


Lecture Notes in Artificial Intelligence 6438
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Grigori Sidorov
Arturo Hernández Aguirre
Carlos Alberto Reyes García (Eds.)

Advances in
Soft Computing

9th Mexican International Conference
on Artificial Intelligence, MICAI 2010
Pachuca, Mexico, November 8-13, 2010
Proceedings, Part II

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Grigori Sidorov
Instituto Politécnico Nacional
Centro de Investigación en Computación
Av. Juan Dios Batiz, s/n, Zacatenco, 07738 Mexico City, México
E-mail: sidorov@cic.ipn.mx

Arturo Hernández Aguirre
Centro de Investigación en Matemáticas (CIMAT)
Departamento de Ciencias de la Computación, Callejón de Jalisco s/n
Mineral de Valenciana, Guanajuato, 36240, Guanajuato, México
E-mail: artha@cimat.mx

Carlos Alberto Reyes García
Instituto Nacional de Astrofísica, Optica y Electrónica (INAOE)
Coordinación de Ciencias Computacionales, Luis Enrique Erro No. 1
Santa María Tonantzintla, 72840, Puebla, México
E-mail: kargaxxi@inaoep.mx

Library of Congress Control Number: 2010937860

CR Subject Classification (1998): I.2, F.1, H.3, I.4, I.5, H.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-16772-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16772-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

Artificial intelligence (AI) is a branch of computer science that models the human 
ability of reasoning, usage of human language and organization of knowledge, solving 
problems and practically all other human intellectual abilities. Usually it is 
characterized by the application of heuristic methods because in the majority of cases 
there is no exact solution to this kind of problem. 

Soft computing can be viewed as a branch of AI that deals with the problems that 
explicitly contain incomplete or complex information, or are known to be impossible 
for direct computation, i.e., these are the same problems as in AI but viewed from the 
perspective of their computation. 

The Mexican International Conference on Artificial Intelligence (MICAI), a yearly 
international conference series organized by the Mexican Society for Artificial 
Intelligence (SMIA), is a major international AI forum and the main event in the 
academic life of the country’s growing AI community. In 2010, SMIA celebrated 10 
years of activity related to the organization of MICAI as is represented in its slogan 
“Ten years on the road with AI”.

MICAI conferences traditionally publish high-quality papers in all areas of 
artificial intelligence and its applications. The proceedings of the previous MICAI 
events were also published by Springer in its Lecture Notes in Artificial Intelligence 
(LNAI) series, vols. 1793, 2313, 2972, 3789, 4293, 4827, 5317, and 5845. Since its 
foundation in 2000, the conference has been growing in popularity and improving in 
quality.  

This book contains 44 papers that were peer-reviewed by reviewers from the 
independent international Program Committee. The book is structured into five 
thematic areas representative of the main current topics of interest for the AI 
community and their applications related to soft computing: 

− Machine learning and pattern recognition 
− Automatic learning for natural language processing 
− Evolutionary algorithms and other naturally-inspired algorithms 
− Hybrid intelligent systems and neural networks 
− Fuzzy logic 

The other volume that corresponds to MICAI 2010 contains the papers related to 
other areas of AI: 

− Natural language processing 
− Robotics, planning and scheduling 
− Computer vision and image processing 
− Logic and distributed systems 
− AI-based medical applications 
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We are sure that the book will be of interest for researchers in all AI fields, 
students that are specializing in these topics and for the public in general that pays 
attention to the recent development of the AI. 

MICAI is an international conference both due to the extended geography of its 
submissions and for the composition of its Program Committee. Below we present the 
statistics of the papers submitted and accepted at MICAI 2010. We received 301 
submissions from 34 countries, from which 82 papers were accepted. So the general 
acceptance rate was 27.2%. Since MICAI is held in Mexico, we received many 
submissions from this country, but the acceptance rate for these papers was even 
lower: 24%. In the table below, the papers are counted by authors, e.g., for a paper by 
two authors from the country X and one author from the country Y, we added  
two-thirds to X and one-third to Y. 

Table 1. Statistics of MICAI 2010 papers by country 

Country Authors Submitted Accepted 

Argentina 7 4.00 2.00 

Benin 1 0.50 0.50 

Brazil 33 13.50 3.00 

Canada 3 1.50 1.50 

Chile 4 2.00 0.00 

China 7 2.50 0.00 

Colombia 25 16.67 2.67 

Cuba 10 6.78 1.95 

Czech Republic 2 2.00 2.00 

Finland 1 1.00 0.00 

France 11 3.23 0.73 

Germany 5 3.25 1.00 

Greece 2 0.50 0.00 

Hungary 1 0.20 0.20 

India 3 1.67 0.00 

Iran, Islamic Republic of 9 5.00 1.00 

Israel 7 3.33 2.67 

Italy 3 0.60 0.60 

Japan 4 3.50 2.00 

Korea, Republic of 11 4.00 2.00 
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Table 1. (continued)

Country Authors Submitted Accepted 

Lithuania 2 1.00 0.00 

Mexico 384 186.78 45.53 

New Zealand 2 0.67 0.00 

Pakistan 9 4.75 2.67 

Poland 6 4.00 1.00 

Russian Federation 3 2.00 1.00 

Singapore 2 2.33 0.33 

Spain 22 7.08 2.25 

Sweden 1 1.00 0.00 

Taiwan 1 1.00 0.00 

Turkey 2 1.00 1.00 

UK 8 2.67 1.00 

USA 19 9.98 4.40 

Venezuela, Bolivarian Republic of 2 1.00 0.00 

We want to thank all the people involved in the organization of this conference. In 
the first place, these are the authors of the papers published in this book: it is the value 
of their research work that constitutes the essence of the book. We thank the Track 
Chairs for their hard work and the Program Committee members and additional 
reviewers for their great effort reviewing the papers, allowing their selection for the 
conference. 

We would like to express our sincere gratitude to the Universidad Autónoma del 
Estado de Hidalgo (UAEH), ITESM Campus Pachuca, Universidad Politécnica de 
Pachuca (UPP), Rectoría of the UAEH headed by Humberto Veras Godoy, Gerardo 
Sosa Castelán, General Secretary of the UAEH, and Octavio Castillo Acosta, head of 
the Basic Sciences and Engineering Institute of the UAEH, for their warm hospitality 
related to MICAI 2010, and for providing the infrastructure for the presentation of the
keynote speakers, tutorials and workshops, and for their valuable participation and 
support in the organization of this conference. Their commitment allowed that the 
opening ceremony, technical contributory conferences, workshops and tutorials could 
be held in the main historic building of the UAEH. We also want to thank the Consejo 
de Ciencia y Tecnología del Estado de Hidalgo for their partial financial support 
(project FOMIX 2008/97071) and the Oficina de Convenciones y Visitantes of the 
State of Hidalgo represented by Ms. Lizeth Islas for their valuable effort in organizing 
the cultural program as well as entertainment activities. We are deeply grateful to the 
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conference staff and to all members of the Local Committee headed by Félix A. 
Castro Espinoza and Joel Suárez Cansino. 

The entire submission, reviewing, and selection process, as well as putting  
together the proceedings, was supported for free by the EasyChair system 
(www.easychair.org). We are also grateful to Springer’s staff for their help in 
preparation of this issue.  

Grigori Sidorov 
Arturo Hernández-Aguirre 

Carlos Alberto Reyes-García 



Conference Organization 

MICAI 2010 was organized by the Mexican Society for Artificial Intelligence (SMIA, 
Sociedad Mexicana de Inteligencia Artificial) in collaboration with Universidad 
Autónoma del Estado de Hidalgo (UAEH), Centro de Investigación en Computación 
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Fraud Detection Model Based on the Discovery Symbolic Classification
Rules Extracted from a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
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Manuel Montes-y-Gómez, and Paolo Rosso

Lexicon Based Sentiment Analysis of Urdu Text Using SentiUnits . . . . . . 32
Afraz Z. Syed, Muhammad Aslam, and
Ana Maria Martinez-Enriquez

A Semantic Oriented Approach to Textual Entailment Using
WordNet-Based Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Julio J. Castillo

On Managing Collaborative Dialogue Using an Agent-Based
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Oscar Estrada, José Arrazola, and Mauricio Osorio



XXIV Table of Contents – Part I

Jason Induction of Logical Decision Trees: A Learning Library and Its
Application to Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Alejandro Guerra-Hernández, Carlos Alberto González-Alarcón, and
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Abstract. Linguistic Geometry (LG) is a type of game theory for extensive dis-
crete games scalable to the level of real life defense systems. LG was developed 
by generalizing experiences of the advanced chess players. In this paper we 
summarize experiences of highly successful application of LG to a diverse set 
of board games and military operations. We believe that LG has a more funda-
mental nature than simply yet another mathematical theory of efficient wargam-
ing. Every LG application generated new ideas that experts evaluated as bril-
liant. We suggest that LG is a mathematical model of human thinking about 
armed conflict, a mental reality that existed for thousands of years. The game of 
chess was invented 1.5-2 thousand years ago (following different accounts) as a 
formal gaming model of ancient wars. In our case, chess served as a means for 
discovering human methodology of efficient warfare. To test this hypothesis we 
would have to demonstrate power of LG software on wars happened at times 
when the game of chess had been unknown. In this paper, we present an ap-
proach to LG-based analysis of the battles of Alexander the Great demonstrat-
ing that after tuning the LG-based software will generate the same courses of 
action as those reported by the historians.  

Keywords: Linguistic Geometry; game theory; search; Artificial Intelligence, 
ancient warfare. 

1   Introduction  

Linguistic Geometry (LG) is a game-theoretic approach that has demonstrated a sig-
nificant increase in size of problems solvable in real time (or near real time). The 
word “Linguistic” refers to the model of strategies formalized as a hierarchy of formal 
languages. The word “Geometry” refers to the geometry of the abstract game board as 
well as the abstract relations defining the movements and other actions of the game 
pieces as well as their mutual influence. It is a viable approach for solving board 
games such as the game of chess as well as practical problems such as mission plan-
ning and battle management. Historically, LG was developed, beginning from 1972, 
by generalizing experiences of the most advanced chess players including World 
Chess Champions and grandmasters [1], [24], [32]. In the 70s and 80s this generaliza-
tion resulted in the development of computer chess program PIONEER utilized suc-
cessfully for solving chess endgames and complex chess positions with a number of 
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variations considered in the order of 102 [4], [32]. These variations were very close to 
those considered by the advanced chess experts when analyzing the same problems. 
Further generalization led to development of the new type of game theory – LG – 
changing the paradigm for solving game problems: “From Search to Construction” 
[24] – [50], [56], [57]. An LG-based technology was applied to more than 30 real life 
defense related projects [19]. On multiple experiments, LG successfully demonstrated 
the ability to solve extremely complex modern military scenarios in real time. More-
over, applications of LG demonstrated the ability of dynamic real-time regeneration 
of the plans and courses of actions during the simulated combat whenever new infor-
mation was available. The efficacy and sophistication of the courses of action devel-
oped by the LG tools exceeded consistently those developed by the commanders and 
staff members [49], [50]. 

Thirty eight years of development of LG including numerous successful applica-
tions to board games and, most importantly, to a highly diverse set of modern military 
operations, from cruise missiles to military operations in urban terrain to ballistic 
missile defense to naval engagements, led us to believe that LG is something more 
fundamental than simply yet another mathematical model of efficient wargaming.  

At the beginning of a new domain development, the LG construction set – the set 
of types of zones – is usually expanded to realize the domain specifics employing 
various experts’ ideas. This development quickly saturates itself: usually, several new 
types of zones permit fully reflect the specifics of the domain. From that moment on, 
the LG application, itself, begins generating strategies including “new ideas” that 
experts evaluate as extremely bright and even brilliant. We would like to suggest that 
LG is a mathematical model of human thinking about conflict resolution, a warfight-
ing model at the level of superintelligence. More precisely, LG is a mathematical 
model of the brain models [9] utilized by humans for the armed conflict resolution.  

To explain chess-related heritage of LG, we should recall that the game of chess 
was originally invented 1.5 - 2 thousand years ago as a gaming model of ancient wars. 
Thus, in our case, it served as a means for discovering human methodology of effi-
cient warfare. In the upcoming experiments this hypothesis will be tested by demon-
strating power of LG on ancient wars happened at times when the game of chess  
had not been invented. To set up these experiments we would have to extend the  
domain of applicability of LG. To discover role of LG in human culture, in this  
paper, we investigate various issues of applicability of LG to the ancient warfare and 
specifically to the battles of Alexander the Great, from 334 BC to 331 BC. 

2   Applying LG  

LG may be structured into two layers: game construction and game solving. Construc-
tion involves a hypergame approach based on a hierarchy of Abstract Board Games 
(ABG), Section 4. Game solving includes both resource allocation for generating an 
advantageous initial game state and dynamic strategy generation for reaching a desir-
able final game state in the course of the game. A typical application to a new domain 
is developed as follows.  

First, the problem is defined as an LG hypergame [39], [43], [42], a hierarchical 
system of several ABG, i.e., the players, the boards, the pieces, the game rules, etc., 
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are identified. Then, LG is utilized to generate strategies guiding the behavior of the 
players so that their goals would be fulfilled.  

Employing LG, the best strategies in ABG are encoded analogously to the genetic 
code [15]. Indeed, in biology, the genes can be represented as strings of words or 
triplets consisted of 3 symbols each. Sometimes, triplets are called codons. Each 
codon contains the genetic code for a single amino acid. For example, the codon Ade-
nine-Uracil-Adenine (AUA) encodes the amino acid Isoleucine. The structure of 
codons is based on the genetic alphabet of 4 letters representing 4 nucleotides, spe-
cialized molecules that — in certain orders, code for the production of proteins. Based 
on simple combinatorics, it is clear that only 64 (43) different codons are possible, 
though the nature utilized only 20 standard amino acids. In LG, the alphabet consists 
of several types of trajectories, i.e., planning sequences of steps [32], [24], [32]. These 
are several types of the main trajectories such as attack trajectory, relocation trajec-
tory, domination trajectory, etc., as well as negation trajectories of various degrees, 
first negation, second negation, etc. The actual code in LG, “the set of codons”, con-
sists of several networks of trajectories called LG zones. They are attack zone, un-
block zone, zone with pared trajectories, zone with restricted areas, etc. (Fig. 1 and 
[32], [50]). One of the major differences of the LG code is that a zone is not reducible 
to the linear sequence of trajectories as in genetic code where a codon is a chain of 
nucleotides, i.e., a 1-dimensional structure. We should keep in mind that while a 
codon is a complex organic molecule, a 3-dimensional structure, a code represented 
by a chain of these molecules is a 1-dimensional string of symbols. An LG zone is a 
network of trajectories, thus, it is, at least, 2-dimensional. Consequently, the gram-
mars utilized in LG to generate the LG code, the language of zones, must be different 
from the Chomsky grammars [11], which are used to generate and parse linear struc-
tures such as natural language, programming languages and the genetic code. To 
handle 2-dimensional LG code we utilize the Controlled grammars [32], which in-
clude powerful tools for managing semantics of n-dimensional space. 

The entire strategy includes only actions encoded in the trajectories of zones such 
as movements along these trajectories, applications of weapons, etc. Like in genetics, 
where the entire diversity of life is reduced to combinations of 4 nucleotides and 64 
codons that encode 20 amino acids, the diversity of strategies in LG is reduced to 
combinations of several types of zones. This leads to a dramatic reduction of com-
plexity. The strategies are not searched but constructed. 

Consider informally a complete set of different zones for a serial ABG such as the 
game of chess. Formal definitions of these zones are given in [32]. This set includes 
just five different types of zones: attack, block/relocation, domination, retreat and 
unblock. These five types represent a complete set of “amino-acids” of the game of 
chess. Examples of such zones are shown in Fig. 1. For the attack zone, the attack 
side (white pieces po and p1) is intended to destroy the target q1 while the intercept 
side, q1, q2, and q3, is intended to protect it. For the block zone the attack side is in-
tended to block the trajectory of q1 by relocating po to point 4, while the intercept side 
is intended to prevent this relocation. This zone is linked to the attack zone of the 
piece q1. In general, for a relocation zone, po is intended to occupy point 4, but the 
purpose of that might vary from block to other types of participation in an attack 
zone. 
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Fig. 1. Complete set of serial LG zones 

For the domination zone, the attack side is intended to intercept q1 at point 4 by 
dominating this point from point 3 (employing relocation of po), while the intercept side 
is intended to prevent this domination. This zone is linked to the attack zone of q1. For 
the retreat zone, the retreat side that includes qo is intended to save qo from the attack of 
po by moving it away from the destination of the trajectory of po; the intercept side that 
includes p1 is intended to prevent this retreat. For the unblock zone, the unblock side is 
intended to support the attack of po along its trajectory by moving the blocking piece p2 
away, while the intercept side (piece q1) is intended to prevent this unblock. Both zones, 
retreat and unblock, are linked to the attack zone with main piece po. 
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A set of zones generated in every state of a problem is a unique representation of 
this state. A piece may be involved in several zones and in several trajectories in the 
same zone. All the trajectories and zones are evaluated with respect to their quality 
[32]. Only the highest quality trajectories are considered for generating strategies. The 
quality function is based on the prediction of the rate of difficulty for a piece for mov-
ing along the trajectory. For example, for the attack zone (Fig. 1) piece po has to pass 
three locations 2, 3, and 4 to reach destination and destroy its target at 4. This passage 
may be free or it may be abstracted by the enemy pieces. For example, piece po can be 
captured at location 2 by q2. The notion of passage through location for the game of 
chess is based on the values of pieces (surrounding this location) and on the result of 
optimal exchange of these pieces [32]. For the military operations employing trajecto-
ries of physical entities (missiles, planes, single soldiers) and shooting, the notion of 
passage through location is based on the notion of probability of kill, which is defined 
for all the entity-weapon pairs. These probabilities permit calculating qualities of 
trajectories and zones based on the integrated probabilities of successful passage. For 
the operations employing trajectories of pieces representing groups of entities that 
require close encounter with hand-to-hand fighting (like ancient cavalry or infantry) 
or massive shooting with low probability of kill of each shot (like ancient archers), the 
notion of passage is based on the notion of attrition rate, a statistical outcome of the 
skirmish, which is defined for all the pairs of antagonistic groups (Section 3). These 
attrition rates permit calculating qualities of trajectories and zones based on the inte-
grated attrition resulting from the passage of these trajectories and zones, respectively. 
In all cases, the less “difficulties” a piece would experience in passing along a trajec-
tory the higher quality of this trajectory is. Every location along a trajectory, where a 
piece can be intercepted (for the game of chess), destroyed with high probability (for 
modern military operations) or suffer high attrition (for ancient operations) reduces 
quality of this trajectory.  A trajectory which includes at least one such location is 
called a trajectory with closed location or closed trajectory. A trajectory without such 
locations is called an open trajectory. Consider an open main trajectory of an attack 
zone (like trajectory for po, Fig. 1, top) and a retreat zone for its target (such as q1). 
Assume that all the locations for retreat are closed, then the target is called vulnerable 
and the main trajectory in the attack Zone is called a trajectory with a vulnerable  
target.  

This approach permits to introduce function of quality based on the ordering of the 
main trajectories and the respective zones beginning from the trajectories with vulner-
able target at the top of the list, then open (non-vulnerable), then with one closed 
location, two, and more. A similar ordering, with the exception of vulnerability, can 
be done to any trajectory of a zone [32]. 

3   “Discrete Universe” of Ancient Battles 

All the existing applications of LG are based on the software tool kit, LG-PACKAGE, 
which includes 6 software tools: GDK (Game Development Kit), GRT (Game Re-
source Tool), GST (Game Solving Tool), GIK (Game Integration Tool), GNS (Game 
Network Services) and GMI (Game Mobile Interface) [19].  
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GDK permits to define a “discrete universe” of ABGs by observing “the laws of 
discrete physics” [32]. The problems in such universe look similar to the generalized 
board games like chess, checkers, etc. An abstract board, an area of the discrete uni-
verse, is represented by an arbitrary finite set. Abstract pieces represent the agents 
standing or moving with a constant or variable speed. GDK permits to introduce con-
current movement of multiple pieces, application of weapons, communication delays, 
skirmishes of agents (with proper attrition), collisions, etc.  

To apply LG to ancient wars we will introduce new classes of ABGs and LG hy-
pergames representing Assyrian and Persian Wars, Classic Greek Wars, Ancient Ro-
man Warfare, etc.  This introduction will include:  

• optional cellular structure of abstract boards, which would permit representing 
various types of terrain, dense and sparse military formations, strategic and tacti-
cal maneuvers, etc.; for the Alexander the Great battles we will choose a board of 

 “hexes”, rectangular hexagonal prisms of 30m across the foundation and 3m 
height (Fig. 2); 

Syntagma

Modest 
attrition

Ilai

Mo

Ilai
Modest 
attrition

Ilai Ilai

Ilai Ilai

Highest 
attrition

Lowest 
attrition

 

Fig. 2. Rate of attrition for attacks of a Macedonian cavalry piece (ilai) against a Persian piece 
of phalangites (syntagma) 

• abstract pieces representing singular fighters, small groups and subgroups such as 
Greek Enomotia or Roman Manipula, larger groups such as Greek Lochos (bat-
talion), Roman Cohort and Legion, etc.; for the Alexander battles we will intro-
duce generic pieces representing various units of infantry and cavalry, e.g., 

 a syntagma, a squadron in the Macedonian phalanx, which consisted of mul-
tiple syntagmas of square shape of 16×16 men; phalangites were armed with 
sarissa, a pike of 7m long, 4m of which was projected in front of the first 
line of phalangites when couched for the charge [1], [54]; this type of forma-
tion was almost impenetrable from the front but vulnerable from the sides 
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and back (see also Fig. 1 and below); here, in figures, we mark syntagma 
with a square; 

 an ilai, a squadron in the Macedonian heavy cavalry (Companions), which con-
sisted of multiple ilais of 16×8 men of various shapes (square, rhomboid, upside 
down wedge, etc.) [1], [54]; here, in figures, we mark ilai with a triangle; 

• time interval representing physical time required for the real world system to 
move between two consecutive states represented in ABG; in Alexander’s wars 
we will consider 30 sec and 1 min intervals;  

• movement reachabilities for light and heavy infantry, cavalry, chariots, and other 
pieces representing advancements of these pieces within one time interval;  

• probabilities of kill representing a statistical outcome of attack of one piece, a 
physical entity, by a weapon; all combinations of piece-weapon are considered; 

• attrition rates between each pair of adversarial pieces representing groups, e.g., an 
ilai against a syntagma (Fig. 1) rates are defined with due respect to the direction 
of attack;  in Fig. 1 rate of attrition of the attack piece complements attrition of 
the target piece, i.e., lower attrition of the ilai corresponds to the higher attrition 
of the enemy’s syntagma. 

• weapon reachabilities representing ancient "firepower" such as archers, hoplite 
phalanx, skirmishers, slingers, legionaries, etc.;  

• communication and logistics constraints, e.g., limited communication between 
commander and subcommander who may each control a half of the army. 

Introduction of the ancient wars into GDK would allow us to immediately begin ex-
periments by applying LG game solving tools. For Alexander’s wars we will use two 
versions of LG, Persian and Macedonian. Each of them will utilize GRT to optimize 
the initial disposition of the battle (the start state) for both adversaries separately and 
GST to generate best strategies. Most likely, at the initial stage, the start state and the 
strategies will be far from the optimum. However, these experiments would allow us 
to move to the second step of development of the LG application. 

The second step includes discovery of the new types of LG zones ("genetic alpha-
bet") that represent new domain, the domain of ancient operations. The zones’ dis-
covery cycle has been developed and tested on multiple projects for various modern 
military operations. At the beginning, new zones are just the existing zones with mi-
nor differences deduced originally from conversations with SMEs (Subject Matter 
Experts - military experts and historians) and historical literature. These differences 
may include rules (and principles) that are specific to a given problem domain or, 
even, to a particular problem. Execution of the LG application with new zones will 
permit constant refinement of those principles. The subsequent development will lead 
to converting specific rules and principles, initially, to generic principles, and later to 
the universal conceptual zones. The universal new zones will become components of 
the theory of LG to be used across a variety of problem domains including all the 
wars of Antiquity and Middle Ages.  

The third step, a series of experiments with the new LG application, will provide 
SMEs with advanced what-if analysis. It will include courses of action generated by 
LG under the same constraints as those that limited ancient commanders thousands 
of years ago. Below, in this paper, we argue that these courses of action will be very 
close to those happened in these battles. In addition, LG will generate alternative 
COA that could have taken place if the ancient commander would have made  
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another decision or some random events took a different turn. This information will 
generate feedback from the SMEs that will support further enhancements to the new 
application. 

4   Ancient Battles: The LG Analysis 

Below, we will consider several major battles of Alexander the Great in terms of LG. 
We will quote extensively from the books describing history of Alexander the Great 
battles [1], [8], [54], all of which are based on the work by Arrian [2], written more 
than 1,900 years ago, who himself studied publications written by the witnesses of 
these battles and, unfortunately, are not available to modern historians. We will try to 
make sense of these battles through the eyes of LG and explain that there is not much 
difference, if at all, between this view and conventional military and historical ac-
counts. In addition, we will explain the actual courses of action employing notions of 
LG. Figures (Fig. 3 - Fig. 5) included in this paper illustrate major moments of these 
battles by showing a snapshot of the LG representation of the battle for each of those 
moments. Various shapes shown in figures represent abstract pieces for both sides in 
a conflict (Fig. 2). Numerous thin lines with arrows (Fig. 3 - Fig. 5) are not simply 
directions for the troops’ movement. These are the subsets of the LG zones for the 
specific moments of the engagements. For simplicity, we included only main trajecto-
ries of the zones. These are mostly attack or retreat zones. In some cases we included 
also first negation (or intercept) trajectories. Also, for simplicity, all the trajectories in 
figures are represented by smooth curves instead of segmented lines where each seg-
ment represents a single move (compare with Fig. 1). The set of zones is dynamically 
regenerated after every concurrent move, which takes place during one time interval 
(in our case, it is 30 sec).  Trajectories in LG are the planning sequences of steps, 
which may become the routes that actually took place in the battle. Otherwise, they 
may change in the course of the battle before the pieces have reached their destina-
tion. It would be impossible to present all the information about the battles encoded in 
the LG representation employing just 6 pictorial snapshots (Fig. 3 - Fig. 5). Thus, 
Sections 4 - 7 include extensive comments to these snapshots. 

Heavy Infantry (phalangites, hypaspists, peltasts) 
Light Infantry (skirmishers, archers) 
Heavy Cavalry (Companions)  

 
Light Cavalry (Prodromoi) 
  
Alexander 
 
 Darius 
 
War Elephants 
 
Chariots with scythe blades 
Light fill: Macedonian troops; Dark fill: Persian troops   

Fig. 3. Legend to Figures of Battles 
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We assume that we have already defined respective ABGs (Section 3). As we dis-
cussed in Section 1, in LG, game solving involves two steps, i.e., resource allocation 
for generating an advantageous initial game state and dynamic strategy generation for 
reaching a desirable final game state in the course of the game. For the battle plan-
ning, this means, at first, to create an opportunity for existence of a winning strategy 
by optimizing start state of the battle, i.e., optimizing initial resource allocation 
(choosing the battlefield, the disposition of forces, the time when battle starts, etc.), 
and then, when the battle begins, to generate and implement optimal strategy leading 
to victory. In LG, both adversaries do their own start state planning based on their 
knowledge about the enemy and environment (which is called blue and red world-
views). New information about the enemy may cause reallocation of resources by 
either side. This preliminary maneuvering (before the battle) converges eventually to 
the common start state and the battle begins. Obviously, both sides plan for the vic-
tory. This means they are trying to achieve their goals with minimal losses. However, 
only one side is successful. The battle itself makes this decision. The battle shows 
whose prediction of success was more realistic, whose worldview was closer to reality 
and whose strategy was closer to the objective optimum. Additionally, the battle re-
veals who was gravely punished by the enemy for his mistakes and who was able to 
recover (during the battle) by readjusting his strategy to the changing conditions. The 
LG tools will do preliminary iterative resource allocation and simulate the battle lead-
ing to the final decision. We will show that Alexander the Great and his opponents 
were, indeed, doing these optimization steps and, most importantly, their reasoning 
was completely within the scope of the LG tools. 

One of the typical resource allocation maneuvers made (or attempted) by Alexan-
der and his opponents was to avoid outflanking by extending his line at the battlefield 
to match that of the opponent. These equal extensions are well within the scope of the 
LG strategies.  Indeed, if one of the adversaries would manage to outflank the enemy 
and avoid being outflanked by him, he will be on his way to victory by pursuing a 
high quality trajectory with vulnerable target (Section 2). In such case the enemy will 
be hit in the weakest spot (to the rear) and will be surrounded with nowhere to go. 
This is in part what Alexander achieved in a number of battles, e.g., with 10,000 ad-
versarial Greek mercenaries in the Battle of Granicus (Section 5). Even anticipation of 
such course of events, i.e., becoming a vulnerable target, would usually cause the 
enemy to generate retreat zones and withdraw. Outflanking is the type of initial re-
source allocation intended to create an opportunity of turning the enemy into a vul-
nerable target in the course of the battle. 

Philip, the Alexander’s father, had created an integrated army, which included 
heavy and light infantry (phalanx, hypaspists, peltasts and skirmishers), heavy and 
light cavalry (Companions, Prodromoi, etc.) and a large body of technicians and engi-
neers (utilized mostly for sieges) [1], [2], [8], [54]. This diversified integrated army 
allowed Alexander to use different instruments for different tasks. For example, Ma-
cedonian phalanx, an impenetrable heavy formation with long (up to 15ft) spears, was 
not intended to attack enemy phalanx or even win the battle on its own. In LG terms, 
this means that an attack trajectory of Macedonian syntagma to the front of the en-
emy’s syntagma would be a trajectory of low quality due to high attrition rate for the 
attack side at the target location. Two mutually adversarial syntagmas could certainly  
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block each other’s movement. However, Macedonian phalangites were used to meet 
and pin down the enemy line (including enemy phalanx and cavalry) while Macedo-
nian cavalry and light infantry penetrated gaps and hit rare. As historians like to un-
derscore [8], [54] the Macedonian phalanx became the anvil against which enemy 
forces were driven by encircling cavalry, the hammer, and smashed the battle. This 
means that to resolve a battle Alexander strived to utilize high quality trajectories 
such as those for Companion cavalry ilai leading to the rear or sides of the enemy’s 
syntagma (Fig. 2) while forcing the enemy retreat following low quality trajectories 
threatened by the front sides of the Macedonian phalanx. Essentially, these were mul-
tiple zones with main trajectories with vulnerable targets (Section 2). Utilizing trajec-
tories with low attrition for his army and forcing the enemy into the high attrition 
trajectories led Alexander to success with low casualties.  

In our analysis of the Alexander’s battles, below, we will consider the actions of 
the ancient generals and interpret them as LG optimization steps, i.e., resource alloca-
tion, strategy generation and implementation (via a simulated battle). 

5   The Battle of Granicus 

For his first battle in Asia Minor, the Battle of Granicus, to avoid outflanking, Alex-
ander extended his line to match that of the Persian cavalry (Fig. 4, A), while the 
Persian approach to initial resource allocation mystified military historians. The Per-
sians had selected the site at a point where Granicus, a fast flowing and relatively 
deep river, had steep banks. When Alexander with the vanguard of his army ap-
proached the river, his scouts reported that the Persians were holding the river with 
20,000 cavalry along their bank. On higher ground behind them, stood 20,000 Greek 
mercenaries in phalanx formation. The line of Persian cavalry was 2.5 miles long 
(Fig. 4, A). By placing their cavalry along the banks of the river they made impossible 
to do what cavalry does best – charge at the gallop, i.e., all the attack trajectories 
would be crossing the river and, thus, would be of low quality.  In positioning their 
heavy infantry (phalangites) far to the rear (Fig. 4, B), in separate line, they violated 
the principle of integrated armies, i.e., concurrent attack and intercept trajectories by 
both cavalry and infantry became impossible.  Moreover, this separation permitted 
Alexander to develop his initial resource allocation employing the strategy with tra-
jectories of unusually high quality. These were combined attack trajectories of infan-
try and cavalry, first, against a line of Persian cavalry unsupported by infantry, and 
then against a line of infantry unsupported by cavalry. 

Some historians believe that the Persians’ initial resource allocation was based on a 
single “absurd” objective – to kill Alexander. By placing their cavalry along the river 
they hoped to concentrate on the units led by Alexander and thwart his invasion by 
killing him. It is more likely that they expected to be outnumbered by the Macedonian 
infantry and lacked confidence in their own Greek mercenaries. All such hypothesis 
will be tested in the LG-based resource allocation for the Persian side. 

The special cavalry squadron, under the command of Socrates (Fig. 4, C), moved to-
wards the center of the Persian line and charged with some infantry support directly into 
the midst of the Persian cavalry. This attack was conducted along low quality trajecto-
ries with high attrition, thus the attack squadron suffered extremely high casualties. 
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However, unsupported by infantry Persian cavalry suffered significant losses as well 
which led to weakness use by Alexander to storm through behind it with cavalry Com-
panions supported by infantry (Fig. 4, D). This secondary attack employing high quality 
attack trajectories forced a gap in the enemy line, because the Persians began to retreat 
employing almost randomly chosen retreat trajectories (Fig. 4, D). 

A 

A 

B 

C 

D 

A
R. Granicus 

Lake 

Lake 
E 

F 

R. Granicus 

 

Fig. 4. The Battle of Granicus, 334 BC 
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When the Persian center broke, the wings fell back too under pressure of the rest of 
Macedonian cavalry and infantry. The total retreat shown in Fig. 4, bottom, did not 
include Greek mercenaries – they were holding hopeless line (Fig. 4, E). Alexander 
did not make a mistake of pursuing the defeated Persian cavalry too far. He could 
easily reason that pursuit trajectories, while open, were not trajectories with vulner-
able targets, i.e., the targets could successfully retreat. Instead, he turned against 
Greek mercenaries employing the best concurrent attack trajectories of both cavalry 
and infantry by cutting off the targets retreat.  He used his hammer-and-anvil tactics 
by employing his cavalry to attack mercenaries flanks and rear and his phalangites 
and light infantry to squeeze them from the front (Fig. 4, F). All the Macedonian 
trajectories pushing mercenaries to this pocket with nowhere to go were the trajecto-
ries of extremely high quality with lowest attrition.  

Out of 20,000 mercenaries only 2,000 were taken alive (as slaves). Alexander lost 
fewer than 150 men during the entire battle, most of them in the initial cavalry assault 
against the Persian center. 

6   The Battle of Issus 

Darius, the King of Persia, had placed his army along a riverbed of Pinarus (Fig. 5), 
which was dry, since it was late Fall of 334 BC. The battleline along the Pinarus ex-
tended some 2.5 miles from Mediterranean coast (The Gulf of Issus) up into  
surrounding hills. Ancient historian Arrian [2] claims that Darius had 600,000 men 
altogether but no modern historians accept this figures. Even, if the Persian strength 
was only 200,000 against Alexander’s 40,000, his army was greatly outnumbered, but 
because there was not much level ground he was able to extend a line along Pinarus 
as long the Persian one. Darius made two resource allocation maneuvers to outflank 
the Alexander’s army at the preliminary stage.  The first maneuver was to place some 
of his men to the high ground on his left across the Pinarus in advance of his line  
(Fig. 5, A). To counter them, in his resource reallocation, Alexander sent a small force 
of light troops to drove the Persians higher into the hills and out of the action. The 
second Darius’ maneuver was to concentrate almost all of his cavalry on his right 
wing on the level ground by the coast (Fig. 5, B). He hoped to generate multiple at-
tack trajectories to crush Alexander’s left in a massive charge and to wheel his  
cavalry around to smash Macedonian infantry in the rear, thus turning the entire 
Alexander’s army into a vulnerable target. When Alexander saw the Persian deploy-
ment, as he approached Pinarus, he made another reallocation by strengthening his 
left wing by sending part of his heavy cavalry units to the left (Fig. 5, C).  

As historians underscore [2], [8], it is ironical that Alexander assumed essentially 
“symmetrical” battle plan and, respectively, the “mutually agreeable” initial disposi-
tion as his opponent (for the common battle start state). Alexander hoped to break 
through Darius’ left center in a cavalry charge and to wheel around against the rear of 
the Persian center in an identical hammer-and-anvil operation. However, while Darius 
was planning an outflanking trajectory with vulnerable target, Alexander planned 
similar trajectory by frontal charge through Persian heavy infantry (Fig. 5, D). As we 
discussed in Section 3 (Fig. 2 and [8]) a cavalry charge directly into a heavy infantry 
formation cannot be successful because attrition rate is very high. In LG terms, such 
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trajectories are considered to be closed. However, this is the case if the infantry holds 
and does not panic. This is a probabilistic event and should be accounted as such in 
computation of the quality of the attack trajectories. Alexander, certainly, gambled 
but with high probability of breaking the line based on the plan to drive Persian skir-
mishers back into the infantry ranks, which would demoralize and break the enemy. 

A

Gulf of 
Issus

B

C

D

E

Gulf of 
Issus

F
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H

R. Pinarus

A
R. Pinarus

 

Fig. 5. The Battle of Issus, 333 BC 
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When Macedonians were within bow shot, at about 100 yards of the Persian line, 
Alexander ordered attack. With contingents of cavalry on his right, supported by 
infantry close behind, he charged the river at a gallop and continued frontal attack 
against Persian phalangites. Despite it was an attack along the closed trajectories, they 
opened up because Persian light infantry (skirmishers) in front of their line fell back 
in panic, creating confusion in the main infantry line on the Persian left center, and 
Alexander smashed through and attacked Persian infantry in the rear (Fig. 5, D and 
E). This, of course, was a triumph of his initial resource allocation, his strategy devel-
opment and implementation. Moreover, it shows that Alexander’s worldview was 
correct, very close to reality. At the same time, it shows that Darius resource alloca-
tion was imperfect, his strategizing was faulty, and most importantly, his worldview, 
especially, his knowledge of the strength of Macedonian forces was inaccurate.  

When Darius saw that Macedonians wheel behind his lines, he panicked and fled in 
his chariot (Fig. 5, F). At the same time, Macedonian left wing crossed Pinarus and 
pressed forward, which resulted in a gap in the Macedonian line. Persian phalangites 
used this gap, crossed Pinarus and tried to encircle Macedonian phalangites turning 
them into a vulnerable target (Fig. 5, G). Alexander had to turn against them and lost 
his chance to pursue the fleeing King of Persia.  In the meantime, the Persian right 
wing cavalry attack was plugged by the Macedonian left wing cavalry units supported 
by skirmishing light troops; the line was holding.  When the Persian cavalry saw that 
their center was collapsing and that the king had abandoned the field, they too broke 
and fled (Fig. 5, H). The effect of slow but steady spreading the news that Darius had 
abandoned the army will be modeled in LG via communication delays between dif-
ferent components of the Persian LG, which will control components of the Persian 
Forces. 

7   The Battle of Gaugamela 

Gaugamela, the third and decisive battle of Alexander the Great for conquering Per-
sia, is considered the greatest victory of antiquity. It is especially interesting to inves-
tigate if LG tools are adequate to formalizing its course.  

As historians underscore the preliminary planning and resource allocation for this 
battle were substantial although no sources actually describe it in detail. All the deci-
sions and maneuvers before the battle demonstrate that very serious reconnaissance 
was performed and utilized for preliminary resource allocation and throughout the 
battle. We will employ the LG tools to realize and explain multiple iterations of mu-
tual maneuvering and resource reallocation for both sides. 

In the Spring of 331, Alexander with the army of 47,000 left Egypt for the long 
march into Persia. When he reached Euphrates in early August, he learned that Darius 
was waiting for him far to the south with a large army outside Babylon on a site to his 
advantage. At this time Alexander made a major maneuver. Instead of approaching 
the goal of invasion and rushing south, down Euphrates, where problems of supply 
were great, simply to fight Darius on the site of his choice, he crossed the river, turned 
north for a while before swinging east, keeping the foothills of Armenian mountains 
on his left in country which offered pasturage for the horses and supplies for the 
army. In LG terms, instead of pursuing a trajectory directly attacking the target, the 
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Persian army, Alexander had chosen a “free search” trajectory provoking Darius to 
intercept him and, thus, move away from the friendly terrain. And so it happened. 
Darius abandoned his position at Babylon and began moving north across Tigris, 
which he hoped to use as his line of defense against Alexander. The specific choices 
of the high quality trajectories for both sides were based on the terrain preferences 
and are totally within the scope of the LG tools. 

When Alexander learned from captured Persian scouts Darius’ maneuver and in-
tent, he made another maneuver. He interrupted his “free flight”, made a forced march 
to Tigris, crossed it unopposed, and headed south towards Persian army. In four days 
he made a contact with the Persian vanguard. This was the plain of Gaugamela, near 
the town of Arbela. The first stage of resource allocation in choosing a mutually ac-
ceptable site was finished. 

For four days the Macedonians rested and fortified a camp, so that when time 
comes Alexander was with a streamlined, mobile striking force. Also, this encamp-
ment maneuver within 4 miles from Darius army allowed him to prevent a surprise 
attack and to observe possible battlefield traps to be prepared by Persians. In his pre-
liminary resource allocation, Darius almost succeeded in selecting his own ground for 
the battle. Macedonian generals tried to persuade Alexander to immediately attack the 
Persians as soon as they were spotted but Alexander refused.  

He decided to take time for building a camp, inspect grounds between armies and 
position his forces in sophisticated formations. Alexander led in person a cavalry 
reconnaissance of the grounds to make sure that there were no cavalry-traps in the 
form of pits or spikes. In this second stage of resource allocation, Alexander faced a 
very complex task. The Persian army was enormous, but, probably, less than 
1,000,000 as reported by Arrian [2]. Even with a more realistic number 100,000-
250,000 of Persian troops against Macedonian 47,000, Alexander was significantly 
outnumbered in both cavalry and infantry. Additionally, Darius prepared several sur-
prises. The first one was 4 squadrons, each fifty strong, of special chariots equipped 
with scythe blades upon their wheels and traces, designed to inflict dire casualties 
upon Alexander’s infantry. The second surprise was 15 Indian war elephants. Armed 
with this information about the enemy, two adversarial versions of LG will complete 
second stage of resource allocation. It would be extremely educating to learn under 
which additional constraints, if any, the LG-based resource allocation and strategies 
would model the decisions of both commanders. As a result we may discover that 
these additional constraints were actually present at the battlefield but had been 
missed by the generations of historians. 

In his final stage of resource allocation to be simulated by the Persian LG (Fig. 6, 
A and B), Darius was able to extend Persian line for several miles (Fig. 6, A) with no 
match from Macedonian side. Darius initial disposition expected double envelopment, 
a massive cavalry attack around both wings of the Macedonian army, and to terrify 
the Macedonian infantry in the center with a chariot attack (Fig. 6, B). As we dis-
cussed in Section 4, such envelopment means pursuing two sets of attack zones with 
the same vulnerable target, in this case, the entire Macedonian army.  

