
A Multi-lane Double Auction for
Economic-Based Service Management in the
Cloud

Xavier Vilajosana, Daniel Lázaro, Angel. A. Juan, and Joan Manuel Marquès

Abstract. Economic models have shown their suitability to allocate resources effi-
ciently, considering an unbalanced supply and demand. As the use of the Cloud is
extending, a numerous set of distributed resource allocation frameworks have been
developed to attain efficient resource management while keeping the scalability of
the infrastructure. However, those frameworks make use of either simple double
auction mechanisms or complex approximations to the NP-complete problem of the
combinatorial auction. The problem of those mechanisms is that of its generality,
that is, they have not been specially designed for the trading of time-leased compu-
tational resources. In this paper we present a novel variant of the double auction that
has been specially adapted to trade time-differentiated items as Cloud services can
be considered. The paper presents the data structures, algorithms and architecture
of the economic mechanism as well as it presents the evaluation of the mechanism
through simulation. Simulated results are compared with the main double auction
implementations found in the literature. The paper constitutes an approach to im-
prove efficiency of service management and allocation in the Cloud from the point
of view of the economic model and not from architectural aspects addressed by most
of the contributions found in the literature.

1 Introduction

Auction mechanisms have been used to allocate resources in computational en-
vironments [Lai et al(2005)Lai, Rasmusson, Adar, Zhang, and Huberman, Ey-
mann et al(2003)Eymann, Reinicke, Ardaiz, Artigas, Freitag, and Navarro, Buyya
and Venugopal(2004), Neumann et al(2007)Neumann, Stößer, Anandasivam, and
Borissov, Consortium(2008), Haussheer and Stiller(2005)]. Most of the used

Xavier Vilajosana · Daniel Lázaro · Angel. A. Juan · Joan Manuel Marquès
Estudis d’Informàtica, Multimèdia i Telecomunicació
Universitat Oberta de Catalunya
e-mail: {xvilajosana,dlazaroi,ajuanp,jmarquesp}@uoc.edu

S. Caballé, F. Xhafa & A. Abraham (Eds.): INCoS 2009, SCI 329, pp. 117–148.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

118 X. Vilajosana et al.

economic institutions are the Double Auction (DA) or the Combinatorial Auction
(CA). The DA is a simple but powerful mechanism to allocate a single type of
item amongst multiple buyers and multiple sellers. Combinatorial Auctions [Liu
and He(2007), Radhanikanth and Narahari(2009), Schnizler and Neumann(2007)],
in contrast, are NP-complete mechanisms that can deal with bundled items and sub-
stitute preferences. Both mechanism have been used with success in the allocation
of resources in the Grid, however neither CAs nor DAs have been improved to fit
to the nature of the services in the Cloud (heterogeneous and strictly time-leased).
As already stated, DAs can only trade a single type of resource per instance, even
multiple units, this constitutes a limitation for the allocation of services, mainly het-
erogeneous and differentiated by time. On the other hand, Combinatorial Auctions
are not able to allocate high quantities of items due to their computational costs. Our
work presents a novel approach of the Double Auction that improves the usability
of Double Auctions as mechanism to allocate time-differentiated resources and ser-
vices. Our approach, the Multi-Lane Double Auction (MLDA) provides the means
by which multiple time differentiated items can be allocated by a single instance of
the mechanisms. Besides it enables the allocation of substitute items approximating
its results to the results obtained by CAs. The MLDA can be set in between both ex-
isting approaches constituting a useful alternative. It fills the gap between DAs and
CAs and constitutes a good candidate when dealing with the allocation of hetero-
geneous computational resources/services. The paper presents the data structures,
algorithms and architecture of the economic mechanism as well as it presents the
evaluation of the mechanism through simulation.

2 The Double Auction

Double auctions determine the winners set amongst multiple buyers and sellers
when offering to buy or sell single items. To clear the auction, the M th and (M
+ 1)st prices are computed, where M is the number of sell bids. It is assumed that
a total order can be imposed on all the bids. This is commonly accomplished using
price as the principal priority measure, and using bid quantity or bid placement time
to break ties. Conceptually, finding the M th and (M + 1)st bids is simply a matter
of sorting the bids in descending order, and identifying the Mth and (M + 1)st items
in the list. The prices between the M th and (M + 1)st bids (inclusively) represent
the range of prices for which supply balances demand. At prices in the range, the
number of buyers willing to buy at that price equals the number of sellers willing to
sell, with the caveat that when M th= (M + 1)st, one side or the other may have some
participants who lose on tie-breaking criteria. It is important to note that this process
of identifying the equilibrium price range works regardless of the relative position
of the buyers and sellers in the list. The k-Double Auction computes a clearing price
that is a ratio of the two boundary prices. Furthermore, the M th and (M + 1)st prices
delineate the set of currently winning bids, referred to as the transaction set. Again,
modulo ties at the boundaries, buyers at or above the M th-price would purchase an
item if the auction cleared, and sellers at or below the (M + 1)st price would sell

A Multi-lane DA for Economic-Based Service Management in the Cloud 119

an item. It follows that the M th-price and (M + 1)st-price constitute exactly the in-
formation that is typically provided to participants in the form of price quotes. The
M th-price is the ask quote and informs a potential buyer of the minimum that she
would have to offer to be certain to enter the current transaction set. Symmetrically,
the bid quote, equal to the (M + 1)st-price, informs a potential seller the maximum
that he would be able to offer to become a current winner. Figure 1 exemplifies the
above described procedure.

3 MLDA Functionalities

The Multi-Lane Double Auction (MLDA) has to support multiple time-differentiated
items per instance while keeping the general functionalities offered by an auc-
tion. Since multiple time-differentited items must be supported, the structure of the
MLDA has been designed as a set of lanes where each lane represents an item. The
main operations offered by the MLDA are:

• Insert/Remove Bid. When a new bid is received and the auction system verifies
that it satisfies whatever bidding rules exist. It must be inserted into the auctions
data structures for its corresponding lane. Similarly, when a bid is withdrawn,
it must be removed from the data structures. Inserted bids can be precise which
means that they can only be inserted in a specific lane. Imprecise bids are those
that can be placed in more than one lane.

• Compute Quote. The auction will generate price quote information for a lane .
• Clear. At designated times, the auction will compute exchanges between the

buyers and sellers, notify the participants, and remove the winning bids from the
data structures.

4 MLDA Operations

The MLDA algorithm has been developed following the same idea as the general
double auction mechanism presented in the previous section. Bids and asks are or-
ganised in lanes, and for each lane the general double auction data structures are
maintained. For each lane the MLDA keeps four structures to maintain bids sorted
and another one global structure to buffer bids representing substitute preferences
(henceforth imprecise bids). In the literature many different data structures can be
found for such an aim: Heaps, Internal Path Trees, AVL or sorted lists. However, for
the description of the MLDA algorithm it will be considered the use of sorted lists
as they keep concepts simple and it does not affect the general functional behaviour
of the algorithm. As indicated, each lane is represented by four sorted lists to store
winning bids (Bin) , winning asks (Sin), losing bids (Bout) and losing asks (Sout).
Bin is sorted in ascending order so that the lowest winning bid is the head of the list
while Bout is sorted in descending order to keep the highest losing bid at the head
of the list. Sin is sorted in descending order, keeping the highest winning ask at the
head and Sout is sorted in an ascending order to keep the lowest losing bid at its

120 X. Vilajosana et al.

(a) Step 1. Sort the list of buy bids and sell bids(asks)

(b) Step 2. Merge both lists

(c) Step 3. Find the price. It is the Mth bid in descending order.
Mth represents the number of sell bids received.

Fig. 1 Steps to compute winners in a double auction

A Multi-lane DA for Economic-Based Service Management in the Cloud 121

head. By construction the MLDA keeps the Social Welfare maximum. This is the
invariant of the insertion algorithm and is a key point for the economical efficiency
of the MLDA. Social Welfare is a measure of wellness that permits to weight up
how resources are distributed taking into account their need.

