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Decentralized Self-optimization in Shared 
Resource Pools 

Emerson Loureiro*, Paddy Nixon, and Simon Dobson1 

Abstract. Resource pools are collections of computational resources which can be 
shared by different applications. The goal with that is to accommodate the work-
load of each application, by splitting the total amount of resources in the pool 
among them. In this sense, utility functions have been pointed as the main tool for 
enabling self-optimizing behaviour in such pools. The goal with that is to allow 
resources from the pool to be split among applications, in a way that the best out-
come is obtained. Whereas different solutions in this context exist, it has been 
found that none of them tackles the problem we deal with in a total decentralized 
way. In this paper, we then present a decentralized and self-optimizing approach 
for resource management in shared resource pools. 

1   Introduction 

Resource pools are collections of computational resources (e.g., servers) which 
can be used by different applications in a shared way[1]. The goal with that is to 
accommodate the workload of each application, by splitting the total amount of 
resources in the pool amongst them. This is possible through the use of Resource 
Containers[2], abstractions that can co-exist in a physical resource (e.g., server), 
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each of them receiving a slice of it. Examples of resource containers include vir-
tual machines and virtual disks. These resource containers are then aggregated into 
Resource Shares, thus forming partitions of the total amount of resources available 
in the pool. 

In this scenario, the applications might have QoS parameters that have to be 
met. Therefore, the resources available to them should be such that their QoS pa-
rameters are met, if possible. The problem, in this case, is that the workload of the 
applications is likely to vary over time, and as a consequence, their resource de-
mands will vary too[3][4]. Statically-defined resource shares, based for example 
on average or worst-case scenarios, are not suitable[5]. It is likely that resources 
will be wasted this way, for instance by allocating unnecessarily large shares and 
thus running the risk of failing to meet the applications’ QoS. A better approach, 
instead, is to allow shares to be defined in an adaptive fashion, using the workload 
and QoS requirements of each application as input[1]. 

A usual trend, however, is not just to split the resources in the pool in a way 
that it meets the QoS parameters, but to do that in the best possible way. Precisely, 
that means finding the distribution of resources that yields the best outcome. To 
this end, utility functions have been pointed as the main tool for enabling such a 
self-optimizing behaviour[6], since they do not distinguish between desirable and 
undesirable allocations. Instead, allocations are distinguished by having a lower or 
higher utility, which then enables to find the best allocation, i.e., the one with the 
highest utility. Finding such an allocation consists, basically, on modelling the re-
source management process as an optimization problem, and eventually solving it. 
This has been called Utility Maximization (UM). 

As a consequence of the above, employing Utility Maximization provides bene-
fits, over other methods, when faced with conflicting scenarios. An example of 
such is during an overload in the system; i.e., the overall resource demand is 
greater than the amount of resources available to be allocated. In that case, it is 
clear that not all QoS requirements will be met. Still, with Utility Maximization, it 
is possible to find a way of maximizing resource usage, given the overload condi-
tion, thus providing directions as to how to act in such a conflicting scenario. In 
another case, the system could be facing a low load, in which case there might be 
several distributions of resources that meet all QoS requirements. Utility func-
tions, again, provide unambiguous guidance towards the best way to do so. The 
important aspect, then, is that there will be situations where different resource dis-
tributions are possible. In these cases, unambiguous guidance as to how actually to 
do so is then crucial. Whereas other methods might be able to provide such guid-
ance, Utility Maximization achieves that with an optimality aspect, regardless of 
the current setting. 

A number of solutions employing Utility Maximization for managing shared 
resource pools have been proposed. Many are based on centralized architectures, 
which are known to be not very scalable and suffer from fault-tolerance issues, 
i.e., crash of the centralizer. Some distributed solutions have also been proposed. 
They are all modelled hierarchically though, and so, coordination is centralized at 
the root of the hierarchy. Given the increasing scale of distributed systems and a 
stronger demand in terms of their autonomy[7], a truly decentralized solution is 
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preferable, since they provide improved scalability and are naturally fault tolerant. 
Whereas decentralized solutions in similar domains exist, they are not applicable 
to the problem being studied in this paper. 

