fi. This condition summarizes the fact that
agents are aware of the direct effects of their actions. Observe that on the other hand,
an agent might not know all the consequences of his own actions. For example, a deaf
agent bumping into a wall might not be aware of the fact that his action causes noise
observable by other agents. These global effects are captured by the modeler, through
the use of static causal laws.

Reasoning about Multi-agent Domains Using Action Language C 51

The next two sub-sections illustrate applications of the language in modeling co-
operative multi-agent systems. In particular, we demonstrate how the language is al-
ready sufficiently expressive to model simple forms of cooperation between agents even
though these application scenarios were not part of the original design of C.

3.1 The Prison Domain

This domain has been originally presented in [24]. In this example, we have two prison
guards, 1 and 2, who control two gates, the inner gate and the outer gate, by operating
four buttons a1, b1, a2, and b2. Agent 1 controls a1 and b1, while agent 2 controls a2
and b2. If either a1 or a2 is pressed, then the state of the inner gate is toggled. The outer
gate, on the other hand, toggles only if both b1 and b2 are pressed.

The problem is introduced to motivate the design of a logic for reasoning about the
ability of agents to cooperate. Observe that neither of the agents can individually change
the state of the outer gate. On the other hand, individual agents’ actions can affect the
state of the inner gate.

In C, this domain can be represented as follows. The set of agents is AG = {1, 2}.
For agent 1, we have:

F1 = {in open, out open, pressed(a1), pressed(b1)}.

Here, in open and out open represent the fact that the inner gate and outer gate are
open respectively. pressed(X) says that the button X is pressed where X ∈ {a1, b1}.
We have A1 = {push(a1), push(b1)}. This indicates that guard 1 can push buttons a1
and b1. Similarly, for agent 2, we have that

F2 = {in open, out open, pressed(a2), pressed(b2)} A2 = {push(a2), push(b2)}

We assume that the buttons do not stay pressed—thus, pressed(X), for
X∈{a1, b1, a2, b2}, is a non-inertial fluent with the default value false.
The domain specification (Dprison) contains:

non inertial ¬pressed(X)
caused pressed(X) after push(X)
caused in open if pressed(a1), ¬in open
caused in open if pressed(a2), ¬in open
caused ¬in open if pressed(a1), in open
caused ¬in open if pressed(a2), in open
caused out open if pressed(b1), pressed(b2), ¬out open
caused ¬out open if pressed(b1), pressed(b2), out open

where X ∈ {a1, b1, a2, b2}. The first statement declares that pressed(X) is non-inertial
and has false as its default value. The second statement describes the effect of the action
push(X). The remaining laws are static causal laws describing relationships between
properties of the environment.

The dynamic causal laws are “local” to each agent, i.e., they involve fluents that are
local to that particular agent; in particular, one can observe that each agent can achieve

52 C. Baral, T.C. Son, and E. Pontelli

certain effects (e.g., opening/closing the inner gate) disregarding what the other agent
is doing (just as if it was operating as a single agent in the environment). On the other
hand, if we focus on a single agent in the domain (e.g., agent 1), then such agent will
possibly see exogenous events (e.g., the value of the fluent in open being changed
by the other agent). On the other hand, the collective effects of actions performed by
different agents are captured through “global” static causal laws. These are laws that
the modeler introduces and they do not “belong” to any specific agent.

Let us now consider the queries that were asked in [24] and see how they can be
answered by using the domain specification Dprison. In the first situation, both gates
are closed, 1 presses a1 and b1, and 2 presses b2. The question is whether the gates are
open or not after the execution of these actions.

The initial situation is specified by the initial state description I1 containing

I1 =
{

initially ¬in open, initially ¬out open
}

In this situation, there is only one initial state s0={¬� | �∈F1∪F2}. We can show that

(Dprison,I1) |= necessarily out open ∧ in open after {push(a1), push(b1), push(b2)}
If the outer gate is initially closed, i.e., I2 = { initially ¬out open}, then the set of
actions A = {push(b1), push(b2)} is both necessary and sufficient to open it:

(Dprison, I2) |= necessarily out open after X
(Dprison, I2) |= necessarily ¬out open after Y

where A⊆X and A\Y 	=∅. Observe that the above entailment correspond to the envi-
ronment logic entailment in [24].

3.2 The Credit Rating Domain

We will next consider an example from [16]; in this example, we have a property of
the world that cannot be changed by a single agent. The example has been designed to
motivate the use of logic of propositional control to model situations where different
agents have different levels of control over fluents.

We have two agents, AG = {w, t}, denoting the website and the telephone operator,
respectively. Both agents can set/reset the credit rating of a customer. The credit rating
can only be set to be ok (i.e., the fluent credit ok set to true) if both agents agree.
Whether the customer is a web customer (is web fluent) or not can be set only by the
website agent w. The signatures of the two agents are as follows:

Fw = {is web, credit ok} Aw =
{

set web, reset web,
set credit(w), reset credit(w)

}
Ft = {credit ok} At = {set credit(t), reset credit(t)}

The domain specification Dbank consists of:

caused is web after set web
caused ¬is web after reset web
caused ¬credit ok after reset credit(w)
caused ¬credit ok after reset credit(t)
caused credit ok after set credit(w) ∧ set credit(t)

Reasoning about Multi-agent Domains Using Action Language C 53

We can show that

(Dbank, I3) |= necessarily credit ok after {set credit(w), set credit(t)}

where I3 = { initially ¬� | � ∈ Fw ∪ Ft}. This entailment also holds if I3 = ∅.

4 Adding Priority between Actions

The previous examples show that C is sufficiently expressive to model the basic aspects
of agents executing cooperative actions within a MAS, focusing on capabilities of the
agents and action interactions. This is not a big surprise, as discussed in [6]. We will
now present a small extension of C that allows for the encodings of competitive behavior
between agents, i.e., situations where actions of some agents can defeat the effects of
other agents.

To make this possible, for each domain specification D, we assume the presence of
a function PrD : 2A → 2A. Intuitively, PrD(A) denotes the actions whose effects will
be accounted for when A is executed. This function allows, for example, to prioritize
certain sets of actions. The new transition function ΦD,P will be modified as follows:

ΦD,P (A, s) = ΦD(PrD(A), s)

where ΦD is defined as in the previous section. Observe that if there is no competition
among agents in D then PrD is simply the identity function.

4.1 The Rocket Domain

This domain was originally proposed in [31]. It was invented to motivate the devel-
opment of a logic for reasoning about strategies of agents. This aspect will not be ad-
dressed by our formalization of this example as C lacks this capability. Nevertheless,
the encoding is sufficient for determining the state of the world after the execution of
actions by the agents.

We have a rocket, a cargo, and the agents 1, 2, and 3. The rocket or the cargo are either
in london or paris. The rocket can be moved by 1 and 2 between the two locations.
The cargo can be loaded (unloaded) into the rocket by 1 and 3 (2 and 3). Agent 3 can
refill the rocket if the tank is not full.

There are some constraints that limit the effects of the actions. They are:
• If 1 or 2 moves the rocket, the cargo cannot be loaded or unloaded;

• If two agents load/unload the cargo at the same time, the effect is the same as if it
were loaded/unloaded by one agent.

• If one agent loads the cargo and another one unloads the cargo at the same time,
the effect is that the cargo is loaded.

We will use the fluents rocket(london) and rocket(paris) to denote the location of the
rocket. Likewise, cargo(london) and cargo(paris) denote the location of the cargo.
in rocket says that the cargo is inside the rocket and tank full states that the tank is
full. The signatures for the agents can be defined as follows.

54 C. Baral, T.C. Son, and E. Pontelli

F1 =
{

in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris)

}
A1 =

{
load(1), unload(1), move(1)

}
F2 =

{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris)

}
A2 =

{
unload(2), move(2)

}
F3 =

{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris), tank full

}
A3 =

{
load(3), refill

}
The constraints on the effects of actions induce priorities among the actions. The action
load or unload will have no effect if move is executed. The effects of two load actions
is the same as that of a single load action. Likewise, two unload actions have the same
result as one unload action. Finally, load has a higher priority than unload.

To account for action priorities and the voting mechanism, we define PrDrocket
:

• PrDrocket
(X) = {move(a)} if ∃a. move(a) ∈ X .

• PrDrocket
(X) = {load(a)} if move(x) 	∈ X for every x∈{1, 2, 3} and load(a)∈X .

• PrDrocket
(X) = {unload(a)} if move(x) 	∈ X and load(x) 	∈ X for every

x∈{1, 2, 3} and unload(a) ∈ X .
• PrDrocket

(X) = X otherwise.
It is easy to see that PrDrocket

defines priorities among the actions: if the rocket is
moving then load/unload are ignored; load has higher priority than unload; etc. The
domain specification consists of the following laws:

caused in rocket after load(i) (i ∈ {1, 3})
caused ¬in rocket after unload(i) (i ∈ {1, 2})
caused tank full if ¬tank full after refill
caused ¬tank full if tank full after move(i) (i ∈ {1, 2})
caused rocket(london) if rocket(paris), tank full after move(i) (i ∈ {1, 2})
caused rocket(paris) if rocket(london), tank full after move(i) (i ∈ {1, 2})
caused cargo(paris) if rocket(paris), in rocket
caused cargo(london) if rocket(london), in rocket

Let I4 consist of the following facts:

initially tank full initially rocket(paris)
initially cargo(london) initially ¬in rocket

We can show the following

(Drocket, I4) |= necessarily cargo(paris)
after {move(1)}, {load(3)}, {refill}, {move(3)}.

Observe that without the priority function PrDrocket
, for every state s,

ΦDrocket
({load(1), unload(2)}, s) = ∅,

i.e., the concurrent execution of the load and unload actions is unsuccessful.

Reasoning about Multi-agent Domains Using Action Language C 55

5 Adding Reward Strategies

The next example illustrates the need to handle numbers and optimization to represent
reward mechanisms. The extension of C is simply the introduction of numerical flu-
ents—i.e., fluents that, instead of being simply true or false, have a numerical value.
For this purpose, we introduce a new variant of the necessity query

necessarily max F for ϕ after A1, . . . , An

where F is a numerical expressions involving only numerical fluents, ϕ is a state for-
mula, and A1, . . . , An is a plan. Given a domain specification D and an initial state
description I, we can define for each fluent numerical expression F and plan α:

value(F, α) = max {s(F) | s ∈ Φ∗(α, s0), s0 is an initial state w.r.t. I, D}

where s(F) denotes the value of the expression F in state s. This allows us to define
the following notion of entailment of a query:

(D, I) |= necessarily max F for ϕ after A1, . . . , An

if:
◦ (D, I) |= necessarily ϕ after A1, . . . , An

◦ for every other plan B1, . . . , Bm such that (D, I) |=
necessarily ϕ after B1, . . . , Bm we have that value(F, [A1, . . . , An]) ≥
value(F, [B1, . . . , Bm]).

The following example has been derived from [5] where it is used to illustrate the co-
ordination among agents to obtain the highest possible payoff. There are three agents.
Agent 0 is a normative system that can play one of two strategies—either st0 or ¬st0.
Agent 1 plays a strategy st1, while agent 2 plays the strategy st2. The reward system is
described in the following tables (the first is for st0 and the second one is for ¬st0).

st0 st1 ¬st1

st2 1, 1 0, 0
¬st2 0, 0 −1, −1

¬st0 st1 ¬st1

st2 1, 1 0, 0
¬st2 0, 0 1, 1

The signatures used by the agents are

F0 = {st0, reward} F1 = {st1, reward1} F2 = {st2, reward2}
A0 = {play 0, play not 0} A1 {play 1, play not 1} A2 = {play 2, play not 2}

The domain specification Dgam consists of:

caused st0 after play 0 caused ¬st0 after play not 0
caused st1 after play 1 caused ¬st1 after play not 1
caused st2 after play 2 caused ¬st2 after play not 2
caused reward 1 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 2 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 1 = 0 if ¬st0 ∧ st1 ∧ ¬st2
caused reward 2 = 0 if ¬st0 ∧ st1 ∧ ¬st2
. . .
caused reward = a + b if reward1 = a ∧ reward2 = b

56 C. Baral, T.C. Son, and E. Pontelli

Assuming that I = { initially st0} we can show that

(Dgame, I) |= necessarily max reward after {play1, play2}.

6 Reasoning and Properties

In this section we discuss various types of reasoning that are directly enabled by the
semantics of C that can be useful in reasoning about MAS. Recall that we assume that
the action theories are developed from the perspective of a modeler who has the view
of the complete MAS.

6.1 Capability Queries

Let us explore another range of queries, that are aimed at capturing the capabilities of
agents. We will use the generic form can X do ϕ, where ϕ is a state formula and
X ⊆ AG where AG is the set of agent identifiers of the domain. The intuition is to
validate whether the group of agents X can guarantee that ϕ is achieved.

If X = AG then the semantics of the capability query is simply expressed as
(D, I) |= can X do ϕ iff ∃k. ∃A1, . . . , Ak such that

(D, I) |= necessarily ϕ after A1, . . . , Ak.

If X 	= {1, . . . , n}, then we can envision different variants of this query.

Capability query with non-interference and complete knowledge: Intuitively, the
goal is to verify whether the agents X can achieve ϕ when operating in an environment
that includes all the agents, but the agents AG \ X are simply providing their knowl-
edge and not performing actions or interfering. We will denote this type of queries as
cann

k X do ϕ (n: not interference, k: availability of all knowledge).
The semantics of this type of queries can be formalized as follows: (D, I) |=

cann
k X do ϕ if there is a sequence of sets of actions A1, . . . , Am with the follow-

ing properties:
◦ for each 1 ≤ i ≤ m we have that Ai ⊆

⋃
j∈X Aj (we perform only actions of

agents in X)
◦ (D, I) |= necessarily ϕ after A1, . . . , Am

Capability query with non-interference and projected knowledge: Intuitively, the
query with projected knowledge assumes that not only the other agents (AG \ X) are
passive, but they also are not willing to provide knowledge to the active agents. We will
denote this type of queries as cann

¬k X do ϕ.
Let us refer to the projection of I w.r.t. X (denoted by proj(I, X)) as the set of all

the initially declarations that build on fluents of
⋃

j∈X Fj . The semantics of cann
¬k

type of queries can be formalized as follows: (D, I) |= cann
¬k X do ϕ if there is a

sequence of sets of actions A1, . . . , Am such that:
• for each 1 ≤ i ≤ m we have that Ai ⊆

⋃
j∈X Aj

• (D, proj(I, X)) |= necessarily ϕ after A1, . . . , Am (i.e., the objective will be
reached irrespective of the initial configuration of the other agents)

Reasoning about Multi-agent Domains Using Action Language C 57

Capability query with interference: The final version of capability query takes into
account the possible interference from other agents in the system. Intuitively, the query
with interference, denoted by cani X do ϕ, implies that the agents X will be able to
accomplish X in spite of other actions performed by the other agents.

The semantics is as follows: (D, I) |= cani X do ϕ if there is a sequence of sets of
actions A1, . . . , Am such that:

• for each 1 ≤ i ≤ m we have that Ai ⊆
⋃

j∈X Aj

• for each sequence of sets of actions B1, . . . , Bm, where
⋃m

j=1 Bj ⊆
⋃

j /∈X Aj , we
have that (D, I) |= necessarily ϕ after (A1 ∪ B1), . . . , (Am ∪ Bm).

6.2 Inferring Properties of the Theory

The form of queries explored above allows us to investigate some basic properties of a
multi-agent action domain.

Agent Redundancy: agent redundancy is a property of (D, I) which indicates the
ability to remove an agent to accomplish a goal. Formally, agent i is redundant w.r.t. a
state formula ϕ and an initial state I if (D, I) |= can X \ {i} do ϕ. The “level” of
necessity can be refined, by adopting different levels of can (e.g., cann

¬k implies that
the knowledge of agent i is not required); it is also possible to strengthen it by enabling
the condition to be satisfied for any I.

Agent Necessity: agent necessity is symmetrical to redundancy—it denotes the inabil-
ity to accomplish a property ϕ if an agent is excluded. Agent i is necessary w.r.t. ϕ and
(D, I) if for all sequences of sets of actions A1, . . . , Am, such that for all 1 ≤ j ≤ m
Aj ∩ Ai = ∅, we have that it is not the case that

(D, I) |= necessarily ϕ after A1, . . . , Am.

We can also define different degrees of necessity, depending on whether the knowledge
of i is available (or it should be removed from I) and whether i can interfere.

6.3 Compositionality

The formalization of multi-agent systems in C enables exploring the effects of com-
posing domains; this is an important property, that allows us to model dynamic MAS
systems (e.g., where new agents can join an existing coalition).

Let D1, D2 be two domains and let us indicate with 〈F1
i , A1

i 〉i∈AG1 and
〈F2

i , A2
i 〉i∈AG2 the agent signatures of D1 and D2. We assume that all actions sets

are disjoint, while we allow (
⋃

i∈AG1
F1

i) ∩ (
⋃

i∈AG2
F2

i) 	= ∅.
We define the two instances (D1, I1) and (D2, I2) to be composable w.r.t. a state

formula ϕ if (D1, I1) |= can AG1 do ϕ or (D2, I2) |= can AG2 do ϕ implies

(D1 ∪ D2, I1 ∪ I2) |= can AG1 ∪ AG2 do ϕ

Two instances are composable if they are composable w.r.t. all formulae ϕ. Domains
D1, D2 are composable if all the instances (D1, I1) and (D2, I2) are composable.

58 C. Baral, T.C. Son, and E. Pontelli

7 Reasoning with Agent Knowledge

In this section, we will consider some examples from [12,30,18] which address another
aspect of modeling MAS, i.e., the exchange of knowledge between agents and the rea-
soning in presence of incomplete knowledge. The examples illustrate the limitation of
C as a language for multi-agent domains and the inadequacy of modeling MAS from
the perspective of an omniscient modeler.

7.1 Heaven and Hell Domain: The Modeler’s Perspective

This example has been drawn from [30], where it is used to motivate the introduction of
decentralized POMDP and its use in multi-agent planning. The following formalization
does not consider the rewards obtained by the agents after the execution of a particular
plan.

In this domain, there are two agents 1 and 2, a priest p, and three rooms r1, r2, r3.
Each of the two rooms r2 and r3 is either heaven or hell. If r2 is heaven then r3 is
hell and vice versa. The priest has the information where heaven/hell is located. The
agents 1 and 2 do not know where heaven/hell is; but, by visiting the priest, they can
receive the information that tells them where heaven is. 1 and 2 can also exchange their
knowledge about the location of heaven. 1 and 2 want to meet in heaven.

The signatures for the three agents are as follows (k, h ∈ {1, 2, 3}):

F1 = {heaven2
1, heaven3

1, atk
1} A1 = {m1(k, h), ask2

1, askp
1}

F2 = {heaven2
2, heaven3

2, atk
2} A2 = {m2(k, h), ask1

2, askp
2}

Fp = {heaven2
p, heaven3

p} Ap = ∅

Intuitively, heavenj
i denotes that i knows that heaven is in the room j and atji denotes

that i is at the room j. askj
i is an action whose execution will allow i to know where

heaven is if j knows where heaven is. On the other hand, mi(k, h) encodes the action
of moving i from the room k to the room h.

Observe that the fact that i does not know the location of heaven is encoded by the
formula ¬heaven2

i ∧ ¬heaven3
i .

The domain specification Dhh contains the following laws:

caused heavenj
1 if heavenj

x after askx
1 (j ∈ {2, 3}, x ∈ {2, p})

caused heavenj
2 if heavenj

x after askx
2 (j ∈ {2, 3}, x ∈ {1, p})

caused atji if atki after mi(k, j) (i ∈ {1, 2, p}, j, k ∈ {1, 2, 3})
caused ¬atji if atki (i ∈ {1, 2, p}, j, k ∈ {1, 2, 3}, j 	= k)
caused ¬heaven2

i if heaven3
i (i ∈ {1, 2, p}, j ∈ {2, 3})

caused ¬heaven3
i if heaven2

i (i ∈ {1, 2, p}, j ∈ {2, 3})

The first two laws indicate that if 1 (or 2) asks 2 or p (or 1 or p) for the location of
heaven, then 1 (or 2) will know where heaven is if 2/p (or 1/p) has this information.
The third law encodes the effect of moving between rooms by the agents. The fourth
law represents the static law indicating that one person can be at one place at a time.

Reasoning about Multi-agent Domains Using Action Language C 59

Let us consider an instance that has initial state described by I5 (j ∈ {2, 3}):

initially at11 initially at22 initially heaven2
p

initially ¬heavenj
1 initially ¬heavenj

2

We can show that

(Dhh, I5) |= necessarily at21 ∧ at22 after {askp
1}, {m1(1, 2)}

7.2 Heaven and Hell: The Agent’s Perspective

The previous encoding of the domain has been developed considering the perspective of
a domain modeler, who has complete knowledge about the world and all the agents. This
perspective is reasonable in the domains encountered in the previous sections. Never-
theless, this perspective makes a difference when the behavior of one agent depends on
knowledge that is not immediately available, e.g., agent 1 does not know where heaven
is and needs to acquire this information through knowledge exchanges with other agents.
The model developed in the previous subsection is adequate for certain reasoning tasks
(e.g., plan validation) but it is weak when it comes to tasks like planning.

An alternative model can be devised by looking at the problem from the perspective
of each individual agent (not from a central modeler). This can be captured through an
adaptation of the notion of sensing actions discussed in [25,26]. Intuitively, a sensing
action allows for an agent to establish the truth value of unknown fluents. A sensing
action a can be specified by laws of the form

determines l1, . . . , lk if F after a

where l1, . . . , lk are fluent literals, F is a state formula, and a is a sensing action. Intu-
itively, a can be executed only when F is true and after its execution, one of l1, . . . , lk
is set to true and all the others are set to false. The semantics of C extended with sens-
ing actions can be defined in a similar fashion as in [26] and is omitted here for lack
of space. It suffices to say that the semantics of the language should now account for
different possibilities of the multi-agent systems due to incomplete information of the
individual agents.

The signatures for the three agents are as follows (k, h ∈ {1, 2, 3}):

F1 = {heaven2
1, heaven3

1, ok
2
1 , okp

1 , atk
1} A1 = {m1(k, h), ask2

1, askp
1 , know?2

1, know?p
1}

F2 = {heaven2
2, heaven3

2, ok
1
2 , okp

2 , atk
2} A2 = {m2(k, h), ask1

2, askp
2 , know?1

2, know?p
2}

Fp = {heaven2
p, heaven3

p} Ap = ∅
Intuitively, the fluent okx

y denotes the fact that agent y knows that agent x knows the lo-
cation of heaven. The initial state for 1 is given by I1

5 = { initially at11, initially okp
1}.

Similarly, the initial state for 2 is I2
5 = { initially at22, initially okp

2}, and for p is
Ip
5 = { initially heaven2

p}. The domain specification D1 for 1 include the last four
statements of Dhh and the following sensing action specifications:

determines heaven2
1, heaven3

1 if okx
1 after askx

1 (x ∈ {2, p})
determines okx

1 , ¬okx
1 after know?x

1 (x ∈ {2, p})

60 C. Baral, T.C. Son, and E. Pontelli

The domain specification D2 for 2 is similar. The domain specification Dp consists of
only the last two static laws of Dhh. Let D′

hh = D1 ∪ D2 ∪ Dp and I ′5 = I1
5 ∪ I2

5 ∪ Ip
5 ,

we can show that

(D′
hh, I ′5) |= necessarily heaven2

1 ∧ heaven2
2 after {askp

1}, {know?1
2}, {ask1

2}.

7.3 Beyond C with Sensing Actions

This subsection discusses an aspect of modeling MAS that cannot be easily dealt with
in C, even with sensing actions, i.e., representing and reasoning about knowledge of
agents. In Section 7.1, we use two different fluents to model the knowledge of an agent
about properties of the world, similar to the approach in [26]. This approach is adequate
for several situations. Nevertheless, the same approach could become quite cumbersome
if complex reasoning about knowledge of other agents is involved.

Let us consider the well known Muddy Children problem [12]. Two children are
playing outside the house. Their father comes and tells them that at least one of them
has mud on his/her forehead. He then repeatedly asks “do you know whether your
forehead is muddy or not?”. The first time, both answer “no” and the second time, both
say ’yes’. It is known that the father and the children can see and hear each other.

The representation of this domain in C is possible, but it would require a large number
of fluents (that describe the knowledge of each child, the knowledge of each child about
the other child, etc.) as well as a formalization of the axioms necessary to express how
knowledge should be manipulated, similar to the fluents okj

i in the previous example.
A more effective approach is to introduce explicit knowledge operators (with manip-

ulation axioms implicit in their semantics—e.g., as operators in a S5 modal logic) and
use them to describe agents state. Let us consider a set of modal operators Ki, one for
each agent. A formula such as Kiϕ denotes that agent i knows property ϕ. Knowledge
operators can be nested; in particular, K∗

Gψ denotes all formulae with arbitrary nesting
of KG operators (G being a set of agents).

In our example, let us denote the children with 1 and 2, mi as a fluent to denote
whether i is muddy or not. The initial state of the world can then be described as follows:

initially m1 ∧ m2 (1)

initially ¬Kimi ∧ ¬Ki¬mi (2)

initially K∗(m1 ∨ m2) (3)

initially K∗{1,2}\{i}mi (4)

initially K∗(K∗{1,2}\{i}mi ∨ K∗{1,2}\{i}¬mi) (5)

where i ∈ {1, 2}. (1) states that all the children are muddy. (2) says that i does not
know whether he/she is muddy. (3) encodes the fact that the children share the common
knowledge that at least one of them is muddy. (4) captures the fact that each child can
see the other child. Finally, (5) represents the common knowledge that each child knows
the muddy status of the other one.

The actions used in this domain would enable agents to gain knowledge; e.g., the
’no’ answer of child 1 allows child 2 to learn K1(¬K1m1 ∧ ¬K1¬m1). This, together

Reasoning about Multi-agent Domains Using Action Language C 61

with the initial knowledge, would be sufficient for 2 to conclude K2m2. A discussion
of how these inferences occur can be found, for example, in [12].

8 Discussion and Conclusion

In this paper, we presented an investigation of the use of the C action language to model
MAS domains. C, as several other action languages, is interesting as it provides well
studied foundations for knowledge representation and for performing several types of
reasoning tasks. Furthermore, the literature provides a rich infrastructure for the imple-
mentation of action languages (e.g., through translational techniques [27]). The results
presented in this paper identify several interesting features that are necessary for mod-
eling MAS, and they show how many of these features can be encoded in C—either
directly or with simple extensions of the action language. We also report challenging
domains for C.

There have been many agent programming languages such as the BDI agent pro-
gramming AgentSpeak [23], (as implemented in Jason [4]), JADE [3] (and its extension
Jadex [7]), ConGolog [10], IMPACT [1], 3APL [9], GOAL [19]. A good comparison
of many of these languages can be found in [21].

We would like to stress that the paper does not introduce a new agent “program-
ming language”, in the style of languages mentioned above. Rather, we bring an action
language perspective, where the concern is on succinctly and naturally specifying the
transition between worlds due to actions. Thus our focus is how to extend actions lan-
guages to the multi-agent domain in a way to capture various aspects of multi-agent
reasoning. The issues of implementation and integration in a distributed environment
are interesting, but outside of the scope of this paper. To draw an analogy, what we
propose in this paper is analogous to the role of situation calculus or PDDL in the
description of single-agent domains, which describe the domains without providing im-
plementation constructs for composing programs, as in Golog/ConGolog or GOAL. As
such, our proposal could provide the underlying representation formalism for the devel-
opment of an agent programming language; on the other hand, it could be directly used
as input to a reasoning system, e.g., a planner [8]. Our emphasis in the representation
is exclusively on the description of effects of actions; this distinguishes our approach
from other logic-based formalisms, such as those built on MetateM [13].

Although our proposal is not an agent programming language, it is still interesting to
analyze it according to the twelve dimensions discussed in [11] and used in [21];

1. Purpose of use: the language is designed for formalization and verification of MAS.
2. Time: the language does not have explicit references to time.
3. Sensing: the language supports sensing actions.
4. Concurrency: our proposed language enables the description of concurrent and in-

teracting actions.
5. Nondeterminism: the language naturally supports nondeterminism.
6. Agent knowledge: our language allows for the description of agents with incomplete

knowledge and can be extended to handle uncertainty.
7. Communication: this criteria is not applicable to our language.

62 C. Baral, T.C. Son, and E. Pontelli

8. Team working: the language could be used for describing interaction between
agents including coordination [28] and negotiation [29].

9. Heterogeneity and knowledge sharing: the language does not force the agents to
use the same ontology.

10. Programming style: this criteria is not applicable to our language since it is not an
agent programming language.

11. Modularity: our language does not provide any explicit mechanism for modulariz-
ing the knowledge bases.

12. Semantics: our proposal has a clear defined semantics, which is based on the tran-
sition system between states.

The natural next steps in this line of work consist of (1) exploring the necessary ex-
tensions required for a more natural representation and reasoning about knowledge of
agents in MAS domains (see Sect. 7); (2) adapting the more advanced forms of reason-
ing and implementation proposed for C to the case of MAS domains; (3) investigating
the use of the proposed extension of C in formalizing distributed systems.

Acknowledgement. The last two authors are partially supported by the NSF grants
IIS-0812267, CBET-0754525, CNS-0220590, and CREST-0420407.

References

1. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heteroge-
neous Agent Systems: Theory and Implementation. MIT Press, Cambridge (2000)

2. Baker, A.: A simple solution to the Yale Shooting Problem. In: KRR, pp. 11–20 (1989)
3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.

J. Wiley & Sons, Chichester (2007)
4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentS-

peak using Jason. J. Wiley and Sons, Chichester (2007)
5. Boella, G., van der Torre, L.: Enforceable social laws. In: AAMAS 2005, pp. 682–689. ACM,

New York (2005)
6. Boutilier, C., Brafman, R.I.: Partial-order planning with concurrent interacting actions. J.

Artif. Intell. Res (JAIR) 14, 105–136 (2001)
7. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: a BDI-Agent System Combining Middle-

ware and Reasoning. In: Software Agent-based Applications, Platforms and Development
Kits. Springer, Heidelberg (2005)

8. Brenner, M.: Planning for Multi-agent Environments: From Individual Perceptions to Coor-
dinated Execution. In: Work. on Multi-agent Planning and Scheduling, ICAPS, pp. 80–88
(2005)

9. Dastani, M., Dignum, F., Meyer, J.J.: 3APL: A Programming Language for Cognitive
Agents. ERCIM News, European Research Consortium for Informatics and Mathematics,
Special issue on Cognitive Systems (53) (2003)

10. De Giacomo, G., Lespèrance, Y., Levesque, H.J.: ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intelligence 121(1–2), 109–169 (2000)

11. Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems 1, 7–38 (1998)

12. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

Reasoning about Multi-agent Domains Using Action Language C 63

13. Fisher, M.: A survey of Concurrent METATEM – the language and its applications. In: Gab-
bay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS (LNAI), vol. 827, pp. 480–505. Springer,
Heidelberg (1994)

14. Gelfond, M., Lifschitz, V.: Representing actions and change by logic programs. Journal of
Logic Programming 17(2,3,4), 301–323 (1993)

15. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3(6) (1998)
16. Gerbrandy, J.: Logics of propositional control. In: AAMAS 2006, pp. 193–200. ACM, New

York (2006)
17. Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artificial Intelli-

gence 33(3), 379–412 (1987)
18. Herzig, A., Troquard, N.: Knowing how to play: uniform choices in logics of agency. In:

AAMAS 2006, pp. 209–216 (2006)
19. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Ch, J.-J.: Meyer. A verification framework

for agent programming with declarative goals. Journal of Applied Logic 5, 277–302 (2005)
20. Kautz, H.: The logic of persistence. In: Proceedings of AAAI 1986, pp. 401–405. AAAI

Press, Menlo Park (1986)
21. Mascardi, V., Martelli, M., Sterling, L.: Logic-Based Specification Languages for Intelligent

Software Agents. Theory and Practice of Logic Programming 4(4), 495–537
22. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intel-

ligence. Machine Intelligence 4, 463–502 (1969)
23. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In:

Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

24. Sauro, L., Gerbrandy, J., van der Hoek, W., Wooldridge, M.: Reasoning about action and
cooperation. In: AAMAS 2006, pp. 185–192. ACM Press, New York (2006)

25. Scherl, R., Levesque, H.: Knowledge, action, and the frame problem. Artificial Intelli-
gence 144(1-2) (2003)

26. Son, T.C., Baral, C.: Formalizing sensing actions - a transition function based approach.
Artificial Intelligence 125(1-2), 19–91 (2001)

27. Son, T.C., Baral, C., Tran, N., McIlraith, S.: Domain-dependent knowledge in answer set
planning. ACM Trans. Comput. Logic 7(4), 613–657 (2006)

28. Son, T.C., Sakama, C.: Reasoning and Planning with Cooperative Actions for Multiagents
Using Answer Set Programming. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 208–227. Springer, Heidelberg (2010)

29. Son, T.C., Pontelli, E., Sakama, C.: Logic Programming for Multiagent Planning with Nego-
tiation. In: Hill, P.M., Warren, D.S. (eds.) Logic Programming. LNCS, vol. 5649, pp. 99–114.
Springer, Heidelberg (2009)

30. Spaan, M., Gordon, G.J., Vlassis, N.A.: Decentralized planning under uncertainty for teams
of communicating agents. In: AAMAS 2006, pp. 249–256 (2006)

31. van der Hoek, W., Jamroga, W., Wooldridge, M.: A logic for strategic reasoning, pp. 157–
164. ACM, New York (2005)

32. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Concurrent Dynamic Epistemic Logic for
MAS. In: AAMAS (2003)

Model Checking Normative Agent Organisations�

Louise Dennis1, Nick Tinnemeier2, and John-Jules Meyer2

1 Department of Computer Science, University of Liverpool, Liverpool, U.K.

L.A.Dennis@csc.liv.ac.uk
2 Department of Information and Computing Sciences,

Utrecht University, Utrecht, The Netherlands

{nick,jj}@cs.uu.nl

Abstract. We present the integration of a normative programming language in
the MCAPL framework for model checking multi-agent systems. The result
is a framework facilitating the implementation and verification of multi-agent
systems coordinated via a normative organisation. The organisation can be pro-
grammed in the normative language while the constituent agents may be imple-
mented in a number of (BDI) agent programming languages.

We demonstrate how this framework can be used to check properties of the
organisation and of the individual agents in an LTL based property specification
language. We show that different properties may be checked depending on the
information available to the model checker about the internal state of the agents.
We discuss, in particular, an error we detected in the organisation code of our
case study which was only highlighted by attempting a verification with “white
box” agents.

1 Introduction

Since Yoav Shoham coined the term “agent-oriented programming” [19], many dedi-
cated languages, interpreters and platforms to facilitate the construction of multi-agent
systems have been proposed. Examples of such agent programming languages are Ja-
son [6], GOAL [13] and 2APL [8]. An interesting feature of the agent paradigm is the
possibility for building heterogeneous agent systems. That is to say, a system in which
multiple agents, implemented in different agent programming languages and possibly
by different parties, interact. Recently, the area of agent programming is shifting atten-
tion from constructs for implementing single agents, such as goals, beliefs and plans,
to social constructs for programming multi-agent systems, such as roles and norms.
In this view a multi-agent system is seen as a computational organisation that is con-
structed separately from the agents that will interact with it. Typically, little can be
assumed about the internals of these agents and the behaviour they will exhibit. When
little can be assumed about the agents that will interact with the organisation, a norm
enforcement mechanism – a process that is responsible for detecting when norms are
violated and responding to these violations by imposing sanctions – becomes crucial

� Work partially supported by EPSRC under grant EP/D052548 and by the CoCoMAS project
funded through the Dutch Organization for Scientific Research (NWO).

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 64–82, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model Checking Normative Agent Organisations 65

to regulate their behaviour and to achieve and maintain the system’s global design
objectives [20].

One of the challenges in constructing multi-agent systems is to verify that the system
meets its overall design objectives and satisfies some desirable properties. For example,
that a set of norms actually enforces the intended behaviour and whether the agents that
will reside in the system will be able to achieve their goals. In this paper we report on
the extension of earlier work [11] of one of the authors on the automatic verification
of heterogeneous agent systems to include organisational (mostly normative) aspects
also, by incorporating the normative programming language as presented in [9]. The
resulting framework allows us to use automated verification techniques for multi-agent
systems consisting of a heterogeneous set of agents that interact with a norm governed
organisation. The framework in [11] is primarily targeted at a rapid implementation of
agent programming languages that are endowed with an operational semantics [16].
The choice for the integration of the normative programming language proposed in [9]
is mainly motivated by the presence of an operational semantics which facilitates the
integration with [11].

It should be noted that we are not the first to investigate the automatic verification
of multi-agent systems and computational organisations. There are already some no-
table achievements in this direction. Examples of work on model checking techniques for
multi-agent systems are [4,5,15]. In contrast to [11] the work on model checking agent
systems is targeted at homogeneous systems pertaining to the less realistic case in which
all agents are built in the same language. Most importantly, these works (including [11])
do not consider the verification of organisational concepts. Work related to the verifi-
cation of organisational aspects has appeared, for example, in [14,7,21,1], but in these
frameworks the internals of the agents are (intentionally) viewed as unknown. This is ex-
plained by the observation that in a deployedsystem little can be assumed about the agents
that will interact with it. Still, we believe that for verification purposes at design time it
would be useful to also take the agents’ architecture into account. Doing so allows us, for
example, to assert the correctness of a (prototype) agent implementation in the sense that
it will achieve its goals without violating a norm. In designing a normative organisation
a programmer puts norms into place to enforce desirable behaviour of the participating
agents. Implementing prototypical agents and employing them in the organisation allows
us to verify whether the actual behaviour accords with the intended behaviour of the sys-
tem as a whole. A proven prototypical implementation of a norm-abiding agent might
then be published to serve as a guideline for external agent developers.

The rest of the paper is structured as follows: In section 2 we give an overview of the
language for programming normative organisations (which we will name ORWELL
from now on) and discuss the general properties of the agent variant of the dining
philosophers problem we use as a running example throughout the paper. Section 3 de-
scribes the MCAPL framework for model checking multi-agent systems programmed
in a variety of BDI-style agent programming languages. Section 4 discusses the imple-
mentation of ORWELL in the MCAPL framework. Section 5 discusses a case study
we undertook to model check some properties in a number of different multi-agent
systems using the organisation.

66 L. Dennis, N. Tinnemeier, and J.-J. Meyer

2 ORWELL Programming Normative Agent Organisations

This section briefly explains the basic concepts involved in the approach to constructing
normative multi-agent organisations and how they can be programmed in ORWELL. A
more detailed description of its formal syntax and operational semantics together with
an example involving a conference management system can be found in [9].

A multi-agent system, as we conceive it, consists of a set of heterogeneous agents
interacting with a normative organisation (henceforth organisation). Figure 1 depicts
a snapshot of such a multi-agent system. As mentioned before, by heterogeneous we
mean that agents are potentially implemented in different agent programming languages
by unknown programmers. An organisation encapsulates a domain specific state and
function, for instance, a database in which papers and reviews are stored and accompa-
nying functions to upload them. The domain specific state is modeled by a set of brute
facts, taken from Searle [18]. The agents perform actions that change the brute state to
interact with the organisation and exploit its functionality. The general structure of a
multi-agent system we adopt is indeed inspired by the agents and artifacts approach of
Ricci et al. [17] in which agents exploit artifacts to achieve their design objectives.

brute facts

institutional facts

counts-as

sanctions

actions

agents

organisation

Fig. 1. Agents interacting with a normative organisation

An important purpose of an organisation is to coordinate the behavior of its inter-
actants and to guide them in interacting with it in a meaningful way. This is achieved
through normative component that is defined by a simple account of counts-as rules
as defined by Grossi [12]. Counts-as rules normatively assess the brute facts and label
a state with a normative judgment marking brute states as, for example, good or bad.
An uploaded paper that exceeds the page limit would, for instance, be assessed as an
undesirable state. The normative judgments about the brute state are stored as institu-
tional facts, again taken from Searle [18]. To motivate the agents to abide by the norms,
certain normative judgments might lead to sanctions which are imposed on the brute
state, for example rejecting a paper that violates the page limit by removing it from the
database.

Model Checking Normative Agent Organisations 67

In what follows we explain all these constructs using the agent variant of the famous
dining philosophers problem in which five spaghetti-eating agents sit at a circular table
and compete for five chopsticks. The sticks are placed in between the agents and each
agent needs two sticks to eat. Each agent can only pickup the sticks on her immediate
left and right. When not eating the agents are deliberating. It is important to emphasize
that in this example the chopsticks are metaphors for shared resources and the problem
touches upon many interesting problems that commonly arise in the field of concurrent
computing, in particular deadlock and starvation. The problem in all its simplicity is,
however, also interesting in the context of multi-agent systems (which are characterised
by distribution and concurrency) in general, and organisation-oriented approaches in
particular. Solutions of how the agents can efficiently share the resources can be con-
sidered protocols, which as will be shown naturally translate into norms. There are
many known solutions to the dining philosophers problem and it is not our intention to
come up with a novel solution. We merely use it to illustrate the ORWELL language.

The ORWELL implementation of the dining agents is listed in code fragment 2.1
(and continued in code fragment 2.2.) The initial brute state of the organisation is spec-
ified by the facts component. The agents named ag1, . . . ,ag5 are numbered one to
five clockwise through facts of the form agent(A,I). Sticks are also identified by
a number such that the right stick of an agent numbered I is numbered I and its left
stick is numbered I%5+11. The fact that an agent I is holding a stick is modeled by
hold(I,X) with X ∈ {r,l} in which r denotes the right and l the left stick. The
fact that a stick I is down on the table is denoted by down(I) and a fact food(I)
denotes that there is food on the plate of agent I. We assume that initially no agent
is holding a stick (all sticks are on the table) and all agents are served with food. The
initial situation of the dining agents is shown graphically in figure 2. The specification
of the initial brute state is depicted in lines 1-4.

The brute facts change under the performance of actions by agents. The effects de-
scribe how the brute state may evolve under the performance of actions. They are used
by the organization to determine the resulting brute state after performance of the ac-
tion. They are defined by triples of the form {Pre}a{Post}, intuitively meaning that
when action a is executed and set of facts Pre is derivable by the current brute state, the
set of facts denoted by Post is to be accomodated in it. We use the notation φ to indicate
that a belief holds in the precondition, or should be added in the postcondition and −φ
to indicate that a belief does not hold (precondition) or should be removed (postcondi-
tion). Actions a are modeled by predicates of the form does(A,Act) in which Act
is a term denoting the action and A denotes the name of the agent performing it. The
dining agents, for example, can perform actions to pick up and put down their (left and
right) sticks and eat. The effect rules defining these actions are listed in lines 6-542. An
agent can only pickup a stick if the stick is on the table (e.g. lines 7-9 defining the action
of picking up a right stick), can only put down a stick when it is holding it (e.g. line
11 defining the action of putting down a right stick) and can eat when it has lifted both

1 Where % is arithmetic modulus.
2 It should be noted that the current ORWELL prototype has limited ability to reason about

arithmetic in rule preconditions. Hence the unecessary proliferation of some rules in this
example.

68 L. Dennis, N. Tinnemeier, and J.-J. Meyer

Code fragment 2.1 Dining agents implemented in ORWELL.