In his final stage of resource allocation to be simulated by the Macedonian LG 
(Fig. 6, from C to G), Alexander made several important strategic choices [1], [2], [8], 
[54] with the main goal to prevent the envelopment, which he predicted. He put his 
left wing forces in echelon formation to fight holding, defensive battle (Fig. 6, C) 
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similar to the one he had used at Issus (Section 6). Additionally, to avoid Persians 
flanking him and getting behind his forces, he positioned his crack infantry called 
hypaspists and his Thessalian allied cavalry to both ends of his line (Fig. 6, D). Both 
arms were broken into small units, which could move aside in the face of elephants, 
chariots or cavalry push, showering javelins on those, as he assumed that these units 
would inevitably be driven back by Persian thrusts. The retreat of various units would 
become an asset to Alexander’s plan, because much deeper in his formation behind 
front lines he placed reserve phalanx (Fig. 6, E). As his smaller army would wade into 
the massed Persian forces it would become stronger as driven into itself. Alexander’s 
formation at Gaugamela became a forerunner of a renowned British “square” of the 
19th century, which was also getting stronger when it was driven into itself.  One of 
the most interesting and inspiring tactical allocations made by Alexander was his 
decision of moving elite cavalry and phalanx at the oblique angle into the much 
longer Persian line (Fig. 6, F). It was a tendency of all shoulders with shields to move 
to the right in the course of advance, as each man sought to cover the exposed portion 
of his body with the shield of his comrade next in the line. Theban militants had 
learned to exploit that tendency with obliquely directed and focused attack on an 
advancing enemy line as it stretched and thinned in response. Philip, Alexander’s 
father, had spent time in Thebes, and the tactic became a vital part of Macedonian 
forces. For himself, with Companion cavalry on the right (Fig. 6, G), Alexander was 
looking for an opportunity to break through the Persian line and to catch some of the 
Persian forces, possibly, including Darius, between the hammer of the Macedonian 
cavalry and the anvil of the phalanx. As was the case in his previous battles he 
planned to turn the enemy into a vulnerable target. 

The battle started on October 1, 331 BC. Macedonian left and center oblique for-
mations (multiple phalanx) were edging diagonally right off the area cleared by 
Darius for his chariot attack (Fig. 6, H). Alexander-led right-wing cavalry was mov-
ing still farther to the right. The more numerous and extensive Persian line was mim-
icking this Macedonian movement by moving correspondingly in the same direction, 
so it might continue to outreach Alexander on the flank. This way both armies were 
shifting to the right with Persians extending their line to keep their outflanking option 
open. With this kind of shift the initial network of LG trajectories and zones will also 
be shifting to the right but with important caveat. The quality of trajectories and zones 
will change according to the quality of the new terrain. Both commanders understood 
this very well. Had this drift persisted, both armies would have slid away from the 
ground, which had been leveled for the chariots.  

Darius decided that overextension of the Persian line caused by the drift of the Ma-
cedonian phalanx (which would make chariots useless) had to be stopped. He ordered 
his left wing cavalry to attack Alexander’s right wing. Macedonian right was pushed 
back by heavy cavalry but the line was holding (Fig. 6, I). At that point Darius sig-
naled the chariot attack (Fig. 6, J). The Macedonians opened their ranks and allowed 
them to pass through, while troops bombarded them with javelins and arrows, grasped 
the reins of the horses and dragged down the drivers. Those chariots that got deeper 
into the open Macedonian ranks were rode down by the cavalry grooms in the rear. 
The secret weapon had misfired. The zones and the outcome of the chariot attack will 
be generated by the LG tools based on the attrition rates of the chariot trajectories 
attacking light infantry formations and cavalry. Why would the Persian LG utilize 
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such trajectories at all? The adversarial casualties and attrition rates for the chariot 
attack estimated by Persians were incorrect: they were overly optimistic. Based on 
these attrition rates the Persian LG will misfire as Darius did 2,300 years ago. The 
rate of attrition expected by Persians would have been confirmed if Darius had em-
ployed these chariots for the attack for which they were most suited, i.e., to increase 
the slaughter of a disorganized and retreating enemy. By the way, elephants had not 
been used by Persians in this battle because they felt no stake in the battle sufficient to 
wade into the bristling spears and arrows of the enemy, and proved useless and un-
controllable, more a danger to their own side. 
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Fig. 6. The Battle of Gaugamela, 331 BC 
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Darius signaled implementation of his main plan of double flanking and totally en-
circling the Macedonian army. His left wing cavalry fighting already with Macedoni-
ans began extending to the north. His right wing flanking maneuver began with heavy 
attack on Alexander’s left and quickly outflanked it (Fig. 6, K). When Persians were 
attacking Alexander’s right, some of their cavalry units dashed ahead and created a 
gap between Persian left infantry and cavalry. Alexander saw this gap and immedi-
ately wheeled to charge it in a wedge cavalry formation of his Companions (Fig. 6, 
L). Simultaneously, the Macedonian phalanx charged frontally at the center of Per-
sians. As Alexander with Companions broke through Persian line, he turned against 
the center as well, heading straight for Darius who was stationed in his own center.  
Darius panicked as he had done at Issus and fled (Fig. 6, M). 

In the meantime, as Alexander drove the routed Persian left wing, the central pha-
lanx found itself unable to follow, especially, as the left Macedonian wing was recoil-
ing before the Persian right. Two units of the phalanx became detached and Persian 
cavalry broke through Macedonian left center and continued on to loot the Macedo-
nian camp several miles away (Fig. 6, N) rather than wheeling to hit the Macedonian 
troops in the rear. Darius had no way of ordering his most advantageous units of  
cavalry to take Alexander’s line in the rear as a desire to win instead of looting Mace-
donian camp. The break-through group attacked the Macedonian baggage train,  
attempting to rescue Persian prisoners and mowing down the guards. The rear forma-
tion of the Macedonian phalanx and light infantry, placed in reserve, saved the situa-
tion and drove the enemy from the camp.  

At the same time the Macedonian left wing had been overwhelmed by Persians and 
was on the verge of defeat. Persians fighting against left wing did not know that their 
king had fled. Alexander received an appeal for help from the left wing commander, 
abandoned his pursuit of Darius and rode his Companions across the battlefield to 
save the left wing of his army (Fig. 6, O). He had to fight his way through a crowd of 
retreating Persians, some of them still in formation, to come to the relief of his left 
wing. Arrian [2] wrote that “the ensuing struggle was the fiercest of the whole ac-
tion.” By the time Alexander arrived to help, the left wing Macedonian heavy and 
light cavalry counterattacked, and the whole Persian army was in rout.  

Alexander then attempted to catch Darius but it was too late. As at Issus, the Darius 
example was followed by his entire army. The LG tools will model naturally spreading 
information that Persian King had abandoned his army and the effect of this informa-
tion. As in other battles, this will be implemented via communication delays between 
independent components of LG controlling different parts of the Persian army. 

8   Conclusion: What to Expect  

We certainly understand that the real test of our hypothesis about the role of LG in 
human culture will take place only after applying LG software to ancient battles. 
However, the purpose of this paper is to explain that no mysterious actions or events 
happened during these historical battles. The decisions of both commanders, the 
greatest leadership of Alexander and the subpar behavior of Darius and his satraps, 
have its rational and this rational is well grounded in LG. With proper initial data, 
including terrain data, appropriate knowledge of the adversarial forces (including 
appropriate level of misunderstanding), personal traits of the commanders, etc., the 
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Persian and the Macedonian versions of LG will simulate these battles with the same 
courses of action as those reported by the historians. 

A discovery of the common mathematical foundation of human reasoning about mili-
tary operations and demonstration of this reasoning taking place throughout human 
history is mindboggling. Why is it formal, where does it come from? Was it developed 
unconsciously long before any languages appeared on Earth and recorded originally in 
the Primary Brain Language described by J. von Neumann [52] and later perfected? 
Which discoveries in History could be made employing the LG software? Would this 
kind of experiments make difference for the Evolutionary Psychology, e.g., for the 
Hunting Hypothesis [2]? Employing LG, are we approaching superintelligence in the 
domain of warfare? Would an approach analogous to LG, based on the “genetic alpha-
bet” of a hierarchy of building blocks, be beneficial for advancing AI in other domains? 
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Abstract. This paper proposes a fast k-means algorithm for graphs
based on Elkan’s k-means for vectors. To accelerate the k-means algo-
rithm for graphs without trading computational time against solution
quality, we avoid unnecessary graph distance calculations by exploiting
the triangle inequality of the underlying distance metric. In experiments
we show that the accelerated k-means for graphs is faster than k-means
for graphs provided there is a cluster structure in the data.

Keywords: clustering, k-means, graph matching.

1 Introduction

Many real-world objects are represented not as vectors but as attributed graphs,
including point patterns, sequences, and trees as special cases. Examples of such
objects are protein structures, chemical compounds, high-level descriptions of
images, and natural language texts. In comparison to vector spaces, the domain
of graphs suffers from sufficient mathematical structure. As a consequence, pair-
wise clustering algorithms are one of the most widely used methods to partition
a given sample of graphs, because they can be applied to patterns from any dis-
tance space. The k-medoids algorithm is a well-known alternative that can also
be applied to patterns from an arbitrary distance space. The k-medoids algo-
rithm operates like k-means, but replaces the concept of mean by the set median
of a cluster [16]. With the emergence of the generalized median [1,4] and sample
mean of graphs [8,9], variants of the k-means algorithm have been extended to
the domain of graphs [4,8,9].

In an unmodified form, however, pairwise clustering, k-medoids as well as the
extended k-means algorithms are slow in practice for large datasets of graphs.
The main obstacle is that determining a graph distance is well known to be
a graph matching problem of exponential complexity. But even if we resort
to graph matching algorithms that approximate graph distances in polynomial
time, application of clustering algorithms for large datasets of graphs is still
hindered by their prohibitive computational time.

For pairwise clustering, the number of NP-hard graph distance calculations de-
pends quadratically on the number of the input patterns. In the worst-case, when
almost all patterns are in one cluster, k-medoids also has quadratic complexity
in the number of distance calculations. If the N graph patterns are uniformly
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distributed in k clusters, k-medoids requires O(tN2/k) graph distance calcula-
tions, where t is the number of iterations required. For k-means, we require kN
graph distance calculations at each iteration in order to assign N pattern graphs
to their closest centroids. Recomputing the centroids requires additional graph
distance calculations. In the best case, when using the incremental arithmetic
mean method [10] for approximating a sample mean, N graph distance calcu-
lations at each iteration are necessary to recompute the centroids. This gives a
total of t(k + 1)N graph distance calculations, where t is the number of iter-
ations required. In view of the exponential complexity of the graph matching
problem, reducing the number of distance calculations in order to make k-means
for graphs applicable is imperative.

In this contribution, we address the important issue to accelerate clustering
algorithms. We augment k-means for graphs as proposed by [9,11] with Elkan’s
idea [3] for accelerating k-means for vectors. For this we assume that the un-
derlying graph distance is a metric. To avoid computationally expensive graph
distance calculations, we exploit the triangle inequality by keeping track of up-
per and lower bounds between input graphs and centroids. Experiments show
that k-means for graphs and its accelerated version perform comparable with re-
spect to solution quality, whereas the accelerated version outperforms standard
k-means for graphs with respect to computation time.

2 K-Means for Graphs

We briefly review the k-means algorithm for graphs proposed by [9,11].

2.1 Graph Spaces

This section describes the data we want to cluster and introduces a widely used
graph metric.

Let E be a r-dimensional Euclidean vector space. An (attributed) graph is
a triple X = (V,E, α) consisting of a finite nonempty set V of vertices, a set
E ⊆ V × V of edges, and an attribute function α : V × V → E, such that
α(i, j) = 0 for each pair of distinct vertices i, j with (i, j) /∈ E.

For simplifying the mathematical treatment, we assume that all graphs are of
order n, where n is chosen to be sufficiently large. Graphs of order less than n, say
m < n, can be extended to order n by including isolated vertices with attribute
zero. For practical issues, it is important to note that limiting the maximum order
to some arbitrarily large number n and extending smaller graphs to graphs of
order n are purely technical assumptions to simplify mathematics. For machine
learning problems, these limitations should have no practical impact, because
neither the bound n needs to be specified explicitly nor an extension of all
graphs to an identical order needs to be performed. When applying the theory,
all we actually require is that the graphs are finite.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. Let X = E

n×n be the Euclidean
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space of all (n × n)-matrices and let T denote a subgroup of the set Pn of all
(n× n)-permutation matrices. Two matrices X ∈ X and X′ ∈ X are said to be
equivalent, if there is a permutation matrix P ∈ T such that P TXP = X′. The
quotient set

XT = X/T = {[X] : X ∈ X}

is a graph space of all abstract graphs [X] over the representation space X induced
by the transformation group T . Note that an abstract graph is an equivalence
class of matrices representing the same structure.

Notations: By concatenating the columns of X, we obtain a vector represen-
tation x of X. In the remainder of this contribution, we identify X with E

N

(N = n2) and consider vector- rather than matrix representations of abstract
graphs. Thus we write x instead of X and [x] instead of [X]. We sometimes
identify X with [x] and write x ∈ X instead of x ∈ [x].

In order to cluster graphs, we equip the graph space XT with a metric. Let
‖·‖ be a Euclidean norm on X . Then the distance function

d(X,Y ) = min {‖x − y‖ : x ∈ X,y ∈ Y },

is a metric [11]. A pair (x,y) ∈ X×Y of vector representations is called optimal
alignment if ‖x − y‖ = d(X,Y ). Thus, we have d(X,Y ) ≤ ‖x − y‖ for all vector
representations x ∈ X and y ∈ Y , where equality holds if and only if x and y
are optimally aligned.

It has been shown that calculating the graph metric d(X,Y ) is a NP-hard
problem [5], which is referred to as the graph matching problem.

2.2 The k-Means Algorithm for Graphs

Let XT be a graph space over some Euclidean space X , where d is the graph met-
ric induced by the Euclidean metric on X . Suppose that ST = {X1, . . . , XN} is a
training sample of N graphs drawn from XT . The k-means clustering algorithm
for graphs aims at finding k centroids Y = {Y1, . . . , Yk} ⊆ XT and a membership
matrix M = (mij) such that the cluster objective

J (M ,YT | ST ) =
1
N

k∑

j=1

N∑

i=1

mij d(Xi, Yj)
2,

is minimized with respect to the constraints

k∑

j=1

mij = 1 ∀ i ∈ {1, . . . , N}

mij ∈ {0, 1} ∀ i ∈ {1, . . . , N}, ∀ j ∈ {1, . . . , k} .
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Necessary conditions for optimality are as follows:

1. Nearest Neighbor Condition: Given a fixed set YT of k centroids, the mem-
bership matrix M = (mij) satisfies

mij = 1 ⇔ j = arg min
1≤c≤k

d (Xi, Yc) ∀ i ∈ {1, . . . , N} .

2. Centroid Condition: Given a fixed membership matrix M = (mij), the set
YT of k centroids are the structural versions of the sample graph means

Yj = arg min
Y ∈XT

N∑

i=1

mij d(Xj , Y )2 ∀ j ∈ {1, . . . , k} .

For a proof we refer to [12]. Note that a sample mean of graphs is invariant
under scalings of the sum of squared distances to the sample graphs. The two
necessary conditions for optimality form the basis of the k-means procedure to
minimize the cluster objective.

It remains to show how to determine a sample mean of graphs. Several differ-
ent subgradient methods for approximating a sample mean have been suggested
[10]. A fast approach to approximate a sample mean of graphs is the incremental
arithmetic mean. The incremental arithmetic mean method emulates the incre-
mental calculation of the standard sample mean. A sample mean of a sample
X1, . . . , Xt is approximated according to the rule

y1 = x1

yi =
i− 1
i

yi−1 +
1
i

xi for 1 < i ≤ t

where (xi,yi−1) ∈ Xi × Yi−1 are optimal alignments. The graph Y represented
by the vector yt approximates a sample mean of the graphs X1, . . . , Xt.

In each iteration, the k-means for graphs requires kN distance calculations to
assign each pattern graph to a centroid and at least additional O(N) distance
calculations for recomputing the centroids using the incremental arithmetic mean
subgradient method. This gives a total of at least O((k + 1)N) graph distance
calculations in each iteration, each of which is NP-hard.

3 Elkan’s k-Means for Graphs

This section proposes an accelerated version of k-means of graphs by exploiting
the properties of a metric as suggested by Elkan [3].

Frequent evaluations of NP-hard graph distances dominate the computational
cost of k-means for graphs. Accelerating k-means therefore aims at reducing the
number of graph distance calculations. In [3], Elkan suggested an accelerated
formulation of the standard k-means algorithm for vectors exploiting the triangle
inequality of the underlying distance metric. Since the graph distance function
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d on XT induced by an Euclidean metric is also a metric [11], we can transfer
Elkan’s idea from Euclidean spaces to graph spaces.

To extend Elkan’s k-Means acceleration to graph spaces, we assume that
X ∈ ST is a pattern graph and Y, Y ′ ∈ YT are centroids. By YX we denote
the centroid closest to pattern graph X . Elkan’s acceleration is based on two
observations:

1. From the triangle inequality of a metric follows

u(X) ≤ 1
2
d(YX , Y ) ⇒ d(X,YX) ≤ d(X,Y ), (1)

where u(X) ≥ d(X,YX) denotes an upper bound of the distance d(X,YX).
2. We have

u(X) ≤ l(X,Y ) ⇒ d(X,YX) ≤ d(X,Y ), (2)

where l(X,Y ) ≤ d(X,Y ) denotes a lower bound of the distance d(X,Y ).

As an immediate consequence, we safely can avoid to calculate a distance d(X,Y )
between a pattern graph X and an arbitrary centroid Y if at least one of the
following conditions is satisfied

(C1) Y = YX

(C2) u(X) ≤ 1
2d(YX , Y )

(C3) u(X) ≤ l(X,Y )

We say, Y is a candidate centroid for X if all conditions (C1)-(C3) are violated.
Conversely, if Y �= YX is not a candidate centroid for X , then either condition
(C2) or condition (C3) is satisfied. From the inequalities (1) and (2) follows that
Y can not be a centroid closest to X . Therefore, it is not necessary to calculate
the distance d(X,Y ). In the case that YX is the onliest candidate centroid for
X all distance calculations d(X,Y ) with Y ∈ YT can be skipped and X must
remain assigned to YX .

Now suppose that Y �= YX is a candidate centroid for X . Then we apply the
technique of "delayed (distance) evaluation". We first test whether the upper
bound u(X) is out-of-date, i.e. if u(X) � d(X,YX). If u(X) is out-of-date we
improve the upper bound by setting u(X) = d(X,YX). Since improving u(X)
might eliminate Y as being a candidate centroid for X , we again check conditions
(C2) and (C3). If both conditions are still violated despite the updated upper
bound u(X), we have the following situation

u(X) = d (X,YX) >
1
2
d (YX , Y )

u(X) = d (X,YX) > l(X,Y ).

Since the distances on the left and right hand side of the inequality of condition
(C2) are known, we may conclude that the situation for condition (C2) can not
be altered. Therefore, we re-examine condition (C3) by calculating the distance
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Algorithm 1: Elkan’s k-Means Algorithm for Structure Spaces

01 choose set YT = {Y1, . . . , Yk} of initial centroids
02 set l(X, Y ) = 0 for all X ∈ ST and for all Y ∈ YT
03 set u(X) =∞ for all X ∈ ST
04 randomly assign each X ∈ ST to a centroid YX ∈ YT
05 repeat
06 compute d(Y, Y ′) for all centroids Y, Y ′ ∈ YT
07 for each X ∈ ST and Y ∈ YT do
08 if Y is a candidate centroid for X
09 if u(X) is out-of-date
10 update u(X) = d(X, YX)
11 update l(X, YX) = u(X)
12 if Y is a candidate centroid for X
13 update l(X, Y ) = d(X, Y )
14 if l(X, Y ) ≤ u (X)
15 update u(X) = l(X, Y )
16 replace YX = Y
17 recompute mean Y̌ for all Y ∈ YT
18 compute δ(Y ) = d

(
Y, Y̌

)
for all Y ∈ YT

19 set u(X) = u(X) + δ (YX) for all X ∈ XT
20 set l(X, Y ) = max {l(X, Y )− δ (Y ), 0} for all X ∈ XT and for all Y ∈ YT
21 replace Y by Y̌ for all Y ∈ YT
22 until some termination criterion is satisfied.

Remark : Setting the upper and lower bounds in line 19 and 20 implicitly declares
them as out-of-date. Updating the bounds with d(X, YX) and d(X, Y ), resp., implicitly
declares them as up-to-date.

d(X,Y ) and updating the lower bound l(X) = d(X,Y ). If condition (C3) is still
violated, we have

u(X) = d(X,YX) > d(X,Y ) = l(X, y).

This implies that X is closer to centroid Y than to YX and therefore has to be
assigned to centroid Y .

Crucial for avoiding distance calculations are good estimates of the lower and
upper bounds l(X,Y ) and u(X) in each iteration. For this, we compute the
change δ(Y ) of each centroid Y by the distance δ(Y ) = d(Y, Y̌ ), where Y̌ is
the recomputed centroid. Based on the triangle inequality, we set the bounds
according to the following rules

l(X,Y ) = max {l(X,Y ) − δ(Y ), 0} (3)

u(X) = u(X) + δ (YX) . (4)
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Table 1. Summary of main characteristics of the data sets

data set #(graphs) #(classes) avg(nodes) max(nodes) avg(edges) max(edges)
letter 750 15 4.7 8 3.1 6
grec 528 22 11.5 24 11.9 29
fingerprint 900 3 8.3 26 14.1 48
molecules 100 2 24.6 40 25.2 44

In addition, u(X) is then declared as out-of-date.1 Both rules guarantee that
l(X,Y ) is always a lower bound of d(X,Y ) and u(X) is always an upper bound
of d(X,YX).

Algorithm 1 presents a detailed description of Elkan’s k-means algorithm for
graphs. During each iteration, k(k− 1)/2 pairwise distances between all centers
must be recomputed (Algorithm 1, line 06). Recomputing the centroids using
incremental arithmetic mean (see Section 2.4) requires additional O(N) distance
calculations (Algorithm 1, line 17). To update the lower and upper bounds, k
distances between the current and the new centroids must be calculated (Al-
gorithm 1, line 18). This gives a minimum of O

(
N + k2

)
distance calculations

at each iteration ignoring the delayed distance evaluations in line 10 and 13
of Algorithm 1. As the centroids converge, we expect that the partition of the
training sample becomes more and more stable, which results in a decreasing
number of delayed distance evaluations.

4 Experiments

This section reports the results of running k-means and Elkan’s k-means on four
graph data sets.

Data. We selected four publicly available benchmark data sets described in [15].
Each data set is divided into a training, validation, and a test set. In all four cases,
we considered data from the test set only. Table 1 provides a summary of the
main characteristics of the data sets. The letter (high) graphs represent distorted
letter drawings from the Roman alphabet that consist of straight lines only. The
GREC data set [2] consists of graphs representing symbols from architectural
and electronic drawings. The fingerprint graphs represent fingerprint images of
the NIST-4 database [18]. The molecules data set originally compiled by [13]
consists of chemical molecules from two classes (mutagen, non-mutagen).

General Experimental Setup. In all experiments, we applied standard k-means
for graphs (std) and Elkan’s k-means for graphs (elk) to the aforementioned data
sets using the following experimental setup:

To initialize the k-means algorithms, we used a modified version of the "fur-
thest first" heuristic [6]. For each data set S, the first centroid Y1 is initialized to
1 In the original formulation of Elkan’s algorithm for feature vectors, the upper bounds

u(X) are declared as out-of-date regardless of the value δ(Y ).
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be a graph closest to the sample mean of S. Subsequent centroids are initialized
according to

Yi+1 = argmax
X∈S

min
Y ∈Yi

D(X,Y ),

where Yi is the set of the first i centroids. We terminated both k-means algo-
rithms after 3 iterations without improvement of the cluster objective J .

For graph distance calculations and finding optimal alignments, we applied a
depth first search algorithm on the letter data set and the graduated assignment
[5] on the grec, fingerprint, and molecule data set. The depth first search method
guarantees to return optimal solutions and therefore can be applied to small
graphs only. Graduated assignment returns approximate solutions.

We used the following measures to assess the performance of an algorithm on
a dataset: (1) error (value of the cluster objective J), (2) classification accuracy,
(3) silhouette index, and (4) number of graph distance calculations.

The silhouette index [17] is a cluster validation index taking values from
[−1, 1]. Higher values indicate a more compact and well separated cluster struc-
ture. Elkan’s k-means incurs a computational overhead to create and update
auxiliary data structures and to compute Euclidean distances. This overhead is
negligible compared to the time spent on graph distance calculations. Therefore,
we report number of graph distance calculations rather than clock times as a
performance measure for speed.

Results I: Performance Comparison. We applied standard k-means (std) and
Elkan’s k-means (elk) to all four data sets in order to assess and compare their
performance. The number k of centroids as shown in Table 2 was chosen by
compromising a satisfactory classification accuracy against the silhouette index.
For each data set 5 runs of each algorithm were performed and the best cluster
result selected.

Table 2 summarizes the results. The first observation to be made is that the
solution quality of std and elk is comparable with respect to error, classification
accuracy, and silhouette index. Deviations are due to the non-uniqueness of the

Table 2. Results of different k-means clusterings on four data sets. Columns labeled
with std and elk give the performance of standard k-means for graphs and Elkan’s
k-means for graphs, respectively. Rows labeled matchings give the number of distance
calculations

(×103
)
, and rows labeled speedup show how many times an algorithm is

faster than standard k-means for graphs.

letter grec fingerprint molecules
k = 30 k = 33 k = 60 k = 10

measure std elk std elk std elk std elk
error 11.6 11.5 32.7 32.2 1.88 1.70 27.6 27.2
accuracy 0.86 0.86 0.84 0.83 0.81 0.82 0.69 0.70
silhouette 0.38 0.39 0.40 0.44 0.32 0.31 0.03 0.04
matchings

(×103
)

488 43 198 63 549 52 14 15
speedup 1.0 11.5 1.0 3.1 1.0 10.5 1.0 0.94
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sample mean and the approximation errors of the graduated assignment algo-
rithm. The second observation to be made from Table 2 is that elk outperforms
std with respect to computation time on the letter, grec, and fingerprint data
set. On the molecule data set, std and elk have comparable speed performance.
Remarkably, elk requires slightly more distance calculations than std.

Contrasting the silhouette index and the dimensionality of the data to the
speedup factor gained by elk, we make the following observation: First, the sil-
houette index for the letter, grec, and fingerprint data set are roughly compa-
rable and indicate a cluster structure in the data, whereas the silhouette index
for the molecule data set indicates almost no compact and homogeneous cluster
structure. Second, the dimensionality of the vector representations is largest for
molecule graphs, moderate for grec graphs, and relatively low for letter and fin-
gerprint graphs. Thus, the speedup factor of elk and gvr apparently decreases
with increasing dimensionality and decreasing cluster structure. This behavior
is in line with findings in high-dimensional vector spaces [3]. According to [14],
there will be little or no acceleration in high dimensions if there is no underlying
structure in the data. This view is also supported by theoretical results from
computational geometry [7].

Results II: Speedup vs. Number k of Centroids. In this experiment we investigate
how the speedup factor of elk depends on the number k of centroids. For this,
we restricted to subsets of the letter and fingerprint data sets. We selected 200
graphs uniformly distributed over the four classes A, E, F, and H. From the
fingerprint data set we compiled a subset of 300 graphs uniformly distributed over
all three classes. For each chosen number k of centroids 10 runs of each algorithm
were conducted and the average of all performance measures was taken. The
number k is shown in Table 3.

From the results summarized in Table 3, we see that the speedup factor slowly
increases with increasing number k of centroids. The results confirm that std and
elk perform comparable with respect to solution quality for varying k. As an
aside, all k-means algorithms for graphs exhibit a well-behaved performance in
the sense that subgradient methods applied to the nonsmooth cluster objective

Table 3. Results of k-means clusterings on a subset of the letter graphs (A, E, F, H)
and the fingerprint graphs. Shown are the average values of the performance measures
averaged over 10 runs.

letter (A, E, F, H) fingerprint
measure k = 40 k = 8 k = 12 k = 16 k = 12 k = 16

std elk std elk std elk std elk std elk std elk
error 6.9 7.0 4.2 4.2 2.7 2.7 2.4 2.4 41.3 41.5 8.1 6.8
accuracy 0.61 0.60 0.82 0.82 0.94 0.94 0.94 0.94 0.59 0.59 0.64 0.64
silhouette 0.26 0.25 0.30 0.30 0.31 0.30 0.22 0.23 0.20 0.21 0.32 0.33
matchings

(×102
)

140 65 234 71 416 99 544 108 84 67 480 138
speedup 1.0 2.1 1.0 3.3 1.0 4.7 1.0 6.1 1.0 1.3 1.0 3.5
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J indeed minimize J in a reasonable way as shown by the decreasing error for
increasing k.

5 Conclusion

We extended Elkan’s k-means algorithm from vectors to graphs. Elkan’s k-means
exploits the triangle inequality to avoid graph distance calculations. Experimen-
tal results show that standard and Elkan’s k-means for graphs perform equally
with respect to solution quality, but Elkan’s k-means outperforms standard k-
means with respect to speed if there is a cluster structure in the data. The
speedup factor of both accelerations increases slightly with the number k of
centroids. This contribution is a first step in accelerating clustering algorithms
that directly operate in the domain of graphs. Future work aims at accelerating
incremental clustering methods.
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Abstract. In multi-label classification, each example can be associated
with multiple labels simultaneously. The task of learning from multi-label
data can be addressed by methods that transform the multi-label clas-
sification problem into several single-label classification problems. The
binary relevance approach is one of these methods, where the multi-label
learning task is decomposed into several independent binary classifica-
tion problems, one for each label in the set of labels, and the final labels
for each example are determined by aggregating the predictions from all
binary classifiers. However, this approach fails to consider any depen-
dency among the labels. In this paper, we consider a simple approach
which can be used to explore labels dependency aiming to accurately
predict label combinations. An experimental study using decision trees,
a kernel method as well as Näıve Bayes as base-learning techniques shows
the potential of the proposed approach to improve the multi-label clas-
sification performance.

Keywords: machine learning; multilabel classification; binary relevance;
label dependency.

1 Introduction

In traditional supervised learning, each example in the training set is associated
into a single-label yj from a set of disjoint labels L, i.e. yj ∈ L. Thus, the single-
label classification task deals with classifying examples into a single label. On the
other hand, in multi-label learning each example in the training set is associated
with multiple labels simultaneously, and the multi-label classification task deals
with classifying examples to a set of labels Yi ⊆ L.

Due to the increasing number of new applications where examples are an-
notated with more than one label, multi-label classification has attracted the
attention of the academic community. Multi-label classification is being used in
an increasing number of applications such as semantic annotation of video [1]
and image [2] , functional genomic [3] and music categorization into emotions [4],
to name just a few.
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A good survey on multi-label classification is presented in [5]. According to [5],
the methods for multi-label classification can be grouped into two main cat-
egories: problem transformation and algorithm adaptation. The first group of
methods are algorithm independent and they transform the multi-label classifi-
cation problem into either one or more single-label classification problems. The
second group of methods extend specific learning algorithms in order to handle
multi-label data directly.

In this work, we shall concentrate on the Binary Relevance (BR) approach
which is one of the common problem transformation methods. In this approach,
a multi-label classification problem is decomposed into a multiple independent
binary classification problem for each one of the single labels yj which par-
ticipates in the multi-label problem. In other words, one binary classification
problem is created for each yj , and each example in the training set is labeled
as positive if yj is an element of the correspondent multi-label example, nega-
tive otherwise. The final labels for each multi-label example are determined by
aggregating the classification results from all binary classifiers. Any supervised
learning algorithm can be used as a base algorithm to generate these classifiers.

However, the BR approach presents two problems. For a large number of
labels, i.e., when |L| is large, the BR approach may experience drawbacks from
the imbalanced data problem. The reason is that, in this case, it is more likely
that at least for some binary classifiers, the number of negative examples that
indicate that the specific label is not present, could be much larger than the
number of positive examples. As a result, these binary classifiers might predict
negative for all instances. Nevertheless, it should be noted that in some cases
learning algorithms perform well on imbalanced domains. As shown in [6], it is
not fair to directly correlate class imbalance to the loss of performance of learning
algorithms. In fact, the problem is also related to the degree of overlapping
among the classes. Thus, only imbalanced binary classifiers that do not predict
the minority class well need to be treated separately in order to improve their
performance. This can be done by using methods to deal with the problem of
learning in the presence of class imbalance, as the ones described in [7].

The other problem of the BR approach is that it is unable to exploit de-
pendency between the labels in the set of labels. In this paper, we propose a
simple approach, named BR+, which can be used to incorporate label depen-
dency aiming to accurately predict label combinations. This approach allows the
user to specify different ways of considering the labels in order to explore label
dependency, where three of them have been already implemented in BR+.

In order to validate the proposed approach, we carried out an empirical eval-
uation on multi-label data sets from different domains. Results show that, for
most of the data sets, the proposed BR+ approach is able to improve the value
of several of the multi-label data measures used in the evaluation.

This work is organized as follows: Section 2 briefly describes multi-label classi-
fication and the binary relevance approach. Section 3 describes the approach pro-
posed in this paper and Section 4 comments on other solutions closely
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related to our proposal. An experimental evaluation is presented in Section 5,
and Section 6 concludes.

2 Multi-label Classification and the BR Approach

Let D be a training set with N examples Ei = (xi, Yi), where i = 1..N . Each
instance Ei is associated with a feature vector x = (xi1, xi2, . . . , xiM ) and a
subset of labels Yi ⊆ L, where L = {yj : j = 1..q} is the set of q possible
labels. This representation is shown in Table 1. Considering this scenario, the
multi-label classification task is to induce a classifier H that, given an unlabeled
instance E = (x, ?), is capable of accurately predicting its subset of labels Y ,
i.e., H(E) → Y .

Table 1. Multi-label data

x Y

E1 x11 x12 . . . x1M Y1

E2 x21 x22 . . . x2M Y2

...
...

...
. . .

...
...

EN xN1 xN2 . . . xNM YN

As stated earlier, the BR approach can be used to solve the multi-label classifi-
cation problem. It consists of a problem transformation strategy that decomposes
a multi-label classificationproblem into several distinct single-label binary classifi-
cation problems, one for each label in the set of L labels. The BR approach initially
transforms the original training dataset into q binary datasets Dyj , j = 1..q, where
each Dyj contains all examples of the original dataset, but with a single positive
or negative label related to the single label yj according to the true label subset
associated with the example, i.e., positive if the label set contains the label yj and
negative otherwise. The other labels (yk, k �= j) are not included in Dyj . After the
data transformation, a set of q binary classifiers Hj(E), j = 1..q are constructed
using the correspondent training dataset Dyj . In other words, the BR approach
initially constructs a set of q classifiers — Equation 1:

HBR = {Cyj((x, yj)) → λj ∈ {0, 1}|yj ∈ L : j = 1..q} (1)

For the classification of a new multi-label instance, the algorithm outputs the
aggregation of the labels positively predicted by all the independent binary
classifiers.

A relevant advantage of the BR approach is its low computational complexity
compared with other multi-label methods. For a constant number of examples
BR scales linearly with the size of the label set L. Thus, the BR approach is
quite appropriate for not very large |L|, which is the general case.
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The performance of multi-label classifiers can be evaluated using different
measures. Some of these measures are adaptations from the single-label classi-
fication problem, while others were specifically defined to multi-label tasks. A
complete discussion on the performance measures for multi-label classification
tasks is out of the scope of this paper, and can be found in [5]. In what follows,
we briefly describe the measures used in this paper to compare our proposal with
the BR approach. The measures are Hamming Loss, Accuracy, F-Meassure and
SubsetAccuracy, defined by Equations 2 to 5 respectively.

HammingLoss(H,D) =
1

N

N∑

i=1

|YiΔZi|
|L| (2)

where Δ represents the symmetric difference between two sets, Yi is the set of
true labels and Zi is the set of predicted labels. When considering the Hamming
Loss as the performance measure, the smaller the value, the better the algorithm
performance is, with a lower bound equal to zero. For the next measures, greater
values indicate better performance.

Accuracy(H,D) =
1

N

N∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi| (3)

F (H,D) =
1

N

N∑

i=1

2|Yi ∩ Zi|
|Zi|+ |Yi| (4)

SubsetAccuracy(H,D) =
1

N

N∑

i=1

I(Zi = Yi) (5)

where I(true) = 1 and I(false) = 0. SubsetAccuracy is a very strict evalua-
tion measure as it requires an exact match of the predicted and the true set of
labels.

Besides the performance measures, other measures to quantify the cardinal-
ity and the density of multi-label data are needed. The cardinality, defined by
Equation 6, is the average number of labels associated with each example. The
density, defined by Equation 7, is the normalized cardinality, i.e., the cardinality
divided by the total number of single-labels in the set of possible labels L.

CR(D) =
1

|D|
|D|∑

i=1

|Yi| (6) DR(D) =
1

|D|
|D|∑

i=1

|Yi|
|L| (7)

3 An Approach to Incorporate Label Dependency

The proposed approach to incorporate label dependency, called BR+ (BR plus),
extends the standard binary relevance approach, which completely ignores any
label relationships. The main idea is to propagate the labels from training exam-
ples to test examples. The label information propagated from different training
examples are then used as the basis for determining the class labels of test
examples [8].
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The training phase of BR+ consists of two steps. In the first step, similarly
to the standard BR, q = |L| binary classifiers are induced, one for each label in
L — Figure 1(a). Using this classifiers, BR+ predicts the λj labels, j = 1..q on
the corresponding test set, as illustrated in Figure 1(b).

Fig. 1. BR+ first step

In the second step, each training binary dataset is replicated and its feature
vector is incremented with q − 1 new features, which consist of the labels of the
other binary classifiers. In other words, each Dyj binary training dataset is aug-
mented with ωj binary features where ωj = L − {yj}. After this transformation
BR+ constructs a set of q new binary classifiers — Equation 8

HBR+ = {Cyj ((x∪ωj , yj)) → λ
′

j ∈ {0, 1}| ωj = L−{yj}, yj ∈ L : j = 1..q} (8)

This process is illustrated in Figure 2(a).

Fig. 2. BR+ second step
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The classification of a new example could be carried out in a similar way
as the standard BR approach using this new binary classifiers. However, as
each classifier has been trained using a feature space different from the original
example’s feature vector, the test sets must consider this new feature vector
space. Thus, the test sets must be augmented accordingly to the training set
that generated the correspondent classifier. However, as in this case the value
of the augmented binary features are unknown, the values predicted in the first
step of BR+, i.e. λj , are used — Figure 2(b).

At this point, there are different manners to classify a new multi-label in-
stance. Similarly to the standard BR approach, BR+ could output the aggre-
gation of the labels positively predicted by all the binary classifiers constructed
in this second step. We shall call this method NU (No Update) since each label
positively predicted λ

′

j uses in its corresponding test set the q − 1 values λi,
i �= j as the values of the augmented binary features. The NU method is the
one illustrated in Figure 2(b).

Nonetheless, if a predefined order to find the labels positively predicted by
each classifier is considered, each of these new values λ

′

j can be used to update
the previous λj of the correspondent augmented binary feature in the test set.
In this work we propose the use of two possible predefined orders taking into
account the frequency of single labels in the training set. We shall call this
two orderings F+, whenever the most frequent labels are considered first, and
F−, whenever the least frequent labels are considered first. In both cases the
predicted values are used to update the correspondent value in the test set.

Regarding BR+ computational complexity, it can be observed that it simply
duplicates BR complexity, thus, BR+ also scales linearly with the size of the
label set L.

4 Related Work

Several attempts have been made to explore dependency between the labels in
the set of labels using the BR approach. In [9], a new method that uses the
concept of chains in the BR framework is proposed. The method scales up to
large datasets and makes an effective use of the label correlation information.
A chain of classifiers is formed and each classifier is responsible for learning
and predicting the binary association of a specific label, given the feature space
augmented by all prior BR predictions in the chain, i.e., the feature space of each
link in the chain is extended with the 0− 1 (present or not) label associations of
all previous links. Regarding the chain order, several possible heuristics can be
used, although the effect of different orders on the prediction performance of the
algorithm was not studied in depth. The authors solved this issue by using an
ensemble framework with a different random chain ordering per iteration. The
predictions are summed by label so that each label receives a number of votes. A
threshold is used to select the most popular labels which form the final predicted
multi-label set.

In [10], a stacked BR classification output indicating relationships between
classes along with the full original feature space into a separate meta classifier
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is proposed, thereby creating a two-stage classification process. The method
proposed in [10] is similar to the one we are proposing in this paper. However,
in [10], the authors use SVMs and propose a novel kernel for their method.
We, instead, do not restrict our method for a specific underlying algorithm.
Moreover, they use all the outputs of the BR classifier to train the meta classifier
in the second step. This can be a potential problem, since these new features
are actually an estimate of the true label, made in the first BR classifier stage.
Using this estimated value can lead the solution to an overfitted model. Our
proposal, on the other hand, does not use the estimate for the label yj , i.e., λj ,
when training the individual final binary classifier in the BR approach for that
label, but only keeps the estimate for the other labels, consequently, maintaining
the label correlation information in the set. Furthermore, in our work we include
an empirical evaluation of different ways of considering the labels when building
individual models in the BR approach to effectively use the interrelationships
between labels.

5 Experiments and Results

The main objective of our study is to compare the standard BR approach with
BR+, considering the three different methods already implemented, the no up-
date method NU , and the two update methods F+ and F−. The experiment
were repeated using three different base single-label classifiers.

5.1 Datasets

To make this comparison, we selected five multi-label datasets from different
domains. The characteristics of the datasets, which can be found in the Mulan
website1, are shown in Table 2.

Table 2. Description of the datasets used in the experiments

Dataset domain #examples #features |L| CR-cardinality DR-density #distinct
emotions music 593 72 6 1.869 0.311 27
medical text 978 1449 45 1.245 0.028 94
scene image 2407 294 6 1.074 0.179 15
yeast biology 2417 103 14 4.237 0.303 198
corel5k images 5000 499 374 3.522 0.009 3175

5.2 Experimental Setup

BR+ has been implemented as an extension method of Mulan2, a package of
Java classes for multi-label classification based on Weka3. The experiments were
carried out using three different base single-label classifiers from Weka. J48, a
1 http://mulan.sourceforge.net/datasets.html
2 http://mulan.sourceforge.net
3 http://www.cs.waikato.ac.nz/ml/weka/

http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net
http://www.cs.waikato.ac.nz/ml/weka/
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decision tree learning algorithm, Näıve Bayes and the support vector machine
SMO learning algorithm.

All the reported results were obtained using 10-fold cross validation with
paired folds, i.e., the same training and testing partitions were used to obtain
the average of the four measures considered to compare the standard BR and
BR+.

5.3 Results

Tables 3 to 5 show, respectively, the average of the four measures values, for
each base-classifier used in the experiments. For the sake of visualisation, the
best measure values are shown in bold. In all the tables, the numbers in brackets
correspond to the standard deviation. Arrows show significance according to
Bonferroni-Dunn multiple comparison with BR as a control test [11].

In order to analyze whether there is a difference among the methods, for each
one of the four measures and the three single-label base-classifier, we ran the
Friedman test with the null-hypotheses that the performance of all methods are
comparable considering all results. Only three of the 12 cases did not reject
the null-hypothesis: Accuracy/SMO, F-Measure/J48 and Hamming Loss/Näıve
Bayes — Null-hypothesis not rejected in row Stat. Dif. of Tables 3, 4 and 5
respectively.