Given that, here we propose a truly Decentralized Utility Maximization (DUM) 
model for managing shared resource pools, in an adaptive and optimal way. To the 
best of our knowledge, this is the first work to present such a solution. For achiev-
ing that, we have employed the method of the Lagrange multipliers. Such methods 
have been used in similar works involving non-linear optimization. However, the 
problem being studied here along with the absolute decentralization characteristic 
of our DUM model, give it a crucial differential when compared to those works. 

The rest of this paper is then organized as follows: in Section 2 some funda-
mental concepts are presented; our DUM model is presented in Section 3; an 
evaluation is presented in Section 4, demonstrating the feasibility of the model in a 
practical scenario, through simulations; related works in the area are presented and 
discussed in Section 5; finally, in Section 6, we conclude the paper with some fi-
nal remarks and future directions of this work. 

2   Fundamentals 

In this section we provide basic concepts related to our DUM solution. More pre-
cisely, we present an overview of the ideas behind shared resource pools and also 
how utility functions are linked to these ideas, then leading to a proper formaliza-
tion of the problem being studied here. 

2.1   Shared Resource Pools and Related Paradigms 

Shared resource pools are collections of computational resources, aggregated in a 
way to allow concurrent access to them[1]. This is done by splitting the resources 
from the pool into resource shares, or simply shares, which are in turn distributed 
to applications in need. In more practical terms, as discussed previously, each 
share is an aggregation of Resource Containers. Even though different terminol-
ogies can be found in the literature, e.g., Cluster Reserve[28], Server[29], and Ap-
plication Environment[8], for the purposes of this paper, the term Resource Share 
will be used. 

An example of a shared resource pool is illustrated in Figure 1. In this figure, a 
collection of servers, i.e., the pool, is split into shares – the solid lines surrounding 
the different sets of servers – which are then assigned to particular applications 
(APP in the figure). The same idea applies, for example, to a Distributed Rate 
Limiting scenario[20]. In this case, the pool is composed solely by the bandwidth 
capacity available. This capacity is then partitioned into shares to be provided to 
different traffic limiters. This way, they can serve their network flows in an opti-
mal way, without, however, overusing a specific bandwidth capacity. 
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Fig. 1 Shared resource pool in a data center scenario 

It is important to also point out that the idea of resource allocation and shared 
pools is found in the context of Utility Computing and Cloud Computing. Utility 
Computing is the on-demand packaging of computing resources so as to meet  
customers’ needs, by dynamically creating virtual partitions of the resources avail-
able[30]. In this paradigm, the resource pool is viewed as a public infrastruc-
ture[31], in the sense that it is available to whoever has the need and is willing to 
pay for it. 

The idea of Cloud Computing employs a similar model to go even further; 
moving away both data and computing from clients, placing them into large data 
centres[32], i.e., the cloud. The Cloud Computing paradigm, however, does not 
really focus on whether the infrastructure is public or private, in which case its re-
sources are only available to the applications of whoever owns it[31]. Instead, its 
focus is more on providing a platform where not only hardware resources, but also 
applications, are provided as a service. 

The work in this paper, putting it into the perspective of both paradigms, is  
neutral in terms of whether the infrastructure is public or private, like in Cloud 
Computing. Unlike Cloud, however, it is specifically focused on the delivery of 
hardware resources, and not applications. From the point of view of this work, ap-
plications can then be deployed as a service (e.g., a Google Doc-like spreadsheet 
application) or not (e-commerce application). Regardless of the access level to the 
resource infrastructure and nature of the applications, technically speaking, the al-
location of resources can be done in the same way. In the end, it all boils down to 
consumers with resource demands over a common amount of resources. Conse-
quently, the work presented here is clearly applicable to both the Utility and Cloud 
computing paradigms, even though it is being put in a more general context. 
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2.2   Problem Formalization 

Firstly, because we are aiming at a decentralized approach, we view the system as 
a network of agents, where one agent can be reached by any other, directly or indi-
rectly. In this case, each agent represents an application that consumes resources 
from the pool. We then denote by S the system itself and by ai an agent in S, for i 
œ [1, n(t)] where n(t) is the number of agents in the system at time t. 