1: Brute Fact s :

2down (1) down (2) down (3) down (4) down (5)

3food (1) food (2) food (3) food (4) food (5)

4a g e n t (ag1 , 1) a g e n t (ag2 , 2) a g e n t (ag3 , 3) a g e n t (ag4 , 4) a g e n t (ag5 , 5)

5

6: E f f e c t Rules :

7{ a g e n t (A, I) , down (I)}
8does (A, pur)

9{−down (I) , ho ld (I , r) , re turn (u)}
10

11{ a g e n t (A, I) , −down (I)} does (A, pur) { re turn (d)}
12

13{ a g e n t (A, I) , ho ld (I , r)} does (A, pdr) {down (I) , −ho ld (I , r)}
14

15{ a g e n t (ag1 , 1) , down (2)}
16does (ag1 , p u l) {−down (2) , ho ld (1 , l) , re turn (u)}
17{ a g e n t (ag1 , 1) , −down (2)} does (ag1 , p u l) { re turn (d)}
18

19{ a g e n t (ag2 , 2) , down (3)}
20does (ag2 , p u l) {−down (3) , ho ld (2 , l) , re turn (u)}
21{ a g e n t (ag2 , 2) , −down (3)} does (ag2 , p u l) { re turn (d)}
22

23{ a g e n t (ag3 , 3) , down (4)}
24does (ag3 , p u l) {−down (4) , ho ld (3 , l) , re turn (u)}
25{ a g e n t (ag3 , 3) , −down (4)} does (ag3 , p u l) { re turn (d)}
26

27{ a g e n t (ag4 , 4) , down (5)}
28does (ag4 , p u l) {−down (5) , ho ld (4 , l) , re turn (u)}
29{ a g e n t (ag4 , 4) , −down (5)} does (ag4 , p u l) { re turn (d)}
30

31{ a g e n t (ag5 , 5) , down (1)}
32does (ag5 , p u l) {−down (1) , ho ld (5 , l) , re turn (u)}
33{ a g e n t (ag5 , 5) , −down (1)} does (ag5 , p u l) { re turn (d)}
34

35{ a g e n t (ag1 , 1) , ho ld (1 , l)}
36does (ag1 , p d l) {down (2) , −ho ld (1 , l)}
37

38{ a g e n t (ag2 , 2) , ho ld (2 , l)}
39does (ag2 , p d l) {down (3) , −ho ld (2 , l)}
40

41{ a g e n t (ag3 , 3) , ho ld (3 , l)}
42does (ag3 , p d l) {down (4) , −ho ld (3 , l)}
43

44{ a g e n t (ag4 , 4) , ho ld (4 , l)}
45does (ag4 , p d l) {down (5) , −ho ld (4 , l)}
46

47{ a g e n t (ag5 , 5) , ho ld (5 , l)}
48does (ag5 , p d l) {down (1) , −ho ld (5 , l)}
49

50{ a g e n t (A, I) , ho ld (I , r) , ho ld (I , l) , food (I)}
51does (A, e a t)

52{−food (I) , re turn (yes)}
53

54{ a g e n t (A, I) , −food (I)} does (A, e a t) { re turn (no)}

Model Checking Normative Agent Organisations 69

Code fragment 2.2 Dining agents implemented in ORWELL(cont.)

1: CountsAs Rules :

2{−ho ld (1 , r) , ho ld (1 , l) , food (1)} {True} => { v i o l (1)}
3{ ho ld (2 , r) , −ho ld (2 , l) , food (2)} {True} => { v i o l (2)}
4{−ho ld (3 , r) , ho ld (3 , l) , food (3)} {True} => { v i o l (3)}
5{ ho ld (4 , r) , −ho ld (4 , l) , food (4)} {True} => { v i o l (4)}
6{−ho ld (5 , r) , ho ld (5 , l) , food (5)} {True} => { v i o l (5)}
7{ a g e n t (A, I) ,− food (I) ,− ho ld (I , r) ,− ho ld (I , l)} {True} => { r eward (I)}
8

9: Sanct ion Rules :

10{ v i o l (A)} => {−food (A) , p u n i s h e d (A)}
11{ r eward (A)} => { food (A) , r ewarded (A)}

1

1

2

2

3

3
4

4

5

5

(a) The initial table arrangement. (b) A deadlock situation.

Fig. 2. The dining agents problem

sticks and has food on its plate (lines 50-52). Actions might have different effects de-
pending on the particular brute state. To inform agents about the effect of an action we
introduce special designated unary facts starting with predicate return to pass back
information (terms) to the agent performing the action. These facts are not asserted to
the brute state. Picking up a stick will thus return u (up) in case the stick is successfully
lifted (line 9) and d (down) otherwise (e.g. line 11). Similarly, the succes of perform-
ing an eat action is indicated by returning yes (line 52) or no (line 54). Note that we
assume that agents will only perform the eat action in case they have lifted their stick.
Ways for returning information (and handling failure) were not originally described in
[9] and are left for future research.

When every agent has decided to eat, holds a left stick and waits for a right stick, we
have a deadlock situation (see figure 2b for a graphical representation). One (of many)
possible solutions to prevent deadlocks is to implement a protocol in which the odd
numbered agents are supposed to pick-up their right stick first and the even numbered
agents their left. Because we cannot make any assumptions about the internals of the
agents we need to account for the sub-ideal situation in which an agent does not follow
the protocol. To motivate the agents to abide by the protocol we implement norms to
detect undesirable (violations) and desirable behaviour (code fragment 2.2). The norms

70 L. Dennis, N. Tinnemeier, and J.-J. Meyer

in our framework take on the form of elementary counts-as rules relating a set of brute
facts with a set of institutional facts (the normative judgment). The rules listed in lines
2, 4 and 6 state that a situation in which an odd numbered agent holds her left stick and
not her right while there is food on her plate counts as a violation. Rules listed in lines
3 and 5 implement the symmetric case for even numbered agents. The last rule marks
a state in which an agent puts down both sticks when there is no food on her plate as
good behaviour. It is important to emphasize that in general hard-wiring the protocol
by the action specification (in this case effect rules) such that violations are not possible
severely limits the agent’s autonomy [2]. It should also be noted that the antecedent of
a counts-as rule can also contain institutional facts (in this example these are irrelevant
and the institutional precondition is True).

Undesirable behaviour is punished and good behaviour is rewarded. This is
expressed by the sanction rules (lines 9-11) of code fragment 2.2. Sanction rules are
expressed as a kind of inverted counts-as rules relating a set of institutional facts with
a set of brute facts to be accommodated in the brute state. Bad behaviour, that is not
abiding by the protocol, is thus punished by taking away the food of the agent such
that it cannot successfully perform the eat action. Good behaviour, i.e. not unnecesarily
keeping hold of sticks, is rewarded with food.

3 The MCAPL Framework for Model Checking Agent
Programming Languages

The MCAPL framework is intended to provide a uniform access to model-checking
facilities to programs written in a wide range of BDI-style agent programming lan-
guages. The framework is outlined in [10] and described in more detail in [3].

Fig. 3 shows an agent executing within the framework. A program, originally pro-
grammed in some agent programming language and running within the MCAPL Frame-
work is represented. It uses data structures from the Agent Infrastructure Layer (AIL) to
store its internal state comprising, for instance, an agent’s belief base and a rule library.
It also uses an interpreter for the agent programming language that is built using AIL
classes and methods. The interpreter defines the reasoning cycle for the agent program-
ming language which interacts with a model checker, essentially notifying it when a new
state is reached that is relevant for verification.

The Agent Infrastructure Layer (AIL) toolkit was introduced as a uniform frame-
work [11] for easing the integration of new languages into the existing execution and
verification engine. It provides an effective, high-level, basis for implementing opera-
tional semantics [16] for BDI-like programming languages. An operational semantics
describes the behavior of a programming language in terms of transitions between pro-
gram configurations. A configuration describes a state of the program and a transition
is a transformation of one configuration γ into another configuration γ′, denoted by
γ → γ′. The transitions that can be derived for a programming language are defined
by a set of derivation rules of the form P

γ→γ′ with the intuitive reading that transition
γ → γ′ can be derived when premise P holds. An execution trace in a transition system
is then a sequence of configurations that can be generated by applying transition rules
to an initial configuration. An execution thus shows a possible behavior of the system at

Model Checking Normative Agent Organisations 71

AIL classes/methods

APL Agent APL-AIL
Interpreter

AIL Data
Structures

JPF VM

AIL cllaasssseess//mmeethodsL

APL Agent APL-AIL
Interpreter

AIL Data L
Structures

JJJPPPFFF VVVMMMM

Unification & other optimised functions

Property Specification Language

Fig. 3. Outline of Approach

hand. All possible executions for an initial configuration show the complete behavior.
The key operations of many (BDI-)languages together with a set of standard transition
rules form the AIL toolkit that can be used by any agent programming language in its
own AIL-based interpreter. Of course, it is possible to add custom rules for specific
languages.

The agent system runs in the Java Pathfinder (JPF) virtual machine. This is a JAVA

virtual machine specially designed to maintain backtrack points and explore, for in-
stance, all possible thread scheduling options (that can affect the result of the verifica-
tion) [22]. Agent JPF (AJPF) is a customisation of JPF that is optimised for AIL-based
interpreters. Common to all language interpreters implemented using the AIL are the
AIL-agent data structures for beliefs, intentions, goals, etc., which are accessed by the
model checker and on which the modalities of a property specification language are de-
fined. For instance the belief modality of the property specification language is defined
in terms of the way logical consequence is implemented within the AIL.

The AIL can be viewed as a platform on which agents programmed in different pro-
gramming languages co-exist. Together with AJPF this provides uniform model check-
ing techniques for various agent-oriented programming languages and even
allows heterogeneous settings [11].

4 Modified Semantics for ORWELL for Implementation in the
AIL

In this work we apply the MCAPL framework to the ORWELL language and exper-
iment with the model checking of organisations. Although ORWELL is an organisa-
tional language rather than an agent programming language many of its features show

72 L. Dennis, N. Tinnemeier, and J.-J. Meyer

a remarkable similarity to concepts that are used in BDI agent programming languages.
The brute and insitutional facts, for example, can be viewed as knowledge bases. The
belief bases of typical BDI agent languages, which are used to store the beliefs of
an agent, are also knowledge bases. Further, the constructs used in modelling effects,
counts-as and sanctions are all types of rules that show similarities with planning rules
used by agents. This made it relatively straightforward to model ORWELL in the AIL.

The AIL framework assumes that agents in an agent programming language all pos-
sess a reasoning cycle consisting of several (≥ 1) stages. Each stage describes a coher-
ent activity of an agent, for example, generating plans for achieving goals and acting
by executing these plans. Moreover, each stage is a disjunction of transition rules that
define how an agent’s state may change during the execution of that stage. Only one
stage is active at a time and only rules that belong to that stage will be considered. The
agent’s reasoning cycle defines how the reasoning process moves from one stage to an-
other. The combined rules of the stages of the reasoning cycle define the operational
semantics of that language. The construction of an interpreter for a language involves
the implementation of these rules (which in some cases might simply make reference
to the pre-implemented rules) and a reasoning cycle.

Standard ORWELL [9] does not explicitly consider a reasoning cycle, but what can
be considered its reasoning cycle consists of one single transition rule that describes the
organisation’s response to actions performed by interacting agents. In words, when an
action is received, the application of this transition rule;

1. applies one effect rule,
2. then applies all applicable counts-as rules until no more apply and
3. then applies all applicable sanction rules.

The application of this rule thus performs a sequence of modifications to the agent state
which the AIL would most naturally present as separate transitions. We needed to refor-
mulate the original rule as a sequence of transition rules in a new form of the operational
semantics and include a step in which the organisation perceived the actions taken by
the agents interacting with it. Determining all the effects of applying the counts-as rules,
for example, was explained in [9] by the definition of a mathematical closure function
which was then used in its single transition rule. Although mathematically correct, such
a closure function is too abstract to serve as a basis for an actual implementation and
needed to be redefined in terms of transition rules for a natural implementation in the
AIL.

Figure 4 shows the reworked reasoning cycle for ORWELL. It starts with a per-
ception phase in which agent actions are perceived. Then it moves through two stages
which apply an effect rule (B & C), two for applying counts-as rules (D & E) and two
for applying sanction rules (F & G). Lastly there is a stage (H) where the results of
actions are returned to the agent taking them.

The splitting of the rule phases into two was dictated by the default mechanisms for
applying rules3 in the AIL, in which a set of applicable rules are first generated and
then one is chosen and processed. It would have been possible to combine this process

3 Called plans in the AIL terminology.

Model Checking Normative Agent Organisations 73

Fig. 4. The ORWELL Reasoning Cycle in the AIL

into one rule, but it was simpler, when implementing this prototype, to leave it in this
form, although it complicates the semantics.

Figures 5 to 8 show the operational semantics of ORWELL, reworked for
an AIL interpreter and simplified slightly to ignore the effects of unifica-
tion. The state of an organisation is represented by a large tuple of the form
〈i , I ,BF , IF ,ER,CAR,SR,AP ,A,RS〉 in which:

– i is the “current intention”;
– I is a set of additional “intentions”;
– BF is a set of brute facts;
– IF is a set of institutional facts;
– ER is a set of effect rules;
– CAR is a set of counts-as rules;
– SR is a set of sanction rules;
– AP is a set of applicable rules;
– A is a list of actions taken by the agents in the organisation;
– RS is an atomic formula with predicate name return for storing the result of the

action.

74 L. Dennis, N. Tinnemeier, and J.-J. Meyer

We extend this tuple with one final element to indicate the phase of the reasoning cycle
from figure 4 that is currently in focus. This element will always occur as last element
of the tuple. In order to improve readability, we show only those parts of the agent tuple
actually changed or referred to by a transition rule. We use the naming conventions just
outlined to indicate which parts of the tuple we refer to, priming the names on the right
hand side of the transition where the value has changed. Where there may be confusion
we also show their value as an equality – i.e. i = (a, ε) means the current intention is
(a, ε), if this is changed to null then we will write i ′ = null on the right hand side of
the transition..

The concept of intention is common in many BDI-languages and is used to indi-
cate the intended means for achieving a goal or handling an event. Within the AIL,
intentions are data structures which associate events with the plans generated to handle
that event (including any instantiations of variables appearing in those plans). As plans
are executed the intention is modified accordingly so that it only stores that part of the
plan yet to be processed. Of course, the concept of intention is not originally used in
ORWELL. We slightly abuse this single agent concept to store the instantiated plans
associated with any applicable rules. Its exact meaning depends on which type of rule
(effect, counts-as or sanction) is considered. When an effect rule is applicable, an in-
tention stores the (unexecuted) postconditions of the rule associated with the action that
triggered the rule. When a counts-as or sanction rule is applicable an intention stores its
(unexecuted) postconditions together with a record of state that made the rule applicable
(essentially the conjunction of its instantiated preconditions). Also the concepts of ap-
plicable rules denoting which (effect, counts-as or sanction) rules are applicable (their
precondition is satisfied) in a specific situation are AIL specific and are not originally
part of ORWELL.

〈i ,A = a;A′,A〉 → 〈i ′ = (a, ε),A′,B〉 (1)

Fig. 5. The Operational Semantics for ORWELL as implemented in the AIL (Agent Actions)

Figure 5 shows the semantics for the initial stage. As agents take actions, these are
stored in a queue, A, within the organisation for processing4. The organisation processes
one agent action at a time. The reasoning cycle starts by selecting an action, a, for
processing. This is converted into an intention tuple (a, ε) where the first part of the
tuple stores the action (in this case) which created the intention and the second part of
the tuple stores the effects of any rule triggered by the intention, i.e. the brute facts to
be asserted and retracted. Initially the effects are indicated by a distinguished symbol ε,
which indicates that no effects have yet been calculated. We believe that when this rule
fires the current intention will be empty (i.e. all its effects will have been processed) but
we have not proved this fact.

Figure 6 shows the semantics for processing effect rules. These semantics are very
similar to those used for processing counts-as rules and sanction rules and, in many

4 We use ; to represent list cons.

Model Checking Normative Agent Organisations 75

{(a, Post) | {Pre}a{Post} ∈ ER ∧ BF |= Pre} = ∅
〈BF , i = (a, ε),AP ,B〉 → 〈BF , i ′ = null,AP ′ = ∅, H〉 (2)

{(a,Post) | {Pre}a{Post} ∈ ER ∧ BF |= Pre} = AP ′ AP ′ 	= ∅
〈BF , i = (a, ε),AP , B〉 → 〈BF , i ′ = (a, ε),AP ′, C〉 (3)

(a, Post) ∈ AP

〈i = (a, ε),AP , C〉 → 〈i ′ = (a,Post),AP ′ = ∅,C〉 (4)

〈BF , i = (a, +bf ;Post),C〉 → 〈BF ′ = BF ∪ {bf }, i ′ = (a,Post),C〉 (5)

〈BF , i = (a,−bf ;Post),C〉 → 〈BF ′ = BF/{bf }, i ′ = (a,Post),C〉 (6)

〈i = (a, []),C〉 → 〈i ′ = (a, []), D〉 (7)

Fig. 6. The Operational Semantics for ORWELL as implemented in the AIL (Effect Rules)

cases the implementation uses the same code, simply customised to choose from differ-
ent sets of rules depending upon the stage of the reasoning cycle. Recall that an effect
rule is a triple {Pre}a{Post} consisting of a set of preconditions Pre, an action a taken
by an agent and a set of postconditions Post .

If the action matches the current intention and the preconditions hold , written
BF |= Pre (where BF are the brute facts of the organisation), then the effect rule
is applicable. Rule 2 pertains to the case in which no effect rule can be applied. This
could happen when no precondition is satisfied or if the action is simply undefined.
The brute state will remain unchanged, so there is no need for normatively assessing it.
Therefore, the organisation cycles on to stage H were an empty result will be returned.
Applicable effect rules are stored in the set of applicable rules AP (rule 3), of which
one applicable rule is chosen (rule 4) and its postconditions are processed (rules 5 and
6). The postconditions consist of a stack of changes to be made to the brute facts, +bf
indicates that the fact bf should be added and −bf indicates that a fact should be re-
moved. These are processed by rules 5 and 6 in turn until no more postconditions apply
(rule 7). Then it moves on to the next stage (stage D) in which the resulting brute state
is normatively assessed by the counts-as rules.

Figure 7 shows the semantics for handling counts-as rules. These are similar to the
semantics for effect rules except that the closure of all counts-as rules are applied. The
set G , is used to track the rules that have been applied. All applicable counts as rules
are made into intentions, these are selected one at a time and the rule postconditions are
processed. As mentioned before, a counts-as rule may contain institutional facts in its
precondition. Thus the application of a counts-as rule might trigger another counts-as
rule that was not triggered before. Therefore, when all intentions are processed the stage
returns to stage D, in order to see if any new counts-as rules have become applicable.

Figure 8 shows the rules governing the application of sanction rules. These are
similar to the application of counts-as rules however, since sanction rules consider only

76 L. Dennis, N. Tinnemeier, and J.-J. Meyer

{(∧ Pre ,Post) | {Pre} ⇒ {Post} ∈ CAR/G ∧ BF ∪ IF |= Pre} = ∅
〈BF , IF ,AP , G,D〉 → 〈BF , IF ,AP ′ = ∅, G ′ = ∅, F〉 (8)

{(∧ Pre,Post) | {Pre} ⇒ {Post} ∈ CAR/G ∧ BF ∪ IF |= Pre} = AP ′ AP ′ 	= ∅
〈BF , IF ,AP ,G, D〉 → 〈BF , IF ,AP ′,G ′ = AP ′ ∪G, E〉

(9)

AP 	= ∅
〈org , I ,AP , E〉 → 〈org , I ′ = AP ∪ I ,AP ′ = ∅, E〉 (10)

〈org , i = (
∧

Pre , []), I = i ′;I ′,E〉 → 〈org , i ′, I ′,E〉 (11)

〈org , IF , i = (
∧

Pre , +if ;Post),E〉 → 〈org , IF ′ = IF ∪ {if }, i ′ = (
∧

Pre ,Post),E〉 (12)

〈org , IF , i = (
∧

Pre,−if ;Post),E〉 → 〈org , IF ′ = IF/{if }, i ′ = (
∧

Pre,Post),E〉 (13)

I = ∅
〈org , i = (

∧
Pre , []), I ,E〉 → 〈org , i ′ = (

∧
Pre , []), I ,D〉 (14)

Fig. 7. The Operational Semantics for ORWELL as implemented in the AIL (Counts-As Rules)

{(∧ Pre ,Post) | {Pre} ⇒ {Post} ∈ SR ∧ IF |= Pre} = ∅
〈IF , I ,AP ,F〉 → 〈IF , I ′ = ∅, H〉 (15)

{(∧ Pre,Post) | {Pre} ⇒ {Post} ∈ SR ∧ IF |= Pre} = AP ′ AP ′ 	= ∅
〈IF ,AP , F〉 → 〈IF ,AP ′,G〉 (16)

AP 	= ∅
〈I ,AP ,G〉 → 〈I ′ = AP ∪ I ,AP ′ = ∅,G〉 (17)

〈i = (
∧

Pre, []), I = i ′;I ′,G〉 → 〈i ′, I ′,G〉 (18)

〈BF , i = (
∧

Pre, +bf ;Post),G〉 → 〈BF ′ = BF ∪ {bf }, i ′ = (
∧

Pre,Post),G〉 (19)

〈BF , i = (
∧

Pre ,−bf ;Post),G〉 → 〈BF ′ = BF/{bf }, i ′ = (
∧

Pre ,Post),G〉 (20)

I = ∅
〈i = (

∧
Pre , []), I ,G〉 → 〈i = (

∧
Pre, []), I ,H〉 (21)

Fig. 8. The Operational Semantics for ORWELL as implemented in the AIL (Sanction Rules)

Model Checking Normative Agent Organisations 77

return(X) ∈ BF RS = []
〈org ,BF ,RS ,H〉 → 〈org ,BF ′ = BF/{return(X)}, RS ′ = [X], A〉 (22)

return(X) 	∈ BF RS = []
〈org ,BF ,RS ,H〉 → 〈org ,BF ,RS ′ = [none], A〉 (23)

Fig. 9. The Operational Semantics for ORWELL as implemented in the AIL (Finalise)

institutional facts and alter only brute facts there is no need to check for more applicable
rules once they have all applied.

Lastly, figure 9 shows the rules of the final stage. The final stage of the semantics
returns any results derived from processing the agent action. It does this by looking for
a term of the form return(X) in the Brute Facts and placing that result, X , in the result
store. The result store is implemented as a blocking queue, so, in this implementation,
the rules wait until the store is empty and then place the result in it. When individual
agents within the organisation take actions these remove a result from the store, again
waiting until a result is available.

Many of these rules are reused versions of customisable rules from the AIL toolkit.
For instance the AIL mechanims for selecting applicable “plans” were easily cus-
tomised to select rules and was used in stages B,D and F. Similarly we were able
to use AIL rules for adding and removing beliefs from an agent belief base to handle
the addition and removal of brute and institutional facts. We modeled ORWELL’s fact
sets as belief bases and extended the AIL’s belief handling methods to deal with the
presence of multiple belief bases.

It became clear that the ORWELL stages couldn’t be simply presented as a cycle. In
some cases we needed to loop back to a previous stage. We ended up introducing rules to
control phase changes explicitly (e.g. rule (21)) but these had to be used via an awkward
implementational mechanism which involved considering the rule that had last fired. In
future we intend to extend the AIL with a generic mechanism for doing this.

It was outside the scope of our exploratory work to verify that the semantics of OR-
WELL, as implemented in the AIL, conformed to the standard language semantics as
presented in [9]. However our aim is to discuss the verification of normative organisa-
tional programs and this implementation is sufficient for that, even if it is not an exact
implementation of ORWELL.

5 Model Checking Normative Agent Organisations

We implemented the ORWELL Organisation for the dining philosophers system shown
in code fragment 2.1 but modified, for time reasons, to consider only three agents rather
than five. We integrated this organisation into three multi-agent systems.

The first system (System A) consisted of three agents implemented in the GOAL lan-
guage. Part of the implementation of one of these agents is shown in code fragment 5.1.
This agent has a goal to have eaten (line 4), but initially believes it has not eaten (line 7).
It also believes that its left and right stick are both down on the table (also line 7). The
agent has capabilities (lines 9-14) to perform all actions provided by the organisation.

78 L. Dennis, N. Tinnemeier, and J.-J. Meyer

Code fragment 5.1 A protocol abiding GOAL agent.

1: name : ag1

2

3: I n i t i a l Goals :

4e a t e n (yes)

5

6: I n i t i a l B e l i e f s :

7e a t e n (no) l e f t (d) r i g h t (d)

8

9: C a p a b i l i t i e s :

10p u l p u l {True} {− l e f t (d) , l e f t (R)}
11pur pur {True} {− r i g h t (d) , r i g h t (R)}
12p d l p d l {True} {− l e f t (u) , l e f t (d)}
13pd r pdr {True} {− r i g h t (u) , r i g h t (d)}
14e a t e a t {True} {−e a t e n (no) , e a t e n (R)}
15

16: C o n d i t i o n a l A c t i o n s :

17G e a t e n (yes) , B l e f t (d) , B r i g h t (d) |> do (pur)

18G e a t e n (yes) , B l e f t (d) , B r i g h t (u) |> do (p u l)

19G e a t e n (yes) , B l e f t (u) , B r i g h t (u) |> do (e a t)

20B e a t e n (yes) , B l e f t (u) |> do (p d l)

21B e a t e n (yes) , B r i g h t (u) |> do (pdr)

The return value of the organisation is accessed through the special designated variable
term R that can be used in the postcondition of the capability specification. The beliefs
of the agent will thus be updated with the effect of the action. The conditional actions
define what the agent should do in achieving its goals and are the key to a protocol
implementation. Whenever the agent has a goal to have eaten and believes it has not to
have lifted either stick it will start by picking up its right stick first (line 17). Then it
will pick up its left (line 18) and start eating when both are acquired (line 19). Note that
if the eat action is successfully performed the agent has accomplished its goal. When
the agent believes it has eaten and holds its sticks it will put them down again (lines
20 and 21). Other protocol abiding agents are programmed in a similar fashion pro-
vided that ag2 will pick up their left stick first instead of their right. Our expectation
was, therefore, that this multi-agent system would never incur any sanctions within the
organisation.

System B used a similar set of three GOAL agents, only in this case all three agents
were identical (i.e. they would all pick up their right stick first). We anticipated that this
group of agents would trigger sanctions.

Lastly, for System C, we implemented three Black Box agents which performed the
five possible actions almost at random5. The random agents could take no more than
five actions in a run of the program, though actions could be repetitions of previous

5 In order to reduce search we constrained the agents a little internally, so that they could not
perform a put down action before a pick up action, and they couldn’t eat until after they had
performed both pick up actions. The agents had no perceptions of the outside world and so the
actions were not necessarily successful.

Model Checking Normative Agent Organisations 79

ones. This system did not conform to the assumption that once an agent has picked up
a stick it will not put it down until it has eaten.

We investigated the truth of three properties evaluated on these three multi-agent
systems. In what follows � is the LTL operator, always. Thus �φ means that φ holds
in all states contained in every run of the system. � is the LTL operator, eventually
or finally. �φ means that φ holds at some point in every run of a system. The modal
operator B(ag, φ) stands for “ag believes φ” and is used by AJPF to interrogate the
knowledge base of an agent. In the case of ORWELL this interrogates the fact bases.

Property 1 states that it is always the case that if the organisation believes (i.e. stores
as a brute fact in its knowledge base) all agents are holding their right stick (or all
agents are holding their left stick) – i.e., the system is potentially in a deadlock – then
at least one agent believes it has eaten (i.e., one agent is about to put down it’s stick and
deadlock has been avoided).

�((
∧
i

B(org, hold(i, r)) ∨
∧
i

B(org, hold(i, l))) ⇒
∨
i

B(agi, eaten(yes))) (24)

Property 2 states that it is not possible for any agent which has been punished to be
given more food.

�
∧
i

¬(B(org, punished(i)) ∧ B(org, food(i))) (25)

Property 3 states after an agent violates the protocol it either always has no food or
it gets rewarded (for putting its sticks down). This property was expected to hold for
all systems irrespective of whether the agents wait until they have eaten before putting
down their sticks or not.

�
∧

i(B(org, hold(i, l)) ∧ ¬B(org, hold(i, r)))
=⇒

(�¬B(org, food(i)) ∨ �B(org, rewarded(i)))
(26)

The results of model checking the three properties on the three systems are shown
below. We give the result of model checking together with the time taken in hours (h),
minutes (m) or seconds (s) as appropriate and the number of states (st) generated by the
model checker:

System A System B System C
Property 1 True (40m, 8214 st) False (2m, 432st) False (16s, 46st)
Property 2 True (40m, 8214st) True (30m, 5622st) False (11s, 57st)
Property 3 True (1h 7m , 9878st) True (1h 2m, 10352st) True (15h, 256049 st)

It should be noted that transitions between states within AJPF generally involve the
execution of a considerable amount of JAVA code in the JPF virtual machine since
the system only branches the search space when absolutely necessary. There is scope,
within the MCAPL framework for controlling how often properties are checked. In our
case we had the properties checked after each full execution of the ORWELL reasoning

80 L. Dennis, N. Tinnemeier, and J.-J. Meyer

cycle. This was a decision made in an attempt to reduce the search space further. So
in some cases above a transition between two states represents the execution of all
the rules from stages A to H of the ORWELL reasoning cycle. Furthermore the JPF
virtual machine is slow, compared to standard JAVA virtual machines, partly because
of the extra burden it incurs maintaining the information needed for model checking.
This accounts for the comparatively small number of states examined for the time taken
when these results are compared with those of other model checking systems. Even
though we excluded as much as possible of the internal state of our random agents there
was clearly a much larger search space associated with them. We attribute this to the
much higher number of “illogical” states that occur - (when an agent tries to perform an
impossible action). We believe it likely that verifying an organisation containing agents
with known internal states will prove considerably more computationally tractable than
verifying organisations that contain entirely random agents.

In the process of conducting this experiment we discovered errors, even in the small
program we had implemented. For instance we did not, initially, return a result when
an agent attempted to pick up a stick which was held by another agent. This resulted
in a failure of the agents to instantiate the result variable and, in some possible runs,
to therefore assume that they had the stick and to attempt to pick up their other stick
despite that being a protocol violation. This showed the benefit of model checking an
organisation with reference to agents that are assumed to obey its norms.

The experiments also show the benefits of allowing access to an agent’s state when
verifying an organisation in order to, for instance, check that properties hold under
assumptions such as that agents do not put down sticks until after they have eaten. The
more that can be assumed about the agents within an organisation the more that can be
proved and so the behaviour of the organisation with respect to different kinds of agent
can be determined.

6 Conclusions

In this paper we have explored the verification of multi-agent systems running within
a normative organisation. We have implemented a normative organisational language,
ORWELL, within the MCAPL framework for model checking multi-agent systems in
a fashion that allows us to model check properties of organisations.

We have investigated a simple example of an organisational multi-agent system
based on the dining philosophers problem and examined its behaviour in settings where
we make very few assumptions about the behaviour of the agents within the system and
in settings where the agents within the system are white box (i.e., the model checker
has full access to their internal state). We have been able to use these systems to ver-
ify properties of the organisation, in particular properties about the way in which the
organisation handles norms and sanctions.

An interesting result of these experiments has been showing that the use of white
box agents allows us to prove a wider range of properties about the way in which the
organisation behaves with respect to agents that obey its norms, or agents that, even
if they do not obey its norms, respect certain assumptions the organisation embodies
about their operation. In particular the white box system enabled us to detect a bug

Model Checking Normative Agent Organisations 81

in the organisational code which revealed that the organisation did not provide agents
which did obey its norms with sufficient information to do so. This bug would have
been difficult to detect in a system where there was no information about the internal
state of the constituent agents, since the property that revealed it did not hold in general.

In more general terms the verification of organisations containing white box agents
enables the verification that a given multi-agent system respects the norms of an
organisation.

References

1. Aştefănoaei, L., Dastani, M., Meyer, J.-J., Boer, F.S.: A verification framework for normative
multi-agent systems. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI),
vol. 5357, pp. 54–65. Springer, Heidelberg (2008)

2. Aldewereld, H.: Autonomy versus Conformity an Institutional Perspective on Norms and
Protocols. PhD thesis, Utrecht University, SIKS (2007)

3. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent
Programs. In: Proc. 23rd IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 69–78 (2008)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model Checking Rational Agents.
IEEE Intelligent Systems 19(5), 46–52 (2004)

5. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Programs by
Model Checking. Journal of Autonomous Agents and Multi-Agent Systems 12(2), 239–256
(2006)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons, Chichester (2007)

7. Cliffe, O., Vos, M.D., Padget, J.A.: Answer set programming for representing and reason-
ing about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

8. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

9. Dastani, M., Tinnemeier, N.A.M., Meyer, J.-J.C.: A programming language for normative
multi-agent systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics
of Organizational Models, ch. 16. IGI Global (2008)

10. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M.: A Flexible Framework for Verifying
Agent Programs. In: Proc. 7th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS). ACM Press, New York (2008) (Short paper)

11. Dennis, L.A., Fisher, M.: Programming verifiable heterogeneous agent systems. In: Hindriks,
K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442, pp. 27–42. Springer,
Heidelberg (2009)

12. Grossi, D.: Designing Invisible Handcuffs. Formal Investigations in Institutions and Organi-
zations for Multi-agent Systems. PhD thesis, Utrecht University, SIKS (2007)

13. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming with
declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

14. Huguet, M.-P., Esteva, M., Phelps, S., Sierra, C., Wooldridge, M.: Model checking electronic
institutions. In: MoChArt 2002, pp. 51–58 (2002)

15. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of Multiagent Systems via Un-
bounded Model Checking. In: Proc. 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 638–645. IEEE Computer Society, Los
Alamitos (2004)

82 L. Dennis, N. Tinnemeier, and J.-J. Meyer

16. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-
19, University of Aarhus (1981)

17. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for engi-
neering working environments in MAS. In: AAMAS (2007)

18. Searle, J.R.: The Construction of Social Reality. Free Press, New York (1995)
19. Shoham, Y.: Agent-oriented programming. AI 60(1), 51–92 (1993)
20. Vázquez-Salceda, J., Aldewereld, H., Grossi, D., Dignum, F.: From human regulations to

regulated software agents’ behavior. AI & Law 16(1), 73–87 (2008)
21. Viganò, F.: A framework for model checking institutions. In: Edelkamp, S., Lomuscio, A.

(eds.) MoChArt IV 2006. LNCS (LNAI), vol. 4428, pp. 129–145. Springer, Heidelberg
(2007)

22. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering 10(2), 203–232 (2003)

Operational Semantics for BDI Modules
in Multi-agent Programming

Mehdi Dastani and Bas R. Steunebrink

Utrecht University
The Netherlands

{mehdi,bass}@cs.uu.nl

Abstract. This paper proposes an operational semantics for BDI modules that
can be incorporated in multi-agent programming languages. The introduced con-
cept of modules facilitates the implementation of agents, agent roles, and agent
profiles. Moreover, the introduced concept of modules enables common program-
ming techniques such as encapsulation and information hiding for BDI-based
multi-agent programs. This vision is applied to a BDI-based multi-agent pro-
gramming language to which specific programming constructs are added to al-
low the implementation of modules. The syntax and operational semantics of this
programming language are provided and some properties of the module related
programming constructs are discussed. An example is presented to illustrate how
modules can be used to implement BDI-based multi-agent systems.

1 Introduction

Modularity is an essential principle in structured programming in general and in agent
programming in particular. This paper focuses on the modularity principle applied to
BDI-based agent programming languages. There have been some proposals for support-
ing modules in BDI-based programming languages, e.g., [2,3,5,8]. In these proposals,
modularization is considered as a mechanism to structure an individual agent’s program
in separate modules, each encapsulating cognitive components such as beliefs, goals,
and plans that together model a specific functionality and can be used to handle spe-
cific situations or tasks. However, the way the modules are used in these programming
approaches are different.

For example, in Jack [3] and Jadex [2], modules (which are also called capabilities)
are employed for information hiding and reusability by encapsulating different cogni-
tive components that together implement a specific capability/functionality of the agent.
In these approaches, the encapsulated components are used during an agent’s execution
to process the events received by the agent. In other approaches [5,8], modules are
used to realize a specific policy or mechanism in order to control agent execution. More
specifically, modules in GOAL [5] are considered as the ‘focus of execution’, which can
be used to disambiguate the application and execution of plans. This is done by assign-
ing a mental state condition (beliefs and/or goals) to each module. The modules whose
conditions are satisfied form the focus of an agent’s execution such that only plans from
these modules are applied and executed. Finally, in 3APL [8] a module can be associ-
ated with a specific goal indicating which planning rules can be applied to achieve the

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 83–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

84 M. Dastani and B.R. Steunebrink

goal. In other words, a module implements specific means for achieving specific goals.
It should also be noted that the concept of module as used in [6] is different than in other
approaches. A module in [6] is considered as one specific cognitive component (e.g., an
agent’s beliefs) and not as a functionality modeled by different cognitive components.

In these proposals, most module-related decisions such as when and how modules
should be used during an agent’s execution are controlled by the agent’s execution strat-
egy, usually implemented in the agent’s interpreter (i.e., agent deliberation cycle). An
agent programmer can control the use of modules during an agent’s execution indirectly
and implicitly either based on the predetermined functionality given to the modules or
through conditions assigned to them. For example, in Jack [3] and Jadex [2] the agent’s
interpreter uses modules to process the received events. In [5], belief or goal conditions
are assigned to modules such that an agent’s interpreter uses the modules when the re-
spective conditions hold. Finally, in [8] a programmer has only a limited control over
the modules by indicating which modules (i.e., which planning rules) should be used to
achieve a goal.

Like in other approaches, we consider a module as an encapsulation of different
cognitive components that together implement a specific agent functionality. However,
the added value of our approach is that a programmer can perform a wide range of
operations on modules. These module-related operations enable a programmer to di-
rectly and explicitly control when and how modules are used. Thus, in contrast to the
abovementioned approaches, we propose a set of generic programming constructs that
can be used by an agent programmer to perform a variety of operations on modules.
The proposed notion of module can be used to implement a variety of agent concepts
such as agent role and agent profile. In fact, in our approach a module can be used as
a mechanism to specify a role that can be enacted by an agent during its execution.
We also explain how the proposed notion of modules can be used to implement agents
that can represent and reason about other agents. In section 2, we explain our module
based programming vision, present its syntax, and provide an example. The operational
semantics of the programming language are presented in section 3. In section 4, we
discuss how the proposed notion of modules can be used to implement agent roles and
agent profiles. Finally, in section 5, we conclude the paper and indicate some future
research directions.

2 BDI Programming with Modules

Programming a BDI-based individual agent amounts to specifying its initial (cognitive)
state in terms of beliefs (information), goals (objectives), and plans (means). In pro-
gramming terminology, the beliefs, goals, and plans can be considered as (cognitive)
data structures specifying the state of the agent program. The execution of a BDI-based
agent program, which is supposed to modify the state of the agent program, is based
on a cyclic process called deliberation cycle (sense-reason-act cycle). Each iteration
of this process starts with sensing the environment (i.e., receive events and messages),
reasoning about its state (i.e., update the state with received events and messages, and
generate plans to either achieve goals or to react to events), and performing actions
(i.e., perform actions of the generated plans). Similar BDI ingredients and deliberation

Operational Semantics for BDI Modules in Multi-agent Programming 85

cycles are used in existing BDI-based programming languages such as Jason [1], 2APL
[4], Jadex [7], and Jack [9].

Without losing generality and committing to a specific knowledge representation
scheme, we assume in the rest of the paper a BDI-based agent programming language
with (cognitive) data structures and a similar deliberation process. Moreover, we con-
sider structuring a BDI-based agent program in separate modules as encapsulation of
cognitive data that together model a specific functionality (when the deliberation pro-
cess operates on them). A multi-agent program consists of a set of modules with unique
names, each specifying a state in terms of cognitive concepts. Initially, a subset of these
modules is identified as the specification of the initial state of individual agents. The
execution of a multi-agent program is then the instantiation of this subset of modules
followed by performing a deliberation process on each module instance. In this way,
an instance of a module forms the initial state of an individual agent. It should be em-
phasized that a module instance specifies the cognitive state of an agent while the agent
itself is the deliberation process working on the cognitive state.

2.1 Syntax

We do not present here the complete syntax of a modular BDI-based agent program-
ming language as we aim at focusing on modules and module-related actions. In fact,
we assume that a module is just like an agent program specifying a cognitive state by
means of programming constructs (for beliefs, goals, and plans) of existing BDI-based
programming languages extended with module-related actions. Moreover, we assume
that the proposed module-related actions can be added to any existing BDI-based agent
programming language [1,4,7,9].

For the sake of presenting an example, however, we consider an agent’s beliefs being
implemented by a set of Horn-clauses. An agent’s goals are assumed to be implemented
by a set of conjunctive ground atoms, where each conjunction represents a situation the
agent wants to realize. An agent is assumed to be capable of performing different types
of actions such as update actions (to modify beliefs and adopt and drop goals), belief
and goal test actions (to query beliefs and goals), and actions to send messages and to
change the state of external environments. Moreover, an agent is assumed to generate
plans at runtime by applying rules. These rules can be used to generate plans based
on either the agent’s beliefs and goals, or the received internal and external events in-
cluding messages from other agents. Rules have the form trigger | guard -> plan ,
where trigger is either a goal or an event query of the form G(ϕ) or E(ϕ), respec-
tively, and the guard is a belief query of the form B(ϕ). Finally, plan is the plan to
be generated and added to the set of plans if both trigger and guard hold. Similar BDI
related programming constructs occur in many existing BDI-based agent programming
languages such as Jason [1], Jadex [7], Jack [9], and 2APL [4].

The first module-related action is create(mod -name,ins-ident), which can be
used to create an instance of the module specification named mod -name . The name that
is assigned to the created module instance is given by the second argument ins-ident .
The creating module instance (also called the owner of the created module instance
or simply the owner) can use this name to perform further operations on the created
module instance (also called the owned module instance). One module specification

86 M. Dastani and B.R. Steunebrink

can be instantiated more than once by one or more module instances. In such a case,
the creating module instance should assign a unique name to each created module in-
stance. A module instance with identifier m can be released by its owner by means of
the release(m) action. The released module instance m will be removed/lost.

It is also possible that one and the same module instance is used by two different
module instances. For this purpose, a special type of module, called singleton module, is
introduced. While the ownership of a singleton module instance can be changed through
create and release operations performed by different modules instances, the state of
the singleton module instance remain unchanged, i.e., the state of a singleton module
instance is maintained after one module instance release it and another one owns it
again.

A module instance m can be executed by its owner through the execute(m,test)
action. The execution of a module instance, performed by its owner, has two effects: 1)
it suspends the execution of the owner module instance, and 2) it starts the execution
of the owned module instance. The execution of the owner module instance will be
resumed as soon as the execution of the owned module instance is terminated. In a
sense, an agent that executes an owned module instance, stops deliberating on its current
cognitive state and starts deliberating on a new cognitive state.

The termination of the owned module instance1 is based on the mandatory test con-
dition (i.e., the second argument of the execute action). As soon as this condition holds,
a stop event is sent to the owned module instance. The module instance can then use
the received event and start a cleaning operation after which it should broadcast a re-
turn event. For this we introduce an action return that can be executed by an owned
module instance after which its execution is terminated and the execution of the owner
module instance is resumed.

The owner of a module instance can access, query, and update the internals of the
instance. In particular, the owner can test whether certain beliefs and goals are entailed
by the beliefs and goals of its owned module instancem through action test(m,ϕ,f),
where ϕ consists of belief and goal queries of the form B(ϕ) and G(ϕ), and f is
a boolean flag indicating whether the query ϕ is positively answered (in which case
a, possibly empty, substitution is resulted) or is negatively answered (in which case
an empty substitution is resulted). It is important to note that argument m and ϕ of
the test action are input parameters while argument f is an output parameter. Also,
the beliefs and goals of a module instance m can be updated by means of the actions
updateB(m,ϕ) and updateG(m,ϕ), respectively. Here ϕ can consist of multiple
terms to be added, separated by commas; however, terms preceded by a minus sign are
removed from the beliefs/goals.

A typical life cycle of a module in terms of these operations is illustrated in Figure 1,
which proceeds as follows. A module instance i can create a new module instance j
from a specification file. The module instance i can modify j’s internal state using
update actions. The module instance i can transfer the execution control to the module
instance j by the execute action. The execution of j continues until j performs a return
action. The module instance i can specify a stopping condition ϕ, causing j to receive a

1 The owner cannot force the owned module instance’s execution to stop because its own exe-
cution has been suspended.

Operational Semantics for BDI Modules in Multi-agent Programming 87

Fig. 1. A typical life cycle of a module

stop event when ϕ is satisfied, in response to which it can perform clean-up operations
before returning execution control back to the module instance i. When i is active again,
it can query j’s internal state by the test action and release (remove) it.