Table 3. Average measure values using SMO as single-label base-classifier. ↗ and ↘
indicates statistically significant improvement or degradation.

Accuracy F-Measure
Dataset BR BR+(S.A.) BR+(F+) BR+(F−) BR BR+(NU) BR+(F+) BR+(F−)
Corel5k 0.08(0.01) 0.15(0.00) 0.15(0.00) 0.12(0.00) 0.11(0.01) 0.23(0.00) 0.22(0.00) 0.17(0.00)

Emotions 0.50(0.04) 0.53(0.07) 0.52(0.08) 0.50(0.08) 0.58(0.04) 0.63(0.07) 0.61(0.09) 0.59(0.08)
Medical 0.74 (0.04) 0.77 (0.04) 0.77(0.04) 0.78(0.03) 0.77(0.03) 0.80(0.03) 0.79(0.04) 0.80(0.03)
Scene 0.58(0.03) 0.65(0.03) 0.65(0.04) 0.68(0.03) 0.61(0.03) 0.69(0.03) 0.68(0.04) 0.70(0.03)
Yeast 0.49(0.03) 0.48(0.03) 0.50(0.03) 0.51(0.03) 0.60(0.02) 0.60(0.02) 0.61(0.02) 0.61(0.02)

Stat. Dif. Null-hypothesis not rejected Control ↗

Hamming Loss Subset Accuracy
Dataset BR BR+(NU) BR+(F+) BR+(F−) BR BR+(NU) BR+(F+) BR+(F−)
Corel5k 0.01(0.00) 0.02(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.02(0.00) 0.01 (0.00)

Emotions 0.20(0.02) 0.24(0.03) 0.23(0.04) 0.24(0.04) 0.27(0.06) 0.22(0.06) 0.24(0.08) 0.25(0.08)
Medical 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.66(0.06) 0.69(0.05) 0.69(0.05) 0.71(0.05)
Scene 0.11(0.01) 0.13(0.01) 0.12(0.01) 0.11(0.01) 0.51(0.03) 0.54(0.03) 0.59(0.04) 0.61(0.03)
Yeast 0.20(0.01) 0.22(0.01) 0.21(0.01) 0.21(0.01) 0.13(0.03) 0.14(0.04) 0.17(0.04) 0.19(0.04)

Stat. Dif. Control ↘ Control ↗

When the null-hypothesis is rejected by the Friedman test, at 95% of con-
fidence level, we can proceed with a post-hoc test to detect which differences
among the methods are significant. We ran the Bonferroni-Dunn multiple com-
parison with a control test, using BR as a control. Therefore, the Bonferroni-
Dunn test points out whether there is a significant difference among BR and the
three methods of BR+ involved in the experimental evaluation.

It has been observed that sometimes the Friedman test reports a significant
difference but the post-hoc test fails to detect it. This is due to the lower power of
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Table 4. Average measure values using J48 as single-label base-classifier. ↗ and ↘
indicates statistically significant improvement or degradation.

Accuracy F-Measure
Dataset BR BR+(NU) BR+(F+) BR+(F−) BR BR+(NU) BR+(F+) BR+(F−)
corel5k 0.06(0.00) 0.09(0.01) 0.09(0.01) 0.09(0.01) 0.09(0.01) 0.13(0.01) 0.13(0.01) 0.13(0.01)

Emotions 0.44(0.07) 0.44(0.06) 0.48(0.07) 0.47(0.06) 0.53(0.08) 0.53(0.07) 0.56(0.08) 0.55(0.06)
Medical 0.76(0.03) 0.78(0.04) 0.79(0.03) 0.80(0.04) 0.79(0.04) 0.81(0.04) 0.81(0.03) 0.82(0.04)
Scene 0.52(0.03) 0.53(0.04) 0.57(0.05) 0.55(0.03) 0.55(0.03) 0.57(0.04) 0.59(0.05) 0.57(0.03)
Yeast 0.42(0.02) 0.41(0.02) 0.45(0.03) 0.42(0.03) 0.55(0.02) 0.54(0.02) 0.56(0.03) 0.53(0.03)

Stat. Dif. Control ↗ Null-hypothesis not rejected

Hamming Loss Subset Accuracy
Dataset BR BR+(NU) BR+(F+) BR+(F−) BR BR+(NU) BR+(F+) BR+(F−)
corel5k 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.00(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)

Emotions 0.24(0.04) 0.27(0.03) 0.25(0.04) 0.25(0.04) 0.19(0.05) 0.18(0.09) 0.25(0.08) 0.25(0.08)
Medical 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.67(0.04) 0.70(0.04) 0.70(0.03) 0.71(0.04)
Scene 0.14(0.01) 0.19(0.02) 0.15(0.02) 0.15(0.01) 0.43(0.04) 0.43(0.04) 0.52(0.05) 0.51(0.04)
Yeast 0.25(0.01) 0.28(0.01) 0.26(0.01) 0.29(0.01) 0.05(0.02) 0.06(0.02) 0.12(0.03) 0.11(0.03)

Stat. Dif. Control Control ↗ ↗

Table 5. Average measure values using Näıve Bayes as single-label base-classifier. ↗
and ↘ indicates statistically significant improvement or degradation.

Accuracy F-Measure
Dataset BR BR+(NU) BR+(F+) BR+(F−) BR BR+(NU) BR+(F+) BR+(F−)
Corel5k 0.15(0.00) 0.16(0.01) 0.17(0.01) 0.17(0.01) 0.22(0.01) 0.23(0.01) 0.24(0.01) 0.24(0.01)

Emotions 0.53(0.04) 0.56(0.06) 0.56(0.07) 0.58(0.06) 0.63(0.03) 0.65(0.06) 0.64(0.07) 0.66(0.06)
Medical 0.27(0.04) 0.42(0.06) 0.42(0.06) 0.42(0.06) 0.30(0.04) 0.46(0.06) 0.46(0.06) 0.46(0.06)
Scene 0.45(0.03) 0.59(0.02) 0.59(0.02) 0.59(0.02) 0.56(0.03) 0.69(0.02) 0.69(0.02) 0.68(0.02)
Yeast 0.43(0.03) 0.43(0.03) 0.44(0.03) 0.44(0.03) 0.55(0.02) 0.55(0.03) 0.55(0.03) 0.55(0.03)

Stat. Dif. Control ↗ ↗ Control

Hamming Loss Subset Accuracy
Dataset BR BR+(NU) BR+(F+) BR+(F−) BR BR+(NU) BR+(F+) BR+(F−)
corel5k 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.00(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)

Emotions 0.25(0.04) 0.21(0.04) 0.22(0.04) 0.20(0.04) 0.21(0.07) 0.30(0.07) 0.30(0.08) 0.33(0.08)
Medical 0.02(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.19(0.04) 0.33(0.07) 0.33(0.07) 0.33(0.07)
Scene 0.24(0.01) 0.16(0.01) 0.16(0.01) 0.16(0.01) 0.18(0.04) 0.32(0.04) 0.32(0.04) 0.32(0.04)
Yeast 0.29(0.02) 0.28(0.02) 0.28(0.02) 0.28(0.02) 0.10(0.02) 0.11(0.03) 0.12(0.03) 0.12(0.03)

Stat. Dif. Null-hypothesis not rejected Control ↗ ↗

the post-hoc test. In this case, the only conclusion that can be drawn is that some
algorithms do differ significantly [11]. In our experiments this has occurred in
the following two cases: Hamming Loss/J48 and F-Measure/Näıve Bayes, where
no ↗ or ↘ are shown. However, it can be observed that in these two cases that
Hamming Loss/J48 is better for BR while F-Measure/Näıve Bayes is better for
BR+. In general, Hamming Loss does not improve for BR+.

However, the other measure values are better for BR+ most of the time, and in
some cases they are significantly better. To sum up, Table 6 shows the number of
times, maximum 15, that Accuracy, F-Measure and Subset Accuracy are better
for BR+ considering the results in all datasets for each single-label classifier.

Comparing now the results obtained using the three different base single-
label classifiers in each dataset, it is possible to observe that they have a strong
influence. In all cases, very poor results were obtained with dataset Corel5k.
In this dataset |L| = 374 — Table 2. Furthermore, the majority of the 374
binary classifiers constructed in the first step of BR+ have zero precision, which
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Table 6. Number of wins, maximum 15, of BR+ over BR

Accuracy F-Measure Subset Accuracy
SMO 13 14 10

J48 12 12 13
Näıve Bayes 14 12 15

justifies the poor results obtained using this dataset. Considering Accuracy and
F-Measure, Näıve Bayes is a clear winer for datasets Corel5K (although this
dataset shows very poor results as already mentioned) and Emotion; J48 for
dataset Medical, and SMO por datasets Scene and Yeast. Not considering dataset
Corel5k, which shows very bad results for Subset Accuracy, the best results for
Subset Accuracy were also obtained by the same datasets and algorithm.

Regarding the three different manners to classify a new multi-label instance,
i.e., NU , F+ and F−, it is not possible to identify a clear winner.

6 Conclusions

This paper presented a simple approach for multi-label classification, which is
based on the Binary Relevance approach. Its main objective consists of exploit-
ing label dependency aiming to accurately predict label combinations. Using
several multi-label datasets from different domains and several evaluation mea-
sures, we carried out an empirical evaluation to compare both approaches and
to verify if the proposed approach is able to predict label combinations more
accurately. Three different manners to classify a new multi-label instance were
used. However, it was not possible to identify a clear winner. Initial results show
the potential of the proposed approach to improve the multi-label classification
performance. Nevertheless, more extensive experiments should be done in the
future in order to validate these results. As future work we plan to investigate
other predefined orders to find the labels positively predicted by each binary
classifier.
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Abstract. The problem of information generalization with account for the ne-
cessity of processing the information stored in real data arrays which may con-
tain noise is considered. Noise models are presented, and a noise effect on the 
operation of generalization algorithms using the methods of building decision 
trees and forming production rules is developed. The results of program model-
ing are brought about. 
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1   Introduction 

Knowledge discovery in databases (DB) is important for many technical, social, and 
economic problems. Up-to-date DBs contain such a huge quantity of information that 
it is practically impossible to analyze this information manually to acquire valuable 
knowledge for decisions making. The systems for automatic knowledge discovery in 
DB are capable of analyzing "raw" data and presenting the extracted information 
faster and with more success than an analyst could find it himself. At first we consider 
setting up the generalization problem and the methods of its decision. Then the noise 
models and prediction of unknown values in accordance with the nearest neighbour 
method in learning samples are viewed. And finally modeling the algorithm of deci-
sion tree with the combination of forming production rules in the presence of noise 
and results of program simulation are given. 

2   Setting Up the Generalization Problem 

Knowledge discovery in DB is closely connected with the solution of the inductive 
concept formation problem or the generalization problem. 

Let us give the formulation of feature-based concept generalization [1]. 
Let },...,,{ 21 noooO = be a set of objects that can be represented in an  intelligent de-

cision support system (IDSS). Each object is characterized by r attributes: A1, A2, … , 
Ar. Denote by Dom(А1), Dom(А2), … , Dom(Аr) the sets of admissible values of  

features where Dom(Аk)={x1, x2, … 
kqx },  rk ≤≤1 , kq  is the number of different 
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values of the feature Ak. Thus, each object Ooi ∈ , ni ≤≤1  is represented as a set of 

feature values, i.e., },...,,{ 21 iriii xxxo = , where xik∈ Dom(Аk), kqk ≤≤1 . Such a 

description of an object is called a feature description. Quantitative, qualitative, or 
scaled features can be used as object features [1]. 

Let O be the set of all objects represented in a certain IDSS; let V be the set of 
positive objects related to some concept and let W be the set of negative objects. We 
will consider the case where WVO ∪= , ∅=∩WV , U

i
iWW = , and 

∅=∩ ji WW )( ji ≠ . Let K be a non-empty set of objects such that −+ ∪= KKK , 

where VK ⊂+ and WK ⊂− . We call K a learning sample. Based on the learning 
sample, it is necessary to build a rule separating positive and negative objects of a 
learning sample. 

Thus, the concept is formed if one manages to build a decision rule which, for any 
example from a learning sample, indicates whether this example belongs to the concept 
or not. The algorithms that we study form a decision in the form of rules of the type 
"IF condition, THEN the desired concept." The condition is represented in the form of 
a logical function in which the boolean variables reflecting the feature values are con-
nected by logical connectives. Further, instead of the notion "feature" we will use the 
notion "attribute". The decision rule is correct if, in further operation, it successfully 
recognizes the objects which originally did not belong to the learning sample. 

The presence of noise in data changes the above setting up of the generalization 
problem both at the stage of building decision rules and at the stage of the object clas-
sification. First of all, the original learning sample K is replaced by the sample K' in 
which distorted values or missing values of features occur with a certain probability. 
We consider the solution of the concept generalization problem using the methods of 
decision trees [2, 3] with the combination of forming production rules [4, 5]. 

3   Methods for Knowledge Discovery 

A number of methods suitable for knowledge discovery is known. They can be di-
vided into the following groups. 

Statistical methods. The statistical approach is usually based on probabilistic models. 
In general, it is assumed that such methods will be used by specialists in statistics; 
therefore, human interference is required in generating the hypotheses-candidates and 
models. 

Case-based inference. A case is a situation that arose earlier and was solved. In aris-
ing a new situation, case-based inference checks up a multitude of situations stored in 
DB and finds a similar one. 

Neural networks. Neural networks belong to the class of systems modeling processes 
of data treatment like in a human brain. They consist of a great number of artificial 
neurons and their important  peculiarity is the possibility of learning. 

Decision trees. The decision tree is a tree in which each nonfinite node accomplishes 
checking of some condition, and in case a node is finite, it gives out a decision for the 
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element being considered. In order to perform the classification of the given example, 
it is necessary to start with the root node. Then, we go along the decision tree from the 
root to the leaves until the finite node (or a leaf) is reached. In each nonfinite node 
one of the conditions is verified. Depending on the result of verification, the corre-
sponding branch is chosen for further movement along the tree. The solution is ob-
tained if we reach a finite node. 

Inductive rules. The rules establish a statistical correlation between the appearance of 
certain features in a particular example or between certain examples in a learning set. 

Bayesian belief networks. A Bayesian belief network is an oriented acyclic graph the 
nodes of which are feature values, and the weights of arcs are probabilistic dependen-
cies between attributes. Each node is correlated to conditional probability distribu-
tions describing the relations between a node and its ancestors. 

Genetic algorithms/ Evolutionary modeling. Genetic algorithms and evolution are 
algorithmically optimized strategies based on the principles of natural evolution. Ge-
netic algorithms and evolutionary modeling use generalization methods to formulate 
hypotheses about the dependencies between variables in the form of associative rules 
or by some other formalism. 

Rough sets. A rough set is defined by the assignment of upper and lower boundaries 
of a certain set called the approximations of this set. Each element of the lower ap-
proximation is certainly an element of the set. Each element that does not belong to 
the upper approximation is certainly not an element of the set. The difference in the 
upper and lower approximations of a rough set forms the so-called boundary region. 
The element of the boundary region is probably (but not certainly) an element of the 
set. Similarly to fuzzy sets, rough sets are mathematical conception for work with 
fuzziness in data. 

4   Noise Models 

Assume that examples in a learning sample contain noise, i.e., attribute values may be 
missing or distorted. Noise arises due to following causes: incorrect measurement of the 
input parameters; wrong description of parameter values by an expert; the use of dam-
aged measurement devices; and data lost in transmitting and storing the information [6]. 

We study three noise models: 

1. Noise is connected with the absence of attribute values (an attribute value did 
not manage to measure). For each attribute A, a domain of admissible values includes 
the value "not known." Such a value corresponding to the situation, when the true 
value of an attribute has been lost, is denoted by N (Not known). Thus, individual 
examples of a learning sample K' contain a certain quantity of attributes with the val-
ues "not known".  

2. Noise is connected with the distortion of certain attribute values in a learning sam-
ple. The true value is replaced by one admissible, but wrong, what leads to changing the 
attribute value distribution. In Tables 3, 4, this noise type is called “permutation”. 
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3. Noise is connected with the presence of mixing any two different attribute val-
ues in two rows of a learning sample. This procedure is referred to one of controlled 
scrambling [6]. Under such a noise, a value distribution for a “noisy” attribute is re-
tained but some values will be still erroneous. In Tables 3, 4, this noise type is called 
“scrambling”. 

Further, we consider the work of the generalization algorithm in the presence of 
noise in original data. Our purpose is to assess the classification accuracy of examples 
in a control sample by increasing a noise level in this sample. 

5   Methods of Restoring Absent Values in a Learning Sample 

Let a sample with noise, K', be given; moreover, let the attributes taking both discrete 
and continuous values be subject to distortions. Consider the problem of using the 
objects of a learning sample K' in building a decision tree T and in conducting the 
examination using this tree. 

Let  oi∈K' be an object of the sample; oi=<xi1, … , xir>. Among all the values of 
its attributes, there are attributes with the value N. These attributes may be both dis-
crete and continuous. 

Building a decision tree while having examples with absent values leads to multi-
variant decisions. Therefore, we try to find the possibility for restoring these absent 
values. One of the simplest approaches is a replacement of an unknown attribute 
value on the average (mean or the mode, MORM). Another possible approach is the 
nearest neighbour method which was proposed for the classification of the unknown 
object X on the basis of consideration of several objects with the known classification 
nearest to it. The decision on the assignment of the object X to one or another class is 
made by information analysis on whether these nearest neighbours belong to one or 
another class. We can use even a simple count of votes to do this. The given method 
is implemented in the algorithm of restoring that was considered in detail in [7, 8]. 
Since the solution in this method explicitly depends on the object quantity, we shall 
call this method as the search method of k nearest neighbours (kNN). 

6   Generalization Algorithms 

Research of noise effect on the operation of generalization algorithms has been per-
formed on the basis of comparative analyses of two known algorithms C 4.5 and CN2 
[2-5].  Given algorithms are learning algorithms “with a teacher”: initially, the classi-
fying rules are formed in a learning sample, and then an examination is produced in a 
test sample, results of which allow to assess the efficiency of the given generalization. 

The algorithm C4.5 as its predecessor ID3 suggested by J.R.Quinlan [2, 3] refers  
to an algorithm class building the classifying rules in the form of decision trees.  
However, C4.5 works better than ID3 and has a number of advantages: 

- numerical (continuous) attributes  are introduced; 
- nominal (discrete) values of a single attribute may be grouped  to perform more 

difficult checking; 
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- subsequent shortening after inductive tree building based on using a test set al-
lows to increase a classification accuracy. 

The algorithm CN2 [4, 5] is one which forms a set of production rules of the kind ”IF 
<condition> THEN <class>” (one rule for each class) as a classifier. In the given case 
a condition represents a test conjunction for attribute values. The empty condition in a 
rule means that a rule covers all examples of a set. This algorithm looks through the 
whole object set and finds a rule that is the best among possible ones adding it at the 
end of a set of formed production rules.  However CN2 does not exclude from view-
ing the rules covering one or several negative examples. After the best rule was 
found, the algorithm deletes covered examples from a learning sample and repeats a 
searching procedure of the best rule for rest objects. It halts the work when it is im-
possible to select a best rule for the current object set or the examples in a learning 
sample were finished.  

In order to avoid forming the rules covering few examples, the algorithm CN2 uses 
so called checking a condition on the importance which confirms, that a distribution 
of classes among examples covered by a condition is not random and close to a class 
distribution among all examples of a learning sample.  

n
i

i
ii 1

pSignificance 2 p log( )q
=

= ∑  

where pi is a probability of appearing a class value among examples satisfying to a 
condition, and qi is a probability of appearing a class value among all examples of a 
learning sample. Under using such a test, the majority of conditions covering few ex-
amples are excluded from a consideration because their classification accuracy is per-
ceived by the algorithm as randomness. 

7   Modeling the Algorithms of Forming Generalized Notions in the 
Presence of Noise 

The above mentioned algorithms have been used to research the effect of a noise on 
forming generalized rules and on classification accuracy of test examples. To restore 
unknown values the methods of nearest neighbours (kNN) and choice of average 
(MORM) are used. We propose the algorithm "Induction of Decision Tree with re-
storing Unknown Values" (IDTUV2). IDTUV2 includes the procedure of restoring 
unknown values in the presence of examples containing a noise of the type “absent 
values”. When absent values of attributes are restored, one of algorithms of notion 
generalization is used.  

Below, we present the pseudocode of the IDTUV2 algorithm. 

    Algorithm IDUTV2 
           Given: K= K+  ∪  K- 

    Obtain: decision rules: decision tree T, production rules R. 
           Beginning 
                 Obtaining K= K+  ∪  K- 
                    Select noise model, noise level 
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                     If noise model = absent values  
                     Then select Method of restoring absent values; 
                     Perform: introduce noise in K 
                     Select generalization algorithm C4.5 or CN2  
                     If Select C4.5  Then obtain decision tree T    
                     Else Select CN2 and obtain production rules R 
                     End if 
                     Output decision tree T or  production rules R 
 End 
          End of IDTUV2. 

8   Modeling the Algorithm of Building the Decision Tree in the 
Presence of Noise 

To develop the generalization system, the instrumental environment MS Visual C# 
Express Edition has been used. The given environment is a shortened version MS 
Visual Studio. As DBMS SQLite, realizing the standard SQL92 has been used. 

The program IDTUV2 performs the following main functions: 

- builds the classification model (a decision tree, or production rules) on the basis 
of the learning sample; 

- forms production rules corresponding to the constructed tree; 
- recognizes (classifies) objects using a classification model. 

We present experiment results carried out on the following four data groups from the 
known collection of the test data sets of California University of Informatics and 
Computer Engineering "UCI Machine Learning Repository" [9]: 

1. Data of Monk's problems; 
2. Medical data: diagnostics of heart diseases (Heart); 
3. Repository of data of the StatLog project:     
   - diagnostics of diabetes diseases (Diabetes);     
   - australian credit (Australian); 
4. Other data sets (from the field of biology and juridical-investigation practice). 

8.1   Classification Results of Examples with Noise 

To define an attribute, which values are subject to distortions, the following approach 
was used: we chose the most informative attribute of a table. Obviously, changes in 
values of such attribute can affect the algorithm results most essentially. When we use 
the algorithm C4.5 to build a decision tree the most informative attribute is located at 
the root of a decision tree. When we form a production rule set by the algorithm CN2, 
we choose an attribute used in the first production. When we introduce noise of the 
type “scrambling” and “permutation”, it is necessary to have a “noisy” attribute being 
discrete. Therefore, if a most informative attribute is continuous, then preliminarily it 
needs to perform discretization.   
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8.2   Assessment of Classification Accuracy for “Noisy” Attributes in the Absence 
of Noise in a Learning Sample 

Here we present the results of researching the effect of noise in a test samples on clas-
sification accuracy. First, the noise model “the absence of an attribute value” has been 
used. To restore absent values, the method of replacement by the average  (MORM) 
and the method of k nearest neighbours  (kNN) search were used. The problem of 
choosing k in the restoring algorithm was considered in [8] in detail. The situations 
with the noise presence in 5%, 10%, 20%, 30% in a chosen attribute were considered. 
The results of experiments with algorithms C4.5 and CN2 are given in tables 1 and 2 
accordingly.  

In table cells where the classification accuracy is represented, maximal values of 
the classification accuracy are marked by the bold type. 

Table 1. Classification results of examples with noise “absent values” for the algorithm C 4.5 

 
Data set Method of 

handling 
noise 

Classification accuracy of “noisy” examples, % 
No 
noise 

Noise 5% Noise 
10% 

Noise 
20% 

Noise 
30% 

Average 

HEART MORM 75,31 75,8 75,31 75,06 75,06 
75,31 

  kNN   75,50  75,41 74,62 74,32 75,13 

GLASS MORM 72,31 72,31 72,31 72,00  71,69  
72,08 

  kNN   72,37  72,69  72,06  71,94  72,27 

IRIS MORM 95,56 95,56 96,00  96,02 97,34 
96,23 

  kNN   95,38  95,38  95,67 95,91  95,59 

DIABETES MORM 71 70,91  71,17 71,34 71,43 
71,21 

  kNN   71,22  71,17 71,05 71,15  71,15 

MONKS1 MORM 81,71 81,94 81,94 82,64 83,1 
82,40 

  kNN   81,99  82,04 81,88  82,11  82,01 

MONKS3 MORM 94,44 94,21 93,75 93,75 93,29 
93,75 

  kNN   94,03 93,94 93,75  93,56  93,82 

CREDIT MORM 78,06 78,67  79,49 79,28  79,49 
79,23 

  kNN   78,12  78,06 78,79  79,24  78,55  

TIC-TAC-
TOE 

MORM 88,89 89,17 89,03 89,1 88,96 
89,06  

  kNN   88,83  88,81 88,82 88,51 88,74  

WINE MORM 90,74 90,74 90,37 89,63 89,63 
90,09  

  kNN   90,74 90,59  90,52 90,52 90,59  

BREAST MORM 97,07 97,07 97,36  97,56 97,76 
97,44 

  kNN   97,09  97,09  97,21 97,19  97,15 
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Table 2. Classification results of examples with noise “absent values” for the algorithm CN2 

 
Data set Method of 

handling 
noise 

Classification accuracy of “noisy” examples, % 
No 
noise 

Noise 5% Noise 
10% 

Noise 
20% 

Noise 
30% 

Average 

HEART MORM 74,07 74,56  74,57 74,81  75,55  
74,87  

  kNN   74,17 74,12  74,42 74,91  74,40  

GLASS MORM 66,15 66,15 66,15 66,15 66,46 
66,23 

  kNN   66,15 66,09 66,21  66,52  66,24  

IRIS MORM 95,56 95,56 95,56 96,0  95,56 
95,67  

  kNN   95,56 95,74 95,74 96,18  95,80  

DIABETES MORM 74,03 74,2  73,85  73,94 73,85  
73,96  

  kNN   74,01  73,84 74,044 73,89 73,94  

MONKS1 MORM 100 100 100 100 100 
100 

  kNN   100 99,95  100 99,82 99,94  

MONKS2 MORM 75,46 75,23 74,15 73,61 72,69 
73,92 

  kNN   75,05 74,54 74,03 73,06 74,17 

MONKS3 MORM 91,2 91,2 91,44 90,97 91,2 
91,20  

  kNN   91,11 91,21 90,83  90,55  90,93 

CREDIT MORM 80,61 80,92 81,02 81,94 82,24  
81,53 

  kNN   80,73  80,75  80,92 81,43 80,96 

TIC-TAC-
TOE 

MORM 93,75 93,75 94,1 94,16  94,44  
94,11  

  kNN   93,62  93,42 93,39 93,06 93,37  

WINE MORM 96,3 96,67 96,3 96,67 96,3 
96,48  

  kNN   96,37 96,44 96,3 96,15  96,31  

BREAST MORM 94,63 94,63 94,44 94,34  94,15 
94,39 

  kNN   94,65 94,53  94,55  94,46 94,55 

 

 
On the whole, one can make the conclusion that the restoring algorithm based on 

nearest neighbours (kNN) search is more efficient than MORM.  
While testing noise of "permutation" and "scrambling” types, we learnt that al-

gorithms C4.5 and CN2 work quite well with handling "scrambling" noise when 
some attribute values are replaced by erroneous but the common value distribution 
of an informative attribute is retained. In this case classification accuracy reduced 
by 2% at growth of a noise level up to 20% on the average. This noise model  
is more characteristic for real DBs. Experiment results are illustrated in tables 3 
and 4.  
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Table 3. Classification accuracy of examples with noise for the algorithm C 4.5 

Data sets Type/Noise level 
Noise 

0% 
Noise 

5% 
Noise 
10% 

Noise 
15% 

Noise 
20% Average 

HEART Permutation 77,78 77,28 76,54 75,06 75,55 76,12 

  Scrambling  77,53 78,27 77,53 76,79 77,53 

GLASS Permutation 63,08 62,77 60,92 60,62 60 61,08 

  Scrambling  62,77 63,08 62,77 62,16 62,70 

IRIS Permutation 93,33 91,55 86,67 84,89 82,67 86,45 

  Scrambling  92 88,44 87,55 86,67 88,67 

DIABETES Permutation 67,97 67,71 67,10 66,32 65,28 66,60 

  Scrambling  67,88 66,5 67,27 66,93 67,14 

MONKS1 Permutation 81,71 80,56 78,47 78,24 79,17 79,11 

  Scrambling  81,02 78,70 79,63 78,94 79,57 

MONKS3 Permutation 94,44 91,67 90,28 88,89 87,96 89,7 

  Scrambling  94,21 94,44 94,44 93,98 94,27 

CREDIT Permutation 84,18 81,32 80,71 75,71 74,90 78,16 

  Scrambling  82,24 82,85 81,02 79,37 81,37 
TIC-TAC-
TOE Permutation 84,03 83,12 80,42 80,69 78,40 80,66 

  Scrambling  82,78 82,22 81,87 80,21 81,77 

WINE Permutation 81,48 80 78,518 77,41 73,33 77,31 

 Scrambling  80 80,37 77,41 79,63 79,35 

BREAST Permutation 94,15 91,71 89,27 87,80 83,03 87,95 

  Scrambling  93,17 90,54 91,42 89,75 91,22 
 

Table 4. Classification accuracy of examples with noise for the algorithm CN2 

Data sets Type/Noise level 
Noise 
0% 

Noise 
5% 

Noise 
10% 

Noise 
15% 

Noise 
20% Average 

HEART Permutation 77,78 77,28 76,29 75,80 74,57 75,99 

  Scrambling  77,53 77,04 77,04 77,28 77,22 

IRIS Permutation 88,89 88,00 86,22 82,66 82,22 84,78 

  Scrambling  86,67 88,00 86,22 84,44 86,33 

DIABETES Permutation 66,67 66,75 65,37 65,71 64,33 65,54 

  Scrambling  67,88 66,50 66,93 65,63 66,73 

MONKS1 Permutation 100 99,07 96,99 95,37 94,44 96,47 

  Scrambling  99,54 97,69 98,15 97,69 98,27 

MONKS3 Permutation 91,2 90,05 87,96 85,65 85,19 87,21 

  Scrambling  91,44 91,44 91,2 91,90 91,50 
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Table 4. (continued) 
 

CREDIT Permutation 84,69 82,75 80,93 79,59 76,63 79,97 

  Scrambling  83,98 82,96 82,34 81,34 82,66 
TIC-TAC-
TOE Permutation 90,62 89,09 87,85 86,74 85,35 87,26 

  Scrambling  89,93 89,794 87,98 88,40 89,03 

WINE Permutation 92,59 91,85 92,59 92,22 91,85 92,13 

  Scrambling  91,85 91,85 92,22 92,96 92,22 

BREAST Permutation 90,73 90,63 90,44 90,93 89,46 90,36 

  Scrambling  90,24 90,34 90,44 90,15 90,29 

8.3   Assessment of Classification Accuracy for "Noisy" Examples in the 
Presence of Noise in a Learning Sample 

In the given experiments, "absent value" noise is artificially introduced in a learning 
sample. By using the restoring procedures such as kNN, MORM, internal procedures 
of algorithms C4.5 and CN2 as well as deleting "noisy" examples, generalized notions 
are built. Then for decision rules being built, the examination on data of test sample 
without noise is produced. 

 

 

Fig. 1. Dependence of the classification accuracy on noise level in a learning sample for the 
algorithm С4.5 
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In fig.1 and 2 the test results are presented from which we can see that under intro-
ducing noise up to 30% in a learning sample, the quality of formed rules is not dimin-
ished and even in some cases the classification accuracy of new objects is higher than 
in absence (0%) of noise in a learning sample. By using the algorithm C 4.5 it is true 
for all samples excluding Monks 2, Glass, Heart. For the given samples, reduction of 
the level of quality of formed rules (not more than by 4%) was observed but it is 
worth to note that noise level was high enough (more than 10%).  

 

Fig. 2. Dependence of the classification accuracy on noise level in a learning sample for the 
algorithm СN2 

For the algorithm CN2 a similar situation arises practically for all data sets. This 
dependence is, undoubtedly, true for samples Iris, Breast, Heart, Diabetes.  For the 
rest cases with increasing a noise level, increasing erroneous classification level of 
test sample objects takes place. However, as well as for the C 4.5 algorithm, it appears 
at a significant quantity of "noisy" examples.  

9   Conclusions 

We considered the problem of information generalization and examined the ways of 
its solution in the presence of noise in original data. 

The noise models in DB tables, the results of which are the absence of attribute 
values or the distortion and scrambling of attribute values in a learning sample, have 
been considered. The algorithm IDTUV2 allowing to process learning samples, con-
taining examples with noisy values, have been suggested. The system of building 
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generalized concepts using the obtained theoretical results has been developed and 
programmly implemented. 

The obtained results of modeling have shown that the algorithms С4.5 и CN2 in 
the combination with the restoring algorithm allow to handle data efficiency in the 
presence of noise of a different type. 

The paper has been written with  the financial support of RFBR (No. 08-07-
00212a, 09-01-00076a). 
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Abstract. Several methods have been presented in the literature that
successfully used SIFT features for object identification, as they are rea-
sonably invariant to translation, rotation, scale, illumination and partial
occlusion. However, they have poor performance for classification tasks.
In this work, SIFT features are used to solve problems of object class
recognition in images using a two-step process. In its first step, the pro-
posed method performs clustering on the extracted features in order to
characterize the appearance of classes. Then, in the classification step, it
uses a three layer Bayesian network for object class recognition. Experi-
ments show quantitatively that clusters of SIFT features are suitable to
represent classes of objects. The main contributions of this paper are the
introduction of a Bayesian network approach in the classification step to
improve performance in an object class recognition task, and a detailed
experimentation that shows robustness to changes in illumination, scale,
rotation and partial occlusion.

Keywords: Object class recognition, local features, SIFT, clustering,
Bayesian networks.

1 Introduction

In the last few years, local features have proven to be very effective in finding
distinctive features between different views of a scene. The traditional idea of
these methods is to first identify structures or significant points in the image
and to obtain a discriminant description of these structures from its surround-
ings, which is then used for comparison using a similarity measure between these
descriptors. A keypoint detector is designed to find the same point in different im-
ages even if the point is in different locations and scales. Different methods have
been proposed in the literature. A study and comparison of these approaches is
presented in [11].

One of the most popular and widely used local approach is the SIFT (Scale
Invariant Features Transform) method, proposed by Lowe [7]. The features ex-
tracted by SIFT are largely invariant to scale, rotation, illumination changes,

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 56–66, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Object Class Recognition Using SIFT and Bayesian Networks 57

noise and small changes in viewing direction. The SIFT descriptors have shown
better results than other local descriptors [10].

The SIFT and local features have been mainly used for the identification
of particular objects within a scene. For instance, a particular book is given
to a system, which extracts its SIFT features and uses them to recognize that
particular book. However, such features cannot be used to recognize another
book or books in general on the scene.

In this work we use SIFT features to recognize object classes (e.g., books) in
order to provide robustness to changes in scale, rotation, illumination and partial
occlusion. The proposed method, in the training phase, performs clustering on
the features extracted from the training set. Each feature in each cluster is
labeled with its corresponding class in order to characterize the appearance of
object classes. In the classification step, for a new image, the SIFT features are
extracted, and for each feature the cluster from the learned model to which it
belongs is identified. Information from the identified clusters is then used to
find the most probable class. To represent this idea, we introduce the use of
a three layer Bayesian network. Three experiments were conducted to test the
performance of the proposed method. These experiments showed quantitatively
that the use of SIFT local features, clustering and Bayesian networks are suitable
to represent and recognize object classes. They also showed the invariance of the
method in the presence of changes in illumination, scale, rotation and partial
occlusion.

The main contributions of this paper are the following. Firstly, we introduce
a Bayesian network approach in the classification step to improve performance
on this stage. Secondly, we show that clustering over local features provides
robustness to changes in illumination, scale, rotation and partial occlusion. We
also show that this kind of approach outperforms a straightforward classification
method using SIFT features. These last two issues are mentioned in the literature
but there is no detailed experimental evidence to support them.

2 Related Work

Most objects class recognition methods characterize objects by their global ap-
pearance, usually of the entire image. These methods are not robust to occlusion
or variations such as rotation or scale. Moreover, these methods are only appli-
cable to rigid objects. Local features have become very popular to give solution
to the limitations of these methods in object detection and recognition.

For object class recognition, many methods use clustering as an intermediate
level of representation [1][6]. Due to the robustness of local features and the
good results of clustering in objects classification, several authors have recently
been investigating the use of clustering for object class recognition using local
features based approaches. In [2], for invariant region detection, the authors use
the Harris-Laplace [9] and the Kadir and Brady [5] detector. These regions are
described using the SIFT descriptor [7]. In their work, Dorkó and Schmid per-
form clustering of descriptors to characterize class appearance. Then, they build
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classifiers of smaller parts of objects from the clusters formed. By discarding
several of these clusters they kept only the most discriminative ones.

In [8], Mikolajczyk et al. evaluate the performance of various methods based
on local features in the object class recognition task. The invariant region de-
tectors evaluated were Harris-Laplace, SIFT, Hessian-Laplace, and MSER. The
evaluated features descriptors were SIFT, GLOH, SIFT-PCA, Moments, and
Cross-Correlation. In their paper the authors evaluate several detector-descriptor
combinations. Clustering is also performed on the descriptors to characterize the
appearance of classes. To classify a new sample, the extracted descriptors are
matched with the clusters obtained and a threshold determines the class mem-
bership.

In these works it is mentioned that their proposed methods have invariance
to occlusion, changes in illumination, rotation and scale. However, there is no
experimentation for the above, neither do they express how robust these methods
are. It is also assumed that their proposed methods outperform a straightforward
classification method using local features, but no evidence of this is given. In
this paper, we analyze these facts through a set of detailed experiments over our
proposed method.

The method proposed in this work also performs clustering on the descriptors
of the features extracted from training images. The main difference with the
previous mentioned methods is the use of a Bayesian network in the classification
stage in order to improve performance on this stage. A deeper experimentation
to measure the behavior against changes in illumination, scale, viewpoint and
partial occlusion is presented as well. It is also shown how the use of clustering
and Bayesian networks outperforms the traditional use of local features in object
class recognition tasks.

3 SIFT Features Descriptors

SIFT is one the most widely used local approaches. It finds local structures that
are present in different views of the image. It also provides a description of these
structures reasonably invariant to image variations such as translation, rotation,
scale, illumination and affine transformations. Moreover, several studies have
shown that the SIFT descriptor performs better than others.

The first stages of the SIFT algorithm find the coordinates of keypoints in a
certain scale and assign an orientation to each one. The results of these steps
guarantee invariance to image location, scale and rotation. Then, a descriptor
is computed for each keypoint. This descriptor must be highly distinctive and
partially robust to other variations such as illumination and 3D viewpoint.

To create the descriptor, Lowe proposed an array of 4 × 4 histograms of 8
bins [7]. These histograms are calculated from the values of orientation and
magnitude of the gradient in a region of 16× 16 pixels around the point so that
each histogram is formed from a subregion of 4 × 4. The descriptor vector is
a result of the concatenation of these histograms. Since there are 4 × 4 = 16
histograms of 8 bins each, the resulting vector is of size 128. This vector is
normalized in order to achieve invariance to illumination changes.
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The distinctiveness of these descriptors allows us to use a simple algorithm
to compare the collected set of feature vectors from one image to another in
order to find correspondences between feature points in each image. These cor-
respondences are adequate to identify particular objects in the image, but not to
identify object classes. With this purpose in mind, in this paper, SIFT feature
descriptors are clustered to characterize object classes and are incorporated in
a Bayesian network classifier.

4 Learning Object Classes

A model able to generalize beyond each object in the training set and that allows
us to learn a general structure of each class is desired. Moreover, learning should
be possible from a small number of samples. With this aim and in accordance
with several studies reported in the literature (mentioned in Section 2), clustering
is performed on feature descriptors extracted from the training images.

Motorcycle Cars Laptop

… … …

SIFT  Features Extraction

Clustering
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Fig. 1. SIFT local features are extracted from the training set formed by several sample
images per class. Later, features descriptors are clustered and each feature in each
cluster is labeled with its corresponding class.

Figure 1 shows a high level diagram of the class learning method used, which
is summarized as follows:

1. For each training image, SIFT local features are extracted.
2. Then, clustering is performed over the features descriptors.
3. Finally, each descriptor in each cluster is labeled with its corresponding class.
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Clusters are expected to have high accuracy i.e., each cluster is representative
of only one class. In practice, this not always occurs so there could be clusters
that are shared by several classes. Additional methods will be needed in the
classification stage to solve these ambiguities.

4.1 SIFT Features Clustering

To build clusters of descriptors, the agglomerative hierarchical clustering method
proposed by [4] is used. Unlike K-means or EM-clustering, this algorithm does
not depend on initialization. Furthermore, it has been reported superior to
K-means [3].

Given F features descriptors extracted from all the images in the training set,
the clustering is initialized with F clusters, each one containing one descriptor
only. In each iteration the two clusters with the highest cohesion are merged.

The similarity between any two clusters can be measured in several ways, the
most common are single linkage, complete linkage and average linkage. In this
paper, average linkage is used, which is defined as the average distance of every
element in a cluster to any other element in other cluster:

D(k, l) =
1

MN

M∑

m=1

N∑

n=1

d(km, ln), (1)

where M and N are the number of descriptors in the clusters k and l respectively.
Agglomerative clustering produces a hierarchy of associations of clusters until

the cut off criterion halts the process. Therefore, after each iteration, a new
cluster is obtained from the pair of clusters with the highest similarity above a
given value. This value is used as cut off criterion.

5 Recognizing Object Classes

Given a new sample image, classification is performed by first extracting the
SIFT features from the input image. Then, for each of these features, a cluster
is associated from the learned model and finally, from this instantiation of the
model, the class of the input object is determined. Figure 2 shows a layout of
the proposed method.

This idea can be represented as a three layer Bayesian network (BN). The
graphical representation of this BN is shown in Figure 3. At the first layer
we have the trained object classes represented by c1, c2, ..., cC where C is the
number of classes. At the second layer, clusters obtained in the training phase
are represented by k1, k2, ..., kK where K is the number of obtained clusters.
Finally, the third layer represents the features extracted from the new object,
and are represented by the nodes f1, f2, ..., fF where F is the number of features
extracted from the image.
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Fig. 2. Classification scheme for a new image. SIFT features are extracted from this
image and for each feature the cluster from the learned model to which it belongs is
identified. The object class is the majority class in these clusters.

c2 cCc1 c3

k1 k2 k3 kK

…

…

f1 f2 f3 fF…

Fig. 3. Graphical representation of the three layer Bayesian network used to classify a
new object

Using this model, the classification of a new image I is performed as follows:

1. SIFT features are extracted from the input image I.
2. For each feature f extracted from I, cluster kf to which it belongs is ob-

tained. The cluster with the highest membership probability of the feature
f is selected. This probability is function of the distance between the cluster
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and the feature, which is normalized by the distance between the two most
distant clusters. The same distance D defined in Equation 1 is used:

kf = argmax
i

P (f |ki)P (ki), where

P (f |ki) = 1 − D(f, ki)
maxkl D(kk, kl)

3. For each cluster kf1 , kf2 , ..., kfF selected in the previous step (note that more
than one feature could be in the same cluster), the probability of each class
given this evidence is obtained, this probability is extracted from the trained
model, propagating further the probability obtained in step 2.