Secondly, for utility maximization purposes, our solution is based on the ap-
proach proposed in[8]. In this case, each agent ai is assigned a utility function 
ui(x), stating how useful a resource share x from the pool is at a particular point in 
time. From that, a collective utility function U(X) is defined, as follows: 

∑
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where X = {X1,X2, . . . ,Xn(t)} is an allocation vector and Xi is the resource share as-
signed to agent ai. In practical terms, Xi could be, for example, the number of serv-
ers or amount of bandwidth allocated to a particular agent. Such an approach then 
maps every possible distribution of resources to a real-scalar value, which is used 
to distinguish between two different allocations. To find the best allocation at any 
point in time, the following optimization model, proposed in[9][10], is used: 

∑
=

∈

=
X||

1  i
i )(X:subject to

)(max
)(

tK

XU
tnRX

,                                            (2) 

where K(t) is the amount of resources available in the pool at time t, e.g., 100 
servers. The constraint limits the sum of all resource shares to K(t). In a practical 
setting, the value of K(t) could be set by system administrators from a manage-
ment station, then being propagated throughout the system[11]. 

3   DUM Model 

In this section we present our solution for decentralized self-optimization in 
shared resource pools. More precisely, our solution consists on how to solve the 
optimization problem in Equation 2 in a truly decentralized way. For that, first, the 
utility function of the agents is defined, as follows: 

xti i

exu )(1)( α−−= ,                                            (3) 

where x is the amount of resource from the pool being allocated to ai and αi(t) is a 
parameter that indicates ai’s resource demand at time t. The smaller αi(t) is, the  
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greater is the agent’s resource demand. The reason for using such a utility function 
is because it will enable us to break down the optimization problem into separate 
models that each agent can use to find its optimal share. Like ours, other works 
have also used specific utility functions for different purposes[9][12]. 

Some plots of ui(x) are presented in Figure 2. The sharpness of the utility is 
controlled by αi(t). The less sharp the utility is, the smaller is αi(t), thus indicating 
a greater demand for resources. We assume αi(t) might, and most likely will, 
change over time. However, it should remain constant during the actual process of 
finding the optimal allocation, i.e., solving the problem in Equation 2. Since αi(t) 
represents an agent’s resource demand at that particular time slot, it does not make 
much sense for it to change within such an interval. This is a similar requirement 
for the centralized case, where a central entity, a Solver in this case, solves the op-
timization problem. In this case, once the Solver starts trying to find the solution 
for the optimization problem, the variables are not allowed to change until it is fin-
ished, or the solution found will just not be the correct one. That is then not a lim-
iting factor from our DUM model, but simply something inherent to the scenario 
we are dealing with. 

 

 

Fig. 2 Sample plots of the utility of the agents 

From ui(x), we then transform the constrained optimization problem in Equa-
tion 2 into an unconstrained one. Using the method of the Lagrange multipliers, 
the new problem can be formulated as: 
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where L(X, λ) is the Lagrangian of the problem in Equation 2, being defined as: 
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We then solve 4, in a way that it decomposes into the models that will calculate 
each agent’s optimal share. For that, we can solve 



Decentralized Self-optimization in Shared Resource Pools 155
 

0),( =∇ λXL , 

which gives us the set of equations below. 
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In theory, though, two points must be highlighted. First, for X to be an optimal so-
lution of the optimization problem, it must satisfy the Karush-Kuhn-Tucker 
(KKT) conditions. Second, by solving “L(X, λ) = 0, we would actually find a set 
of stationary points, each of which being a maximum, a minimum, or a saddle 
point. It can be shown, however, that in our case, the solution to “L(X, λ) = 0 sat-
isfies the KKT conditions, is unique, i.e., only one stationary point exists, and also 
that such a stationary point is necessarily a maximum, and consequently the global 
maximum. The proofs for those can be found in the Appendix. Back to Equations 
6, each ∑ L/∑ Xi = 0 will yield in: 
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Solving the equation above for Xi, gives us: 
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which then enables each agent to find its own share, such that U(X) in Equation 2 
is maximized. Note, first, that Xi œ R, and so, fine-grained shares are supported. 
Second, coordination in this case is totally decentralized. To calculate Xi, however, 
agents need, besides their own ai(t), the value of ln l, which is the global informa-
tion that binds them together. Therefore, to compute their shares, they would need 
to compute ln l first, also in a decentralized way. For that, we start with ∑ L/∑ l = 
0, from Equation 6, which yields in: 
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Substituting 7 in the above, we then have that: 
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We can isolate ln l, ending up with: 
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With that, each agent can then calculate ln l, and, once that is done, their own 
share through Equation 7. 