2.2 An Example of a Multi-agent Program

The following example is provided to illustrate the idea of module-related constructs
and their use to implement an agent’s role. This example is not intended to demonstrate
the practical use of the constructs for which we may need substantially more space.
Suppose we need to build a multi-agent system in which one single manager and three
workers cooperate to collect gold items in an environment called gridworld. The man-
ager coordinates the activities of the three workers by asking them either to play the
explorer role to detect the gold items in the gridworld environment or to play the car-
rier role to carry the detected gold items to a depot and store them. For this example,
which can be implemented as the program illustrated in Figure 2, the module declara-
tion includes a manager module (i.e., manager.mod) which specifies the initial state
of the manager agent with the name m (the implementation of the manager module is
presented in Figure 3). Note that only one manager agent will be initialized and created
(line 7). Moreover, the worker module (worker.mod; see Figure 4) specifies the ini-
tial state of three worker agents. The names of the worker agents in the implemented
multi-agent system is assumed to be indexed with numbers, i.e., there will be three
worker agents with names w1, w2, and w3 (line 8). Finally, two additional modules are
declared to implement the explorer and carrier functionalities (line 4, 5). As we will
see, these functionalities/roles will be played by the worker agents at runtime. Note that
both functionalities/roles can access the ‘gridworld’ environment and that the internals

88 M. Dastani and B.R. Steunebrink

1 Modules:
2 manager.mod
3 worker.mod
4 explorer.mod @gridworld
5 carrier.mod @gridworld
6 Agents:
7 m manager 1
8 w worker 3

Fig. 2. The multi-agent program of the running example

of these module instances (roles in this example) need not to be known to their owner
module instances (information hiding aspects of modules).

The manager module can be implemented as in Figure 3. The goal of the manager m
is to find and have gold items (line 10). Moreover, it has one initial plan through which
it sends a request to worker w3 to explore the gridworld environment (line 11). We
assume that the manager is aware of the three created workers, i.e., it has the identities
of the workers. This assumption can be relaxed by making a query to a possibly existing
agent management system to get the identifier of a worker.

The first rule of the manager agent (lines 13-17) indicates that the goal to
have a gold item (i.e., G(haveGold())) can be achieved if the agent believes
that there is a gold item at position POS not assigned to any (worker) agent yet
and that there is a worker agent A having no assigned task (i.e., collecting gold
items) yet (i.e., B(gold(POS) && -assigned(POS,) && worker(A) &&
-assigned(,A))). The plan to achieve this goal sends a message to the free agent
asking to play the carrier role to collect the gold item. This is followed by the action
ModOwnBel(assigned(POS,A)) by means of which the manager agent modifies
its own beliefs to record the fact that the free agent is not free anymore (i.e., after this
action the manager agent believes that agent A has an assigned task).

The second rule of the manager agent (lines 19-23) indicates that the goal to find
a gold item can be achieved if the agent does not have any beliefs about goal items
and that there is a worker agent A having no assigned task yet (i.e., B(-gold()
&& -worker(A) && -assigned(,A))). The plan to achieve this goal sends
a message to the free agent asking to play the explorer role to find a gold item. This
is followed by the action ModOwnBel(assigned(,A)) by means of which the
manager agent modifies its own beliefs to record the fact that the free agent is not free
anymore.

The third rule (lines 25-27) indicates that whenever the manager receives an
event (message) containing the information about the position of a gold item (i.e.,
gold(POS)), it updates its own beliefs with this information (line 26). The fourth
rule (lines 29-31) indicates that when a worker informs the manager that it has done
its task (i.e., collected and carried its assigned gold items to the depot), the manager
updates its own beliefs (atoms preceded by a minus sign are removed) with the fact that
the gold item is removed and that the worker is ready to carry new gold items again.
Finally, the fifth rule (lines 33-35) indicates that when a worker informs the manager

Operational Semantics for BDI Modules in Multi-agent Programming 89

9 Beliefs = { worker(w1), worker(w2), worker(w3) }
10 Goals = { findGold() and haveGold() }
11 Plans = { send(w3, play(explorer)); }
12 Rules = {
13 G(haveGold()) | B(gold(POS) && -assigned(POS, _) &&
14 worker(A) && -assigned(_, A)) ->
15 { send(A, play(carrier, POS));
16 ModOwnBel(assigned(POS, A));
17 },
18

19 G(findGold()) | B(-gold(_) && worker(A) &&
20 -assigned(_, A)) ->
21 { send(A, play(explorer));
22 ModOwnBel(assigned(_, A));
23 },
24

25 E(receive(A, gold(POS))) | B(worker(A)) ->
26 { ModOwnBel(gold(POS));
27 },
28

29 E(receive(A, done(POS))) | B(worker(A)) ->
30 { ModOwnBel(-assigned(POS, A), -gold(POS));
31 },
32

33 E(receive(A, error(POS))) | B(worker(A)) ->
34 { ModOwnBel(-assigned(_,A));
35 }
36 }

Fig. 3. The code of the manager module

that it has failed to collect and carry the gold item from the designated position, the
manager updates its own beliefs with the fact that the worker is free and ready to do
perform a new task.

The worker agent, as implemented in Figure 4, is an agent that waits for requests
to play either the explorer or the carrier role. When it receives a request to play the
explorer role from the manager (line 39), it creates an explorer module instance and
executes it (line 40-41). Note that the stopping condition of this module instance is the
belief that gold has been found. When the execution of the module instance halts, the
worker agent sends the position of the detected gold item to the manager (line 43), and
finally releases the explorer module instance (line 44). It is important to note that for
the worker agent the creation of an explorer module instance and executing it is the
same as playing the explorer role. The worker agent plays this role until the goal of
the role (i.e., finding gold items) is believed to be achieved. Note the use of the test
action. This action results in a substitution that assigns a value to variable POS, making
the position of the found gold item accessible to the testing module instance. Also, the

90 M. Dastani and B.R. Steunebrink

37 Beliefs = { manager(m) }
38 Rules = {
39 E(receive(A, play(explorer))) | B(manager(A)) ->
40 { create("explorer.mod", myexp);
41 execute(myexp, B(gold(_)));
42 test(myexp, B(gold(POS)), F);
43 If F=true then send(A, gold(POS));
44 release(myexp);
45 },
46

47 E(receive(A, play(carrier, POS))) | B(manager(A)) ->
48 { create("carrier.mod", mycar);
49 updateB(mycar , gold(POS));
50 execute(mycar, B(done() or error()));
51 test(mycar , B(done()) , F);
52 if F=true then send(A, done(POS))
53 else send(A, error(POS));
54 release(mycar);
55 }
56 }

Fig. 4. The code of the worker module

output parameter F will in this case have the value true as the query gold(POS)
will be answered positively. This is because the query is used as the stopping condition
of the preceding execute action. Therefore, the test F=true in line (line 43) is not
necessary (this test is added to stress the use of the output parameter). The second rule
of the worker agent (line 47) is responsible for carrying gold items by creating a carrier
module instance (line 48), adding the gold item information to its beliefs (line 49), and
executing it until either it has found the gold items (done() condition) or an error has
occurred (error() condition); see line 50. The final four lines of this code (51-54)
is to inform the manager agent about the success or failure of carrying the gold item
and releasing the carrier module instance after this communication. In other words, this
second rule indicates when the worker agent should play the carrier role. Note that the
code of the manager agent has no rule to react to the failure message; for the running
implementation such a rule should be added. The use of the output parameter F in this
rule is essential as checking its value is necessary to generate different responses.

The explorer module (i.e., the implementation of the explorer role), as implemented
in Figure 5, has the goal to find gold items (line 58). In order to achieve this goal, it
proceeds to a random location in the gridworld, performs a sense gold action there and,
if successful, adds the position of the detected gold item (i.e., gold(POS)) to its own
local beliefs (line 63). Note that this belief information satisfies the stopping condition
of the module instance (see line 41) since the goal foundGold() is achieved as soon
as gold(POS) is added to its beliefs (line 57). In this example, the final rule (line 66)

Operational Semantics for BDI Modules in Multi-agent Programming 91

is to react to the stop event which is broadcasted when the explorer’s stopping condition
holds. The reception of this event causes the explorer module to perform a return action,
which in turn causes the execution to be handed back to the worker module instance.

57 Beliefs = { foundGold() :- gold(_) };
58 Goals = {foundGold()}
59 Rules = {
60 G(foundGold()) | true ->
61 { @gridworld(goToRandomPosition());
62 @gridworld(senseGold() , POS);
63 if POS != nil then ModOwnBel(gold(POS));
64 },
65

66 E(stop) | true -> { return; }
67 }

Fig. 5. The code of the explorer module

Finally, the carrier module (i.e., the implementation of the carrier role) as imple-
mented in Figure 6 has a goal to store a gold item (line 69). This goal can be achieved
by fetching the gold item, storing it in the depot, and removing that gold item from
its own local beliefs (lines 72-74). Similar to the explorer module, the carrier module
performs a return action when it receives a stop event (line 77). The third rule (line 80)
adds error information (i.e., error()) to its own local beliefs when the execution of
an action in the gridworld environment fails. Note that error() in the beliefs was one
of the stopping conditions to stop the execution of the carrier module instance (line 50).
It is also important to note that it is up to the gridworld programmer to determine when
the execution of a gridworld action fails.

In this example, we did not use any singleton modules. However, for applications
where the cognitive state of the explorer or carrier module instances are considered as
important and useful for the next time these roles are played, then one may consider to
define them as singleton.

3 Semantics

The semantics of the proposed actions are defined in terms of a transition system, which
consists of a set of transition rules for deriving transitions. A transition specifies a single
computation/execution step by indicating how one configuration can be transformed
into another. In this paper, we first present the multi-agent system configuration, which
consists of the configurations of module instances/individual agents and the state of the
external shared environments. Then, we present transition rules from which possible
execution steps for multi-agent programs can be derived. Here, we focus only on the
semantics of module-related constructs.

92 M. Dastani and B.R. Steunebrink

68 Beliefs = { goldStored() :- not gold(_) }
69 Goals = { goldStored()}
70 Rules = {
71 G(goldStored()) | B(gold(POS)) ->
72 { @gridworld(fetchGold(POS));
73 @gridworld(storeGold());
74 ModOwnBel(-gold(POS), done());
75 },
76

77 E(stop) | true -> { return; },
78

79 E(fail(@gridworld(_))) | true ->
80 { ModOwnBel(error());} }

Fig. 6. The code of the carrier module

3.1 Multi-agent System Configuration

The configuration of a multi-agent program is defined in terms of the configuration
of active modules instances (some module instances are individual agents), inactive
ones, and the state of their shared external environments. The configuration of a module
instance includes 1) the cognitive state of the module instance (beliefs, goals, plans)
with a unique name, and 2) a stopping condition for the module instance.

We denote the configuration of the cognitive state of an agent (or a module instance)
with name i as Ai. We write AB

i and AG
i to denote the beliefs and goals of agent

Ai, respectively. Moreover, we assume suitable definitions of |=b, |=g , ⊕b, and ⊕g

such that beliefs and goals can be queried and updated, respectively. We then define
|=c as a test on a single agent (or module instance) configuration Ai as: Ai 	|=c ⊥;
Ai |=c B(ϕ) ⇔ AB

i |=b ϕ; and Ai |=c G(ϕ) ⇔ AG
i |=g ϕ. To simplify keeping

track of which module instance owns which, their names are composed using periods.
For example, a module instance named 1.4.7 is owned by module instance 1.4, which
is owned by the ‘top-level’ module instance 1. More formally, we define the sets Bid
of ‘basic identifiers’ and Cid of ‘composed identifiers’; the function prefix returns all
prefixes of a composed name (e.g., prefix(1.4.7) = {1.4.7, 1.4, 1}):

Bid = �
Cid = Bid ∪ { c.b | c ∈ Cid , b ∈ Bid }

prefix (i) =

{
{i} if i ∈ Bid
{i} ∪ prefix (j) if i = j.k for some j ∈ Cid , k ∈ Bid

When writing Ai.j , it is assumed that i ∈ Cid and j ∈ Bid .
The configuration of a multi-agent system is a tuple 〈A, I, S, χ〉, where A is a set of

configurations of active module instances (including module instances that implement
individual agents), I is a set of configurations of inactive module instances, S is a set of
configurations of released singleton module instances, and χ is the state of the shared

Operational Semantics for BDI Modules in Multi-agent Programming 93

environments. The initial configuration of each individual agent is determined by the
declared module that is assigned to the agent in the multi-agent program. In particular,
for each individual agent with initial configuration A, a module instantiation (A, ⊥)
is created and added to the set of active module instances A. Thus, module instances
created when the multi-agent program is started will have ⊥ as stopping condition.
Also, all environments from the multi-agent system program are collected in the set χ.
The initial state of the shared external environment is set by the programmer, e.g., the
programmer may initially place gold or obstacles at certain positions in a grid-world
environment. Finally, in the initial configuration the sets of inactive module instances I
and released singletons S are empty.

The idea behind the distinction between A, I, and S is that only module instance
contained in A are subject to deliberation and thus subject to making transitions. The
inactive module instances are kept in I and the released instances of singleton mod-
ules are kept in S. The module instances in I may at run-time be (re)activated (i.e.
transferred to A) or removed from I. The module instances in S may at run-time be
(re)created by another module instance, i.e., a module instance can become the (new)
owner of a release instance of a singleton module. A singleton module instance can
never be removed once it is created.

Given a multi-agent configuration 〈A, I, S, χ〉, two convenience functions are de-
fined for looking up all ancestors and descendants using the name of a module instance,
as follows:

ancAI (i) = { (Aj , ψ) ∈ A ∪ I | j ∈ prefix(i) }
descAI (i) = { (Aj , ψ) ∈ A ∪ I | i ∈ prefix (j) }

Note that the module instance with the given name (i) is included as its own ancestor
and descendant.

The execution of a multi-agent program modifies its initial configuration by means
of transitions that are derivable from the transition rules presented in the following
subsection. In fact, each transition rule indicates which execution step (i.e., transition)
is possible from a given configuration. It should be noted that for a given configuration
there may be several transition rules applicable. An interpreter is a deterministic choice
of applying transition rules in a certain order.

3.2 Transition Rules for Module Actions

We provide the transition rules for deriving multi-agent system transitions based on
the execution of a module-related actions. Since module related actions, which are per-
formed by individual module instances, have global effects at the multi-agent system
level, we use individual module transitions cause by module related actions to define

global multi-agent system transitions. For this reason, we use Ai
α!−→ A′

i to indicate
that the module instance Ai can make a transition to module instance A′

i by performing
action α. The performance of the action broadcasts event α!. When α? is used, instead
of α!, Ai receives the event α?. Finally, we use α!? to indicate that Ai performs action
α with some output parameters. The performance of such an action broadcasts event α!
and waits for receiving the values of the output parameters.

94 M. Dastani and B.R. Steunebrink

The first transition indicates the effect of the create(f,j) action performed by
the module instance Ai, where f is the identifier of a module specification (typically a
file name) and j is the name that will be associated with the created module instance.
This transition rule indicates that a module instance can be created by another module
instance if the creating module instance is active, i.e., (Ai, ϕ) ∈ A. The result is that
the set of module instances A, I, and S in the multi-agent system configuration are
modified. In particular, the creating module instance is modified as it has performed the
create action. This results in a set of active module instance A′ which is the same
as A except that the creating module instance Ai is changed to A′

i. The modification of
I and S depend, however, on whether the module f is a singleton module or not. If f
is a singleton module and there exists already an instance of this module in the set of
released singleton module instances S, then the creation of the instance will remove the
released instance from S and add it to the set of inactive module instances I. Otherwise,
if either f is not a singleton module or no instance of f is created yet, then an instance
of module f is created and added to the set of inactive module instances I. The set
of released singleton module instances remains unchanged. In the following, we write
spec(A) = f to indicate that A is an instance of module f . We also use A as referring
to the module instance Ai.j , i.e., A is the same module instance as Ai.j without the
name i.j.

(Ai, ϕ) ∈ A Ai
create(f,j)!−→ A′

i (Ai.j , ⊥) 	∈ I
〈A, I, S, χ〉 −→ 〈A′, I ′, S′, χ〉 (1)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(A′
i, ϕ)} and I ′ and S′ are determined as follows:

– if f is a singleton module and ∃A ∈ S : spec(A) = f , then S′ = S \ {A} and
I ′ = I ∪ {(Ai.j , ⊥)}

– otherwise, S′ = S, Ai.j is a new configuration with name i.j created from specifi-
cation f , and I ′ = I ∪ {(Ai.j , ⊥)}.

The newly created module’s execution stopping condition is set to ⊥ (as an arbitrary
initial value). This is because the stopping condition should be set when the module
instance is executed. We would like to emphasize that a module is only allowed to create
another non-singleton module twice (or more) if different names are used to identify it.
This will result in two different instances of the non-singleton module, each with its
own name and state. Otherwise the create action blocks.

A module Ai that owns another module named j (i.e. (Ai.j , ⊥) ∈ I) can release
(delete) it. It can do this by performing the action release(j). As a result, this mod-
ule configuration is removed from I. If Ai.j does not exist, the release action blocks.
Moreover, if Ai.j is an instance of a singleton module, then the module instance will be
added to the set of released singleton module instances S.

(Ai, ϕ) ∈ A Ai
release(j)!−→ A′

i (Ai.j , ⊥) ∈ I
〈A, I, S, χ〉 −→ 〈A′, I ′, S′, χ〉 (2)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(A′
i, ϕ)} and I ′ = I \ descA

I (i.j). Note that all de-
scendants of Ai.j (including Ai.j) must be removed from the set of inactive module
instances, otherwise any unreleased (inactive) module instances owned by Ai.j would

Operational Semantics for BDI Modules in Multi-agent Programming 95

be kept dangling. All singleton descendants of Ai.j are then saved in S′. This is done by
collecting all descendants Ak of Ai.j whose specification f (i.e., spec(Ak) = f) is sin-
gleton (i.e., singleton(f)). So the new set of saved singleton module instances becomes
S′ = S ∪ { A | (Ak, ψ) ∈ descA

I (i.j), singleton(spec(A)) }. Note that the names as-
signed to the saved singletons (e.g., k above) are removed, and that it is possible that
S′ = S if neither Ai.j nor any of its descendants were defined as singletons.

An instance of a non-singleton module is always created privately for the creating
module instance (or agent). Therefore, a non-singleton module instance will not retain
its state when it is released and created again. Also, the creating module instance (agent)
is the only one that can release and thereby delete the module instance. However, if the
released instance is an instance of a singleton module, then its owned module instances
will remain inactive in I. If the singleton module instance is created and executed once
again, then these module instances may be activated too.

A module instance that owns another module instance can execute it, meaning that
the owned module instance is transferred from I to A so that it can perform actions
by itself. In doing so, the owning module instance is transferred from A to I, i.e. its
execution is halted. In effect, control is ‘handed over’ from the owner module instance
to the owned module instance. As part of the execute action, a stopping condition ψ
is provided with which the owner module instance can specify when it wants control
returned, i.e., as soon as the owned module instance satisfies the stopping condition
(Ai.j |=c ψ; a transition rule for this case is provided next).

(Ai, ϕ) ∈ A Ai
execute(j,ψ)!−→ A′

i (Ai.j , ⊥) ∈ I
〈A, I, S, χ〉 −→ 〈A′, I ′, S, χ〉 (3)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(Ai.j , ψ)} and I ′ = (I \ {(Ai.j , ⊥)}) ∪ {(A′
i, ϕ)}.

As soon as the stopping condition of an executing module instance holds (Ai |=c ϕ),
it will receive a stop event from the multi-agent level requesting it to stop its execution,
possibly after first performing some cleanup operations. Note that it is assumed that a

module instance is always able to receive a stop event (Ai
stop?−→ A′

i). It is not guaranteed
by the system that a module instance will actually ever stop; it must perform a return
action (see below) itself in order to have it transferred back to I.

(Ai, ϕ) ∈ A Ai |=c ϕ Ai
stop?−→ A′

i

〈A, I, S, χ〉 −→ 〈A′, I, S, χ〉 (4)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(A′
i, ϕ)}. Note that by definition, Ai 	|=c ⊥. This

means that 1) top-level module instances (i.e. those created at initialization of the multi-
agent configuration, i.e. those with a non-composed name) never receive a stop event
because they have ⊥ as stopping condition, and 2) module instances executed with ⊥
as stopping condition (e.g., execute(j,⊥)) never receive a stop event either; it is
up to the programmer to ensure that the executed module instance performs a return
action (see below) at some point to return control to its owning module instance.

A module instance can return control to its parent module instance by performing a
return action. This will cause them to ‘switch places’ again with respect to A and
I. Only module instances with a parent can return control, which is enforced below

96 M. Dastani and B.R. Steunebrink

requiring that the module instance performing a return action has a composite name
i.j. It is up to the programmer to ensure that a return action is performed by a module
instance in response to a stop event. It should be noted that a module’s execution has to
be finished before it can be released, because the owning module instance must be in A
to be able to perform a release action.

(Ai.j , ψ) ∈ A Ai.j
return!−→ A′

i.j (Ai, ϕ) ∈ I
〈A, I, S, χ〉 −→ 〈A′, I ′, S, χ〉 (5)

where A′ = (A\{(Ai.j , ψ)})∪{(Ai, ϕ)} and I ′ = (I \{(Ai, ϕ)})∪{(A′
i.j , ⊥)}. This

mechanism allows a module instance to respond to a stop event by performing clean up
operations and then returning. Finally, note that the state of A′

i.j is saved (in I) with the
default ⊥ as stopping condition.

Next we consider several actions that a module instance can perform on a module
instance that it owns. These actions do not pertain to control, but to the state of the
owned module instance. Specifically, a module instance can query the beliefs and goals
of an owned module instance, update the beliefs of an owned module instance, and
adopt and drop goals in an owned module instance. First we consider the belief and
goal queries. A module instance Ai that owns another module instance named j, which
is currently inactive (i.e. (Ai.j , ⊥) ∈ I), can perform a (belief/goal) query ψ on Ai.j by
means of a test action. The query can be answered positively and returns substitution θ
if Ai.j |=c ψθ, or it fails returning an empty substitution. The following transition rule
captures this.

(Ai, ϕ) ∈ A Ai
test(j,ψ,f)!?−→ A′

iθ (Ai.j , ⊥) ∈ I
〈A, I, S, χ〉 −→ 〈A′, I, S, χ〉 (6)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(A′
iθ, ϕ)} and f = � if Ai.j |=c ψθ or f = ⊥

and θ = ∅ if Ai.j 	|=c ψ. In this transition rule, we assume A′
iθ to be the same as Ai

except that the test action has been processed and the substitution θ is applied. How
these operations are performed depends on the corresponding agent transition rules
from which the transition Ai −→ A′

i can be derived. Note that Ai.j is not changed
by the test and that only direct descendants can be tested (and updated; see below). As
the test action has an output parameter, it will broadcast event test(j,ψ,f)! and
wait for the value of the output parameter f. This is the reason for using the notation
test(j,ψ,f)!?.

We now consider belief and goal updates. It is assumed that a formula ψ can rep-
resent a belief/goal and that Ai.j ⊕b/g ψ yields a configuration where the beliefs/goals
have been updated with ψ. Note that if ψ contains any negated terms, these will be
deleted from Ai.j . Similar to the transition rule for queries above, the owned module
instance on which the belief or goal update is performed must be contained in the set of
inactive module instances I. With slight abuse of notation (using a slash), the following
transition rule captures both the updateB and updateG actions, respectively.

(Ai, ϕ) ∈ A Ai
updateB/G(j,ψ)!−→ A′

i (Ai.j , ⊥) ∈ I
〈A, I, S, χ〉 −→ 〈A′, I ′, S, χ〉 (7)

Operational Semantics for BDI Modules in Multi-agent Programming 97

where A′ = (A\{(Ai, ϕ)})∪{(A′
i, ϕ)} and I ′ = (I\{(Ai.j , ⊥)})∪{(Ai.j⊕b/gψ, ⊥)}.

One module instance can send a message to another module instance if both the
sender and receiver exist as active module instances (i.e. are elements of A). It is as-
sumed a receive event is always successful.

(Ai, ϕ) ∈ A Ai
send(j,ψ)!−→ A′

i (Aj , ϕ
′) ∈ A Aj

receive(i,ψ)?−→ A′
j

〈A, I, S, χ〉 −→ 〈A′, I, S, χ〉 (8)

where A′ = (A\{(Ai, ϕ), (Aj , ϕ
′)})∪{(A′

i, ϕ), (A′
j , ϕ

′)}. Note that only active mod-
ule instances can exchange messages, meaning that they can never send messages to
ancestors or descendants. If the intended receiver does not exist as an active module in-
stance, the message is ‘bounced’ back to the sender. Again, it is assumed an undelivered
event is always successful. Note that sending a message to a module instance that was
once active but has since stopped or been released will fail.

(Ai, ϕ) ∈ A Ai
send(j,ψ)!−→ A′

i (Aj , ϕ
′) 	∈ A A′

i

undelivered(j,ψ)?−→ A′′
i

〈A, I, S, χ〉 −→ 〈A′, I, S, χ〉 (9)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(A′′
i , ϕ)}. Thus we assume that the recipient of a

message must be fully and correctly specified for it to be delivered. A different choice
could be to always address messages to the top-level parent and look up which module
instance of the receiving agent is currently active and deliver the message there. An
objection to this would be that each module instance encapsulates a certain functionality
and that a message sent to a specific module instance of an agent may make little sense
to another module instance of the same agent.

Finally, a general transition rule is needed for all actions α not equal to one of the
module-specific ones introduced actions above (e.g. ‘normal’ actions such as assign-
ments, function calls, etc.). Note that the execution of action α possibly leads to a
change in the environment χ (as expressed by the subscript χ′).

(Ai, ϕ) ∈ A Ai
α!−→χ′ A′

i

〈A, I, S, χ〉 −→ 〈A′, I, S, χ′〉 (10)

where A′ = (A \ {(Ai, ϕ)}) ∪ {(A′
i, ϕ)}.

3.3 Properties

In this section we describe several properties (P1-P6) of the proposed module system.
A proof sketch is provided after each property. All properties below assume a given
multi-agent configuration 〈A, I, S, χ〉.

P1: If the names of all initial agents (i.e., those module instances with a basic, non-
composed name from Bid) are unique, then all module names that are generated at
runtime are unique as well:[

∀(Ai, ϕ) 	= (Aj , ψ) ∈ A ∪ I : i, j ∈ Bid ⇒ i 	= j
]

⇒[
∀(Ai, ϕ) 	= (Aj , ψ) ∈ A ∪ I : i 	= j

]

98 M. Dastani and B.R. Steunebrink

Proof (sketch). This property follows from (a) the fact that transition rule (1) for the
create action does not allow a module instance to create two modules with the same
name, and (b) the fact that when different module instances create new module instances
using equal names, they are still assigned unique names because their given names are
composed with their ancestors’ names.

P2: All children of an active module instance have ⊥ (a default value) as stopping
condition:

∀(Ai, ϕ) ∈ A : ∀(Ai.j , ψ) ∈ I : ψ = ⊥

Proof (sketch). Whenever a module instance Ai creates a new module instance Ai.j (by
rule (1)) or an active module instance Ai.j is halted (because it performed a return
action; rule (5)), the stopping condition of Ai.j is/becomes irrelevant and is set to ⊥ as
a default value. The only other transition rule that sets a stopping condition (except (1)
and (5)) is rule (3) for the execute action; however, performing an execute action
transfers the owner module to I and the owned module to A, whereas the property
above quantifies over all pairs of module instances where the owner is in A and the
owned module instance is in I, so the property still holds.

P3: All proper ancestors and descendants of an active module instance are themselves
inactive:

∀(Ai, ϕ) ∈ A : (ancAI (i) ∪ descAI (i)) \ {(Ai, ϕ)} ⊆ I

Proof (sketch). When a module instance activates another module instance by perform-
ing an execute action (rule (3)), it becomes inactive itself; when a module instance
performs a return action (rule (5)), it becomes inactive and its parent becomes active
again. No other transition rules add or remove module instances from A. Therefore only
one module instance can be active at the time in a line of ancestors and descendants.

P4: If an inactive module instance has a stopping condition not equal to ⊥, then all its
ancestors must be inactive and it must have one active descendant:

∀(Ai, ϕ) ∈ I : ϕ 	= ⊥ ⇒
[
ancAI (i) ⊆ I & |descA

I (i) ∩ A| = 1
]

Proof (sketch). Initially, I = ∅, so if (Ai, ϕ) ∈ I then Ai must have been added to
I by one of the transition rules. Now if ϕ 	= ⊥, Ai cannot have been added to I by
performing a return action (rule (5)), because then its stopping condition would have
been set to ⊥. So when a module instance has a stopping condition not equal to ⊥ yet
it is inactive, it must be the case that it has created (rule (1)) and executed (rule (3))
another module instance. But this descendant may have done the same thing, and so
on. Nevertheless, some where down the line of descendants of Ai (including Ai), one
module instance must be active (i.e., |descA

I (i)∩A| = 1). Because all of Ai’s ancestors
must have performed an execute action they are all inactive (i.e., ancAI (i) ⊆ I).

P5: For each initial agent there is always exactly one active descendant (possibly itself):

∀(Ai, ϕ) ∈ A ∪ I : i ∈ Bid ⇒ |descAI (i) ∩ A| = 1

Proof (sketch). A module instance Ai is an initial agent if i ∈ Bid , i.e., if its name is
non-composed. Each initial agent can only pass control to other module instances by

Operational Semantics for BDI Modules in Multi-agent Programming 99

becoming inactive itself (see rule (3)), and the same holds for every module instance
down the line of descendants. So only one descendant of Ai (including Ai) can be
active, i.e., |descA

I (i) ∩ A| = 1.

This leads to the following corollary.
P6: |A| is constant.

Proof (sketch). It is easy to see from the previous property that the number of active
module instances (i.e., |A|) will always be equal to the number of initial agents. This
property can also be verified by examining all provided transition rules and seeing that
for every module instance removed from A, one other is put in its place.

4 Roles, Profiles, and Task Encapsulation

The proposed approach for modular programming is general enough to be used for the
implementation of several agent-oriented programming topics. These include taking
on different roles, making profiles of other agents, and the general programming tech-
nique of task encapsulation. We will provide an example for each of these topics in the
following subsections.

4.1 Roles

A module specification can be considered as the specification of a role. In this way, a
role specifies a set of objectives (goals) to be achieved by the agent that plays the role,
power that the agent gets when its plays the role (actions and plans), information that
becomes accessible to the role playing agent (beliefs), and strategies of how to achieve
objectives or react to events (rules). The runtime creation and execution of a module
instance can then be used to implement the activation and enactment of a role. The file
that is used to create the new module instance is then the specification of the role that
is to be played. In particular, the action create(role,name) can be seen as the ac-
tivation of a role, by which the activating agent acquires a lock on the activated role,
i.e. it becomes the role’s owner and gains the exclusive right to manipulate the activated
role. If role has been declared as singleton, this property of locking is important, be-
cause other agents may attempt the acquire the role as well. If role is not singleton, the
role is created new and private to the creating agent anyway. Upon releasing a singleton
role, the role is not deleted but retained with a blank owner, so that another agent may
activate (using create(role ,name ′)) and use it.

An agent that has successfully performed the action create(role,name) may
enact/play this role using execute(name, ϕ), where ϕ is a stopping condition, i.e.,
a composition of belief and goal queries. The owner agent is then put on hold until
the role satisfies the terminating condition, at which point control is returned to the
owner agent. In this way, an agent can only play one role at each moment of time. In
principle, it is allowed for a role to activate and enact a new role, and repeat this without
(theoretical) depth limits. However, this is usually not allowed in literature on roles. We
assume that it is up to the programmer to prevent roles from enacting other roles.

100 M. Dastani and B.R. Steunebrink

4.2 Agent Profiles

As agents can be specified in terms of beliefs, goals and plans, we can use
modules to represent agents. An agent can thus create and maintain profiles of
other agents by creating module instances. For example, assume agent mary
executes the actions create("profile template.mod", chris) and
create("profile template.mod", john), i.e., it uses a single template to
initialize profiles of the (hypothetical) agents chris and john. These profiles can be
updated by mary using, e.g., updateB(chris, ϕ) and adoptgoal(john, ψ)
when appropriate. mary can even ‘wonder’ what chris would do in a certain
situation by setting up that situation using belief and goal updates on chris and then
performing execute(chris, ϕ) with a suitable stopping condition ϕ. The resulting
state of chris can be queried afterwards to determine what chris ‘would have
done’.

4.3 Task Encapsulation

Modules can also be used for the common programming techniques of encapsulation
and information hiding. Modules can encapsulate certain tasks, which can be performed
by its owning agent if it performs an execute action on that module instance. Such a
module can thus hide its internal state and keep it consistent for its task(s). An important
difference between creating a module (in the sense proposed here) and including a
module (in the sense of [3,2,4]) is that the contents of an included module instance
are simply added to the including agent, whereas the contents of a created module
instance are kept in a separate scope. So when using the create action, there can be
no (inadvertent) clashes caused by equal names being used in different files for beliefs,
goals, actions, and rules. Also, by creating and executing a module instance the focus
of execution will be on the rules and the state of the created module instance such that
the effect of executing a module instance remains local and limited to the state of that
module.

5 Conclusions and Future Work

This paper introduced a mechanism to implement modules in BDI-based agent pro-
gramming languages. The operational semantics for module-related actions such as
creating, executing, testing, updating and releasing module instances are provided. It
should be noted that these module-related actions are already added to the implemented
2APL interpreter such that 2APL multi-agent programs with modules can be developed
and executed. We have also explained how modules can be used to facilitate the im-
plementation of notions relevant to agent programming; namely, the implementation of
agent roles and agent profiles. It should be noted that modularity in programming lan-
guages is not new. Our proposed notion of modules is inspired on the concepts found in
many languages, particularly object-oriented languages. As a consequence some prop-
erties are the same, e.g. modules instances have an owner, which dictate the life cycle of
the module. Also a module is designed with a particular task in mind, hiding the details
from the owner.

Operational Semantics for BDI Modules in Multi-agent Programming 101

For future work, there are several extensions to this work on modularization that can
make it more powerful for encapsulation and implementation of roles and agent profiles.
Firstly, the execute action may not be entirely appropriate for the implementation of
profile execution, i.e., when an agent wonders “what would agent X (of which I have a
profile) do in such and such a situation?”. This is because executing a profile should not
have consequences for the environment and other agents, so a module representing an
agent profile should not be allowed to execute external actions or send messages. Also,
the execute action can be generalized to allow the simultaneous execution of multiple
module instances. Doing so one may be able to implement agents that can play several
roles simultaneously.

Secondly, the notion of module can be generalized by introducing the possibility
of specifying a minimum and maximum amount of instances of a module that can be
active at one time. This can be used for ensuring that, e.g., there must always be three to
five agents in the role of security guard. Additionally, one may want to be able to pass
ownership of a module instance from one agent to another (especially when the module
in question models a role) without losing its internal state.

Thirdly, additional actions such as updateP and updateR can be introduced that
accept as arguments a module instance and a plan or rule, so that all types of contents
of module instances can be modified during runtime. In particular, by creating an empty
module instance and using update* actions, modules instances can be created from
scratch with custom components available at runtime. A related issue is the access to the
internals of module instances by means of test and update actions. In order to manage
the access to the internals of module instances, modules can be specified as private or
public allowing restricted access to the internals of modules.

References

1. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems in AgentS-
peak using Jason. Wiley Series in Agent Technology. John Wiley & Sons, Chichester (2007)

2. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept for Flexible BDI
Agent Modularization. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 139–155. Springer, Heidelberg (2006)

3. Busetta, P., Howden, N., Ronnquist, R., Hodgson, A.: Structuring BDI Agents in Functional
Clusters. In: Jennings, N., Lesperance, Y. (eds.) Intelligent Agents VI: Theories, Architectures
and Languages, pp. 277–289 (2000)

4. Dastani, M.: 2APL: a practical agent programming language. International Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 16(3), 214–248 (2008)

5. Hindriks, K.V.: Modules as policy-based intentions: Modular agent programming in GOAL.
In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007.
LNCS (LNAI), vol. 4908, pp. 156–171. Springer, Heidelberg (2008)

6. Novák, P., Dix, J.: Modular BDI architecture. In: Proceedings of the AAMAS (2006)
7. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Multi-Agent

Programming: Languages, Platforms and Applications. Kluwer, Dordrecht (2005)
8. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C., de Boer, F.S.: Goal-Oriented Modularity in

Agent Programming. In: Proceedings of AAMAS 2006, pp. 1271–1278 (2006)
9. Winikoff, M.: JACKTM intelligent agents: An industrial strength platform. In: Multi-Agent

Programming: Languages, Platforms and Applications. Kluwer, Dordrecht (2005)

InstQL: A Query Language for Virtual Institutions
Using Answer Set Programming

Luke Hopton, Owen Cliffe�, Marina De Vos∗, and Julian Padget∗

Department of Computer Science
University of Bath, BATH BA2 7AY, UK

lch21@bath.ac.uk,{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Institutions provide a mechanism to capture and reason about “cor-
rect” and “incorrect” behaviour within a social context. While institutions can
be studied in their own right, their real potential is as instruments to govern
open software architectures like multi-agent and service-oriented systems. Our
domain-specific action language for normative frameworks, InstAL aims to help
focus designers’ attention on the expression of issues such as permission, viola-
tion and power but does not help the designer in verifying or querying the model
they have specified. In this paper we present the query language InstQL which in-
cludes a number of powerful features including temporal constraints over events
and fluents that can be used in conjunction with InstAL to specify those traces
that are of interest in order to investigate and reason over the underlying nor-
mative models. The semantics of the query language is provided by translating
InstQL queries into AnsProlog, the same computational language as InstAL.
The result is a simple, high-level query and constraint language that builds on
and uses the reasoning power of ASP.

1 Introduction

Institutions [21, 23, 6], also known as normative frameworks or organisations in the lit-
erature, are a specific class of multi-agent systems where agent behaviour is governed
by social norms and regulations. Within institutions it is possible to monitor the per-
missions, empowerment and obligations of participants and to indicate violations when
norms are not followed. The change of the state over time as a result of these actions
provides participants with information about each others behaviour. The information
can also be used by the designer to query and verify normative properties, effects and
expected outcomes in an institution. The research on institutions such as electronic con-
tracts, and rules of governance over the last decade has demonstrated that they are pow-
erful mechanism to make agent interactions more effective, structured and efficient. As
with human regulatory settings, institutions become useful when it is possible to verify
that particular properties are satisfied for all possible scenarios.

Answer set programming [3, 14], a logic programming paradigm, permits, in con-
trast to related techniques like the event calculus [19] and C+[11], the specification of

� This work has been supported in part by the European Commission, project FP7-215890
(ALIVE).

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 102–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 103

both problem and query as an executable program, thus eliminating the gap between
specification and verification language. But perhaps more importantly, the specification
language and implementation language are identical, allowing for more straightforward
verification and validation.

In [6], we introduced a formal model for institutions, which admits reasoning about
them by mapping to AnsProlog, logic programs under answer set semantics. To make
the reasoning process more accessible to users, in [7] we developed an action language
named InstAL that allows a developer to design an institution in a more straightfor-
ward manner. InstAL is then translated into AnsProlog, resulting in the same program
as the formal description would have provided. While InstAL allowed the designer to
specify the institution, it provided little to no support for verifying the institution and
its design—indeed, as it stands queries must be written directly in AnsProlog, thereby
undoing most of the benefits of specifying in InstAL.

In this paper, we present InstQL: a query language designed to complement InstAL.
Its semantics is provided by ASP and it is used together with a description of an institu-
tion either in InstAL or AnsProlog. InstQL can be used in two ways: as a tool to select
certain transitions in the state space of the institution or to model-check a certain path.
For temporal queries we describe how queries expressed in the widely used temporal
logic LTL may be expressed (via simple transformations) in our query language. A brief
summary of the InstQL language appears in [17]. In this paper we provide an extended
account of the language, illustrations of its capabilities and applications and situate it
firmly in the context of multi-agent systems.

2 Answer Set Programming

In answer set programming ([3]) a logic program is used to describe the requirements
that must be fulfilled by the solutions of a certain problem. Answer set semantics is a
model-based semantics for normal logic programs. Following the notation of [3], we
refer to the language over which the answer set semantics is defined as AnsProlog.

An AnsProlog program consists of a set of rules of the form a : −B,not C. with a
being an atom and B, C being (possibly empty) sets of atoms. a is called the head of the
rule, while B ∪ not C is the body. The rule can be read as: “if we know all atoms in B
and we do not know any atom in C, then we must know a”. Rules with an empty body
are called facts, as the head is always considered known. An interpretation is a truth
assignment to all atoms in the program. Often only those literals that are considered
true are mentioned, as all the other are false by default (negation as failure).

The semantics of programs without negation (effectively horn clauses) are simple
and uncontroversial, the Tp (immediate consequence) operator is iterated until a fixed
point it reached. The Gelfond-Lifschitz reduct is used to deal with negation as failure.
This takes a candidate set and reduces the program by removing any rule that depends
on the negation of an atom in the set and removing all remaining negated atoms. Answer
Sets are candidate sets that are also models of the corresponding reduced programs. The
uncertain nature of negation-as-failure gives rise to several answer sets, which are all
solutions to the problem that has been modelled.

104 L. Hopton et al.

Algorithms and implementations for obtaining answer sets of logic programs are
referred to as answer set solvers. Some of the most popular and widely used solvers are
DLV [8], SMODELS [20] and CLASP [13].

3 Institutions

In this section, we give an informal description of institutions and their mapping to ASP.
A more in-depth description can be found in [6, 7].

The concept of normative systems has long been used in economics, legal theory
and political science to refer to systems of regulation which enable or assist human
interaction at a high-level. The same principles could be applied to multi-agent systems.

The model we use is based on the concept of exogenous events that describe salient
events of the physical world—“shoot somebody”—and normative events that are gen-
erated by the normative framework—“murder”—but which only have meaning within
a given social context. While exogenous events are clearly observable, normative ones
are not, so how do they come into being? Searle [18] describes the creation of a norma-
tive state of affairs through conventional generation, whereby an event in one context
counts as or generates the occurrence of another event in a second context. Taking the
physical world as the first context and by defining conditions in terms of states, nor-
mative events may be created that count as the presence of states or the occurrence of
events in the normative world.

Thus, we model an institution as a set of normative states that evolve over time
subject to the occurrence of events, where a normative state is a set of fluents that may
be held to be true at some instant. Furthermore, we may separate such fluents into
domain fluents, that depend on the institution being modelled and normative fluents
that are common to all specifications and may be classified as follows:

– Permission: A permission fluent captures the property that some event may occur
without violation. If an event occurs, and that event is not permitted, then a violation
event is generated.

– Normative Power: This represents the normative capability for an event to be
brought about meaningfully, and hence change some fluents in the normative state.
Without normative power, the event may not be brought about and has no effect;
for example, a marriage ceremony will only bring about the married state, if the
person performing the ceremony is empowered so to do.

– Obligation: Obligation fluents are modelled as the dual of permission. They state
that a particular event must occur before a given deadline event (such as a time-out)
and is associated with a specified violation. If an obligation fluent holds and the
necessary event occurs then the obligation is said to be satisfied. If the correspond-
ing deadline event occurs then the obligation is said to be violated and the specified
violation event is generated. Such a violation event can then be dealt with perhaps
by a participating agent or the normative framework itself.

Each event, being exogenous or normative, when generated could have an impact on
the next state. For example, the event could trigger a violation or it could result in
permissions being granted or retracted (e.g. once you obtain your driving licence, you
obtain the permission to drive a car, but, if you are convicted of a driving offence you
lose that permission). The effects of events are modelled by the consequence relation.

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 105

Thus we represent the normative framework by these five components: (i) the initial
state—the set of fluents which are true when the institution is created, (ii) the set of flu-
ents that capture the essential facts about the normative state, (iii) the set of events (both
exogenous and normative) that can occur, (iv) the conventional generation relation, and
(v) the consequence relation.

All state changes in a system stem from the occurrence of exactly one exogenous
event. When such an event occurs, the transitive closure of the conventional genera-
tion function computes all empowered normative events that are directly or indirectly
caused by the occurrence of the underlying event. This may include violations for un-
satisfied obligations or unpermitted events. The consequences of each of these events
with respect to the current state is computed using the consequence relationship. The
combination of added and deleted fluents results in the new normative state. The seman-
tics of this framework are defined over traces of exogenous events. Each trace induces
a sequence of normative states, called a model or scenario.