4. Finally, the object class is the one whose sum of occurrence probabilities
given each cluster selected in step 2 is the highest:

c∗ = argmax
i

∑

f

P (Ci|kf )P (kf )

6 Experiments and Results

This section presents a quantitative evaluation of the proposed method and
discusses the main results obtained.

For the conducted experiments, images from the Pascal1 collection were used.
This database contains 101 different classes of objects and different numbers of
images per class, the format is JPG and the average size is 300 × 300 pixels.
Each image contains only one object centered in the image.

In order to test the performance of the proposed method, a system was trained
to recognize four classes of objects (i.e., camera, dollar bill, motorcycle, and wrist-
watch), which were randomly selected. For training, 20 images per class were used,
also randomly selected.Example images fromthe training set are shown inFigure 4.

Three experiments were conducted to evaluate the proposed method. The goal
of the first experiment is to measure the performance of the proposed method in
normal conditions (i.e., illumination, occlusion, rotation and scale problems-free
images). The second experiment compares the method proposed in this paper
with a straightforward classification method also using SIFT features. Finally,
the third experiment measures how the performance of the proposed method
behaves in the presence of partial occlusion and variation in illumination, scale
and rotation in the test set.

The performance indicators used were recall, precision, true negative rate and
accuracy. The recall rate measures the proportion of actual positives which are
correctly identified as such (recall = TP/(TP + FN)). Precision is defined as
the proportion of the true positives against all the positive results (precision =
TP/(TP + FP )). The True Negative Rate (TNR) measures the proportion of
negatives which are correctly identified (TNR = TN/(FP +TN)). The accuracy
is the proportion of true results, both true positives and true negative, in the
population (accuracy = (TP + TN)/(P + N)).
1 Available online at:

“http://pascallin.ecs.soton.ac.uk/challenges/VOC/download/101objects.tar.gz”
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Fig. 4. Example images from the training set. The training set is composed of 20 images
for each of the 4 classes. These images were randomly selected from the database.

6.1 Experiment 1

In Experiment 1, results were obtained for 100 test images per class. These im-
ages have small variations in occlusion, scale, illumination and rotation. Images
from the training set were not in the test set. Table 1 shows the results obtained
in Experiment 1.

Table 1. Performance indicators for Experiment 1

Recall (%) Precision (%) TrueNegativeRate (%) Accuracy (%)

Camera 84.0 94.6 98.3 93.5

Dollar bill 100 89.2 96.0 95.0

Motorcycle 99.0 90.5 96.7 95.0

Wristwatch 89.0 98.9 99.7 94.5

Average 90.7 93.3 97.6 94.5

As could be seen in Table 1, all the measures averages were over 90%, which
indicates the high performance of the proposed method.

6.2 Experiment 2

In order to evaluate the improvement introduced by the clustering of SIFT de-
scriptors on the representation of object classes and the use of a Bayesian network
in the classification phase, in this section we compare the method proposed in
this paper with a straightforward classification method also using SIFT features,
which is taken as baseline. This method is summarized as follows:

1. Extract SIFT features of each image from the training set.
2. For a new image I extract its SIFT features.
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3. This image is matched with each of the images of the training set. The
matching method used is the one proposed by Lowe in [7].

4. The class of the input image will be the one that receives the highest number
of correspondences with image I.

Table 2 shows a comparison between the results obtained by the baseline method
and the results obtained in Experiment 1. To perform this experiment, the same
training and test sets that in Experiments 1 were used.

Table 2. Comparison of Baseline and Experiment 1

Baseline Experiment 1

Recall (%) 68.0 90.7

Precision (%) 80.9 93.3

TrueNegativeRate (%) 89.3 97.6

Accuracy (%) 84.0 94.5

As could be noticed in Table 2, the proposed method surpassed in each of the
performance measures to the baseline method by a wide margin. This result gives
evidence of the improvement introduced by the clustering of SIFT descriptors
on the representation of object classes and the use of a Bayesian network in the
classification phase.

6.3 Experiment 3

The aim of Experiment 3 is to test the robustness of the proposed method to
changes in illumination, occlusion, scale and rotation. For Experiment 3, 10

Illumination RotationOcclusion

Fig. 5. Example images from the test set used for the Experiment 3. These images
present partial occlusion and changes in illumination, rotation and scale.
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Table 3. Performance indicators for Experiment 3

Recall (%) Precision (%) TrueNegativeRate (%) Accuracy (%)

Camera 94.8 92.0 97.5 96.5

Dollar bill 95.3 98.0 99.3 98.0

Motorcycle 92.5 94.0 97.9 96.5

Wristwatch 100 96.0 98.7 99.0

Average 95.6 95.0 98.3 97.5

Table 4. Recall and precision measures (%) for each type of image alteration in
Experiment 3

Occlusion Illumination Scale 2x Scale 0.5x Rotation

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

Camera 100 90.0 100 70.0 90.9 100 100 100 83.3 100

Dollar bill 100 100 76.9 100 100 100 100 100 100 90.0

Motorcycle 90.9 100 81.8 90.0 100 90.0 100 100 90.0 90.0

Wristwatch 100 100 100 90.0 100 100 100 100 100 90.0

images that were correctly classified in Experiment 1 were randomly selected
for each class. Variations in occlusion, scale, illumination and rotation were ar-
tificially introduced to each of these images, resulting in 40 images per class.
Example images from the test set used in this experiment are shown in Figure 5.

Table 3 shows the performance results obtained in Experiment 3. As it could
be seen, the average values of performance are maintained above 95%, showing
the robustness of the proposed method to variations in illumination, occlusion,
scale and rotation.

The recall and precision measures obtained for each kind of variation intro-
duced to the test set is shown in Table 4. It could be noticed that there were no
major falls in recall and precision rates, showing the largest variations (30 %) in
the precision on the illumination changed images in the class camera.

7 Conclusions

As a result of this work, a method for recognizing object classes using SIFT fea-
tures have been developed. The proposed method performs clustering on the de-
scriptors of the detected points to characterize the appearance of object classes.
It also introduces the use of a three layer Bayesian network in the classifica-
tion stage to improve classification rates. Three experiments were conducted to
evaluate the proposed method. They showed that SIFT features are suitable to
represent object classes, and evidenced the improvement achieved by clustering
SIFT descriptors and using a Bayesian network for classification. These exper-
iments also showed quantitatively the invariance of the method to illumination
changes, scale, rotation and occlusion. It also provided experimental evidence
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that supports that a method based on clustering of SIFT features outperforms
a straightforward object recognition method to identify object classes.

As future work, the localization of objects in the image will be investigated,
trying to learn the spatial relationships between the local features and clusters
that describe an object class.
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Abstract. We introduce Quantile Boost (QBoost) algorithms which
predict conditional quantiles of the interested response for regression and
binary classification. Quantile Boost Regression (QBR) performs gradi-
ent descent in functional space to minimize the objective function used
by quantile regression (QReg). In the classification scenario, the class
label is defined via a hidden variable, and the quantiles of the class la-
bel are estimated by fitting the corresponding quantiles of the hidden
variable. An equivalent form of the definition of quantile is introduced,
whose smoothed version is employed as the objective function, which is
maximized by gradient ascent in functional space to get the Quantile
Boost Classification (QBC) algorithm. Extensive experiments show that
QBoost performs better than the original QReg and other alternatives
for regression and classification. Furthermore, QBoost is more robust to
noisy predictors.

Keywords: Boosting, Quantile Regression, Classification.

1 Introduction

Least square regression aims to estimate the conditional expectation of the re-
sponse Y given the predictor (vector) x, i.e., E(Y |x). However, the mean value
(or the conditional expectation) is sensitive to the outliers of the data [12]. There-
fore, if the data is not homogeneously distributed, we expect the least square
regression gives us a poor prediction.

The τ -th quantile of a distribution is defined as the value such that there is
100τ% of mass on the left side of it. Compared to the mean value, quantiles are
more robust to outliers [12]. For a random variable Y , it can be proved [11] that

Qτ (Y ) = argmin
c

EY [ρτ (Y − c)],

where Qτ (Y ) is the τ -th quantile of Y , ρτ (r) is the “check function” [12] defined
by

ρτ (r) = rI(r ≥ 0) − (1 − τ)r, (1)

where I(·) = 1 if the condition is true, otherwise I(·) = 0.

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 67–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Given data {(xi, Yi), i = 1, · · · , n}, with predictor xi ∈ Rd and response Yi ∈
R, let the τ -th conditional quantile of Y given x be f(x). Similar to least square
regression, quantile regression (QReg) [12] aims at estimating the conditional
quantiles of the response given predictor vector x and can be summarized as

f∗(·) = arg min
f

1
n

n∑

i=1

ρτ (Yi − f(xi)) , (2)

which can be solved by linear programming algorithms [12] or MM algorithms
[11]. However, when the predictor x is in high dimensional space, the aforemen-
tioned optimization methods for QReg might be inefficient. High dimension prob-
lems are ubiquitous in applications, e.g., image analysis, gene sequence analysis,
to name a few. To the best of our knowledge, the problem of high dimensional
predictor is not sufficiently addressed in quantile regression literature.

Motivated by the basic idea of gradient boosting algorithms [8], we propose
to estimate the quantile regression function by minimizing the objective func-
tion in Eqn. (2) with functional gradient descent. In each step, we approximate
the negative gradient of the objective function by a base function, and grow the
model along that direction. This results Quantile Boost Regression (QBR) algo-
rithm. In the binary classification scenario, we define the class label via a hidden
variable, and the quantiles of the class label can be estimated by fitting the cor-
responding quantiles of the hidden variable. An equivalent form of the definition
of quantile is introduced, whose smoothed version is employed as the objective
function for classification. Similar to QBR, functional gradient ascent is applied
to maximize the objective function, yielding the Quantile Boost Classification
(QBC) algorithm. The obtained Quantile Boost (QBoost) algorithms are com-
putationally efficient and converge to a local optimum, more importantly, they
enable us to solve high dimensional problems efficiently.

The QBoost algorithms were tested extensively on publicly available datasets
for regression and classification. On the regression experiments, QBR performs
better than the original QReg in terms of check loss function. Moreover, the
comparative experiment on noisy data indicates that QBR is more robust to
noise. On classification problems, QBC was compared to binary QReg on a
public dataset, the result shows that QBC performs better than binary QReg
and is more robust to noisy predictors. On three high dimensional datasets from
bioinformatics, binary QReg is not applicable due to its expensive computation,
while QBC performs better than or similar to other alternatives in terms of 5
fold cross validation error rates. Furthermore, both QBC and QBR are able to
select the most informative variables, inheriting the feature selection ability of
boosting algorithm.

2 Boosting as Functional Gradient Descent

Boosting [7] is well known for its simplicity and good performance. The pow-
erful feature selection mechanism of boosting makes it suitable to work in high
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Algorithm 1. Generic Functional Gradient Descent
0: Initialize f [0](·) with

f [0](·) = arg min
c

1

n

n∑

i=1

l(Yi, c),

or set f [0](·) = 0, and set m = 0.
1: Increase m by 1. Compute the negative gradient − ∂

∂f
l(Y, f) and evaluate at

f [m−1](xi):

Ui = −∂l(Yi, f)

∂f

∣∣∣∣
f=f [m−1](xi)

, i = 1, · · · , n.

2: Fit the negative gradient vector U1, · · · , Un to x1, · · · ,xn by the base procedure
(e.g. the weak learner in AdaBoost):

{(xi, Ui), i = 1, · · · , n} −→ g[m](·).

3: Update the estimation by f [m](·) = f [m−1](·) + ηg[m](·), where η is a step-length
factor.

4: Check the stopping criterion, if not satisfied, go to step 1.

dimensional spaces. Friedman et al. [8,9] developed a general statistical frame-
work which yields a direct interpretation of boosting as a method for function
estimate, which is a “stage-wise, additive model”.

Consider the problem of function estimation

f∗(x) = argmin
f

E[l(Y, f(x))|x],

where l(·, ·) is a loss function which is typically differentiable and convex with re-
spect to the second argument. Estimating f∗(·) from the given data {(xi, Yi), i =
1, · · · , n} can be performed by minimizing the empirical loss n−1

∑n
i=1 l(Yi, f(xi))

and pursuing iterative steepest descent in functional space. This leads us to the
generic functional gradient descent algorithm [1,8] as shown in Algorithm 1.

Many boosting algorithms can be understood as functional gradient descent
with appropriate loss function. For example, if we choose l(Y, f) = exp(−(2Y −
1)f), we would recover AdaBoost [9]; if l(Y, f) = (Y − f)2/2 is used, we would
result in L2 Boost [2].

3 Quantile Boost for Regression

We consider the problem of estimating quantile regression function in the general
framework of functional gradient descent with the loss function

l(y, f) = ρτ (y − f) = (y − f)I(y − f ≥ 0) − (1 − τ)(y − f).

A direct application of Algorithm 1 yields the Quantile Boost Regression (QBR)
algorithm, which is shown as Algorithm 2.
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Algorithm 2. Quantile Boost Regression (QBR)
0: Given training data {(xi, Yi), i = 1, · · · , n} and the desired quantile value τ .
1: Initialize f [0](·) with

f [0](·) = τ -th quantile of (Y1, · · · , Yn),

or set f [0](·) = 0.
2: for m = 1 to M do
3: Compute the negative gradient − ∂

∂f
ρτ (Y − f) and evaluate at f [m−1](xi):

Ui = I(Yi − f [m−1](xi) ≥ 0)− (1− τ ).

4: Fit the negative gradient vector U1, · · · , Un to x1, · · · ,xn by the base procedure

{(xi, Ui), i = 1, · · · , n} −→ g[m](·).

5: Update the estimation by f [m](·) = f [m−1](·) +ηg[m](·), where η is a step-length
factor.

6: end for
7: Output the estimated τ -th quantile function f [M](x).

Similar to [8], let the base procedure be h(x, a), where a is a parameter vector.
Then the fourth step can be performed by an ordinary least square regression:

am = argmin
a

n∑

i=1

[Ui − h(xi,a)]2 ,

hence the function g[m](x) = h(x, am) can be regarded as an approximation of
the negative gradient by the base procedure. In step 5, the step-length factor η
can be determined by line search

η = arg min
γ

n∑

i=1

ρτ

[
Yi − f [m−1](xi) − γg[m](xi)

]
.

However, line search algorithm is often time consuming, instead, in each iter-
ation, we update the fitted function f [m−1](·) by a fixed but small step along
the negative gradient direction. To guarantee the performance of the resulting
model, we fix η at a small value as suggested by [1,8]. Similar to AdaBoost,
QBR enables us to select most informative predictors if appropriate base learner
is employed, and this will be demonstrated experimentally in Section 5.1.

There is a large volume of literature applying boosting to regression problems,
for example, in [5,7,18], among others. However, all these methods estimate mean
value of the response, not quantiles. Langford et al. [15] proposed to use classifi-
cation technique in estimating the conditional quantile. For each given quantile
value, their method trains a set of classifiers {ct} for a series of t ∈ [0, 1], and
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the testing stage calculates the average of the outputs of the classifiers. There-
fore, compared to the proposed QBR algorithm, this method is time consuming.
Furthermore, it is not clear how to perform variable selection using the method
in [15].

4 Quantile Boost for Classification

This section generalizes the QBR algorithm for classification problems.

4.1 Predicting Quantiles for Classification

Consider the following model:

Y ∗ = h(x) + ε and Y = I{Y ∗ ≥ 0},

where Y ∗ is a continuous hidden variable, h(·) is the true model for Y ∗, ε is
a disturb, and Y is the observed label of the data. Let Qτ (Y ∗|x) be the τ -th
conditional quantile of Y ∗ given x, and let g(·) be a real nondecreasing function.
Clearly

P (Y ∗ ≥ y|x) = P (g(Y ∗) ≥ g(y)|x) ,

it follows that

g (Qτ (Y ∗|x)) = Qτ (g(Y ∗)|x). (3)

Since the indicator function I(t ≥ 0) is nondecreasing w.r.t. t, by Eqn. (3), we
have

I (Qτ (Y ∗|x) ≥ 0) = Qτ (I(Y ∗ ≥ 0)|x) = Qτ (Y |x),

that is, the conditional quantile function of Y can be obtained by fitting the cor-
responding conditional quantile of Y ∗. If we model the τ -th conditional quantile
of the latent variable Y ∗ by f(x,β) with β as the parameter vector, i.e.

Qτ (Y ∗|x) = f(x,β), (4)

it follows that the conditional quantile of the binary variable Y can be
modeled as

Qτ (Y |x) = I (f(x,β) ≥ 0) . (5)

From the relation Y = I(Y ∗ ≥ 0), it follows that

P (Y = 1|x) = P (Y ∗ ≥ 0|x) , (6)

while Eqn. (4) implies that

P (Y ∗ ≥ f(x,β)|x) = 1 − τ. (7)
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Thus, if f(x,β) = 0, combining Eqn. (6) and (7) yields

P (Y = 1|x) = P (Y ∗ ≥ 0|x) = P (Y ∗ ≥ f(x,β)|x) = 1 − τ ;

if f(x,β) > 0,

P (Y = 1|x) = P (Y ∗ ≥ 0|x) > P (Y ∗ ≥ f(x,β)|x) = 1 − τ.

In summary, we have the following relation:

P
(
Y = 1

∣∣∣f(x,β) � 0
)

� 1 − τ, (8)

which is an inequality of the posterior probability of response given the predictor
vector. Hence, if we make decision with cut-off posterior probability 1 − τ , we
need to fit a quantile regression model with quantile value τ . Once the model is
fit, i.e., the parameter vector β is estimated as b, we can make prediction by

Ŷ = I(f(x,b) ≥ 0),

where Ŷ is the predicted label for the predictor vector x.

4.2 Quantile Boost for Classification

To fit the model for the τ -th quantile of Y , i.e., to estimate the parameter vector
β in Eqn. (5), similar to QBR, the estimated parameter vector b can be obtained
by solving:

b = arg min
β

{
L(β) =

n∑

i=1

ρτ [Yi − I(f(x,β) ≥ 0)]

}
.

We can show (details are omitted due to space limit) that the above minimization
problem is equivalent to the following maximization problem [14]:

b = argmax
β

{
S(β) =

n∑

i=1

[Yi − (1 − τ)]I(f(x,β) ≥ 0)

}
. (9)

However, the function S(β) is not differentiable. To apply gradient based opti-
mization methods, we replace I(f(x,β) ≥ 0) by its smoothed version, solving

b = arg max
β

{
S(β, h) =

n∑

i=1

[Yi − (1 − τ)]K
(
f(x,β)
h

)}
, (10)

where h is a small positive value, and K(·) is smoothed version of the indicator
function I(t ≥ 0) with the following properties:

K(t) > 0, ∀t ∈ R, lim
t→∞

K(t) = 1, lim
t→−∞

K(t) = 0.
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In this paper, we take K(·) as the standard normal cumulative distribution
function

Φ(z) =
∫ z

−∞
ϕ(t)dt with ϕ(z) =

1√
2π
e−

z2
2 . (11)

Let each term in the objective function (10) be

l(Y, f) = [Y − (1 − τ)]K (f/h) .

Following the general steps of functional gradient ascent, we obtain the Quantile
Boost Classification (QBC) algorithm as sketched in Algorithm 3. Similar to
QBR, the parameter η in QBC can be fixed at a small value instead of performing
a line search.

Algorithm 3. Quantile Boost Classification (QBC)
0: Given training data {(xi, Yi), i = 1, · · · , n} with Yi ∈ {0, 1}, and the desired quan-

tile value τ .
1: Initialize f [0](·) with f [0](·) = 0.
2: for m = 1 to M do
3: Compute the gradient ∂

∂f
l(Y, f) and evaluate at f [m−1](xi):

Ui =
Yi − (1− τ )

h
K′

(
f [m−1](xi)

h

)

4: Fit the gradient vector U1, · · · , Un to x1, · · · ,xn by the base procedure:

{(xi, Ui), i = 1, · · · , n} −→ g[m](·).

5: Update the estimation by f [m](·) = f [m−1](·) +ηg[m](·), where η is a step-length
factor.

6: end for
7: Output the obtained classifier I(f [M](x) ≥ 0).

4.3 Related Works

Kordas et al. [13,14] proposed binary quantile regression to predict quantiles for
classification tasks. However, in binary QReg, simulated annealing algorithm is
employed to perform the optimization task. Although a local optimum is guar-
anteed, simulated annealing is well known for its expensive computation. While
QBC is based on gradient ascent, which yields a local maximum and converges
fast. Due to the expensive computation of simulated annealing, binary QReg
can only work in very low dimensional spaces. However, in applications, we
frequently face hundreds of, even thousands of predictors, and it is often de-
sired to find out the informative predictors. Clearly, in this case, binary QReg



74 S. Zheng

is not applicable. On the contrary, QBC is designed to work in high dimensional
spaces, and it enables us to select the most informative variables by using certain
types of base learner.

Hall et al. [10] proposed a median based classifier which works in high dimen-
sional space. For a given predictor vector, Hall et al. compares the L1 distances
from the new predictor vector to the component-wise medians of the positive and
negative examples in the training set, and assigns class label as the class with
the smaller L1 distance. Although computationally efficient, this simple nearest
neighbor like algorithm cannot perform variable selection as the proposed QBC
algorithm. The method proposed in [15] can also be applied to classification
tasks, however, it is computationally more expensive than QBC, and it is not
clear how to select most informative predictors as well.

5 Experiments

This section tests the proposed QBoost algorithms on various regression and
classification problems. In the generic gradient descent/ascent algorithm, the
step size factor is of minor importance as long as it is small [1]. Thus, in all
the following experiments, the step size parameter of QBR and QBC is fixed at
η = 0.1.

5.1 Results of QBR

QBR was tested on five datasets from UCI machine learning repository: White
Wine Quality (size: 4898, dimension: 11), Red Wine Quality (size: 1599, di-
mension: 11), Forest Fire (size: 517, dimension: 12), Concrete Slump (size: 103,
dimension: 10), and Concrete Compressive (size: 1030, dimension: 9). The pre-
dictor variables and the response variables were normalized to be in [−1, 1]. The
original QReg was also tested on these datasets. To make the comparison be-
tween QBR and QReg fair, we used simple linear regression as base procedure
in QBR.

Table 1. The comparison between QReg and QBR on the 5 datasets from UCI machine
learning repository. The listed are the mean values of the check losses of the 500 runs,
and the standard deviations are listed in parentheses.

Dataset τ = 0.25 τ = 0.50 τ = 0.75
QReg QBR QReg QBR QReg QBR

Red Wine 19.71(1.11) 19.41(1.11) 24.30(1.06) 24.07(1.09) 19.40(0.81) 19.16(0.79)

White Wine 62.40(1.84) 62.23(1.91) 78.69(1.78) 78.60(1.92) 62.03(1.50) 61.78(1.64)

Forest Fire 4.97(0.54) 4.93(0.54) 10.04(0.82) 9.62(0.78) 9.56(0.92) 9.14(0.73)

concrete slump 0.74(0.14) 0.71(0.12) 1.00(0.17) 0.92(0.16) 0.95(0.19) 0.84(0.17)

concrete comp. 15.02(0.77) 14.91(0.79) 18.21(1.08) 18.17(1.00) 13.63(0.83) 13.52(0.77)
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To numerically evaluate the performances, in lack of the true quantile func-
tions for these datasets, we adopt the sum of the “check loss” on the testing set
as the error measure, which is defined as

L(τ) =
Ntest∑

i=1

ρτ (Yi − f̂τ (xi)),

where Ntest is the size of the testing set, and f̂τ (xi) is the predicted τ -th quantile
at xi. By the definition of quantile, the smaller the value of L(τ) is, the closer
the estimated quantile to the true value of quantile.

For each dataset, we randomly select 80% of the examples as training set, and
the remaining 20% as testing set. QBR and QReg are separately trained and
evaluated on these subsets. The partition-training-testing process is repeated
500 times. The means and the standard deviations of the 500 check losses are
calculated, as shown in Table 1. It is readily observed that in all experiments,
QBR uniformly achieves smaller average check loss compared to QReg, which
indicates that QBR estimates more accurately.

In our experiments, both QReg and QBR obtain a linear function of the
predictors. Since the predictors and response are normalized to be in [−1, 1], it
makes sense if we delete the variables with too small coefficients, thus performing
variable selection. 20 noisy predictors are added to the Concrete Slump data,
each is generated uniformly at random from [−1, 1]. These noisy predictors are
considered as noninformative, and the original predictors are informative to the
problem. Then we repeat the above experiment. In the obtained models, we
calculate the sum of the absolute values of all the coefficients. For any predictor,
if its coefficient absolute value is less than 1% of that sum, it is trimmed out.
We calculate the average numbers of the selected noisy predictors of QReg and
QBR over the 500 runs, the means and standard deviations of the check losses on
testing set are also calculated. Table 2 summarizes the results, from which it is
readily observed that for each quantile value, compared to QReg, QBR selects far
fewer noisy predictors while achieves smaller mean error. This experiment shows
that QBR is more robust to noisy predictors and keeps the variable selection
ability of boosting algorithm.

Table 2. Comparison between QReg and QBR on variable selection: see text for details

Method τ = 0.25 τ = 0.50 τ = 0.75
# of N. V. Error # of N. V. Error # of N. V. Error

QReg 8.13 0.99 (0.16) 6.97 1.38 (0.21) 9.69 1.28 (0.24)

QBR 1.04 0.97 (0.19) 0.63 1.14 (0.21) 0.98 1.27 (0.30)

The procedure of QBR enables us to select other forms of base learner, for
example, regression trees [8,9], and this provides us flexibility in certain appli-
cations. While it is not clear how to make use of other forms of regression in the
framework of the original QReg.



76 S. Zheng

5.2 Results of QBC

In our experiments for classification, we made decision at the cut-off posterior
probability 0.5, therefore we fit QBC with τ = 0.5. The standard normal cu-
mulative distribution function in Eqn. (11) was used as approximation to the
indicator function with h = 0.1. From our experience, QBC is not sensitive to
the value of h as long as h < 0.5. For the comparative purpose, since QBC is a
boosting based procedure, we mainly considered several popular boosting based
classifiers which include L2-Boost [2], AdaBoost [7], and LogitBoost [9]. We also
tested the Median Classifier [10] and compared the performance.

Results on Credit Score Data. We compare the result of QBC to that of
binary QReg [13] on the German bank credit score dataset which is available from
UCI machine learning repository. The dataset is of size 1000 with 300 positive
examples, each example has 20 predictors normalized to be in [−1, 1]. In [13],
only 8 predictors are preselected to fit the binary QReg due to the expensive
simulated annealing algorithm it employees in the optimization procedure.

To run QBC, we randomly split the whole dataset without variable pre-
selection into training set of size 800, and evaluate the learned QBC classifier
on the other 200 examples. The QBC training algorithm was ran for 100 itera-
tions using simple linear regression with only one predictor as base learner, by
this way, it is fair to compare the performance of QBC to that of binary QReg.
The splitting-training-testing process was repeated 500 times, and we report the
mean training and testing error rates in Table 3, which also lists the performance
of binary QReg from [13]. We see that QBC performs better than binary QReg
on both the training and testing set. This is due to the efficient computation
of QBC which allows the algorithm to explore more predictors and thus selects
more informative ones.

In order to test the variable selection ability of QBC, 20 noisy predictors
generated from uniform distribution on [−1, 1] are added to the original dataset,

Table 3. Comparison between binary QReg and QBC on credit dataset. Clean means
the original dataset, and Noisy means 20 noisy predictors are added to the dataset.

Dataset QBC Binary QReg
Training Error Testing Error Training Error Testing Error

Clean 19.84% 24.47% 21.9% 26.5%

Noisy 22.53% 25.64% NA NA

Table 4. The testing errors of L2 Boost, AdaBoost, LogitBoost, QBC, and Median
Classifier on the credit dataset

Data L2 Boost AdaBoost LogitBoost QBC Median Classifier

Clean 28.68% 29.99% 28.81% 28.50% 35.04%

Noisy 31.92% 30.05% 32.68% 28.55% 38.94%
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Table 5. The 5-fold cross validation mean error rates of the considered algorithms on
the three bioinformatics datasets. All the algorithms were ran for 100 iterations. The
best mean error rates for a dataset are displayed in bold.

Dataset Size dim L2-Boost AdaBoost LogitBoost QBC Median Classifier

Estrogen 49 7,129 21.11% 17.11% 15.11% 13.33% 13.38%

Colon 62 2,000 24.62% 21.41% 21.41% 21.67% 14.58%

Nodal 49 7,129 31.78% 24.89% 20.44% 20.00% 42.84%

and the above procedure was repeated 500 times. Table 3 also lists the average
training and testing errors of QBC with only 1 noisy variable selected in average.
Our result demonstrates that QBC performs only slightly worse on noisy data,
which indicates that QBC is robust to noise. Due to the expensive computation
of binary QReg, its performance on noisy data is not provided.

Compared to binary QReg, QBC enjoys the flexibility to choose other forms
of weak learner. We also compared QBC to the alternatives mentioned at the
beginning of Section 5.2 on the credit dataset with and without noisy predictors.
All the boosting based algorithms used stump as base procedure for fair compar-
ison. All algorithms were ran for 500 times with randomly selected 800 training
examples and 200 testing examples, and the average testing error rates are listed
in Table 4, from which we can see that compared to the alternative methods,
QBC achieves the best performance on both clean and noisy data. Again, we
observe that QBC deteriorates only slightly on the noisy data, which verifies its
robustness to noisy predictors and is able to select informative variables.

Results on Bioinformatics Data. We compare QBC to the alternative meth-
ods on 3 publicly available datasets in bioinformatics [3]: Estrogen, Nodal, and
Colon. All of the datasets are of very high dimension (see Table 5), and this
makes binary QReg [13,14] not affordable. All the boosting-based algorithms
used decision stump as base learner for fair comparison.

We have conducted 5-fold cross validation (5-CV), and Table 5 lists the av-
erage testing error rates for the 5 runs of each algorithm on every dataset. We
observe that QBC yields the best performance on 2 out of the 3 datasets. On the
Colon dataset, QBC performs better than L2 Boost, similar to LogitBoost and
AdaBoost, and worse than Median Classifier. It can also be observed that the
Median Classifier [10] is not stable – sometimes the performance is very good,
sometimes the performance is very poor.

6 Conclusion and Future Works

The original quantile regression (QReg) is inefficient when the predictor is in high
dimensional space. This paper applies functional gradient descent to fit QReg,
resulting Quantile Boost Regression (QBR). In the case of binary classification,
the class label is defined via a hidden variable, and predicting the quantiles of
the binary response is reduced to predicting the corresponding quantiles of the
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hidden variable. An equivalent form of the definition of quantile is introduced,
whose smoothed version is employed as the objective function. Functional gra-
dient ascent is used to maximize the objective function for fitting the classifier,
yielding Quantile Boost Classification (QBC) algorithm. In QBR (QBC), the
gradient of the objective function is approximated by a base procedure and the
model grows along the negative gradient (gradient) direction. The proposed algo-
rithms yield a local optimum, and converge fast, more importantly, they enable
us to solve problems in high dimensional spaces.

Extensive experiments were conducted for regression and binary classification.
Detailed analysis of the results show that QBR/QBC performs better than the
original/binary QReg. Moreover, QBR and QBC are more robust to noisy pre-
dictors and able to select informative variables. On high dimensional datasets in
bioinformatics, binary QReg is not applicable due to its expensive computation,
while QBC performs better when compared to other alternatives.

QBR belongs to stage-wise additive model, which has a close connection to
L1 constrained models [6]. Recently, L1 quantile regression models [16,17] were
proposed which imposes L1 constraint on the coefficient vector in quantile re-
gression. Therefore, it is natural to investigate the relation between QBR and L1

QReg in the aspects of performance and variable selection ability. The current
version of QBC is for two-class problems, and we plan to develop the multi-class
version of QBC by reducing it to a series of two-class tasks, for example, by
one-vs-all [7] or Error-Correcting Output Codes [4].
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Abstract. In this paper we present a variation of the Cocke-Younger-Kasami 
algorithm (CYK algorithm for short) for the analysis of fuzzy free context lan-
guages applied to DNA strings. We propose a variation of the original CYK  
algorithm where we prove that the order of the new CYK algorithm is O(n).  
We prove that the new algorithm only use 2n-1 memory localities. We use  
a variation of the CYK algorithm, where the free context language can be fuzzy. 
The fuzzy context-free grammar (FCFG) is obtained from DNA and RNA  
sequences.  

Keywords: Pattern recognition, Cocke-Younger-Kasami algorithm, fuzzy 
logic, ADN, RNA. 

1   Introduction 

Context-free grammars are of great importance in formalizing the notion of parsing, 
simplifying translation of programming languages, and other string-processing appli-
cations [5]. Context-free grammars have been used to generate sequences of charac-
ters in a string. Recognition using grammars is formally very similar to the general 
approaches used throughout pattern recognition. Is possible, to detect if a string be-
longs to a specific CFG by using the CYK algorithm [5] and [6]. The CYK algorithm 
is a bottom-up parsing method. This method starts with a test sequence and seeks to 
simplify it, so as to represent it with a root (starting) symbol. The CYK algorithm is a 
method used to fills a parse table (a matrix) from the bottom-up. The grammar must 
be expressed in Chomsky normal form. After the CYK algorithm has been applied the 
table must contain the source symbol. The existence of the source symbol in the table 
indicates that the string belongs to the language of the free-grammar, and the string is 
accepted, on the contrary, the string is rejected and does not belong to the grammar. It 
was a natural step to use the theory of grammar to represents different kinds of bio-
logical strings, from DNA, RNA to proteins. D. Serls shows different methodologies 
used by the Linguistic Sciences in order to analyze strings by using crisp grammars 
[7]. Specifically, by using context free grammars is possible to generate languages 
that describe DNA strings. The CFGs have been used to compare DNA substrings [8] 
and  [9], describe folded RNA secondary structures [10] and [11], specification of  
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gene regulatory elements [12], among other applications. The same DNA sequence 
from two different living organisms of the same species could be different, this situa-
tion is possible because there are some evolutive differences that are produced by 
mutations that occurred over the course of time, but essential similarities are main-
tained and preserved. From the perspective of the theory of fuzzy logic these DNA 
sequences are elements that could belong to a CFG but with different grade of mem-
bership. The theory of fuzzy logic gives the possibility to handle imprecision and 
supported with the theory of grammars, could be applied to recognize molecular biol-
ogy sequences based on the use of the FCYK algorithm. 

The algorithm finds the membership of a string. When the string belongs to a con-
text-free grammar (CFG), the string has a membership of 1, but when the string does 
not belong to the context-free language (CFL) the string has a membership of 0. There 
is a possibility to handle not only memberships that have a value of 1 or 0, but also to 
handle memberships that are among 0 and 1. E. Lee and L. Zadeh proposed the use of 
fuzzy logic in order to handle CFG that have the fuzzy attribute [1]. In that sense, is 
possible to determine a fuzzy context-free language (FCFL) that can give to a string a 
membership near of 1, the string is a little different from the fuzzy grammar, or a 
membership near 0, the string is very different from the fuzzy grammar. P. Asveld 
proposed to use the CKY algorithm to recognize FCFL [2]. We proposed to use the 
fuzzy CKY (FCKY) algorithm to recognize DNA sequences (strings of nucleotides) 
[3]. This paper is an extension of [3]. The number of nucleotides of a DNA could be 
some units, hundreds, thousands, or even millions, depending on the kind of DNA 
sequence. The use the CKY algorithm could be impractical when the number of nu-
cleotides is hundred or thousands of bases, because the order of the algorithm is 
O(n3), where n is the number of symbols of the string [4], in the context of this paper 
the symbols are DNA nucleotides. Also, the memory space of the CYK algorithm is 
n2. In section III we prove that for the analysis of DNA sequences with the FCKY 
algorithm the order is O(n3/6), starting from this point of view, we propose to modify 
the FCKY algorithm in order to analyze DNA sequences, the order of the modified 
FCKY is reduced to O(n), and the memory space is 2n-1, thus the modified algorithm 
can do fast DNA sequences analysis. Now we are going to talk about some antece-
dents that support the paper. 

In the next sections we give the basic theory of CFG, FCFG, the CYK algorithm 
and the FCYK algorithm. Next we prove that the order of FCYK applied to DNA 
sequences is O(n3/6). We propose a modification to the FCYK algorithm where the 
order is O(n2) and the number of memory locations is n2. Also, we propose a modifi-
cation to the FCYK algorithm where the order is O(n2) and the number of memory 
locations is 2n-1. An example applied to DNA sequences is presented. Finally, the 
conclusions are presented. 

2   Fuzzy Context Free Grammars 

2.1   Type of Grammars 

In general a (crisp) grammar is defined by an alphabet, a set of variables, the set  
of production rules, and the starting symbol (4-tuple): G = (N, Σ, P, S), where N is  
the finite set whose elements are called nonterminal symbols, Σ is a finite set whose 
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elements are called terminal symbols (where N ∩ Σ = 0), P is the finite subset of [(N 
∪ Σ)*\Σ*] × (N ∪ Σ)*, called the set of productions, and S ∈ N is called the starting 
symbol. Grammars are classified according to the form of the productions rules used 
(Chomsky hierarchy) [13]. The language generated by the grammar denoted by L(G), 
is the set of all the possible strings (maybe an infinite set) that can be generated by G. 
There are four principal type of grammars, and are classified according to the form of 
the productions rules. A production rule is of the form α → β, where α and β are 
string of characters, where the former are nonterminals symbols, and the latter are 
terminal symbols [6]. 

A language generated by a grammar of type i is called a type i. It can be shown that 
the class of grammars of type i includes all grammars of type i + 1; thus there is a 
strict hierarchy in grammars. 

Once that the CFG has been defined is possible to define the grade of membership 
L(G) of a DNA string x. In this case a grammar G generated from a DNA sequence 
has the next elements: N is a set of nonterminal symbols, some of these symbols are 
A, C, G and T, where these symbols represents the nucleotides adenine, cytosine, 
guanine and thymine. Σ is the set of terminal symbols, these symbols are a, c, g, t. P 
are the productions, and S is the starting symbol. In order to prove if a string x be-
longs (has a grade of membership of 1) to a grammar G, the CYK algorithm has been 
proposed. In the case that the string x don’t belong to the grammar G, the string x has 
a grade of membership equal to 0. We must consider that the kind of grammar that the 
CYK algorithm uses is of type 2 (context-free) in Chomsky normal form (CNM). In 
the next section we define the CNM. 

2.2   Chomsky Normal Form 

Theorem 1. (CNF) Any free context language L(G), without the empty word λ, can 
be generated from the grammar G, where the production rules have the next charac-
teristics: A → BC or A → a. Where A, B, C are variables, and a is a terminal symbol 
(a ∈ Σ). This theorem is proved in [5] and [13]. 

Example 1. Consider a DNA sequence x = “agctacg”. We need to generate a gram-
mar G1 in CNF. Is necessary to define the 4 the terminal symbols: a, c, g and t. Also, 
we need to define the non terminal symbols: A, C, G and T. Also we add the initial 
symbol S. Formally, the grammar is as follows: G1 = ({S, A, C, G, T, W1, W2, W3, W4, 
W5, a, c, g, t}, {a, c, g, t}, P1, S), where P1 are the next production rules: 

 
S → AW1 
W1 → GW2 
W2 → CW3 
W3 → TW4 
W4 → AW5 
W5 → CG 
A → a 
C → c 
G → g 
T → t 



 A Fast Fuzzy Cocke-Younger-Kasami Algorithm 83 

 

Now we prove that starting from S and using the productions rules of G1 we obtain 
L(G1) = “agctacg”: 

2.3   Fuzzy Context-Free Grammars 

Informally, a fuzzy grammar may be viewed as a set of rules for generating the ele-
ments of a fuzzy subset [13]. A fuzzy grammar is a 4-tuple G = (N, Σ, P, S), where as 
same as a crisp CFG N is a set of nonterminal symbols, Σ is the set of terminal sym-
bols ( N ∩ Σ = 0), P is the set of fuzzy productions, and S is the starting symbol (S ∈ 
N). The productions here are of the form I → x/m, formally μ (I → x) = m, where m > 
0 is the grade of membership of x given I , I ∈ N, x ∈ (N ∪Σ)* (other that the empty 
word λ), and S → λ. Essentially, the elements of N are labels for certain fuzzy subsets 
of Σ* called fuzzy syntactic categories, with S being the label for the syntactic cate-
gory “sentence”. The elements of P define conditioned fuzzy subsets of (N ∪Σ)*. The 
expression I → x/m represents a rewrite rule, where x is directly derivable from I with 
a grade of membership m. If x1, …, x2 are strings in (N ∪Σ)* and: 

x1 → x2/m2, xc-1 → xc/mc, m2, …, mc > 0, 

then x1 is said to derive xc in grammar G, or equivalently, xm is derivable for x1 in 
grammar G. The expression: 

x1 → x2/m2 → … → xc-1/mc-1 → xc/mc 

is referred to as a derivation chain from x1 to xc. 
A fuzzy grammar G generates a fuzzy language L(G) in the following manner. A 

string of terminals x is said to be in L(G) if and only if x is derivable from S. The 
grade of membership of x in L(G) is given by: 

μG(x) = ∨ (μ (S, x1) ∧ μ (x1, x2) ∧ … ∧ μ(xc, x))  (1)

where the union operator ∨ (supremum) is taken over all derivation chains from S to x. 
Thus (1) defines L(G) as a fuzzy subset of (N ∪Σ)*. Equation (1) may be expressed as 
follows: a) μG (x) is the grade of membership of x in the language generated by 
grammar G; b) μG (x) is the strongest derivation chain from S to x. The operator ∨ in 
reality represents a T-conorm operator [14].  

3   Fuzzy Cocke-Younger-Kasami Algorithm 

3.1   Cocke-Younger-Kasami Algorithm 

In this section we discuss the functional version of the CYK algorithm for recognizing 
(crisp, ordinary, non-fuzzy) CFL [2]. Usually, the CKY algorithm is presented in 
terms of nested “for-loops” filling an upper-triangular matrix (table). Given a CFG G 
= (N, Σ, P, S) in CNF (without the empty word λ) and a string a1a2 … an (n ≥ 1) with 
ak ∈ ∑ (1 ≤ k ≤ n). Fill the strictly upper-triangular (n + 1) × (n + 1) recognition ma-
trix T by the algorithm, where each element ti,j is a subset of V if V = N - ∑ and is 
initially empty. 
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Algorithm 1. CKY 
 
1. for i ← 0 to n-1 
2. ti, i+1 ← {A | ai+1 ∈ P(a)}; 
3. for d ← 2 to n 
4. for i ← 0 to n-d 
5.  j ← d + i; 
6. ti,j ← ti, j ∪ {A | ∃k (i+1 ≤ k ≤ j-1); ∃B(B ∈ ti, k);  ∃C(C ∈ tk, j); BC ∈ P(A)}; 
7. return (t0, n) 
 
Then the string a1a2 … an ∈L(G) if and only if S ∈ t0,n. 