The algorithm does not differentiate between precise or imprecise bids, as a bid
can be placed in one, two, three or more lanes, so the choice to where the bid will
be placed will be guided by the possible lanes where the bid can be inserted. One
important detail to consider and a fundamental issue to be solved by our algorithms,
concerns to how imprecision is handled. Note that if only precise bids (without indi-
cating substitute items) are inserted in the MLDA, it behaves as a set of independent
auctions since no bids are suitable to win in more than one lane. So, the simplest
case for a MLDA occurs when all bids are precise. In this case lanes can be cleared
independently because no bid in a lane can displace a bid in another lane. Contrarily,
when there are imprecise bids (substitute preferences) that can be inserted in more
than one lane the efficiency obtained by the auction will be directly affected by the
placement of the imprecise bids. Thus, when an imprecise bid B’ is placed in a lane,
the bid B’ may prevent a precise bid B” from winning in that lane. In order to avoid
any possible inefficiency, an imprecise bid may win only in the lane where the social
welfare is maximised.

4.1 Bid Insertion

When a bid B is inserted in a MLDA, the list of possible lanes L where the bid can
be placed is given. B can only affect the social welfare of any of the lanes in L.
Many different situations can happen:

• B can displace a winning bid in any of the lanes in L
• B can make a current losing ask in any of the lanes in L be promoted.
• B cannot win in any of the lanes in L.

The condition to be maintained is that the Social Welfare is kept at a maximum level,
so that the choice of any of those situations is given by the condition that maximises
the current social welfare. So the question now is how to calculate the social wel-
fare without having to compute it for every lane. In our algorithms we keep pointers
to the current Lowest Losing Ask (LLA), the Lowest Winning Bid(LWB) and the
Highest Losing Bid(HLB). Pointers are updated each time a bid or ask is inserted.
Using these pointers, we can easily find the lane where the social welfare is max-
imised by inserting B. If a bid has to be displaced and substituted by B, the bid to be
displaced will be the Lowest Winning Bid, because we want to maximise the wel-
fare and the LWB is the worst bid that can be displaced. A displaced Bid, instead
of being inserted in the losers list directly is kept in a buffer that we call the Pend-
ingLosingBids queue. Contrarily, when the situation that maximises social welfare
is the one that corresponds to a promotion of a losing ask, the best choice will be
the Lowest Losing Ask because there is not another ask, that if promoted, the social
welfare can be improved. The pointer to the Highest Losing Bid is used to deter-
mine whether B can be discarded directly and inserted to the PendingLosingBids

122 X. Vilajosana et al.

queue. As long as bids arrive, and there are no asks, they are directly inserted in the
PendingLosingBids queue. This queue acts as a buffer and maintains bids sorted in
a descending order. As we will see later the ask insertion will take advantage of this
queue.

4.2 Ask Insertion

We considered that asks cannot be imprecise because it does not make sense for a
seller to offer imprecise time-specified services. A seller will always indicate the
specific service that it is selling including its specific time slot. The ask insertion
algorithm also has to maintain the invariant, that is, keep the social welfare at a
maximum level at each ask insertion. When an ask S is inserted in a lane several
things need to be checked. If S is higher than the current Lowest Losing Bid, there
is nothing to do and S has to be inserted in the Sout list in its lane. In any other
situation S has a chance to be a winner. To make S win a currently losing bid B
that can be placed in L has to be found. Once B is found ,it can be be promoted
as winning bid in L and matched with S. Due to our invariant, the selected bid has
to be such a bid that keeps the social welfare at a maximum level. This condition
holds when the selected bid is the Highest Losing Bid that can be placed at L. The
HLB that can be placed at L can be found either in the PendingLosingBids queue
or in the Bout list in a lane. The algorithm selects the highest out of the possible
bids. Even in that situation another condition has to be checked. It can happen that
a current winning ask S’ in a lane L’ is higher than S and in L’ there is a winning
bid B’ that can be moved to L. In this case, the social welfare would be improved by
displacing B’ to L and removing S’ from the Sin in L’. To determine the best choice
the following condition is checked:

whenever B− S <= B′ − S′+ B− S it is better to promote the Highest Losing Bid
that can be inserted at L. Otherwise, it is better to displace B’ from L’ to L and
remove S’ from the Sin in L’. Finally in the case that there are no suitable bids to be
inserted/displaced at L, S is directly inserted in Sout in L.

4.3 PendingLosingBids Queue

The PendingLosingBids queue is a data structure that keeps bids organised in lanes.
For each lane a decreasing sorted list is kept. Whenever a bid is inserted in the pend-
ing queue, a pointer to the bid is inserted in each lane where the bid can be placed.
It offers functionalities to get the maximum bid out of a set of lanes. As introduced
before, the PendingLosingBids queue is used to keep bids that at insertion time are
not able to win or have been discarded. As asks arrive bids are removed from Pend-
ingLosingBids queue. Whenever no more asks arrive, bids are kept in the queue and
considered to be losing bids.

A Multi-lane DA for Economic-Based Service Management in the Cloud 123

Data: A Bid Bnew and Planes the list of lanes where Bnew can be inserted
Result: A bid is inserted in its corresponding lane or in the pending queue
begin

LWBordered← List of the LWB ordered increasing
LLAordered← List of the LLA ordered increasing
HLBordered← List of the HLB ordered decreasing
initialize (LWBmin,LLAmin,HLBmax)
if LWBordered is /0 ∧ LLAordered is /0 ∧ HLBordered is /0 then

insertPendingSortedLosingBids (bnew)
return

if LLAordered is /0 ∧ Bnew ≥ HLBmax then
if Bnew > LWBmin then

displaceLWB (Bnew, LWBmin)
else

insertPendingSortedLosingBids (Bnew)

else if ¬ LLAordered is /0 ∧ Bnew ≥ HLBmax then
if LLAmin ≥ Bnew ≥ LWBmin then

displaceLWB (Bnew, LWBmin)
else if LLAmin ≥ LWBmin ≥ Bnew then

insertPendingSortedLosingBids (Bnew)
else if LWBmin ≥ Bnew ≥ LLAmin then

promoteLLA (Bnew, LLAmin)
else if LWBmin ≥ LLAmin ≥ Bnew then

insertPendingSortedLosingBids (Bnew)
else if Bnew ≥ LLAmin ≥ LWBmin then

displaceLWB (Bnew, LWBmin)
else if Bnew ≥ LWBmin ≥ LLAmin then

promoteLLA (Bnew, LLAmin)
else

return
else if ¬LLAordered is /0 ∧ Bnew ≤ HLBmax then

insertPendingSortedLosingBids (Bnew)
else if LLAordered is /0 ∧ Bnew ≤ HLBmax then

insertPendingSortedLosingBids (Bnew)
else

return
end

Algorithm 1: Bid Insertion algorithm

124 X. Vilajosana et al.

Data: Snew the ask to be inserted in L the target lane.
Result: Inserts and ask.
begin

if LLA (l) is /0∨ Snew < LLA (l) then
checkIfCanBePromoted (Snew, L)

else if Snew≥ LLA (l) then
insertSout (Snew,L)

else
return

end
end

Algorithm 2: Ask insertion algorithm.

4.4 MLDA Clear and Quotes

The clearing operation is simple and straightforward. Clearing can be done, sequen-
tially or in parallel because dependencies amongst lanes have been removed at inser-
tion time. Thus, the clearing process matches highest bids with lowest asks by just
traversing Sin and Bin. Price quotes are offered by every lane and are also easy to
find, the lowest winning bid is the Bid quote and is given by the head of Bin that also
corresponds to the Mth price as stated by the literature. (M+1)st price corresponds
to the ask quote and is given by the head of Sin.