In [6], it was shown that the formal model of an institution could be translated to
AnsProlog program such that the answer sets of the program correspond exactly to
the traces of the institution. A detailed description of the mapping can be found there.

The mapping uses the following atoms: ifluent(P) to identify fluents, evtype(E, T)
to describe the type of an event, event(E) to denote the events, instant(I) for time
instances, final(I) for the last time instance in a trace, next(I1, I2) to establish time
ordering, occurred(E, I) to indicate that the event happened at time I, observed(E, I)
that the event was observed at that time, holdsat(P, I) to state that the institutional
fluent holds at I, initiated(P, I) and terminated(P, I) for fluents that are initiated
and terminated at I.

When modelling traces, we need to monitor the domain over a period of time (or
a sequence of states). We model time using instant(I) and an ordering on instances
established by next(I1, I2), with the final instance defined as final(I). Following
convention, we assume that the truth of a fluent F ∈ F at a given state instance I
is represented as holdsat(F, I), while an event or an action E ∈ E is modelled as
occurred(E, I).

In [5] we developed InstAL, an action language inspired by action languages such as
C+ and A [11]. The use of the action language makes generating the AnsProlog code
less open to human coding errors, and perhaps more importantly, easier to understand
and create by narrowing the semantic gap without losing either expressiveness or a
formal basis for the language.

Institutions specifications could give rise to a vast number of valid traces and associ-
ated histories. Often not all of them are equally useful for the task at hand and selection
criteria have to be applied. Through InstQL, we aim to offer the designer the same sort
of abstraction for queries as is provided by InstAL for the specification.

4 The Dutch Auction: A Motivating Example

4.1 The Case Study

As a case study we will look a fragment of the Dutch auction protocol with only one
round of bidding. Protocols such as this have been extensively studied in the area of

106 L. Hopton et al.

agent-mediated electronic commerce, as they are particularly suited to computer imple-
mentation and reasoning.

In this protocol a single agent is assigned to the role of auctioneer, and one or more
agents play the role of bidders. The purpose of the protocol as a whole is either to
determine a winning bidder and a valuation for a particular item on sale, or to establish
that no bidders wish to purchase the item. Consequently, conflict—where two bids are
received “simultaneously”—is treated as an in-round state which takes the process back
to the beginning. The protocol is summarised as follows:
1. Round starts: auctioneer selects a price for the item and informs each of the bidders

present of the starting price. The auctioneer then waits for a given period of time
for bidders to respond.

2. Bidding: upon receipt of the starting price, each bidder has the choice whether to
send a message indicating their desire to bid on the item at that price or not.

3. Single Bid: at the end of the prescribed period of time, if the auctioneer has received
a single bid from a given agent, then the auctioneer is obliged to inform each of the
participating agents that this agent has won the auction.

4. No bids: if no bids are received at the end of the prescribed period of time, the
auctioneer must inform each of the participants that the item has not been sold.

5. Multiple bids: if more than one bid was received then the auctioneer must inform
every agent that a conflict has occurred.

6. Termination: the protocol completes when an announcement is made indicating that
an item is sold or that no bids have been received.

7. Conflict resolution: in the case where a conflict occurs then the auctioneer must
re-open the bidding and re-start the round in order to resolve the conflict.

Based on the protocol description above, the following agent actions are defined: the
auctioneer announces a price to a given bidder (annprice), the bidder bids on the cur-
rent item (annbid), the auctioneer announces a conflict to a given bidder (annconf)
and the auctioneer announces that the item is sold (annsold) or not sold (annunsold)
respectively. In addition to the agent actions we also include a number of time-outs in-
dicating the three external events—that are independent of agents’ actions—that affect
the protocol. For each time-out we define a corresponding protocol/institutional event
suffixed by dl indicating a deadline in the protocol. The differentiation between time-
out and deadline events allow a finer and more abstract control structure. While we do
not want or can restrict the behaviour of an external clock (time-out) we can control the
behaviour of the institution to the occurrence of the these events.
priceto, pricedl: A time-out indicating the deadline by which the auctioneer must

have announced the initial price of the item on sale to all bidders.
bidto, biddl: A time-out indicating the expiration of the waiting period for the auc-

tioneer to receive bids for the item.
decto, decdl: A time-out indicating the deadline by which the auctioneer must have

announced the decision about the auction to all bidders
When the auctioneer violates the protocol, an event badgov occurs and the auction
dissolves.

Figure 1 gives the InstAL specification of the third phase of the protocol. The
excerpt shows how internal events are generated and how fluents are initiated or

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 107

annsold(A,B) generates sold(A,B); (DAR-1)

annunsold(A,B) generates unsold(A,B); (DAR-2)

annconf(A,B) generates conf(A,B); (DAR-3)

biddl terminates pow(bid(B,A)); (DAR-4)

biddl initiates pow(sold(A,B)),pow(unsold(A,B)),

pow(conf(A,B)), pow(notified(B)),perm(notified(B)); (DAR-5)

biddl initiates perm(annunsold(A,B)),perm(unsold(A,B)),

obl(unsold(A,B),desdl,badgov) if not havebid; (DAR-6)

biddl initiates perm(annsold(A,B)),perm(sold(A,B)),

obl(sold(A,B), desdl, badgov) if havebid, not conflict; (DAR-7)

biddl initiates perm(annconf(A,B)),perm(conf(A,B)),

obl(conf(A,B), desdl, badgov) if havebid, conflict; (DAR-8)

unsold(A,B) generates notified(B); (DAR-9)

sold(A,B) generates notified(B); (DAR-10)

conf(A,B) generates notified(B); (DAR-11)

notified(B) terminates pow(unsold(A,B)), perm(unsold(A,B)),

pow(sold(A,B)), pow(conf(A,B)), pow(notified(B)),

perm(sold(A,B)), perm(conf(A,B)), perm(notified(B)),

perm(annconf(A,B)),perm(annsold(A,B)),perm(annunsold(A,B)); (DAR-12)

desdl generates finished if not conflict; (DAR-13)

desdl terminates havebid,conflict,perm(annconf(A,B)); (DAR-14)

desdl initiates pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)), perm(pricedl),pow(pricedl),

obl(price(A,B),pricedl,badgov) if conflict; (DAR-15)

Fig. 1. A partial InstAL specification for the Dutch Auction Round Institution

terminates depending on the current state and the occurrence of events. Normative flu-
ents of power, permission and obligation are represented as pow, per) and obl re-
spectively. The full specification can be found on [5]. Figure 2 shows the translation
of the first seven InstAL specification rules of Figure 1 translated in AnsProlog and
grounded for one auctioneer and one bidding agent. The entire program contains about
1500 rules. Although the program can be written by hand, we believe that this process
is rather tiresome and error prone.

Figure 3 shows the state transition diagram for an auctioneer and a single bidder.
Every path in the graph is a valid trace.

4.2 Queries

To guide the development of our query language InstQL for institutional models written
in InstAL, five types of existing queries which were directly encoded in AnsProlog
were considered.

The first case is a simple constraint involving event occurrence. An example would
be a query to obtain those traces in which the auctioneer violates the protocol. This
query states that answer sets corresponding to traces in which the event badgov occurs
at any point should be excluded. The key part of this condition is that an event can occur
at any time.

bad ← occurred(badgov, I), instant(I).
⊥ ← bad.

(Q1)

108 L. Hopton et al.

occured(sold(a,b),I) :-
occured(annsold(a,b),I),holdsat(pow(dutch auction round,sold(a,b)),I),instant(I).

occured(unsold(a,b),I) :-
occured(annunsold(a,b),I),holdsat(pow(dutch auction round,unsold(a,b)),I),instant(I).

occured(conf(a,b),I) :-
occured(annconf(a,b),I),holdsat(pow(dutch auction round,conf(a,b)),I),instant(I).

terminated(pow(dutch auction round,bid(b,a)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,sold(a,b,b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,unsold(a,b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,conf(a,b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,ntified(b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(alterted(b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(annunsold(a,b)),I) :-
occured(biddl,I),not holdsat(havebid,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(unsold(a,b)),I) :-
occured(biddl,I),not holdsat(havebid,I),holdsat(live(dutch auction round),I),instant(I).

initiated(obl(unsold(a,b),desdl,badgov),I) :-
occured(biddl,I),not holdsat(havebid,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(annconf(a,b)),I) :-
occured(biddl,I),holdsat(havebid,I),holdsat(conflict,I),
holdsat(live(dutch auction round),I),instant(I).

initiated(perm(conf(a,b)),I) :-
occured(biddl,I),holdsat(havebid,I),holdsat(conflict,I),

holdsat(live(dutch auction round),I),instant(I).
initiated(obl(conf(a,b),desdl,badgov),I) :-

occured(biddl,I),holdsat(havebid,I),holdsat(conflict,I),
holdsat(live(dutch auction round),I),instant(I).

occured(notified(b),I) :-
occured(unsold(a,b),I),holdsat(pow(dutch auction round,alterted(b)),I),instant(I).

occured(notified(b),I) :-
occured(sold(a,b,b),I),holdsat(pow(dutch auction round,notified(b)),I),instant(I).

occured(notified(b),I) :-
occured(conf(a,b),I),holdsat(pow(dutch auction round,alterted(b)),I),instant(I).

Fig. 2. The first seven DAR-InstAL specification rules translated into AnsProlog and grounded
for one auctioneer and bidding agent

Similarly, the second query involves a fluent being true at any time during the execu-
tion. This time, only those answer sets corresponding to traces that satisfy the condition
should be included. As an example, we have a query that selects those traces in which
a conflict occurs, i.e. more than one bidder submits a timely bid.

hadconflict ← holdsat(conflict, I), instant(I).
⊥ ← not hadconflict.

(Q2)

In the third case, the query condition is for an event to occur at the same time as
a fluent holds. Again, only answer sets in which the condition is satisfied should be
included. An example of such a query would be selecting those traces in which at the
occurrence of the desdl-event we also have a conflict between two or more bidders.

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 109

live(dutch_auction_round)

desto
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annunsold(a,b)
[notified(b)]
[unsold(a,b)]

desto
[badgov]
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annsold(a,b)
[notified(b)]
[sold(a,b)]
[viol(annsold(a,b))]
[viol(sold(a,b))]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

live(dutch_auction_round)
obl(price(a,b),pricedl,badgov)

createdar

havebid
live(dutch_auction_round)

onlybidder(b)

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

bidto
[biddl]

priceto
[badgov]
[pricedl]

live(dutch_auction_round)

annprice(a,b)
[price(a,b)]

havebid
live(dutch_auction_round)

onlybidder(b)

annbid(b,a)
[bid(b,a)]

live(dutch_auction_round)

priceto
[pricedl]

havebid
live(dutch_auction_round)

onlybidder(b)

desto
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

priceto
[pricedl]

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

desto
[badgov]
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

annsold(a,b)
[notified(b)]
[sold(a,b)]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

annunsold(a,b)
[notified(b)]
[unsold(a,b)]
[viol(annunsold(a,b))]
[viol(unsold(a,b))]

bidto
[biddl]

annbid(b,a)
[bid(b,a)]

Fig. 3. States of the auction round for a single bidder

restarted ← occurred(desdl, I), holdsat(conflict, I),
instant(I).

⊥ ← not restarted.
(Q3)

The fourth case declares a parameterised condition. Whilst earlier we consid-
ered conditions that are true/false for a whole model, this case declares a condition
startstate that is true for a particular fluent. In addition, this query requires that
the fluent is true in the state after an event occurs. The use of parameterised condi-
tions is illustrated in the following statement that enumerates all the fluents that are true
when the protocol has just started, which is indicated by the occurrence of the event
createdar:

startstate(F) ← holdsat(F, I1), occurred(createdar, I0),
next(I0, I1), ifluent(F).

(Q4)

The fifth query can be used to verify the protocol. This query features the use
of previously declared conditions in subsequent conditions. (Note that one of these,
startstate(F), is the condition specified in query (Q4).) The protocol states that if
more than one bidder bids for the good, the protocol needs to restart completely. This
implies that all the fluents from the beginning of the protocol need to be reinstated and
all others have to be terminated. The query checks this has been done, but if we still
obtain a trace with this query we know something has gone wrong.

110 L. Hopton et al.

Action Language
Domain Description
(A, C, InstAL , ASP)

Instance
Description

(A, C, InstAL, ASP)

ASP Translation
(language specific) ASP Grounder/Solver

(lparse/SMODELS,
gringo/clasp,DLV)

Answer Sets

Interpretation

Query
Description

(InstQL)

Query Translation
(InstQL processor)

Fig. 4. The Data Flow of for Designing Institutions

startstate(F) ← holdsat(F, I1), occurred(createdar, I0),
next(I0, I1), ifluent(F).

restartstate(F) ← holdsat(F, I1), occurred(desdl, I0),
holdsat(conflict, I0),
next(I0, I1), ifluent(F).

missing(F) ← startstate(F), not restartstate(F), ifluent(F).
added(F) ← restartstate(F), not startstate(F), ifluent(F).
invalid ← missing(F), ifluent(F).
invalid ← added(F), ifluent(F).

⊥ ← not invalid.

(Q5)

From the above, it is clear that it is possible to express these queries in AnsProlog,
but it requires a solid knowledge of the formalism and implementation detail to get the
order of events and fluents correct. InstQL was designed to remove these difficulties and
allow designers to write queries in a language more closely related to natural language.

5 InstQL

In this section we introduce the query language, InstQL, that can either be used in
conjunction with InstAL or directly with an AnsProlog program representing the in-
stitution, whether the program is derived from the formal description or InstAL.

Figure 4 shows the flow chart of the relationships between the various components.
A designer will first have to specify the institution. This can either be written directly in
AnsProlog or using InstAL by providing the domain description and the institutional
description which are then translated into AnsProlog . For verification, queries on the
traces are specified in InstQL and then translated into AnsProlog. Both programs are
then merged and passed to the grounder and solver. The returned answer sets are then
interpreted. A possible course of action might be that the description of the institution
needs to be changed or that a new query is required.

The InstQL queries act as filters on the valid traces of the institutions. Instead of
returning all traces we use the queries to return only the queries that satisfy the query,
in a similar way as, for example, SQL queries.

InstQL has two basic concepts: (i) constraint: an assertion of a property that must be
satisfied by a valid trace (for example, a restriction on which traces are considered), and
(ii) condition: a specification of properties that may hold for a given trace. Conditions

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 111

can be declared in relation to other conditions and constraints can involve declared
conditions. Table 1 summarises the syntax of the language, while the remainder of this
section discusses in detail the elements of the language and their semantics.

5.1 Syntax

InstQL provides two predicates that form the basis of all InstQL queries. The first is
happens(Event), meaning that the specified event should occur at some point during
the lifetime of the institution. The second is holds(Fluent), which means that the
specified fluent is true at any point during the lifetime of the institution. That is:

<predicate> ::= happens(<identifier>) | holds(<identifier>)

where the identifier corresponds to an event e (in the first case) or a fluent f (in the
second case).

Negation (as failure) is provided by the unary operator not:
<literal> ::= not <predicate> | <predicate>

To construct complex queries, it is often easier to break them up into sub-queries, or
in InstQL terminology, sub-conditions. For example, suppose we have defined a condi-
tion called my cond which specifies some desired property. We can then join this with
other criteria e.g. “my cond and happens(e)”. Sub-conditions may be referenced
within rules as condition literals:

<condition_literal> ::= not <identifier> | <identifier>

Note that this allows for parameterised conditions to be defined by the definition of an
identifier.

The building block of query conditions is the term:

<term> ::= <after_expr> | <condition_literal>

The after expression also allows for the simpler constructs of <literal> and
<while expr>. Terms may be grouped and connected by the connectives and and or

which provide logical conjunction and disjunction.
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <term> or <disjunction> | <term>

On its own, this does not allow us create arbitrary combinations of predicates and named
conditions and the logical operators and, or, not. To do so we need to be able to declare
conditions:

<condition_decl> ::= condition <identifier> : <disjunction>
| condition <identifier> : <conjunction>;

This construction defines a condition with the specified name to have a value equal
to the specified disjunction or conjunction. This allows the condition name to
be used as a condition literal.

Constraints specify properties of the trace that must be true:
<constraint> ::= constraint <disjunction> | <conjunction> ;

For example, consider the following InstQL query:
constraint happens(e);

This indicates that only traces in which event e occurs should be considered.

112 L. Hopton et al.

Table 1. InstQL Syntax

Expression Definition
<variable> ::= [A-Z][a-zA-Z0-9]*
<variable list> ::= <variable> , <variable list> | <variable>
<name> ::= [a-z][a-zA-Z0-9]*
<param list> ::= (<variable list>)
<identifier> ::= <name> <param list> | <name>
<predicate> ::= happens(<identifier>) | holds(<identifier>)
<literal> ::= not <predicate> | <predicate>
<while literal> ::= <literal> | <condition literal>
<while expr> ::= <while literal> while <while expr> | <while literal>
<after> ::= after(<integer>) | after
<after expr> ::= <while expr> <after> <after expr> |

<while expr>
<condition literal> ::= not <identifier> | <identifier>
<term> ::= <after expr> | <condition literal>
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <term> or <disjunction> | <term>
<condition decl> ::= condition <identifier> : <disjunction>; |

condition <identifier> : <conjunction>;
<constraint> ::= constraint <disjunction> ; |

constraint <conjunction>;

To illustrate how this language is used to form queries, consider a simple light bulb
action domain. The fluent on is true when the bulb is on. The event switch turns the
light on or off. We can require that at some point the light is on:

constraint holds(on);

We can require that the light is never on:
condition light_on: holds(on);
constraint not light_on;

There is some subtlety here in that light on is true if at any instant on is true. There-
fore, if light on is not true, there cannot be an instant at which on was true. And what
if the bulb is broken—the switch is pressed but the light never comes on? This can be
expressed as:

constraint not light_on and happens(switch);

Using condition names, we can create arbitrary logical expressions. The statement that
event e1 and either event e2 or e3 should occur can be expressed as follows:

condition disj: happens(e2) or happens(e3);
condition conj: happens(e1) and disj;

We may wish to specify queries of the form “X and Y happen at the same time”.
That is, we may wish to talk about events occurring at the same time as one or more
fluents are true, simultaneous occurrence of events or combinations of fluents being
simultaneously true (and/or false). For this situation, InstQL has the keyword while to
indicate that literals are true simultaneously. Such while expressions are only defined
over literals constructed from predicates (that is, happens and holds) or condition
literals involving condition names. A while expression is defined as follows:

<while_literal} ::= <literal> | <condition_literal>
<while_expr> ::= <literal> while <while_expr> | <literal>

The while-operator has higher precedence than and and or.
Returning to the light bulb example, we can now specify that we want only traces

where the light was turned off at some point:

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 113

constraint happens(switch) while holds(on);

Or that at some point the light was left on:
constraint holds(on) while not happens(switch);

The language allows for the expression of orderings over events. This is done with
the after keyword. This allows statements of the form:

holds(f1) while not holds(f2) after happens(e1)
after happens(e2)

This should be read as: (i) at some time instant k the event e2 occurs (ii) at some other
time instant j the event e1 occurs (iii) at some other time instant i the fluent f1 is true
but the fluent f2 is not true (iv) these time instants are ordered such that i > j > k (that
is, k is the earliest time instant). However, in some cases we need to say not only that a
given literal holds after some other literal, but that this is precisely one time instant later.
Rather than just providing the facility to specify a literal occurs/holds in the next time
instant, this is generalised to say that a literal holds n time instants after another. That
is, for a fluent that does (not) hold at time instant ti or an event that occurs between ti
and ti+1, we can talk about literals that hold at ti+n or occur between ti+n and ti+n+1.
The syntax of an after expression is:

<after> ::= after | after(<integer>)
<after_expr> ::= <while_expr> <after> <after_expr> |

<while_expr>

An after expression may contain only the after operator or the after(n) operator,
depending on how precisely the gap between the two operands is to be specified.

Once again returning to the light bulb example, we can now specify a query which
requires the light to be switched twice (or more):

constraint happens(switch) after happens(switch);

Or that once that light has is on, it cannot be switched off again:
condition switch_off: happens(switch) after holds(on);
constraint not switch_off;

5.2 Semantics

The semantics of an InstQL query is defined by the translation function T which trans-
lates InstQL into AnsProlog. This function takes a fragment of InstQL and generates
a set of (partial) AnsProlog rules. Typically, this set is a singleton; only expressions
involving disjunctions generate more than one rule. The semantics of predicates are
defined as follows:

T (happens(e)) = occurred(e, I), event(e)

T (holds(f)) = holdsat(f, I), ifluent(f)

For a literal of the form not P (where P is a predicate) the semantics is:

T (not P) = not T (P)

while for a condition literal they are:

T (conditionName) = conditionName(I)

T (not conditionName) = not conditionName(I)

114 L. Hopton et al.

and a conjunction of terms is:

T (c1 and c2 and · · · and cn) = T (c1), T (c2), . . . ,T (cn)

A disjunction translates to more than one rule. However, this is defined slightly differ-
ently depending on whether it is part of a condition declaration or a constraint.

T (condition conditionName : c1 or c2 or · · · or cn;) =
{conditionName ← T (ci). | 1 ≤ i ≤ n}

T (constraint c1 or c2 or · · · or cn;) =
{newName← T (ci). | 1 ≤ i ≤ n}∪
{⊥ ← not newName.}

The AnsProlog term newName denotes any identifier that is unique within the Ans-
Prolog program that is the combination of the query and the action program. This
atom becomes true if one of the sub-queries in the disjunction becomes true. In order
to satisfy the entire query at least one the sub-queries not to be true, as expressed by
the constraint. In addition, each time instant I generated in the translation of a predi-
cate represents a name for a time instant that is unique within the InstQL query. Recall
that a condition name may be parameterised: since an InstQL variable translates to a
variable in Smodels, no additional machinery is required. For example, the condition
“condition ever(E): happens(E);” (which just defines an alias for happens) is
translated to “ever(E) ← occurred(E, I), instant(I), event(E).”.

Notice that so far only the translation of constraint and condition provide a specifi-
cation for time (instance). Because of the grammar of our language, the translation
of other terms results in a set of literals which will appear in a rule that already include
this atom.

The semantics for while is:

T (L1 while L2 while · · · while Ln) = T (L1), T (L2), . . . , T (Ln), instant(I)

We give the semantics for the binary operator after(n). This readily generalises for
sequences of after(n) operators mixed with after operators.

T (Wi after(n) Wj) = T (Wi), T (Wj), after(ti, tj, n)

Where ti and tj are the time instants generated by Wi and Wj respectively. This is
defined such that we require n > 0.

We now provide a concrete example of the translation of an after expression to
illustrate this process:

T (happens(e) while holds(f) after happens(d) after(3) holds(g)) =
occurred(e, ti), event(e), holdsat(f, ti), ifluent(f),
instant(ti), occurred(d, tj), event(d), instant(tj),
holdsat(g, tk), ifluent(g), instant(tk),
after(ti, tj), after(tj, tk, 3).

5.3 The Dutch Auction Queries

Having defined the query language InstQL, we return to the example queries for the
Dutch auction from Section 4.

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 115

For (Q1) the following InstQL query is equivalent:
condition bad: happens(badgov);
constraint not bad;

Alternatively, we could look at all the traces in which the protocol is never violated by
one of the bidders.

condition bad: happens(viol(E));
constraint not bad;

An InstQL query that is equivalent to (Q2) is:
constraint holds(conflict);

The following query is equivalent to (Q3):
constraint happens(desdl) while holds(conflict);

For (Q4), the following InstQL query is equivalent:
condition startstate(F): holds(F) after(1) happens(createdar);

For (Q5) the following InstQL query is equivalent:
condition startstate(F): holds(F) after(1) happens(createdar);
condition restartstate(F): holds(F) after(1) happens(desdl)} while holds(conflict);
condition missing(F): startstate(F) and not restartstate(F);
condition added(F): restartstate(F) and not startstate(F);
constraint missing(F) or added(F);

While queries 1-5 demonstrate the capabilities of our query language they might not be
the only queries a designer of the Dutch Auction would pose.

The following query verifies it is never the case that an agent has permission to
perform an action while not having the power. A correct protocol will return no traces.
condition permission(F): holds(perm(F)) while not holds(pow(F));
constraint permission(F);

The following query returns traces containing violations that have not been detected.
condition violation(F): not happens(badgov) after happens(viol(F));
constraint violation(F);

As a designer you also want to verify the order of the important events that need to take
place. The following query verifies that the two deadlines occur in the correct order and
that the corresponding obligations are fulfilled.
condition order: pricedl after desdl;
condition obl: not holds(obligation(E,D,V)) while

not happens(V) after holds(obligation(E,D,V));
constraint: order and not happens(badgov) and obl;

6 Reasoning

6.1 Common Reasoning Tasks

Following the description of InstQL in the preceding section, we now illustrate how it
can be used to perform three common tasks [24] in computational reasoning: prediction,
postdiction and planning.

Prediction is the problem of ascertaining the resulting state for a given (partial)
sequence of events/actions and initial state. That is, suppose some transition system
is in state s ∈ S with S the set of all possible states of the system and a sequence
A = a1, . . . , an of actions/events occurs. Then the prediction problem (s, A) is
to decide the set of states {S′ ⊆ S} which may result. Postdiction is the converse
problem: if a system is in state s′ and we know that A = a1, . . . , an have occurred, then
the problem (A, s′) is to decide the set {S ⊆ S} of states that could have held before

116 L. Hopton et al.

A. The planning problem (s, s′) is to decide which sequence(s) of actions, {A′ ⊆ A},
with A all possible sequences of actions/events, will bring about state s′ from state s.

Identifying States: A state is described by the set of fluents that are true
s = {f1, . . . , fn} where fi are the fluents. States containing or not containing given
fluents may be identified in InstQL using the while operator:

holds(f_1) while ... while holds(f_n) while
not holds(g_1) while ... while not holds(g_k)

where f1...k are fluents which must hold in the matched state and g1...k are those fluents
that do not.

Describing Event Ordering: A sequence of events E = e1, . . . , en may be encoded as
an after expression. If we have complete information, then we know that e1 occurred,
then e2 at the next time instant and so on up to en with no other events occurring in
between. In this case, we can express E as follows:

happens(e_n) after(1) ... after(1) happens(e_1)

This can be generalised to the case where ei+1 occurs after ei with some known number
k ≥ 0 of events happening in between:

happens(e_i+1) after(1) ... after(k+1) happens(e_i)

Alternatively if we do not know k (that is, we know that ei+1 happens later than ei but
zero or more events occur in between) we can express this as:

happens(e_i+1) after happens(e_i)

We can combine these cases throughout the formulation of E to represent the amount
of information available.

The Prediction Problem: Given an initial state s and a sequence of events E, the
prediction problem (s, E) can be expressed in InstQL as:

constraint E after(1) s;

This query limits traces to those in which at some point s holds after which the events
of E occur in sequence. The answer sets that satisfy this query will then contain the
states {S′ ⊆ S}.

The Postdiction Problem: Given a sequence of events E and a resulting state s′, the
postdiction problem (E, s′) can be expressed as:

constraint s’ after(1) E;

This requires s′ to hold in the next instant following the final event of E.

The Planning Problem: Given a pair of states s and s′ the planning problem (s, s′)
can be expressed in InstQL as:

constraint s’ after s;

This allows any non-empty sequence of events to bring about the transition from s to
s′. If we want to consider plans of length k (i.e. E = e1, . . . , ek) then we express this:

constraint s’ after(k) s;

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 117

Reasoning with institutions: There are two distinct types of reasoning about institu-
tions. The first is the verification and exploration of normative properties. After specify-
ing an institutions, queries can be used to determine that desired properties of the model
are present or to elicit emergent properties that were perhaps not intended. The second
kind is for the participants/agents within that institution to use the available information
in their decision processes. The participants could, using the current state and the speci-
fication apply prediction to determine previous actions of other participants, postdiction
to evaluate possible effects of their actions or planning to determine the actions neces-
sary to achieve certain goals. Using AnsProlog as the underlying formalism, designers
and institutional participants can use partial information to reason about the institution
itself of other participants.

6.2 Modelling Linear Temporal Logic

LTL [22] is a commonly used temporal logic used for model checking transitions sys-
tems. In this section we show that LTL style reasoning can also modelled using our
InstQL. We opted for LTL since it shares the same linear time structure as our model
and also allows complex expressions of temporal properties between states. Traditional
LTL syntax is often considered difficult to write and we believe that InstQL would be
a valuable alternative, especially if one wants to reason about events and fluents at the
same time.

Linear Temporal Logic: (LTL) [22] provides us with a formalism for reasoning about
paths of state transition systems. In LTL, we have a set AP of atomic propositions. The
syntax of LTL [10] is defined as follows: (i) p ∈ AP is a formula of LTL (ii) ¬f is a
formula if f is a formula (iii) f ∨ g is a formula if f and g are formulae (iv) f ∧ g is a
formula if f and g are formulae (v) �f is a formula if f is a formula (“sometimes f”)
(vi) fUg is a formula if f and g are formulae (“f until g”). We abbreviate ¬�¬f by
�f (“always f”).

The semantics of LTL is given with respect to a structure M = (S,X,L) and a
path of state transitions. M contains a non-empty set of states, X a non-empty set of
paths and L : S → P(AP) a labelling function which assigns to each state a set of
propositions true in that state. A path is a non-empty sequence of states x = s0s1s2
We denote by xk the suffix of path x starting with the kth state. In addition, we use
first(x) to denote the first state in path x.

The semantics of LTL is defined inductively in terms of interpretations (paths) over
a linear structure (time) by the relation |= [10, 9, 25, 16, 4]. Without loss of generality
we use the natural numbers N as our structure. An interpretation is a function π : N →
P(AP), which assigns a truth value to each element of AP at every instant i ∈ N .

Let M be a structure and x ∈ X, then:

π, i |= p ∈ AP ⇐⇒ p ∈ π(i)
π, i |= ¬f ⇐⇒ p, i |= f
π, i |= f ∨ g ⇐⇒ π, i |= f or π, i |= g
π, i |= f ∧ g ⇐⇒ π, i |= f and π, i |= g
π, i |= �f ⇐⇒ ∃j ≥ i · π, j |= f
π, i |= fUg ⇐⇒ ∃j ≥ i · π, j |= g ∧ (∀i ≤ k < j · π, k |= f)

Where the structure is understood, we will omit it from the relation and write x |= f .

118 L. Hopton et al.

In principle LTL (originally) only refers to states, and as a general observation, the
merging of actions and fluents inside LTL is non-trivial as you are merging state-relative
and transition-relative concepts. With institutions we want to reason about both fluents
and events, so AP = E ∪ F .

Expressing LTL in InstQL : There is an important difference between LTL and
InstQL in the sense that InstQL is not designed for model checking but for model gen-
eration. Given a query, it will generate those paths that satisfy the criteria. If π is the
path given to LTL for verification, InstQL will return all traces that satisfy the query
which may or may not include the path given for verification. To solve this problem one
can provide the path itself as a constraint to the InstQL query. This can be easily done
using a combination of while and after in the same way as be defined event ordering
above. This will restrict the search space to those traces in which the path is satisfied. If
the path itself is invalid (e.g. two observed events during the same time, fluents that are
in a state while they should not be), then the query will automatically not be satisfied.

The LTL query itself can then be expressed in InstQL. We will briefly describe how
the various formulae may be expressed as conditions in InstQL. Each sub-formula S of
the formula F that is to be checked is translated as a condition with a unique name
cond-S. To make a formula F effective (i.e. only compute traces for which F is
true) we add a constraint to the query that specifies the condition for F must hold:
“constraint cond-F;”. Atomic elements a of AP and their negation simply be-
come conditions with happens(a) or holds(a) or their negation depending on the
type of a. Consequently, LTL disjunction can be handled be handled as a disjunction
in InstQL. Conjunction is LTL is like our InstQL while as all sub-formulas need to be
evaluated over the same time instant.

For formulae of the form “�F ” we define the conditions:

condition diamond-F: cond-F;

Although it might seem similar to the encoding of atomic elements, this encoding
guarantees a possible different time instance.

Defining until (FUG) is more subtle. Naı̈vely, we could define “F until G” as:

condition false_before(cond-F,cond-G): cond-F after not cond-G;
condition cond-FUG: & not false_before(cond-F, cond-G);

However, translating this into AnsProlog we see that the condition is too strong. To
make the example easier assume that F is a fluent and G an event and that we skip the
encoding for the sub-formula:

false before(F, E) ← occurred(E, I), event(E), instant(I),

not holdsat(F, J), ifluent(F), instant(J), after(I, J).

until(F, E) ← not false before(F, E).

We can satisfy false before(f, e) if we can find time instants ti and tj such that
tj < ti, e happens at ti and at tj f is false. That is, f cannot be false before any
occurrence of e. The correct semantics of until is that f cannot be false before the first
occurrence of e [16].

In order to achieve the correct semantics, we need to introduce new fluents
happened(e) to the domain for each event e ∈ E to indicate that e occurred for

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 119

the first time. This is done automatically when we translate InstQL to AnsProlog to
indicate when an event has happened at any time in the past during the current trace.

holdsat(happened(E), I) ← occurred(E, I), event(E), instant(I).

holdsat(happened(E), I) ← occurred(E, J), after(I, J),

event(E), instant(I), instant(J).

To allow for this we need for each event E that is part of the query and the until
statement the condition condition con-E: holds(happened(E));.

This allows us to then specify FUG as follows:
condition fb(cond-F, cond-G): not cond-F while not cond_G;

condition cond-FUG: not fb(cond-F, cond-G) and cond-E
and cond-F;

6.3 Institutional Designer and Reasoning Tools: InstSuite

Both InstQL and InstAL were designed and implemented to make representing and
reasoning about institutions more intuitive and effective. While they were designed
to work together they can be used independently from each other. InstAL and
InstQL specifications can be written in any text processor and then translated into an
answer set program and passed on to an answer set solver that computes the requested
traces and models. To provide normative designer more support, we have developed an
integrated development environment InstEdit with syntax highlighting. Together they
are referred to as InstSuite , which source code, a combination of Java and perl, can be
obtained from http://agents.cs.bath.ac.uk/InstSuite/

7 Discussion

Previous work in [2, 1] (using the action language C+ [11]), has shown that action
languages are particularly suited to modelling normative domains, where actions in the
language are equated with institutional events. In [7] we extend this approach with the
language InstAL which incorporates normative properties directly into the syntax of
the language and operates by translating institutional specifications into AnsProlog.
In this case we are able to directly leverage the reasoning capabilities inherent in the
underlying logic programming platform to query properties of models. By building
InstQL upon this model we are able to offer an equivalent level of abstraction to InstAL
while at the same time remaining independent of the action language itself InstAL.

InstQL was designed for institutions, but it can be used a general query language for
action domains, provided their descriptions can be mapped to AnsProlog. Compared
to existing query languages for action domains, InstQL allows for simultaneous actions
and the definition of conditions which can then be used to create more complex queries.

In [15], the authors present four query languages: P , Q, Qn, R. Queries expressed
in those languages can also be expressed using InstQL. The action query language
P has only two constructs : now L and necessarily F after A1, ..., An,
where L refers to a fluent or its negation, F is a fluent and where Ai are actions.
These queries can be encoded in InstQL using the techniques discussed in Section 6.
now L can be written as constraint happens(An) after(1) ... after(1)

 http://agents.cs.bath.ac.uk/InstSuite/

120 L. Hopton et al.

happens(A1) after(1) holds(L) while necessarily F after A1, ..., An

is expressed as holds(F) after(1) happens(An) after(1) ... after(1)

happens(A1). Similar techniques can be used for the query languages Q, Qn and
R. Given the action ordering technique used, we can assign specific times to each of
the fluents. InstQL can express all the same kinds of queries as the query languages
above, but in addition InstQL is capable of modelling simultaneous actions and fluents,
which permits the expression of complex queries using disjunctions and conjunctions
of conditions and, above all, allows reasoning with incomplete information, thus fully
exploiting the reasoning power of answer set programming.

The Causal Calculator (CCALC) [12] is a versatile tool for modelling action do-
mains. While queries are possible in CCALC, InstQL has been designed specifically as
a query language, providing constructs to make specifying queries more natural. Rel-
ative ordering of actions or states is much more difficult in CCALC than it is InstQL ,
nor does CCALC allow for the formulation of composite queries (condition literals).

As it stands InstQL is an intuitive and versatile query and abduction language for ac-
tion domains. The language is succinct and without redundancy (i.e. no operator can be
expressed as a function of other operators). However, from a software engineering point
of view, we could make the language more accessible by providing commonly used
constructs as part of the language. To this end, we plan to incorporate constructs such
as eventually(F), never(F), always(F), before(F), before(E), and an
if-construct to express conditions on events or fluents. For the same reasons, we plan
to add time specific happens(E,I) and hold(F,I) predicates and the possibility to
construct general logical expression without the need for condition statements.

At the moment InstQL only supports linear time. For certain domains, other ways of
representing time might be more appropriate. While linear time assumes implicit uni-
versal quantification over all paths in the transition function, branching time allows for
explicit existential and universal quantification of all paths and alternating time offers
selective quantification over those paths that are possible outcomes. While linear and
branching time are natural ways of describing time in closed domains, alternating time
is more suited to open domains.

In [7] we introduced the concept of multi-institutions; groups of institutions that
can influence each others’ state. In the near future we want to extend InstQL to multi-
institution specifications.

References

[1] Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15.
Springer, Heidelberg (2003)

[2] Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies. ACM
Trans. Comput. Logic 10(1), 1–42 (2009)

[3] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

[4] Calvanese, D., Vardi, M.Y.: Reasoning about actions and planning in LTL action theories.
In: Proc. KR 2002 (2002)

[5] Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems using Answer Set
Programming. PhD thesis, University of Bath (2007)

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 121

[6] Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning
about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

[7] Cliffe, O., De Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In:
Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 63–81. Springer, Heidelberg (2007)

[8] Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR system dlv: Progress
report, comparisons and benchmarks. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.)
KR 1998: Principles of Knowledge Representation and Reasoning, pp. 406–417. Morgan
Kaufmann, San Francisco (1998)

[9] Allen Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, pp. 995–1072. Elsevier, Amsterdam (1990)

[10] Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

[11] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[12] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[13] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Proceeding of IJCAI 2007, pp. 386–392 (2007)

[14] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–386 (1991)

[15] Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210
(1998)

[16] Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. In: Eiter, T.,
Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 200–212.
Springer, Heidelberg (2001)

[17] Hopton, L., Cliffe, O., De Vos, M., Padget, J. A.: Aql: A query language for action domains
modelled using answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS, vol. 5753, pp. 437–443. Springer, Heidelberg (2009)

[18] Searle, J.R.: The Construction of Social Reality. The Penguin Press, Allen Lane (1995)
[19] Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus. Jour-

nal of Logic Programming 31(1-3), 39–58 (1997)
[20] Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded

semantics for normal LP. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS
(LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

[21] Noriega, P.: Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona (1997)

[22] Pnueli, A.: The Temporal Logic of Programs. In: 19th Annual Symp. on Foundations of
Computer Science (1977)

[23] Rodrı́guez, J.-A., Noriega, P., Sierra, C., Padget, J.: FM 96.5 A Java-based Electronic Auc-
tion House. In: Proceedings of 2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM 1997), pp. 207–224 (1997) ISBN 0-9525554-
6-8

[24] Sergot, M.: C+++: An action language for modelling norms and institutions. Technical
Report 8, Department of Computing, Imperial College, London (2004)

[25] Sistla, A.P., Clarke, E.M.: The complexity of propostional linear temporal logics. Journal
of the ACM 32(3), 733–749 (1985)

Interacting Answer Sets

Chiaki Sakama1 and Tran Cao Son2

1 Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 Department of Computer Science

New Mexico State University, Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

Abstract. We consider agent societies represented by logic programs. Four dif-
ferent types of social interactions among agents, cooperation, competition, norms,
and subjection, are formulated as interactions between answer sets of different
programs. Answer sets satisfying conditions of interactions represent solutions
coordinated in a multiagent society. A unique feature of our framework is that
answer set interactions are specified outside of individual programs. This enables
us to freely change the social specifications among agents without the need of
modifying individual programs and to separate beliefs of agents from social re-
quirements over them. Social interactions among agents are encoded in a single
logic program using constraints. Coordinated solutions are then computed using
answer set programming.

1 Introduction

In a multiagent society, agents interact with one another to pursue their goals or perform
their tasks. The behavior of one agent is often affected by other agents or constrained
in a society he/she belongs to. To reach better states of affairs in a society, goals and
behaviors of agents are to be coordinated through agent interactions. Agents interact
differently depending on situations. For instance, agents work cooperatively to achieve
a common goal, while they behave competitively when their goals are conflicting.

The purpose of this paper is to formulate various types of agent interactions using
answer set programming (ASP) [1]. In answer set programming, the knowledge base of
an agent is represented by a logic program and the belief state of an agent is represented
by a collection of answer sets. In the presence of multiple agents, individual agents
have their own programs and those programs have different collections of answer sets
in general. Consider cooperative problem solving by multiple agents. Each agent has a
logic program representing his/her local problem, and computes its answer sets as local
solutions. Those solutions are finally integrated to a solution of the global problem in
a society. To have successful cooperative problem solving, agents are often required to
follow some conditions. We illustrate the situation using an example.

There is a graph G and two robots, say P1 and P2, try to cooperatively solve the
graph-coloring problem on G. They make a plan such that P1 paints the left-half of
the graph l(G) and P2 paints the right-half r(G). There are some nodes on the border

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 122–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Interacting Answer Sets 123

b(G) and these nodes can be painted by each robot independently. The robots solve the
problem using their logic programs and produce candidate solutions, respectively. At
this point, some controls over the behaviors of robots are required.

– Every node on the border must have a unique color. That is, if a node n in the area
b(G) is painted with a color c by P1, the node must also be painted with the same
color by P2, and vice versa.

– Every node which is not on the border must be painted by one of the two robots.
That is, each node n in the area l(G) (resp. r(G)) is painted by P1 (resp. P2) but
not by P2 (resp. P1).

– Every node in the graph G must be painted by either P1 or P2.

These requirements can be expressed as conditions over answer sets of the programs
of P1 and P2 as follows. Let S be an answer set of a program P1 and T an answer
set of a program P2. S and T represent local coloring solutions devised by individ-
ual robots. The three conditions presented above are rephrased as follows: (i) S con-
tains paint(n, c) iff T contains paint(n, c) for any node n in b(G), (ii) S contains
paint(n, c) iff T does not contain paint(n, c) for any node n in l(G) or r(G), (iii)
for every node n in G, paint(n, c) must be included in either S or T . Condition (i)
represents that the two robots have to cooperate to paint nodes lying on the border. By
contrast, (ii) represents that nodes in each area are competitive, that is, each node in the
left-half or the right-half of the graph is painted by only one robot. Condition (iii) rep-
resents that painting nodes in the entire graph is norms of the two robots. Next consider
that each node on the border is painted by two robots, but P1 is prior to P2 to make a
decision on the color. So if P1 paints a node n on the border with a color c, then P2 must
accept it. The situation is characterized by changing the condition (i) to implication: (iv)
if S contains paint(n, c) for any n in b(G), then T contains paint(n, c). Condition (iv)
represents a subjection relation between local solutions of two robots.

Cooperation, competition, norms, and subjection are different types of interactions
among agents and are frequently used in multiagent systems [15]. To develop multia-
gent systems in logic programming, the above example illustrates the need of formu-
lating interaction among answer sets to coordinate belief states of multiple agents in
a society. The goal of this paper is to provide a computational logic for various types
of social interactions among agents. We suppose an agent society in which individual
agents have knowledge bases represented by logic programs. Social interactions among
agents are then captured as interactions among answer sets of programs. Answer sets
satisfying conditions of interactions represent solutions coordinated in a multiagent so-
ciety. Answer set interactions are extended in various ways and social attitudes of agents
are formulated within the framework. Next, by combining different programs into a sin-
gle joint program, social interactions are specified as constraints over the joint program.
Solutions satisfying the requirements of those interactions are then computed as the an-
swer sets of the joint program.

The rest of this paper is organized as follows. Section 2 reviews notions used in this
paper. Section 3 formulates different types of interactions between answer sets. The
framework is extended in various ways in Section 4. Section 5 provides computation
of social interaction in answer set programming. Section 6 discusses related issues, and
Section 7 concludes the paper.