Example 2. Consider the sequence x = “aggt”, over Σ, and the GFC G2 = ({S, A, C, 
G, T, W1, W2, a, c, g, t}, { a, c, g, t }, P2, S), with P2 in CNF: 

 

P2(S) = {S, AW1} 
P2(W1) ={W1, GW2, TW2} 
P2(W2) = {W2, GT, AC} 
P2(A) = {A, a} 
P2(C) = {C, c} 
P2(G) = {G, g} 
P2(T) = {T, t} 

 

We can observe at table I the initial step of the algorithm (steps 1-2 from the algo-
rithm) that t0, 1 = A, t1, 2 = G, t2, 3 = G y t3, 4 = T. Then applying the second step of the 
algorithm (steps 3-6) the string x = “aggt” is recognized due that S ∈ t0,4.  

Table 1. String x = “AGGT” recognized with algorithm 1 

i/j 1 2 3 4 
0 A ∅ ∅ S 
1  G ∅ W1 
2   G W2 
3    T/1 

 
Example 3. Now we going to consider that the string x is “acgt”. Then  
t0, 1 = A, t1, 2 = C, t2, 3 = G y  t3, 4 = T. Table II shows that x  = acgt ∉ L(G2), because 
S ∉ t0, 4. 

Table 2. String x = “ACGT”  not recognized 

i/j 1 2 3 4 
0 A ∅ ∅ ∅ 
1  C ∅ ∅ 
2   G W2 
3    T 
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Once we have the CYK algorithm in a functional form (algorithm 1), it is easy to 
obtain a robust modification for recognizing FCFL. 

3.2   The CYK Algorithm for FCFL 

Given a CFG G = (N, Σ, P, S) in CNF (without the empty word λ) and a string a1a2 … 
an (n ≥ 1) with ak ∈ ∑ (1 ≤ k ≤ n). Fill the strictly upper-triangular (n + 1)  
× (n + 1) recognition matrix T by the algorithm, where each element ti,j is a subset  
of V if V = N - ∑ and is initially empty. 

 
Algorithm 2. FCKY 
 

1. for i ← 0 to n-1 
2.  ti, i+1 ← {(A, m) | A ∈ N, μ(ai+1; P(a)) = m > 0}; 
3. for d ← 2 to n 
4.  for i ← 0 to n-d 
5.   j ← d + i; 
6. ti,j ← ti, j ∪ {(A, m) | A∈ N, m = ∨ { r ∗ p ∗ q | (B, p) ∈ ti, k; (C, q) ∈ tk, j; μ(BC, 

P(A)) = r > 0; i+1 ≤ k ≤ j-1}}; 
7. return (t0, n) 
 
Then for each m > 0 (m ∈ L), μ( a1a2…an; L(G)) = m, if and only if (S, m) ∈ t0, n. 

From the algorithm 2, m is the grade of membership of a rule P. The operation ∗ 
represents a T-norm, and could be substituted by any of the four T-norms. In our case 
we use the Tmin, and Tap T-norm operators. 

Example 3. Consider a fuzzy context free grammar G3 = (V1, Σ1, P3, S) with Σ1 = (a, 
c, g, t), V1 = Σ1 ∪ {S, A, C, G, T, W1, W2}, where P3 has the next set of rules: 

 

S → SS | AW1 | CW1 
W1 → GW2 | TW2 | AW2 
W2 → AT | CG 
A → a 
C → c 
G → g 
T → t 
 

Where μ(CW1, P1(S)) = 0.9, μ(TW2, P1(W1)) = 0.8, μ(AW2, P1(W1)) = 0.1, μ(CG, 
P1(W2)) = 0. and the remainder rules have a μ value equal to 1. If we have the string x 
= “ctat” over Σ1. We see that the string “ctat” has two grammatical errors (“tiny er-
rors”). In order to star the algorithm 1 we initialize with t0, 1 = {(C/1)}, t1, 2 = {(T/1)}, 
t2, 3 = {(A/1)} y t3, 4 = {(T/1)}, and using the iterative step we obtain the Table III with 
the next results: Due to (S/0.72) ∈ t0, 4 the string have a membership value of μ(ctat; 
L(G3)) = 0.72. 
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Table 3. String x = “CTAT” recognized with algorithm 2 
 

i/j 1 2 3 4 
0 C/1 ∅ ∅ S/0.72 
1  T/1 ∅ W1/0.8 
2   A/1 W2/1 
3    T/1 

 
Now that we have used the FCYK algorithm to give the grade of membership to a 

DNA sequence, is possible to calculate the number of iterations that are used by this 
kind of strings. 

3.3   Computational Order of the FCYK Algorithm Applied to DNA Sequences 

M. A. Harrison has calculated the order of the original CYK algorithm [14], and in 
general is equal to O(n3). Even though, theorem shows that the algorithm 2 at the 
moment to use DNA sequences the computational order is reduced.  

Proposition. For a CFG that is obtained from a DNA sequence x = x = a1a2…an in 
CNF, the productions rules obtained have the form: 

 

S → AiWk 
Wk → AiWl 
Wl → AiAj 
Ai → ai 
Aj → aj 

 
where Ai, Aj, Wk, Wl are nonterminal symbols, S is the starting symbol, ai, aj are termi-
nal symbols, and n is the number of nucleotides of the sequence. Then the order of the 
CYK algorithm is equal to: 
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Therefore eq. (3) is equal to: 
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(4)

Q.E.D. 

Corollary 1. For all n ∈ N, ( ) 32 5
6

nn
n <+ , with n  ≥ 1. 

Proof. We have that: 

( ) 32 65 nnn <+  (5)

Where: 

065 33 <−+ nnn  (6)

Making some algebra: 

055 3 <+− nn  (7)

Because n ∈ N, where n ≥ 1, therefore: 

( ) 015lim 2 <+−
∞→

nn
n

 (8)

Where 5n: 

01lim 2 <+−
∞→

n
n

 (9)

Then we have that -∞ < 0. 
Q.E.D. 

From the corollary 1 we have that the number of instructions realized by the CYK 
algorithm in CNF using DNA sequences is less than n3. 

From these results we observed the possibility to modify the FCKY algorithm in 
order to reduce the order of this algorithm. In the next section we show the results. 

4   Modified FCYK Algorithm 

4.1   The First Version of the Fast FCYK Algorithm 

We observed that the elements of the matrix T at the moment that the CYK algorithm 
is applied to recognize DNA sequences are the same. That means that first the diago-
nal of the upper-diagonal matrix is filled, then only the last column of the matrix is 
filled until the element t0,n is reached. The fig. 1 shows the pattern that is followed 
from the CYK nor FCYK algorithm don’t matter the number n of elements of the 
sequence. The first arrows represent the set of all the elements ti,i+1 of the CYK algo-
rithm. The second arrow represents all the elements ti,j of the algorithm. 
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Fig. 1. Upper-diagonal matrix T of the CYK algorithm 

The first algorithm modifies only the second group of the “for” instructions. One 
instruction “for” can be eliminated. Now the first version of the fast CKY algorithm 
is presented. 

Given a CFG G = (N, Σ, P, S) in CNF (without the empty word λ) and a string a1a2 

… an (n ≥ 1) with ak ∈ ∑ (1 ≤ k ≤ n). Fill the strictly upper-triangular (n + 1)  
× (n + 1) recognition matrix T by the algorithm, where each element ti,j is a subset of 
V if V = N - ∑ and is initially empty. 
 
Algorithm 3. Fast FCYK algorithm (version 1) 
 

1. for i ← 0 to n-1 
2. ti, i+1 ← {(A, m) | A ∈ N, μ(ai+1; P(a)) = m > 0}; 
3. for l ← n-2 to 0 
4.  tl,n ← tl, n ∪ {(A, m) | A∈ N, m = ∨ { r ∗ p ∗ q | (B, p) ∈ tl,l+1; (C, q) ∈ tl+1,n; 

μ(BC, P(A)) = r > 0}}; 
5. return (t0, n) 
 

Then for each m > 0 (m ∈ L), μ( a1a2…an; L(G)) = m, if and only if (S, m) ∈ t0, n. 
As we can see, the first instruction for do n iterations, and the second instruction for 
do n-1 iterations, finally the number of iterations is 2n-1. About the space in memory 
is necessary to use n2 memory localities. From fig. 1 we observe that is possible to use 
only a vector of memory localities and not a matrix. Now we present the second 
modification of the FCYK algorithm. 

4.2   The Second Version of the Fast FCYK Algorithm 

From the fig.1 we can obtain a vector, fig. 2 shows that the vector is divided in two 
sections, in the first section are only the group of elements from t0 to tn-1 (first instruc-
tion for) in the second group are the elements from tn to t2n-2 (second instruction for). 
The symbol mk (1 ≤ k ≤ 2n-1) represents the membership grade of each element. With 
that idea in mind is possible to reduce the number of memory localities to 2n-1 as the 
fig. 2 indicates. 
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Fig. 2. Vector t obtained from the second version of the fast FCYK algorithm 

This is the second version of the fast FCYK algorithm. 
Given a CFG G = (N, Σ, P, S) in CNF (without the empty word λ) and a string a1a2 

… an (n ≥ 1) with ak ∈ ∑ (1 ≤ k ≤ n). Fill the vector t (2n – 1) by the algorithm, where 
each element tl is a subset of V if V = N - ∑ and is initially empty. 
 

Algorithm 4. Fast FCYK algorithm (version 2) 
 

1. for i ← 0 to n-1 
2.  ti ← {(A, m) | A ∈ N, μ(ai+1; P(a)) = m > 0}; 
3. r ← 2 
4. for l ← (n - 2) to 0 
5.  q ← n– r 
6.  k ← l – 1 
7.  r ← r + 1 
7.  tl ← {(A, m) | A∈ N, m = ∨ { p ∗ q ∗ k | (B, q) ∈ tq; 
   (C, k) ∈ tk; μ(BC, P(A)) = p > 0}}; 
8. return (t2n-2) 

 

Then for each m > 0 (where m ∈ L), μ( a1a2…an; L(G)) = m, iff (S, m) ∈ t2 n-1. We 
can notice that instruction 7 there is not necessity for do the operation of union (∪) 
with other elements of t. That means that for each vector locality there is only one 
element t. 

Example 4. Consider the grammar G6 = (V6, Σ6, P6, S), V6 = {S, A, C, G, T, W1, W2, 
…, W5} y Σ6 = {a, c, g, t} that represents the DNA sequence “gataca”. And the pro-
ductions are: 

 

S → GW1 | AW1/0.1 | CW1/0.2 | TW1/0.62 
W1 → AW2 | CW2/0.55 | GW2/0.3 | TW2/0.45 
W2 → TW3 | AW3/0.4 | CW3/0.27 | GW3/0.73 
W3 → AW5 | CW5/0.55 | GW5/0.3 | TW5/0.45 
W4 → CA | CC/0.55 | CG/0.3 | CT/0.45 | AA/0.51 | AC/0.51×0.55 | AG/0.51×0.3 | AT/0.51×0.45 

| GA/0.27 | GC/0.27×0.55 | GG/0.27×0.3 | GT/0.27×0.45 | TA/0.25 | TC/0.25×0.55 | TG/0.25×0.3 | 
TT/0.25×0.45 

A → a 
C → c 
G → g 
T → t 
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We want to know the grade of membership of the next string, x = “gctact”. Apply-
ing the fast CYK algorithm (ver. 2) the results are showed on the Table 4. 

Table 4. Sequence x = “GCTACT” recognized with algorithm 4 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 
G/ 
1 

C/ 
1 

T/ 
1 

A/ 
1 

C/ 
1 

T/ 
1 

W4/ 
0.45 

W3/ 
0.45 

W2/ 
0.45 

W1/ 
0.11 

S/ 
0.11 

5   Conclusions 

From the genetic point of view there is a possibility to found RNA strings. The RNA 
is a polymer with four different sub-units. The four nucleotides are A, C G and U, 
where U means uracilo. Is possible to obtain a fuzzy free-context grammar from 
RNA, but in this case the proposition for DNA string are no longer valid. But is pos-
sible that in a future work, to present different proposition for RNA strings. 

We have showed the possibility to use the fuzzy Cocke-Younger-Kasami algorithm 
to recognize DNA sequences from a fuzzy free-context grammar. In the worst case, the 
number of iterations that the FCYK algorithm has with DNA sequences is n/6(n2 + 5). 

Using the fast fuzzy version of the method proposed by Cocke-Younger-Kasami it 
is possible to determine the membership grade of a DNA string by using fuzzy con-
text-free grammars with a computational order of O(n), and a memory space of 2n-1. 

The fast FCYK algorithm can be used to recognize DNA sequences from a motif 
by using fuzzy grammars. Overall, we believe that fuzzy grammar can be useful for 
approaching other problems in bioinformatics and computational biology due to the 
inherent fuzziness and imprecision of biological systems at the molecular level. For 
example the FCYK algorithm could be used to compare substrings, to work with 
other bioinformatics inspired algorithm like LOGO and discover new DNA sequences 
and obtain the membership grade of RNA sequences in order to discover secondary 
structures.  
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Abstract. Typical testors are a useful tool for both feature selection and
for determining feature relevance in supervised classication problems.
Nowadays, generating all typical testors of a training matrix is computa-
tionally expensive; all reported algorithms have exponential complexity,
depending mainly on the number of columns in the training matrix.
For this reason, different approaches such as sequential and parallel al-
gorithms, genetic algorithms and hardware implementations techniques
have been developed. In this paper, we introduce a fast implementa-
tion of the algorithm CT EXT (which is one of the fastest algorithms
reported) based on an accumulative binary tuple, developed for generat-
ing all typical testors of a training matrix. The accumulative binary tuple
implemented in the CT EXT algorithm, is a useful way to simplifies the
search of feature combinations which fulfill the testor property, because
its implementation decreases the number of operations involved in the
process of generating all typical testors. In addition, experimental results
using the proposed fast implementation of the CT EXT algorithm and
the comparison with other state of the art algorithms that generated
typical testors are presented.

Keywords: feature selection, typical testors, pattern recognition.

1 Introduction

Feature selection is a significant task in supervised classification and other pat-
tern recognition areas. This task consists of identifying those features that pro-
vide relevant information for the classification process. In Logical Combinatorial
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Pattern Recognition [6, 12], feature selection is solved using Testor Theory [4].
Yu. I. Zhuravlev introduced the utilization of the testor concept in pattern recog-
nition problems [3]. He defined a testor as a set of features that does not confuse
objects descriptions belonging to different classes. This concept has been ex-
tended and generalized in several ways [4]. This concept is especially well suited
to problems which involve qualitative and quantitative features (mixed data)
and even incomplete descriptions.

Computing all typical testors is a very expensive procedure. All reported
algorithms that calculate typical testors have exponential complexity.

Typical testors have been widely used to evaluate the feature relevance [7]
and as support sets in classification algorithms [2]. In text mining, they have
also used for text categorization [8] and document summarization [9].

In comparation with another methods for feature selection, Typical testors
has a null confusion error, due to do not confuse objetcs of different classes.

Different methods like sequential and parallel algorithms [17] and genetic al-
gorithms used for calculating a subset of typical testors [16] has been developed.
Besides, an embedded system based on a FPGA architecture for testor identifica-
tion [10] was introduced. This architecture allows verify if a feature combination
complies the testor property.

But even through the application of these techniques, the run time of existing
algorithms continues to be unacceptable owing to several problems which are
dependent mainly, of the number of features of training matrix.

The present paper introduces a fast implementation of the CT EXT algo-
rithm, which simplifies the search of feature combinations which fulfill the testors
property.

The classic concept of a testor, in which classes are assumed to be both hard
and disjointed, is used. The comparison criteria used for all features are Boolean,
regardless of the feature type (qualitative or quantitative). The similarity func-
tion used for comparing objects demands similarity in all features. These con-
cepts are formalized in the following section.

2 Basic Concepts

Let TM be a training matrix containing m objects described in terms of n fea-
tures R = {x1, x2, · · · , xn} and distributed into c classes {k1, k2, · · · , kc}. Each
feature xi ∈ R takes values in a set Li, i = 1, · · · , n. A comparison criterion of
dissimilarity D : Mi × Mi → {0, 1} is associated to each xi (0=similar, 1=dis-
similar), where Mi is the admissible values set of xi.

Applying these comparison criteria for all possible pairs of objects belonging to
different classes in TM, a Boolean dissimilarity matrix, denoted by DM, is built.

Notice that the number of rows in DM is

m
′
=

c−1∑

i=1

c∑

j=i+1

card(Ki) ∗ card(Kj) (1)

where card(ki) denotes the number of objects in the class ki.
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Let p and q be two rows of DM. p is a subrow of q if in all columns where p
has 1, q has also it. A row p of DM is called basic if no row in DM is a subrow
of p. The submatrix of DM containing all its basic rows (without repetitions) is
called a basic matrix (denoted by BM).

Then, a testor is a subset of features T = {xi1 , · · · , xis} of TM for which
a whole row of zeros does not appear in the remaining submatrix of BM, after
eliminating all columns corresponding to the features in R\T . T is a typical testor
if there is no proper subset of T that meets the testor condition [4]. Commonly,
algorithms used for computing typical testors make use of BM instead of DM
due to the substantial reduction of rows.

Follow the notation used in [5]. Let V = (a1, a2, · · · , au) be a binary u-tuple
of elements, ai ∈ {0, 1}, i = 1, · · · , u. We named cardinal of a binary u-tuple, to
the number of elements that contains the u-tuple. The column corresponding to
a feature xi ∈ BM is a binary u-tuple, denoted by Vxi , whose cardinal of this
u-tuple is the number of rows in BM.

The logical operations on binary tuples are defined as follows:

(a1, a2, · · · , au) ∨ (b1, b2, · · · , bu) = (a1 ∨ b1, a2 ∨ b2, · · · , au ∨ bu) (2)

¬(a1, a2, · · · , au) = (¬a1,¬a2, · · · ,¬au) (3)

⊕
(a1, a2, · · · , au) = (a1 ∨ a2∨, · · · ,∨au) (4)

(1, · · · , 1) and (0, · · · , 0) represent binary tuples in which all elements are one
and zero, respectively.

The notation L = [xi1 , · · · , xis ], xis ∈ R is used to represent an ordered list
of features. A list L does not contain features is denoted as [ ] (empty list).

We call length of a list L, denoted as len(L), to the number of its features.
All basic operations of the set theory (difference, intersection, subset or sublist,
etc.) can be defined on ordered lists of features in a similar way.

We denote the concatenation between ordered lists of features with the
symbol +.

Definition 1. Let L = [xi1 , · · · , xis ] be a feature list. We call accumulative mask
of L, denoted as amL, to the binary tuple in which the ith element is 1 if the
ith row in BM has at least a 1 in the columns corresponding to the features of L
and it is 0 otherwise.

Definition 2. Let L = [xi1 , · · · , xis ] be a feature list. We call contribution mask
of L in the feature xiq ∈ L, denoted as cmL,xiq

, to the binary tuple in which the
ith element is 1 if the ith row in BM has only one 1 in the column corresponding
to the feature xiq , and 0 in the columns belonging to remaining features. And it
is 0 otherwise.
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Notice that the cardinal of both amL and cmL,xip
is the number of rows in BM.

Example 1. Let L1 = [x2], L2 = [x1, x4], L3 = [x1, x4, x5] and L4 = [x1, x2, x3, x4].
Its accumulative and contribution masks in the features x2, x4, x5, x4 are the
following: amL1 = (0, 0, 1, 1), amL2 = (1, 0, 1, 0), amL3 = (1, 1, 1, 0), amL4 =
(1, 1, 1, 1); cmL1,x2 = (0, 0, 1, 1), cmL2,x4 = (0, 0, 1, 0), cmL3,x5 = (0, 1, 0, 0),
cmL4,x4 = (0, 0, 0, 0).

BM =

⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5

1 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 0

⎞

⎟⎟⎟⎟⎠
(5)

Proposition 1. Let L = [xi1 , · · · , xis ] be a feature list and xiq ∈ R, xiq �∈ L.
The accumulative mask of the list L + [xiq ] is calculated as follows:

amL+[Xiq ] = amL ∨ Vxiq
(6)

Proof. We have two cases. a) the binary u-tuple amL in the ith element has a 0,
and Vxiq

in its same ith element has a 1. To perform the operation amL ∨ Vxiq
,

this u-tuple in its ith element will now has a 1. b) both the binary u-tuple
amL and Vxiq

in its ith element has a 0. In this case, to perform the operation
amL ∨ Vxiq

, this u-tuple in its ith element maintains the value of 0.
For the case in which u-tuple amL in the ith element has a 1, the value of Vxiq

in its ith element is irrelevant, because that performing the operation amL∨Vxiq
,

this u-tuple in its ith element retains the value of 1.
Thus, the u-tuple amL+[Xiq ] meets definition 1.

Remark 1. The column corresponding to a feature xiq ∈ BM is the binary tuple
Vxiq

Proposition 2. Let L = [xi1 , · · · , xis ] be a feature list and xiq ∈ R, xiq �∈ L.
The contribution mask of the list L + [xiq ] is calculated as follows:

cmL+[xiq ],xiq
= ¬amL ∧ Vxiq

(7)

Proof. If the binary u-tuple amL in the ith element has a 0, and Vxiq
in its same

ith element has a 1, then it is the only case in that to perform the operation
¬amL ∧ Vxiq

, this u-tuple in its ith element will now has a 1, according to table
1. For remaining cases, to perform the operation ¬amL ∧ Vxiq

, this u-tuple in
its ith element will has a 0.

Thus, the u-tuple cmL+[xiq ],xiq
meets definition 2.
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Table 1. Value table for contribution mask

B1 B2 ¬B1 ¬B1 ∧ B2

1 1 0 0

1 0 0 0

0 1 1 1

0 0 1 0

Notice that propositions 1 and 2 allow the updating of accumulative and contri-
bution masks, respectively when a new feature is added to a feature list.

Proposition 3. A feature list L = [xi1 , · · · , xis ] is a testor if and only if amL =
(1, · · · , 1)

Proof. As each element of the u-tuple amL has a 1, by definition 1, each row of
BM has at least a 1 in the columns corresponding to the features of L.

Then, in the columns of the submatrix of BM formed by the features
xi1 , · · · , xis , there are not a row of zeros. Thus, the features xi1 , · · · , xis form
a testor.

Definition 3. Let L = [xi1 , · · · , xis ] be a feature list and xiq ∈ L. A row p in BM
is a typical row of xiq with respect to L if it has a 1 in the column corresponding
to xiq and zero in all the columns corresponding to the features in L\[xiq ].

Proposition 4. A feature list L = [xi1 , · · · , xis ] is a typical testor if and only if
L is a testor and for every feature xiq ∈ L there is at least a typical row of xiq

with respect to L

Proof. As each feature of L has at least a typical row, then if any feature xiq ∈
L is eliminated of L, then a zero row is generated in then remaining features
xis ∈ L\[xiq ], s �= q. Thus, L\[xiq ] does not satisfy of being a typical testor.

Therefore, L is a typical testor.

The CT-EXT algorithm [14] has the following theoretical bases.

Definition 4. Let L = [xi1 , · · · , xis ] be a feature list. We say that the row p
in BM, denoted it by p0 is a zero row of L if it has a 0 in all the columns
corresponding to the features of L

Definition 5. Let L = [xi1 , · · · , xis ] be a feature list and xiq ∈ R, xiq �∈ L. We
denote the number of zero rows of L by

∑
L p0. We say that xiq contributes with

L if and only if
∑

L+[xiq ] p0 <
∑

L p0

Proposition 5. Let T ⊆ R and xj ∈ R, xj �∈ T . If xj does not contribute to T,
then T ∪ {xj} can not generate any tipical testor.
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Proposition 6. Let T ⊆ R, Z ⊆ R, Z �= ∅. If T is a testor, then T ∪ Z is a
testor too, but is not a typical testor.

Now, for the fast implementation of the CT EXT algorithm we have the follow
definitions and propositions.

Definition 6. Let L = [xi1 , · · · , xis ] be a feature list and xiq ∈ R, xiq �∈ L. We
say that xiq contributes with L if and only if

⊕
cmL+[xiq ],xiq

�= 0 (8)

Propositions 5 and 6, are re-writen in terms of Definition 6 and Proposition 3,
in the following way.

Theorem 1. Let L = [xi1 , · · · , xis ] be a feature list and xiq ∈ R, xiq �∈ L. If xiq

does not contribute with L, then L + [xiq ] can not generate any typical testor.

Proof. As xiq does not contribute with L, this means that a) there is not typical
row of xiq with respect to L+[xiq ]. Thus, L+[xiq ] does not satisfy proposition 4;

b) it exists the ith element in the accumulative mask of L + [xiq ] which has a
0. And then, the ith row in BM has only zeros in the columns belonging to the
features of L + [xiq ]. Thus, L + [xiq ] does not satisfy propositions 3 and 4.

However, L + [xiq ] can not generate any typical testor.

Theorem 2. Let L = [xi1 , · · · , xis ] and Z ⊆ R, Z �= ∅ be a feature lists. If L is
a testor, then L + Z is a testor too, but it is not a typical testor.

Proof. As L is a testor, then amL = (1, · · · , 1). Then, no feature of Z contributes
with L. Thus, by proposition 1, L + Z is not a typical testor.

And, by proposition 1, the accumulative mask of L + Z is the same that the
accumulative mask of L. Then, L + Z is a testor too.

Remark 2.

3 The Fast Implementation of the CT-EXT Algorithm

The algorithm CT EXT performs a search of features subset on the Basic Matrix
obtained from training Matrix. It generates combinations of features, in order to
be forming a subset that satisfying the testor property. And then, verify if the
typical testor property is fulfilled by the combination generated.

In general, The algorithm CT EXT works as follows. First, reorders the rows
and columns of the Basic Matrix, because CT EXT is an algorithm which uses
the same lexicographic total order that LEX [18] and BR [5] algorithms uses. The
CT EXT algorithm generates incremental feature combinations reducing, step
by step, the number of objects belonging to different classes that are confused,
until a combination which is a testor is obtained. Subsequently, CT EXT verifies
whether the generated combination is a typical testor. As well as LEX and
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BR, CT EXT rules out those feature combinations that can generate a testor
which is not a typical testor, preserving those candidates capable of generating
a typical testor only. If a testor is generated, all its consecutive supersets (in the
lexicographic order previously introduced into the power set of features) are not
analyzed. They are skipped because these feature combinations are testors, but
not typical testors.

Now, the fast implementation of the algorithm CT EXT, is based on that
operations of addition and comparison used in CT EXT, are replaced by simple
logical Boolean operations (OR, AND and NOT), to verify if an attribute xj

contributes to a list L (see the Definitions 2 and 6, of which are derived Theorems
1 and 2. And then it is verified, if the list L is a testor.

Thus, the number of operations made by CT EXT are significantly reduced
in the fast implementation of this. And then, the run time of the algorihm is
improved significantly.

Description of the fast implementation of the algorithm CT EXT

Input: BM (Basic Matrix)
Output: TT (set of all typical testors)

Step 1: Ordering rows and columns in BM.
The row that have minimum number of 1’s, is set as the first row
of BM.
The columns of BM are ordered, from left to right, each having a
value of 1 in the first row and each subsequent column having a
value 0 in the first row of BM. The order of the columns into each
group (with the same value of 1 or with the same value of 0) is
irrelevant.

Step 2: Initializing.
Let the set TT={} (initialized as empty set, it will be the typical
testor set) and the list T=[ ] (empty list, which is the current
feature combination); j=1 (first feature of BM to be analyzed).

Step 3: Adding a new feature of first row of BM.
If Xj has a 1 in the first row of BM, then [Xj] is concatened with
T (T=T + [Xj]), go to step 5.
In another case, the algorithm finishes (any new feature
combination will not generate a typical testor, because all these
feature combinations have a zero row).

Step 4: Evaluating the new feature.
The list [Xj] which contains the feature Xj is concatened to the
current list T (T=T + [Xj]), and it is verified whether this new
feature contributes to the current combination (Definition 6).
If Xj does not contributes with T, then go to step 6.
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Step 5: Verifying testor property.
It verify if the list T is a testor (Proposition 3). If T is a
testor, then verify whether if T is a typical testor (Proposition
4). If T was a typical testor, then T is added to the set TT.
Otherwise, go to step 7.

Step 6: Eliminating the last feature procesed.
The list which contains the last feature procesed Xj is eliminated
from T (T=T \ [Xj]). If Xj does not contribute to T, then no
combination containing T is verified (Theorem 1) and go to
step 7. On the other hand, If the list T was a testor, then no
consecutive concatened list of T is procesed (Theorem 2). If T
is an emptyset, then j=j+1 and go to step 3.

Step 7: Selecting a new feature to analyze.
The next no concatened feature in the current combination is
selected. If j<n then j=j+1, and go to step 4. Otherwise, go to
step 6.

4 Experiments

In order to evaluate the performance of the fast implementation for algorithm
CT EXT using the binary accumulative structure, a comparison with four al-
gorithms reported in the literature (BT, CT, LEX and CT EXT) was made.
The first algorithm selected is a classical external type algorithm, which uses
the last reported algorithm which incorporates several improvements in perfor-
mance [15]. The second algorithm is a classical internal type algorithm [13]. The
third algorithm, LEX is reported with very well run time execution among classi-
cal algorithms [18]. Finally the algorithm CT EXT, which is other of the fastest
algorithms reported too [14].

Please note that, we do not make comparisons with the BR algorithm, and
we use a version of the algorithm LEX provided by Dr. Jose Francisco Martinez-
Trinidad, from INAOE, Mexico, for fulfill comparisons among algorithms. Be-
cause the authors of the algorithms LEX [18] and BR [5] gave us a version of
these algorithms in a program (included source code of LEX, but not of the BR
algorithm), to perform our comparisons. However, this program does not allowed
to read and handled DM or BM previously saved. Only worked with DM and
BM generated with random entries.

For compare the run times of the algorithms, we use several BM with different
dimensions. Two of them were taken from real medical diagnosis problems. In
table 2, the experimental results obtained with the algorithms are shown.

The matrices used are denoted by Mrows×columns, and TT denotes the number
of typical testors found by algorithms. The experiments were conducted in a
Pentium IV, with 2Ghz, and 1 Mbyte of RAM. The execution times are presented
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Table 2. Run time execution in seconds of several algorithms

Algorithm M10×34 M20×38 M209×32 M209×47 M269×42

BT 14 105 25 > 43200 > 43200

CT 0 0 39 8026 38691

LEX 0 0 14 1799 2530

CT EXT 0 0 3 483 928

FI CT EXT 0 0 0 72 120

TT 935 2,436 6,405 184,920 302,066

in seconds. And the fast implementation of the algorithm CT EXT is denoted
by FI CT EXT.

In addition, we evaluate the performance of the algorithm CT EXT and
the fast implementation proposed. We handled four real databases, obtained
from UCI Machine Learning Repository [19]. The databases handled are: Zoo
database; Mushroom database; Chess (King-Rook vs. King-Pawn), denoted by
Kr vs Kp; and Molecular Biology (Promoter Gene Sequences), denoted by Pro-
moters. In table 3, experimental results obtained for these databases are shown.
In the case of Promoters database, several basic sub-matrices were calculated
from the original basic matrix because the dimensions of this last matrix were
2761 rows and 57 columns. Third and fourth columns contain the run time exe-
cution of algorithm CT EXT and the their fast implementation.

In table 3, we can observe that the fast implementation proposed achieves
important reductions in the run time execution among 80% and 98% with respect
to the algorithm CT EXT.

Table 3. Run time execution in seconds of the algorithm CT EXT and their binary
extension, handling several real databases

Zoo Kr vs Kp Mushroom Promoters Promoters Promoters Promoters

Dimension of MB 14 × 17 120× 35 30× 22 100× 57 250 × 57 500× 57 1000 × 57
rows x columns

Run time of
CT EXT 0 295 0 16 167 940 14,979

Run time of
binary extension 0 58 0 2 13 47 199

of CT EXT

Number of
typical testors 34 8464 292 77,467 257,189 726,700 1,490,107

found
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Fig. 1. Run time execution in seconds of CT EXT algorithm and the fast implemen-
tation, when the number of rows is incremented
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Fig. 2. Run time execution in seconds of CT EXT algorithm and the fast implemen-
tation proposed, when the number of features is increased

In order to study the behavior of the algorithm CT EXT and their fast imple-
mentation, we show in figure 1, the run time of the algorithms for basic matrices
of 57 columns varing the number of rows from 100 to 1000. Besides, the run time
of these algorithms for basic matrix of 50 rows, but now, varing the number of
columns from 25 to 100 is shown in figure 2.
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5 Conclusions

In this paper, a fast implementation of the algorithm CT EXT in order to facil-
itate identification of testors of a training matrix was proposed.

The fast implementation developed over the algorithm CT EXT, is feasible
to apply in other algorithms which calculated the typical testor set of a training
matrix.

The main contribution of the fast implementation, is kept the information of
each new feature to process, allowing it to verify fast and easily whether a feature
combination fulfills the testor property, because the extension uses simple logical
Boolean operations, handles as bits in the code implementation.

Based on experimental results, we can conclude that the fast implementation
proposed improves the CT EXT algorithm.

The fast implementation proposed, does not contemplate the inclusion of noise
in BM, because a sensitivity analysis (as is presented in [1]) must be performed,
and this study is beyond the scope of the paper.

Besides, we will work to find a criterion for selecting a smaller number of
typical testors, when a large amount of typical testor is found.
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Abstract. This paper introduces copula functions and the use of the
Gaussian copula function to model probabilistic dependencies in super-
vised classification tasks. A copula is a distribution function with the
implicit capacity to model non linear dependencies via concordance mea-
sures, such as Kendall’s τ . Hence, this work studies the performance of
a simple probabilistic classifier based on the Gaussian copula function.
Without additional preprocessing of the source data, a supervised pixel
classifier is tested with a 50-images benchmark; the experiments show
this simple classifier has an excellent performance.

Keywords: Gaussian copula, supervised classification.

1 Introduction

In Pattern Recognition applications many algorithms and models have been
proposed for many tasks, specially for clustering, regression and classification.
Applications in which a training data set with categories and attributes is avail-
able and the goal is to assign a new object to one of a finite number of discrete
categories are known as supervised classification problems [2,12,15]. In this work
we present the use of the Gaussian copula function as an alternative for modeling
dependence structure in a supervised probabilistic classifier.

Copula functions are suitable tools in statistics for modeling multiple de-
pendence, not necessarily linear dependence, in several random variables. For
this reason, copula functions have been widely used in economics and finance
[5,7,9,26,27]. More recently copula functions have been used in other fields such
as climate [23], oceanography [6], hydrology [10], geodesy [1], reliability [17],
evolutionary computation [21,22] and engineering [11]. By using copula theory,
a joint distribution can be built with a copula function and, possibly, several
different marginal distributions. Copula theory has been used also for model-
ing multivariate distributions in unsupervised learning problems such as image
segmentation [4,8] and retrieval tasks [16,20,25]. In [13], the bivariate copula
functions Ali-Mikhail-Haq, Clayton, Frank and Gumbel are used for unsuper-
vised classification. These copulas are well defined for two variables but when
extended to three or more variables several complications arise (for instance,
undefined copula parameters), preventing their generalization and applicability.

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 104–115, 2010.
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For the Gaussian copula however, there exist a simple method for any number of
variables. This work introduces the use of Gaussian copula in supervised classifi-
cation, and compares an independent probabilistic classifier with a copula-based
probabilistic classifier.

The content of the paper is the following: Section 2 is a short introduction
to copula functions, Section 3 presents a copula based probabilistic model for
classification. Section 4 presents the experimental setting to classify an image
database, and Section 5 summarizes the conclusions.

2 Copula Functions

The copula concept was introduced 50 years ago by Sklar [24] to separate the
effect of dependence from the effect of marginal distributions in a joint distribu-
tion. Although copula functions can model linear and nonlinear dependencies,
they have been barely used in computer science applications where nonlinear
dependencies are common and need to be represented.

Definition 1. A copula C is a joint distribution function of standard uniform
random variables. That is,

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) ,

where Ui ∼ U(0, 1) for i = 1, . . . , d.

For a more formal definition of copula functions, the reader is referred to [14,18].
The following result, known as Sklar’s theorem, states how a copula function is
related to a joint distribution function.

Theorem 1 (Sklar’s theorem). Let F be a d-dimensional distribution function
with marginals F1, F2, . . . , Fd, then there exists a copula C such that for all x in R

d
,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1), F2(x2), . . . , Fd(xd)
are all continuous, then C is unique. Otherwise, C is uniquely determined on
Ran(F1) ×Ran(F2) × · · · ×Ran(Fd), where Ran stands for the range.

According to Theorem 1, any joint distribution function F with continuous
marginals F1, F2, . . . , Fd has associated a copula function C. Moreover, the as-
sociated copula C is a function of the marginal distributions F1, F2, . . . , Fd. An
important consequence of Theorem 1 is that the d-dimensional joint density f
and the marginal densities f1, f2, . . . , fd are also related:

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) ·
d∏

i=1

fi(xi) , (1)

where c is the density of the copula C. The Equation (1) shows that the product
of marginal densities and a copula density builds a d-dimensional joint density.
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Notice that the dependence structure is given by the copula function and the
marginal densities can be of different distributions. This contrasts with the usual
way to construct multivariate distributions, which suffers from the restriction
that the marginals are usually of the same type. The separation between marginal
distributions and a dependence structure explains the modeling flexibility given
by copula functions.

2.1 Gaussian Copula Function

There are several parametric families of copula functions, suchasStudent’s t copula
and Archimedean copulas. One of these families is the Gaussian copula function.

Definition 2. The copula associated to the joint standard Gaussian distribution
is called Gaussian copula.

According to Definition 2 and Theorem 1, if the d-dimensional distribution of a
random vector (Z1, . . . , Zd) is a joint standard Gaussian distribution, then the
associated Gaussian copula has the following expression:

C(Φ(z1), . . . , Φ(zd);Σ) =
∫ z1

−∞
· · ·

∫ zd

−∞

e−
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dtd · · · dt1 ,

or equivalently,

C(u1, . . . , ud;Σ) =
∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(ud)

−∞

e−
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dtd · · ·dt1 ,

where Φ is the cumulative distribution function of the marginal standard Gaus-
sian distribution and Σ is a symmetric matrix with main diagonal of ones. The
elements outside the main diagonal of matrix Σ are the pairwise correlations
ρij between variables Zi and Zj , for i, j = 1, . . . , d and i �= j. It can be noticed
that a d-dimensional standard Gaussian distribution has mean vector zero and
a correlation matrix Σ with d(d− 1)/2 parameters.

The dependence parameters ρij of a d-dimensional Gaussian copula can be
estimated using the maximum likelihood method. To do so, we follow the steps
of Algorithm 1.

Algorithm 1. Pseudocode for estimating parameters
1: for each random variable Xi, i = 1, . . . , d, estimate its marginal distribution func-

tion F̂i using the observed values xi. The marginal distribution function can be
parametric or nonparametric

2: determine ui = F̂i(xi), for i = 1, . . . , d
3: calculate zi = Φ−1(ui) where Φ is the cumulative standard Gaussian distribution

function, for i = 1, . . . , d
4: estimate the correlation matrix Σ̂ for the random vector (Z1, . . . , Zd) using pseudo

observations (z1, . . . , zd)
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Due to Equation (1), the d-dimensional Gaussian copula density can be cal-
culated as:

c(Φ(z1), . . . , Φ(zd);Σ) =
1

(2π)(d/2)|Σ|1/2 e
− 1

2 z′Σ−1z

∏d
i=1

1
(2π)1/2 e

− 1
2 z2

i

=
1

|Σ|1/2
e−

1
2 z′(Σ−1−I)z . (2)

Given that a Gaussian copula is a distribution function it is possible to simulate
data from it. The main steps are the following: once a correlation matrix Σ is
specified, a data set can be generated from a joint standard Gaussian distribu-
tion. The next step consists of transforming this data set using the cumulative
distribution function Φ. For random vectors with a Gaussian copula associated
to their joint distribution, the first step is to generate data from the copula and
then determining their quantiles by means of their cumulative distribution func-
tions. Algorithm 2 illustrates the sampling procedure for different correlations.

Algorithm 2. Pseudocode for generating data with Gaussian dependence
structure
1: simulate observations (z1, . . . , zd) from a joint standard Gaussian distribution with

matrix correlation Σ
2: calculate ui = Φ(zi) where Φ is the cumulative standard Gaussian distribution

function, for i = 1, . . . , d
3: determine xi using quasi-inverse F−1

i (ui), where Fi is a cumulative distribution
function, for i = 1, . . . , d

An important result (see [18]) for parametric bivariate copulas relates the
dependence parameter θ to Kendall’s τ :

τ(X1, X2) = 4
∫ 1

0

∫ 1

0

C(u1, u2; θ)dC(u1, u2; θ) − 1 . (3)

For a bivariate Gaussian copula, Equation (3) can be written as

τ =
2
π

arcsin(ρ) . (4)

Given that is well established how to estimate correlation matrices, evaluate
densities, and calculate integrals for the multidimensional Gaussian distribution,
the Gaussian copula function is relatively easy to implement.

3 The Probabilistic Classifier

As noted, the aim of this work is to introduce the use of Gaussian copula func-
tions in supervised classification. According to Theorem 1, we can employ a
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copula function in a probabilistic classifier, such as a Bayessian classifier. In
this section we present a three dimensional probabilistic model based on three
empirical distribution functions and a trivariate dimensional Gaussian copula
function.

The Bayes’ theorem states the following:

P (K = k|E = e) =
P (E = e|K = k) × P (K = k)

P (E = e)
, (5)

where P (K = k|E = e) is the posterior probability, P (E = e|K = k) is the
likelihood function, P (K = k) is the prior probability and P (E = e) is the data
probability.

The Equation (5) has been used as a tool in supervised classification. A prob-
abilistic classifier can be designed comparing the posterior probability that an
object belongs to class K given its attributes E. The object is then assigned
to the class with the highest posterior probability. For practical reasons, the
data probability P (E) does not need to be evaluated for comparing posterior
probabilities. Furthermore, the prior probability P (K) can be substituted by an
uniform distribution if the user does not have an informative distribution.

3.1 The Probabilistic Classifier Based on Gaussian Copula Function

For continuous attributes, a Gaussian copula function can be used for modeling
the dependence structure in the likelihood function. In this case, the Bayes’
theorem can be written as:

P (K = k|e) =
c(F1(e1), . . . , Fn(en)|Σ, k) ×

∏n
i=1 fi(ei|k) × P (K = k)

f(e1, . . . , en)
, (6)

where Fi and fi are the marginal distribution functions and the marginal densi-
ties of attributes, respectively. The function c is a d-dimensional Gaussian copula
density defined by Equation (2). As can be seen in Equation (6), each category
determines a likelihood function.

3.2 The Probabilistic Classifier Based on Independent Model

By considering conditional independence among the attributes in Equation (6),
or equivalently, an independent structure in the likelihood function given a cat-
egory, a probabilistic classifier can use the following expression in order to cal-
culate posterior probabilities:

P (K = k|e) =
∏n

i=1 fi(ei|k) × P (K = k)
f(e1, . . . , en)

. (7)

Equation (7) uses an independent structure given by a copula density equals to
one. This independent copula density can be also obtained by a Gaussian copula
function when matrix Σ is the identity matrix I.
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3.3 An Application Example

Consider the following specific classification problem: assign a pixel to a certain
class according to its color attributes. If we have information about the color dis-
tribution of each class, then we can use this information and the Bayes’ theorem
in order to classify new pixels. This is an example of supervised classification.
For a red-green-blue (RGB) color space and two classes, a Gaussian copula based
classifier can be written as

P (k|r, g, b) =
c(FR(r), FG(g), FB(b)|Σ, k)fR(r|k)fG(g|k)fB(b|k) × P (k)

f(r, g, b)
, (8)

where c is a trivariate Gaussian copula density.
In order to classify a pixel, we use in Equation (8) a prior probability P (K =

k) based on the uniform distribution, nonparametric marginal densities f̂ based
on histograms to approximate fR(r|k), fG(g|k) and fB(b|k), and nonparametric
marginal distributions F̂ based on empirical cumulative distribution functions
to approximate FR(r), FG(g) and FB(b). For modeling the dependence structure
of the likelihood function f(r, g, b|k) we present the use of a trivariate Gaussian
copula function.