Because ln l depends on the a of all agents, and because we do not want any 
kind of centralization in the system, we assume that either each ai(t) will be dis-
seminated throughout the system, eventually reaching every other agent[13], or ln 
l will be computed using approaches for calculating aggregates in networked sys-
tems[14][15]. 

In the first case, each agent will end up with the a of the others, which are then 
combined with its own and used as input to Equation 8. In the second one, each 
agent ai would hold two values, ln ai(t)/ai(t) and 1/ai(t) . From that, one run of an 
aggregate algorithm would be executed for each value, to perform a sum of all of 
such values. When the two sums are computed, each agent uses them appropri-
ately in Equation 8, so as to find their own share. Both approaches can be per-
formed in large-scale networks in very reasonable time, thus not compromising 
our solution in terms of performance. Further discussion on the actual algorithms 
for computing ln l, however, is out of the scope of this paper. 

4   Evaluation 

In this section we present experiments we have performed using our DUM model. 
To this end, we have modelled a scenario where a number of Application Envi-
ronments (AEs) are deployed in a data center, as proposed in[9], each AE process-
ing one type of transaction. The scenario we illustrate here will then deal with the 
allocation of servers from the data center to the AEs deployed in it. In this case, 
each AE is represented by an agent implementing our DUM model. 

4.1   Data Center Model 

Each AE has an Expected Average Workload (EAW) at different points in time, in 
terms of number of requests per second. That can be obtained using online or off-
line prediction techniques. For our experiments, these workloads have been ob-
tained from the analytical data of different web sites. Also, all AEs have a policy 
defining a Target Response Time (TRT) that should be guaranteed for the transac-
tions they process. The resource management process will then find the optimal 
distribution of servers amongst the AEs, considering their EAW and TRT. 

We denote by ri(s,w) the Expected Average Response Time (EART) of an AE 
during time t, representing the response time an AE will obtain given a workload 
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w and a certain number of servers s allocated to it. We define ri(s,w) based on the 
model proposed in[9], as: 

s

cw
wsr

i
i =),( ,                                                   (9) 

where ci is the CPU time of the transaction processed by AE i (in seconds), w is 
the EAW of the AE (in requests per second), and s is the amount of servers as-
signed to it. From that, we derive qi(w), the required amount of servers that should 
be assigned to an AE, in order to meet its TRT, as follows: 
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where w and ci are as in ri(s,w) and Ti is the AE’s TRT. The required amount of 
servers qi(w) is necessary for defining ai(t), which, according to our DUM model, 
represents an AE’s resource demand at a particular time t. Such a parameter is cal-
culated as: 
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where H represents the value of the agents’ utility when the EART of its AE meets 
its TRT, i.e., a value very close to 1. This then models the fact that agents are 
“happy” with an amount of resources that causes their TRT to be met, but also be-
ing “happier” if more resources are given. 

4.2   Simulation Results 

Based on the data center model presented, a series of experiments have been run, 
using different scenarios. In these experiments, a random epidemic algorithm for 
disseminating all ai(t) has been used. Also, we assumed that the resource man-
agement process runs at distinct points in time, called iterations. In a real world 
setting, these iterations could represent different hours of the day, on which a re-
allocation of the servers would take place. The results for the experiments are then 
presented next. 

4.2.1   Scenario 1: Static Number of AEs 

In this scenario, the number of AEs over the entire simulation is constant. We con-
sidered that six AEs, whose EAWs are as in Figure 3, are deployed in the data 
center. Also, we assumed that 145 servers are available on the data center and that 
the CPU times of the transactions processed by each AE are as presented in Table 
1. The latter has been based on values provided in[9]. 
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Fig. 3 EAWs of each AE in Scenario 1 

Table 1 CPU Times (in seconds) for the transactions processed by the AEs 

AE CPU Time 
1 0.11 
2 0.015 
3 0.045 
4 0.08 
5 0.01 
6 0.096 

After running the simulation during twenty iterations, the shares found by each 
agent were as presented in Figure 4. The important aspect to note is the way the 
shares vary. Note that, the general shape of the graphs of the shares vary similarly 
to the way the workload does. Therefore, from a high-level perspective, our DUM 
solution captures the demands correctly, and acts properly towards the optimal 
share. At a lower level, one can see that, sometimes variations between the shares 
and workload do not match. In a general way, it is clear that those were the varia-
tions that yielded in the highest U(X), even though the specific reasons for such 
can vary. As an example, notice that, at iteration 5, AEs 2, 4, 5, and 6 have an in-
crease on their workload, but only AE 5 has an increase on its share. That is be-
cause the workload increase in AE 5 was simply too high to allow an increase in 
the shares of AEs 2, 4, and 6 such that U(X) would be maximized. 
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Fig. 4 Shares of each AE in Scenario 1 