124 C. Sakama and T.C. Son

2 Preliminaries

In this paper, we consider extended disjunctive programs as defined in [7]. An extended
disjunctive program (EDP) is a set of rules of the form:

�1 ; · · · ; �l ← �l+1 , . . . , �m, not �m+1 , . . . , not �n (n ≥ m ≥ l ≥ 0) (1)

where each �i is a positive/negative literal. not is negation as failure (NAF) and not � is
called an NAF-literal. The left-hand side of the rule is the head, and the right-hand side
is the body. For each rule r of the above form, head(r), body+(r), and body−(r) denote
the sets of literals {�1, . . . , �l}, {�l+1, . . . , �m}, and {�m+1, . . . , �n}, respectively. A
rule r is a constraint if head(r) = ∅; and r is a fact if body+(r) = body−(r) = ∅. An
EDP is simply called a program hereafter. A program P is NAF-free if body−(r) = ∅
for every rule r in P . A program, rule, or literal is ground if it contains no variable.
A program containing variables is considered as a shorthand for the set of its ground
instances, and this paper handles ground (propositional) programs.

The semantics of an EDP is defined by the answer set semantics [7]. Let Lit be the
set of all ground literals in the language of a program. Suppose a program P and a set
S (⊆ Lit) of ground literals. Then, the reduct PS is the program which contains the
ground rule �1 ; · · · ; �l ← �l+1 , . . . , �m iff there is a ground rule r of the form (1)
in P such that body−(r) ∩ S = ∅. Given an NAF-free EDP P , let S be a set of ground
literals which is (i) closed under P , i.e., for every ground rule r in P , body+(r) ⊆ S
implies head(r)∩S 	= ∅; and (ii) logically closed, i.e., it is either consistent or equal to
Lit. An answer set of an NAF-free program P is a minimal set S satisfying both (i) and
(ii). Given an EDP P and a set S (⊆ Lit) of ground literals, S is an answer set of P if
S is an answer set of PS . A program has none, one, or multiple answer sets in general.
The set of all answer sets of P is written as AS(P). An answer set is consistent if it
is not Lit. A program P is consistent if it has a consistent answer set; otherwise, P is
inconsistent. Throughout the paper, a program is assumed to be consistent unless stated
otherwise.

We suppose an agent who has a knowledge base represented by a logic program with
the answer set semantics. An agent is often identified with its logic program and we use
those terms interchangeably throughout the paper. A society is a finite set of agents. We
assume that individual agents have their respective programs over a common language
and a shared ontology in a society. There are several interactions among agents in a
society. Among them, we consider the following four interactions which are frequently
used in multiagent systems.

Cooperation: an interaction among agents to work together to achieve a common goal.
Competition: an interaction such that a satisfactory result for one agent implies unsat-

isfactory results for others.
Norms: an interaction that directs an agent to meet expectations or obligations in a

society.
Subjection: an interaction that restricts behavior of one agent relative to another agent.

In the next section, we formulate these interactions as well as various social attitudes of
agents that would happen during interactions.

Interacting Answer Sets 125

3 Answer Set Interactions

In this section, we consider a society that consists of two agents. Interactions between
agents are then characterized as the problem of interactions between answer sets of two
programs.

3.1 Cooperation

Cooperative agents interact with each other to achieve a common goal. We model the
situation by considering that certain facts are held by answer sets of two programs.

Definition 3.1. (cooperation) Let P1 and P2 be two programs and Φ ⊆ Lit. Two an-
swer sets S ∈ AS(P1) and T ∈ AS(P2) cooperate on Φ if

S ∩ Φ = T ∩ Φ . (2)

In this case, we also say that S and T make a cooperation on Φ.

Condition (2) requires that two answer sets S ∈ AS(P1) and T ∈ AS(P2) must in-
clude the same elements from Φ. This type of interaction is useful to specify agreement
or a common goal in a society.

Example 3.1. John and Marry are planning to go to a restaurant. John prefers French
and Mary prefers Italian, but they behave together anyway. Programs representing be-
liefs about restaurants and preferences for John (P1) and Mary (P2) are:

P1 : preferred ← french, P2 : preferred ← italian,
french ; italian ← . french ; italian ← .

P1 has two answer sets S1 = { french, preferred } and S2 = { italian }, while
P2 has two answer sets T1 = { italian, preferred } and T2 = { french }. Putting
Φ = { french, italian }, we have that S1 and T2, and S2 and T1 cooperate on Φ.

Cooperation between answer sets is monotonic, namely, cooperation on Φ implies
cooperation on its subset.

Proposition 3.1. (monotonicity) If S and T cooperate on Φ, they cooperate on any Φ′

such that Φ′ ⊆ Φ.

Note that any pair of answer sets cooperates on Φ = ∅; and S = T if S and T cooperate
on Φ = Lit.

When an answer set S of P1 includes an answer set T of P2, S can accept T as a
part of beliefs of P1. By contrast, when S is included in T , S can be extended to adapt
to the beliefs of P2.

Definition 3.2. (accept, adapt) S ∈ AS(P1) accepts T ∈ AS(P2) if S ⊇ T . If S
accepts T , T adapts to S.

Acceptance and adaptation can be characterized by cooperation as follows.

126 C. Sakama and T.C. Son

Proposition 3.2. S ∈ AS(P1) accepts T ∈ AS(P2) iff S and T cooperate on T . S
adapts to T iff S and T cooperate on S.

Proof. S ⊇ T iff S ∩ T = T iff S and T cooperate on T . On the other hand, S ⊆ T iff
S ∩ T = S iff S and T cooperate on S. ��

When S ∈ AS(P1) cannot accept nor adapt to T ∈ AS(P2), two agents might make a
concession.

Definition 3.3. (concession) For any pair of answer sets S ∈ AS(P1) and T ∈ AS(P2),
Φ = S ∩ T is called a concession between P1 and P2. A maximal concession is a
concession Φ such that there is no concession Φ′ satisfying Φ ⊂ Φ′.

Example 3.2. Let AS(P1) = {{p, q}, {r}} and AS(P2) = {{p, r}, {s}}. Then, {p},
{r} and ∅ are three possible concessions between P1 and P2. Of which the first two sets
are maximal concessions.

When there are multiple concessions, a maximal one characterizes a maximal agree-
ment between agents. Concession and cooperation have the following relation.

Proposition 3.3. If a set Φ is a concession between P1 and P2, then there are S ∈
AS(P1) and T ∈ AS(P2) which cooperate on Φ.

Proof. If Φ is a concession between P1 and P2, then Φ = S ∩ T for some S ∈ AS(P1)
and T ∈ AS(P2). In this case, S ∩ Φ = T ∩ Φ and the result holds. ��

3.2 Competition

Competition between agents is a natural phenomenon that, in most cases, results in
the satisfaction of one agent and the dissatisfaction of another agent on some issues.
We model this phenomenon by considering that the presence (resp. absence) of certain
facts in an answer set of one agent demonstrates the satisfaction (resp. dissatisfaction)
of the agent with respect to the facts. This leads to the following definition.

Definition 3.4. (competition) Let P1 and P2 be two programs and Ψ ⊆ Lit. Two an-
swer sets S ∈ AS(P1) and T ∈ AS(P2) are competitive for Ψ if

S ∩ T ∩ Ψ = ∅ . (3)

In this case, we also say that S and T are in a competition for Ψ .

Condition (3) requires that two answer sets S ∈ AS(P1) and T ∈ AS(P2) do not
share any element belonging to Ψ . This type of interaction is useful to specify a limited
resource or an exclusive right in a society.

Example 3.3. John and Mary share a car. John plans to go fishing if he can use the car,
while Mary wants to go shopping if the car is available. Programs representing plans
for John (P1) and Mary (P2) are:

P1 : go fishing ← use car, P2 : go shopping ← use car,
use car ; ¬use car ← . use car ; ¬use car ← .

Interacting Answer Sets 127

P1 has two answer sets S1={go fishing, use car} and S2={¬use car}, while P2
has two answer sets T1 = {go shopping, use car} and T2 = {¬use car}. Putting
Ψ={use car}, we have that S1 and T2, S2 and T1, and S2 and T2 are competitive for
Ψ .

The results of competition represent that a successful plan for John implies an unsatis-
factory result for Mary, and vice versa.

Proposition 3.4. (monotonicity) If S and T are competitive for Ψ , they are competitive
for any Ψ ′ such that Ψ ′ ⊆ Ψ .

As trivial cases, any pair of answer sets is competitive for Ψ = ∅; and S and T are
competitive for Lit if S ∩ T = ∅. Thus interesting cases of competition happen when
Ψ 	= ∅ and S ∩ T 	= ∅.

Definition 3.5. (benefit) Suppose that S ∈ AS(P1) and T ∈ AS(P2) are competitive
for Ψ . Then, S has benefit over T wrt Ψ if S ∩ Ψ 	= ∅.

Suppose that S and T are competitive for Ψ . When S ∩ Ψ ⊇ T ∩ Ψ , S ∩ T ∩ Ψ = ∅ iff
T ∩ Ψ = ∅. This means that in this case there is no chance for T to have benefit over S
wrt Ψ . Such a precedence relation in competition is defined as follows.

Definition 3.6. (precedence) Suppose that S ∈ AS(P1) and T ∈ AS(P2) are compet-
itive for Ψ . Then, S has precedence over T wrt Ψ if S ∩ Ψ ⊇ T ∩ Ψ .

Proposition 3.5. If S has precedence over T wrt Ψ , T cannot have benefit over S wrt
Ψ .

Example 3.4. Suppose that there are two companies P1 and P2. P1 has a right to mine
both oil and gas, while P2 has a right to mine either one of them. The situation is
represented by answer sets of programs: AS(P1) = {{oil, gas}} and AS(P2) =
{{oil}, {gas}}. Then, {oil, gas} and {gas} are competitive for Ψ = {oil}, while
{oil, gas} and {oil} are not. In this case, {oil, gas} has precedence over {gas} wrt
{oil}. This means that if two companies coordinate their answer sets to be competitive
for Ψ , there is no chance for P2 to mine oil.

3.3 Norms

Norms represent expectations or obligations for agents to take some actions. We model
the situation by considering that normative goals are included in one of the answer sets
of two programs.

Definition 3.7. (norms) Let P1 and P2 be two programs and Θ ⊆ Lit. Two answer sets
S ∈ AS(P1) and T ∈ AS(P2) achieve norms for Θ if

(S ∪ T) ∩ Θ = Θ . (4)

Condition (4) requires that two answer sets S ∈ AS(P1) and T ∈ AS(P2) should
jointly include every element in Θ. This type of interaction is useful to specify duty or
task allocation in a society.

128 C. Sakama and T.C. Son

Example 3.5. Mary is planning to have a home party. She asks her friends, John and
Susie, to buy wine, juice and water. John will visit a liquor shop and can buy wine
or water or both. Susie will visit a grocery store and can buy juice or water or both.
Programs representing possible items for shopping by John (P1) and Susie (P2) are

P1 : wine ; ¬wine ←, P2 : juice ; ¬juice ←,
water ; ¬water ← . water ; ¬water ← .

Each program has four answer sets representing buying items. Of which, the following
three pairs of answer sets achieve norms for Θ = { wine, juice, water }:
S1 = {wine, water} and T1 = {juice, water}; S2 = {wine, ¬water} and T2 =
{juice, water}; and S3 = {wine, water} and T3 = {juice, ¬water}.

Proposition 3.6. (monotonicity) If S and T achieve norms for Θ, they achieve norms
for any Θ′ such that Θ′ ⊆ Θ.

As a special case, any pair of answer sets achieves norms for Θ = ∅. To achieve norms,
individual agents have their own roles. We formulate this below.

Definition 3.8. (responsible) Let S ∈ AS(P1), T ∈ AS(P2) and Θ ⊆ Lit. We say
that

– S is individually responsible for Θ \ T ;
– S has no responsibility if S is individually responsible for ∅; and
– S is less responsible than T if Θ \ T ⊆ Θ \ S.

The set Θ \ T is called an individually responsible set for S.

Proposition 3.7. Let S ∈ AS(P1), T ∈ AS(P2) and Θ ⊆ Lit.

1. S and T achieve norms for Θ if either S or T contains its individual responsible
set.

2. If S ⊆ T then S is less responsible than T .
3. If T ⊇ Θ then S has no responsibility.

Proof. (1) If S ⊇ Θ \ T , S ∪ T ⊇ (Θ \ T) ∪ T = Θ. Then, (S ∪ T) ∩ Θ = Θ. (2)
S ⊆ T implies S ∩ Θ ⊆ T ∩ Θ, which implies Θ \ T ⊆ Θ \ S. (3) T ⊇ Θ implies
Θ \ T = ∅. ��

An individual responsible set Θ \ T in Definition 3.8 represents the least task or obli-
gation for S to achieve given norms. Undertaking individual responsibilities does not
always achieve norms, however.

Example 3.6. In Example 3.5, S1 = {wine, water} and T1 = {juice, water} achieve
norms for Θ = { wine, juice, water }. Thus, S1 is individually responsible for Θ \
T1 = {wine} and T1 is individually responsible for Θ \ S1 = {juice}, which means
that the individual responsibility of John and Susie is to buy wine and juice respec-
tively. It is easy to see that if John only buys wine and Susie only buys juice then
they might not achieve norms for Θ. This is because S′

1 = {wine, ¬water} and
T ′

1 = {juice, ¬water} satisfy the individual responsibility for both John and Susie
but do not achieve norms for Θ.

Interacting Answer Sets 129

In the above example, John or Susie has to voluntarily buy water to achieve the norms.
On the other hand, responsibility may change by taking a different pair of answer sets.
In Example 3.5, S2 and T2 also achieve norms for Θ. But S2 is responsible for Θ\T2 =
{wine}, while T2 is responsible for Θ \ S2 = { juice, water }. So S2 and T2 achieve
norms without voluntary actions. This leads us to the following definition.

Definition 3.9. (volunteer) Let S ∈ AS(P1), T ∈ AS(P2) and Θ ⊆ Lit. We say that
S and T volunteer for S ∩ T ∩ Θ. For S′ ∈ AS(P1) and T ′ ∈ AS(P2), we say that the
pair (S, T) requires less voluntary actions than (S′, T ′) if (S ∩T ∩Θ) ⊆ (S′∩T ′∩Θ).

By the definition, a voluntary action is required only if S ∩ T 	= ∅.

Proposition 3.8. Let Θ ⊆ Lit, {S, S′} ⊆ AS(P1) and {T, T ′} ⊆ AS(P2) such that
S and T (resp. S′ and T ′) achieve norms for Θ. Then, (S, T) requires less voluntary
actions than (S′, T ′) iff S and T have more individual responsibility than S′ and T ′.

Proof. By (Θ \ S) ∪ (Θ \ T) = Θ ∩ S ∩ T and (Θ \ S′) ∪ (Θ \ T ′) = Θ ∩ S′ ∩ T ′,
(S ∩ T ∩ Θ) ⊆ (S′ ∩ T ′ ∩ Θ) iff Θ ∩ S′ ∩ T ′ ⊆ Θ ∩ S ∩ T . ��

An agent is expected to take a voluntary action in addition to his/her individual respon-
sibility. To declare his/her action to another agent, an agent creates (social) commitment
[14].

Definition 3.10. (commitment) A commitment C(P1, P2, Q) represents a pledge of an
agent P1 to another agent P2 to realize Q.

Commitments could be canceled, so that C(P1, P2, Q) represents a promise of P1 to
P2 for realizing Q, but it does not necessarily guarantee the outcome of Q.

Proposition 3.9. S ∈ AS(P1) and T ∈ AS(P2) achieve norms for Θ only if com-
mitments C(P1, P2, U) and C(P2, P1, V) are made such that U ⊆ S, V ⊆ T , and
Θ ⊆ U ∪ V .

Proof. (S ∪ T) ∩ Θ = Θ implies the existence of U and V satisfying U ⊆ S and
V ⊆ T , and Θ ⊆ U ∪ V . ��

Example 3.7. In order for S1 = {wine, water} and T1 = {juice, water} to achieve
norms for Θ = { wine, juice, water }, it is requested to make commitments C(P1, P2,
{wine}) and C(P2, P1, {juice, water}), for instance.

3.4 Subjection

Subjection represents a situation that the behavior of one agent is dominated by that of
another agent. We model the situation by considering that certain facts included in an
answer set of one program are included in an answer set of another program.

Definition 3.11. (subjection) Let P1 and P2 be two programs and Λ ⊆ Lit. An answer
set S ∈ AS(P1) is subject to an answer set T ∈ AS(P2) wrt Λ if

T ∩ Λ ⊆ S ∩ Λ . (5)

In this case, we also say that S and T are in a subjection relation wrt Λ.

130 C. Sakama and T.C. Son

Condition (5) represents that any element from Λ which is included in an answer set
T ∈ AS(P2) must be included in an answer set S ∈ AS(P1). In other words, S is
dominated by T for the selection of elements in Λ. This type of interaction is useful to
specify priority or power relations in a society.

Example 3.8. Bob and John are two kids in a family, and they have limited access to
the Internet. Since Bob is older than John, any site which is limited to access by Bob is
also limited to John, but not vice versa. Now two sites site1 and site2 are considered.
Programs representing accessibility to each site by John (P1) and Bob (P2) are:

P1 : acc site1 ; ¬acc site1 ← usr John, P2 : acc site1 ; ¬acc site1 ← usr Bob,
acc site2 ; ¬acc site2 ← usr John, acc site2 ; ¬acc site2 ← usr Bob,
usr John ← . usr Bob ← .

Each program has four answer sets representing accessible sites. Suppose first that the
site1 is a site for limited access. Putting Λ1 = { ¬acc site1 }, 12 pairs of answer sets,
out of 16 combinations of answer sets of P1 and P2, are in subjection relation wrt Λ1.
For instance, the following pairs are two solutions: S1 = { ¬acc site1, ¬acc site2,
usr John } is subject to T1 = { acc site1, acc site2, usr Bob } wrt
Λ1; and S2 = { ¬acc site1, acc site2, usr John } is subject to T2 =
{ ¬acc site1, ¬acc site2, usr Bob } wrt Λ1.

Next, suppose that site2 is added as a site for limited access. Then, Λ1 is changed to
Λ2 = { ¬acc site1, ¬acc site2 }. In this case, there are 9 combinations of answer sets
which are in subjection relation wrt Λ2. For instance, S1 and T1 are still in a subjection
relation wrt Λ2, but S2 and T2 are not anymore.

Proposition 3.10. (monotonicity) If S is subject to T wrt Λ, the subjection relation
holds for any Λ′ such that Λ′ ⊆ Λ.

Proposition 3.11. If S ⊇ T , S is subject to T wrt any Λ.

If any information in T ∈ AS(P2) should be included in S ∈ AS(P1), it is achieved
by putting Λ = T .

Proposition 3.12. If S is subject to T wrt T , S ⊇ T .

Proof. T ⊆ S ∩ T implies S ⊇ T . ��

Note that it is always the case that S is subject to T wrt S as S ∩ T ⊆ S.
By Definitions 3.1 and 3.6, we have the following relations.

Proposition 3.13. For any Λ,

1. S and T cooperate on Λ iff S is subject to T wrt Λ and T is subject to S wrt Λ.
2. If S and T are competitive for Λ and S is subject to T wrt Λ, then S has precedence

over T wrt Λ.

Thus, precedence is considered a special case of a subjection relation.

Interacting Answer Sets 131

4 Extensions

4.1 Coordination and Priority

In Section 3 four different types of answer set interactions are introduced. These inter-
actions are combined into a single framework in this section.

Definition 4.1. (coordination) For two programs P1 and P2, a tuple of sets of literals
Ω = (Φ, Ψ, Θ, Λ) is called a coordination over P1 and P2. Each component X of Ω
will be denoted by ΩX hereafter and is called a coordination condition in Ω.

Two answer sets S ∈ AS(P1) and T ∈ AS(T2) are said to satisfy ΩΦ (resp. ΩΨ ,
ΩΘ, and ΩΛ) if they satisfy the conditions in Definition 3.1 wrt Φ (resp. Definition 3.4
wrt Ψ , 3.7 wrt Θ and 3.11 wrt Λ). S and T satisfy C ⊆ {ΩΦ, ΩΨ , ΩΘ, ΩΛ}, if they
satisfy each X ∈ C.

Definition 4.2. (compatible) Let P1 and P2 be two programs and Ω a coordination
over P1 and P2. Two answer sets S ∈ AS(P1) and T ∈ AS(P2) are compatible (or a
solution) wrt Ω if S and T satisfy ΩΦ, ΩΨ , ΩΘ, and ΩΛ.

Since answer set interactions are monotonic with respect to coordination conditions,
the compatibility of answer sets is also monotonic, i.e., if S and T are compatible wrt
Ω, they are also compatible wrt any Ω′ = (Φ′, Ψ ′, Θ′, Λ′) such that X ′ ⊆ X for X ∈
{Φ, Ψ, Θ, Λ}. This coincides with the intuition that fewer requirements would open the
possibility of successful coordination. On the other hand, a tuple Ω specifies different
types of social interactions and there may exist conflict among their requirements.

Example 4.1. A company opens positions for a system administrator and a program-
mer. A system administrator can get a salary higher than a programmer. There are two
applicants, P1 and P2, who have talents as both an administrator and a programmer.
Both P1 and P2 share the following knowledge:

high salary ← admin,

low salary ← programmer,

admin ; programmer ← .

Suppose that two applicants have the same desire to get a higher salary as a sys-
tem administrator. The common goal is specified by a coordination condition Φ =
{high salary}. However, the company has only one position for an administrator, so
the situation is specified by a coordination condition Ψ = {admin, programmer}.
Both P1 and P2 have two answer sets: AS(P1) = {S1, S2} and AS(P2) =
{T1, T2} such that S1 = T1 = { admin, high salary } and S2 = T2 =
{ programmer, low salary }. S1 and T1 cooperate on Φ, but they are not compet-
itive for Ψ . As a result, no two answer sets of S ∈ AS(P1) and T ∈ AS(P2) are
compatible wrt Ω = (Φ, Ψ, ∅, ∅).

Instead of returning no solution in such cases, we introduce a mechanism of priori-
ties over interactions as a method of building a compromised solution. To this end, we

132 C. Sakama and T.C. Son

assume a preorder relation �, called a priority relation, over {ΩΦ, ΩΨ , ΩΘ, ΩΛ}. In-
tuitively, Ωx � Ωy states that satisfying x is more important than satisfying y. A set
C ⊆ {ΩΦ, ΩΨ , ΩΘ, ΩΛ} is a maximal element wrt � if it satisfies the two conditions:
(i) if x � y and y ∈ C then x ∈ C; and (ii) there exists no C′ ⊆ {ΩΦ, ΩΨ , ΩΘ, ΩΛ}
such that C ⊂ C′ and C′ satisfies (i).

Definition 4.3. (compatible under priority) Let � be a preorder relation defined over
{ΩΦ, ΩΨ , ΩΘ, ΩΛ}. Two answer sets S ∈ AS(P1) and T ∈ AS(P2) are compatible
under priority wrt (Ω, �) if there exists some maximal element C ⊆{ΩΦ, ΩΨ ,ΩΘ, ΩΛ}
wrt � and S and T satisfy C.

In Example 4.1, no pair of answer sets S ∈ AS(P1) and T ∈ AS(P2) is compatible wrt
Ω, but S1 and T2 (or S2 and T1) are compatible under priority wrt (Ω, {ΩΨ � ΩΦ}).

4.2 Dynamic Interactions

In Section 3, Φ, Ψ , Θ, and Λ are given as sets of literals. By specifying them as sets of
rules, we can specify interactions that may change depending on different contexts.

Definition 4.4. (dynamic cooperation) Let P1 and P2 be two programs and Π a set
of rules. Two answer sets S ∈ AS(P1) and T ∈ AS(P2) make a weak (resp. strong)
dynamic cooperation on Π if

S ∩ X = T ∩ X (6)

for some (resp. any) answer set X of Π .

Example 4.2. (modified from Example 3.1) John and Mary have two options for dinner,
while at lunch John takes hamburger and Mary takes sandwich. The situation is encoded
as the program for John (P1) and the program for Mary (P2) such that

P1 : preferred ← french, P2 : preferred ← italian,
french ; italian ← dinner, french ; italian ← dinner,
hamburger ← lunch, sandwich ← lunch,
dinner ←, lunch ← . dinner ←, lunch ← .

Suppose that Π is given as the set of five rules:

french ← dinner,

italian ← dinner,

hamburger ← lunch,

sandwich ← lunch,

lunch ; dinner ← .

Π specifies that French and Italian are subject to cooperation for dinner, while ham-
burger and sandwich are for lunch. Now Π has two answer sets: {dinner, french,
italian} and {lunch, hamburger, sandwich}. In this situation, the answer set{dinner,
french, preferred, lunch, hamburger} of P1 and the answer set {dinner, french,

Interacting Answer Sets 133

lunch, sandwich} of P2 make a weak dynamic cooperation on Π . There is another
combination of answer sets which make a weak dynamic cooperation on Π (having
Italian for dinner), but there is no combination which makes a strong dynamic cooper-
ation on Π .

In the above example, Π specifies cooperations for lunch and dinner, while P1 and P2
can cooperate only on dinner. The situation is explained by the existence of a weak
dynamic cooperation and the lack of a strong one. Note that if two programs do not
contain the fact lunch ←, a strong dynamic cooperation is also possible. Thus, Π
specifies cooperations that may change depending on the context of P1 and P2. Similar
extensions are possible for competition, norms and subjection.

4.3 Interactions among n-Agents

Answer set interactions can be generalized to systems with more than two agents.

Definition 4.5. (AS-interactions among n-agents) Let P1, . . . , Pn be programs and
S1 ∈ AS(P1), . . . , Sn ∈ AS(Pn) their answer sets. For any collection of k answer
sets such that {Si1 , . . . , Sik

} ⊆ {S1, . . . , Sn} and 2 ≤ k ≤ n,

1. Si1 , . . . , Sik
make a k-cooperation on Φ ⊆ Lit if

Si1 ∩ Φ = · · · = Sik
∩ Φ . (7)

2. Si1 , . . . , Sik
are in a k-competition for Ψ ⊆ Lit if

Si1 ∩ · · · ∩ Sik
∩ Ψ = ∅ . (8)

3. Si1 , . . . , Sik
achieve k-norms for Θ ⊆ Lit if

(Si1 ∪ · · · ∪ Sik
) ∩ Θ = Θ . (9)

4. Si1 , . . . , Sik
are in k-subjection relations wrt Λ ⊆ Lit if

Sik
∩ Λ ⊆ · · · ⊆ Si1 ∩ Λ . (10)

We say that S1, . . . , Sn are n-compatible wrt a coordination Ω = (Φ, Ψ, Θ, Λ) if they
satisfy the above four conditions.

Observe that Definition 4.5 reduces to the case of two agents when n = 2. It is
worth noting that Definition 4.5 has several variants. For instance, we can define a
2-competition for Ψ for the collection of k answer sets as: Si and Sj (i 	= j) are com-
petitive for Ψ for any pair of answer sets from {Si1 , . . . , Sik

}. The notion of subjection
is extended to the combination of answer sets as: Si ∪ Sj is subject to Sk wrt Λ. Such
variants would be also useful, but we do not pursue variants of interactions further here.

134 C. Sakama and T.C. Son

4.4 Interactions between Programs

A program generally has more than one answer sets. Then, we can apply the notion of
interactions between answer sets to interactions between programs.

Definition 4.6. (interactions between programs) Let P1 and P2 be two programs.

1. P1 and P2 make a strong cooperation (resp. weak cooperation) on Φ ⊆ Lit if

S ∩ Φ = T ∩ Φ

holds for any (resp. some) pair of answer sets S ∈ AS(P1) and T ∈ AS(P2).
2. P1 and P2 are in a strong competition (resp. weak competition) for Ψ ⊆ Lit if

S ∩ T ∩ Ψ = ∅

holds for any (resp. some) pair of answer sets S ∈ AS(P1) and T ∈ AS(P2).
3. P1 and P2 achieve strong norms (resp. weak norms) for Θ ⊆ Lit if

(S ∪ T) ∩ Θ = Θ

holds for any (resp. some) pair of answer sets S ∈ AS(P1) and T ∈ AS(P2).
4. P1 and P2 are in a strong subjection (resp. weak subjection) relation wrt Λ ⊆ Lit

if

T ∩ Λ ⊆ S ∩ Λ

holds for any (resp. some) pair of answer sets S ∈ AS(P1) and T ∈ AS(P2).

No interactions are defined for programs having no answer set.
Strong interactions coincide with weak interactions for two programs each of which

has exactly one answer set. For two programs having multiple answer sets, however,
strong interactions are very strong conditions and hard to satisfy in general. In fact,
examples shown in previous sections are mostly weak interactions. We thus consider
that weak interactions would be more useful than strong ones in practice. The above
interactions are combined into one as Definition 4.2 and are extended to n-programs as
Definition 4.5.

5 Computing Answer Set Interactions

In this section, we provide a method of computing answer set interactions between two
programs in ASP.

Definition 5.1. (annotated program) Given a program Pi, its annotated program P i is
obtained from Pi by replacing every literal � or NAF-literal not � appearing in Pi with
a new literal �i or not �i, respectively.

Interacting Answer Sets 135

Example 5.1. Given the program P1:

p ; ¬q ← not r,

r ←,

its annotated program P 1 becomes

p1; ¬q1 ← not r1,

r1 ← .

Annotations are introduced to distinguish beliefs between different agents. Let us
define

Si = { �i | � ∈ S and S ∈ AS(Pi) }.

The following properties hold.

Proposition 5.1. Let Pi be a program. S is an answer set of Pi iff Si is an answer set
of P i.

Proposition 5.2. Let P1 and P2 be two programs. Then, U is an answer set of P 1 ∪P 2

iff U = S1 ∪ T 2 for some S1 ∈ AS(P 1) and some T 2 ∈ AS(P 2).

Proof. As P 1 and P 2 have no literal in common, the result holds by the splitting set
theorem of [9]. ��

Next we provide specification of social interactions in a program.

Definition 5.2. (social constraints) Let P1 and P2 be two programs and Ω=(Φ, Ψ, Θ, Λ)
a coordination over P1 and P2. Social interactions (2), (3), (4), and (5) between P1 and
P2 are specified as a set SC of social constraints as follows.

1. For each � ∈ Φ, SC contains a pair of constraints:

← �1, not �2, (11)

← �2, not �1. (12)

2. For each � ∈ Ψ , SC contains a constraint:

← �1, �2 . (13)

3. For each � ∈ Θ, SC contains a constraint:

← not �1, not �2 . (14)

4. For each � ∈ Λ, SC contains a constraint:

← �2, not �1 . (15)

The program P 1 ∪ P 2 ∪ SC is called a joint program.

136 C. Sakama and T.C. Son

Constraints (11) and (12) represent that the presence of any literal � ∈ Φ in an answer
set of P1 forces the presence of the same literal in an answer set of P2, and the other way
round. The constraint (13) indicates that any literal � ∈ Ψ cannot belong to an answer
set of P1 and an answer set of P2 at the same time. By contrast, the constraint (14)
expresses that every literal � ∈ Θ must belong to either an answer set of P1 or an
answer set of P2. Finally, the constraint (15) says that every literal � ∈ Λ in an answer
set of P2 must belong to an answer of P1.

With this setting, the next theorem holds.

Theorem 5.3. Let P1 and P2 be two programs and Ω = (Φ, Ψ, Θ, Λ) a coordination
over P1 and P2. Two answer sets S ∈ AS(P1) and T ∈ AS(P2) are compatible wrt Ω
iff S1 ∪ T 2 is an answer set of the joint program P 1 ∪ P 2 ∪ SC.

Proof. By Proposition 5.2, U is an answer set of P 1 ∪ P 2 iff U = S1 ∪ T 2 for some
S1 ∈ AS(P 1) and some T 2 ∈ AS(P 2). Then, U is an answer set of P 1 ∪ P 2 ∪ SC iff
�1 ∈ S1 and �2 ∈ T 2 satisfy the constraints SC for any � in each coordination condition
in Ω. In this case, S and T are compatible wrt Ω. Hence, the result holds. ��

Theorem 5.4. Let P1 and P2 be two programs and Ω = (Φ, Ψ, Θ, Λ) a coordination
over P1 and P2. Deciding whether there are two answer sets S ∈ AS(P1) and T ∈
AS(P2) that are compatible wrt Ω is ΣP

2 -complete.

Proof. Deciding the existence of an answer set of an EDP is ΣP
2 -complete [5], hence

the result holds by Theorem 5.3. ��

The notion of joint programs is extended to n-agents in a straightforward manner, and
compatible answer sets among n-agents are computed accordingly.

6 Discussion

6.1 Answer Set Interactions = Answer Sets + Control

In this paper, interactions among answer sets are specified outside of individual pro-
grams. One may wonder that such an extra mechanism is really needed to encode the
specification. In Example 3.1, for instance, the set Φ could be specified inside of each
program as

P ′
1 : preferred by john ← john go french,

john go french ← mary go french,

john go italian ← mary go italian,

john go french ; john go italian ←,

and
P ′

2 : preferred by mary ← mary go italian,

mary go french ← john go french,

mary go italian ← john go italian,

mary go french ; mary go italian ← .

Interacting Answer Sets 137

In this case, P ′
1 ∪ P ′

2 has two answer sets { john go french, mary go french,
preferred by john } and { john go italian, mary go italian, preferred by
mary }. These two answer sets correspond to two possible results of cooperation.

There are mainly two reasons why we do not take this solution in this paper. First,
programs P1 and P2 represent beliefs of individual agents, while a coordination Ω =
(Φ, Ψ, Θ, Λ) represents social requirements over them. Such a separation has an ad-
vantage of not only reducing codes of individual programs but specifying interactions
independent of individual programs. For instance, social requirements may change in
time as in Example 3.8. If social interactions are encoded in programs, programs are to
be updated whenever situation changes. Thanks to the separation of Ω from individual
programs, any change in Ω does not affect the content of programs. The separation of
two components also accords to the principle of “Algorithm = Logic + Control” by
Kowalski [8]. In fact, Ω represents control over answer sets. In this sense, answer set
interactions are considered answer sets of different programs plus control over them.

Second, as remarked in [13], simply merging nonmonotonic logic programs does not
always produce acceptable conclusions for individual agents. Consider the following
situation [7]. A brave driver crosses railway tracks in the absence of information on an
approaching train:

P1 : cross ← not train.

On the other hand, a careful driver crosses railway tracks in the presence of information
on no approaching train:

P2 : cross ← ¬ train.

Simply merging these two programs P1 ∪ P2 produces the single answer set {cross},
which is a “brave” solution and would be unacceptable for the careful driver. The exam-
ple shows that merging nonmonotonic theories does not always produce an agreement
among agents, even though they do not contradict one another. Note that a joint program
in Definition 5.2 also merges two programs, but the problem does not happen as P 1 and
P 2 contain different annotated literals. Also it should be noted that a joint program
is introduced not for merging beliefs of agents but for computing interactions among
agents. Given individual programs and a coordination Ω over them, they are compiled
into a single joint program to compute solutions of the coordination.

We provide different forms of interactions and various social attitudes of agents,
but one may not fully agree with definitions given in this paper. In fact, “there is no
universally accepted definition of agency or of intelligence” [15]. Our intention is not
to provide universally accepted definitions of agent interactions, but to turn ill-defined
agents problems to a well-defined semantic problem in computational logic. Answer
set interactions have clear semantics, which are simple yet useful for answer set based
agent programming. Moreover, interactions are defined as set theoretic relations, so that
similar notions are defined for any model theoretic semantics of computational logics
or logic programs.

6.2 Related Work

There are several studies which provide logics for social interactions among agents.
Meyer et al. [10] introduce a logical framework for negotiating agents. They introduce

138 C. Sakama and T.C. Son

two different modes of negotiation: concession and adaptation. Concession weakens an
initial demand of an agent, while adaptation expands an initial demand to accommodate
a demand of another agent. In [10], concession and adaptation change original theories
of two agents only when they contradict each other. Those definitions are thus different
from ours of Definitions 3.2 and 3.3. They provide rational postulates to characterize
negotiated outcomes between two agents, and describe methods for constructing out-
comes. In their framework each agent is represented by classical propositional theories,
so that those postulates are not generally applied to nonmonotonic theories.

In the context of logic programming, Buccafurri and Gottlob [2] introduce a frame-
work of compromise logic programs. Given a collection of programs T={Q1, . . . , Qn},
the joint fixpoint semantics of T is defined as the set of minimal elements in JFP (T) =
FP (Q1)∩· · ·∩FP (Qn) where FP (Qi) is the set of all fixpoints of Qi. The goal of their
study is providing common conclusions among different programs. Ciampolini et al. [4]
propose abductive logic agents (ALIAS) in which two different types of coordination,
collaboration and competition, are realized. A query specifies behaviors of agents to
achieve goals, and ALIAS solve the goal by communicating agents. In ALIAS, coordi-
nation is operationally given using inference rules, which is different from our declar-
ative specifications in this paper. Buccafurri and Caminiti [3] introduce a social logic
program (SOLP) which has rules of the form: head ← [selection condition]{body},
where selection condition specifies social conditions concerning either the cardinal-
ity of communities or particular individuals satisfying the body. Agent interactions are
thus encoded in individual programs in SOLP, which is in contrast to our approach
of separating beliefs of agents and social interactions among them. Foo et al. [6] in-
troduce a theory of multiagent negotiation in answer set programming. Starting from
the initial agreement set S ∩ T for an answer set S of an agent and an answer set T
of another agent, each agent extends this set to reflect its own demand while keep-
ing consistency with demand of the other agent. Their algorithm returns new programs
having answer sets which are consistent with each other and keep the agreement set.
Sakama and Inoue [11] propose a method of combining answer sets of different logic
programs. Given two programs P1 and P2, they build a program Q satisfying AS(Q) =
min({S ∪ T | S ∈ AS(P1) and T ∈ AS(P2) }), which they call a composition of P1
and P2. Sakama and Inoue [12] also build a minimal consensus program Q satisfying
AS(Q) = min({S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) }), and a maximal consensus
program R satisfying AS(R) = max({S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) }).
Composition extends one’s beliefs by combining answer sets of two programs, while
consensus extracts common beliefs from answer sets of two programs. Different from
our approach, studies [6,11,12] change answer sets of the original programs for coor-
dination results. Sakama and Inoue [13] introduce two notions of coordination between
programs. A generous coordination constructs a program Q which has the set of answer
sets such that AS(Q) = AS(P1) ∪ AS(P2), while a rigorous coordination constructs
a program R which has the set of answer sets such that AS(R) = AS(P1) ∩ AS(P2).
These two coordination methods just take the union or intersection of the collections of
answer sets of two programs, and do not take extra coordination conditions into account
as we do in this paper.

Interacting Answer Sets 139

7 Conclusion

In this paper, we introduced the notion of answer set interactions and used it to char-
acterize different types of interactions between agents represented as logic programs.
Among other things, we considered cooperation, competition, norms, and subjection
between agents. Each of these interactions can be viewed as a constraint on the col-
lection of answer sets of the involving agents. The main advantage of this approach to
specifying interactions between agents lies in its flexibility, i.e., interactions between
agents are specified outside of individual agents’ programs. We also discussed a possi-
ble way for computing coordinated solutions using answer set programming.

Several issues remain for further research. One such issue is the extension of answer
set interactions to consider other forms of interactions between agents (e.g., resource
constraints). We would also like to investigate possible ways to integrate this notion into
multiagent planning. Another issue is realizing agent interactions that may evolve, such
as negotiation, by incorporating belief update that may arise during interaction. For
the implementation of our approach, the method of computing interactions proposed
in this paper supposes situations where centralized control over all agents is possible.
Typical centralized control is found in the master-slave architecture of MAS. On the
other hand, it is also important to develop a framework for specifying and computing
answer set interactions in a distributed setting. The issue is left for future work.

Acknowledgment. The second author is partially supported by the NSF grants IIS-
0812267 and CREST-0420407.

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Buccafurri, F., Gottlob, G.: Multiagent compromises, joint fixpoints, and stable models. In:
Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS
(LNAI), vol. 2407, pp. 561–585. Springer, Heidelberg (2002)

3. Buccafurri, F., Caminiti, G.: A social semantics for multi-agent systems. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 317–329.
Springer, Heidelberg (2005)

4. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and competition in
ALIAS: a logic framework for agents that negotiate. Annals of Mathematics and Artificial
Intelligence 37, 65–91 (2003)

5. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application
to nonmonotonic logics. In: Miller, D. (ed.) Proceedings of the 1993 International Sympo-
sium on Logic Programming, pp. 266–278. MIT Press, Cambridge (1993)

6. Foo, N., Meyer, T., Zhang, Y., Zhang, D.: Negotiating logic programs. In: Proceedings of the
6th Workshop on Nonmonotonic Reasoning, Action and Change (2005)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991).

8. Kowalski, R.A.: Algorithm = Logic + Control. Communications of the ACM 22, 424–436
(1979)

140 C. Sakama and T.C. Son

9. Lifschitz, V., Turner, H.: Splitting a logic program. In: Hentenryck, P.V. (ed.) Proceedings of
the 11th International Conference on Logic Programming, pp. 23–37. MIT Press, Cambridge
(1994)

10. Meyer, T., Foo, N., Kwok, R., Zhang, D.: Logical foundation of negotiation: outcome, con-
cession and adaptation. In: Proceedings of the 19th National Conference on Artificial Intel-
ligence, pp. 293–298. MIT Press, Cambridge (2004)

11. Sakama, C., Inoue, K.: Combining answer sets of nonmonotonic logic programs. In: Toni, F.,
Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 320–339. Springer, Heidelberg
(2006)

12. Sakama, C., Inoue, K.: Constructing consensus logic programs. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 26–42. Springer, Heidelberg (2007)

13. Sakama, C., Inoue, K.: Coordination in answer set programming. ACM Transactions on
Computational Logic 9, Article No.9 (2008); Shorter version: Coordination between logical
agents. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 161–177.
Springer, Heidelberg (2005)

14. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unification of
normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

15. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press, Cambridge (1999)

Argumentation-Based Preference Modelling
with Incomplete Information

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

Man Machine Interaction Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

{Wietske.Visser,K.V.Hindriks,C.M.Jonker}@tudelft.nl

Abstract. No intelligent decision support system functions even remotely with-
out knowing the preferences of the user. A major problem is that the way average
users think about and formulate their preferences does not match the utility-based
quantitative frameworks currently used in decision support systems. For the aver-
age user qualitative models are a better fit. This paper presents an argumentation-
based framework for the modelling of, and automated reasoning about multi-issue
preferences of a qualitative nature. The framework presents preferences accord-
ing to the lexicographic ordering that is well-understood by humans. The main
contribution of the paper is that it shows how to reason about preferences when
only incomplete information is available. An adequate strategy is proposed that
allows reasoning with incomplete information and it is shown how to incorporate
this strategy into the argumentation-based framework for modelling preferences.

Keywords: Qualitative Preferences, Argumentation, Incomplete Information.

1 Introduction

In this paper we introduce an argumentation-based framework for modelling qualita-
tive multi-attribute preferences under incomplete information. This is motivated by our
interest in developing a negotiation support system, as part of a larger project. In this
context, we are faced with the need to express a user’s preferences. A necessary (but
not sufficient) condition for an offer to become an agreement is that both parties feel
that it satisfies their preferences well enough. Unfortunately, eliciting and representing a
user’s preferences is not unproblematic. Existing negotiation support systems are based
on quantitative models of preferences. These kinds of models are based on utilities;
a utility function determines for each outcome a numerical value of utility. However,
it is difficult to elicit such models from users, since humans generally express their
preferences in a more qualitative way. We say we like something more than something
else, but it seems strange to express liking something exactly twice as much as an al-
ternative. In this respect, qualitative preference models will have a higher cognitive
plausibility as they provide a better correspondence with representations used by hu-
mans. We also think that qualitative models will allow a human user to interact more
naturally with an agent negotiating on his behalf or supporting him in his negotations,
and will investigate this in future. There are, however, several challenges that need to

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 141–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 W. Visser, K.V. Hindriks, and C.M. Jonker

be met before qualitative models can be usefully applied. Doyle and Thomason [8] pro-
vide an overview including among others the challenge to deal with partial information
(information-limited rationality) and, more generally, the challenge to formalize various
reasoning-related tasks (knowledge representation, reasons, and preference revision).