4 Experiments

We use two probabilistic models in order to classify pixels of 50 test images. The
first model is an independent probabilistic model (I-M) based on the product of
marginal distributions. The second model is a copula-based model (GC-M) that
takes into account a dependence structure by means of a trivariate Gaussian
copula. The image database was used in [3] and is available online [19]. This
image database provides information about two classes: the foreground and the
background. The training data and the test data are contained in the labelling-
lasso files [19], whereas the correct classification is contained in the segmentation

(a) (b) (c) (d) (e)

Fig. 1. (a) The color image. (b) The labelling-lasso image with the training data for
background (dark gray), for foreground (white) and the test data (gray). (c) The correct
classification with foreground (white) and background (black). (d) Classification made
by I-M. (e) Classification made by GC-M.
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Truth

Positive Negative

Model
Positive tp fp

Negative fn tn

accuracy =
tp + tn

tp + fp + fn + tn

sensitivity =
tp

tp + fn

specificity =
tn

tn + fp

(a) (b)

Fig. 2. (a) A confusion matrix for binary classification, where tp are true positive,
fp false positive, fn false negative, and tn true negative counts. (b) Definitions of
accuracy, sensitivity and specificity used in this work.

files. Figure 1 shows the description of one image from the database. Table 3
shows a description for each image. Although the database is used for segmen-
tation purposes, the aim of this work is to introduce the use of the Gaussian
copula function in supervised color pixel classification. We use the information
for supervised color pixel classification, without taking into account the spatial
information.

Three evaluation measures are used in this work: accuracy, sensitivity and
specificity. These measures are described in Figure 2. The sensitivity and speci-
ficity measures explain the percentage of well classified pixels for each class,
foreground and background, respectively. We define the positive class as fore-
ground and the negative class as background.

4.1 Numerical Results

In Table 1 we summarize the measure values reached by the independent proba-
bilistic model (I-M) and the copula-based model (GC-M). The information about
the number of pixels well classified for each class is reported in Table 3.

Table 1. Descriptive results for all evaluation measures. BG stands for the background
class and FG stands for the foreground class.

Measure Minimum Median Mean Maximum Std. deviation

I-M

Specificity – BG 0.404 0.857 0.817 0.993 0.133

Sensitivity – FG 0.395 0.763 0.768 1.000 0.172

Accuracy 0.571 0.792 0.795 0.976 0.107

GC-M

Specificity – BG 0.551 0.924 0.885 0.994 0.108

Sensitivity – FG 0.484 0.875 0.854 0.998 0.127

Accuracy 0.587 0.889 0.871 0.987 0.083
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Table 2. Results for the difference between evaluation measure means in each model.
A 95% confidence interval and a p-value are obtained through a Bootstrap technique.
BG stands for the background class and FG stands for the foreground class.

Measure 95% Interval p-value

Specificity – BG -1.16E-01 -2.19E-02 6.50E-03

Sensitivity – FG -1.44E-01 -2.63E-02 6.17E-03

Accuracy -1.14E-01 -3.98E-02 6.67E-05

To properly compare the performance of the probabilistic models, we conducted
a hypothesis test based on a Bootstrap method for the differences between the
means of each evaluation measure, for both probabilistic models. Table 2 shows
the confidence interval for the means, and the corresponding p-value.

4.2 Discussion

According to Table 1, the GC-M shows the best behaviour for all evaluation
measures. For instance, the mean accuracy for the I-M, 79.5%, is less than the
mean accuracy for the GC-M, 87.1%. This means that using a I-M approximately
has 8% more error rate than using a GC-M.

The average of the specificity is greater than the average of the sensitivity, for
both I-M and GC-M (see Table 1). In average, according to Table 1, the GC-M
improves the I-M in both classes. For the foreground class from 76.8% to 85.4%,
and for the background class from 81.7% to 88.5%.

Table 1 also shows information about the standard deviations for each evalua-
tion measure. For all cases, the standard deviation indicates that using a GC-M
in pixel classification is more consistent than using an I-M.

In order to statistically compare the performance of the probabilistic models,
Table 2 shows confidence intervals and p-values that confirm differences between
the models. None of confidence intervals include the 0 value and all p-values are
less than α = 0.05.

5 Conclusions

In this work we introduce the use of Gaussian copulas in supervised pixel classi-
fication. According to numerical experiments the selection of a Gaussian copula
for modeling structure dependence can help achieve better classification results.
An specific example is the image 227092, which appears in Figure 1, its accuracy
for the I-M classifier is 57.1%, whereas its accuracy for the GC-M classifier is
89.5%. For this image, the Gaussian copula improves its accuracy.

Although we model the dependence structure for each image with the same
copula function, this is not necessary. There are many copula functions and
the Gaussian copula has been chosen due to its practical usefulness and easy
implementation. However, having more than one copula at hand may improve
the performance of the copula-based classifier. In such case, a copula selection
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procedure is necessary. The evaluation results are the consequence of the selected
dependence structure and marginals. For instance, on the image 106024, the per-
formance of the I-M classifier is 57.6% accurate (accuracy), whereas the GC-M
classifier is 58.7% accurate. For most applications better results can be obtained
by selecting the best fitted copula function from a set of available copulas. For
example, in the experiment reported, the performance of the I-M classifier is
better than GC-M for image fullmoon. However, the copula based model is ex-
pected to improve the performance of the I-M classifier if we used the proper
copula.
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Appendix

Table 3. Description of images used in this work. BG stands for the background class
and FG stands for the foreground class. Columns 3 and 4 give the size of test data.
The last 4 columns give the number of pixels well classified for each class and for each
probabilistic classifier.

Image name Image size Test pixels I-M GC-M

BG FG BG FG BG FG

21077 321 × 481 4322 3353 3648 2551 3144 2763
24077 321 × 481 11529 10983 6577 8399 6348 10000
37073 321 × 481 8260 6642 6404 6187 7115 6014
65019 321 × 481 9853 8398 9181 3317 9099 4061
69020 321 × 481 25203 22634 17561 16813 22798 20421
86016 321 × 481 3271 2215 2765 2166 2937 2179
106024 321 × 481 9093 7368 5528 3961 5574 4087
124080 321 × 481 18286 18773 16487 16924 16307 18653
153077 321 × 481 13851 12098 11072 7774 10806 10638
153093 321 × 481 12027 11809 7617 8699 11414 9615
181079 481 × 321 23845 23110 18650 15320 22494 18705
189080 481 × 321 23363 23523 20726 21020 19722 20707
208001 481 × 321 10227 9530 9994 7669 10064 7914
209070 321 × 481 6696 4075 5117 2447 5894 2874
227092 481 × 321 19656 17321 12869 8229 19129 13966
271008 321 × 481 10909 9216 8934 7967 8800 8795
304074 481 × 321 7239 4794 5017 2591 5534 2810
326038 321 × 481 10781 7680 8730 4952 9488 5571
376043 481 × 321 13654 13485 12022 6094 13072 9343
388016 481 × 321 17800 15592 15633 11248 17596 12929

banana1 480 × 640 29983 24052 17120 23964 20285 23601
banana2 480 × 640 27433 21518 17063 20378 25373 18698
banana3 480 × 640 26205 20164 25588 12405 26035 14115

book 480 × 640 26087 21474 15689 20699 19852 21325
bool 450 × 520 20123 16850 19500 13279 18726 14373
bush 600 × 450 32513 22099 21072 12504 27734 14870

ceramic 480 × 640 30549 25709 24809 25069 27328 24791
cross 600 × 450 34602 25733 32824 25703 32918 25132
doll 549 × 462 18866 15106 12976 13269 17947 14960

elefant 480 × 640 27858 22787 20918 22656 23158 22540
flower 450 × 600 16125 13246 14612 12977 15036 13225

fullmoon 350 × 442 1580 1043 1498 1043 983 1026
grave 600 × 450 12294 12832 11977 11567 12219 10889
llama 371 × 513 8930 8445 7783 5322 7547 7287

memorial 600 × 450 14853 12598 12900 6902 10936 10964
music 480 × 640 23945 19494 20457 18723 21794 19112

person1 450 × 600 19092 16384 16452 10041 18831 15372
person2 450 × 600 12796 9595 11492 5358 12465 9219
person3 600 × 450 14649 11450 13494 8122 14022 10112
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Table 3. (continued)

person4 450× 600 19250 16631 15230 10691 18197 11653
person5 600× 450 13990 11332 13009 8327 13025 10377
person6 600× 450 19015 15645 16753 9038 16071 11732
person7 600× 450 12110 9634 9934 6998 11795 8093
person8 480× 640 16684 12741 6740 11157 14690 9534
scissors 480× 640 30768 23335 28152 19910 30181 19960
sheep 600× 450 5331 3733 4750 3098 5243 3415
stone1 480× 640 18716 15635 16087 15525 18376 15528
stone2 480× 640 22002 18489 21556 16315 21788 17692
teddy 398× 284 13892 13739 13790 13191 13426 13466
tennis 472× 500 19471 13129 18054 8673 18322 8613
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Abstract. Every feature extraction and modeling technique of voice/speech is 
not suitable in all type of environments. In many real life applications, it is not 
possible to use all type of feature extraction and modeling techniques to design 
a single classifier for speaker identification tasks because it will make the sys-
tem complex. So instead of exploring more techniques or making the system 
complex it is more reasonable to develop the classifier by using existing tech-
niques and then combine them by using different combination techniques to en-
hance the performance of the system. Thus, this paper describes the design and 
implementation of a VQ-HMM based Multiple Classifier System by using 
different combination techniques. The results show that the developed system 
by using confusion matrix significantly improve the identification rate. 

Keywords: Speaker identification, classifier combination, HMM, VQ, MFCC, 
LPC. 

1   Introduction 

Speaker identification (SI) process identifies an unknown registered speaker by compar-
ing it with those registered speaker voice stored in the database. SI can be  
text-dependent and text-independent [1]. Text-independent SI system is not limited to 
recognize speakers on the basis of same sentences stored in the database. While text-
dependent SI system only can recognize speakers by uttering the same sentence every 
time [2]. SI can be further divided into closed set SI and open set SI [3]. In closed set 
speaker identification, unknown speech signal came from one of the registered speakers. 
Open-set speaker identify unknown signal from either the set of the registered speakers 
or unregistered speakers. Closed-set text-independent speaker identification (CISI)  
system must allow capturing particular voice features even in a noisy environment.  

Two widely used feature extraction techniques - Mel-frequency Cepstral Coeffi-
cients (MFCC) [4] and Linear Prediction Coefficients (LPC) [5], and two modeling 
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techniques – Hidden Markov model (HMM) [6] and Vector Quantization (VQ) [7] are 
used to construct different classifiers Each classifier is different from each other, in 
feature extraction and the modeling techniques used. MFCC simulates the behavior of 
human ear and uses Mel Frequency scale. LPC features represent the main vocal tract 
resonance property in the acoustic spectrum and make possible to distinguish one 
speaker from others, due to each speaker is characterized by his/her own formant 
structure. HMM based on Markov chain mathematical model is a doubly stochastic 
process that recognizes speakers very well in both text-dependent and text-
independent SI system. VQ is implemented through LBG algorithm to reduce and 
compress feature vectors into a small number of highly representative vectors. 

The speaker identification made by a single decision making scheme is always a 
risky because each type of features are not suitable for all environments. Thus, this 
paper describes a Multiple Classifier System (MCS) for CISI which reduces errors 
and wrong identification. The basic idea is to analyze the results obtained by different 
classifiers. Then, these classifiers are integrated such that their reliability is enhanced 
due to a proper combination technique. The principle objective of this work is to get 
the better identification rate of MCS for CISI by using various combination tech-
niques to compound the output of individual classifiers.  

The paper proceeds as follows: Section 2 describes the steps followed by all three 
developed classifiers for the SI. Section 3 explains the different combination tech-
niques used in MCS to coalesce the normalized measurement level output of single 
classifiers for the joint decision. Section 4 depicts the results obtained from system 
testing and experimentations. Finally, we conclude our work in Section 5. 

2   Single Classifier Speaker Identification System  

Three different classifiers are designed and implemented: - LPC based on Vector 
Quantization (VQ) (classifier K1); - MFCC based VQ (classier K2); and - MFCC 
based on HMM (classifier K3), (see Figure 1).  All three classifiers are able to per-
form the closed-set text-independent speaker identification. Each classifier of any SI 
task includes following steps [8], [9], [10]:  

 

 Digital speech data acquisition. Acoustic events like phonemes occur in 
the frame of 10 mS to 100 mS [11]. Therefore, every speech signal is digi-
tized into frames where duration of each frame is 23 mS for sampling fre-
quencies 11025 Hz and that of 16 mS for the sampling frequency 8000 Hz. 

 Feature extraction is the process by which the speech signal is converted to 
some type of parametric representation for further analysis and processing. 
This is a very important process in the high performance of CISI system. 
Appropriate features should be extracted from speech, otherwise the identi-
fication rate is influenced significantly. LPC and MFCC based feature vec-
tors are extracted from the speech of each registered speaker. 

 Acoustic model. It is not possible to use all extracted feature vectors to de-
termine the identity of that speaker. Therefore, two modeling techniques: 
HMM and VQ are used to construct the acoustic model of each registered 
speaker.  Then, for the identification of unknown registered speaker, its fea-
ture vectors are compared with each speaker’s acoustic model present in 
the speaker database. 
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 Pattern matching. Then, for the identification of unknown registered 
speaker, its feature vectors are compared with each speaker’s acoustic 
model present in the speaker database. 

 Identification decision. When feature vectors of an unknown speaker are 
compared with acoustic model of each registered speaker, decision is made 
by computing distortion in the case of VQ modeling technique. Speaker’s 
acoustic model having minimum distortion with unknown speech signal is 
recognized as a true speaker. For HMM, decisions are made by using 
maximum likelihood criteria.  

 

  
 

Fig. 1. Three Different Classifiers 
 
In order to construct and check their performance of three individual classifiers K1, 

K2, and K3, we make following experimentation. K1 is obtained by combining 
MFCC with VQ, K2 and K3 by mixing respectively MFCC with HMM and LPC with 
VQ (see Figure 1). Additionally to make the system robust against noise, a consistent 
noise is added during the recording of each sentence.  A database, having more than 
700 voice samples, is recoded into two different sessions with the gap of two to three 
weeks to evaluate the performance of the system. It contains utterances of 44 speakers 
including 30 males and 14 females. Each speaker has recorded 6 different sentences at 
sampling frequencies 8000 Hz and 11025 Hz by using PRAAT software 
(http://www.fon.hum.uva.nl/praat/download_win.html). The list of these sentences is: 

Sentence 1: Decimal digits from Zero to Nine 
Sentence 2: All people smile in the same language. 
Sentence 3: Betty bought bitter butter. But the butter was so bitter that she bought        
new butter to make the bitter butter better. 
Sentence 4: Speakers recorded a random text from selected topic for 35 sec. 
Sentence 5: Speakers recorded his/her roll number or employee ID. 
Sentence 6: Speakers recorded a random text from selected topic for 12 sec. 

Identification rates of all three classifiers at both sampling frequency 8000 Hz and 
11025 Hz are respectively depicted in Figure 2 and Figure 3 when they are trained 
and tested by using the following sentences:  

Training Sentence: Betty bought bitter butter. But the butter was so bitter that she 
bought new butter to make the bitter butter better. 
Testing Sentence: All people smile in the same language. 
 

MFCC 

Classifier K1 Classifier K2 Classifier K3 

MFCC LPC VQ VQ HMM 
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Fig. 2. Identification rate of classifiers at 8000 HZ 
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Fig. 3. Identification rate of classifiers 11025 HZ 

 
Identification rate of these classifiers is computed by using the following relation: 

Truly Identified Speaker
Identification Rate = 

Total No. of Speakers
 

Above experiments show that higher sampling frequency demonstrate good 
identification rate than lower sampling frequency, and classifier K1 (MFCC based 
VQ classifier) is better than all other classifiers at both sampling frequencies. Now, 
we use the results of sampling frequency 8000 HZ to construct Multiple Classifier 
System (MCS) because in that case even best classifier has identification of 90.91%. 
So, there is a lot room for the improvement of identification rate. 

3   Multiple Classifier Speaker Identification System (MCSIS) 

MCSIS uses the output of all three classifiers to make the joint decision about the 
identity of the speaker.  The MCSIS can be categorized according to the level of clas-
sifier outputs which they use during the combination [12], [13]. There are three dif-
ferent levels of classifier’s outputs:  

• Abstract Level. Each classifier outputs the identity of a speaker only, and 
this level contains the lowest information.  

• Rank Level. Classifiers provide a set of speaker identities ranked in order of 
descending likelihood.  
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• Measurement Level. It conveys the greatest amount of information about 
each particular speaker that may be correct one or not.  

Different combination techniques [14]: Sum Rule, Product Rule, Min Rule, and Max 
Rule are used in this work to combine the normalized measurement level outputs of 
classifiers for the joint decision about the identity of the speaker.  

3.1   Normalized Measurement Level Output of Classifiers 

Measurement Level provides quite useful information about every speaker as shown 
in Table 1 and Table 2. First row of each table presents the measurement level output 
of Classifier K1 and K2 respectively, for speaker S1 when it is compared with 8 other 
speakers. A major problem within measurement level combination is the incompara-
bility of classifier outputs [15]. As we can observe, the 1st row of both tables, it is 
clear that output of classifiers having different feature vectors differ in range and the 
outputs are incomparable. In consequence, before combining the outputs, it is neces-
sary to treat these outputs of each classifier. Therefore, measurement level output of 
each classifier is normalized to the probabilities by dividing each element of the row 
by the sum of all the elements of that row.  

Table 1. Measurement level Output for a Classifier using MFCC Features 

 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 

S 1 1.549 1.922 2.096 2.216 2.098 2.377 2.192 2.308 

Normalized 0.092 0.115 0.125 0.132 0.125 0.142 0.131 0.138 

 
Table 2. Measurement level Output for a Classifier using LPC Features 

 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 

S 1 0.585 0.692 1.429 0.742 0.754 1.310 1.395 1.694 

Normalized 0.069 0.082 0.170 0.088 0.090 0.134 0.166 0.201 

 
After normalization, the outputs of all classifiers lie in the interval of [0,1]. Now, 

we find a suitable combination technique for MCSIS. These techniques are discussed 
in following sections, which provide the better identification rate than individual  
classifiers.   

3.2   Sum Rule (Linear Combination) 

Linear combination is the simplest technique for MCS. For each speaker, sum of out-
puts of all classifiers is calculated. The decision of the true speaker depends on the 
maximum value obtained, after combination [13] [16] [17]. Suppose that there are 3 
classifiers K1, K2, and K3, and five speakers (S1, S2, S3, S4, and S5). Outputs of these 
classifiers are represented by O1, O2, and O3. These output vectors are given as:  

[ ]1 2 3 4 51
T

O a a a a a=  ,  [ ]1 2 3 4 52
T

O b b b b b=  ,  [ ]1 2 3 4 53
T

O c c c c c=  
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ja , 
jb , 

jc  where  1, 2,3, 4,5j =  are positive real numbers. These output vectors are 

combined to make an output matrix which is   

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

a b c

a b c

O a b c

a b c

a b c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
 

The Sum rule is defined as 

1

  1, 2,
k

sum i
i

O O where i k
=

= =∑ L   

where iO  is the ith column of output matrix. After combing by sum rule output matrix 

becomes 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

sum

a b c

a b c

O a b c

a b c

a b c

+ +⎡ ⎤
⎢ ⎥+ +⎢ ⎥
⎢ ⎥= + +
⎢ ⎥+ +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 
 

When the value in the first row is larger than other values, the result of MCS is 
speaker1 (S1). Similarly, if value in the second row is larger than other values then 
the result of MCS is speaker2 (S2) and so on.  

3.3   Product Rule (Logarithmic Combination) 

Product rule, also called logarithmic combination, is another simple rule for classifier 
combination system. It works in the same manner than linear combination but instead 
of sum, the outputs for each speaker from all classifiers are multiplied [12], [16]. The 
product rule is defined as 

1

     1, 2,3,...,
k

prod i
i

O O where i k
=

= =∏   

When the output of any classifier for a particular speaker is zero, this value is re-
placed by a very small positive real number. After combining the output vectors of all 
classifiers, output matrix becomes: 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

prod

a b c

a b c

O a b c

a b c

a b c

⋅ ⋅⎡ ⎤
⎢ ⎥⋅ ⋅⎢ ⎥
⎢ ⎥= ⋅ ⋅
⎢ ⎥⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅⎣ ⎦

 
 

The decision criterion is similar as the Sum rule.  
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3.4   Min Rule  

Min rule combination method measures the likelihood of a given speaker by  
finding the minimum normalized measurement level output for each speaker.  
Then final decision for identifying a speaker is made by determining the maximum 
value [12] [13]. 
 
Example 1: Consider an output matrix which is obtained by combining the output 
vectors of the three classifiers. Each column of the matrix represents the output of a 
classifier for five speakers. 

0.0 0.3 0.2

0.4 0.3 0.2

0.6 0.5 0.4

0.0 0.0 0.1

0.2 0.1 0.3

O

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Each element of Omin is the minimum value selected from each row of the output ma-
trix O. Each row corresponds to the output of a classifier for a particular speaker. The 
final decision is the maximum value of the vector Omin which is 0.4. This value shows 
that the true speaker is the speaker number 3.  

[ ]min 0.0 0.2 0.4 0.0 0.1
T

O =   

3.5   Max Rule 

In the Max rule, the combined output of a class is the maximum value of the output 
values provided by different classifiers for the corresponding speaker [12] [16]. For a 
better explanation, consider the following example. 

 
Example 2: Assume that we have three classifiers and five speakers. Their output 
matrix is given below: 

0.0 0.3 0.2

0.4 0.3 0.2

0.6 0.5 0.4

0.0 0.0 0.1

0.2 0.1 0.3

O

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
 

The combined output vector is obtained by selecting maximum value from each row 
of the output matrix. The resultant vector is  

[ ]max 0.3 0.4 0.6 0.1 0.3
T

O =   

Maximum value in the vector Omax is 0.6 which corresponds to speaker number 3. So, 
the joint decision of all the classifiers is the speaker3.  
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3.6   Confusion Matrix 

Confusion matrix is a handy tool to evaluate the performance of a classifier. It con-
tains the information of both truly identified speakers as well as misclassified speak-
ers [15] [18]. Each column of this matrix represents the true speaker. Let us assume 
that 50 voice samples of speaker3 are tested by the identification system.  If all these 
voice samples are truly identified then value at the 3rd row, 3rd column will be 50 with 
zeros elsewhere. On the other hand, if values of 1st , 2nd , 3rd , 4th , and 5th row  of  4th 
column are 3, 1, 0, 41, and 5 respectively show that 3 times speaker4 is misclassified 
as speaker1, 1 time speaker4 is misclassified as speaker2, 45 times speaker4 is truly 
identified, and 5 times speaker4 is misclassified as speaker5 by the system. A confu-
sion matrix is shown in Figure 4. 

50 0 0 3 0

0 47 0 1 0

0 2 50 0 1

0 0 0 41 0

0 1 0 5 49

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
2
3
4
5

1        2         3        4        5

True Speakers

Identified Speakers

 

Fig. 4. A Confusion Matrix 

4   Results 

The identification rates of MSCIS, after applying Sum, Product, Min, and Max Rule 
on the output of individual classifiers, are presented in Figure 5. Max Rule as a Com-
bination rule in MCS has shown an increase of 4.54% in identification rate than that 
of best individual classifier which was 90.91%. 
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Fig. 5. Identification Rates of Combination Techniques 
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Some combination techniques show poor identification rate even than individual 
classifiers. A comparison between identification rates of best individual classifier K1, 
best combination technique (Max Rule), and confusion matrix is depicted in Figure 6. 
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Fig. 6. Comparison of Confusion Matrix Technique with Max Rule and Individual Classifier 

5   Conclusion and Future Work 

MFCC based VQ classifier, LPC based VQ classifier, and MFCC based HMM are 
combined to make Multiple Classifier System (MCS). Normalized measurement level 
outputs of the classifiers are combined by using Min Rule, Max Rule, Product Rule 
and Sum Rule. Combination technique Max Rule demonstrated good results as com-
pared to other combination technique. Max rule improves identification rate by 4.54% 
than best individual classifiers. But when classifiers are combined by using Confusion 
matrix, it shows improvement of 6.81% than best individual classifier and 2.27% than 
Max Rule in the proposed multiple classifier text-independent system. Experiment 
shows that Confusion matrix based MCS produces excellent result as compared to 
each individual classifier. These results are also better than various combination tech-
niques, i.e. Sum, Product, Min Rule, and Max Rule.  

In the identity of the speaker case studied, our proposed MCS for CISI system 
gives the same importance to the results obtained by each classifier. In order to en-
hance the performance in the decision process, the output of a classifier can be  
pondered by a weight, when its performance is better than other classifiers within the 
environment tested. It is our future validation in which we continuous making tests. 

References 

[1] Furui, S.: Recent Advances in Speaker Recognition. Pattern Recognition Letter 8(9), 
859–872 (1997) 

[2] Chen, K., Wang, L., Chi, H.: Methods of Combining Multiple Classifiers with Different 
Features and Their Application to Text-independent Speaker Identification. International 
Journal of Pattern Recognition and Artificial Intelligence 11(3), 417–445 (1997) 



 Text-Independent Speaker Identification Using VQ-HMM Model 125 

 

[3] Reynolds, D.A.: An Overview of Automatic Speaker Recognition Technology. Proc. 
IEEE 4, 4072–4075 (2002) 

[4] Godino-Llorente, J.I., Gómez-Vilda, P., Sáenz-Lechón, N., Velasco, M.B., Cruz-Roldán, 
F., Ballester, M.A.F.: Discriminative Methods for the Detection of Voice Disorder. In: A 
ISCA Tutorial and Research Workshop on Non-Linear Speech Processing, The COST-
277 Workshop (2005) 

[5] Xugang, L., Jianwu, D.: An investigation of Dependencies between Frequency 
Components ans Speaker Characteristics for Text-independent Speaker Identification. 
Speech Communication 2007 50(4), 312–322 (2007) 

[6] Huang, X.D., Ariki, Y., Jack, M.A.: Hidden Markov Model for Speech Recognition. 
Edinburgh University Press, Edinburgh (1990) 

[7] Linde, Y., Buzo, A., Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE 
Transaction on Communications 28, 84–95 (1980) 

[8] Higgins, J.E., Damper, R.I., Harris, C.J.: A Multi-Spectral Data Fusion Approach to 
Speaker Recognition. In: Fusion 1999, 2nd International Conference on Information 
Fusion, Sunnyvale, CA, pp. 1136–1143 (1999) 

[9] Premakanthan, P., Mikhael, W.B.: Speaker Verification /Recognition and the Importance 
of Selective Feature Extraction:Review. In: Proc. of 44th IEEE MWSCAS 2001, vol. 1, 
pp. 57–61 (2001) 

[10] Razak, Z., Ibrahim, N.J., Idna Idris, M.Y., et al.: Quranic Verse Recitation Recognition 
Module for Support in J-QAF Learning: A Review. International Journal of Computer 
Science and Network Security (IJCSNS) 8(8), 207–216 (2008) 

[11] Becchetti, C., Ricotti, L.P.: Speech Recognition Theory and C++ Implementation. John 
Wiley & Sons, Chichester (1999) 

[12] Kittler, J., Hatef, M., Duin, R.P.W., Mates, J.: On Combining Classifiers. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998) 

[13] Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision Templates for Multiple Classifier 
Fusion: An Experimental Comparison. Pattern Recognition 34(2), 299–314 (2001) 

[14] Shakhnarovivh, G., Darrel, T.: On Probabilistic Combination of face and Gait Cues for 
Identification. In: Proc. 5th IEEE Int’l Conf. Automatic Face Gesture Recognition, pp. 
169–174 (2002) 

[15] Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 16(12), 66–75 (1994) 

[16] Tumer, K., Ghosh, J.: Linear and Order Statistics Combiners for Pattern Classification. 
In: Sharkey, A. (ed.) Combining Artificial Neural Networks, pp. 127–162. Springer, 
Heidelberg (1999) 

[17] Chen, K., Chi, H.: A Method of Combining Multiple Probabilistic Classifiers through 
Soft Competition on Different Feature Sets. Neuro Computing 20(1-3), 227–252 (1998) 

[18] Kuncheva, L.I., Jain, L.C.: Designing Classifier Fusion systems by Genetic Algorithms. 
IEEE Tran. on Evolutionary Computation 4(4), 327–336 (2000) 



Towards One-Class Pattern

Recognition in Brain Activity
via Neural Networks

Omer Boehm1, David R. Hardoon2, and Larry M. Manevitz1

1 University of Haifa
Computer Science Department

Haifa, Israel 31905
manevitz@cs.haifa.ac.il, oboehm@cs.haifa.ac.il

2 Institue for Infocomm Research
Machine Learning Group

A*Star, Singapore
drhardoon@i2r.a-star.edu.sg

Abstract. In this paper, we demonstrate how one-class recognition of
cognitive brain functions across multiple subjects can be performed at
the 90% level of accuracy via an appropriate choices of features which
can be chosen automatically. The importance of this work is that while
one-class is often the appropriate classification setting for identifying
cognitive brain functions, most work in the literature has focused on
two-class methods.

Our work extends one-class work by [1], where such classification
was first shown to be possible in principle albeit with an accuracy of
about 60%. The results are also comparable to work of various groups
around the world e.g.[2], [3] and [4] which have concentrated on two-class
classification.

The strengthening in the feature selection was accomplished by the
use of a genetic algorithm run inside the context of a wrapper approach
around a compression neural network for the basic one-class identifi-
cation. In addition, versions of one-class SVM due to [5] and [6] were
investigated.

Keywords: One-class classification, fmri, fmri-classification, Neural net-
works, Genetic algorithms.

1 Introduction

In recent years, identifying cognitive activity from direct physiological data by
using functional Magnetic Resonance Imaging (fMRI) studies as data and iden-
tifying the cognitive activity directly from the brain scans has become a real
possibility. (See [2,4,3,1,7], to name a few.) This correspondence between physi-
ological information and specific cognition lies at the very heart of the goals of
brain science.
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Note that this work is, in a sense, the opposite of another area of central
concern for brain science, specifically, the problem of identifying which areas
of the brain are associated with various cognitive activity. However, there is a
strong synergy between these two activities. While it might, in principle, be
possible to identify the cognitive activity from full brain data, most researchers
in this area, starting with [4,2] have realized that the strong noise to signal ratio
in brain scans requires aggressive feature selection.

This noise to signal ratio has several origins:

– The inherent noise in the technological scan;
– The variability within a single subject;
– The fact that a brain is actually performing many tasks simultaneously and

one can not control for all of them;
– Brains are physically distinct across individuals and the mappings between

them are only approximate [8];
– MRI technology has limited resolution, so in a sense the original data is

always “smeared” in the spatial dimension.
– Activity levels are measured indirectly via blood oxygenation, so the data is

also “smeared” with respect to time.

In addition, considering the dimensionality of the data, one always has very few
data points. A typical scan has about 120 thousand voxels with real values, while
the expense and difficulty in acquiring fMRI data of an individual means that the
complete data set is in the order of a hundred samples. Thus, the problem being
tackled has small data size, large dimensionality, and a large noise to signal ratio.
A priori it would seem an unlikely endeavor. Nonetheless, the results reported
(beginning with Cox and Savoy [2] and with Mitchell et. al [4]) show that it is
possible.

In these works, methods to aggressively reduce non-relevant (noise) features
were applied. Note that if one manages to reduce the number of features, one is
essentially finding the voxels of the brain that are associated with the cognitive
problem; i.e. the complementary problem.

In this work we decided to focus on one-class classification rather than two-
class classification, for reasons that will be discussed below. (In our opinion it
is often the appropriate setting for this application). (See [9,6] for some further
information on one-class approaches and [10,11] for other interesting applications
of one-class methods.) The one-class classification here was used as an evaluator
in two different search approaches. We used a “wrapper approach” [12] to find
the relevant features with partial success. As a result, we decided to combine
this with a genetic algorithm to automate and improve the search for features.

We were able to consistently find features that allow differential classifica-
tion at about the 90% level which now makes this methodology applicable. (In
contrast, results on this task without feature selection were about 60% which is
similar to the reported results of [1] on a motor task.) However, as discussed be-
low, for evaluation of the effectiveness of this method, we need to use test data
from both classes. While this is necessary and standard for testing one-class
methods, from one point of view, this contaminates the “one-class” philosophy
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because one has to perform such evaluation many times in the genetic algorithm
during the feature selection. In future work, we hope to alleviate this problem
by showing that the results are somewhat robust in the choice of the data in the
second class.

As a secondary point, we expected to see that the selected features would
be focused in specific and contiguous areas of the brain in visual cortex. (For
example, “faces” features are expected to be in an area of the temporal lobe
known as the fusiform gyrus [13]). Surprisingly, this was not the case. In fact, no
voxels were found that were persistent between runs. Our interpretation is that,
the information needed for classification has percolated and it suffices to only
sample these dimensions, and the genetic algorithm picks out specific samples
which can vary.

The paper is organized as follows : section 2 discusses one-class versus two-
class classification; section 3 briefly describes the data set the experiments were
performed on; section 4 discusses feature reduction and our manual search; sec-
tions 5 describes how we used the genetic algorithm to this task; Section 6 dis-
cusses issues related to the “converse problem” of finding areas associated with
these tasks and finally, section 7 includes a summary and our intended future
directions.

2 One-Class versus Two-Class Classification

The problem of classification is how to assign an object to one of a set of classes
which are known beforehand. The classifier which should perform this classifica-
tion operation (or which assigns to each input object an output label), is based
on a set of example objects. This work focuses on the problem of one-class clas-
sification. In this case , an object should be classified as an object of the class
or not. The one-class classification problem differs in one essential aspect from
the conventional classification problem. In one-class classification it is assumed
that only information of one of the classes, the target class, is available. This
means that just example objects of the target class can be used and that no
information about the other class of outlier objects is present during training.
The boundary between the two classes has to be estimated from data of only the
normal, genuine class. The task is to define a boundary around the target class,
such that it accepts as much of the target objects as possible, while it minimizes
the chance of accepting other objects.

When one is looking for a two-class (or n-class with n ≥ 2) the assumption
is that one has representative data for each of the classes and uses them to
discover separating manifolds between the classes. While the most developed
machine learning techniques address this case, this is actually a very unusual
situation.

While one may have invested in obtaining reasonably representative data ad-
dressing one-class, it is unusual to have a representative sample of its comple-
ment in two-class learning. Similar problem can be exhibited in the information
retrieval field e.g. querying some search engine for ’houses’ will probably yeild
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reasonable results, but looking for anything other than a house i.e. search for
’not houses’ would probably yeild poor results. The same is true for the n-class
case.

A significant weakness of n-class filters is that they must be re-created as
data for each class is obtained, and divisions between sub-classes must all be
trained separately. Furthermore, essentially, one can never have sufficient data
to distinguish between class A and “anything else”. Thus, while one may initially
have data representing class A, B and C, one must then use two-class methods
to find a filter distinguishing between class A and B, class A and C, and class B
and C; or alternatively one must find a filter between class A and class (B or C)
and class B between (A or C); etc. two-class classification then becomes overly
specific to the task at hand. The assumption in using these filters will be that
the data comes from one of these classes. Should one wish to add class D, then
existing filters must be retrained, and many additional filters distinguishing D
from the rest of the above classes must be trained.

It is more natural to imagine a scenario where data is gathered for a partic-
ular kind of cognitive task and then, when data for another task is gathered, a
different filter is made for the new class. Thus one can incrementally build up a
library or “battery” of classification filters; and then test a new data point by
this battery. Of course, it would then be possible for a data point to pass several
such filters.

However, as expected, in earlier results by [1] the results for two-class classifi-
cation were superior to those of one-class classification. Their work showed that
while one-class classification can be done in principle, for this fMRI task, their
classification results (about 60%) were not sufficient for an actual application.

In this work, we have remedied this problem, by showing that one can obtain,
automatically, filters with accuracy close to their two-class cousins. The main
methodology was finding the appropriate features. This was a reasonable hope
given the large dimension of features given by the fMRI map (which were all
used in [1]) and since, as described above, most of these features can be thought
of as ”noise” for this task.

To do this we proceeded with the following main tools:

1. A choice of a one-class classifier approach. The two that we considered were
(a) The compression neural network [14,9].
(b) Different versions of one-class SVM [6,15]

2. The use of the wrapper approach [12] to judge the quality of features.
3. A manual ternary search proceeding by a ternary dissection approach to the

brain (at each stage using the one-class wrapper as an evaluator.)
4. Finally, the use of a genetic algorithm [16] to isolate the best features.

The one-class learning method was used to perform the evaluation function in
the manual search and the genetic algorithm.

Each of these steps has its own complications and choices. For example: Step
1a requires choosing an appropriate compression ratio for the one-class neural
network and, of course, choosing the training method. Step 1b has many variants;
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we did not exhaust all of them, but we found the results too sensitive to the
choices and so in the end used a version of 1a almost exclusively.

Step 3, being manual took too long; we used its results to help decide on the
initial conditions of the genetic algorithm.

In both step 3 and step 4, there is a need to evaluate the quality of the features
for discrimination. While it is standard in one-class to use the second class data
to evaluate the classifier, in this case, the results of this evaluation implicitly
affects the choice of features for the next step, and so distorts the pure one-class
learning method.

We have chosen to ignore this problem in this work; partially due to lack of
time and partially because the results seem robust to the choice of the second
class data. Below, in future work, we sketch how we hope to eliminate this
problem.

3 Task and Data Description

In the experiment that provided the data analyzed here, four subjects, inside a
MRI-scanner, were passively watching images belonging to five different semantic
categories as follows: human faces, houses, patterns, objects, blank image. The
blank image is considered as ‘null’, as if nothing is viewed. Normalization between
individuals were carried as suggested in [8] [17].

The time-course reference of the experiment is built from each subject viewing
a sequence of the first four categories separated by the “blank” category i.e.
blank, face, blank, house, blank, pattern, blank, object, blank. 147 fMRI scans
are taken over this sequence per subject; thus the ’raw’ data consists of 21 data
points for the first four semantic categories and 63 data points for the blank
image.

The individual fMRI images are dicom format (58 image slices) of size 46x46
overall consisting of 122,728 real-valued voxels.

4 Feature Reduction and Manual Search

4.1 Results without Feature Reduction

In some preliminary work, we ran this task without feature reductions, but
because of computational limitations at the time, we used every 5th slice out of
the 58 available. Thus the data was represented by 13,800 features. The one-class
task was run both with a compression neural network (60% compression) and
with a version of one-class SVM on the cross individual data. In this experiments
we used 38 positive samples for training and 25 positive and 25 negative samples
for testing repeated for 10 random runs. Table 1 shows the success rate when
trained on each category vs. blank for the neural network approach while Table 2
shows the results for one class SVM.

We see that we were unable to produce results above random using the one-
class SVM methodology. On the other hand, the compression neural network
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Fig. 1. Illustration of the fMRI scans taken during the experiment

Table 1. Combined Individuals - Bottleneck neural network with 60% compression

Face Pattern House Object

Blank 56.6% ± 3.8% 58% ± 3.7% 56.2% ± 3.1% 58.4% ± 3.1%

Table 2. Combined Individuals - One-class SVM Parameters Set by Subject A

Face Pattern House Object

Blank 51.4% ± 2.55% 52.20% ± 3.49% 53.7% ± 3.77% 52.4% ± 2.9%

produced significant results but only in the 60% level. Tests for trained category
versus other categories were similar.

This is comparable to results reported in [1] on identifying the fMRI correlate
of a motor task (”finger flexing”) using one-class learning (about 59% obtained
using either a compression neural network or a one-class SVM).

4.2 Feature Reduction via Manual Search

To recapitulate, our approach reduces the question of finding the features, to
a search amongst the subsets in the space of features. In this work, we have
examined both one-class SVM and compression neural networks as the machine
learning tool. These were investigated in [1] where it was found that the neu-
ral network approach worked somewhat better. This is not so surprising when
considering the work of [15], where it was shown, in a comparative study in a
textual classification task, that while both seem to have similar capabilities; the
SVM was much more sensitive to the choice of parameters.
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Fig. 2. Conceptual manual binary search via the one-class bottleneck neural network

The main emphasis of this work is the feature selection, using the wrapper
approach and the genetic algorithm approach. We followed two paths: initially
we worked by hand and did a primitive, greedy search on the subsets as follows:

– First, start with a “reasonable” area of the data scan; i.e. all background
dead area cropped out; the most external levels of the brain discarded. That
is, the raw scan had about 120,000 real valued voxels; after reduction we had
about 70,000 voxels.

– Second, divide (various options to do that) the brain into overlapping two
or three geometrically contiguous boxes (by selecting along one dimension)
- run the classifier and discard the lowest returns; Continue with the best
box as long as it classifies better than the previous loop.

– When all boxes do worse; consider either (i) perform a different division of
the boxes along the same dimension as before, but now of different sizes
that overlaps the previous chosen boxes or (ii) select the boxes by slicing
in a different dimension. (i.e. if the search was on boxes defined by the row
indices, now use the best row indices found and try to create boxes with
different column indices).

– Cease when no improvement is found.
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Table 3. Manual ternary search via the one-class bottleneck neural network for ’faces’
data. * indicates the chosen part. (If no part is chosen, the current path is terminated,
and a different division step is performed. See text).

Iteration [rows, columns, height] # features Houses Objects Patterns Blank Avg

1 [ 1-17,1-39,1-38] 25194 58% 56% 55% 60% 57%
[15-33,1-39,1-38] * 28158 62% 55% 64% 65% 62%
[30-48,1-39,1-38] 28158 55% 52% 50% 60% 54%

2 [15-33,1-39,1-15] 11115 61% 63% 55% 60% 60%
[15-33,1-39,13-30] * 13338 69% 68% 72% 70% 70%
[15-33,1-39,27-38] 8892 58% 57% 60% 60% 59%

3 [15-23,1-39,13-30] 6318 63% 69% 68% 62% 66%
[20-26,1-39,13-30] * 4914 70% 67% 76% 79% 73%
[25-33,1-39,13-30] 6318 60% 67% 70% 75% 68%

4 [20-23,1-39,13-30] * 2808 74% 70% 71% 73% 72%
[22-25,1-39,13-30] 2808 65% 73% 60% 80% 71%
[24-26,1-39,13-30] 2106 70% 69% 69% 68% 69%

5 [20-21,1-39,13-30] 1404 67% 65% 74% 63% 67%
[21-22,1-39,13-30] 1404 60% 63% 70% 64% 64%
[22-23,1-39,13-30] 1404 65% 63% 72% 68% 67%

6 [20-23,1-18,13-30] 1296 67% 66% 70% 72% 69%
[20-23,19-39,13-30] 1512 67% 70% 72% 78% 72%

Figure 2 illustrates a sample process of the manual greedy binary search. The
assumption was that the task ’relevant’ features reside in a relatively small con-
tiguous chunk in the brain.