 

 

Fig. 5 ai(t) of each AE in Scenario 1 
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The fact that our DUM model captures demand correctly is reinforced by the 
results presented in Figure 5, where the ai(t) of each AE over all iterations are pre-
sented. Note that the values of ai(t) vary exactly the opposite to the way the work-
load does. This thus matches the definition of the agents’ utility function, on 
which it is stated that the greater the workload is, the smaller is the value of ai(t), 
indicating a greater demand for resources. 

As a consequence of properly capturing ai(t), the EARTs for all AEs end up as 
in Figure 6. Note that, for all AEs, such response times are always smaller than 
what is specified in their TRT, represented by the dashed horizontal line in each 
graph of the figure. Because, in this scenario, the data center always hosted more 
servers than the demand, the aggregate utility was always such that U(X) º 6, i.e., 
the maximum under any condition. 

 

 

Fig. 6 EARTs of each AE in Scenario 1 

4.2.2   Scenario 2: Varying Number of AEs 

In a real world setting, we cannot expect the system to be static. As it evolves, 
AEs will join and leave the data center. Consequently, our solution should support 
such dynamics, which is what we have simulated in this scenario. To this end, the 
data center was initially set up with four AEs, until iteration ten, when two AEs 
join the system. Then, at iteration fifteen, one of them leaves the system, keeping 
this setting until the end of the simulation. The number of servers and the CPU 
times for this scenario are the same as for the first one. 

The EAWs for this scenario are then illustrated in Figure 7. After running the 
simulation, the shares found were such that the EARTs in Figure 8 were  
obtained. As with the previous scenario, note that the EARTs of each AE is  
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always smaller than their TRT (dashed horizontal line in each graph). This dem-
onstrates that our DUM model supports these changes smoothly. The figures for 
the ai(t)’s and shares found were similar to the ones presented in the first scenario, 
and so we omitted them. 

 

Fig. 7 EAWs of each AE in Scenario 2 

4.2.3   Scenario 3: Varying QoS Parameters 

Just like the system structure is prone to changes in real world settings, so are the 
QoS requirements of the applications in a shared resource pool. Contracts between 
customers and infrastructure providers might change over time, thus directly im-
pacting in resource demands. We should then be able to show that our DUM 
model can also handle such variations in QoS requirements, so as to make it fully 
applicable in practice. 

For that, we have run simulations similar to the ones for the first scenarios, but 
this time varying the TRT of the AEs deployed in the data center. The workloads 
of the AEs, as well as the number of servers and the CPU times of the transac-
tions, were the same as for the first scenario. The variation of the TRTs, along 
with the final EARTs obtained, for each AE, is presented in Figure 9. Note that, 
even though the TRTs were varying over time, our DUM model was still able to 
deliver resource shares meeting all such requirements, for all AEs. It is worthy to 
point out, in this case, that since not only the workload, but also the QoS require-
ments, are varying, the ai(t) will now vary based on a combination of both, as pre-
sented in Figure 10. This contrasts with the first scenario, and it does so because in 
that case the TRTs were constant over time, and so, only the workload would af-
fect the ai(t). In that case then, it would be easy to realize the behaviour of ai(t), 
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i.e., an increase/decrease in the workload, would necessarily cause an in-
crease/decrease in resource demand, ending up with a decrease/increase of ai(t). 
For this scenario, we omitted the figures for the shares obtained, since they present 
results similar to what has already been shown. 

 
 

 

Fig. 8 EARTs of each AE in Scenario 2 

4.2.4   Scenario 4: Overload 

Finally, in a fourth scenario, we observed how our solution behaves when facing 
overload in the data center. In other words, in some iterations, we allowed the total 
demand to be greater than the number of servers available in the Data Center. For 
that, the number of servers has been set to 100. Again, the CPU times used and the 
workloads were as in the first scenario. 