5 Implementation and Experiments

MLDA has been implemented and a set of experiments have been carried out. The
aim of the simulation was twofold: first validate that MLDA provides optimal1 ef-
ficiency and second compare its computational efficiency with multiple instances
of single item double auctions. To carry out the experiments a set of data sets have
been generated. Several distribution functions have been used to generate random
data. The distribution functions used were derived from several experiments found
in the literature [Phelps(2007),Phelps(2006),Mills and Dabrowski(2008)]. Uniform
distribution of ask prices are motivated by the assumption that costs of services are
also uniformly distributed. Bid prices have been generated using different distri-
bution functions, Binomial distribution and Uniform distribution. Furthermore, bids
and asks were also distributed across time slots following different distribution func-
tions. Distributing bids and asks across different time slots using different distribu-
tion functions enabled us to experiment the effects of non-uniform supply/demand
across time slots. Every experiment describes the reason for the distribution function
used and the aim of the intended evaluation.

1 There is no other allocation that improves the obtained social welfare.

A Multi-lane DA for Economic-Based Service Management in the Cloud 125

(a) Where to place the bid? (b) The bid have to be placed in one of
these lanes.

(c) Objective Maximize SW. Is there
an ask that can be promoted?

(d) The best candidate ask is the low-
est losing ask because if promoted SW
will be maximized.

(e) But.. if there is a currently winning
bid that if displaced SW can be im-
proved...

(f) For this example is better to dis-
place a winning bid.

Fig. 2 Process of inserting a bid into a MLDA instance. Selection of the best candidate lane
to place the bid.

126 X. Vilajosana et al.

Data: Lanes a Map of lists representing the Multi-Lane catalog of bids
Result: Returns a Map of lists. Each lists contains the pairs of matched bids

and asks.
begin

Map κ ← /0
for l ∈ Lanes do

α ← emptyset
α ← getMatchings (l)
put (κ ,α)

end
return κ

end

Algorithm 3: Clear algorithm.

5.1 Experiment A: Economical Efficiency

The experiment aimed to evaluate the economical efficiency obtained by the MLDA.
Economical efficiency has been defined as the social welfare that the mechanism
provides given a certain input. Social welfare has been computed as:

SW = ∑(Bids)−∑(Asks)

5.1.1 Experiment A Setting

In order to evaluate the economical efficiency of the MLDA we aimed to make a
comparison with another well-known double auction, the k-Double Auction (k-DA).
The JASA k-DA framework [Phelps(2006),Phelps(2007)] implementation has been
used to make a comparison with our implementation of the MLDA. The JASA k-
DA was based on the 4Heap Algorithm implementation presented by Bao et. al [Bao
and Wurman(2003)]. Experiments where conducted in a dual core T9500, 2.5GHz
with 4Gb of Memory.

5.1.2 Experiment A Description

The following tables describe the experiments carried out.Table 1 summarizes our
first set of experiments with MLDA. The experiment consisted of the generation
of a set of 1000 bids and 600 asks2. Several auction instances were created, one
MLDA auction instance for four lanes, and three sets of four 4HeapDoubleAuction

2 The amount of bids and asks has been determined after several experimentation with differ-
ent quantities of bids and asks, starting from 10 bids and 5 asks to 3000 bids and 1500 asks.
1000 bids and 600 asks have been considered a significative amount to evaluate MLDA.
Of course, the choice have also been corroborated by other related work. Phelps thesis ex-
periments with bid and asks sets of 30 to 1000 units. Mill and Dabrowski present different
experiments using between 250 and 5500 processor requirements. In their homogeneous
experiment, buyers required 500 processors and sellers offered 500 processors.

A Multi-lane DA for Economic-Based Service Management in the Cloud 127

Table 1 Experiment A.1 setting

Experiment A.1
Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100
Lanes 4 4 instances 4 instances 4 instances
Bids 1000 (all

inserted at
the MLDA
instance)

1000 (dis-
tributed round
robin at lanes)

1000 (Uni-
formly dis-
tributed at
lanes)

1000 (Follow-
ing a Binomial
PDF with n=3
and p=0,4)

Asks 600 (Uniformly
distributed
amongst lanes)

600 (Uniformly
distributed
amongst lanes)

600 (Uniformly
distributed
amongst lanes)

600 (Uniformly
distributed
amongst lanes)

instances from JASA framework [Phelps(2006),Phelps(2007)]. Each set was referred
as 4HDARR, 4HDAU and 4HDAN respectively.

The experiment marked all the bids for all the lanes (imprecise bids) of the
MLDA, so as to indicate that the bids were for substitutable items. Afterwards all
the asks were inserted and uniformly distributed amongst the lanes. The time of
computation was measured. The computation time for all the experiments measured
the time taken to initialise the instance of the auction, the time taken to insert all the
bids and all the asks and then finally the time to clear the auction. Furthermore, the
social welfare and the number of matches where computed at the finalisation of
the experiment.

For the cases of 4HDARR, 4HDAU and 4HDAN, the same experiment was car-
ried out. For 4HDARR, bids where inserted in a round robin fashion in each lane
instead of being described as substitutable for all lanes as in the case of MLDA.
This means that Bid 1 was placed in 4Heap Auction instance representing lane one,
Bid 2 was placed in the 4Heap Auction instance representing lane 2, Bid 3 in the
auction representing the 3rd and so on... The asks were inserted following a uni-
form distribution amongst the lanes. The experiment measured the time taken to
compute the initialisation of the four instances of the 4HeapAuction, as well as the
time taken to insert the bids and asks and clear the auction. 4HDAU and 4HDAN
behaved accordingly but with the difference that bids where inserted following a
uniform distribution and a binomial distribution respectively.

For the four experiments the same set of bids and asks where used in order to
avoid divergences due to randomisation. The experiments were repeated 100 times,
re-generating the bids and asks in each experiment.

Table 2 presents the setting for the second experiment. Experiment A.2 set the
distribution of asks following a Binomial PDF with n=3 (the number of lanes (0 to
3)) and p=0.24 to centre it near to lane 1. Binomial distribution was used since we
wanted to evaluate a distribution of asks where not all lanes had the same probability
but some of them were preferred amongst others.

128 X. Vilajosana et al.

Table 2 Experiment A.2 setting

Experiment A.2
Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100
Lanes 4 4 instances 4 instances 4 instances
Bids 1000 (all

inserted at
the MLDA
instance)

1000 (dis-
tributed round
robin at lanes)

1000 (Uni-
formly dis-
tributed at
lanes)

1000 (Follow-
ing a Binomial
PDF with n=3
and p=0,4)

Asks 600 (Following
a Binomial
PDF with n=3
and p=0,24)

600 (Following
a Binomial
PDF with n=3
and p=0,24)

600 (Following
a Binomial
PDF with n=3
and p=0,24)

600 (Following
a Binomial
PDF with n=3
and p=0,24)

5.2 Results Analysis

5.2.1 Experiment A.1 Results

Experiment A.1 aimed to evaluate the Social Welfare obtained by MLDA in the
setting described above. By construction MLDA keeps social welfare optimal3 so
the expected results were that it achieves the best social welfare amongst other auc-
tions. As can be seen in Figure 3.a the average social welfare amongst the 500
experiments in each lane is the highest for MLDA. 4HDARR and 4HDAU achieve
close to MLDA social welfare, since the bids and asks are distributed proportionally
in each lane. However, the benefit of MLDA is that the bids are always placed in
the best option when 4HDARR and 4HDAU are restricted to placing them in one
specific lane. 4HDAN achieves a worse social welfare due to an imbalance in the
distribution between bids and asks.

The same expected results were achieved when considering the number of
matches. As can be seen in Figure 3.b MLDA achieved the highest number of
matches, either per lane or in total. For the 4HDAN, we can see that the lane with
highest probability achieves the highest number of matches, but it still obtains the
worst results.

Figure 3.c compares MLDA with 4HDA. The Figure presents the gain in % of
MLDA when compared to 4HDARR,4HDAU and 4HDAN. The compared metrics
have been economical efficiency, i.e. improvement in the obtained social welfare
and number of matches provided. MLDA is slightly better, 0.5%, than 4HDARR
and 4HDAU when asks are distributed following a uniform distribution amongst the
lanes. In these cases, the improvement obtained by MLDA is not very significant
due to the distribution of bids in 4HDARR and 4HDAU, which places bids almost
uniformly across the lanes. As the asks and bids were placed following the same
type of distribution, the number of matches per lane in 4HDARR and 4HDAU are

3 See Section 4 for the description of the algorithm.

A Multi-lane DA for Economic-Based Service Management in the Cloud 129

(a) Compared average social welfare per
lane. Y-axis indicates Social Welfare.