For any real-life application it is important to be able to handle multi-issue prefer-
ences. It is a natural approach to derive object preferences from general preferences over
properties or attributes. For example, it is quite natural to say that you prefer one house
over another because it is bigger and generally you prefer larger houses over smaller
ones. This might still be so if the first house is more expensive and you generally pre-
fer cheaper options. So there is an interplay between attributes and the preferences a
user holds over them in determining object preferences. This means that object prefer-
ences can be quite complex. One approach to obtain preferences about objects is to start
with a set of properties of these objects and derive preferences from a ranking of these
properties that indicates the relative importance or priority of each of these properties.
This approach to obtain preferences is typical in multi-attribute decision theory [12], a
quantitative theory that derives object preferences from utility values assigned to out-
comes which are derived from numeric weights associated with properties or attributes
of objects. Several qualitative approaches have also been proposed [3,5,6,7,13].

A user’s preferences and knowledge about the world may also be incomplete, in-
consistent or changing. For example, a user may lack some information regarding the
objects he has to choose between, or he might have contradictory information from
different sources. Preferences may change for various reasons, e.g. new information
becoming available, experience, changing goals, or interaction with persuasive others.
For now, we focus on the situation in which information about objects is not complete,
but will address other types of incompleteness, inconsistency and change in future.

The approach we take is based on argumentation. In recent years, argumentation has
evolved to be a core study within artificial intelligence and has been applied in a range
of different topics [2]. We incorporate some of the ideas introduced in existing qualita-
tive approaches but also go beyond these approaches by introducing a framework that
is able to reason about preferences also when only incomplete information is available.
Because of its non-monotonic nature, argumentation is useful for handling inconsistent
and incomplete information. Although a lot of work has been done on argumentation-
based negotiation (for a comprehensive review, see [16]), most of this work considers
only the bidding phase in which offers are exchanged. For preparation, the preferences
of a user have to be made clear (both to the user himself and to the agent supporting
him), hence we need to express and reason with them. We focus here on the modelling
of a single user’s preferences by means of an argumentation process. The idea is that
a user weighs his preferences, which gives him better insight into his own preferences,
and so this weighing is part of the preference elicitation process. The weighing of ar-
guments maps nicely onto argumentation. For example, ‘I like to travel by car because
it is faster than going by bike’ is countered by ‘But cycling is healthier than driving
the car and that is more important to me, so I prefer to take the bike’. This possibility
to construct arguments that are attacked by counterarguments is another advantage of
argumentation, since it is a very natural way of reasoning for humans and fits in with
a user’s own reasoning processes. This is a general feature of argumentation and we

Argumentation-Based Preference Modelling with Incomplete Information 143

will make extensive use of it: arguments like those above form the basis of our system.
We believe that this way of reasoning will also be very useful in the preference elicita-
tion process since the user’s insight into his preferences grows piece by piece as he is
expressing them. The introduction of an argumentation-based framework for reasoning
about preferences even when only incomplete information is available seems particu-
larly suitable for such a step-by-step process. It allows the user to extend and refine
the system representation of his preferences gradually and as the user sees fit. Another
motivation to use argumentation is the link with multi-agent dialogues [1], which will
be very interesting in our further work on negotiation.

In this paper we present an argumentation-based framework for reasoning with qual-
itative multi-attribute preferences. In Section 2, we introduce qualitative multi-attribute
preferences, in particular the lexicographic preference ordering. In Section 3 we start by
modelling this ordering for reasoning with complete information in an argumentation
framework. Then we proceed and extend this framework in such a way that it can also
handle incomplete information. Our main contribution, in Section 4, is a strategy (based
on the lexicographic ordering) with some desired properties to derive object preferences
in the case of incomplete information. In Section 5 this strategy is subsequently incor-
porated into the argumentation framework. Section 6 concludes the paper.

2 Qualitative Multi-attribute Preferences

Qualitative multi-attribute preferences over objects are based on a set of relevant at-
tributes or goals, which are ranked according to their importance or priority. Without
loss of generality, we only consider binary (Boolean) attributes (cf. [5]). Moreover, it
is assumed that the presence of an attribute is preferred over its absence. For example,
given that garden is an attribute, a house that has a garden is preferred over one that
does not have one. The importance ranking of attributes is defined by a total preorder
(a total, reflexive and transitive relation), which we will denote by �. This relation is
not required to be antisymmetric, so two or more attributes can have the same impor-
tance. The relation � yields a stratification of the set of attributes into importance levels.
Each importance level consists of attributes that are deemed equally important. Together
with factual information about which objects have which attributes, the attribute rank-
ing forms the basis on which various object preference orderings can be defined. One
of the most well-known preference orderings is the lexicographic ordering, which we
will use here. [5] and [7] define more multi-attribute preference orderings, such as the
discrimin and best-out orderings. In this paper we focus on the lexicographic ordering
because it seems natural, it defines a total preference relation (contrary to the discrimin
ordering) and it is more discriminating than the best-out ordering. Since the other or-
derings are structurally similar to the lexicographic ordering, a similar argumentation
framework could be defined for them if desired. We introduce the lexicographic prefer-
ence ordering by means of an example.

Example 1. Paul wants to buy a house. According to him, the most important attributes
are large (minimally 100m2), garden and closeToWork, which among themselves are
equally important. The next most important attributes are nearShops and quiet. Be-
ing detached is the least important. Paul can choose between three options: a villa, an

144 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 1. An example of objects and attributes

large garden closeToWork nearShops quiet detached

villa � � �
apartment � � �
cottage � � � �

apartment and a cottage. The attributes of these objects are displayed in Table 1. In this
table, the attributes are ordered in decreasing importance from left to right. A dashed
line between attributes indicates equal importance, a solid line a transistion to a lower
importance level. A checkmark indicates that an object has the attribute, an empty box
means that the attribute is absent. Which house should Paul choose? He first consid-
ers the highest importance level, which in this case comprises large, garden and close-
ToWork. The villa and the apartment both have two of these attributes, while the cottage
only has one. So at this moment Paul concludes that both the villa and the apartment
are preferred to the cottage. For the preference between the villa and the apartment he
has to look further. At the next importance level, the apartment has one attribute and
the apartment has none. So the apartment is preferred over the villa. Note that although
the cottage has the most attributes in total, it is still the least preferred option because
of its bad score at the more important attributes.

Definition 1. (Lexicographic preference ordering) Let P be a set of attributes or
goals, and � a total preorder on P . We write P � Q for P � Q and Q 	� P, and P ≈
Q for P � Q and Q � P. We use | · | to denote the cardinality of a set. Object a is
strictly preferred over object b according to the lexicographic ordering if there exists
an attribute P such that |{P′ | a has P′ and P ≈ P′}| > |{P′ | b has P′ and P ≈ P′}| and
for all Q � P: |{Q′ | a has Q′ and Q ≈ Q′}| = |{Q′ | b has Q′ and Q ≈ Q′}|. Object
a is equally preferred as object b according to the lexicographic ordering if for all P:
|{P′ | a has P′ and P ≈ P′}| = |{P′ | b has P′ and P ≈ P′}|.

3 Argumentation Framework for Complete Information

In order to formally model and reason with preferences we define an argumentation
framework (AF). We use as our starting point the well-known argumentation theory of
Dung [10]. An abstract AF in the sense of Dung consists of a set of arguments and a
defeat relation (informally, a counterargument relation) among those arguments. An AF
is abstract in the sense that both the set of arguments and the defeat relation are assumed
to be given, and the construction and internal structure of arguments is not taken into
account. If we want to reason with argumentation, we have to instantiate an abstract AF
by specifying the structure of arguments and the defeat relation. Section 3.1 presents the
logical language that we will use. Arguments are built from this language by chaining
inferences. Inferences are instantiations of general inference schemes, such as modus
ponens. The inference schemes of our AF are presented in Section 3.2. Section 3.3
defines the defeat relation, which is based on certain relations between the elements of
arguments. Together with a knowledge base, the inference schemes and defeat relation

Argumentation-Based Preference Modelling with Incomplete Information 145

provide a specific AF for arguing about multi-attribute preferences. Which arguments
are justified is determined by the semantics used (Section 3.4). Section 3.5 shows that
the presented AF indeed models lexicographic preference.

3.1 Language

The language has to allow us to express everything we want to talk about when rea-
soning about preferences. To start, we need to be able to state the facts about objects:
which attributes they do and do not have. We also have to express the importance rank-
ing of attributes, so we need to be able to say that one attribute is more important than
another, or that two attributes are equally important. Of course, we want to say that one
object is preferred over another, and that two objects are equally preferred. Finally, we
need to be able to express how many attributes of equal importance a certain object has,
since the lexicographic preference ordering is based on counting these. To this end, we
introduce a special predicate has(a, [P],n) which expresses that object a has n attributes
of the importance level of attribute P. Since we have no names for importance levels,
we denote them by any attribute of that level, placed between square brackets. It is not
necessary that the attribute used is among the attributes that the object has; in our ex-
ample, has(apartment, [quiet],1) is true even though the apartment is not quiet. All of
the things described can be expressed in the following language.

Definition 2. (Language) Let P be a set of attribute names with typical elements P,Q,
and O a set of object names with typical elements a,b, and let n be a non-negative
integer. The input language LKB and full language L are defined as follows.

ϕ ∈ LKB ::= P(a) | ¬P(a) | P � Q | P ≈ Q

ψ ∈ L ::= ϕ ∈ LKB | pref(a,b) | eqpref(a,b) | has(a, [P],n)

Formulas of this language have the following informal meaning:
P(a) object a has attribute P
¬P(a) object a does not have attribute P
P � Q attribute P is more important than attribute Q
P ≈ Q attribute P is equally important as attribute Q
pref(a,b) object a is strictly preferred over object b
eqpref(a,b) object a is equally preferred as object b
has(a, [P],n) object a has n attributes equally important as attribute P (not

necessarily including P itself)
The idea is that preferences over objects are derived from facts about which objects

have which attributes, and the importance order among attributes. These facts are con-
tained in a knowledge base, which is a set of formulas from LKB. A knowledge base is
complete if, given a set of objects to compare and a set of attributes to compare them
on, it contains for every object a and for every attribute P, either P(a) or ¬P(a), and for
all attributes P,Q, either P � Q, Q � P or P ≈ Q.

Example 2. The information from Example 1 can be expressed in the form of the fol-
lowing knowledge base that is based on the language LKB.

146 W. Visser, K.V. Hindriks, and C.M. Jonker

large ≈ garden ≈ closeToWork � nearShops ≈ quiet � detached
large(villa) large(apartment) ¬large(cottage)
garden(villa) ¬garden(apartment) garden(cottage)
¬closeToWork(villa) closeToWork(apartment) ¬closeToWork(cottage)
¬nearShops(villa) nearShops(apartment) nearShops(cottage)
¬quiet(villa) ¬quiet(apartment) quiet(cottage)
detached(villa) ¬detached(apartment) detached(cottage)

3.2 Inferences

An argument is a derivation of a conclusion from a set of premises. Such a derivation
is built from multiple steps called inferences. Every inference step consists of premises
and a conclusion, and has a label. Inferences can be chained by using the conclusion of
one inference step as a premise in the following step. Thus a tree of chained inferences
is created, which we use as the formal definition of an argument.

Definition 3. (Argument) An argument is a tree, where the nodes are inferences, and
an inference can be connected to a parent node if its conclusion is a premise of that
node. Leaf nodes only have a conclusion (a formula from the knowledge base), and no
premises. A subtree of an argument is also called a subargument. We define inf to be
a function that returns the last inference of an argument (the root node), and conc
to be a function that returns the conclusion of an argument, which is the same as the
conclusion of the last inference.

The inferences that can be made are defined by inference schemes. The inference
schemes of our framework are listed in Table 2. The first and second inference schemes
are used to count the number of attributes of equal importance as some attribute P that
object a has. This type of inference is inspired by accrual [14], which combines mul-
tiple arguments with the same conclusion into one accrued argument for the same con-
clusion. Although our application is different, we use a similar mechanism. We want
all attributes that are present to be counted. Otherwise we would conclude incorrect
preferences (e.g. if the large attribute of the apartment were not counted, we would
incorrectly derive that the villa were preferred over the apartment). Inference scheme
1, which counts 0, can always be applied since it has no premises. Inference scheme
2 can be applied on any subset of the set of attributes of some importance level that
an object a has. This means that it is possible to construct an argument that does not
count all attributes that are present (a so-called non-maximal count). To ensure that
only maximal counts are used, we provide an inference scheme to make arguments
that defeat non-maximal counts (inference scheme 3). An argument of this type says
that any count which is not maximal is not applicable. This type of defeat is called un-
dercut (see below). Inference scheme 4 says that an object a is preferred over an object
b if the number of attributes of a certain importance level that a has is higher than the
number of attributes on that same level that b has. For the lexicographic ordering, it is
also required that a and b have the same number of attributes on any level higher than
that of P. We model this by defining an inference scheme 5 that undercuts scheme 4 if
there is a more important level than that of P on which a and b do not have the same
number of attributes. Finally, inference schemes 6 and 7 do the same as 4 and 5, but for

Argumentation-Based Preference Modelling with Incomplete Information 147

Table 2. Inference schemes

1 has(a, [P],0)
count(a, [P],∅)

2

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

has(a, [P1],n)
count(a, [P1],{P1, . . . ,Pn})

3

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn ≈ P

count(a, [P],S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a, [P],S)uc

4

has(a, [P],n) has(b, [P′],m) P ≈ P′ n > m

pref(a,b)
prefinf(a,b, [P])

5

has(a, [Q],n) has(b, [Q′],m) Q ≈ Q′ � P n 	= m

prefinf(a,b, [P]) is inapplicable
prefinf(a,b, [P])uc

6

has(a, [P],n) has(b, [P′],m) P ≈ P′ n = m

eqpref(a,b)
eqprefinf(a,b, [P])

7

has(a, [Q],n) has(b, [Q′],m) Q ≈ Q′ 	≈ P n 	= m

eqprefinf(a,b, [P]) is inapplicable
eqprefinf(a,b, [P])uc

equal preference. We need these because equal preference cannot be expressed in terms
of strict preference.

Example 3. We now illustrate the inference schemes with some arguments that can be
made from the knowledge base in Example 2. The example arguments are listed in
Table 3 (for space reasons, the inference labels are left out). Argument A illustrates the
general working; a preference for the apartment over the cottage is derived, based on
the facts that the apartment has two attributes of some level and the cottage only one.
Argument B illustrates a zero count. Here a preference for the apartment over the villa
is derived, based on the facts that the apartment has one attribute of some level and the
villa zero. In argument C a non-maximal count is used (stating that the apartment has
zero attributes of the level of nearShops), which leads to another conclusion, namely
that the villa and the apartment are equally preferred. However, there are undercutters
to attack such arguments (argument D).

Note that the lexicographic ordering results in a complete transitive order of weak pref-
erence on objects (an object is weakly preferred over another if it is either more pre-
ferred than, or equally preferred as the other object). This means that it is not necessary
to define inference rules for the property of transitivity, because any preference that fol-
lows from transitivity can also be derived directly from the definition of lexicographic
ordering. For example, if pref(a,b) and eqpref(b,c) hold, then pref(a,c) also holds, but
this can be derived using the inference schemes of Table 2. The same holds for the
asymmetry of strict preference (if pref(a,b) holds, then pref(b,a) does not hold) and
the symmetry of equal preference (if eqpref(a,b) holds, then eqpref(b,a) also holds).

148 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 3. Example arguments

A:

large(apartment) closeToWork(apartment) large ≈ closeToWork

has(apartment, [large],2)

garden(cottage)

has(cottage, [garden],1) large ≈ garden 2 > 1

pref(apartment,cottage)

B:

nearShops(apartment)

has(apartment, [nearShops],1) has(villa, [nearShops],0) nearShops ≈ nearShops 1 > 0

pref(apartment,villa)

C:

has(villa, [nearShops],0) has(apartment, [nearShops],0)
∗

nearShops ≈ nearShops 0 = 0

eqpref(villa,apartment)

D:

nearShops(apartment)

∗ is inapplicable

3.3 Defeat

With the language and the inference rules defined in the previous sections we can con-
struct arguments. To complete our argumentation framework, we also need to specify
a defeat relation. This section provides the formal definition of defeat that we will use.
The most common type of defeat is rebuttal. An argument rebuts another argument if its
conclusion is the negation of the conclusion of the other argument. Rebuttal is always
mutual. Another type of defeat is undercut. An undercutter is an argument for the inap-
plicability of an inference used in another argument (for the specific undercutters used
in our framework, see the previous section). Undercut works only one way. Defeat is
defined recursively, which means that rebuttal can attack an argument on all its premises
and (intermediate) conclusions, and undercut can attack ist on all its inferences.

Definition 4. (Defeat) An argument A defeats an argument B if

– conc(A) = ϕ and conc(B) = ¬ϕ (rebuttal), or
– conc(A) =‘inf(B) is inapplicable’ (undercut), or
– A defeats a subargument of B.

3.4 Semantics

By specifying the inference schemes and the definition of defeat, together with a knowl-
edge base, we have instantiated an argumentation framework consisting of a set of argu-
ments and a defeat relation among them. Now we define which arguments are justified.
For this we use Dung’s [10] grounded semantics.1 Grounded semantics is defined as
follows.

1 For the argumentation system defined in this paper (including the extended version of Section
5), the choice of semantics is not relevant; we could also have used other semantics such as
preferred or stable semantics (also from [10]). There would be a difference when we allow the
use of an inconsistent knowledge base, in which case another semantics may be more suitable.
This is something for further investigation.

Argumentation-Based Preference Modelling with Incomplete Information 149

Definition 5. – An argument A is acceptable with respect to a set S of arguments iff
each argument defeating A is defeated by an argument in S.

– The characteristic function, denoted by FAF, of an argumentation framework AF is
defined as follows: FAF(S) = {A | A is acceptable with respect to S}.

– The grounded extension of AF is defined as the least fixed point of FAF.
– An argument is justified with respect to grounded semantics iff it is a member of the

grounded extension.

3.5 Validity

The argumentation framework defined in previous sections indeed models lexicographic
preference, assuming a complete and consistent knowledge base.

Proposition 1. Let A(KB) denote all arguments that can be built from a knowledge
base KB. Then there is an argument A ∈ A(KB) such that the conclusion of A is
pref(a,b) and A is justified under grounded semantics iff a is preferred over b according
to the lexicographic preference ordering (Definition 1) given KB.

Proof. Suppose a is preferred over b. This means that there exists an attribute P such
that |{P′ | a has P′ and P ≈ P′}| > |{P′ | b has P′ and P ≈ P′}| and for all Q � P: |{Q′ | a
has Q′ and Q ≈ Q′}| = |{Q′ | b has Q′ and Q ≈ Q′}|. Let P1 . . .Pn denote all attributes
of equal importance as P such that a has Pi and let P′

1 . . .P′
m denote all attributes of

equal importance as P such that b has Pi. Note that n > m. Then the knowledge base
is as follows: P1 ≈ . . . ≈ Pn ≈ P′

1 ≈ . . .P′
m and P1(a) . . .Pn(a) and P′

1(b) . . .P′
m(b). The

following argument (A) can be built (note that this argument can also be built if m is
equal to 0, by using the empty set count):

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

has(a, [P1],n)

P′
1(b) . . . P′

m(b) P′
1 ≈ . . . ≈ P′

m

has(b, [P′
1],m) P1 ≈ P′

1 n > m

pref(a,b)
We will now play devil’s advocate and try to defeat this argument. We can try rebuttal
and undercut of the argument and its subarguments. Rebuttal of premises is not appli-
cable, since the knowledge base is consistent. Rebuttal of (intermediate) conclusions is
not possible either, since there is no way to derive a negation. Then there are three infer-
ences we can try to undercut (the last inference of the argument and the last inferences
of two subarguments). For the left-hand count, this can only be done if there is another
Pj such that Pj ≈ P and Pj 	∈ {P1, . . . ,Pn} and Pj(a) is the case. However, P1 . . .Pn en-
compass all such attributes, so count undercut is not possible. The same argument holds
for the other count. At this point it is useful to note that these two counts are the only
ones that are undefeated. Any lesser count will be undercut by the count undercutter that
takes all of P1 . . .Pn (resp. P′

1 . . .P′
m) into account. Such an undercutter has no defeaters,

so any non-maximal count is not justified. The final thing that is left to try is undercut of
prefinf(a,b, [P1]). The undercutter of prefinf(a,b, [P1]) is based on two counts. We have
seen that any non-maximal count will be undercut. If the maximal counts are used, we
have n = m, since we have for all Q � P: |{Q′ | a has Q′ and Q ≈ Q′}| = |{Q′ | b has
Q′ and Q ≈ Q′}|. So the undercutter inference rule cannot be applied since n 	= m is not

150 W. Visser, K.V. Hindriks, and C.M. Jonker

true. This means that for every possible type of defeat, either the defeat is inapplicable
or the defeater of A is itself defeated by undefeated arguments. This means that A is in
the grounded extension and hence justified according to grounded semantics.

Suppose a is not preferred over b. This means that for all attributes P, either |{P′ | a
has P′ and P ≈ P′}| ≤ |{P′ | b has P′ and P ≈ P′}| or there exists an attribute Q � P such
that |{Q′ | a has Q′ and Q ≈ Q′}| 	= |{Q′ | b has Q′ and Q ≈ Q′}|. This means that any
argument with conclusion pref(a,b) (which has to be of the form above) is either under-
cut by count(b, [P]S)uc because it uses a non-maximal count, or by prefinf(a,b, [P])uc
because there is a more important level where a preference can be derived. This means
that any such argument will not be justified under grounded semantics.

The same line of argument can be followed for eqpre f . ��

4 Strategies for Handling Incomplete Information

So far, we have defined an argumentation system that can reason about preferences
according to the lexicographic preference ordering. Above, we have assumed that the
information about the objects that are compared is complete. But, as stated in the in-
troduction, this is often not the case. In this section we will investigate how incomplete
information can best be handled when reasoning about preferences.

Suppose it is not known whether an object has a specific attribute, e.g. we know
that P(a) but we do not know whether P(b) or ¬P(b). This might not be a problem.
If the preference between a and b can be decided based on attributes that are more
important than P, the knowledge whether P(b) or ¬P(b) is the case is irrelevant. But
often this information will be needed to decide a lexicographic preference. In that case,
different approaches or strategies for drawing conclusions are possible. However, not
all strategies give desired results. In the following, we will discuss some naive strategies
and their shortcomings, from which we will derive some desired properties of strategies,
and define and model a strategy that gives intuitive results.

4.1 Naive Strategies

Optimistic, resp. Pessimistic, Strategy. This strategy always assumes that an object has,
resp. does not have, the attribute that is not known. This strategy can always derive some
preference between two objects, since it completes the knowledge by making certain
assumptions, and can then derive a complete preference ordering over objects. But there
is no guarantee that the inferences made are correct. In fact, any inferred preference can
only be correct if all the assumptions it is based on are either correct or irrelevant. Since
we do not know whether assumptions are correct and the strategy does not check for
relevance, the inference can only be correct by chance. For example, suppose it is not
known whether the villa has a garden and whether it is closeToWork. The optimistic
strategy would assume that it has both attributes, in which case an incorrect preference
of the villa over the apartment would be derived. The pessimistic strategy on the other
hand would assume the villa has neither of the attributes, and would derive an incorrect
preference of the cottage over the villa.

Note that using the framework defined above without adaptation would boil down to
using a pessimistic strategy: if it is not known whether an object has a certain attribute,

Argumentation-Based Preference Modelling with Incomplete Information 151

Table 4. Example of intransitive preference with the Disregard Attribute Strategy

P Q R

a � ?
b � ?
c ? �

the attribute is (implicitly) assumed to be absent. This is due to the fact that only at-
tributes for which it is known that an object has them are counted. Attributes that an
object does not have and attributes for which this information is unavailable are treated
the same way (i.e. not taken into account when counting).

Disregard Attribute Strategy. This strategy does not take into account the attributes for
which information about the objects to be compared is incomplete. This strategy can
always derive some preference between two objects, since the information regarding the
remaining attributes is complete, so a complete preference ordering over objects can be
derived. But the inference might not be correct, since the attributes that are disregarded
might be relevant in defining a preference order. For example, suppose it is not known
whether the cottage is large. In that case, the attribute large will not be taken into
account when comparing the cottage to another object. This leaves only the attributes
garden and closeToWork on the highest importance level, of which all attributes have
exactly one. Since the cottage has the most attributes on the next importance level, a
preference of the cottage over the villa as well as the apartment will be derived, even
though in the original example the cottage was the least preferred object.

This strategy has another unwanted effect. Consider the situation in Table 4. When
comparing a and b, this strategy only takes attribute P into account, and concludes a
preference of a over b. Similarly, preferences of b over c, and of c over a can be derived.
So with this strategy, intransitive preferences can be derived, which is unwanted.

Cautious Strategy. In order to prevent the derivation of preferences that are only cor-
rect by chance, a natural alternative is to use a cautious strategy that prevents such
inferences. This strategy infers nothing unless all information about the objects under
comparison is available. It never makes incorrect preference inferences, but it lacks
in decisiveness. Even if the unknown information is irrelevant to make an inference,
nothing is inferred.

4.2 Desired Properties for Strategies

Given the limitations of the strategies discussed above, it is clear that we need a more
balanced strategy that takes two main concerns into account, which we call decisiveness
and safety.

Decisiveness. We call a strategy decisive if it does not infer too little. As mentioned
above, an unknown attribute might be irrelevant for deciding a preference. This is the
case if the preference is already determined by more important attributes. For exam-
ple, suppose that we do not know whether the apartment has attribute nearShops. Then

152 W. Visser, K.V. Hindriks, and C.M. Jonker

we can still conclude that the apartment is preferred over the cottage, based on the at-
tributes large, garden, and closeToWork. It is not required that a preference is derived in
every case, since the missing information might be essential, but all preferences that are
certain (for which no essential information is missing) should be derived. The cautious
strategy is not decisive.

Safety. We call a strategy safe if it does not infer too much. Suppose again that we
do not know whether the apartment has attribute nearShops. Whereas this is irrelevant
for deciding a preference between apartment and cottage, we do need this information
for deciding the preference between the villa and the apartment. A strategy that makes
assumptions about the missing information, or that disregards the attribute in question,
will make unfounded inferences, and hence be unsafe. The optimistic, pessimistic and
disregard attribute strategies are not safe.

4.3 A Decisive and Safe Strategy

We have seen above what may go wrong when a naive strategy is used to deal with
incomplete information. In this section we define an alternative strategy that does sat-
isfy the properties of decisiveness and safety identified above. A preference inference
should never be based on an unfounded assumption for a strategy to be safe. But to
be decisive, a strategy needs to be able to distinguish relevant from irrelevant informa-
tion. Our approach is based on the following intuition. When comparing two objects
under incomplete information, multiple situations are possible. That is, whenever it is
not known whether an object has an attribute, there is a possibility that it does and a
possibility that it does not. If a preference can be inferred in every possible situation,
then apparently the missing information is not relevant, and it is safe to infer that pref-
erence. It is not necessary to check every possible situation, but it suffices to look at
extreme cases. For every object, we can construct a best- and worst-case scenario, or
best and worst possible situation. A possible situation is a completion of an object in
the sense that all missing information is filled in.

Definition 6. (Completion) A completion of an object a is an extension of the knowl-
edge base with (previously missing) facts about a such that for every attribute P, either
P(a) or ¬P(a) is in the extended knowledge base. So if a has n unspecified attributes,
there are 2n possible completions of a.

Since we assumed that presence of an attribute is preferred over absence, the most pre-
ferred completion assumes presence of all unknown attributes, and the least preferred
completion assumes absence. If even the least preferred completion of a is preferred
over the most preferred completion of b, then a must always be preferred over b, since
a could not be worse and b could not be better. For example, consider the objects and
attributes in Table 5a. In the worst case for a, a does not have attribute R. In the best
case for b, b has attribute P. But even in this situation, a will be preferred over b, based
on attribute Q. There is no way that this situation can improve for b or deteriorate for
a, so it is safe to infer a preference for a over b. The strategy’s power to make such
inferences makes it decisive.

Argumentation-Based Preference Modelling with Incomplete Information 153

Table 5. Examples of objects and attributes with incomplete information

P Q R

a � � ?
b ? �

P Q

a � ?
b ? �

P Q

a � ?
b �

a. b. c.

The next example illustrates that this approach does not infer a preference when the
missing information is relevant. Consider Table 5b. In the situation that is worst for a
and best for b, b will be preferred because it has both attributes, while a only has P.
But in the other extreme situation, that is best for a and worst for b, a is preferred. This
means that in reality, anything is possible, and it is not safe to infer a preference.

We have seen when a preference for a over b can be inferred, and in which case no
preference can be inferred. There are, however, two more possibilities. One is the case
in which a preference of the most preferred completion of a over the least preferred
completion of b can be derived, but only equal preference between the least preferred
completion of a and the most preferred completion of b. This is illustrated in Table 5c.
In this case, we would like to derive at least a weak preference of a over b. This is
important, because in many cases a weak preference is strong enough to base a decision
on, even if a strict preference cannot be derived. When having to decide between a and
b, choosing a cannot be wrong when a is weakly preferred over b. Failing to derive a
weak preference makes a strategy less decisive.

The last possibility is equal preference. We only want to derive an equal preference
between two objects a and b if all possible completions of a are equally preferred as all
possible completions of b. This also means that the most and least preferred completions
of a and b have to be equally preferred. This can only be the case if all information about
a and b is known, for as soon as some information is missing, there will be multiple
possible completions which are not equally preferred.

5 Argumentation Framework for Incomplete Information

This section presents how our framework is extended to incorporate the decisive and
safe strategy for incomplete information as presented in Section 4.3. We first present
the changes to the language and then the changes to the inference rules. The defeat
definition does not have to change.

5.1 Language

To distinguish between the different completions of an object, we introduce a comple-
tion label. We use the object name without label to denote the object in general, that is,
the object with any completion. The superscript + is used for the most preferred com-
pletion of an object, − for the least preferred completion. For example, consider object
a in Table 5a. The most preferred completion of a has attribute R, and is denoted a+.
The least preferred completion of a does not have attribute R, and is denoted a−.

154 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 6. Inference schemes for incomplete information

1 has(ax, [P],0)
count(ax, [P],∅)

2a

∼ ¬P1(a) . . . ∼ ¬Pn(a) P1 ≈ . . . ≈ Pn

has(a+, [P1],n)
count(a+, [P1],{P1, . . .Pn})

2b

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

has(a−, [P1],n)
count(a−, [P1],{P1, . . .Pn})

3a

∼ ¬P1(a) . . . ∼ ¬Pn(a) P1 ≈ . . . ≈ Pn

count(a+, [P1],S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a+, [P1],{P1, . . . ,Pn})uc

3b

P1(a) . . . Pn(a) P1 ≈ . . . ≈ Pn

count(a−, [P1],S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a−, [P1],{P1, . . . ,Pn})uc

4

has(ax, [P],n) has(by, [P′],m) P ≈ P′ n > m

pref(ax,by)
prefinf(ax,by, [P])

5

has(ax, [Q],n) has(by, [Q′],m) Q ≈ Q′ � P n 	= m

prefinf(ax,by, [P]) is inapplicable
prefinf(ax,by, [P])uc

6

has(ax, [P],n) has(by, [P′],m) P ≈ P′ n = m

eqpref(ax,by)
eqprefinf(ax,by, [P])

7

has(ax, [Q],n) has(by, [Q′],m) Q ≈ Q′ 	≈ P n 	= m

eqprefinf(ax,by, [P]) is inapplicable
eqprefinf(ax,by, [P])uc

8 ∼ ϕ asm(∼ ϕ) 9

ϕ
asm(∼ ϕ) is inapplicable

asm(∼ ϕ)uc

10

pref(a−,b+)
pref(a,b) 11

eqpref(a−,b+) pref(a+,b−)
wpref(a,b)

12

eqpref(a+,b−) eqpref(a−,b+)
eqpref(a,b)

Reasoning with completions as discussed above can be viewed as a kind of assump-
tion-based reasoning. To be able to support such reasoning, we extend the language and
introduce weak negation, denoted by ∼, which is also used in [15]. This is used to for-
malize a kind of assumption-based reasoning. A formula ∼ ϕ can always be assumed,
but is defeated by ϕ (see the next section for the details). So the statement ∼ ϕ should
be interpreted as ‘ϕ cannot be derived’.

Finally, we add formulas of the type wpref(a,b) which express weak preference, just
as pref(a,b) and eqpref(a,b) express strict and equal preference, respectively. We use

Argumentation-Based Preference Modelling with Incomplete Information 155

Table 7. Example arguments

A:

Q(a)

has(a−, [Q],1) has(b+, [Q],0) Q ≈ Q 1 > 0

pref(a−,b+)

pref(a,b)

B:

P(a)

has(a−, [P],1)

∼ ¬Q(b)

has(b+, [Q],1) P ≈ Q 1 = 1

eqpref(a−,b+)

∼ ¬P(a) ∼ ¬Q(a) P ≈ Q

has(a+, [P],2)

Q(b)

has(b−, [Q],1) P ≈ Q 2 > 1

pref(a+,b−)

wpref(a,b)

weak preference in the sense that an object a is weakly preferred over an object b if any
completion of a is either preferred over or equally preferred as any completion of b, but
no strict or equal preference can be derived with certainty.

This leads to the following redefinition of the language.

Definition 7. (Language) Let P be a set of attribute names with typical elements P,Q,
and O a set of object names with typical elements a,b, and let n be a non-negative
integer, and x,y ∈ {+,−,{}} a label for objects (where {} means no label). The input
language LKB and full language L are defined as follows.

ϕ ∈ LKB ::= P(a) | ¬P(a) | P � Q | P ≈ Q

ψ ∈ L ::= ϕ ∈ LKB | pref(ax,by) | eqpref(ax,by) | wpref(ax,bb) | has(ax, [P],n) | ∼ ψ

5.2 Inferences

The inference rules of the extended framework are listed in Table 6. Two inference rules
are added that define the meaning of the weak negation ∼. According to inference rule
8, a formula ∼ ϕ can always be inferred, but such an argument will be defeated by an
undercutter built with inference rule 9 if ϕ is the case.

P is supposed to be among the attributes of the least preferred completion of a (a−)
only if it is known that a has P. This is modelled by inference rule 2b in Table 6. For the
most preferred completion of a, it is only required that it is not known that a does not
have P; if this is not known, a+ will be assumed to have P. This is modeled by using
premises of the form ∼ ¬P(a) instead of P(a). This can be seen in inference rule 2a.
Inference rules 4 through 7 remain unchanged, except that completion labels are added.

To infer overall preferences from the preferences over certain completions, three
more inference rules are defined. Inference rule 10 states that if (even) a− is preferred
over b+, then a must be preferred over b, as we saw above. When a+ is preferred
over b−, but a− is only equally preferred as b+, this not strong enough to infer a strict
preference of a over b, but we can infer a weak preference of a over b using inference
rule 11. Rule 12 states that in order to infer equal preference between a and b, both
the most preferred completion of a and the least preferred completion of b, and the
least preferred completion of a and the most preferred completion of b must be equally
preferred.

156 W. Visser, K.V. Hindriks, and C.M. Jonker

Example 4. In the case of Table 5a, argument A in Table 7 can be built. Argument B
shows that a weak preference can be inferred in the situation of Table 5c.

6 Conclusion

In this paper we have made the following contributions. Approaches based on argumen-
tation can be used to model qualitative multi-attribute preferences such as the lexico-
graphic ordering. The advantage of argumentation over other approaches emerges most
clearly in the case of incomplete information. Our approach allows to reason about
preferences from best- and worst-case perspectives (called completions here), and the
consequences for overall preferences.

In our current approach it is still often the case that no preference can be inferred.
What should we do in such a case? One approach is to ask the user for the missing
information. But the user might not have this information, and might not have the time
or resources to look it up. In some situations it might be fruitful to relax the notion of
safety, which we have used in a very strict sense here; a conclusion is only called safe if
it can be drawn in every possible situation. But we might want to draw a conclusion if it
follows in the most likely situation. Of course, to model this we need information about
the likelihood of situations. This could for example be modelled by a normality ranking
[3] or a possibility ranking [9]. Also, although general default assumptions are often
not safe, some domain-specific default assumptions may be safe enough. For example,
if nothing to the contrary is known, one may safely assume that a house has electricity.
Some default assumptions may be conditional, for example, a detached house usually
has a garden. One interesting extension therefore is to add such default reasoning and
more general reasoning about the beliefs of an agent to the framework. Default rules
(e.g. detached(a) ⇒ garden(a)) can be placed in the knowledge base. Next, an infer-
ence rule is needed that applies these rules and can infer garden(a) from detached(a)
and detached(a) ⇒ garden(a). Finally, a strength mechanism is needed, so that factual
information always defeats rebutting default assumptions (e.g. if ¬garden(a) is known
for a fact, then this defeats the conclusion garden(a) that was derived using a default
rule, but not vice versa).

In our future work we would like to distinguish more explicitly between mental
attitudes such as beliefs, goals, desires and preferences. This will also allow us to reason
about these attitudes, for example that a certain preference we have is based on some
specific beliefs. We hope to gain insight from modal preference languages with belief
operators such as the one presented in [13]. Other interesting areas for future work
include the representation of dependent preferences (e.g. ‘I only want a balcony if the
house does not have a garden, otherwise I do not care’), and the relation with e.g. CP-
nets [4] and value-based argumentation [11].

Finally, we believe that the argumentation-based framework for preferences pre-
sented here can be usefully applied in the preference elicitation process. It allows the
user to extend and refine the system representation of his preferences gradually and as
the user sees fit. To facilitate this elicitation process more research is needed on how
our framework can support a user e.g. by indicating which information is still missing.

Argumentation-Based Preference Modelling with Incomplete Information 157

Acknowledgements

This research is supported by the Dutch Technology Foundation STW, applied science
division of NWO and the Technology Program of the Ministry of Economic Affairs. It
is part of the Pocket Negotiator project with grant number VICI-project 08075.

References

1. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In: Proc.
ICMAS (2000)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelli-
gence 171, 619–641 (2007)

3. Boutilier, C.: Toward a logic for qualitative decision theory. In: Proc. KR, pp. 75–86 (1994)
4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-

resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21, 135–191 (2004)

5. Brewka, G.: A rank based description language for qualitative preferences. In: Proc. ECAI
(2004)

6. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelli-
gence 157(1-2), 203–237 (2004)

7. Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness
of propositional languages for preference representation. In: Proc. KR, pp. 203–212 (2004)

8. Doyle, J., Thomason, R.H.: Background to qualitative decision theory. AI Magazine 20(2),
55–68 (1999)

9. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory. In: Proc.
IJCAI (1995)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

11. Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting multiple
values. Int. J. of Approximate Reasoning 48, 730–751 (2008)

12. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-
offs. Cambridge University Press, Cambridge (1993)

13. Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis,
Universiteit van Amsterdam (2008)

14. Prakken, H.: A study of accrual of arguments, with applications to evidential reasoning. In:
Proc. ICAIL, pp. 85–94 (2005)

15. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

16. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. Knowledge Engineering Review 18(4), 343–375 (2004)

A Characterization of Mixed-Strategy Nash
Equilibria in PCTL Augmented with a Cost

Quantifier

Pedro Arturo Góngora and David A. Rosenblueth

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
Universidad Nacional Autónoma de México

A.P. 20-726, C.P. 01000, México D.F., México
pedro.gongora@gmail.com, drosenbl@servidor.unam.mx

Abstract. The game-theoretic approach to multi-agent systems has
been incorporated into the model-checking agenda by using temporal
and dynamic logic to characterize notions such as Nash equilibria. Re-
cent efforts concentrate on pure-strategy games, where intelligent agents
act deterministically guided by utility functions. We build upon this
tradition by incorporating stochastic actions. First, we present an exten-
sion of the Probabilistic Computation-Tree Logic (PCTL) to quantify
and compare expected costs. Next, we give a discrete-time Markov chain
codification for mixed-strategy games. Finally, we characterize mixed-
strategy Nash equilibria.

1 Introduction

As a decision theory for multi-agent settings, game theory is undoubtedly in
the interest of Computer Science and Artificial Intelligence. Recent works have
incorporated this interest into the model-checking agenda, characterizing var-
ious game-theoretic notions in temporal and dynamic logic (cf. [3,5,9]). These
works concentrate on pure-strategy games, where intelligent agents act deter-
ministically guided by utility functions. The focus has been on characterizing
notions such as Nash equilibria, Pareto optimality, and dominating/dominated
strategies. In this paper, we build upon this tradition by incorporating stochastic
actions, focusing on the characterization of mixed-strategy Nash equilibria for
finite strategic games.

Previous works include, but are not limited to, characterizations of Nash equi-
libria. In [3] the author gives a characterization of backward induction predictions
(i.e., Nash equilibria for extensive-form games) using a branching-time logic.
In [5] the authors proceed in a similar vein, but using Propositional Dynamic
Logic (PDL). Another similar approach is in [9], where the authors introduce
Alternating-Time Temporal Logic (ATL) augmented with a counterfactual op-
erator. This extension to ATL allows us to express properties such as “if player 1
committed to strategy a, then ϕ would follow”. Counterfactual reasoning is then
used to characterize Nash equilibria for strategic-form games. Further works em-
phasize other game-theoretic notions, such as automated mechanism-design (cf.

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 158–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Characterization of Mixed-Strategy Nash Equilibria 159

[8,10]). None of these previous works handle mixed strategies. In [2], the authors
make a quantitative analysis of a bargaining game, but do not provide a char-
acterization of Nash equilibria. In [6], the author provides a characterization of
Nash equilibria using a multi-valued temporal logic.

We start from Probabilistic Computation-Tree Logic (PCTL, [4]) augmented
with costs as our underlying framework and proceed as follows. First, we present
an extension of PCTL for quantifying the values in the expected-cost formulas
(e.g., in E��x[ϕ], x might be existentially or universally quantified). Next, we
give a discrete-time Markov chain codification of a finite strategic game. The
codification consists in unfolding the outcomes of a game, under a mixed-strategy
profile, into a treelike structure that models the possibilities of action for each
agent. Finally, we give a simple formula of the extended logic characterizing
Nash equilibria under our codification.

The rest of the paper is organized as follows. Section 2 is devoted to presenting
all the definitions used from game theory. In Sect. 3 we introduce discrete-time
Markov chains and PCTL with costs. In Sect. 4 we present the cost-quantifier
extension to PCTL and discuss its model checking. In Sect. 5 we present the
game codification on Markov chains, a characterization of a Nash equilibrium,
and prove its correctness. We finish with some final thoughts and a discussion
of future and related work.

2 Strategic Games

Game theory studies the interaction between rational agents. Here, rationality is
directly related to the maximization of utility. A game is just a formal description
of that interaction. We will deal with games in which the sets of possible actions
are those of individual players, sometimes called non-cooperative. For brevity,
we will refer to non-cooperative games simply as games.

Of the two formalizations for games, strategic and extensive games, we will use
the former. There exist several concepts of solution for games of which, arguably,
the most widely known is that of Nash equilibrium. Broadly speaking, a Nash
equilibrium is characterized by the decisions made by all players of a game, such
that no player can increase her/his payoff by taking another action, assuming
that every other player will stick to her/his decision.

This section is based on the first chapters of [7], to where we refer the reader
for a more thorough discussion.

Definition 1 (Finite Strategic Game). A finite strategic game is a structure:

G = 〈N, {Ai}i∈N , {ui}i∈N 〉

where N = {1, . . . , n} is a finite set of n agents, Ai is a finite set of the pure
strategies of agent i, ui : A → IR is the payoff or utility function of agent i, and
A = ×i∈NAi is the set of all pure-strategy profiles of G.

Example 1 (Bach or Stravinsky). Consider the game known as Bach or Stravin-
sky (BoS) for players 1 and 2. The players wish to decide which concert to go to,

160 P.A. Góngora and D.A. Rosenblueth

Bach or Stravinsky. Player 1 prefers twice as much Bach, while player 2 prefers
twice as much Stravinsky. Both players prefer to go to either concert over dis-
agreement. Each player makes her/his choice independently of the other but
accounting that preferences are common knowledge among them. Two-player fi-
nite strategic games can be described using payoff matrices. The matrix shown in
Fig. 1 defines the utility functions for BoS, e.g., u1(B1, B2) = 2, u2(B1, B2) = 1.