The overload is illustrated in Figure 11, which plots the variation of the total 
server demand over the iterations (the solid line represents the number of servers 
available). Because of that, the EARTs were then as in Figure 12. Since overload-
ing was being considered, in some iterations, the TRTs of some, or all, AEs could 
not be met. To better illustrate that, we present in Figure 13 the variation of the 
aggregated utility. Note that, on the iterations where overload did not happen, the 
utility obtained was still the highest possible, i.e., U(X) º 6, consequently decreas-
ing during overload periods. Consequently, the point where the aggregate utility 
reached its lowest value was the exact moment where the total server demand 
reached its highest value. 
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Fig. 9 TRTs and EARTs of each AE in Scenario 3 

 

Fig. 10 ai(t) of each AE in Scenario 3 

Still, our DUM model distributed the shares in a way that always maximized 
the aggregated utility, as stated in the original problem formulation. Apart from 
the formal proofs provided in the Appendix concerning the maximization of the 
problem formulation, we provide, in Table 2, practical evidence that the 
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allocations found by our DUM solution do maximize the aggregated utility.  More 
precisely, we compared the optimal allocation found, lets call it X*, for a particular 
run, with different allocations, lets call them X’, by giving/taking 0.1 resource 
shares to/from the AEs, in a way that the total amount of resources allocated did 
not change. Then we compared the value of the aggregated utility U(X) for the two 
allocations. As one can see in Table 2, the value obtained with the allocation X* is 
always higher. That then further demonstrates that such an allocation, found by 
our DUM model, is, indeed, the one yielding to the maximum of the original op-
timization problem. 

 

Fig. 11 Total amount of required servers over the overload scenario 

 

Fig. 12 EART of the AEs over the overload scenario 
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Fig. 13 Aggregate utility over the overload scenario 

Table 2 Comparison of the values of the aggregate utility U(X) 

U(X*) - U(X’) 
6.767E-11 
5.678E-11 
1.191E-10 
1.318E-10 

5   Related Work 

A number of solutions for performing self-optimizing resource management in 
shared resource pools has been proposed. Many of them, however, approach the 
problem using centralized models[3][9][5]. In this case, a central authority is in 
charge of deciding the resource shares across the system. Even though these solu-
tions can perform well, they are not very scalable because of the centralizers. 
Also, they are not fault-tolerant, since the crash of the centralizer compromises the 
entire system. 

Solutions with a more distributed characteristic have also been proposed. 
In[12], for example, market agents are used. The solution differs from ours in the 
sense that centralizing entities, called brokers, are inserted in the resource man-
agement process. The decomposition methods presented in[16] are another dis-
tributed solution. These methods are similar to our DUM model in that they also 
employ Lagrange multipliers to decompose an optimization problem into smaller 
problems, which can further decomposed, forming a hierarchy. Unlike our solu-
tion, it relies on a messaging scheme which employs a central problem. Similarly, 
a hierarchical optimization model is presented in[17]. In both cases, coordination 
is done at the root of the hierarchy, whereas in our case, this is decentralized. 

Solutions featuring decentralized control exist in similar domains. Examples of 
such solutions are [18][19], which employ market agents. Their focus, however, is 
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not on Utility Maximization, unlike our DUM model. In [11], it is presented a de-
centralized solution for allocating servers to different classes of service. This solu-
tion is modelled differently though, in that resource providers, and not consumers, 
solve the optimization problem, like in our DUM model. Besides, it is specifically 
focused on server allocation, whereas we have aimed at a more general approach. 
In [20], gossiping is used to allow a set of P2P-connected traffic limiters to control 
the bandwidth they use. The solution is different from ours in the sense that it does 
not focus on Utility Maximization. The same can be said from the approach pro-
posed in [21], which allows servers to be allocated to applications in a decentral-
ized way. In terms of distributed optimization, in [22], Subgradient methods are 
used to optimize the aggregate of a set of agents’ cost function. The solution, 
however, does not incorporate resource constraints, limiting its applicability in 
practical resource management scenarios. Finally, in [23], a DUM model is pro-
posed, but it is focused on the control of multiple multicasts in P2P systems and 
does not apply to the problem formulation being used here. 