Following this work, we were able to produce the following Table 3 of results:
(obtained on one of the possible search paths) Each data point (3D matrix) which
originally contained about 120,000 features was reduced as explained above into
about 70,000 features .([58 × 46 × 46] → [48 × 39 × 38]).

Table 3 represents the results in a specific run for the ‘faces’ (fMRI data
acquired for subjects while viewing images of faces). We used a bottleneck neural
network, with compression rate of 60%, which was trained solely for the ’faces’
data and then tested against the rest of the categories. This was averaged over
5-folds. The decision how to continue was according to the average over all
categories. As can be seen, this method brought us up to 80% accuracy on blank
data, and 72% on average.

For a control and comparison, we also considered random selection of about
the same proportion of features; and the results were not much above random.

5 Feature Reduction and the Genetic Algorithm

It is clear that this way of work is very tedious and there are many possible
intuitive choices. In an attempt to automate it, we decided, to apply a genetic
algorithm [16] approach to this problem, although the computational require-
ments became almost overwhelming.
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During experimentations we implemented and tested a variety of configura-
tions for the genetic algorithm. In general, each gene representation serves as a
“mask” where a “1” indicates that a feature is chosen.

We used population sizes in the range of 30 to 50. In the initial generation,
the creation function typically set “1” for about 10% of the features selected
randomly.

A typical configuration included

– the genome representation e.g. bit strings, three dimensional matrices. (the
matrix dimensions were set to be same as the “trimmed” data points).

– a selection function e.g. stochastic uniform, remainder, uniform and roulette.
– a reproduction method e.g. considered different amounts of elite members,

different crossover fractions and various crossover options i.e. two-point
crossover for bit string representation, or two planes crossing a cube for
three dimensional matrix representation.

– a mutation function e.g. Gaussian, uniform, adaptive feasible etc.

The evaluation methods are the heart of the genetic algorithm. Each implemen-
tation included similar steps, i.e. similar pseudo code, and the differences were in
the classifier type and data manipulations due to the different representations.
The evaluation method works as follows: Given a gene, recreate the data by
masking the gene (mask) over each one of the data points. The newly created
data set after this action is a projection of the original data set and should have
a significantly smaller dimension in each generation, due to the genetic pressure
resulting from choosing precise features for classification. This smaller dimension
also results in much faster classifier runs. Divide the new data into three parts :

– training data (60%) - taken from one class.
– threshold selection and testing data (20%) - taken from two classes.

Train the one-class classifier (either a bottleneck Neural Network or one-class
SVM ) over the training data (of all subjects)

Use threshold selection dedicated data and the trained classifier, to determine
the best separating threshold.

Finally test using the remaining testing dedicated data and calcluate a success
rate. The final evaluation function of the gene uses a weighted average of the

Table 4. Genetic algorithm results. The genetic algorithm was able to find a filter for
each class with a success rate almost similar to the ones produced for the two-class
classifiers.

Faces Houses Objects Patterns

Faces - 84% 84% 92%

Houses 84% - 83% 92%

Objects 83% 91% - 92%

Patterns 92% 85% 92% -

Blank 91% 92% 92% 93%
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Table 5. Comparison between one-class results without feature reduction and with
feature reduction via the genetic algorithm between trained classes and blank

Faces Houses Objects Patterns

Neural network without Feature Reduction 57% 58% 56% 58%

Neural network with Genetic Feature Reduction 91% 92% 92% 93%

success rate i.e. the number of the data points which were correctly classified
and the variance of each testing error from the threshold. That is, the evaluation
function tries to take into account the level of the certainty of each test answer.

We produced the results in Table 4 after 100 generations. During the run, we
kept track of ’good’ genes whose evaluation rate exceeded the weighted average
80, and then used the best ones.

In Table 5, we reproduce the results from Table 1 and the corresponding row
of Table 4. The dramatic increase in accuracy is evident. Similar increases can
be seen in all the other rows of Table 4.

6 Location of Areas of Brain Associated with Cognitive
Tasks

Having discovered features appropriate for classification; it is interesting to en-
quire whether or not these features are local, i.e. presented in a particular area of
the brain, or distributed. Of course, this can only be asked up to the resolution
of the fMRI data themselves.

To get a feel for this, we used Matlab visualization tools. We can show in
figure 3 a three dimensional location of the features (of one of the best genes

Fig. 3. A visualization of a ‘face’ data point and a chromosone (set of features) which
was able to show 91% separation success rate. The red dots indicate selected features.
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found by the genetic algorithm) unified with a high resolution contour brain
slices.

Surprisingly, although we have not yet quantitatively analyzed all of these
results, a visual analysis does not indicate, contrary to expectations, a strong
locality of the features. Thus we can not at this stage state which areas of the
brain are important for the classification of each task. It is not inconsistent with
our results that the best feature selection requires a non-trivial combination of
areas. Another possibility, as mentioned above, is that areas of importance in
the cortex need only be sampled to provide sufficient classification information
and the genetic algorithm just converges in each run to a different such sample.
A clarification of this issue awaits further analysis.

7 Summary and Future Work

Recognizing cognitive activities from brain activation data is a central concern
of brain science. The nature of available data makes this application, in the long
term, a one-class activity; but until now only two-class methods have had any
substantial success. This paper successfully solves this problem in the sample
visual task experimented on.

– We have shown that classifying visual cognitive tasks can be done by one-
class training techniques to a high level of generalization.

– We have shown that genetic algorithms; together with the one-class neural
network compression network can be used to find appropriate features that,
on the one hand, increase the accuracy of the classification to close to that
obtainable from two-class methods.

– Preliminary results show that this method may indicate non compact areas
of the brain must cooperate in order to be critically associated with the
cognitive task

This work needs to be extended to other (non-visual) cognitive tasks; and it
needs to be seen to what resolution the work can be carried out. Can specific
styles or specific faces of people be identified from these kind of mechanisms? Is
this a theoretical limit on either the accuracy or the resolution?
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Abstract. Real time tracking of musical performances allows for imple-
mentation of virtual teachers of musical instruments, automatic accom-
panying of musicians or singers, and automatic adding of special effects
in live presentations.

State of the art approaches make a local alignment of the score (the
target audio) and a musical performance, such procedure induce cumu-
lative error since it assumes the rendition to be well tracked up to the
current time. We propose searching for the k-nearest neighbors of the
current audio segment among all audio segments of the score then use
some heuristics to decide the current tracked position of the performance
inside the score.

We tested the method with 62 songs, some pop music but mostly clas-
sical. For each song we have two performances, we use one of them as
the score and the other one as the music to be tracked with excellent
results.

Keywords: entropy, index, proximity.

1 Motivation

Real time tracking of musical performances consists in establishing the position
of the current short segment of audio of a musical rendition of a test song as
is being played in relation to the score (the target audio). Among the possible
applications of real time tracking of musical performances we will briefly explain
three of them: The virtual music teacher, Automatic accompanying of single
players or singers, and automatic adding of special effects in live presentations.

For the virtual music teacher, the score is a well played musical piece inter-
preted by a trained musician. The music to be tracked is that generated by a
student. Normally, a music teacher handles only one student at a time, as the
student plays his instrument, the teacher gives him correction indications or
gives his approval at the end. A virtual teacher should do the same, it must use
the audio signal generated by the student, process it in real time and provide in-
dications to the student accordingly. Of course, the great advantage of a virtual
teacher is that it may multiply easily to manage many students simultaneously.
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For automatic accompanying of a singer or a single player of an instrument,
the score is an audio signal generated by the single player or singer without
accompaniment (e.g. without orchestra) and the music to be tracked is a live
performance of the same musician. The system plays the accompanying music
and at the same time generates actions (e.g. To introduce delays in the back-
ground music). This application can be thought of as an intelligent Karaoke.

For the automatic adding of special effects application, the score is the audio
signal recorded during a session of practice of the event, the tracked audio signal is
captured in the live event. Examples of actions are turning lights on or off, playing
sound effects or even launching fireworks at specific instants marked in the score.

2 Related Work

Real time tracking music systems are characterized by two aspects; The features
extracted from the audio signal, and the technique used to align the score with
the performance. Features are suppose to have every piece of audio in both the
score and the performance characterized. In [1] the dynamic beat period of the
signal is determined. In [2] the energy, delta energy, zero crossings, fundamental
frequency and delta fundamental frequency are the relevant features extracted
from the signal for audio tracking purposes. In [3,4], the global pitch, chroma
values, cepstral flux and the spectrum were the collection of features chosen for
tracking performances on line.

Once the signal’s feature set has been defined, an alignment technique is nor-
mally used to relate each time instant within the musical performance to the
corresponding time in the score. The classic approach to align two sequences
is known as Dynamic Time Warping (DTW) [5]. DTW consists of finding the
optimal warping function which states how one of the sequences should be short-
ened or stretched to reduce the differences between both sequences down to a
minimum. DTW was originally designed to align two sequences that are both
known a-priori. For our purpose (tracking musical performances in real time)
only one of the sequences is known a-priori (the score), the alignment has to be
performed as the other sequence arrives (the performance). Recently, in [6] and
[7] a variation of DTW, an “on-line time warping” was proposed as an adapta-
tion to allow for tracking musical performances on-line, the onsets of tones and
the increases in energy in frequency bins were used as features. The on-line time
warping algorithm attempts to predict the optimal warping path by partially
filling the matrix of costs with windows of a fixed size (such size is a free param-
eter of the algorithm), if the minimum cost is found in the rightmost column of
the window, then the filling advances column-wise, if it is found in the downmost
row of the window, then the filling of the costs’ matrix advances row-wise. The
algorithm advance both in row and column when the minimum cost is found in
the pseudo-diagonal. The real diagonal is not really known since one of the series
length (the musical performance under tracking) is unknown. The “on-line time
warping” algorithm toggles from row to column and viceversa when too many
times the algorithm has incremented the row number (or incremented the col-
umn number to many times in a row), the maximum number of times a decision
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may be repeated is another free parameter of the algorithm. In practice, the
“on-line time warping” algorithm tends to deviate from the optimal path since
the error is cumulative, this algorithm may completely loose track of the music.

In [2] Hidden Markov Models (HMMs) were used as the alignment tool. An
HMM is a doubly stochastic process with an underlying stochastic process that
is not observable (it is hidden), but can only be observed through another set of
stochastic processes that produce the sequence of observed symbols [8]. Finding
HMM’s parameters given a sequence of observations is a problem known as
training, this problem is solved by the Baum-Welch algorithm [9]. Using an
HMM (e.g. for tracking purposes) is the so called “evaluation problem” which
is solved by the forward or the backward procedure [10]. Finally the “Viterbi”
algorithm is used to try to discover the hidden part of the model (e.g. which
state should be connected to which states) unfortunately some critical decisions
has to be made by the designer of an HMM, mainly the number of states.

Since alignment is an optimization process, one interesting proposal is to use
particle filters and swarm optimization to produce the alignment, as described
in [1].

The rest of the paper is organized as follows: In the next section we explain our
novel technique for real time tracking of musical performances, there we provide
details both for the feature extraction module (audio-fingerprint determination)
and for the proximity index that we use instead of any alignment method (the
traditional approach for tracking musical performances). In Section 4 we describe
the test set, the experiments performed and results obtained, based on which
we arrived to some conclusions written in Section 5 where we also propose some
future extensions to this work.

3 Our Proposal

State of the art approaches use only local information for tracking performances
on-line. This implies a cumulative error, a misalignment in time t0 cannot be
recovered in any t > t0. The inductive hypothesis for dynamic time warping
or hidden Markov models is that the alignment is correct from all the previous
time frames and use this information to align the current frame. Even if such
hypothesis allows for designing of fast algorithms, it is more natural to assume
nothing about the past, thus allowing recovery from any possible previous error.

We propose in this paper to improve real time tracking of audio by the novel
idea of using a proximity index instead of an alignment tool, using not only local
but global information. We combine this idea with the use of an audio-fingerprint
of our own design. This two improvements create a very powerful tool able to
recover from past alignment errors, it is very fast and even tolerates noise on
both the score and the online rendition side.

As we explained in Section 2, any musical performance tracking system has
to extract features from the audio signal, we will now explain how we process
the signal to determine the more convenient audio signature, the Multi-Band
Spectral Entropy Signature which is by the way of our own design and was
adapted for the issue of this paper.
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3.1 Multi-Band Spectral Entropy Signature

In [11], the extraction of a very robust audio-fingerprint based on instantaneous
entropy computed in frequency bands was used for retrieving music by content.
The same audio signature was successfully used for automatic radio broadcast
monitoring in [12] with excellent results. We adapted our Multi-Band Entropy
Signature (MBSES) for the issue of tracking musical performances on-line, the
adapted MBSES is determined as follows:

1. The signal is processed in frames of 185 ms, this frame size ensures an ad-
equate time support for entropy computation. The frames are overlapped
by 3/4 (75%), therefore, a feature vector will be determined every 46 ms
approximately

2. To each frame the Hann window is applied and then its Discrete Fourier
Transforms is determined.

3. Shannon’s entropy is computed for the first 24 critical bands according to the
Bark scale (frequencies between 20 Hz and 7700 Hz). To compute Shannon’s
entropy, equation 1 is used. σxx and σyy also known as σ2

x and σ2
y are the

variances of the real and the imaginary part respectively and σxy = σyx is
the covariance between the real and the imaginary part of the spectrum.

H = ln(2πe) +
1
2
ln(σxxσyy − σ2

xy) (1)

4. For each band, decide if the entropy is increasing or not (e.g. compare with
previous frame’s band). Equation (2) states how the bit corresponding to
band b and frame n of the signature is determined using Hb(n) and Hb(n−1)
(The entropy values of frames n and n− 1 for band b respectively). Only 3
bytes for each 32 ms of audio are needed to store this signature.

F (n, b) =
{

1 if [Hb(n) −Hb(n− 1)] > 0
0 Otherwise (2)

After computing the MBSES in each overlapped audio frame the song is rep-
resented as a binary matrix with 24 rows (24 bands of Bark) and a number of
columns that depends on the duration of the song.

The MBSES corresponding to approximately one second of audio (1110 ms
to be precise) is a binary matrix of 24 rows and 24 columns. A single column
corresponds to 46.25 ms. The MBSES of the score can be seen as a sequence of
24x24 binary matrixes. Our purpose is to search the current one-second of audio
in the online rendition in every position of the score.

The training database stores the audio-fingerprint of each one-second segment
and the location of the segment inside the score. We will search for the k-nearest
neighbors (KNN) of the current one second segment of the rendition in the score
song, and will select among those the closest in time. The above procedure is
necessary because it can be the case the current segment correspond to a chorus
or a repeating segment of the score song.

The next step consist in speeding up the k-nearest neighbor searching, which
can be done using a metric index.
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3.2 Metric Indexes

A metric index organize a data set equipped with a distance function (a metric
space) to quickly answer proximity queries. We are interested in quickly answer-
ing KNN queries in the metric space defined by all the possible segments of the
score song. For the proof of the concept detailed in this work we selected the
Burkhard-Keller tree or BK-tree implemented in the SISAP library [13,14]. This
data structure is well suited for our task.

Fig. 1 shows a BK-tree built from an hypothetical 14-second MBSES shown at
the top of Fig. 1, Fourteen binary sub-matrixes are extracted and added to the
BK-tree, each correspond to one second of audio and are referred to as a,b,..n.
For the sake of space in Fig. 1 a,b,..n are 6x6 binary matrixes instead of the real
24x24 matrixes that result from extracting MBSES from of one-second excerpts.

Fig. 1. One-second excerpts are indexed using a BK-tree
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Fig. 2. Metric space related to the BK-tree shown in Fig. 1

The first submatrix read (Matrix a) becomes the root of the BK-tree, the second
one is compared to the root using the Hamming distance which turns out to be
21 (21 different bits), so it becomes a son of the root under the link 19-24 since
19 ≤ 21 ≤ 24, the third matrix read (matrix c) is next inserted, so it is compared
to the root, its Hamming distance to the root is 17 so it becomes another son
of the root under link 13-18 since 13 ≤ 17 ≤ 18. To insert matrix d, it is first
compared to the root, since its distance to the root falls in the rank 19-24 and
there is already a node there (matrix b), then matrix d has to be compared with
matrix b, it is then added as a son of matrix b under link labeled 7-12 since
7 ≤ Hamming(b, d) ≤ 12 (In fact, Hamming(b,d)=12). The rest of the matrixes
are inserted in the BK-tree the same way.

For the BK-tree in the example of Fig. 1 the bucket size in the nodes is bs = 6,
that is, the maximum number of children of a node, also, the ring width is s = 6,
that is the range of distances grouped in a single child of a node. To understand
that, observe Fig. 2, the root of the BK-tree from Fig. 1 (sub-matrix a) is located
at the center of the metric space. Six rings are shown around sub-matrix “a”,
each one has a width of rw = 6. Any sub-matrix must lie inside one of these rings
since the maximum Hamming distance between two 6x6 binary matrixes is 36.
Any sub-matrix that is a descendant of a son of the root lies inside the same ring,
therefore, sub-matrixes “e” and “m” lie inside the same ring, also sub-matrixes
“c”, “g”, “k”, “i”, “h”, and “j” conform a BK-subtree and lie inside the same
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ring. Any node that is a son of the root is itself the root of a BK-subtree, then
they are at the center of another set of rings, observe for example sub-matrixes
“n”, “d” and “f”, they lie inside the same ring centered at sub-matrix “b” and
since these sub-matrixes along with sub-matrix “l” conform a BK-subtree they
all lie inside the same ring centered at “a”. To find the nearest neighbors in the
Bk-tree, the rings whose distance to the center is less and less near the distance
between the query and the center.

4 Experiments

For 62 songs or masterpieces we were able to obtain another musical rendition
of it, for example for Beethoven’s Symphony Number 5 in C minor performed
by the Berliner Philharmonische Orchester conducted by Karajan we obtained
the Viena Philarmonic Orchestra version conducted by Kleiber, such collection
of songs and masterpieces conformed the data set for our tests.
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Fig. 3. Tracking of a performance of “All my loving” (The Beatles) for different values
of K (Number of nearest neighbors considered). Some tracking failures can be observed
for low vales of K.
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Fig. 4. The False Location Rate falls as K increases (left). An example of the recovery
after a false start in The Nutcracker using only one nearest neighbor (right).

For every pair of musical performances of each song or masterpiece in our
collection, we took the first one as the score and the second one as the rendition.
We extracted and indexed the MBSES of the score using the BK-tree with a
bucket size of b = 24 (the maximum number of children of a node) and a ring
width of s = 24 (the range of distances grouped in a single node).

For the online tracking we proceed as follows: For every second of audio we
extract its MBSES and then search for the K-nearest neighbors of it in the score
using the closest one in time. We then read the next second of audio and repeat
the process until the end of the performance. Fig. 3 shows the tracking of a
performance of the Beatles’ song (“All my loving”), the curves shown in Fig. 3
informs for each second of the performance where it was located in the score,
normally, if both the score and the performance are very similar in duration as
they are in the case of Fig. 3. We observe some peaks in Fig. 3 for low values
of K, these peaks are in fact tracking failures since they imply a jump from a
tracking position to another position that is not very near, we call this “false
locations”. We repeated the tracking for different values of K and observe that
such false locations disappear as K increases, in the example shown in Fig. 3
the tracking failures disappear for K = 6. Observe that the system recovers
almost immediately from false locations so they must not be considered has if
the system lost track of the music. An extreme example of this recovery is shown
in Fig. 4 (rigth).

Repeating the process described above for the rest of the musical performances
of our collection we determined the False Location Rate (FLR) for values of K
varying from 1 to 30. A false location is considered to appear when the short
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audio signal of a one-second length is located too far away in time from the
previous tracked piece of audio. The FLR is computed using equation 3

FLR =
False locations

False locations+ True locations
(3)

In Fig. 4 (left) the FLR resulting from tracking every second musical per-
formance of our collection and then varying the number of nearest neighbors
considered (K). We indexed the metric space representing the score using three
different distances. The first was the Hamming distance counting the number of
bits different in each 24x24 matrix. The second was the DTW distance, and the
third was the Levenshtein distance measuring the minimum number of insertions,
deletions and substitutions to make the matrices equal; we used a substitution
weight of 2, and the insertion and deletion weights were normalized between 0
and 1 using the Hamming distance between frames. We used up to 30 nearest
neighbors for the global alignment. Using either of the three distances we were
able to lower the false location rate arbitrarily. Since the Hamming distance is
the cheaper one of the three, we believe it should be the one we should select to
work.

4.1 Avoiding False Locations

For all practical purposes false locations should not lead to execute actions, that
is they should be avoided. False locations appear due to the fact that none of the
K nearest neighbors occur near the current tracking position in time. A simple
way to prevent undesirable actions to take effect as a result of a false location
occurrence can be stated like this:

When none of the K nearest neighbors occur near the current tracking position
then the tracking position in the score should not move as if the last short
segment of audio had not been received.

Once this modification was made to our tracking system the peaks such as
those in Fig. 3 no longer occur, not even for K=1.

4.2 Time Analysis

Two steps are required to find the location inside the score of a one-second
segment of audio taken from the tracked musical performance. The first step
consists in determining the MBSES (the audio-fingerprint) of the audio signal,
the second step is the search of the K nearest neighbors of the 24x24 matrix
extracted on the previous step using the BK-tree for that purpose. Using a
Dual-core 1.46 GHz pentium Laptop with 1GB of memory, 130 milliseconds
are needed to accomplish step 1 and only 10 milliseconds for step 2. Building
the BK-tree is performed prior to the tracking process and so its timing is not
critical. A real time application such as those discussed in the Motivation section
would use approximately 140 ms for every second of audio tracked without any
parallelization.
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5 Conclusions and Future Work

We successfully performed tracking of musical performances using a robust
audio-fingerprint by searching in a metric space using BK-trees as proximity
indexes. This approach does not require an iterative training process as Hid-
den Markov Models (HMMs) where the ideal number of states is unknown. Like
HMMs we take advantage of the fact that we know the score a-priori (unlike
on-Line DTW). It is very important to remark that our approach is a global
alignment tool not accumulating error and able to recover from false locations.
A single error cannot be considered has if the system completely lost track of
the music when this false location appear. Finally our approach has the addi-
tional advantage that the tracking could be started at any time, no alternative
approach is capable to begin tracking when the musical performance has already
started for example when the tracking system is turned on too late.

There are other alternative metric indexes that should be considered when the
metric space is larger than only one song. This can be very useful when a com-
plete collection of audio is indexed instead of a single song. We will investigate
the scalability issues of metric indexes for this particular application.
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Abstract. This paper contains the theoretical mechanisms of the techniques for 
non-convex shape recognition, through the use of contour chains and differenti-
ated weighting scheme on them. As an application example, we use a set of 
digital images that represent the various symbols contained in the dactylogical 
alphabet. First we introduce the reader to the many pre-processing and segmen-
tation techniques applied to the set of images. Later on, we describe the use of 
direction codes to code the symbols' contour. Finally, a novel differentiated 
weighting scheme is incorporated to an ALVOT-type algorithm, and then used 
for the supervised classification (identification) of the various symbols within 
the image set. The proposed methodology is then evaluated and contrasted 
through a series of experiments. 

Keywords: Dactylogical alphabet, contour chains, ALVOT algorithms,  
differentiated weighting diagram. 

1   Introduction 

The techniques of pattern recognition with contour chains suggests the use of sophis-
ticated procedures (Fourier transform, calculation of general momentums, generation 
of grammars, Markov models, etc.) that imply operations, formulas and domain 
changes very complex [6]. 

This methodology is based on a Simple Voting Algorithm (ALVOT) [10] which is 
designed with a differentiated weighting scheme on contour chains, extracted from an 
image, that work in the same space of representation this mean, does not require any 
domain change. 

The originality, simplicity and efficiency with which the chains are manipulated, 
results in an innovative and potential proposal to recognized non-convex shapes. To 
show the procedure and construction of this methodology we use, as an example, 
images that represent each of the letters of dactylogical alphabet. 
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Fig. 1. The word “Hello” 

To contrast our approach with respect to similar work in regard to the use of chains 
on the contour to recognize various forms are [13] and [14]. These proposals manipu-
late strings with methods that include changes of space and definition of more com-
plex models. Also, There are different studies that have proposed solutions to the 
problem of recognizing the symbols of the dactylogical alphabet [1], [2], [3], [4] and 
[5]. Nevertheless, the importance of this proposal, compared to the formerly men-
tioned ones, is the definition of a classification model based on a differentiated 
weighting formula for the contour chains that represent, in this case, the different 
positions of the dactylogical alphabet.  

 

Fig. 2. Block diagram of the classifier system 

This work contains a short introduction of the problem defined herein. Section 2 
shows the pre-processing and segmentation stages. Section 3 describes the process for 
extracting features and classifying. Section 4 explains the set of experiments made to 
measure the efficiency of the recognition. Finally, section 5 shows the conclusions of 
this work. 

2   Pre-processing and Segmentation 

The processing and segmentation techniques applied to alphabet images were the 
following: identify and uniformize of image background; Otsu method to threshold 
the image; morphological operations to obtain the external contour; application of a 
neighboring filter 4 to slim down the contour and eliminate noise. 
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Fig. 3. Pre-processing and segmentation of letter “L” 

3   Classification Methodology 

The use of direction codes to express the contour is a process that is part of the classi-
fication methodology, because these codes generate a contour chain which is a repre-
sentation pattern of each of the different hand positions. An aspect that must be high-
lighted is that contour chains are operated in their original representation space. This 
way, the comparison between codes is direct, thus avoiding the calculation of trans-
formations to other spaces, which would be more complex. 

Regarding the classification algorithm, the following is worth mentioning: it is su-
pervised; it uses a simple voting algorithm, and what is even more meaningful; it em-
ploys an ad hoc differentiated pondering schematic representation of the contour chains.  

The following paragraphs show a detailed explanation of each process carried out 
in this methodology. 

3.1   Direction Codes and Contour Chains 

A sequence of direction codes generates contour chains, which univocally determines 
the contour of an image. Direction codes represent the contour of an image by means 
of numeric values, as indicated by Figure 4. Each code represents, either the orienta-
tion of a set of points that form a straight line, or that of a set of segments with differ-
ent length and direction [9].  

 

Fig. 4. Direction Codes (8-neighbouring system) 
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Fig. 5. Contour chain for letter “L” 

Address codes are expressed without differences in direction between adjacent 
points due to the tolerance to rotation presented by the classification algorithm to 
some degree. (see section 3.3). 

3.2   Regions and Segments 

A fixed number of portions with the same length, called regions, are extracted from 
the contour chains. Each region is separated into three zones: initial, middle and end-
ing. Likewise, the values coded for each zone are averaged to get three-directional 
values for each region.  

When averaging the different zones of the regions we are able to: generate fixed-
length contour chains, offset the high sensitivity to noise that is present in address 
code chains and obtain the space trend of the address values present in that portion of 
the analyzed contour. At the same time, taking a fixed number of regions based on the 
contour chain allows us to solve the problem of scale invariance.  

Regions are gathered into sets called segments, which objective is to identify the 
more and the less significant areas in the contour chain which describes the different 
alphabet positions. Contrary to what happens in regions, a contour chain does not 
always have the same number of segments.  
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Fig. 6. Regions and segments of the contour chain of the “L” letter 

The above figure is an example of the contour chain corresponding to letter “L” 
with 10 regions (the gray shaded address codes indicate the end of a region) and 4 
segments (framed dotted). 

3.3   Classification 

The algorithm used to classify the images of the alphabet is a variant of a voting 
scheme (ALVOT) and shows three important characteristics: 

- It is a simple voting scheme because the pattern under classification is 
compared to each and every one of the patterns contained in the supervision 
sample. 

- The comparison between contour chains is made term by term.  
- It includes a weighting scheme differentiated by class. This means that the 

difference between two segments that belong to different chains will be 
weighted with a different value, depending on the class to which the pattern 
under study will be compared. 

The necessary elements for executing the classification algorithm are explained  
below.  

3.3.1   Comparison Criterion for Direction Codes 
The calculation of the similarity/difference between contour chains is based on the 
comparison of direction codes. This comparison is made through a function called 
Comparison Criterion (of a difference) between direction codes that give as result a 
numerical value that indicates the degree of difference between two direction codes 
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that have been compared. This value is in the [0:1] range, where: 0 represents the 
minimum difference (identical direction codes), and 1 represents the maximum differ-
ence (opposite direction codes). Since the comparison criterion is symmetrical1, and it 
has 8 different available directions, it is only possible to have three different compari-
son values. (see Figure 7)  

 

Fig. 7. Dynamics of the Comparison Criterion 

3.3.2   Dissimilarity Function between Contour Chains 
To find the difference between two patterns described by contour chains, the follow-
ing expression is used:  

( ) ( )
1 1

1 1
V js

j i i
j= i=j

f A,B = W Cc A ,B
S V

⎛ ⎞⎡ ⎤
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∑ ∑
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Where: 

 Α: is the pattern to be classified, 
 Β:  is a pattern in the supervision sample, 
 S: is the number of segments of the contour,  
 Vj: is the amount of direction codes in segment j, 
 Wj: is the weight assigned to segment j in the class, to which B belongs, 
 Cc: is the comparison criterion between direction codes.  

3.3.3   Choice of Weighting Scheme 
A visual analysis of the universe of studied images produced the following remarks: 

− All symbols have a unique contour. 
− The contour of the wrist area gives information of very little relevance because 

it is present in all of the alphabet images. 
− The contour area at the hand palm level contains more discriminating inform- 

ation because its position and orientation change for some hand positions. 

                                                           
1 Remember that a comparison criterion is symmetrical if it always assigns the same value for 

two direction codes with the same separation (as shown in Fig. 8), either clockwise or 
counter-clockwise. 
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− The contour area of the fingers is highly relevant because each one of the finger 
configurations is different for each symbol in the dactylogical alphabet. 

In order to get a weighted differentiation scheme, an informational weight (real value 
in [0,1]) is assigned to each segment identified in each class of the supervision sample 
depending on its relevance according to the execution of each symbol. This informa-
tional weight is different for each class in the supervision sample. 

Figure 8 illustrates the weighting of segments from letters W and Q. The contour 
parts framed with a solid line are elements of little significance; framed dotted we 
have the elements which are more significant for discrimination and in framed dashed 
we have the most significant elements.  

 
Fig. 8. Relevance of the segments of letters W and Q 

To calculate weights are commonly used, for simplicity, ALVOT. There is another 
alternative that is Testors Theory, however testors calculation is a problem of expo-
nential complexity and constantly looking for new options [12]. 

3.3.4   Learning Stage 
The learning stage consists in obtaining the difference value between the pattern un-
der classification with all of the patterns present in the supervision sample, by using 
the previously defined difference function (see equation 1). 

3.3.5   Voting Stage 
The voting function shows the amount of evidence available to indicate the class to 
which the pattern to be classified belongs. In this algorithm, the vote for pattern P to 
be in class Cj ( ( )

jCV P ), is the average of the differences between pattern P and all the 

patterns contained in class Cj of the supervision sample. The following expression 
defines the Vote Function:  

( ) ( )1
C j

X Cj j

V P = f P,X
C ∈

∑                           (2) 
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where: 

  P: is the pattern to be classified. 
 |Cj |: is the cardinality of the Cj class. 
 f(P,X): is the calculated difference between the P and X∈Cj. patterns. 

3.3.6   Rule for Obtaining the Solution 
This procedure consists on defining, based on the information obtained from the 
votes, the class(es) to which the pattern to be classified will be assigned, as well as its 
degree of membership in these classes. Classes are modeled as crisp sets so the mem-
bership of a pattern to any class can also take the values: 1 (if it belongs) and 0 (if it 
does not belong). The pattern is assigned to the class in which it has the minimum 
vote. In case of a tie in the voting of two or more classes, the rule for solution in-
cludes a specific procedure to solve these cases: 

1. Calculate a holotype2 for each of the classes in the tie. 
2. Compare the pattern to be classified with each of the calculated holotypes. 
3. Assign the pattern to the class which holotype shows the smallest difference 

to the original pattern. 

In case that a tie persists, calculated the centroids for each of the classes in the tie, 
assign the pattern to the class which centroid shows the smallest distance to the origi-
nal pattern. 

4   Experimental Results 

As a basis for the recognition methodology proposed in the previous section, a set of 
numerical experiments were performed. These experiments include tests regarding 
tolerance to rotation, and size of the supervision sample. At the end of each experi-
ment a discussion of the expected results is included. 

To form our initial sample of application, a total of 375 images from 15 different 
people were taken. Only hand positions which did not represent movement were cap-
tured. We used the Mexican dactylogical alphabet [11]. At the classification stage, the 
number of regions forming the contour chain was 40. 

The bank of images was divided into two disjoint sets, the first one plays the role 
of supervision sample and the second one is the control sample.  

4.1   Experiment #1: Initial Recognition without Differentiated Weighting  

This experiment was set to find the recognition effectiveness when applying the 
classification methodology without considering the differentiated weighting on the  
contour chains. Therefore, we took a supervision sample with 192 images and a 
control sample with 100 images. Table 1 shows the results obtained from this  
experiment. 

                                                           
2 The holotype of a class is defined as the pattern whose average similarity with the rest of the 

elements in the same class is optimum. 
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Table 1. Results yield by experiment #1 

Supervision Sample Control Sample % Right answers % Wrong  
answers 

192 100 48 52 

4.1.1  Discussion  
Results yielded by this first experiment were not satisfactory to conclusively recog-
nize the alphabet images. The relevance of weighting the contour chain is shown in 
the classification efficiency; the algorithm faces some pattern confusion due to the 
fact that all the areas corresponding to the contour chain have the same relevance. 

4.2   Experiment #2: Initial Recognition with Differentiated Weighting  

This experiment will give us an approximate idea of the accuracy achievable in an 
actual recognition context. In case unsatisfactory results are obtained, the necessary 
adjustments must be made.  

The supervision sample has 192 images (8 images of each symbol made by differ-
ent people) and the control sample has a total of 100 (4 images of each letter). 

Table 2. Results yield by experiment #2 

Supervision Sample Control Sample % Right answers % Wrong  
answers 

192 100 80 20 

It is important to mention the fact that even if the great majority of the works that 
have been written about this topic the ratio of patterns contained in these two samples 
is 80-20 (80% patterns in the supervision sample and 20% in the control sample), in 
this case we made an a priori assumption: that given the characteristics of the classifi-
cation algorithm having twice as many supervision samples compared to the control 
elements was enough (which yields an approximate 65%-35% ratio).  In Table 2 we 
show the recognition ratio achieved by Experiment #2. 

4.2.1  Discussion  
In spite of the fact that the supervision and control samples do not have the typical 
80%-20% ratio, results obtained were satisfactory. Even when the methodology does 
not get the right answer in some cases, if the number of cases is increase in both sam-
ples, a better recognition will be achieved. 

There is an interesting peculiarity that is worth mentioning: some letters are treated 
in a very similar way, like “M” and “N” or “G” and “H” [11]. The consequence is that 
most of the patterns classified wrongly, fall into very similar classes. This can be 
solved by adjusting the differentiated weighting schematic between them to achieve 
more efficiency in the discrimination.  
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4.3   Experiment #3: Tolerance to Rotation  

This test is aimed at showing tolerance to image rotation through two representations 
of the chain code. The first representation consists of taking the difference between 
every two points of the chain to make it invariant to rotation and the second one takes 
the address codes according to the proposed methodology for solution. 

Three image banks were used: two control samples and a supervision sample. The 
first control sample contains artificially rotated images and the second one has images 
of new hands captured with different rotation changes. Both samples were tested with 
differentiated and with not differentiated address codes. 

4.3.1  Artificially Rotated Images  
In this test, two groups of images were artificially rotated: the ones misinterpreted 
when rotated (“C”, ”G”, ”L”, ”P”) and the ones which are not misinterpreted when 
rotated (“A”, ”D”, ”O”, ”W”). Images were rotated starting from − 45o to +45o, with 
2o increases. The recognition was made with differentiated and not differentiated code 
chains. Table 3 shows the tolerance level achieved, with undifferentiated code  
representation.  

Table 3. Table with the results obtained in experiment #3 (Artificially rotated images with 
undifferentiated address codes) 

Supervision 
Sample 

Control 
Sample 

Test Groups Rotation Tolerance 

192 138 Letters not misinterpreted 
when rotated (A, D, O, W). 

±45º 
2º increases 

±21º 
 

192 138 Letters misinterpreted when 
rotated (C, G, L, P). 

±45º 
2º increases 

±21º 
 

 
Next table shows the achieved tolerance level with differentiated code representation. 

Table 4. Table with the results obtained in experiment #3 (Artificially rotated images with 
differentiated address codes) 

Supervi-
sion Sample 

Control 
Sample 

Test Groups Rotation Tolerance 

92 138 Letters not misinterpreted 
when rotated (A, D, O, W). 

±45º 
2º increases 

None 

192 138 Letters misinterpreted when 
rotated (C, G, L, P). 

±45º 
2º increases 

None 

4.3.2  Images Captured with Rotation Changes 
In this experiment we captured images of two letter groups. The first group is made of 
symbols that are confused with other symbols of the dactylogical alphabet when they 
are rotated (“C”, ”G”, ”L”, ”P”) and the second one contains letter symbols that are 
not confused when they are rotated (“A”, ”D”, ”O”, ”W”). Rotation changes were 
made from 0o to 90o approximately [11]. 
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Table 5 shows the results obtained from the application of recognition to control 
samples of groups that are misinterpreted when the hand rotates, and to those who 
don’t. The pattern representation was made with undifferentiated direction codes. 

Table 5. Table with the results obtained in experiment #3 

Supervision  
Sample 

Control 
Sample 

Test Groups Rotation Tolerance 

     
192 30 Letters not misinterpreted when 

rotated (A, D, O, W). 
16 22 

192 30 Letters misinterpreted when rotated 
(C, G, L, P). 

11 21 

Table 6 shows the results obtained when making experiments with both test samples. 
In this case, differentiated chain codes were used. 

Table 6. Table with the results obtained in experiment #3 (Images captured with rotation 
changes and differentiated direction codes) 

Supervision 
Sample 

Control 
Sample 

Test Groups Rotation Tolerance 

192 45 Letters not misinterpreted when 
rotated (A, D, O,W). 

5 21 

192 30 Letters misinterpreted when rotated 
(C, G, L,P). 

0 21 

4.3.3  Discussion 
In the literature, the difference between two points of the chain is frequently used in 
order to make the chain invariable with regard to rotation. Nevertheless, the method-
ology proposed herein uses non-differentiated direction codes. Experimenting with 
both representations was basic to determine that differentiated direction codes hamper 
the efficiency of the recognition. The ability of our methodology to support ±21º of 
tolerance to rotation in dactylogical symbol images, compared to the classical model, 
which shows very poor results, is worth noticing.  

The failure of the classical model is due to the fact that the difference between 
every two points of the chain shows a smaller variation in the direction code values, 
making them become more similar and less differentiated. The opposite effect is ob-
tained with the proposed methodology, in which there is no difference between direc-
tion codes, therefore allowing more variations in the regions that divide the contour.  

The wrongly classified patterns that correspond to the hands captured with differ-
ent rotations belong to letters expressed with bad spelling. The tests showed that rotat-
ing letters such as “C”, “G”, “L” and “P” more than 45º causes confusion, as in the 
case of a letter “C” rotated more than 45º which may be mistaken by a letter “Q”. 
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The results achieved here exceed the expectations contained in the classification 
methodology. The range of tolerance grants enough flexibility to execute a dactylogi-
cal symbol with different rotations without causing any confusion or bad spelling. 

4.4   Experiment #4: Sample Distribution 

This experiment basically consists of calculating the minimum and maximum recogni-
tion percentages with different proportions in the supervision and control sample. This 
means that 6 supervision and control samples were created: in the first case, the super-
vision and control sample was formed with a 20%-80% proportion; the second was 
formed with a 40%-60% and in the third with a 20%-40%; The fourth one with a 40%-
20%; the fifth one with a 60%-40% and the sixth one with 80%-20%. (see Figure 9). 

 

Fig. 9. Results of experiment #4 

4.4.1  Discussion 
The conclusion is that, the more learning is acquired from the supervision sample, the 
better the recognition efficiency of the images will be. The fact that the 80%-20% 
recognition showed the highest percentage of recognition compared to the 20%-80% 
one, which obtained the lower percentage, is worthwhile highlighting.  

Two important aspects are worth noticing: the first one is that the higher the amount 
of elements in the sample, the better the learning will be. The other aspect underlines 
the quality of the experimental results, which were quite satisfactory, thus reasserting 
the effectiveness, originality, simplicity and robustness with which the methodology 
for solution faces the problem of recognition of the dactylogical symbols.  

Lastly, it was not necessary to make a special experiment for the different hand 
sizes because the problem of invariance at a scale was solved by separating the con-
tour chain into a fixed number of regions.  

5   Conclusions 

The first aspect to be highlighted is that an innovative criterion for comparing direc-
tion codes with an 8-directional schematic operating on its own representation scale 
was defined. The second remark is related to the great similarity of patterns that  
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belong to different classes. Therefore, setting a differentiated weighting scheme on 
the more and the less meaningful parts of the contour of a dactylogical symbol is quite 
necessary. When we established this scheme as a part of ALVOT, we were able to 
increase the precision of recognition noticeably, at the same time keeping the known 
simplicity of an algorithm of the ALVOT family. Later on, the importance of using 
direction codes without there being a difference between them, like in the classical 
model, was recognized. This was due to the fact that a comparison criterion and an ad 
hoc similarity function that treats direction codes in a simple way, was developed. 

Another aspect to be considered is the tolerance to scale solved through the divi-
sion of the contour chains into a fixed number of regions. Also, tolerance-to-rotation 
levels are noticeable due to the fact that we do not need to rotate the hand too much 
when making a dactylogical symbol, because this would mean that the letter repre-
sents a spelling mistake. 

The next thing to be acknowledged is that if we add atypical elements, such as the 
images of dactylogical symbols excessively rotated, a better learning is achieved, thus 
increasing the recognition efficiently remarkably.  

Another thought is that the recognition efficiency completely depends on the 
weighting scheme, which does not represent weakness, but an advantage, because this 
methodology was created to use weightings that may be adjusted, improving recogni-
tion considerably.  

Finally, and perhaps the most important item to be highlighted is that the recogni-
tion methodology may be generalized as a methodology for the recognition of non-
convex figures, taking advantage of the differentiated weighting scheme and the  
representation through contour chains. 
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Abstract. One way to organize knowledge and make its search and
retrieval easier is to create a structural representation divided by hierar-
chically related topics. Once this structure is built, it is necessary to find
labels for each of the obtained clusters. In many cases the labels have to
be built using only the terms in the documents of the collection. This
paper presents the SeCLAR (Selecting Candidate Labels using Associa-
tion Rules) method, which explores the use of association rules for the
selection of good candidates for labels of hierarchical document clusters.
The candidates are processed by a classical method to generate the la-
bels. The idea of the proposed method is to process each parent-child
relationship of the nodes as an antecedent-consequent relationship of
association rules. The experimental results show that the proposed me-
thod can improve the precision and recall of labels obtained by classical
methods.