(b) Number of matches per experiment
and per lane. Y-axis indicates number of
matches.

(c) MLDA compared to 4HDA. Y-axis indicates improvement in %.

Fig. 3 Results of the experiment A.1

close to the allocation obtained by MLDA. However, 4HDAN behaves poorly due
to the distribution of the bids being MLDA at least 8% better than 4HDAN. This
of course can be attributed to the imbalance between the distribution of the asks
and bids that leaves lanes 1 and 4 with a lower number of bids, which reduces the
overall welfare and number of allocations. In this Figure a direct relationship can
also be seen between economic efficiency and the number of allocations. It can be
deduced that the gain in efficiency is directly proportional to the gain in the number
of allocations.

130 X. Vilajosana et al.

5.3 Experiment A.2 Results

Like experiment A.1, experiment A.2 aimed to confirm that the MLDA achieves
the best Social Welfare when compared to multiple auction instances. This second
experiment distributed the asks following a binomial distribution as previously de-
scribed. The reason for such distribution is to see the effects of heterogeneous supply
and demand distribution amongst the lanes.

(a) Compared average social welfare per
lane. Y-axis indicates Social Welfare.

(b) Average Social Welfare per experi-
ment. Y-axis indicates Social Welfare.

(c) MLDA compared to 4HDA. Y-axis indicates improvement in %.

Fig. 4 Results of the experiment A.2

A Multi-lane DA for Economic-Based Service Management in the Cloud 131

Figure 4.a shows that lanes 1 and 2 achieved higher social welfare compared
to 3 and 4 and this, of course, is due to the distribution of the asks. Compared
results show that MLDA gets the highest social welfare for lanes 1 and 2 while
4HDAN achieves the best social welfare in lane 3. Regarding average social welfare
amongst lanes (see Figure 4.b), MLDA achieves the best social welfare followed
by 4HDAN. 4HDAU and 4HDARR achieve the worst social welfare due to the
binomial distribution of asks and their almost equiproportional distribution of bids.

Finally, Figure 4.c shows the gain in efficiency (in terms of social welfare) in
% when comparing MLDA with other auctions. MLDA compared with 4HDARR
shows that MLDA is 11% more efficient than 4HDARR, 8% more efficient than
4HDAU and even 1% more efficient than 4HDAN, when playing in its optimal
situation.

5.4 Experiment B: Computational Efficiency

Experiment B aimed to evaluate the computational efficiency of MLDA. Experi-
ments A.1 and A.2 have been used to obtain experimental data concerning the com-
putational efficiency of the different auctions. Time of computation in milliseconds
has been used to determine the computation efficiency of the auction. For each ex-
periment, the same operations were measured. MLDA was measured once the data
had been generated. Measurements started at MLDA instance creation and subse-
quent bid insertion. After the insertion of the asks and the clearing of the mea-
surements ended. 4HDA (in any of their variants) were also measured after data
generation. Namely, instance creation, bid and ask insertion and subsequent clear-
ing were measured. Results show that 4HDA settings take almost four times longer
to finish the computation. We attribute the extra time to initialise different instances,
as well as its management. Moreover, we observe that when bids in MLDA are for
a restricted set of lanes the time of computation is reduced due to diminutions of
the search space of the MLDA algorithm (i.e. as more bids are restricted to one
lane, the lower the number of bid searches in other lanes, besides, as the number
of bids for all lanes reduces, there is less search time in the overall search space).
In addition, we want to point out the effects of the PendingLosingBids queue that
keeps losing bids in it instead of inserting them into the Bout structures at each lane.
This also shortens the time of computation for MLDA. Figure 5.a shows the time
taken to carry out experiment A.1. It shows that MLDA is almost 4 times better
than other 4HDA. The 4HDAN is the worst case, produced apparently by a higher
number of bids in one instance in respect to others that produce a higher number of
bid displacements.

Figure 5.b shows similar results when asks are inserted following a binomial
distribution.

132 X. Vilajosana et al.

(a) Time of computation for experiment A.1. Y-axis indicates time of computation in mil-
liseconds.

(b) Time of computation for experiment A.2. Y-axis indicates time of computation in mil-
liseconds.

Fig. 5 Results of the experiment B

5.5 Experiment C: Scale Sensibility

The test aimed to analyse the scalability in number of lanes of the MLDA. It is
supposed to obtain a linear increment of computation time as the number of lanes
increases linearly. Moreover, we aimed to prove that the relationship between the
performance of MLDA and multiple instances of 4HDA are maintained.

The experiment has been defined as follow:
The results obtained can be seen in Figure 6. It can be seen that our expectations

were met. MLDA keeps being 2 to 3 times faster as multiple auction instances of

A Multi-lane DA for Economic-Based Service Management in the Cloud 133

Table 3 Experiment C.1 setting

Experiment C.1
Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100
Lanes 1, 5, 10, 15, 20,

24 lanes
1, 5, 10, 15, 20,
24 instances

1, 5, 10, 15, 20,
24 instances

1, 5, 10, 15, 20,
24 instances

Bids 1000 1000 (dis-
tributed round
robin at lanes)

1000 (Uni-
formly dis-
tributed at
lanes)

10000 (Follow-
ing a Binomial
PDF with n=3
and p=0,24)

Asks 600 (Following
a Uniform dis-
tribution)

600 (Following
a Uniform dis-
tribution)

600 (Following
a Uniform dis-
tribution)

600 (Following
a Uniform dis-
tribution)

Fig. 6 Compared average execution time for different number of time slots (lanes). Y-axis
indicates time of execution in milliseconds.

4HDA. We measured the scalability of MLDA in comparison to the others. One of
the measures taken is the time increment between the different numbers of lanes for
each experiment. On average, MLDA increases the time of computation to around
250 ms, being almost the same as in other 4HDA experiments. We conclude that
there is a linear increment of time as the number of lanes increases.

5.6 Experiment D: Price per Time Slot

Up until now, the experiments did not consider the effects of bid prices in the final
result of the auction. In this experiment we want to measure some of the effects
of price distribution in the allocation provided by the auction, as well as the price

134 X. Vilajosana et al.

Fig. 7 Binomial Distribution for asks in experiment D.2

per time slot. Previous experiments distributed bids following different distribution
functions amongst the lanes, however, prices were generated following a uniform
distribution for both sellers and buyers. It is not clear right now, what is a correct
distribution for bid prices in a market. It is not reasonable to assume that prices for
bidders are distributed uniformly, but more probably bid prices can follow a Normal
distribution or even a Pareto distribution for a specific lane. Contrarily for asks, it
seems reasonable to assume that their prices follow a uniform distribution, due to
the fact that costs can be assumed to be homogeneously distributed.

Experiment D.1 aims to evaluate the final price per time slot obtained by MLDA
and 4HDA and verify that the results obtained by MLDA remain optimal. Further-
more, it aims to analyse the consequences of optimality4 to the price per time slot.
It is not clear whether the mechanisms that achieve best social welfare will achieve
higher prices per time slot.