B2 S2

B1 2, 1 0, 0

S1 0, 0 1, 2

Fig. 1. Payoff matrix for the strategic game BoS

We use the following notational conventions. We use Latin letters a and a′

to range over the set A of strategy profiles. If a is a strategy profile, we use ai

to refer to the strategy of agent i specified in a. Also, as a notational abuse, we
denote with a−i the strategy profile which specifies the strategies of every agent
but i, such that if ai ∈ Ai, then (a−i, ai) ∈ A. We also assume that Ai sets are
pairwise disjoint and, when it is clear, we will identify a strategy profile a ∈ A
with another n-tuple a′ iff they contain exactly the same elements regardless of
the order.

Definition 2 (Best-Response Strategy and Nash Equilibrium). Given a
finite strategic game G = 〈N, {Ai}i∈N , {ui}i∈N〉, we say that a strategy ai is a
best-response to strategy profile a iff ui(a−i, ai) ≥ ui(a−i, a

′
i) for each a′

i ∈ Ai.
We say that a strategy profile a is a Nash Equilibrium of G iff every strategy ai

such that a = (a−i, ai) is a best-response to a itself.

Consider the previous definition and the matrix in Fig. 1. We can easily verify
that both strategy profiles (B1, B2) and (S1, S2), are Nash equilibria of BoS
(Example 1).

Definition 3 (Mixed Extension of a Game). Let Δ(B) be the set of all
probability distributions over the finite set B. For any finite strategic game:

G = 〈N, {Ai}i∈N , {ui}i∈N 〉

we define its mixed extension as the structure:

Ĝ = 〈N, {Δ(Ai)}i∈N , {Ui}i∈N〉

where Δ(Ai) is the set of all the mixed-strategies of player i, Ui : Â → IR is the
mathematical expectation of utility with respect to the probability measure induced
by a mixed-strategy profile, and Â = ×i∈NΔ(Ai) is the set of all mixed-strategy
profiles of Ĝ.

A Characterization of Mixed-Strategy Nash Equilibria 161

We use Greek letters α and α′ to range over Â. All other notational conventions
for pure-strategy games are used as well for their mixed extensions. As αi is a
probability distribution over Ai, we use αi(ai) to denote the probability assigned
by αi to the event that pure strategy ai is selected. For a mixed strategy αi, the
set of elements of Ai to which αi assigns probability greater than 0 is called the
support of αi. We denote by supp(αi) the subset of Ai whose elements are in
the support of mixed strategy αi. We say that a mixed strategy αi degenerates
to a pure strategy ai iff it assigns probability 1 to the event ai (i.e., αi(ai) = 1).
Finally, we say that mixed-strategy profile α is a Nash equilibrium of a game G
if it is a Nash equilibrium of its mixed extension Ĝ.

The expected utility under some mixed-strategy profile is the mean value of
such a utility. For some mixed-strategy profile α and player i the utility function
is determined by:

Ui(α) =
∑
a∈A

pα(a)ui(a)

pα(a) =
∏
j∈N

αj(aj)

The following theorem provides a useful characterization of Nash equilibria. See
Lemma 33.2 in [7, p. 33] for a similar characterization and a proof for the if
direction.

Theorem 1. Given any finite strategic game G = 〈N, {Ai}i∈N , {ui}i∈N 〉, a
mixed-strategy profile α ∈ Â is a Nash equilibrium of G iff the following two
conditions hold for each player i ∈ N :

1. The equality Ui(α−i, ai) = Ui(α−i, a
′
i) holds for each (degenerate strategy)

ai and a′
i in supp(αi).

2. The inequality Ui(α) ≥ Ui(α−i, ai) holds for each (degenerate strategy) ai in
Ai − supp(αi).

Consider again the matrix in Fig. 1. We can use Theorem 1 to verify that
the mixed-strategy profile α =

((2
3 , 1

3

)
,
(1

3 , 2
3

))
is a Nash equilibrium for BoS.

For example, for player 1, we replace α1 with one of the degenerate mixed-
strategies that assigns probability 1 to B1 or S1, and compare the expected
utility in both cases. For B1 = (1, 0) and S1 = (0, 1) we have: U1

(
B1,

(1
3 , 2

3

))
=

U1
(
S1,

(1
3 , 2

3

))
= 2

3 . We can follow the same procedure for player 2 to conclude
that α is a Nash equilibrium for BoS.

3 Markov Chains and PCTL

PCTL formulas describe qualitative and quantitative properties of probabilistic
systems, sometimes modeled as Markov chains. These formulas address proper-
ties such as “the probability of getting p satisfied is at least one half ”, or “the
expected cost (or reward) of getting p satisfied is at most 10”. This section has

162 P.A. Góngora and D.A. Rosenblueth

the purpose of introducing Markov chains and PCTL. We first introduce Markov
chains, that will serve as the semantic model for PCTL formulas. Next, we intro-
duce PCTL syntax and satisfaction. For details on the material presented in this
section, we refer the reader to the original paper [4], and also to the book [1].

Definition 4 (Discrete-Time Markov Chain). A Discrete-Time Markov
Chain (DTMC) is a structure:

M = 〈S, sinit,P,C,AtProp, �〉

where S is a finite set whose elements are called states, sinit is a distinguished
element of S which is called the initial state, P : S × S → [0, 1] is a transition
probability function, such that for any state s ∈ S,

∑
s′∈S P(s, s′) = 1, C : S →

[0, ∞) is a cost function, AtProp is a set of countably many atomic propositions,
and � : S → 2AtProp is a labelling function that marks each state in S with a
subset of AtProp.

PostM (s) = {s′ | P(s, s′) > 0} is the set of states which are possible to visit
from s in one step. A path of a DTMC M is a possibly infinite sequence of states
π = s0s1 · · · such that for any si and si+1, P(si, si+1) > 0. A path is finite if
the sequence is finite. We denote by PathsM the set of all infinite paths of M ,
and by Pathsfin

M the set of all finite paths of M . Given a path π = s0s1 · · · si · · · ,
we use π[i] = si to refer to the ith element of π, and π[0, i] to refer to the
finite prefix s0 · · · si of π. The set PathsM (s) = {π | π ∈ PathsM and π[0] = s}
denotes the set of all infinite paths of M beginning with s. Similarly, the set
Pathsfin

M (s) = {π | π ∈ Pathsfin
M and π[0] = s} denotes the set of all finite paths

of M beginning with s.
For any finite path π, the cylinder set of π is the set Cyl(π) = {π′ ∈ PathsM |

π′ has the prefix π}. The probability measure Prs associated with a DTMC M
and state s is that of the smallest σ-algebra Σs that contains all the cylinder
sets Cyl(π), for π ∈ Pathsfin

M (s). For finite paths π = s0 · · · sn, the probability of
π is defined as P(π) =

∏
i<n P(si, si+1). The probability of Cyl(π) under Prs

is determined by Prs(Cyl(π)) = P(π). Let {Ci}i∈I be a collection of pairwise
disjoint cylinder sets for some countable index I. The probability of the countable
union

⋃
i∈I Ci is determined by Prs

(⋃
i∈I Ci

)
=

∑
i∈I Prs(Ci).

The application C(s) for some s in DTMC M denotes the cost (or reward,
depending on the model in consideration) gained at leaving state s. Then, for any
finite π = s0 · · · sn in Pathsfin

M the cumulative cost of π is defined by CostM (π) =∑
0≤i<n C(si). Note that the cost of leaving the last state of a path is not in the

sum, and that for paths consisting of a single state s, CostM (s) = 0.
For an infinite path π ∈ PathsM (s) and A ⊆ S, we define the cumulative cost

of reaching a state in A as:

CostM (π, A) =
{

CostM (π[0, n]) if ∃n ≥ 0 : π[n] ∈ A ∧ ∀0 ≤ i < n : π[i] 	∈ A
∞ otherwise

For some state s and A ⊆ S, we define the set {s |= FA} of all finite paths
π = s0 · · · sn, such that s0 = s, sn ∈ A and ∀0 ≤ i < n : si 	∈ A. Note that

A Characterization of Mixed-Strategy Nash Equilibria 163

the set {s |= FA} is measurable, therefore Prs({s |= FA}) is the probability
of reaching a state in A from s. We now define the expected cumulative cost of
reaching a state in A from s as:

ExpCostM (s, A) =
{∑

π∈{s|=FA} P(π)CostM (π) if Prs({s |= FA}) = 1
∞ otherwise

Definition 5 (PCTL Well-formed Formulas). The set of well-formed for-
mulas ϕ of PCTL for some countable set of atomic propositions AtProp is defined
as the set generated by the following BNF grammar:

ϕ ::= �
∣∣ p

∣∣ ¬ϕ
∣∣ (ϕ ∧ ϕ)

∣∣ P��a[τ]
∣∣ E��c[ϕ]

τ ::= Xϕ
∣∣ ϕ U ϕ

where p ∈ AtProp, a ∈ [0, 1], c ∈ [0, ∞) and �� ∈ {<, >, ≤, ≥}.

PCTL formulas describe properties of the infinite computations of a probabilistic
system. We can study two classes of formulas: path or temporal formulas and
state formulas. Path formulas inherit their meaning from LTL. Xϕ is satisfied by
paths in which the next state satisfies ϕ. ϕ U ψ is satisfied by paths where there
exists a future or present state that satisfies ψ, while all the previous states
satisfy ϕ. State formulas inherit their meanings from CTL. The formula � is
satisfied by every DTMC at every state. The formulas ¬ϕ, for negation, and
(ϕ ∧ ψ), for conjunction, have their usual meanings. The CTL path quantifiers
are replaced with the operator P . A formula P��a[τ] means that the probability
of the temporal formula τ being satisfied is �� a. E��c[ϕ] is satisfied at states
where the expected cost of reaching another state where ϕ is satisfied is �� c.

The other connectives from the propositional logic are defined as usual:

⊥ = ¬�
(ϕ ∨ ψ) = ¬(¬ϕ ∧ ¬ψ)

(ϕ → ψ) = (¬ϕ ∨ ψ)
(ϕ ↔ ψ) = ((ϕ → ψ) ∧ (ψ → ϕ))

where ⊥ is not satisfied by any DTMC at any state, (ϕ ∨ ψ) is a disjunction,
(ϕ → ψ) is a material implication and (ϕ ↔ ψ) is a biconditional.

We also define the following derived formulas:

P��a[Fϕ] = P��a[� U ϕ]
P��a[Gϕ] = P��1−a[F¬ϕ]

P=a[τ] = (P≥a[τ] ∧ P≤a[τ])
E=a[ϕ] = (E≥a[ϕ] ∧ E≤a[ϕ])

where < = >, > = <, ≤ = ≥ and ≥ = ≤. The derived path formulas also inherit
their meanings from LTL. Fϕ is satisfied by paths where there exists a future
or present state that satisfies ϕ. Gϕ is satisfied by paths where ϕ is satisfied at
every state of the path.

164 P.A. Góngora and D.A. Rosenblueth

Definition 6 (PCTL Satisfaction). Let M = 〈S, sinit,P,C,AtProp, �〉 be a
DTMC. The satisfaction relation |= between pairs (M, s) with s ∈ S and well-
formed formulas with atomic propositions in AtProp is defined as the smallest
relation such that:

(M, s) |= �
(M, s) |= p ⇔ p ∈ �(s) (p ∈ AtProp)
(M, s) |= ¬ϕ ⇔ (M, s) 	|= ϕ

(M, s) |= (ϕ ∧ ψ) ⇔ (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= P��a[τ] ⇔ ps(τ) �� a

(M, s) |= E��c[ϕ] ⇔ es(ϕ) �� c

where the functions ps(τ) and es(ϕ) are the following:

ps(τ) = Prs({π ∈ PathsM (s) | π |= τ})
es(ϕ) = ExpCostM (s, {s′ | (M, s′) |= ϕ})

Prs is the probability measure described before and the relation |= between paths
in PathsM and temporal formulas is defined as:

π |= Xϕ ⇔ π[1] |= ϕ

π |= ϕ U ψ ⇔ ∃n ≥ 0 : ∀i < n : π[i] |= ϕ ∧ π[n] |= ψ

If there is some ϕ such that (M, sinit) |= ϕ, then we say that ϕ is initially
satisfied, and write M |= ϕ.

Note that the set {π ∈ PathsM (s) | π |= τ} is a measurable set. The case
τ = Xϕ is straightforward. When τ = ϕ U ψ, the set coincides with the countable
union of cylinder sets Cyl(π′), for finite prefix π′ of π such that only its last state
sn satisfies ψ, and all its previous states si satisfy ϕ.

Example 2 (Simple protocol). Let M be the DTMC depicted in Fig. 2. This
example models a simple protocol for sending a message through an unreliable
channel [1]. After sending the message, a failure may occur with probability 0.1.
In such a case, the protocol only dictates to try again. Consider the following:

– There are infinitely many possible paths from the initial state s0 to the state
s3 (representing that the message is delivered). For example:

π0 = s0s1s3

π1 = s0s1s2s0s1s3

π2 = s0s1s2s0s1s2s0s1s3

– Each prefix spans a cylinder set. Therefore, it is possible to measure its
probability. For example:

Pr s0(Cyl(π0)) = 0.9
Pr s0(Cyl(π1)) = 0.1 · 0.9

Pr s0(Cyl(π2)) = (0.1)2 · 0.9

A Characterization of Mixed-Strategy Nash Equilibria 165

– The probability of delivering the message, ps0(Fdelivered), is the (infinite)
sum of the probabilities of each cylinder:

ps0(Fdelivered) = 0.9 + (0.1)1 · 0.9 + (0.1)2 · 0.9 + · · · = 1

This fact is expressed in PCTL as follows:

(M, s0) |= P=1[Fdelivered]

– For this model, the cumulative cost of a path where the message is eventually
delivered (i.e., the path reaches s3) counts the number of tries. For example:

CostM (π0) = 1
CostM (π1) = 2
CostM (π2) = 3

– The expected cost of reaching s3 is calculated by the following sum:

es0(delivered) = 1 · 0.9 + 2 · (0.1)1 · 0.9 + 3 · (0.1)2 · 0.9 + · · · = 1
1
9

This value represents the average number of tries for the message to be
delivered. Also, this fact is expressed in PCTL as follows:

(M, s0) |= E=1 1
9
[delivered]

s0 s1

s2

s3

{try}
{fail}

{delivered}

1
0.1

0.9

1

1

s C(s)

s0 1
s1 0
s2 0
s3 0

Fig. 2. Sending a message through an unreliable channel

If a DTMC is reduced to a Kripke structure, the PCTL formula P>0[τ] is
equivalent to the CTL formula ∃τ . On the contrary, the PCTL formula P=1[τ]
is not equivalent to the CTL formula ∀τ . See the example above: there is an
infinite path never reaching a delivered -state, although P=1[Fdelivered] holds.

Given a DTMC M , a state s of M and a PCTL formula ϕ, the problem of
deciding whether (M, s) |= ϕ is called the PCTL model-checking problem. The
basic algorithm for solving the model-checking problem consists in recursively
computing the set Sat(ϕ) = {s ∈ S | (M, s) |= ϕ}. The computation of Sat for
atomic formulas is given by the labelling function �. Only basic set operations
are needed for computing Sat for formulas with basic logical connectives. The

166 P.A. Góngora and D.A. Rosenblueth

computation of Sat for formulas P��[τ] and E��[ϕ] involves the calculation of
reachability probabilities and expected costs for every state. These tasks can be
reduced to the problem of finding a solution to a system of linear equations. We
cannot give a detailed explanation of these algorithms here; for the details we
refer the reader to [4,1].

4 A Cost Quantifier for PCTL

In this section, we present the language of Cost-Quantified PCTL (CQ-PCTL).
CQ-PCTL extends its ancestor by adding the possibility to quantify the values of
the expected cost operator. The model-checking algorithm, however, is limited to
formulas satisfying a syntactic constraint: the occurrence of quantified variables
cannot be nested. We first define the syntax of the modified language, followed
by the algorithm for model checking.

The syntax of CQ-PCTL is almost the same as that of PCTL. We modify
the definition of expected cost formulas and add an extra clause to the grammar
defining the syntax of PCTL formulas.

Definition 7 (CQ-PCTL Well-formed Formulas). For some countable set
of atomic propositions AtProp and some set V ar of countably many variable
names, the set of the well-formed formulas ϕ of CQ-PCTL is defined as the set
generated by the following BNF grammar:

ϕ ::= �
∣∣ p

∣∣ ¬ϕ
∣∣ (ϕ ∧ ϕ)

∣∣ P��a[τ]
∣∣ E��c[ϕ]

∣∣ ∃x.ϕ

τ ::= Xϕ
∣∣ ϕ U ϕ

where p ∈ AtProp, a ∈ [0, 1], c ∈ ([0, ∞)∪V ar), x ∈ V ar and �� ∈ {<, >, ≤, ≥}.

From the basic syntax we can derive the universal quantifier:

∀x.ϕ = ¬∃x.¬ϕ

Also, we say that a variable x occurs free in ϕ if x does not occur under the
scope of an existential or universal quantifier; otherwise we say that x is bound.
For a formula ϕ, we say that it has no nested variables if for any subformula
E��x[ψ] of ϕ: (i) the set of free variables of ψ contains at most x and (ii) the set
of bound variables of ψ is empty. A formula with no free variables is called a
sentence.

Remark 1. In the rest of this paper we will assume that formulas are sentences
without nested variables.

We now define the satisfaction relation for CQ-PCTL. Because of remark 1, it
is sufficient to incorporate a new clause to the PCTL satisfaction definition for
treatment of the new existential formulas.

A Characterization of Mixed-Strategy Nash Equilibria 167

Definition 8 (CQ-PCTL Satisfaction). The satisfaction relation is defined
as follows for the new formulas:

(M, s) |= ∃x.ϕ ⇔ there exists c ∈ [0, ∞) such that (M, s) |= ϕ[x := c]

where ϕ[x := c] is the syntactic substitution replacing all the free occurrences of
the variable x in ϕ by the non-negative real c. The satisfaction for the rest of
the formulas is defined as for PCTL.

Before presenting the model-checking algorithm for CQ-PCTL, it is necessary
to introduce a transformation for the subformulas of ∃x.ϕ so as to eliminate
negative formulas. This is done by transforming ϕ into its Positive Normal Form
(PNF) [1].

Definition 9 (Positive Normal Form). A formula ϕ is non-negative iff ϕ 	=
¬ϕ′ for some ϕ′. Also, we say that ϕ is in Positive Normal Form if ϕ, and all of
its subformulas, excepting atomic propositions and the constants � and ⊥, are
non-negative.

Note that it is possible to transform every formula into another equivalent for-
mula in PNF. This can be done by (i) introducing the constant ⊥, the dis-
junction, and the universal quantifier into the base syntax; (ii) applying De
Morgan’s and double negation Laws; and (iii) applying the following additional
equivalences:

¬P��a[τ] ⇔ P¬��a[τ] (1)
¬E��c[ϕ] ⇔ E¬��c[ϕ] (2)

where ¬< = ≥, ¬> = ≤, ¬≤ = > and ¬≥ = <.1 Also, we will use PNF (ϕ) to
denote a PNF formula equivalent to ϕ.

The readers familiar with CTL may notice that the release operator R (dual
of U) is not included in the basic language. The R operator is necessary for
defining PNF for CTL, but not for (CQ-)PCTL. The reason is that in (1) the
negation is absorbed by the predicate �� a. Leaving out the R operator does not
alter the expressiveness of (CQ-)PCTL in PNF. Despite this fact, the CQ-PCTL
model-checking algorithm must take into account these implicit negations.

For their shared formulas, the model-checking algorithm for CQ-PCTL is
essentially the same as for PCTL. In the rest of this section we will only present
the method for calculating the set Sat(∃x.ϕ) for the new quantified formulas.

The algorithm for computing Sat(∃x.ϕ) consists of two steps. The first step
computes a set I(∃x.ϕ) of intervals. These intervals are constraints that a value
c assigned to x must satisfy for ϕ[x := c] being satisfied at some state in S. The
second step consists of several attempts to compute Sat(ϕ[x := c]), each attempt
using a value for c taken from an interval obtained beforehand.

1 Note that ¬�� negates ��, while the �� notation from Sect. 3 indicates inverting the
direction of ��.

168 P.A. Góngora and D.A. Rosenblueth

The application I(∃x.ϕ) = i(x, ϕ) of Def. 10 below builds a set containing
intervals of real numbers. The values c in these intervals may cause ϕ[x := c]
to be satisfied. Moreover, this set is constructed in such a way that if there is a
satisfying c (i.e., ϕ[x := c] is satisfiable at some state), then there is an interval
A such that c ∈ A ∈ i(x, ϕ). In such a case, it is also important that the interval
contains only satisfying values (Theorem 2), for we have to choose just one of
the possibly infinitely many values in the interval.

Definition 10 (Set I(∃x.ϕ)). Given a DTMC M = 〈S, Sinit,P,C,AtProp, �〉
and a CQ-PCTL existential formula in PNF ∃x.ϕ, the set I(∃x.ϕ) = i(x, ϕ) of
intervals of non-negative reals is inductively constructed by the following defini-
tion:

i(x, l) = {[0, ∞)} (where l ∈ AtProp ∪ {�, ⊥})
i(x, ¬p) = {[0, ∞)} (where p ∈ AtProp)

i(x, (ψ ∨ ψ′)) = i(x, ψ) ∪ i(x, ψ′)
i(x, (ψ ∧ ψ′)) = {A ∩ B | A ∈ i(x, ψ), B ∈ i(x, ψ′)}
i(x, E��x[ψ]) = {i(s, x, E��x[ψ]) | s ∈ S}
i(x, E��a[ψ]) = ‖(i(x, ψ)) ∪ ‖(i(x,PNF (¬ψ)))

i(x, P��a[Xψ]) = ‖(i(x, ψ)) ∪ ‖(i(x,PNF (¬ψ)))
i(x, P��a[ψ U ψ′]) = {A ∩ B | A ∈ ‖(i(x, ψ)), B ∈ ‖(i(x, ψ′)})

∪ {A ∩ B | A ∈ ‖(i(x,PNF (¬ψ))), B ∈ ‖(i(x,PNF (¬ψ′))})

where i(s, x, E��x[ψ]) = {r ∈ [0, ∞) | es(ψ) �� r} and ‖(I) =
{⋂

X | X ∈ 2I
}

for
I a set of intervals and

⋂
∅ = [0, ∞).

The set i(x, ϕ) is constructed inductively. At the basis of the induction there
are the atoms and the formulas E��xψ. The atoms do not pose any constraints
on the values assignable to x. For E��xψ, the computation of the bounds for the
required intervals is straightforward using the PCTL model-checking algorithm.
For disjunctions, the set interval may be in the union of the sets calculated
for both disjuncts. The case of conjunction is more complicated: if there is a
satisfying c, then c must be at the same time in one interval calculated for each
one of the conjuncts. For the formulas E��a[ψ] (resp. P��a[τ]), a similar reasoning
to that for the conjunctions is made. If there is a c such that ψ[x := c] (resp.
τ [x := c]) satisfies the given predicate at each state of some subset of S, then c
may need to be contained in several of the intervals calculated for the immediate
subformulas of ψ (resp. τ).

Note that, because (1) and (2), the formulas E��a[ψ] and P��a[τ] may represent
an implicit negation contained in their predicate �� a. For this reason, the algo-
rithm must search for values that may satisfy the complementary paths when
the immediate subformulas are negated.

Also, observe that the intersection
⋂

∅ in Def. 10 is not the same as ∅ ∩ ∅. On
the one hand,

⋂
∅ represent a constraint posed by the empty set of states. On

the other hand, ∅ ∩ ∅ is the intersection of the empty set with itself.

A Characterization of Mixed-Strategy Nash Equilibria 169

Example 3 (Interval computation). Let M be the DTMC depicted in the left
panel of Fig. 3. Using the PCTL model-checking algorithm it is possible to
compute the expected costs of reaching s3 and s4 (characterized by atoms p and
q, resp.). These values are shown in the table in the right panel of the same
figure. Consider the following examples:

– Given the values in the table we can compute the following sets:

i(x, E≥x[p]) = {[0, 10], [0, 5], [0, 0], [0, ∞)}
i(x, E≤x[q]) = {[20, ∞), [15, ∞), [10, ∞), [0, ∞)}

The intervals in these sets give a direct solution to the question of whether
(M, s) |= ∃x.E≥x[p] or (M, s) |= ∃x.E≤x[q] hold for some s.

– Let ϕ = P=0.2[E≥x[p] U E≤x[q]] (for simplicity, assume that P=a[τ] is primi-
tive in the basic language). The only assignable value to x making (M, s0) |=
∃x.ϕ to hold is 10. This value makes the path π = s0s2s3 . . . satisfy the until
subformula. The first two states of π satisfy the left part of the until, whereas
the third state of π satisfies the right part. The satisfying value is computed
as the intersection [10, 10] = [0, 10] ∩ [10, ∞) where:

[0, 10] ∈ ‖(i(x, E≥x[p])) (because of s0 and s2)
[10, ∞) ∈ ‖(i(x, E≤x[q])) (because of s3)

– Consider the problem of whether (M, s0) |= ∃x.¬ϕ holds. Transforming
to PNF we have: PNF (¬ϕ) = P =0.2[E≥x[p] U E≤x[q]]. The previous so-
lution makes the probability of the satisfying path equal to 0.2, but the
problem ask for other complementary values of x. Following this reasoning,
the algorithm tries to calculate intervals for complementary paths satisfying
E<x[p] U E>x[q]. One solution is the interval (20, ∞) = [0, ∞) ∩ (20, ∞) such
that:

[0, ∞) ∈ ‖(i(x, E<x[p])) (because of the empty set)
(20, ∞) ∈ ‖(i(x, E>x[q])) (because of s0)

A value c from this interval never satisfies the original until, thus ps0(E≥c[p] U
E≤c[q]) = 0 	= 0.2, satisfying the predicate.

The following theorem states the property necessary for using the set I(∃x.ϕ)
in the model-checking algorithm.

Theorem 2. Let M be a DTMC, s a state of M , and ∃x.ϕ a CQ-PCTL formula
in PNF. Then, for all c ∈ [0, ∞) the following two conditions hold:

1. If (M, s) |= ϕ[x := c], then there exists A ∈ i(x, ϕ) such that c ∈ A and for
all c′ ∈ A, (M, s) |= ϕ[x := c′]

2. If (M, s) 	|= ϕ[x := c], then there exists A ∈ i(x,PNF (¬ϕ)) such that c ∈ A
and for all c′ ∈ A, (M, s) |= PNF (¬ϕ)[x := c′].

170 P.A. Góngora and D.A. Rosenblueth

s0

s1

s2

s3 s4

{p} {q}0.8

0.2

1

1
1

1

s C(s) es(p) es(q)

s0 4 10 20
s1 5 5 15
s2 10 10 20
s3 11 0 10
s4 0 ∞ 0

Fig. 3. DTMC model for Example 3 and some expected costs

Theorem 2 suggests the last step of the algorithm. Given a CQ-PCTL formula
in PNF ∃x.ϕ, we build the set Sat(∃x.ϕ) as follows:

Sat(∃x.ϕ) =
⋃

A∈I(∃x.ϕ)

{Sat(ϕ[x := c]) | c ∈ A}

Note that Theorem 2 also implies that it suffices to choose a single c from each
interval A.

The basic algorithm presented here can be easily extended to the case where
the values of P��a formulas are also quantified. Also, it is possible to extend
the results of this section to the general case of formulas, not only sentences, by
enriching the models with variable-interpretation functions. For clarity, however,
we restrict ourselves to sentences.

Some nesting constraints (remark 1) can be weakened, as long as there are no
circular dependencies between the quantified variables. Nonetheless, the restric-
tion for arbitrary nesting cannot be lifted. For example, consider the following
simple sentence:

∃x. (ϕ[x] ∧ ∃y.(ψ[x, y]))

where ϕ[x] is a formula with free occurrences of x and ψ[x, y] is a formula with
free occurrences of both x and y. In this example, the problems of finding suitable
values for x and y may be mutually dependent. For arbitrary nesting levels the
problem may be even more complicated.

5 Model-Checking Games for Nash Equilibria

In this section, we show how to construct a DTMC MG,α for a finite strategic
game G and its mixed-strategy α. Although the construction is for strategic-form
games, it is based on extensive forms.

Extensive-form games differ from strategic-form ones in that the sequential-
ity of the actions is important. An extensive game can be described by a tree
structure. In a game tree each node represents the turn of only one player, and
for each possible action, such a tree has one arc to another player’s turn. In a
strategic game it is assumed that each agent executes her/his action indepen-
dently from and without knowing the other players’ actions. To model this in

A Characterization of Mixed-Strategy Nash Equilibria 171

an extensive game, states are grouped in such a manner that they represent the
next player’s uncertainty about previous actions (see Fig. 4 for an extensive form
of BoS; dotted lines group player 1 moves as a single state, as player 2 does not
know which action has been taken).

B1 S1

B1, B2 B1, S2 S1, B2 S1, S2

2, 1 0, 0 0, 0 1, 2

B1 S1

B2 S2 B2 S2

Fig. 4. An extensive form of BoS; utilities are shown under the leaf nodes

Given the game and the mixed-strategy profile, in our codification we build
a structure similar to an extensive-form tree. In the built structure each arc,
except the arcs leaving the root, is labelled with the probability that the mixed-
strategy profile assigns to that particular action. As we cannot group states in a
DTMC, we build one subtree for each player and each pure strategy. Each one
of these subtrees models the situation where player i chooses some strategy ai,
but the other players follow the mixed-strategy.

By proceeding in this manner, each leaf node corresponds to one strategy
profile of the strategic-form game. Consequently, each leaf node is associated
with its utility via the cost function C. As the cost function models the cost
of leaving the state, we need to add a fictitious absorbing node below the leafs,
representing the ending of the game.

Figure 5 illustrates one of the subtrees described above. Note that there
is exactly one path from s(i,ai) to the ending state, and going through each
strategy profile. The arcs of such a path are the probabilities assigned by the
mixed-strategy profile to that action. Hence, the expected cost coincides with
the expected utility. We can therefore use a cost-quantified formula to compare
expected costs and verify if Theorem 1 is applicable.

Definition 11 (DTMC Game Model). For any game:

G = 〈N, {Ai}i∈N , {ui}i∈N 〉

and a mixed-strategy profile α of its mixed extension Ĝ, we define the DTMC
MG,α as the structure:

MG,α = 〈S, sinit,P,C,AtProp, �〉

172 P.A. Góngora and D.A. Rosenblueth

sinit

s(i,ai)

s(i,ai,a′
−i

) s(i,ai,a′′
−i

) · · · s(i,ai,am
−i)

send

Fig. 5. After player i chooses strategy ai other players make their own decisions, thus
creating various strategy profiles

where the set of states is:

S = {sinit} ∪ {send} ∪ {sx}x∈Idx

Idx is the following index set:

Idx =
⋃
i∈N

ai∈Ai

{(i, ai), (i, ai, aj1), . . . , (i, ai, aj1 , . . . , ajm)

| jk ∈ N−{i}, jk < jk+1, and (ai, aj1 , . . . , ajm) ∈ A}

The probability transition function is defined by cases:

P(sinit, s(i,ai)) = 1/n for i ∈ N, ai ∈ Ai, n = |
⋃

j∈N

Aj |

P(s(x), s(x,aj)) = αj(aj) for j ∈ N, x ∈ Idx

P(s(i,a), send) = 1 for i ∈ N, a ∈ A

P(send, send) = 1
P(s, s′) = 0 otherwise

The cost function is defined as follows:

C(s(i,a)) = ui(a) for a ∈ A

C(s) = 0 otherwise

A Characterization of Mixed-Strategy Nash Equilibria 173

Finally, the set of atomic propositions and the labelling function are the follow-
ing:

AtProp = {end} ∪
⋃
i∈N

Ai

�(send) = {end}
�(s(i,ai)) = {ai} for i ∈ N, ai ∈ Ai

�(s) = ∅ otherwise

Remark 2. The cost function of a DTMC requires non-negative values. We thus
assume that games’ utility functions also assign non-negative values only. If this
is not the case, it is possible to add a constant sufficiently large to every value
returned by the ui functions, in order to make them non-negative. The addition
of such a constant does no affect any result, as we only compare the mean values
of utilities.

Example 4. (Model for BoS) The DTMC model M constructed for the game
BoS and the mixed-strategy profile α =

((2
3 , 1

3

)
,
(1

3 , 2
3

))
is depicted in Fig. 6.

We can verify the following facts:

(M, s(1,B1)) |= B1 ∧ E= 2
3
end (M, s(2,B2)) |= B2 ∧ E= 2

3
end

(M, s(1,S1)) |= S1 ∧ E= 2
3
end (M, s(2,S2)) |= S2 ∧ E= 2

3
end

For every player, all the pure strategies in the support of α yield the same payoff.
Then, by Theorem 1 α is a Nash equilibrium. We can characterize this fact with
a formula of CQ-PCTL:

(M, sinit) |= ∃x. (P>0[X (B1 ∧ E=xend)] ∧ P>0[X (S1 ∧ E=xend)])
∧ ∃x. (P>0[X (B2 ∧ E=xend)] ∧ P>0[X (S2 ∧ E=xend)])

The previous example shows how it is possible to characterize a mixed-strategy
Nash equilibrium of a game with CQ-PCTL. Although it is not the case in BoS,
by Theorem 1 we must verify that the expected cost is effectively a best response.
This is achieved by verifying that the expected cost of deviating from the profile
does not exceed that of the strategies in the support. The following definition
captures this constraint.

Definition 12 (Mixed-strategy Nash Equilibria Characterization). For
a DTMC game model MG,α, the CQ-PCTL characterization of a mixed-strategy
Nash equilibrium is the formula NEG,α defined as follows:

NEG,α =
∧
i∈N

∃x.
(
fsupp(αi) ∧ fsupp(αi)

)
fsupp(αi) =

∧
ai∈supp(αi)

P>0[X (ai ∧ E=xend)]

fsupp(αi) =
∧

ai∈supp(αi)

P>0[X (ai ∧ E≤xend)]

where supp(αi) denotes the complement of supp(αi).

174 P.A. Góngora and D.A. Rosenblueth

sinit

s(1,B1) s(1,S1) s(2,B2) s(2,S2)

s(1,B1,B2) s(1,B1,S2) s(1,S1,B2) s(1,S1,S2) s(2,B2,B1) s(2,B2,S1) s(2,S2,B1) s(2,S2,S1)

send

1
4

1
4

1
4

1
4

1
3

2
3

1
3

2
3

2
3

1
3

2
3

1
3

1 1 1 1 1 1 1 1

1

Fig. 6. DTMC for the game BoS and its mixed-strategy Nash equilibrium

Finally, we end this section stating a theorem asserting the correctness of the
whole construction.

Theorem 3. Let MG,α be a DTMC game model. The mixed-strategy profile α
is a Nash equilibrium of G if and only if MG,α |= NEG,α holds.

6 Conclusions

In this paper, we have addressed the problem of characterizing a mixed-strategy
Nash equilibrium using PCTL enriched with an expected-cost quantifier: CQ-
PCTL. Previous works include [3,5,9], where the authors give a characterization
of pure-strategy Nash equilibria and other game-theoretic notions using temporal
and dynamic logic. Our work also differs from [3,5] in that their characterization
is validity-based, whereas our characterization is satisfaction-based, making our
approach directly suitable for model-checking. In [2], the authors incorporate
stochastic actions. They provide a model for a bargaining game (Rubinstein’s
alternating offers negotiation protocol, see [7]). With this model, the authors use
PCTL formulas for making a quantitative analysis for several mixed strategies of
the game. They, however, do not provide characterizations for Nash equilibria.

There are two general routes for future research: one dealing with CQ-PCTL
and the other with its game-theoretic concepts.

As for the first route, recall that in Sect. 4 we presented an algorithm for
model-checking a fragment of CQ-PCTL. The whole language includes formu-
las with nested variables. The nested variables introduce circular dependencies
that our current algorithm cannot deal with. We do not know whether such an
algorithm exists. As for the complexity of our algorithm, we do know that in the
worst case it is exponential in the size of the formula. It is important to improve
on this bound, if possible.

A Characterization of Mixed-Strategy Nash Equilibria 175

It would also be desirable, in the spirit of this work, to address other game
solution concepts, such as evolutionary and correlated equilibria (cf. [7]). Be-
yond finite strategic games, it would be interesting to deal with other classes of
games, like Bayesian and iterated games. Finally, further investigation would be
necessary to determine if model-checking tools can be used to calculate solutions,
besides characterizing them.

There is an implementation of the CQ-PCTL model checker and DTMC game
construction of this paper written in the programming language Haskell. This
implementation can be obtained by request to the authors.

Acknowledgments. We thank IIMAS and UNAM for their facilities. Pedro Arturo
Góngora is sponsored by CONACyT. Finally, we also thank the anonymous
referees for their comments.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Ballarini, P., Fisher, M., Wooldridge, M.: Automated game analysis via probabilis-
tic model checking: a case study. In: Proceedings of the Third Workshop on Model
Checking and Artificial Intelligence, pp. 125–137 (2006)

3. Bonanno, G.: Branching time, perfect information games, and backward induction.
Games and Economic Behavior 36, 57–73 (2001)

4. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 102–111 (1994)

5. Harrenstein, P., van der Hoek, W., Meyer, J.-J., Witteveen, C.: On modal logic
interpretations of games. In: Proceedings of the Fifteenth European Conference on
Artificial Intelligence, pp. 28–32 (2002)

6. Jamroga, W.: A temporal logic for multi-agent mdp’s. In: Proceedings of the
AAMAS Workshop on Formal Models for Multi-Robot Systems, pp. 29–34 (2008)

7. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cam-
bridge, Massachusetts (1994)

8. Pauly, M., Wooldridge, M.: Logic for mechanism design — a manifesto. In: In
Proceedings of the 2003 Workshop on Game Theory and Decision Theory in Agent
Systems, GTDT 2003 (2003)

9. van der Hoek, W., Jamroga, W., Wooldridge, M.: A logic for strategic reasoning.
In: AAMAS 2005: Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 157–164. ACM, New York (2005)

10. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time:
Effectiveness, feasibility, and synthesis. Synthese 156(1), 1–19 (2007)

176 P.A. Góngora and D.A. Rosenblueth

A Proofs

Proof (Theorem 1). For the first part suppose that the equation Ui(α−i, ai) =
Ui(α−i, a

′
i) does not hold for some i. Then either side must be greater than the

other, but that contradicts the hypothesis of α being a Nash equilibrium, as i
could increase his/her expected utility by assigning more probability to the pure
strategy that increases his/her utility. The second part follows from the definition
of Nash equilibria. The converse is direct: if both parts hold for each i, then it
is impossible to increase some agent’s utility by increasing the probability for
some strategy (both parts show the worst-case probability of 1 for each strategy
and agent), hence the profile is a best-response to itself. ��

Proof (Theorem 2). We will show only the case when x occurs in ϕ. The proof
is by induction on ϕ.

– Case ϕ = ψ∨ψ′. Condition (1): the required interval A is in i(x, ψ)∪i(x, ψ′).
Condition (2): by the induction hypothesis we have corresponding intervals
A ∈ i(x,PNF (¬ψ)) and B ∈ i(x,PNF (¬ψ′)). Therefore the required interval
A ∩ B is in i(x,PNF (¬ψ) ∧ PNF (¬ψ′)).

– Case ψ ∧ψ′. Condition (1): by the induction hypothesis we have correspond-
ing intervals A ∈ i(x, ψ) and B ∈ i(x, ψ′). Therefore the required interval
A∩B is in i(x, (ψ ∧ψ′)). Condition (2): by the induction hypothesis we have
the corresponding intervals A ∈ i(x,PNF (¬ψ)) and B ∈ i(x,PNF (¬ψ′)).
Therefore the required interval is in i(x,PNF (¬ψ)) ∪ i(x,PNF (¬ψ′)).

– Case E��x[ψ]. Condition (1): direct by definition. Condition (2): also by def-
inition and the equivalence ¬E��x ⇔ E¬��x.

– Case E��a[ψ] (a 	= x). Condition (1): there are two subcases: (a) es(ψ) ∈
[0, ∞) and (b) es(ψ) = ∞. (a) There is a path from s to a state in the
nonempty set Sat(ψ[x := c]). By the induction hypothesis, for each state
sj in Sat(ψ[x := c]) there is a corresponding interval Aj . Then the required
interval for E��a[ψ] must be the intersection of some Aj intervals (contained in
‖(i(x, ψ))). (b) The set Sat(¬ψ[x := c]) is nonempty. Again by the induction
hypothesis, for each sj ∈ Sat(¬ψ[x := c]) there is a corresponding interval
Aj (contained in ‖(i(x,PNF (¬ψ)))). Condition (2): holds by the equivalence
¬E��a ⇔ E¬��a.

– Case P��a[Xψ]. Condition (1): there are two possibilities: (a) ps(Xψ[x :=
c]) �� a holds when ψ[x := c] is satisfiable at some states reachable from
s in one step, and (b) ps(Xψ) �� a holds when ψ[x := c] is not satisfiable
at some states reachable from s in one step. For (a) the required interval
is in ‖(i(x, ψ)). For (b) the required interval is in ‖(i(x,PNF (¬ψ))). Condi-
tion (2): holds by the equivalence ¬P��a ⇔ P¬��a.

– Case P��a[ψ U ψ′]. Condition (1): once again, ps(ψ U ψ′) �� a may hold
when either the subformulas are satisfiable or not. The first possibility is
included in {A ∩ B | A ∈ ‖(i(x, ψ)), B ∈ ‖(i(x, ψ′)}). The second and com-
plementary possibility is included in {A ∩ B | A ∈ ‖(i(x,PNF (¬ψ))), B ∈
‖(i(x,PNF (¬ψ′))}). Condition (2): holds by the equivalence ¬P��a ⇔ P¬��a.

��

A Characterization of Mixed-Strategy Nash Equilibria 177

Lemma 1. Let MG,α be a DTMC game model. For any player i ∈ N and any
strategy ai ∈ Ai, the equation Ui(ai, α−i) = ExpCostMG,α

(s(i,ai), send) holds.

Proof. Let a = (ai, aj1 , . . . , ajm) ∈ A be a profile such that its components follow
the constraints of the index Idx. From the definitions of S and P we have that
there is a unique path π = s(i,ai)s(i,ai,aj1) . . . s(i,ai,aj1 ,...,ajm)s{end}. For such a
path, we have that:

Prs(i,ai)(π) = P(π)

= P(s(i,ai), s(i,ai,aj1)) · · · P(s(i,ai,aj1 ,...,ajm), send)

=
∏
j∈N

αj(aj)

= pα(a)
CostMG,α(π) = C(s(i,ai)) + · · · + C(s(i,a))

= ui(a)

Moreover, the set of all such paths is equal to P(i,ai) = {s(i,ai) |= F{send}}.
Therefore:

ExpCostMG,α
(s(i,ai), {send}) =

∑
π∈P(i,ai)

P(π)CostMG,α(π)

=
∑
a∈A

pα(a)ui(a)

= Ui(α)

��

Proof (Theorem 3). We show the implication only in one direction (if); the
proof for the converse is similar. Suppose as a contradiction that the conse-
quent does not hold. Therefore, there must be some player i ∈ N for which
∃x.

(
fsupp(αi) ∧ fsupp(αi)

)
is not initially satisfied. It follows by Lemma 1 that for

any ai ∈ Ai, if u = Ui(ai, α−i), then (MG,α, s(i,ai)) |= ai∧E=uend holds (the first
conjunct by def. of � and the second conjunct by Lemma 1). Let c = Ui(ai, α−i)
for some ai ∈ supp(αi). Then, by the previous fact and Theorem 1, the formulas
fsupp(αi)[x := c] and fsupp(αi)[x := c] are both initially satisfied. A contradic-
tion. ��

On the Implementation of Speculative
Constraint Processing

Jiefei Ma1, Alessandra Russo1, Krysia Broda1

Hiroshi Hosobe2, and Ken Satoh2

1 Imperial College London, United Kingdom
{jm103,ar3,kb}@doc.ic.ac.uk

2 National Institute of Informatics, Japan
{hosobe,ksatoh}@nii.ac.jp

Abstract. Speculative computation has been proposed for reasoning
with incomplete information in multi-agent systems. This paper presents
the first multi-threaded implementation for speculative constraint pro-
cessing with iterative revision for disjunctive answers in master-slave
multi-agent systems.