6   Conclusions 

In this paper, we presented a Decentralized Utility Maximization (DUM) model 
for managing shared resource pools in an adaptive and optimal way. More pre-
cisely, we employed the method of the Lagrange multipliers along with the utility 
functions theory to devise a method where each agent in the system knows how to 
calculate its share, so that the best outcome can be obtained. As we showed, cen-
tralized and hierarchical solutions exist in this context, but none of the decentral-
ized ones cope with the specific problem being studied here. That thus gives our 
DUM model an innovative feature. To the best of our knowledge, this is the first 
work to present a decentralized solution in the domain of shared resource pools. 

An evaluation has been presented, through simulations, using a server alloca-
tion scenario in a data center. We demonstrated that our DUM model is able to 
capture resource demands properly and deliver shares that meet all applications’ 
QoS parameters, when possible. Scenarios where the number of applications as 
well as the QoS parameters in the system vary, which are to happen in the real 
world, have been simulated. As we showed, our DUM model also handles these 
scenarios in an optimal way. Finally, in overload situations, even though not all 
QoS parameters could be met, we demonstrated that our solution was still able to 
find the allocation leading to the best outcome. 

As future work, we are aiming at a specific epidemic algorithm for disseminat-
ing the ai(t) values throughout the system. The main reason for such is that the 
current methods for computing aggregates like our ln l would not suit us in terms 
of scalability, precision, and fault-tolerance. Furthermore, we will apply our DUM 
model to other shared resource pools scenarios, to have an insight on how general 
it really is. We do believe, however, that our DUM model could handle other sce-
narios straightforwardly. 
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Appendix 

A.   Satisfiability to the Karush-Kuhn-Tucker (KKT) Conditions 

Consider the following non-linear optimization problem: 

0)(,0)( :subject to

)(max

=≤
∈

xhxg

xf

ji

nRx , 

where gi(x), i e [1, m], are inequality constraints and hj(x) = 0, j e [1, n], are equality 
constraints. It is known that if f(x) and all gi(x) are concave and all hj(x) are affine func-
tions, then, “L(X, l) = 0 is a sufficient condition for a maximum[24], i.e., it satisfies 
the KKT conditions. Translating that into our optimization problem, then: 
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since we have no inequality constraints. We then start by showing that U(X) is 
concave. For that, we can simply show that -U(X) is strictly convex [25]. If a func-
tion f(x) has a second derivative, for it to be strictly convex it is necessary and suf-
ficient that "x, f ’’(x) ¥ 0 [26]. We know that: 
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which is what we wanted to show. Finally, showing that h(x) is affine is straight-
forward. Any affine function is of the following form [27]: 

bXAXAxxf nnn +++= ...),...,( 111 , 

where Ai can be a scalar. Clearly, then, h(x) is affine, since 

))((...),...,( 11 tKXXxxh nn −+++= , 

where A1 = A2 = ... = An = 1. By showing that, then, we have that “L(X, l) = 0 is 
a sufficient condition for a maximum. 
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B.   Existence and Uniqueness of the Maximum of L(X, l) 

Based on the optimization problem defined in Equation 4, we now show that, by 
solving “L(X, l) = 0 in the Optimization Model, we are not only finding a maxi-
mum of L(X, l), instead of a minimum or a saddle point, but also that such a maxi-
mum is unique, which then makes it the global maximum. For that, we start show-
ing that L(X, l) is strictly concave. From the general non-linear optimization 
problem given in Appendix A, L(X, l) is strictly concave if f(x), gi(x), and hj(x) are 
strictly concave[24]. From Equations 21, we already have that f(x) = U(X) is 
strictly concave. Because we have no gi(x) constraints, it only remains for us to 
show that h(x) = Sai œ S(t) Xi - K(t) is strictly concave. For that, as in Appendix A, 
we have to show that -h(x) is strictly convex, which can be done by checking if 
"x, -h’’(x) ¥ 0, if -h’’(x) is defined. We then have the following: 

)0,...,0()(
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2
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=−∇
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which makes h(x) strictly concave. Now that we know L(X, l) is indeed strictly 
concave, the following can be stated: 

1. A stationary point of L(X, l), i.e., X’, l’ such that L(X’, l’) = 0, if any, is nec-
essarily a maximum; 

2. For a X’, l’ such that L(X’, l’) = 0, it can be said that X’, l’ are unique, 

which then ensures what we wanted to show. 
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