Moreover, prices per lane cannot be assumed to be uniformly distributed, but they
should follow a long tailed distribution, such as a left shifted Normal distribution
or a Pareto distribution. The reason for that is that almost all bidders want their
services to be allocated as soon as possible, so as nearer the time, the higher their
willingness to pay for the service. For that reason the experiment will place bids
with higher prices close to the first offered time slot. Thus, the willingness of buyers

4 In social welfare terms.

A Multi-lane DA for Economic-Based Service Management in the Cloud 135

Table 4 Experiment D.1 setting

Experiment D.1
Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100
Lanes 4 lanes 4 instances 4 instances 4 instances
Bids 1000 for all

lanes with prices
distributed in a
N(0.5,0.2)

1000 distributed
round robin at
lanes and prices
distributed in a
N(0.5,0.2)

1000 Uniformly
distributed at
lanes and prices
distributed in a
N(0.5,0.2)

10000 Following
a Binomial PDF
with n=3 and
p=0,24 and prices
distributed in a
N(0.5,0.2)

Asks 600 (Following a
Uniform distribu-
tion)

600 (Following a
Uniform distribu-
tion)

600 (Following a
Uniform distribu-
tion)

600 (Following a
Uniform distribu-
tion)

to pay more to obtain earlier services will be simulated. In this experiment prices
will be determined following the k-pricing rule that computes a non-discriminatory
price for all matches in the lane. The k value has been set to 0.5 to distribute welfare
in an equitable way amongst buyers and sellers. Prices have been computed as:

p = k× (pM + 1)+ (1k)× pM

s.t.0≤ k ≤ 1

where the pMth price and pM+1st price are the price quotes for the lane. Experiment
D.2 will discuss some of the results obtained by the experiment described in the
following table:

Table 5 Experiment D.2 setting

Experiment D.2
Attribute MLDA

Repetitions 100
Lanes 4 lanes
Bids 500 for lanes 1 and 2 with prices distributed in a N(0.65,0.2) and 500

for lanes 3 and 4 with prices distributed in a N(0.5,0.2)
Asks 600 (Following a Binomial PDF with n=3 and p=0.54 distribution

amongst lanes)

5.7 Experiment D.1 Results

As described in Table 4, the experiment set a Normal distribution of ask prices cen-
tred at 0.5 and with a standard deviation of 0.2, this makes prices appear normally

136 X. Vilajosana et al.

distributed between 0 and 1. It seems more reasonable to assume that prices in a
market are distributed following a non-homogeneous distribution where a high per-
centage of bidders express similar valuations for the time slot rather than a uniform
distribution of prices between 0 and 1 as in previous experiments. Figure 8 shows
the distribution of the average prices per time slot (per lane) achieved by MLDA and
other experiments with 4HDA. In that configuration, asks have been distributed uni-
formly across lanes and this is important to understand the results obtained. MLDA,
achieves almost a constant price per time slot at around 0.57 due to the capacity of
MLDA to place bids in the lane where the social welfare is maximised and because
of the uniform distribution of asks that makes that the best configuration consists of
distributing bids homogeneously across lanes. 4HDARR and 4HDAU achieve simi-
lar results as MLDA with slight more variations due to their incapacity to adapt the
demand to the offer in an optimal manner. Their prices per time slot are around 0.57
and 0.55. Worse results are obtained by 4HDAN, due to the way bids are distributed.
Lane 1 achieved a very low price per time slot, due to the low demand received in
that time slot. Contrarily, Lane 3 obtained a high price per time slot (0.7) that can be
attributed to the higher demand for that time slot. We conclude that there is a direct
relationship between the demand for a time slot and the final price achieved in that
Lane when the offer is fixed.

On the right-hand of Figure 8 the average prices per time-slot paid by every
transaction can be seen. 4HDAN achieves higher prices due to a lower number of
matches. However, 4HDAN achieves the worst Social Welfare which confirms that
higher prices per time slot does not indicate better mechanism efficiency, in fact
higher prices are a result of supply and demand balance for each lane. Figure 9
shows the number of matches per lane obtained by the fourth experiments. As al-
ready stated, MLDA achieves the highest number of matches while 4HDAN the
worst due to the distribution of bids and asks.

Fig. 8 Distribution of prices per lane and prices per time slot. Y-axis indicates price.

A Multi-lane DA for Economic-Based Service Management in the Cloud 137

Fig. 9 Matches per lane and total number of matches. Y-axis indicates number of matches.

5.8 Experiment D.2 Results

As described in Table 5 the experiment aimed to price the first two time slots (lanes)
higher to simulate the willingness of buyers to allocate services as soon as possible.
Prices for lanes 1 and 2 have been generated following a Normal distribution with
a mean of 0.65 and a standard deviation of 0.2. Prices for lanes 3 and 4 have been
calculated using a Normal distribution with mean of 0.5 and standard deviation of 0.2.
Asks where distributed non-uniformly across lanes (following a binomial distribution
with n=3 and p=0.54), establishing a major number of asks for lanes 2 and 3.

Figure 10.a shows the number of matches per lane obtained by the MLDA. Lane
3 is the lane that obtains more matches due to the distribution of the asks. Lane two
obtains a lower amount of matches, even though prices are higher, due to a lower
quantity of asks in that lane.

Figure 10.b shows the distribution of the social welfare generated by MLDA
amongst lanes. The asks distribution guides the number of matches per lane and is
the most significant factor for the final allocation provided by MLDA. Finally, the
effects of higher prices in lanes 1 and 2 can be seen in Figure 10.c. Even though
lane 2 has a higher number of matches, which should mean a lower price per time
slot, it achieves a similar price per time slot to lane one that achieves the maximum
due to a short offer and higher bid prices.

It can be concluded that asks distribution constrains the type of allocation pro-
vided by MLDA since asks can only win in the lane for where they have been sub-
mitted. It can also be pointed out that the higher the bid price, the higher the number
of matches when asks have uniform prices.

5.9 Experiment E: Memory Usage

Experiment E aimed to evaluate the memory consumption of MLDA when com-
pared to any of the 4HDA implementations used so far. The experiment aims to
analyse the overall amount of memory used during the process of bids and asks
insertions. It is clear that the amount of memory used will depend on the size of

138 X. Vilajosana et al.

(a) Matches per lane. Y-axis indicates
number of matches.

(b) Social Welfare per lane. Y-axis indi-
cates social welfare.

(c) Price per time slot. Y-axis indicates
price.

Fig. 10 Results of the experiment D.2

the data structures used in the implementation. For this experiment is not important
the total amount of memory used by both instances, but the relation between the
amount of memory used. What is important to know is whether MLDA uses less,
more or the same amount of memory than 4HDA, as well as the ratio of the differ-
ence. Table 6 summarises the experiment setting that consisted of 500 iterations of
an experiment that inserted 1000 bids and 600 asks to an instance of every one of
the evaluated auctions.

Memory usage has been measured during the insertion of the bids and asks. Mea-
sures were taken just before instantiating the auction and just after finishing the in-
sertion of the last bid and ask. The system’s garbage collector has been called before
the first measurement and just after the last measurement. The amount of memory
used has been calculated as a difference between the initial amount of memory and
the final amount of memory.

A Multi-lane DA for Economic-Based Service Management in the Cloud 139

Table 6 Experiment E.1 setting

Experiment E.1
Attribute MLDA 4HDA

Repetitions 500 500
Lanes 4 lanes 4 instances
Bids 1000 for all lanes 1000 round robin amongst lanes
Asks 600 (Following a Uniform distribu-

tion amongst lanes)
600 (Following a Uniform distribu-
tion amongst lanes)

5.10 Experiment E Results

The results of the 500 experiments can be seen in Figure 11.a. MLDA spends nearly
3 times more memory than 4HDA in almost all experiments. Slight variations of
memory usage at each experiment can be attributed to the runtime. These variations
are more significant at 4HDA since four instances of auction objects are maintained.
However, the general line is well defined and the relation is almost constant. Figure
11.b shows the ratio between MLDA and 4HDA. MLDA uses in average 3.23 times
more memory than 4HDA, which is attributed to the PendingLosingBids queue that
maintains a pointer for each bid to the lanes where a bid can be placed, and to the
sorted lists used to maintain the different quotes across lanes.

MLDA achieves better computational performance, as demonstrated in previous
experiments, at the expense of using more memory. MLDA improves in computa-
tional efficiency two to three times to any 4HDA, while it used 3 more times of
memory. However, MLDA provides the benefit of dealing with substitute prefer-
ences that any other 4HDA can deal with.