1 Introduction

In the context of distributed problem solving with multi-agent systems, commu-
nication among agents plays a very important role, as it enables coordination
and cooperation between agents. However, in practice communication is not al-
ways guaranteed. For example, the physical channel may delay/lose messages, or
agents may break down or take unexpectedly long time to compute answers. More-
over, agents are often unable to distinguish between the above situations. All such
problems/uncertainties can seriously affect the system performance, especially for
result-sharing applications. For example, in a multi-agent scheduling problem, if
some agents cannot respond to the queries of their local resources in time, then
the computation of the overall resource assignment will be impossible or delayed.

Speculative computation has been proposed in [1,2,3,4,5] as a solution to the
problem. In the proposal, a master agent prepares default answers to the ques-
tions that it can ask to the slaves. When communication is delayed or failed, the
master can use the default answers to continue the computation. If later a real
answer is returned (e.g. the communication channel or the slave agent is recov-
ered), the computation already done by the master, which is using the default
answers, will be revised. One of the main advantages of speculative computation
relies then on the fact that the computation process of an agent is never halted
when waiting for other agent’s responses. Examples of real life situations where
speculative computation is useful can be found in [1,2,3,4,5].

Within the last few years, speculative computation has gone through vari-
ous stages of development and extensions. In [1] an abductive-based algorithm
has been proposed for speculative computation with yes/no answers for master-
slave systems. In [2], the algorithm has been generalised for hierarchical multi-
agent systems where agents are assumed to be organised into a hierarchy of

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 178–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Implementation of Speculative Constraint Processing 179

master/slaves. The method proposed in [2] also considers only yes/no type of
answers. This approach has been extended in [3] to allow more general queries,
whereby an agent can ask possible values or constraints of given queries, but
within the context of master-slave systems. This speculative constraint process-
ing takes into account the possibility that the agent’s response may neither entail
nor contradict the default answer assumed during the computation. In this case
the two alternative computations – the one that uses the default and the one
that uses the agent’s response – are maintained active. The approach described
in [3] assumes, however, that only the master agent can perform speculative
computation, and that the answer of a slave agent is therefore final and cannot
be changed during the entire computation. This limitation has been further ad-
dressed in [4], where asked agents may provide disjunctive answers to a query at
different times, and may also change the answers they have sent previously. In
this context, a dynamic iterative belief revision mechanism has been deployed
to handle chain reactions of belief revisions among agents involved in a compu-
tational process.

Among the operationalmodels proposed for speculative computation [1,2,3,4,6],
the one in [4] is the most complex but also the most powerful. A practical imple-
mentation for it is very much desired, not only for proof-of-context testing and
benchmark investigation, but also for discovering further improvements and/or
extensions of the model. The contribution of this paper is to provide the first multi-
threaded implementation of a multi-agent system for speculative disjunctive con-
straint processing. The system allows the master agent to performs speculative
computation locally (using multi-threading or-parallelism), and to ask constraint
queries to the slave agents. The speculative master agent is associated with one
manager thread (MT) and a set of worker threads (WT). The description of the
implementation given in the paper re-organises the operational model proposed
in [4] to distinguish the tasks of the MT and WTs. A concurrency control mech-
anism has been introduced to maximise the concurrent execution of the MT and
WTs. This implementation design is shown to be good enough to allow for future
extensions of the speculative framework to, for instance, hierarchical multi-agent
systems.

The paper is organised as follows. Section 2 briefly reviews the operational
model of speculative constraint processing presented in [4]. Section 3 describes
the multi-threaded implementation in details, as well as the solutions to sev-
eral concurrent computation issues. Section 4 compares the implementation to
the pseudo-parallel approach, and suggests a hybrid-implementation for situa-
tions where computational resources (for multi-threading) are limited. Finally,
conclusion and future work are given in Section 5.

2 Speculative Disjunctive Constraint Processing

In this section we review the framework of speculative constraint processing and
its operational model that has been proposed in [4].

180 J. Ma et al.

2.1 Speculative Constraint Processing Framework

Definition 1. Let Σ be a finite set of constants. We call an element in Σ a slave
agent identifier. An atom is of the form either p(t1, ..., tn) or p(t1, ..., tn)@S,
where p is a predicate, ti(1 ≤ i ≤ n) is a term, and S is in Σ.

We call an atom with an agent identifier an “askable atom”, and an atom without
an identifier a “non-askable atom”.

Definition 2. A framework for speculative constraint computation, in a master-
slave system, is a triple 〈Σ, Δ, P〉, where:

– Σ is a finite set of constants;
– Δ is a set of rules of the following form, called default rules w.r.t. Q@S:

Q@S ← C‖,

where Q@S is an askable atom, each of whose arguments is a variable, and
C is a set of constraints, called default constraints for Q@S;

– P is a constraint logic program, that is, a set of rules R of the form:

H ← C‖B1, B2, ..., Bn,

where:
• H is a non-askable atom; we refer to H as the head of R, denoted as

head(R);
• C is a set of constraints, called the constraints of R, and denoted as

const(R);
• each Bi of B1, ..., Bn is either an askable atom or a non-askable atom,

and we refer to B1, ..., Bn as the body of R denoted as body(R).

For the semantics of the above framework, we index the semantics of a constraint
logic program by a reply set, which specifies a reply for an askable atom.

Definition 3. A reply set is a set of rules in the form:

Q@S ← C‖,

where Q@S is an askable atom, each of whose arguments is a variable, and C is
a constraint over these variables.

Let 〈Σ, Δ, P〉 be a framework for speculative constraint computation, and R
be a reply set. A belief state w.r.t. R and Δ is a reply set defined as:

R ∪ {“Q@S ← C‖” ∈ Δ | ¬∃ C′ s.t. “Q@S ← C′‖” ∈ R}

and denoted as BEL(R, Δ).

We introduce the above belief state since, if the answer is not returned, we use
a default rule for an unreplied askable atom.

On the Implementation of Speculative Constraint Processing 181

Definition 4. A goal is of the form ← C‖B1, ..., Bn, where C is a set of con-
straints and the Bi’s are atoms. We call C the constraint of the goal and
B1, ..., Bn the body of the goal.

Definition 5. A reduction of a goal ← C‖B1, ..., Bn w.r.t. a constraint logic
program P, a reply set R, and an atom Bi, is a goal ← C′‖B′ such that:

– there is a rule R in P ∪ R s.t. C ∧ (Bi = head(R))∧ const(R) is consistent1.
– C′ = C ∧ (Bi = head(R)) ∧ const(R)
– B′ = {B1, ...Bi−1, Bi+1, ..., Bn} ∪ body(R)

Definition 6. A derivation of a goal G =← C‖Bs w.r.t. a framework for spec-
ulative constraint computation F = 〈Σ, Δ, P〉 and a reply set R is a sequence of
reductions “← C‖Bs”,...,“← C′‖∅”2 w.r.t. P and BEL(R, Δ), where in each
reduction step, an atom in the body of the goal in each step is selected. C′ is
called an answer constraint w.r.t. G, F , and R. We call a set of all answer
constraints w.r.t. G, F , and R the semantics of G w.r.t. F and R.

We refer the readers to [4] for a hotel room reservation example.

2.2 The Operational Model

We briefly describe the execution of the speculative framework. The detailed
description can be found in [4]. The execution is based on two phases: a process
reduction phase and a fact arrival phase. The process reduction phase is a nor-
mal execution of a program in a master agent, and the fact arrival phase is an
interruption phase when an answer arrives from a slave agent.

Figures 1–4 intuitively explain how processes are updated according to askable
atoms. In the tree, each node represents a process, but we only show constraints
associated with the process. The top node represents a constraint for the orig-
inal process, and the other nodes represent added constraints for the reduced
processes. Let us note that we specify true for non-top nodes without added
constraints, since the addition of the true constraint does not influence the solu-
tions of existing constraints. The leaves of the process tree represent the current
processes. Processes that are not in the leaves are deleted processes.

Figure 1 shows a situation of the processes represented as a tree when an ask-
able atom, whose reply has not yet arrived, is executed in the process reduction
phase. In this case, the current process, represented by the processed constraints
C, is split into two different kinds of processes: the first one is a process using
default information, Cd, and is called default process 3; and the other one is the
current process C itself, called original process, suspended at this point.

When, after some reduction of the default processes (represented in Fig. 2 by
dashed lines), the first answer comes from a slave agent, expressing constraint
1 A notation Bi = head(R) represents a conjunction of constraints equating the argu-

ments of atoms Bi and head(R).
2 ∅ denotes an empty goal.
3 In this figure, we assume that there is only one default for brevity.

182 J. Ma et al.

C������
�������

Cd true
suspended

Fig. 1. When Q@S is processed in process reduction phase

Cf for this askable literal, we update the default processes as well as the original
suspended process as follows:

– Default processes are reduced to two different kinds of processes: the first
kind is a process adding Cf to the problem to solve, and the other is the
current process itself which is suspended at this point.

– The original process is reduced to two different kinds of processes as well:
the first kind is a process adding ¬Cd ∧ Cf , and the other is the original
process, suspended at this point.

C������
�������

Cd true

��� ����
����

�
�

Cf true
suspended

Cf true
suspended

Cf ∧¬Cd true
suspended

Fig. 2. When the first answer Cf for Q@S arrives

Let ← C‖Bs be a goal containing Q@S. Suppose that it is reduced into
← C ∧ Cd‖Bs\{Q@S} by a default rule “Q@S ← Cd‖”. To retain the previ-
ous computation as much as possible, we process the query by the following
execution:

1. We add Cf to the constraint of every goal derived from the default process.
2. In addition to the above computation, we also start computing a new goal:

← C ∧ ¬Cd ∧ Cf ‖Bs\{Q@S}

to guarantee completeness.

When an alternative answer, with the constraint Ca, comes from a slave agent
(Fig. 3), we need to follow the same procedure as when the first answer comes
(Fig. 2), except that now the processes handling only default information are
suspended. So, this is done by splitting the suspended default process(es), in
order to obtain the answer constraints that are logically equivalent to the answer
constraints of:

← C ∧ Cd ∧ Ca‖Bs\{Q@S},

On the Implementation of Speculative Constraint Processing 183

C������
�������

Cd true

��� ����
����� �

�
Cf true Cf true Cf ∧¬Cd true

���
Ca

	
	

true
suspended

Ca true
suspended

���� �
�

Ca∧¬Cd true
suspended

Fig. 3. When the alternative answer Ca for Q@S arrives

as well as by splitting the suspended original process, in order to obtain the
answer constraints that are logically equivalent to the answer constraints of
← C ∧ ¬Cd ∧ Ca‖Bs\{Q@S} (Fig. 3). By gathering these answer constraints,
we can compute all answer constraints for the alternative reply.

On the other hand, when a revised answer with the constraint Cr arrives,
all processes using the first (or current) answer are split, in order to obtain the
answer constraints that are logically equivalent to the answer constraints of:

← C ∧ Cf ∧ Cr‖Bs\{Q@S},

and the suspended original process is split as well, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of ← C∧¬Cf ∧
Cr‖Bs\{Q@S} (Fig. 4). By gathering these answer constraints, we can override
the previous reply by the revised reply.

C������
�������

Cd true

��� ����
����� �

�
Cf true

suspended
Cf true

suspended
Cf ∧¬Cd true

Cr Cr Cr Cr Cr Cr

���� �
�

Cr∧¬Cf true
suspended

Fig. 4. When the revised answer Cr for Q@S arrives

3 A Multi-threaded Implementation

In [4], the detailed operational model is described as a multi-processing computa-
tion. There are two types of processes – finished processes that represent success-
fully terminated computational branches, and ordinary processes that represent
non-terminated branches. An ordinary process can be either an original process
that is always suspended or an active process that searches down an open branch.

In practice the operational model can be implemented in two ways:

184 J. Ma et al.

1. we represent each process as a state, and use a single process/thread to
manipulate the states in a pseudo-multi-threading (serialised) fashion. This
is very close to the model description;

2. we execute each process using a real thread, so that different (non-suspended)
processes can execute concurrently.

The multi-threaded approach avoids overheads caused by state selection and
management that the serialised approach has, and allows or-parallelism which
will benefit the proof search. However, using one thread for each process may
not always be necessary and may cause extra overheads such as in inter-threads
communication. For example, original processes are always suspended and can
never be resumed, though it may spawn new processes that are not suspended.
Preferably they should be managed as states instead, for easy update when a
relevant answer is returned. This is also true for finished process. In this sec-
tion, we describe a practical implementation for the operational model, which
considers various efficiency aspects.

3.1 Overview

The model is implemented as a speculative computation module, and we refer to
it as a speculative agent. A set of agents (some of them may not be speculative
agents) can be deployed to one or more host machines on a network. Agents
interact with each other via messages (containing queries or answers). Since the
operational model proposed in [4] is for simple master-slave systems only, in this
paper we also assume that there can be only one master, i.e. the only speculative
agent, in the set of deployed agents, and the rest are the slaves. The master can
send queries to the slaves, but a slave cannot send queries to the master or other
slaves. Hence, only the master can perform constraint processing with iterative
revision for disjunctive answers. But bear in mind that our implementation is in
fact designed in a way that it can be easily extended for hierarchical multi-agent
systems similar to that defined in [2].

As illustrated in Fig. 5, each agent has the following internal components:

Communication Interface Module (COM): this is the only interface for
inter-agent communications. It accepts queries or answers sent by the agent’s
master or slaves, and forwards the agent’s answers or queries to the master
or the appropriate slaves. The reception list and the address book are used
for keeping track of the queries received and the master/slave addresses4.

Speculative Computation Unit (SCU): this is the central processing unit
of the agent that performs speculative computations for one or more queries.

Default Store (Δ) and Program (P): they are self-explained, and form the
static knowledge of the agent.

Answer Entry, Choice Point and Finish Point Stores (AES, CPS, FPS):
AES stores the answer entries that are created from either Δ or the returned

4 Both these features will be essential when the implementation is extended for hier-
archical multi-agent systems.

On the Implementation of Speculative Constraint Processing 185

Fig. 5. Agent Internal Components

answers from the slaves (i.e. the reply set R). CPS stores the computation
choice points (CP), each of which represents the state of a (suspended) original
process. FPS stores the finish points (FP), which contain the results of finished
processes. The three stores are used by SCU and form the dynamic knowledge
of the agent.

In the following sections, we describe how these components are implemented.

3.2 Implementing the Communication Interface Module (COM)

Agents communicate asynchronously via messages sent over TCP connections.
Each agent on the network is uniquely identified by a socket of the form IP:Port,
where IP is the network address of the agent’s host and Port is the port number
reserved for the agent on the host. Therefore, several agents may run simulta-
neously on a host.

During the design of an agent’s program, the sockets for the slaves may not
be known, or they may be changed during agent deployment. Therefore, each
agent uses aliases to identify its slaves locally. For example, in an askable atom
Q@S appearing in P or Δ, S is the alias of a slave. The address book stores the
mapping between the slave aliases and the slave sockets, and it can be generat-
ed/updated during agent (re-)deployment.

There are two types of messages for inter-agent communications:

– a query message of the form query(From, Q@S, Cmd), where From is the
socket of the sender, Q is a query, S is the recipient’s alias used by the sender,
and Cmd is a command of either start or stop. If the command is start,
it indicates a request for the recipient (i.e. the slave) to start a computation
for the query; otherwise if the command is stop, it asks the recipient to stop

186 J. Ma et al.

the computation for a query previously requested and to free the resources.
The “stop” signal (in this paper) is merely used for the execution control of
the agent.

– an answer message of the form answer(From, Q@S, ID, Ans), where From,
Q and S are described as above, Ans is a set of constraints as the answer
to the query, and ID is the answer identifier by the sender and is used to
distinguish between a revised answer and an alternative answer.

COM waits for any incoming message and handles it as follows:

– if it is an inter-agent message query(Master, Q@S, start) from the agent’s
socket, COM creates an entry <RID, Q@S, Master> in the reception list,
where RID is a new query entry ID, and then sends a message start(RID,
Q@S) to the manager thread (MT) in SPU (to be described soon);

– if it is an inter-agent message query(Master, Q@S, stop), COM removes
the entry <RID, Q@S, Master> from the reception list, and then sends a
message stop(RID) to MT;

– if it is an inter-agent message answer(Slave, Q@S, ID, Ans), COM simply
forwards it as answer(Q@S, ID, Ans) to MT;

– if it is an internal message answer(RID, Q, ID, Ans) from MT or from
one of the worker threads (WT) in SPU, COM looks up <RID, Q@S,
Master> from the reception list, and then sends the inter-agent message
answer(Self, Q@S, ID, Ans) to the master, where Self is the current
agent’s socket;

– if it is an internal message query(Q@S) from a WT, COM looks up the
slave’s socket from the address book using S, and then sends the inter-agent
message query(Self, Q@S, start) to the slave.

3.3 Implementing the Speculative Computation Unit (SCU)

SCU can be seen as a collection of concurrent threads. Specifically, there is a
persistent manager thread (MT) and zero or more worker threads (WT). MT is
responsible for updating/revising the choice points/finish points and for spawn-
ing new WT(s) when a new query or answer is received, and WTs are responsible
for constraint processing.

The three stores AES, CPS and FPS are used and maintained by both MT
and WTs. AES stores three types of answer entries (AE), all of which have
the form <AID, Q@S, Type, Ans>, where AID is the entry ID, Q@S is the query
and the slave alias, Type is the entry’s type and Ans is the set of constraints
associated with the entry:

– If Type is so, then this is a speculative original answer entry, and Ans is
equal to the conjunction of the negations of all the defaults in Δ for Q@S5 if
there is any default, and is equal to true otherwise;

– if Type is nso, then this is a non-speculative original answer entry and Ans
is true;

5 i.e.
∧

(Q@S←Cd‖)∈Δ ¬Cd.

On the Implementation of Speculative Constraint Processing 187

– If Type is d, then this is a default answer entry, and Ans is equal to a
corresponding default answer for Q@S in Δ;

– otherwise, Type is r(ID) and this is an ordinary answer entry, where ID and
Ans are from an answer returned by the slave S for Q.

CPS stores the states of original processes (or called choice points (CP)), each
of which has the form <QID, PID, G, C, WA, AA>, where QID is the (top level)
query and its ID, PID is the process ID, G and C are the set of remaining sub-
goals and the set of constraints collected so far respectively, WA and AA are the
set of awaiting answer entries and the set of assumed answer entries respectively.
QID is used by a process to “remember” what query its computation is for, and
hence has two components (RID-Qtop), where RID is the reception entry ID,
and Qtop is the initial query for the process. It is necessary to record Qtop so
that when a process finishes successfully (i.e. G becomes empty), the variable
bindings between the answer (i.e. set of constraints) and the initial query can
be preserved. Each element in WA and AA has the form (AID, Q@S), where AID
is the ID of an answer entry that the process is awaiting or is assuming for the
sub-goal Q@S. Note that it is also necessary to record Q@S here despite having
already recorded AID, because if later an assumed answer needs to be revised, the
correct variable bindings between the query sent (to the slave) and the answer
returned (from the slave) can be obtained.

FPS stores the states of finished processes (or called finish points (FP)), each of
which has the form <QID, PID, C, AA>, where QID, PID and AA are as described
above, and C is the final set of constraints collected, i.e. the answer, already sent
to the master for the query associated with QID.

Each WT represents an active process, and its state can be represented as
<QID, PID, G, C, AA>. It is just like a CP except that it does not have the
awaiting answer entry set (i.e. no WA).

It is also important to keep track of what AE is currently assumed/awaited
by what WTs, CPs and FPs. Such usages of AE are recorded as subscriptions
in a directory as a part of AES. Each subscription has the form sub(AID, PID),
where AID is the answer entry ID and PID is the ID of a WT, CP or FP.

3.4 The Execution of the Manager Thread and the Worker Threads

The multi-threaded operational model is based on the pseudo-parallel (serialised)
operational model proposed in [4], but with improved “process management”
allowing true or-parallelism during the computation:

– In the serialised model, the computation interleaves with the process reduc-
tion phase and the fact arrival phase. When it enters the process reduction
phase, one active process is selected at a time for resolving a sub-goal. In
the multi-threaded model, each WT can enter the process reduction phase
and resolve sub-goals independently and concurrently to others. No process
selection is required.

– In the serialised model, when it enters the fact arrival phase, all the relevant
processes (active or suspended) are updated, and necessary new processes

188 J. Ma et al.

Fig. 6. Execution of MT

(a) Fact Arrival Phase (b) Process Reduction Phase

Fig. 7. Execution of WT

from original processes are created at the same time. In the multi-threaded
model, the fact arrival phase is splitted and is done by the MT and WTs sep-
arately. The MT is responsible for revising the answers from existing finished
processes (i.e. the finish points), updating original processes (i.e. the choice
points) and creating appropriate new WTs from choice points. The MT also
notifies relevant WTs about the newly returned answer via messaging, but
will not change the state of WTs directly. On the other hand, when a WT
receives such notification from MT, it will check for consistency of the new
answer independently from others, and create new choice point if needed
(e.g. in the case where it is assuming a default answer and an alternative
answer is received). Different WTs can update themselves concurrently.

The key execution steps for MT and WT are illustrated in Figure 6 and Figure 7.
The detailed descriptions are provided in Appendix A.1 and Appendix A.2.

On the Implementation of Speculative Constraint Processing 189

3.5 Resolving Concurrency Issues

Inside SPU, MT and WTs execute concurrently, and they all require read/write
access to the three stores AES, CPS and FPS. Potential conflicts between MT
and a WT, or between WTs may arise. Firstly, it is possible that after a WT
spawns several children WTs, and just before it can make all the answer entry
subscriptions for the children, MT receives an answer and notifies only some of
its children (e.g. the subscription process is not yet complete). Secondly when
two WTs encounter the same askable atom at the same time, and if there is no
original answer entry for that atom yet, then the original answer entry may be
created twice and the query may be sent twice by the two WTs. Hence, the three
stores are considered as “critical regions” and need to be protected. One näıve
solution is to make all the iteration steps performed by WT or MT atomic. But
this will greatly reduce the chance for concurrent processing and hence remove
almost all the benefits brought by the multi-threaded implementation. Therefore,
“fine grained” atomicity control is needed for the executions of MT and WTs.

Let’s consider the first problem. The potential conflict is between MT and
WT, and is not between WTs. Although several WTs may need to update the
subscriptions in the directory of AES, they only modify the ones associated with
their IDs or with their new born children’s IDs. As long as the children WTs do
not start working until their parent WT has made all the correct subscriptions
for them, there won’t be any conflict. Also, WTs can only create new choice
points in CPS and create new finish points in FPS according to their own states,
there is no potential conflict of updating CPS and FPS either. Therefore, the
execution of a MT’s message handling step cannot (safely) interleave with that of
the process reduction step or the fact arrival step of any WT, but the executions
of WTs’ steps can interleave without problems. To impose such control, we have
introduced an atomic counter6 called the “busy worker counter” (BC). Whenever
a WT starts to perform a fact arrival step or reduction step, it will increment
BC; and whenever it finishes one step, it will decrement BC. We also introduce
an atomic flag called the “waiting/working manager flag”(WF). Whenever MT
receives an answer, it will set WF to 1; and when MT finishes handling one
returned answer, it will clear WF to 0. The safe exclusive execution control
between MT and WTs using BC and WF are as follows7,

WT’s Execution Cycle MT’s Execution Cycle

1. (atomic step) waits for WF to be
cleared and then increments BC;

2. performs either fact arrival step or re-
duction step;

3. decrements BC

1. waits for a returned answer;
2. sets WF

3. waits for BC to reach 0;
4. handles returned answer;

5. clears WF

6 I.e. its value update is atomic.
7 Pseudo-code in Prolog is provided in Appendix B.

190 J. Ma et al.

Hence, whenever a WT performing a fact arrival step or process reduction step,
MT is not allowed to process any received answer; whenever MT has an answer
waiting to be processed or being processed, no WT can perform a new step.

Let’s now consider the second problem. The potential conflict is between two
WTs when they both try to collect/create answer entries for an askable goal.
The solution is relatively easy: we have introduced a mutex MAES and control
the WT’s execution as follows,

When a WT tries to collect answer entries for Q@S:

– if an original answer entry for Q@S exists in AES, continues as normal;
– otherwise, (1) locks MAES; (2) if AES still does not contain an original

answer entry for Q@S, then creates the original and default answer entries,
and then sends out the query; (3) unlocks MAES.

The operation of locking a mutex succeeds immediately if the mutex has not
been locked by any other thread yet; otherwise it causes the current thread to be
suspended. The suspended thread is revived only when the mutex is unlocked,
and then the revived thread tries again to lock the mutex. In the above example,
it is possible that while a thread is waiting to lock MAES, the thread already
locking MAES creates the answer entries. Therefore, in Step 2 checking again
whether an original answer entry exists is necessary.

4 Discussions

The described mutli-threaded implementation is implemented in YAP Prolog [7].
We chose YAP not only because it has the necessary CLP and multi-threading
supports, but also because it is considered as the one of the fastest Prolog engines
that is free and open source.

We have tested the implementation with meeting scheduling examples de-
scribed in [4] but with increased size. During the testing, we used YAP’s default
maximum number of WTs of 100 and were able to compute the correct answers
within the order of 1 second. For large problems, e.g. if a query would lead
to more than 10 (non-askable) sub-goals, each with more than 10 rules with
constraints that are always consistent, the number of WTs would exceed 100.
Our implementation is able to cope with such problems by setting a higher WT
number limit, e.g. 1000, at the expense of initial memory consumed by YAP8.

In practice, to strike a balance between the number of WTs and the mem-
ory consumption, our implementation can be adapted to use a hybrid approach,
which would implement two types of WTs: normal workers and super worker.
A normal worker would execute as an active process as described in the multi-
threaded model. A super worker would behave like the serialised model [4] and
manage several processes in a round-robin fashion. In this way, memory con-
sumption would be reduced whilst maintaining the effect of a high number of
8 100 maximum threads in YAP require about 2MB memory, 1000 threads require

about 4MB and 9999 threads require about 109MB.

On the Implementation of Speculative Constraint Processing 191

WTs. For example, let M be the maximum number of WTs that an agent’s SPU
can have, then there can be M −1 (at most) normal workers and 1 super worker.
During the computation, when there are N (N > M −1) active processes, M −1
of them are handled by the normal workers, and the rest of them are handled
by the super worker. When an active process terminates (either due to failure
or finish), the normal worker can release it and acquire another active process
state from the super worker to continue.

5 Conclusion

In this paper, we have presented a practical multi-threaded implementation for
speculative constraint processing with iterative revision for disjunctive answers,
and suggested a hybrid implementation for situation where multi-threading sup-
port is limited by resource constraint. Although the implementations are based
on the operational model described in [4], which is for simple master-slave sys-
tems where only the master can perform speculative computation, they are de-
signed to be extendable for hierarchical master-slave systems. As a future work,
we will prove the correctness of an extended operational model for a hierarchy
of master-slave agents and extend the current implementation to support this
more general type of multi-agent systems. We will also perform benchmarking
of the system with large examples, and apply it in real world applications, such
as planning and online booking systems.

Acknowledgment

This research was partially supported by the Ministry of Education, Science,
Sports and Culture, Japan, Grant-in-Aid for Scientific Research (B), 19300053,
and is continuing through participation in the International Technology Alliance
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of
Defence.

References

1. Satoh, K., Inoue, K., Iwanuma, K., Sakama, C.: Speculative computation by ab-
duction under incomplete communication environments. In: ICMAS, pp. 263–270
(2000)

2. Satoh, K., Yamamoto, K.: Speculative computation with multi-agent belief revision.
In: AAMAS, pp. 897–904 (2002)

3. Satoh, K., Codognet, P., Hosobe, H.: Speculative constraint processing in multi-
agent systems. In: Lee, J.-H., Barley, M.W. (eds.) PRIMA 2003. LNCS (LNAI),
vol. 2891, pp. 133–144. Springer, Heidelberg (2003)

4. Ceberio, M., Hosobe, H., Satoh, K.: Speculative constraint processing with iterative
revision for disjunctive answers. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS
(LNAI), vol. 3900, pp. 340–357. Springer, Heidelberg (2006)

5. Satoh, K.: Speculative computation and abduction for an autonomous agent. IEICE
Transactions 88-D(9), 2031–2038 (2005)

192 J. Ma et al.

6. Inoue, K., Kawaguchi, S., Haneda, H.: Controlling speculative computation in multi-
agent environments. In: Proc. Second Int. Workshop on Computational Logic in
Multiagent Systems (CLIMA 2001), pp. 9–18 (2001)

7. YAP Prolog 5.1.3 manual (June 2008),
http://www.dcc.fc.up.pt/~vsc/Yap/index.html

A Execution Description of MT and WT

A.1 Execution of MT (Illustrated in Fig. 6)

MT processes each message it receives from COM:

– if the message is start(RID,Q), it spawns a new WT with initial state
〈QID,PIDnew , Q, ∅9, ∅10〉, where QID = (RID, Q), PIDnew is a new process
ID.

– if the message is stop(RID), then
1. it removes all the choice points in CPS and all the finish points in FPS that

are associated with RID;
2. it broadcasts a message stop(RID) to all the WTs;

– if the message is answer(Q@S, ID, Cnew):
• if there exists an answer entry 〈AID, Q@S, r(ID), Cold〉 in AES, then the

received answer is a revised answer (following Fig. 4):
1. MT updates the existing answer entry to be 〈AID, Q@S, r(ID), Cnew〉;
2. for each WT subscribing AID, MT sends a message rev(AID,Q@S,Cnew)

to the WT (so that the WT can check Cnew for consistency);
3. for each FP of 〈QID, PID,Cfinal, AA〉 that is subscribing AID and

QID = (RID, Qtop), if Cfinal
= Cfinal ∧Cnew , then MT sends a message
answer(RID,Qtop, P ID, Cfinal ∧ Cnew) to COM;

4. for each CP of 〈QID, PID,G, C, WA,AA〉 that is subscribing AID,
if Call = C ∧ Cnew is consistent, then MT updates it to be
〈QID, PID,G, Call,
WA,AA〉; otherwise, MT removes the CP and the CP’s subscriptions;

5. let 〈AIDo, Q@S,O, Co〉 be an original answer entry for Q@S, where O is
either so or nso, for each choice point of 〈QID, PID, G, C, WA,AA〉 that
is subscribing AIDo and Call = C ∧ ¬Cold ∧ Cnew is consistent:
∗ if WA contains only (AIDo, Q@S), then MT creates a new WT with
〈QID, PIDnew, G, Call, AA ∪ {(AID, Q@S)}〉, and subscribes all the
answer entries in AA and that with AID for the new WT (i.e. for each
(AID′, Q′@S′) ∈ AA ∪ {(AID, Q@S)}, it adds sub(AID′, P IDnew)
to the directory in AES);

∗ otherwise, MT creates a new CP of 〈QID, PIDnew, G, Call,
WA \ {(AIDo, Q@S)}, AA ∪ {(AID, Q@S)}〉 in AES, and subscribes
all the answer entries in AA and in WA for the new CP;

• otherwise, it is a first/alternative answer (following Fig. 2 and Fig. 3):
1. MT creates a new answer entry 〈AIDnew, Q@S, r(ID), Cnew〉 in AES;
2. for each default answer entry 〈AIDd, Q@S, d, Cd〉 in AES:

9 This is the initially empty set of constraints.
10 This is the initially empty set of assumed answer entries.

http://www.dcc.fc.up.pt/~vsc/Yap/index.html

On the Implementation of Speculative Constraint Processing 193

∗ for each WT subscribing AIDd, MT sends a message alt(AIDnew,
AIDd, Q@S,Cnew) to it;

∗ for each FP of 〈QID,PID, Cfinal, AA〉 that is subscribing AIDd and
QID = (RID,Qtop), if Cfinal
= Cfinal ∧ Cnew , then MT sends a
message answer(RID,Qtop, P ID,Cfinal ∧ Cnew) to COM;

∗ for each CP of 〈QID,PID, G, C, WA,AA〉 that is subscribing AIDd,
(a) MT updates the CP to be 〈QID, PIDnew, G, C, WA ∪
{(AIDd, Q@S)},
AA \ {(AIDd, Q@S)}〉;

(b) if Call = C ∧ Cnew is consistent, then
· if WA contains only (AIDd, Q@S), then MT creates a new

WT with 〈QID, PIDnew, G, Call, AA∪{(AID,Q@S)}〉, and sub-
scribes all the answer entries in AA and that with AID for the
new WT;
· otherwise, MT creates a new CP of 〈QID,PIDnew, G, Call,

WA \ {(AIDd, Q@S)}, AA ∪ {(AID, Q@S)} \ {(AIDd, Q@S)}〉
in AES, and subscribes all the answer entries in AA ∪ WA ∪
{(AID, Q@S)} \ {(AIDd, Q@S)} for the new CP;

3. let 〈AIDo, Q@S,O, Co〉 be an original answer entry for Q@S, where O
is so or nso, for each choice point of 〈QID,PID, G, C, WA,AA〉 that is
subscribing AIDo and Call = C ∧ Co ∧ Cnew is consistent:
∗ if WA contains only (AIDo, Q@S), then MT creates a new WT with
〈QID, PIDnew, G, Call, AA ∪ {(AID, Q@S)}〉, and subscribes all the
answer entries in AA and that with AID for the new WT;

∗ otherwise, MT creates a new CP of 〈QID, PIDnew, G, Call,
WA \ {(AIDo, Q@S)}, AA ∪ {(AID, Q@S)}〉 in AES, and subscribes
all the answer entries in AA ∪WA ∪ {(AID, Q@S)} \ {(AIDo,
Q@S)} for the new CP;

A.2 Execution of WT (Illustrated in Fig. 7)

The execution of a WT can be seen as a loop with the following steps performed at
each iteration (let its initial state at each iteration be 〈QID, PID,G, C, AA〉):

– If there is an internal message received by the WT (i.e. from MT), it enters the
Fact Arrival Phase:
• if the message is rev(AID,Q@S,Cr) where (AID,Q@S) ∈ AA (see Fig. 4),

let Call = C ∧ Cr: if Call is consistent, then the WT continues with
〈QID, PID,G, Call, AA〉. Otherwise, the WT removes all of its subscriptions
in AES and terminates;

• if the message is alt(AIDa, AIDd, Q@S, Ca) where AIDd is an ID of a default
answer entry (following Fig. 2),
1. it creates a new CP of 〈QID, PIDnew, G, C, {(AIDd, Q@S)},

AA \ {(AIDd, Q@S)}〉 in CPS, and subscribes for all the answer entries
in AA for the new CP;

2. if Call = C ∧ Ca is consistent, then the WT continues with
〈QID, PID,G, Call,
AA ∪ {(AIDa, Q@S)} \ {(AIDd, Q@S)}〉. Otherwise, it removes all of its
subscriptions and terminates;

194 J. Ma et al.

• if the message is stop(RID), and RID is equal to the query ID in QID, then
the WT removes all of its subscriptions and terminates;

– Otherwise, it enters the Process Reduction Phase and tries to select L from G:
• if G is empty and thus no L can be selected, the current computation succeeds:

1. let QID = (RID,Qtop), the current WT sends a message
answer(RID,Qtop,
P ID, C) to COM;

2. it creates a FP of 〈QID,PID, C, AA〉 and then terminates. Note that it
does not need to make answer entry subscriptions for the new FP or to
remove its subscriptions, because the new FP “inherits” them.

• if L is not an askable atom, for every rule R such that Cnew = C ∧ (L =
head(R)) ∧ const(R) is consistent, the current WT spawns a new WT with
state 〈QID,PIDnew, G \ {L} ∪ body(R), Cnew, AA〉 and subscribes all the an-
swer entries in AA for the new WT. Then the current WT removes all of its
subscriptions and terminates11.

• if L is an askable atom Q@S (where S must be ground): if there exists
(AID, Q′@S) ∈ AA such that Q and Q′ are identical (i.e. they are not vari-
ants), then the WT continues with 〈QID, PID,G \ {L}, C, AA〉12. Otherwise
(following Fig. 1),
1. it collects (AIDo, AIDS) from AES as follows:

∗ if there exists some ordinary answer entries for Q@S, let AIDo be the
non-speculative original answer entry ID for Q@S, and AIDS be the
set of ordinary answer entry IDs, whose associated answer constraints
are consistent with C;

∗ otherwise,
(a) if there exists no original answer entry for Q@S, then the WT

i. creates 〈AIDso
new, Q@S, so, Cso〉 in AES, where Cso is the con-

junction of the negations of all the default constraints for Q@S
in Δ if there is some default constraint, or is true if there is none;

ii. creates 〈AIDnso
new, Q@S,nso, Cnso〉 in AES, where Cnso is true;

iii. creates a default answer entry 〈AIDi
new, Q@S, d, Ci

d〉 for each
default constraint Ci

d for Q@S in Δ;
iv. sends a message query(Q@S) to COM;

(b) let AIDo be AIDso
new, and AIDS be the set of default answer entry

IDs, whose associated answer constraints are consistent with C;
2. for each answer entry 〈AID,Q@S,Type,Ca〉 such that AID ∈ AIDS, the

current WT spawns a new WT with state 〈QID,PIDnew , G\{Q@S}, C∧
Ca, AA ∪ {(AID, Q@S)}〉 and subscribes all the answer entries in AA ∪
{(AID, Q@S)} for the new WT;

3. the current WT creates a new CP of 〈QID,PIDnew, G \
{Q@S}, C, {(AIDo,
Q@S)}, AA〉 in CPS, and subscribes all the answer entries in AA plus
that with AIDo for the new CP;

4. the current WT removes all of its subscriptions and terminates13.

11 As an optimisation, if there are N > 0 possible new processes (states), then only
N − 1 new WTs are spawned, and the current WT continues as Nth process.

12 This is an optimisation to the original operational model, which prevents unnecessary
new processes (threads) to be created.

13 Optimisation similar to footnote 11 can be applied.

On the Implementation of Speculative Constraint Processing 195

B Pseudo-Code for the Implementation of Exclusive
Control between the Manager Thread and Worker
Threads

YAP Prolog only provides message queues and mutexes for multi-threading sup-
port [7].

% "m_bc " and "m_wf " are the

mutexes for BC and WF;

% "v_bc " is the counter for BC

% "mq_bc" is the message queue

for notifications about BC

% for WT

wt_loop :-

mutex_lock (m_wf),

mutex_lock (m_bc),

mutex_unlock (m_wf),

increment (v_bc),

mutex_unlock (m_bc),

// process reduction or fact

arrival step

mutex_lock (m_bc),

decrement (v_bc),

(v_bc (V), V == 0 ->

send_notification_to (mq_bc

)

;

true

),

mutex_unlock (m_bc),

wt_loop.

% for MT

mt_loop :-

// wait for received answer ,

mutex_lock (m_wf),

wait_for_zero_bc ,

// handle received answer

mutex_unlock (m_wf),

mt_loop.

wait_for_zero_bc :-

mutex_lock (m_bc),

clear_any_notification_in(mq_bc),

(v_bc (V), V > 0 ->

mutex_unlock (m_bc),

wait_for_notification_in(mq_bc),

wait_for_zero_bc

;

mutex_unlock (m_bc)

).

Author Index

Baral, Chitta 46
Broda, Krysia 178
Bulling, Nils 22

Cliffe, Owen 102

Dastani, Mehdi 83
Dennis, Louise 64
De Vos, Marina 102

Farwer, Berndt 22

Góngora, Pedro Arturo 158

Hindriks, Koen V. 141
Hopton, Luke 102
Hosobe, Hiroshi 178

Jonker, Catholijn M. 141

Ma, Jiefei 178
Meyer, John-Jules 64

Nguyen, Ngoc-Hieu 1

Padget, Julian 102
Pontelli, Enrico 1, 46

Rosenblueth, David A. 158
Russo, Alessandra 178

Sakama, Chiaki 122
Satoh, Ken 178
Son, Tran Cao 1, 46, 122
Steunebrink, Bas R. 83

Tinnemeier, Nick 64

Visser, Wietske 141

	Title
	Preface
	Organization
	Table of Contents
	Planning for Multiagent Using ASP-Prolog
	Introduction
	An Action Language with Cooperative Actions
	Specifying Individual Actions
	Specifying Cooperative Actions

	Planning for Multiagent
	Computing Joint Plans
	Answer Set Semantics of Logic Programs
	Finding a Possible Plan for One Agent
	Compatible Answer Sets and Joint Plan
	ASP-Prolog
	Finding Joint Plans

	Related Works
	Conclusions and Future Works
	References

	Expressing Properties of Resource-Bounded Systems: The Logics RTL* and RTL
	Introduction
	Preliminaries
	Computation Tree Logic and Transition Systems
	Multisets

	Modelling Resource-Bounded Systems
	Resource-Bounded Systems
	Resource-Bounded Tree Logic
	Cover Graphs and Cover Models
	Resource-Bounded Models

	Properties of Resource-Bounded Tree Logics
	RTL and Cover Models
	RTL and Bounded Models

	Model Checking Resource-Bounded Tree Logic
	Conclusions, Related and Future Work
	References

	Reasoning about Multi-agent Domains Using ActionLanguage C: A Preliminary Study
	Introduction and Motivation
	Action Language C
	C for Multi-agent Domains
	The Prison Domain
	The Credit Rating Domain

	Adding Priority between Actions
	The Rocket Domain

	Adding Reward Strategies
	Reasoning and Properties
	Capability Queries
	Inferring Properties of the Theory
	Compositionality

	Reasoning with Agent Knowledge
	Heaven and Hell Domain: The Modeler's Perspective
	Heaven and Hell: The Agent's Perspective
	Beyond C with Sensing Actions

	Discussion and Conclusion
	References

	Model Checking Normative Agent Organisations
	Introduction
	ORWELL Programming Normative Agent Organisations
	The MCAPL Framework for Model Checking Agent Programming Languages
	Modified Semantics for ORWELL for Implementation in the AIL
	Model Checking Normative Agent Organisations
	Conclusions
	References

	Operational Semantics for BDI Modules in Multi-agent Programming
	Introduction
	BDI Programming with Modules
	Syntax
	An Example of a Multi-agent Program

	Semantics
	Multi-agent System Configuration
	Transition Rules for Module Actions
	Properties

	Roles, Profiles, and Task Encapsulation
	Roles
	Agent Profiles
	Task Encapsulation

	Conclusions and Future Work
	References

	InstQL: A Query Language for Virtual Institutions Using Answer Set Programming
	Introduction
	Answer Set Programming
	Institutions
	The Dutch Auction: A Motivating Example
	The Case Study
	Queries

	InstQL
	Syntax
	Semantics
	The Dutch Auction Queries

	Reasoning
	Common Reasoning Tasks
	Modelling Linear Temporal Logic
	Institutional Designer and Reasoning Tools: InstSuite

	Discussion
	References

	Interacting Answer Sets
	Introduction
	Preliminaries
	Answer Set Interactions
	Cooperation
	Competition
	Norms
	Subjection

	Extensions
	Coordination and Priority
	Dynamic Interactions
	Interactions among n-Agents
	Interactions between Programs

	Computing Answer Set Interactions
	Discussion
	Answer Set Interactions = Answer Sets + Control
	Related Work

	Conclusion
	References

	Argumentation-Based Preference Modelling with Incomplete Information
	Introduction
	Qualitative Multi-attribute Preferences
	Argumentation Framework for Complete Information
	Language
	Inferences
	Defeat
	Semantics
	Validity

	Strategies for Handling Incomplete Information
	Naive Strategies
	Desired Properties for Strategies
	A Decisive and Safe Strategy

	Argumentation Framework for Incomplete Information
	Language
	Inferences

	Conclusion
	References

	A Characterization of Mixed-Strategy Nash Equilibria in PCTL Augmented with a Cost Quantifier
	Introduction
	Strategic Games
	Markov Chains and PCTL
	A Cost Quantifier for PCTL
	Model-Checking Games for Nash Equilibria
	Conclusions
	References

	On the Implementation of Speculative Constraint Processing
	Introduction
	Speculative Disjunctive Constraint Processing
	Speculative Constraint Processing Framework
	The Operational Model

	A Multi-threaded Implementation
	Overview
	Implementing the Communication Interface Module (COM)
	Implementing the Speculative Computation Unit (SCU)
	The Execution of the Manager Thread and the Worker Threads
	Resolving Concurrency Issues

	Discussions
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