6 Related Work on Resource Allocation Frameworks

The term market mechanism is encountered in connection with problems of dis-
tributed resource allocation. In the context of markets it refers to a structure of
economic organisation that helps to shape outcomes. Intuitively [Nisan and Ro-
nen(2001)] a mechanism solves a problem by assuring that the required allocation
occurs when agents choose their strategies to maximise their own utility. A mecha-
nism also needs to ensure that the agent reported utilities are compatible with the al-
gorithm implementing the mechanism. Economic mechanisms propose a procedure
by which a set of resources may be distributed amongst the different participants
and a scheme for pricing of the traded resources. The allocation is constrained by
the preferences of the participants expressed in monetary terms. This section gath-
ers the most significant auction based resource allocation frameworks found in the
literature.

140 X. Vilajosana et al.

(a) Memory usage during 500 experiments. Y-axis indicates the amount of memory used in
bytes.

(b) Compared memory usage between MLDA and 4HDA. Y-axis
indicates the relation of the amount of memory required.

Fig. 11 Results of the experiment E

6.1 Auction Markets for Single Type of Resource

SPAWN [Waldspurger et al(1992)Waldspurger, Hogg, Huberman, Kephart, and
Stornetta] was designed to tap into unused and wasted cycles in networked servers.
Each participating server runs an auction process to trade the CPU time in fixed

A Multi-lane DA for Economic-Based Service Management in the Cloud 141

time-slices. Spawn uses a sealed bid second-price auction, known as the Vickrey
auction. Vickrey auction is incentive compatibility, i.e. the best strategy that the bid-
ders may practise is to reveal their true valuations. This system is not generalised
to multiple resources and multiple resource units - considering time-slices as a re-
source unit; this implies an auction for each time-slice.

Placek et. al. [Placek and Buyya(2006)] present a trading platform for storage
services. The platform implements a centralised storage exchange that implements
a double-auction; the exchange accepts sealed offers from providers and consumers
and periodically allocates trades by employing an algorithm that maximises surplus,
that is, the difference between the consumer’s price and the seller’s cost. Double
auctions are adapted to the trading of a single type of homogeneous resource. These
have the benefit of reducing communication costs (single bids) and with suitable
pricing policies are also incentive compatible.

6.2 Auction Markets for Multiple Types of Resources

The combinatorial auction model has received a lot of attention in recent years; to
address trading multiple resource types in bundles; this has two implications: (i)
prices are expressed for bundles and (ii) a bundle, if allocated, should be completely
satisfied.

Chun et. al. [Chun et al(2006)Chun, Ng, Albrecht, Parkes, and Vahdat] present
a resource discovery and allocation system where users may express preferences
using a bidding language supporting XOR bids, and at most one of the preferences
is allocated. Multiple resources may be requested to a central auction server that
clears periodically. Resource requests are for fixed durations of time and users may
specify the time ranges. A greedy algorithm clears the combinatorial auction. This
algorithm privileges execution time over efficiency of allocation - bids are ordered
by decreasing values where the value is obtained by dividing the bid price by the
product of total number of resources and the duration of request.

Schwind et. al. [Schwind et al(2006)Schwind, Gujo, and Stockheim] present an
iterative combinatorial auction that maximises seller revenues. Bids are presented
as a two-dimensional matrix; one dimension represents the time in fixed time slots
and the other dimension the resources (CPU, Disk, and network). The auction server
executes periodically and invites bids from the participants. Shadow prices are cal-
culated for individual items (resource) and the buyers are requested to iterate on
their bids based on the current estimation of prices. The clearing algorithm is im-
plemented as a linear program optimising the revenue. Prices are calculated using
the approach presented by [Kwasnica et al(2005)Kwasnica, Ledyard, Porter, and
DeMartini] âĂŞ the prices are the dual solution to the primal Linear Programming
Problem (LP).

Schnizler and Neumann [Schnizler(2007)] present a multi-attribute combinato-
rial auction that maximises the surplus - the difference between the buyer’s price
and seller’s cost. Resources are traded in fixed time-slots and buyers send XOR bids
specifying the quality and the number of time-slots within a specified time range.

142 X. Vilajosana et al.

The Vickrey pricing policy is applied to provide incentive compatibility. Simulation
results show that the allocation problem is computationally demanding but feasible
in the case where the number of participants and bids are reasonably small.

Bellagio [AuYoung et al(2004)AuYoung,Chun, Snoeren, and Vahdat] is a market-
based resource allocation system for federated distributed computing infrastruc-
tures. Users specify interest on resources in the form of combinatorial auction bids.
Thereafter, a centralised auctioneer allocates resources and decides payments for
users. The Bellagio architecture consists of resource discovery and resource market.
For resource discovery of heterogeneous resources, Bellagio uses SWORD [Al-
brecht et al(2004)Albrecht, Patterson, and Vahdat]. For resource market, Bellagio
uses a centralised auction system, in which users express resource preferences us-
ing a bidding language, and a periodic auction allocates resources to users. A bid for
resource includes the sets of resources desired, processing duration and the amount
of virtual currency which a user is willing to spend. The centralised auctioneer clears
the bid every hour. The resource exchange in the current system is done through a
virtual currency. The virtual currency is the amount of credit a site has, which is di-
rectly determined by the site’s overall resource contribution to the federated system.
Bellagio employs Share [Chun et al(2004)Chun, Ng, Albrecht, Parkes, and Vahdat]
for resource allocation in order to support a combinatorial auction for heterogeneous
resources. Share uses the threshold rule to determine payments. Once the payment
amount of each winning bid has been determined by the threshold rule, the winning
bidders receive resource capabilities after being charged the appropriate amount.

Even though the above approaches indicate the computational complexity of
combinatorial auctions, they nevertheless are important demonstrators. Combina-
torial auctions are important mechanisms for Grid resource markets since typically
Grid applications need to allocate resources in bundles.

6.3 Proportional Sharing Markets for Divisible Resources

Market based proportional sharing models are one of the most popular approaches in
problem-solving environments. Basically this approach consists of allocating users
a percentage of the resource that is proportional to the amount of the bid submitted
by the user. This may be considered as a fair model of allocation and is typically
employed in cooperative environments employed in systems where resources are
considered as divisible.

Tycoon [Kevin Lai and Fine(2004)] is a system designed for time-sharing net-
worked nodes, such as in PlanetLab; an environment where users of resources are
also providers of resources. Resource nodes execute an auction process to which
users may send their bids. Tycoon implements a proportional sharing [Kelly(1997)]
auction where resources are shared and each user is attributed a capacity propor-
tional to its bid. Users are price-anticipating in that the ratio that they receive is a
proportion of their bid over the sum of all bids for a given resource and users may an-
ticipate the effect of their bids on the clearing price. Each user has a utility function;
a weighted sum of the resource fraction that it receives from each node. Users bid

A Multi-lane DA for Economic-Based Service Management in the Cloud 143

to those nodes that maximise their utility. This system is intrinsically decentralised
as the maximisation of the utility is done locally by each user. This system is appro-
priate for divisible usage of a CPU, an assumption that may not be acceptable to a
wide range of applications.

6.4 Decentralised Markets for Single Type of Resources

Peer-to-peer auctioning has emerged as a new computing paradigm to de-
centralise the auction processes. Many systems address the decentralised
auctioning issue for different reasons like those of scalability, fault-tolerance,
redundancy, load distribution and autonomy, amongst others. With respect to scal-
ability issues, most of the existing systems make use of a DHT structured over-
lay [Ratnasamy et al(2001)Ratnasamy, Francis, Handley, Karp, and Schenker,
Stoica et al(2001)Stoica, Morris, Karger, Kaashoek, and Balakrishnan, Castro
et al(2002)Castro, Druschel, Kermarrec, and Rowstron, Ghodsi(2006)].

PeerMart [Haussheer and Stiller(2005)] distributes brokering in an auction based
allocation mechanism. Auctioneers, rather than being a single broker, are formed by
a set of peers which synchronise to clear a double auction market. Consumers and
providers are distributed in the Pastry overlay network [Castro et al(2002)Castro,
Druschel, Kermarrec, and Rowstron]. Broker sets are formed by some nodes in the
overlay and the double auction they implement clears continuously. For each allo-
cation, brokers synchronise their information in order to determine who the winners
are and to avoid malicious peers. Synchronisation is carried out by broadcasting
the lowest selling requests, the highest buying bid and any matching bid to the rest
of the brokers in the broker set. Decisions are taken by a simple majority. Broker
set peers maintain a distributed shared state through broadcasting information and
decisions are taken when all peers in the broker set have all the information.

Tamai et.al. [Tamai et al(2005)Tamai, Shibata, Yasumoto, and Ito] use CAN [Rat-
nasamy et al(2001)Ratnasamy, Francis, Handley, Karp, and Schenker] to build a
market architecture. They propose distributing peers into different sub-regions and
assigning a responsible broker for each of them. Sell requests and buying bids are
sent to any known broker and they are forwarded until they reach the broker re-
sponsible for the offer. If the broker has a buying bid (sell requests) that matches
the received sell request (buying bid) the allocation is made. However, if a buying
bid and a sell request are received by different brokers respectively, they cannot be
matched. To solve that problem, Tamai et.al. propose replicating buying bids and
sell requests in multiple brokers. The replication introduces more communication
amongst peers. When a replica matches a sell request with a buying bid it has to
verify that the original bid (request) has not been matched by sending a message
to the original replica. Once a buying bid and a sell request are matched, a replica
deletion message has to be sent to all replicas.

As proof of this concept, in the paper by Despotovic et.al. [Despotovic
et al(2004)Despotovic, Usunier, and Aberer], a simple approach is presented. The
paper presents a mechanism for pricing and clearing continuous double auctions in

144 X. Vilajosana et al.

a peer-to-peer system. The main feature is that consumers and providers broadcast
bids for resources. Every buyer has the incentive to trade with the announcer of the
lowest sell request that the buyer observed. Similarly, any seller would want to trade
with the announcer of the highest observed bid. Prices in each trading operation are
set to the average price between the bid and the sell request. Since peers do not
have a global view of all the trading operations that occur in the system (when a
trading operation is made between a buyer and a seller, we cannot assume that they
will communicate their price to the rest of the bidders), prices are updated when a
peer observes a bid or request from another peer. Clearly, the solution is not scalable
and there are no guarantees that the information reaches all the peers. However, the
mechanism can be useful for market implementations that do not require optimality
and efficiency.

Esteva et.al. [Esteva and Padget(1999)] make use of a ring topology to distribute
one side (English, Vickrey, and Dutch) auction processes amongst a set of brokers
(called interagents). Interagents are mediators amongst buyers and the auctioneer
and are responsible for receiving bids and clearing the auction. The clearing algo-
rithm is based on the leader election algorithm [Lynch(1996)]. In short, the algo-
rithm is based on finding the bidder with the highest bid, which will be the leader.
The aim of introducing interagents is to reduce centralisation and the work of the
auctioneer. However the authors do not indicate where interagents are executed and
if they can be sellers or buyers participating in the auction. The authors point out
that interagents have to be robust and introduce security measures against malicious
peers. However, they do not introduce any security measure.

Atzmony and Peleg [Atzmony and Peleg(2000)] propose a set of algorithms for
clearing English auctions in a distributed manner. They assume an underlying com-
munication network represented by a complete n-vertex graph. Vertices represent
the nodes in the network and every two vertices are connected with an edge that
represents a bidirectional connection. Auctions are hosted by a subset of nodes in
the graph. In the paper, they formally present a set of algorithms to clear an English
auction in a distributed manner. The algorithm requires a static set of participants
that join the auction before it starts. They also propose some enhancements to allow
dynamic participants. Each auction is executed in several rounds until only one bid-
der remains. At the end of each round, new bidders are allowed to join the auction.
Their asymptotic approach only finishes if no more bidders join the auction and all
bidders except one resign. Although they formally verify the algorithm, the paper
does not present any results on the performance and communication costs of the
algorithm in a real network.

Several conclusions can be derived from those systems. Distribution of auction
processes is costly. Decentralised auctions usually map one item to one responsible
broker. In some other approaches, auction decentralisation can be compared to a way
of sorting distribution problems, which can then be solved. The nature of auctions
require complete information (i.e. the total set of bids is required) in order to deter-
mine the winner set and consequently decentralisation can only come when multiple
items are traded assigning different responsible brokers for each item. In our work

A Multi-lane DA for Economic-Based Service Management in the Cloud 145

decentralisation is attained by short-lived market instances since we consider co-
allocation and substitute allocation important aspects that need to be adressed.

7 Conclusions

In this paper a novel variant of the well-known Double Auction has been presented.
The paper motivated the utility of the auction, as well as setting the context to be
applied. MLDA constitutes an important contribution to the building of scalable
and Cloud oriented service marketplaces. The paper presented the data structures
used to design MLDA, as well as the main operations and algorithms that constitute
the core of the auction. In order to evaluate the mechanism, an extensive set of
experiments through simulation have been carried out. MLDA, due to its design,
achieves optimal allocations in terms of Social Welfare.

The evaluation compared MLDA with another well-known implementation of
the Double Auction. We tested MLDA and compared results with different config-
urations of the other mechanism. The results showed a better behavioural level for
MLDA in all situations, due to the properties of the auction (i.e. invariant maximum
social welfare). Moreover, MLDA has been compared with several double auction
instances running at the same time. This experiment showed us the computational
performance (i.e. time taken to execute) of MLDA when compared to a set of auc-
tions potentially providing the same allocation. MLDA showed two to three times
more computational efficiency that is MLDA is two to three times faster than multi-
ple instances of single item double auctions.

Finally, MLDA showed to be a good candidate auction to trade time-
differentiated services especially under the presence of substitute preferences. Be-
sides MLDA can be considered a light-weight alternative to Combinatorial Auctions
(CAs), being able to provide efficient allocations without dealing with the compu-
tational costs of CAs. The next step of the evaluation will compare MLDA with an
instance of a Combinatorial Auction.

Acknowledgements. This work is being partially supported by the Grid4All Euro-
pean project under contract FP6-IST-034567 and Spanish MCYT project TIN2008-
01288/TSI. This work has also been supported by the HAROSA Knowledge Community
(http://dpcs.uoc.edu). Besides we feel deeply indebted with Leandro Navarro and Dirk Neu-
mann for their helpful advice.

References

[Albrecht et al(2004)Albrecht, Patterson, and Vahdat] Albrecht, J., Patterson, D., Vahdat, A.:
Distributed resource discovery on planetlab with sword. In: WORLDS - First Workshop
on Real, Large Distributed Systems (2004)

[Atzmony and Peleg(2000)] Atzmony, Y., Peleg, D.: Distributed algorithms for english auc-
tions. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 74–88. Springer,
Heidelberg (2000)

146 X. Vilajosana et al.

[AuYoung et al(2004)AuYoung, Chun, Snoeren, and Vahdat] AuYoung, A., Chun, B., Sno-
eren, A., Vahdat, A.: Resource allocation in federated distributed computing infrastruc-
tures (2004), citeseer.ist.psu.edu/auyoung04resource.html

[Bao and Wurman(2003)] Bao, S., Wurman, P.R.: A comparison of two algorithms for multi-
unit k-double auctions. In: ICEC 2003: Proceedings of the 5th International Conference
on Electronic Commerce, pp. 47–52. ACM, New York (2003),
http://doi.acm.org/10.1145/948005.948012

[Buyya and Venugopal(2004)] Buyya, R., Venugopal, S.: The gridbus toolkit for service ori-
ented grid and utility computing: An overview and status report (2004),
citeseer.ist.psu.edu/buyya04gridbus.html

[Castro et al(2002)Castro, Druschel, Kermarrec, and Rowstron] Castro, M., Druschel, P.,
Kermarrec, A.M., Rowstron, A.: One ring to rule them all: service discovery and bind-
ing in structured peer-to-peer overlay networks. In: EW 2010: Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop: beyond the PC, pp. 140–145. ACM
Press, New York (2002), http://doi.acm.org/10.1145/1133373.1133399

[Chun et al(2004)Chun, Ng, Albrecht, Parkes, and Vahdat] Chun, B.N., Ng, C., Albrecht, J.,
Parkes, D.C., Vahdat, A.: Computational resource exchanges for distributed resource
allocation. Tech. rep. (2004)

[Chun et al(2006)Chun, Ng, Albrecht, Parkes, and Vahdat] Chun, B.N., Ng, C., Albrecht, J.,
Parkes, D.C., Vahdat, A.: Computational resource exchanges for distributed resource
allocation (2006), citeseer.ist.psu.edu/706369.html

[Consortium(2008)] Consortium, G.: Grid4all european project (2008),
http://grid4all.eu/

[Despotovic et al(2004)Despotovic, Usunier, and Aberer] Despotovic, Z., Usunier, J.C.,
Aberer, K.: Towards peer-to-peer double auctioning. In: HICSS 2004: Proceedings of
the Proceedings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS 2004) - Track 9, p. 90289.1. IEEE Computer Society, Washington (2004)

[Esteva and Padget(1999)] Esteva, M., Padget, J.A.: Auctions without auctioneers: Dis-
tributed auction protocols. In: Agent Mediated Electronic Commerce (IJCAI Workshop),
pp. 220–238 (1999), citeseer.ist.psu.edu/497541.html

[Eymann et al(2003)Eymann, Reinicke, Ardaiz, Artigas, Freitag, and Navarro] Eymann, T.,
Reinicke, M., Ardaiz, O., Artigas, P., Freitag, F., Navarro, L.: Decentralized re-
source allocation in application layer networks. ccgrid 00:645 (2003), http://doi.
ieeecomputersociety.org/10.1109/CCGRID.2003.1199427

[Ghodsi(2006)] Ghodsi, A.: Distributed k-ary System: Algorithms for distributed hash ta-
bles. PhD dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden (2006)

[Haussheer and Stiller(2005)] Haussheer, D., Stiller, B.: Decentralized auction-based pricing
with peermart. In: Integrated Network Management, pp. 381–394. IEEE, Los Alamitos
(2005)

[Kelly(1997)] Kelly, F.: Charging and rate control for elastic traffic (1997),
citeseer.ist.psu.edu/kelly97charging.html

[Kevin Lai and Fine(2004)] Kevin Lai, B.A.H., Fine, L.: Tycoon: A Distributed Market-
based Resource Allocation System. Tech. Rep. arXiv:cs.DC/0404013, HP Labs, Palo
Alto, CA, USA (2004)

A Multi-lane DA for Economic-Based Service Management in the Cloud 147

[Kwasnica et al(2005)Kwasnica, Ledyard, Porter, and DeMartini] Kwasnica, A.M., Led-
yard, J.O., Porter, D., DeMartini, C.: A new and improved design for multiobject iterative
auctions. Manage. Sci. 51(3), 419–434 (2005),
http://dx.doi.org/10.1287/mnsc.1040.0334

[Lai et al(2005)Lai, Rasmusson, Adar, Zhang, and Huberman] Lai, K., Rasmusson, L.,
Adar, E., Zhang, L., Huberman, B.A.: Tycoon: An implementation of a distributed,
market-based resource allocation system. Multiagent Grid Syst. 1(3), 169–182 (2005)

[Liu and He(2007)] Liu, Y., He, H.C.: Multi-unit combinatorial auction based grid resource
co-allocation approach. In: International Conference on Semantics, Knowledge and
Grid, vol. 0, pp. 290–293 (2007), http://doi.ieeecomputersociety.org/
10.1109/SKG.2007.26

[Lynch(1996)] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

[Mills and Dabrowski(2008)] Mills, K.L., Dabrowski, C.: Can economics-based resource al-
location prove effective in a computation marketplace? Journal of Grid Computing 6,
291–311 (2008)

[Neumann et al(2007)Neumann, Stößer, Anandasivam, and Borissov] Neumann, D., Stößer,
J., Anandasivam, A., Borissov, N.: Sorma - building an open grid market for grid resource
allocation. In: Altmann, J., Veit, D. (eds.) GECON 2007. LNCS, vol. 4685, pp. 194–200.
Springer, Heidelberg (2007)

[Nisan and Ronen(2001)] Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and
Economic Behavior 35, 166–196, 613 (2001)

[Phelps(2006)] Phelps, S.: Web site for JASA (Java Auction Simulator API) (2006),
http://www.csc.liv.ac.uk/sphelps/jasa/

[Phelps(2007)] Phelps, S.: Evolutionary mechanism design. Ph. D thesis, University of Liv-
erpool, U.K. (2007)

[Placek and Buyya(2006)] Placek, M., Buyya, R.: Storage exchange: A global trading plat-
form for storage services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par
2006. LNCS, vol. 4128, pp. 425–436. Springer, Heidelberg (2006)

[Radhanikanth and Narahari(2009)] Radhanikanth, G.V.R., Narahari, Y.: Reverse combina-
torial auction-based protocols for resource selection in grids. Int. J. Grid Util. Com-
put. 1(2), 109–120 (2009),
http://dx.doi.org/10.1504/IJGUC.2009.022027

[Ratnasamy et al(2001)Ratnasamy, Francis, Handley, Karp, and Schenker] Ratnasamy, S.,
Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable network.
In: SIGCOMM 2001: Proceedings of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, pp. 161–172. ACM,
New York (2001), http://doi.acm.org/10.1145/383059.383072

[Schnizler(2007)] Schnizler, B.: Mace: A multi-attribute combinatorial exchange. In: Jen-
nings, N., Kersten, G., Ockenfels, A., Weinhardt, C. (eds.) Negotiation and Mar-
ket Engineering, Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 06461 (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/1009 [date of cita-
tion: 2007-01-01]

[Schnizler and Neumann(2007)] Schnizler, B., Neumann, D.: Combinatorial exchanges for
coordinating grid services. SIGecom Exch. 7(1), 65–68 (2007),
http://doi.acm.org/10.1145/1345037.1345054

148 X. Vilajosana et al.

[Schwind et al(2006)Schwind, Gujo, and Stockheim] Schwind, M., Gujo, O., Stockheim, T.:
Dynamic resource prices in a combinatorial grid system. In: CEC-EEE 2006: Proceed-
ings of the The 8th IEEE International Conference on E-Commerce Technology and
The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-
Services, p. 49. IEEE Computer Society, Washington (2006),
http://dx.doi.org/10.1109/CEC-EEE.2006.37

[Stoica et al(2001)Stoica, Morris, Karger, Kaashoek, and Balakrishnan] Stoica, I., Morris,
R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-Peer lookup
service for internet applications. In: Proceedings of the 2001 ACM SIGCOMM Confer-
ence, pp. 149–160 (2001), citeseer.ist.psu.edu/stoica01chord.html

[Tamai et al(2005)Tamai, Shibata, Yasumoto, and Ito] Tamai, M., Shibata, N., Yasumoto,
K., Ito, M.: Distributed market broker architecture for resource aggregation in grid com-
puting environments. In: CCGRID 2005: Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2005), vol. 1, pp. 534–541.
IEEE Computer Society, Washington (2005)

[Waldspurger et al(1992)Waldspurger, Hogg, Huberman, Kephart, and Stornetta]
Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, S.: Spawn: A
distributed computational economy. IEEE Transactions on Software Engineering 18(2),
103–117 (1992)

	A Multi-lane Double Auction for Economic-Based Service Management in the Cloud
	Introduction
	The Double Auction
	MLDA Functionalities
	MLDA Operations
	Bid Insertion
	Ask Insertion
	PendingLosingBids Queue
	MLDA Clear and Quotes

	Implementation and Experiments
	Experiment A: Economical Efficiency
	Results Analysis
	Experiment A.2 Results
	Experiment B: Computational Efficiency
	Experiment C: Scale Sensibility
	Experiment D: Price per Time Slot
	Experiment D.1 Results
	Experiment D.2 Results
	Experiment E: Memory Usage
	Experiment E Results

	Related Work on Resource Allocation Frameworks
	Auction Markets for Single Type of Resource
	Auction Markets for Multiple Types of Resources
	Proportional Sharing Markets for Divisible Resources
	Decentralised Markets for Single Type of Resources

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