Keywords: label hierarchical clustering, association rules, text mining.

1 Introduction

The automatic organization of available textual information is a task that has re-
ceived much attention in recent years. One way to organize knowledge and make
its search and retrieval easier is to create a structural representation divided
by hierarchically related topics. This structure can be obtained automatically
by applying hierarchical clustering algorithms or can be constructed and main-
tained by domain experts, as in cases of online directories of Yahoo or Open
Directory Project [12]. The more general knowledge of the collection is at the
highest levels of the hierarchy and the more specific at the lower levels.

Once this structure is built, it is necessary to find labels for each of the
obtained clusters. Labeling clusters is a common task in text mining and infor-
mation retrieval. Generally, the methods find a list of discriminative terms, that
are used to facilitate information retrieval or interpretation of each cluster [7].

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 163–176, 2010.
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In many cases the labels have to be built using only the terms in the documents
of the collection. The simplest method is to select the most frequent words in
the documents of the cluster. This list reveals the topic at a higher level, but
can fail to depict specific details of the cluster [8].

The label selection methods found in the literature can be divided into me-
thods based on frequency, as in the previously mentioned method, centroid-based
methods, as proposed in [4], and methods based on probabilistic models ([3], [7],
[8], [12]). These works consider each document as a bag-of-words and do not
explore explicitly the relationship between the terms of the documents.

Thus, this paper presents the SeCLAR (Selecting Candidate Labels using
Association Rules) method, which explores the use of association rules for the
selection of good candidates for labels of hierarchical clusters of documents.
This method generates association rules based on transactions built from each
document in the collection, and uses the information relationship between the
nodes of hierarchical clustering to select candidates for labels, as described in
Section 3. Once selected, the candidates are processed by a classical method to
generate the labels, obtaining the final set of labels for nodes in the hierarchy.

The paper is structured as follow: Section 2 presents a brief review of concepts
used in this work and some methods found in literature. The proposed method is
described in Section 3. Section 4 contains the results of the performed evaluation.
Finally, conclusions and future work are presented in Section 5.

2 Related Works

In many problems, such as organizing a digital library, the hierarchical clustering
of documents is already built. In these cases, a set of labels must be obtained
for nodes in the hierarchy respecting the existing organization and using the
information contained in the collection. The task of identifying discriminative
words in each cluster can be viewed as an attribute selection problem [13].

An idea that is independent on the way the hierarchy is obtained and with
the aim to avoid unnecessary word repetitions is presented in [8]. It starts from
the root to the leaves of the tree, checking all the nodes. Each node receives a list
of possible labels consisting of all terms of the documents associated with this
node. In order to select the final list of labels, each term with frequency greater
than zero is evaluated according to their degree of dependence or association
with each child node. If the hypothesis of independence is accepted, then the
word belongs to the parent node and is removed from the child. Otherwise, it
is associated with the child nodes and removed from the parent node. One of
the problems of this method is to guarantee the convergence of the difference
distribution between the observed and expected values for χ2 distribution, used
in the tests when the expected values are very small (close to zero).

The authors of [7] proposed RLUM - Robust Labeling Up Method - based on
the ideas of the method presented in [8]. This method solves more directly the
issue of repetition of the labels and includes the use of a more robust statistical
test that does not depend on empirical threshold estimation. Moreover, the goal
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is to distribute the terms along the hierarchy, avoiding unnecessary repetitions
in the same branches, keeping the most generic terms in the high levels and the
most specific terms in the lower levels. The RLUM is more robust and has a lower
complexity than the method proposed in [8]. However, this method considers the
documents as a bag-of-words and does not consider the relationships between the
terms in documents.

The proposal described in [5] uses association rules as labels of non-hierarchical
clusterings. According to the authors, the association rules carry an intrinsic se-
mantic level, which is not possible to determine through a simple frequency
count. The generated association rule is used as a label of the cluster, and the
generation of rules also considers each document as a bag-of-words. Moreover,
the association rules are easily understood and interpreted by a specialist as well
as a normal user [6].

3 Proposed Method

Observing the characteristics of association rules and previous works, this paper
proposes the SeCLAR - Selecting Candidate Labels using Association Rules. The
general idea of the proposed method is to consider each relationship parent-child
between nodes as the type of antecedent-consequent relations used in association
rules. It is assumed that the parent node influences each of its child nodes, and
thus selecting labels for the parent node should reflect this information.

The SeCLAR inputs are a hierarchical clustering H built from a set of docu-
ments D, a set of nodes N associated with H and a set of terms T previously
selected for the set of terms in the collection. Set D is formed by documents
used to build the hierarchy. In case of any preprocessing step of documents,
like cleaning, standardizations and removal of words, the files obtained at the
end of the process are used. Each node of set N has a set D′ of documents
associated with this node so that D′ is a subset of D. Set T is formed by all
terms in the documents of set D, as well as by the information of relationship
between terms and documents, and by a measure of frequency associated with
this relationship, usually represented by a attribute-value matrix. This measure
can be, for example, the information about the absolute frequency of the term
in the document.

The method presented in Algorithm 1 also considers the following parameters
as input: (i) window size is used to adjust the window size used to transform
the documents into a set of transactions (details in Section 3.1); (ii) measure
refers to objective measure that will be used to select a subset of association
rules, implemented by Algorithm 3 (details in Section 3.2); (iii) K represents
the maximum number of association rules selected in Algorithm 3 according to
the measure chosen in Parameter measure; (iv) minsup and minconf are the
values of minimum support and minimum confidence, respectively, used by the
algorithm to generate association rules.

The process begins with the generation of sets of association rules associated
with each node of the hierarchy (lines 1-4). The auxiliary algorithm generate-
association-rules transforms these documents on transactions and obtains a set
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of association rules for this node (Section 3.1). Then the process of selecting
candidates for labels is run (lines 5-8). The strategy to traverse the nodes (line
5) consists of exploring the most left child node not yet visited. If all child nodes
have been explored, the execution continues processing the node visited. This
strategy is important because it influences the result of the auxiliary algorithm
select-candidate-labels described in detail in Section 3.2. It is possible to adopt
other strategies to traverse the hierarchy, which were not evaluated in this work.

Algorithm 1. SeCLAR
Require: Hierarchical clustering H; set N={n1, ..., nm} of nodes associated with H; set

D={d1, ..., dk} of documents associated with H; set T={t1, ..., tj} of terms; window size: win-
dow size; measure: an objective measure to select association rules; K: maximum number of
association rules selected for each node; minsup and minconf : the values of minimum support
and minimum confidence to generate association rules.

Ensure: Hierarchical clustering H′ with candidate labels for each node.
1: for each node ni ∈ H do
2: Retrieves the set D′ ⊆D of documents associated with the node ni

3: Ri ←generate-association-rules(ni, D′, window size, minsup, minconf)
4: end for
5: for Visits the tree nodes from the leaves to the root, and for each node ni ∈ H do
6: Retrieves the set N ′ ⊆N of the children nodes of ni

7: Labelsi ←select-candidate-labels(ni, N ′, measure, K)
8: end for
9: H′ ←remove-nodes(H)

Finally, the algorithm remove-nodes described in line 9 checks whether all
nodes of the hierarchy have candidates for labels. If the set of candidates of
any node is empty, we chose to remove this node from the hierarchy and their
descendants are joined at the direct antecedent of the removed node according
to process described in Section 3.3. The result obtained at the end of this process
is used as input by a classical label selection method, as presented in Section 3.4.

The algorithms mentioned in lines 3, 7 and 9 will be described in detail in the
following sections.

3.1 Generate the Association Rules for Each Node

It is necessary to transform documents associated with the node into a set of
transactions to generate association rules for each node in the clustering. This
paper assumes that for each node ni ∈ N it is possible to transform documents
associated with this node in a set of transactions and, from this set, generate
association rules. The method described in Algorithm 2 executes this transfor-
mation and obtains the set of association rules of the node ni.

The input for this method are all preprocessed documents available in the
node. For each document di, the words in the sequence they appear in the do-
cument are obtained (line 3). The i-th word found is added to the set which
will form the new transaction. After that, the consecutive not repeated words
is added into the set that will form the transaction. The process is repeated
until the set has window size size or until it is not possible to get words in the
processed document (lines 4 the 11). The transaction formed is added to the set
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of transactions related to the node ni (line 12), and the process runs until all
documents are processed in the transactions. At the end of this process, the set
of transactions owned by the node is processed by an algorithm to generate asso-
ciation rules (such as Apriori [1]), and the obtained set is stored (line 15). This
conversion process using windows enables the exploration of the relationships
among words in documents with different levels of granularity.

Algorithm 2. generate-association-rules Method
Require: D′ ⊆D of documents associated with the node ni; window size: window size; minsup:

minimum support value; minconf : minimum confidence value.
Ensure: The set Ri of association rules of the node ni

1: Transactionsi ← ∅

2: for Each document dk ∈ D′ do
3: for i←1 to |words in dk| do
4: transaction← ∅

5: w ← i
6: while |transaction| <= window size AND i + w <= |words in dk| do
7: if {wordi+w}/∈ transaction then
8: transaction← transaction ∪ wordi+w

9: end if
10: w ← w + 1
11: end while
12: Transactionsi ← Transactionsi ∪ transaction
13: end for
14: end for
15: Ri ← generate-rules(Transactionsi, minsup, minconf)

3.2 Select Candidate Labels

After obtaining the set of association rules for all nodes, the candidate labels for
each node ni are selected. The proposal is to use association rules of each child
node ni as described in Algorithm 3.

Algorithm 3. select-candidate-labels Method
Require: measure: an objective measure to select association rules; N ′: the children nodes of ni

K: maximum number of association rules to be selected for each node.
Ensure: The set of candidate labels associated with the node ni

1: Labelsi ← ∅

2: if (ni is leaf) then
3: Labelsi ← The current set of terms of ni

4: else
5: for j ← 1 to

∣∣N ′∣∣ do

6: Retrieves the set Rj of association rules of the node nj ∈ N ′

7: TopRules←select-best-rules(Rj, measure, K)
8: for w ← 1 to |TopRules| do
9: Rule← TopRules[w]
10: Antecedent← Rule.Antecedent
11: for Each term ∈ Antecedent do
12: if {term}/∈ Labelsi AND {term} is not a candidate label of any descendent of

ni then
13: Labelsi ← Labelsi∪ {term}
14: end if
15: end for
16: end for
17: end for
18: end if



168 F. Fernandes dos Santos, V. Oliveira de Carvalho, and S. Oliveira Rezende

Initially, the algorithm checks the node type to decide which strategy will be
adopted. It is not necessary to select leaf nodes since they don’t posses any child
node. Thus, if the node ni is a leaf node evaluated in the hierarchy, all terms
are added to the list of possible candidates. If the node is not a leaf, the method
select-best-rules in line 7 retrieves the K top association rules for each of the sets
of rules from the child nodes of ni. From this subset the items of the antecedent
of each rule are selected and added to a set of possible labels of the node ni

(lines 8-17). The K top association rules are the ones which have the highest
objective measure values.

The proposed method uses the items in the antecedent of the association rules
of its child nodes to explore the relationship antecedent-consequent as mentioned
in the beginning of Section 3. Thus, it is expected that the selected labels for
a node are those that best describe the information contained in their children,
exploring the existing hierarchical organization. The items in the consequent of
the association rules are not used in the selection process, since Algorithm 3 is
applied recursively to all nodes. It is important to note that a good choice for
the selected labels depends on the objective measure.

The method does not allow a node to have as a candidate label a term that
is already used by a descending not leaf node and, as a consequence, the terms
are not replicated in the hierarchy (line 12). Therefore, it is possible that one or
more nodes have at the end an empty set of labels. However, this restriction does
not prevent the same label to be used in nodes of a same level or in different
branches of the hierarchy.

3.3 Removing the Hierarchy Nodes That Contain No Labels

After applying the method presented in Algorithm 3 on all nodes of the hierarchy,
it is possible that the set of labels of some nodes remained empty. In this case,
the node is removed from the hierarchy, and their descendants are associated
with the parent node of the removed node.

Algorithm 4. remove-nodes Method
Ensure: Hierarchy H updated
1: for each node ni ∈ H AND ni isn’t root do
2: if Labelsi = ∅ then
3: Retrieves the set N ′ ⊆N of child nodes of ni

4: Retrieves the set Np ⊆N of child nodes of parent node of ni

5: Np← Np ∪N ′

6: Remove ni of Np
7: end if
8: end for
9: Return H

The method takes as input an entire processed hierarchy. Then it visits each
node to check if the set of candidate labels is empty (line 2). If the set of candidate
labels of a node ni is empty, the existing connection with the node and its child
nodes are removed and each child is linked to the parent node of ni (lines 3-5).
Finally, node ni is removed from the hierarchy (line 6).
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Particularly, the removal is important because SeCLAR will be used com-
bined with a classical method to select labels as described in next Section. Many
classical methods don’t make any cutting in the hierarchy, and the final result
after processing would be a cluster with multiple nodes without labels.

3.4 Combining SeCLAR with Traditional Methods

The traditional label selection methods presented in Section 2 receives as input
a hierarchical clustering H , built from a set of documents D, a set of nodes N
associated with H and a set of terms T previously selected from the set of terms
present in the collection. They select the labels using as candidates all terms
present in the set T .

The SeCLAR, as proposed in this work, selects the terms present in the set T ,
obtaining a subset T ′ ⊆ T containing the terms considered as the best candidates
labels. The SeCLAR receives as input a hierarchy H as described above, and the
output is the hierarchy H ′ containing the set of documents D, the set N ′ ⊆ N
of nodes associated with the H ′, and the set T ′ of selected candidates terms.

Thus, a hierarchical clustering can be processed as demonstrated in Figure
1. For the approach using the traditional methods, the hierarchical clustering
(step 1) is used as input for the traditional method (step 3). For the proposed
approach, the hierarchy is sent to the SeCLAR (step 2). The output of this
step is a hierarchy with the pre-selected candidates labels, which is sent to the
traditional method (step 3). In both cases, the result is a hierarchical clustering
with the selected labels (step 4).

Fig. 1. Selecting labels using traditional approach and the proposed approach

The results obtained in the evaluations presented in Section 4 indicate that
the combined use of SeCLAR and literature methods result in more specific
labels and helps the recovery of documents organized by that hierarchy. This
combination improves the level of analysis of traditional methods without mo-
difying them.
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4 Experiments and Results

There are no standard procedures to evaluate hierarchies although some at-
tempts have been made. Besides the fact that the evaluation is difficult even
when a group of volunteers is willing to participate. It also depends on the task
the hierarchy is designed for [2]. The methodology proposed in [7] and described
in Section 4.1 were used to compare the results obtained using the SeCLAR
combined with the label selection methods presented in Section 2.

SeCLAR has some parameters that need adjustment, so the evaluation was
divided into two stages. First, the different configurations for the SeCLAR are
evaluated (Section 4.3). The second stage evaluates the impact of using SeCLAR
along with methods present in the literature (Section 4.4).

For these evaluations 6 textual bases constructed from scientific documents
such as articles and dissertations were used.

4.1 Evaluation Criteria

The evaluation process of the hierarchies was applied as proposed in [7], using
a particular process of information retrieval. All label sets are used as search
queries, connecting the terms with “and” operator. For example, if the set of
labels of a node is “{artificial,intelligence}”, then the search expression will be
“artificial ∧ intelligence”. The final set of labels for each node are its own labels
and the labels of all its direct ancestors to the root. For example, if the root
has the set of labels “{artificial,intelligence}” and one of his sons has the set
“{data,mining}”, then the search expression used to evaluate this child node is
“artificial ∧ intelligence ∧ data ∧ mining”.

A document associated with the node is recovered when all the terms of
the search expression are present in this document. After the application of
the retrieval process, for each cluster node, the values presented in Table 1
have to be calculated (tp: documents correctly retrieved; fp: incorrectly retrieved
documents; fn: documents not retrieved; tn: documents correctly not retrieved;
rd: total number of documents retrieved; di: total number of documents that are
associated to the node; x: total number of documents in the collection).

Table 1. Retrieval process results for each node

retrieved !retrieved
ni tp fn |di|
!ni fp tn x− |di|

rd !rd x

The precision and recall values for each node of the hierarchy are calculated
according to the equations below:

– precision: the proportion of correctly retrieved documents among the total of re-
trieved documents (prec = tp/rd);

– recall: the proportion of the ni documents that were retrieved (rec = tp/ |di|).
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In order to evaluate the proposed method, a generalized linear model (for details
see [11]) to analyse the variance and to obtain a mean estimate to each measure
was adjusted. The model considers the effect of the node and the label selection
method, as well as general average, as shown below:

m̂e = μ̂+ n̂i + ˆlm + ê (1)

where:

– m̂e: evaluation measure estimate after the variance model adjustment;

– µ̂: general model mean, without any other effect;

– n̂i: the effect estimate of the node ni, that is how much the m̂e deviates from the
µ̂ because of the node;

– ˆlm: the effect estimate of the labeling method, that is how much the m̂e deviates
from the µ̂ because of the applied labeling method;

– ê: the random effect associated to each estimate.

To evaluate all the hierarchies in a similar way, it is considered only the nodes
that are common to all evaluated clusterings. For this reason, a unique identity
for each node is maintained.

According to [7], more statistically reliable comparisons are obtained using
each measure estimate m̂e for each labeling method ˆlm. In this paper, the SNK
test (Student-Newman-Keuls) are used for the analysis of variance and multiple
comparison of means, with a 5% level of significance. The SNK test was chosen
because of its strenght and its characteristic of always showing the real differences
among tested means.

4.2 Hierarchies Preprocessing and Obtention

All text collections1 were submitted to the same preprocessing method. Terms
were obtained by reducing words to their stem using the Porter algorithm [9].
Then the terms were selected using the Salton filter [10], which suggests the use
of terms that have the frequency of occurrence in the collection (DF - document
frequency) between one and ten percent of the total documents. Since the docu-
ments are submitted to an agglomerative clustering process, the minimum value
2 was chosen for DF. Table 2 presents a description of the text collections. The
initial amount of terms for each base refers to the stems obtained after applying
the Porter algorithm and removing stopwords. The values of the last column
indicate the number of stems after selecting attributes using Salton, i.e. the final
cardinality of each text collection used for evaluation. In this work, only the
generation of simple terms, also called onegrams, was considered.

Text collections were clustered using the average linkage algorithm and the
cosine measure. Each node receives a unique identifier enabling to identify them
even after the processing carried out by the label selection methods. These clus-
terings will be used in the evaluations in Sections 4.3 and 4.4.

1 These text collections can be accessed from www.icmc.usp.br/~fabianof/seclar

www.icmc.usp.br/~fabianof/seclar
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Table 2. Details of textual bases used in this paper

Base # docs # terms Salton’s DF filter card(A)
Computer Hardware 83 11159 2 ≤ DF ≤ 10 3076

A.I. 69 10225 2 ≤ DF ≤ 9 2614
Biophysics 72 13804 2 ≤ DF ≤ 9 3898
ifm-wp02 63 12126 2 ≤ DF ≤ 8 4854
ifm-wp04 47 14302 2 ≤ DF ≤ 7 5488

Inorganic Chemistry 74 18705 2 ≤ DF ≤ 9 5888

4.3 Evaluation of the SeCLAR Parameters

To evaluate the impact of the parameters of Algorithm 1 of SeCLAR the combi-
nations of settings described in Table 3, totaling 48 combinations for each text
collection were used. For all cases, the values of minimum support and minimum
confidence were set at 10%. An adapted version of Apriori which generates asso-
ciation rules with one item in consequent was applied. This step consideres the 14
most frequent labels for each node. This was done so that each node had the same
number of labels for evaluation. The value chosen in this work was defined in [7].

For each value of window size, 16 combinations were obtained and they were
evaluated according to the methodology previously described.

The results of Tables 4 and 5 were evaluated, grouped according to the window
size in order to maximize the number of nodes in common between the evaluated
results. When evaluating all combinations at the same time, the number of nodes
in common between the hierarchies tends to be very small, mostly corresponding
to the leaf nodes. According to the criteria described in Section 4.1, the final
average for each measure in each hierarchy would be formed only by the nodes
that are not processed by SeCLAR, and therefore would not be possible to
measure its impact.

After the experiments, it were observed that the parameter corresponding to
the window size influences mostly the nodes removal step (presented in Section 3.3).
This parameter determines the amount of transactions that will be obtained by

Table 3. Values used to evaluate the parameters of the proposed method

window size 30 40 50
K 10 50 100 200

measures confidence (conf) lift (lift) laplace (lapl) gini index (gini)
minsup and minconf 10%

Table 4. Best results to precision

Precision
window size

Base 30 40 50

Computer Hardware
configuration m̂e =prec
gini k=50 0,025253

configuration m̂e =prec
lapl k=50 0,135626

configuration m̂e =prec
conf k=200 0,027778

A.I. lapl k=10 0,223886 lapl k=50 0,245405 lapl k=10 0,183361

Biophysics lapl k=10 0,134401 lapl k=10 0,191065 lapl k=50 0,185637

ifm-wp02 lapl k=10 0,049123 lapl k=50 0,04533 lapl k=10 0,200101

ifm-wp04 lapl k=10 0,297434 lift k=200 0,260606 lapl k=10 0,295956

Inorganic Chemistry lapl k=10 0,079458 lapl k=10 0,056525 lapl k=10 0,197809
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Table 5. Best results to recall

Recall
Base window size

30 40 50

Computer Hardware
configuration m̂e =rec
lapl k=50 0,083802

configuration m̂e =rec
lapl k=50 0,509933

configuration m̂e =rec
lapl k=50 0,057485

A.I. lapl k=10 0,759615 lapl k=50 0,799342 lapl k=10 0,779343

Biophysics lapl k=10 0,497872 lapl k=10 0,661111 lapl k=50 0,712987

ifm-wp02 conf k=50 0,1438 lapl k=50 0,151884 lapl k=10 0,572995

ifm-wp04 lapl k=50 0,818966 lapl k=10 0,877273 lapl k=10 0,868103

Inorganic Chemistry lapl k=10 0,239849 lapl k=10 0,204088 lapl k=10 0,694815

the transformation of the documents. Its value should not be too large because
the number of transactions generated would be very small, which would make the
use of association rules impractical. In this evaluation, the values 40 and 50 had
better results when compared with the averages obtained using window size 30.
Settings using the value 30 were better only in 3 cases, all for precision.

According to the results presented in Tables 4 and 5, the objective measure
Laplace was dominant. It was better in 13 of 16 results for precision and in
15 of 16 results for the recall. The Laplace measure as used in this work, is
a correction to the confidence measure. It applies a penalty to the calculation,
giving preference to those rules that may represent the largest possible portion of
the database. In this case, it is appropriate to the task of selecting labels, because
it tries to find the subset of association rules that best describes the documents
of each cluster. In particular, it reflects the hierarchical characteristic of clusters
obtained, giving evidence that the relationships parent-child among nodes may
be considered as a antecedent-consequent relations in the context of hierarchical
cluster of documents.

The K parameter was mostly better for lower values (10 and 50). This indicates
that even with a significant increase in the number of selected rules, only a small
set of them contains the most interesting subset of terms to be used as labels.
The values 10 and 50 were better in all results for the recall, and in 14 of 16
results for accuracy.

4.4 Evaluation of the Use of SeCLAR Combined with Traditional
Methods

To evaluate the impact of using SeCLAR combined with traditional label se-
lection methods, an experiment was carried out as described in this section.
Clusterings obtained by the process described in Section 4.2 are processed as
described in Section 3.4 and the details as given as follow: (i) Each clustering
obtained was processed by the label selection methods Most Frequent, Popes-
cul&Ungar and RLUM; (ii) Each clustering obtained was processed by SeCLAR,
and then processed by Most Frequent, Popescul&Ungar and RLUM methods.

For methods that do not define a maximum value of labels per node, we
considered the 14 most frequent labels for each one. This was done so that each
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Table 6. Best settings for each evaluated database

ifm1-wp02 ifm1-wp04 Comp. Hard. A.I. Ino. Chem. Biop.
Measure Laplace Laplace Laplace Laplace Laplace Laplace

K 10 10 50 50 10 50
window size 50 40 40 40 50 50

Table 7. Traditional approach vs Proposed approach

Base Results

Computer
Hardware

Method precision recall

MF
configuration n m̂e =prec group
SeCLAR 147 0,085018 a
Traditional 148 0,037162 b

configuration n m̂e =rec group
SeCLAR 147 0,181266 a
Traditional 148 0,025115 b

P&U
SeCLAR 147 0,085018 a
Traditional 148 0,036036 b

SeCLAR 147 0,181266 a
Traditional 148 0,029443 b

RLUM
SeCLAR 117 0,267990 a
Traditional 117 0,262530 a

SeCLAR 117 1,000000 a
Traditional 117 0,974359 a

IA

MF
SeCLAR 119 0,104242 a
Traditional 120 0,033333 b

SeCLAR 119 0,206244 a
Traditional 120 0,043938 b

P&U
SeCLAR 119 0,086315 a
Traditional 120 0,033333 b

SeCLAR 119 0,182434 a
Traditional 120 0,043938 b

RLUM
Traditional 98 0,322250 a
SeCLAR 98 0,299802 b

SeCLAR 98 0,981293 a
Traditional 98 0,981293 a

Biophysics

MF
SeCLAR 108 0,092196 a
Traditional 109 0,045872 a

SeCLAR 108 0,178858 a
Traditional 109 0,031265 b

P&U
SeCLAR 108 0,092196 a
Traditional 109 0,045872 b

SeCLAR 108 0,178858 a
Traditional 109 0,031164 b

RLUM
SeCLAR 82 0,255062 a
Traditional 82 0,233793 a

SeCLAR 82 1,000000 a
Traditional 82 0,971545 a

ifm-wp02

MF
SeCLAR 125 0,100000 a
Traditional 125 0,096000 a

SeCLAR 125 0,036404 a
Traditional 125 0,032404 a

P&U
SeCLAR 92 0,184912 a
Traditional 93 0,064516 b

SeCLAR 92 0,451141 a
Traditional 93 0,038526 b

RLUM
SeCLAR 73 0,283447 a
Traditional 73 0,262310 a

SeCLAR 73 1,000000 a
Traditional 73 0,956621 a

ifm-wp04

MF
Traditional 83 0.090361 a
SeCLAR 83 0.062249 a

SeCLAR 83 0.121600 a
Traditional 83 0.051299 b

P&U
Traditional 83 0.090361 a
SeCLAR 83 0.062249 a

SeCLAR 83 0.121600 a
Traditional 83 0.051299 b

RLUM
SeCLAR 66 0.341360 a
Traditional 66 0.322601 a

Traditional 66 1,000000 a
SeCLAR 66 1,000000 a

Inorganic
Chemistry

MF
SeCLAR 118 0.133660 a
Traditional 119 0.046218 b

SeCLAR 118 0.326762 a
Traditional 119 0.033771 b

P&U
SeCLAR 118 0.133660 a
Traditional 119 0.046218 b

SeCLAR 118 0.326762 a
Traditional 119 0.033771 b

RLUM
SeCLAR 94 0.285809 a
Traditional 94 0.277041 a

Traditional 94 1.000000 a
SeCLAR 94 0.960993 a

node had the same number of labels for evaluation. The value chosen in this
work was defined in [7].

SeCLAR parameters were selected from the analysis presented in Section 4.3,
and the best settings for each base were selected (Table 6). These settings were
obtained by observing the best results for recall, because usually the use of
hierarchical organization of documents is related to problems of information
retrieval.
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We evaluated the results obtained without the use of SeCLAR to select the
labels and combined version with SeCLAR, as presented in Section 3.4. The
results are presented in Table 7.

The SeCLAR method contributed significantly to the improvement of the
results obtained by Most Frequent and Popescul&Ungar methods. Considering
precision, the SeCLAR improved statistically the average in eight cases, and
did not obtain a statistical improvement in four cases (3 for MF and 1 for
Popescul&Ungar). We believe that the results for the case of the Most Frequent
method are related to its simplicity. Considering recall, there was a statistical
difference in 11 of 12 cases. Therefore, the SeCLAR was able to significantly
improve the coverage of these methods, without sacrificing the precision.

The behavior of the methods was exactly equal to the bases ifm-wp04 and
Inorganic Chemistry, i.e. the average of the Most Frequent method are identi-
cal to those of Popescul&Ungar. These methods usually present similar results
[7]. A visual evaluation of the results indicated that due to the selection per-
formed by SeCLAR, the behavior of both methods was identical in all nodes,
thus generating a set of labels the same for both cases.

SeCLAR contributed to the increase of the precision value of the RLUM
method, however it was not able to contribute significantly. In five cases there was
no statistical difference. The first case presented a statistically better outcome
for the use of RLUM without SeCLAR. This method naturally has good results
for recall in this evaluation, often close to 1, and an improvement in this measure
would be very difficult. The SeCLAR contributed to the increase of the average
value for the measures, but these results aren’t statistically significant.

5 Conclusions

This work proposes a new method for the selection of candidates labels for
hierarchical clustering. The SeCLAR method explores more explicitly the direct
relationships which exist in the hierarchical organization. The general idea of the
proposed method is to consider each parent-child relationship between nodes
as antecedent-consequent relations used in association rules. Moreover, it also
explores a direct relationship between the terms of the documents, since it does
not consider each document as a bag-of-words. In this proposal, the SeCLAR can
be used regardless of the label selection method that would be chosen by adding
features like the elimination of word repetition throughout the hierarchy.

The results obtained by the use of SeCLAR indicate that its use has con-
tributed significantly to the selection of labels. In particular, the SeCLAR con-
tributes to the improvement of precision in many cases, without reducing the
coverage of the method (measured by recall). The SeCLAR method can also be
used as a label selection method, and the results are close to those obtained by
its combination with the Most Frequent method.

In future works, we intend to expand the evaluation to other objective mea-
sures of association rules. Furthermore we aim to evaluate the impact of SeCLAR
in the selection of labels for hierarchical clustering with the support of domain



176 F. Fernandes dos Santos, V. Oliveira de Carvalho, and S. Oliveira Rezende

experts. Finally, it would be interesting to investigate the possibility of com-
bining the SeCLAR approach, explored in this paper, with other label selection
methods present in the literature.
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Abstract. We present our experiments on Recognizing Textual Entailment 
based on modeling the entailment relation as a classification problem. As fea-
tures used to classify the entailment pairs we use a symmetric similarity meas-
ure and a non-symmetric similarity measure. Our system achieved an accuracy 
of 66% on the RTE-3 development dataset (with 10-fold cross validation) and 
accuracy of 63% on the RTE-3 test dataset. 

Keywords: Recognizing Textual Entailment, text similarity measures,  
non-symmetric measures. 

1   Introduction 

One of the largest challenges in Natural Language Processing (NLP) is to provide a 
computer with the linguistic knowledge necessary to successfully perform language-
oriented tasks. For example, for the query “What does Peugeot manufacture?” a 
Question Answering (QA) system must be able to recognize, or infer, and answer 
which may be expressed differently from the query. For example, from a text “Chré-
tien visited Peugeot’s newly renovated car factory” the system should be able to infer 
a hypothesized answer from “Peugeot manufactures cars”. A fundamental phenome-
non in NLP is the variability of a semantic expression: the same meaning can be ex-
pressed in, or inferred from, different text. 

A task that addresses this inference phenomenon is Recognizing Textual Entail-
ment (RTE). Textual Entailment is defined as a directed relationship between pairs of 
text expressions, denoted by T (text) and H (hypothesis). We say that T entails H if 
the meaning of H can be inferred from the meaning of T as could typically be inter-
preted by people [3]. 

Moreover, many NLP tasks have strong relationship to entailment: in summariza-
tion, a summary should be entailed by the text; paraphrases can be seen as mutual  
entailment between a text T and a hypothesis H; in Information Extraction (IE), the 
extracted information should also be entailed by the text; in Question Answering 
(QA) and Information Retrieval (IR), the answer obtained for a query must be en-
tailed by the supporting snippet of text. 

To address the RTE task, different methods have been proposed, with varying de-
gree of success. These methods can be classified by the type of representation of the 
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entailment pair. The commonly used criteria for entailment recognition are similarity 
measures between T and H, the coverage of H by T in lexical representation methods 
and lexical-syntactic representation methods, and the ability to infer H from T, in the 
logical representation approach. Some authors [8] try to detect non-entailment, by 
looking for various kinds of mismatch between the text and the hypothesis. 

In this paper, we propose the use of a symmetric similarity measure and a non-
symmetric similarity measure as features in a Machine Learning (ML) algorithm for 
RTE. The symmetric measure is the cosine string similarity measure. The non-
symmetric measure is given by measuring the causal relation between the entailment 
pairs. This measure uses the relative frequencies of words in a cause-effect set. The 
cause-effect set is created by retrieving sentences from the Web that contain the dis-
course marker because. 

The hypothesis behind our system is that the symmetric similarity measures can 
not answer correctly (cover) all the entailment pairs, and with the addition of the non-
symmetric similarity measures the remaining pairs might be covered. 

The paper is structured as follows. In Section 2, we present an overview of related 
work. In Section 3, we describe the measures used in our experiments. In Section 4, 
we give the experimental results and the comparison with the state of the art. Finally, 
Section 5 concludes the paper. 

2   Related Work 

The RTE approaches can be classified by the textual entailment phenomena they ad-
dress or by type of linguistic representation (levels of language) of the entailment pair 
they use. Each type of linguistic representation requires its own operations in order to 
establish the entailment decision, e.g., word matching at the lexical level, tree edit dis-
tance at the syntactic level, etc.  

In some systems, the entailment decision (“T entails H”) is made by comparing the 
score of the given operation with a threshold learned from an annotated corpus: If this 
score is greater than the threshold, the system answers “true”, otherwise the answer is 
“false”. There are different techniques to learn a threshold. 

The main operations on a linguistic representation are similarity measures. Most of 
these similarity measures are symmetric. However, a symmetric measure can not cap-
ture important aspects in the T → H (T implies H) relation. For example, if we alter 
the entailment relation (i.e., H → T) a symmetric function will give the same score. 
Therefore, some authors, e.g., [14], propose a non-symmetric similarity measure. 
Such measures have been used in RTE-1 Challenge. 

Glickman [5] defines the entailment relation as follows: T entails H if P(H |T) > 
P(H). The probabilities are calculated on the base of the Web. The accuracy of this 
system is the best for RTE-1 (56%). 

Another non-symmetric method was proposed by Kouylekov [9], who uses the 
definition: T entails H if there exists a sequence of transformations applied to T such 
that H is obtained, with a total cost below of a certain threshold. The following trans-
formations are allowed: insertion: insert a node from the dependency tree of H into 
the dependency tree of T; deletion: delete a node from the dependency tree of T; sub-
stitution: change a node in the T for a node of H. Each transformation has a cost and 
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the cost of edit distance between T and H, ed(T, H) is the sum of costs of all applied 
transformations. The entailment score of a given pair is calculated as 

score(T, H) = ed(T, H), 

If this score is below a learned threshold, the relation T → H holds. The accuracy of 
this method is also of 56%. 

In [14], an even “more non-symmetric” measure is proposed: when the edit dis-
tance (which was a modified Levenshtein distance) fulfills the relation: 

ed(T,H) < ed(H,T), 

then the relation T → H holds. 
Other authors use a definition that in terms of representation of knowledge as fea-

ture structures could be formulated as: T entails H if H subsumes T [14]. The method 
used in [3] is also non-symmetric: T entails H if H is not informative in respect to T. 

A method of establishing the entailment relation could be obtained using a non-
symmetric measure of similarity between two texts presented by Corley and Mihal-
cea [2], who define the similarity between the texts Ti and Tj with respect to Ti as: 
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Here the sets of open-class words (nouns, verbs, adjective, and adverbs) in each text 
segment are denoted by the PoS (part of speech) of WSTi and the PoS of WSTj. For a 
word wk with a given PoS in Ti, the highest similarity of the words with the same PoS 
in the other text Tj is denoted by maxSim(wk). 

Basing on this text-to-text similarity metric, we derive a textual entailment recogni-
tion system by applying the lexical refutation theory [14]. As the hypothesis H is less 
informative than the text T, for a TRUE pair the following relation will hold: 

sim(T, H) × T < sim(T, H) × H. 

This relation can be proved using lexical refutation. A general scheme of the solution 
is the follows: to prove T → H it is necessary to prove that the set of formulas {T; 
neg-H} is lexically contradictory (T and negH also denote the sets of disjunctive 
clauses of T and negH). 

3   Similarity Measures Used in the Experiments 

Many systems for RTE are based on similarity measures; we used these measures to 
train a machine learning algorithm. The entailment decision is given by a classifier, 
where the classes are “true” and “false”.  

We will now describe the two string similarity measures used in our experiments. 
We chose two measures as features: the cosine symmetric measure and the causal 
non-symmetric measure. 
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3.1   Cosine Similarity Measure 

Large classes of measures of semantic similarity are best conceptualized as measures 
of vector similarity. We consider binary vectors, that is, vectors with entries that are 
either 0 or 1. The simplest way to describe a binary vector is as the set of its nonzero 
values. 

Cosine similarity is a measure of similarity between two n-dimensional vectors ob-
tained by finding the cosine of the angle between them. It is often used to compare 
documents in text mining. In addition, it is used to measure cohesion within clusters 
in data mining. Cosine similarity is also widely used in information retrieval to calcu-
late the similarity between documents or sentences. Given two vectors of attributes, A 
and B, the cosine similarity θ is calculated using the dot product and magnitude as: 

BA

BA
BACOS

×

∩
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Note that this is a symmetric measure, that is, COS(A, B) = COS(B, A). 

3.2   Causal Non-symmetric Measure 

First, we give a brief theoretical introduction to the measure. A causal relation refers 
to the relation between a cause and its effect or between regularly correlated events. 
The type of coherence relation we used is cause-effect is illustrated below. In the ex-
ample below, (1) states the cause for the effect given in (2): 

1. There was bad weather at the airport 
2. Our flight was delayed. 

The causal relation subsumes the cause and the explanation relations discussed by 
Hobbs [7]. Hobbs’s causal relation holds if a discourse segment stating a cause occurs 
before a discourse segment stating an effect; an explanation relation holds if a dis-
course segment stating an effect occurs before a discourse segment stating a cause. 
The causal relation is encoded by adding a direction. In a graph, this can be repre-
sented by a directed arc going from cause to effect.  

 

Fig. 1. Cause-effect graph 

In Figure 1, the causality is a directional relationship, in the same way as the rela-
tionship between the members of an entailment pair. A non-symmetric similarity 
measure based on the count of co-occurrences of causal lexical pairs could be as fol-
lows: If a word x is a necessary (likely) cause of a word y, then the presence of y  
necessarily (likely) implies the presence of x. 
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In [11], a non-symmetric similarity measure is proposed based on the treatment the 
entailment pair as a causal relation, where the text T is a cause and the hypothesis H is 
its effect, i.e., T causes H. The non-symmetric similarity measure is based on the 
count of co-occurrences of causal lexical pairs from cause-effect (C-E) pairs extracted 
from a corpus.  

Algorithm 1. The non-symmetric similarity measure 

For each word ti in T 

  For each word hj in H 

    cej = causal frequency(ti,hj)

    ej = causal frequency(hj) 

  maxi = argmax(cej / ej) 

nonsymmetric(T,H) = ∑ maxi 

In Algorithm 1 used for our experiments, the first causal frequency function is the 
count of words ti and hi related by a cue phrase (for example, a sentence “H … be-
cause … T”) in a corpus of C-E pairs, and the second causal frequency function is the 
count of word hi in the C-E pairs. This gives a non-symmetric score, because the fre-
quency counts of “T causes H” is not the same as “H causes T”. 

4   Experimental Results 

In this section we first describe the linguistic processing for feature extraction and 
then the experiments over various Machine Learning algorithms. Finally, we give a 
comparison with the state of the art. 

4.1   Experimental Setting 

The linguistic processing we used with each entailment pair is as follows: 

1. Tokenizing. As usually, the first step of processing is to divide the input text into 
units called tokens. Each of them is a word, a number, a punctuation mark, etc. The 
treatment of punctuation marks can vary in such process. Our system just strips the 
punctuation marks out. We consider as word any string between whitespaces and 
punctuation characters. The whitespace is the main clue used in English texts (RTE 
benchmark is in English). 

2. Removal of stop words. The system removes any stops words that are listed in the 
corresponding list, such as the, from, or could. These words have important seman-
tic function in English, but they rarely contribute information if the criterion is a 
simple word-by-word match. 

3. Measuring similarity. Similarity measures are applied to each entailment pair, to 
extract the train and test sets for the machine learning algorithm. 
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The data we used to collect the frequency of the causal lexical pairs for the causal 
non-symmetric measure was from training sentences which contain the cue word be-
cause. The causal sentences were separated in two parts: one corresponding to the 
cause and the other one corresponding to its effect, to finally form the cause-effect 
pairs. The sentences were extracted from the Sketch Engine system over a large cor-
pus (ukWAC from the Sketch Engine1). The Sketch Engine is a corpus query system 
that allows the user to view word sketches, thesaurally similar words, and so-called 
“sketch differences”, similarly to the usual Corpus Query Systems (CQS). 

4.2   Machine Learning Experiments 

The RTE-3 Challenge provided two datasets (a development dataset and a test data-
set), each one consisting of 800 entailment pairs. In both datasets, pairs are annotated 
according to the task. In RTE-2 the length annotation is introduced, with values of ei-
ther “long” or “short.” In addition, the development sets are annotated as to whether 
each pair is in the entailment relation or not. 

We applied the linguistic preprocessing to each RTE-3 dataset; the result is a set of 
vectors of two features. These sets are used to train and test a classifier. We used the 
WEKA2 machine learning platform [15] for our experiments. 

We ran several experiments with various machine learning algorithms, including 
Support Vector Machine, AdaBoost, Naïve Bayes, among others. We used the RTE-3 
development dataset to train the classifiers. The results of the 10 fold-cross validation 
are show in Table 1. 

The Support Vector Machine (SVM) and the Naïve Bayes achieved the best results 
in the experiments during the training phase. Then we used these two algorithms to 
perform the classification over the RTE-3 test dataset. 

Table 1. 10 fold-cross validation results over the RTE-3 development dataset 

Algorithm Accuracy 
SVM 66.37% 

NaïveBayes 65.87% 
AdaBoost 65.25% 
BayesNet 65.25% 

LogitBoost 65% 
MultiBoostAB 64.125% 
RBFNetwork 64.87% 

VotedPerceptron 51.75% 

The SVM algorithm tries to compute the hyperplane that best separates the set of 
training examples (the hyperplane with maximum margin). On the other hand, the Na-
ïve Bayes algorithm is a classification algorithm based on the Bayes rule that assumes 
the features are all conditionally independent from one another. The value of this as-
sumption is that it dramatically simplifies the representation of the probability P(X | Y) 
and the problem of estimating it from the training data. 
                                                           
1 http://www.sketchengine.co.uk/ 
2 WEKA. http://www.cs.waikato.ac.nz/ml/weka/ 
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4.3   Comparison with Previous Results 

The experimental results are summarized in Table 2. We compare our system against 
other Machine Learning systems which use features based on similarity measures. All 
the systems were tested over the RTE-3 test dataset. In Table 2 we report the results 
with the Naïve Bayes. The SVM achieved an accuracy of 62.87%. 

Table 2. Comparison with previous results 

System Number of Features Accuracy 
Our system with Naïve Bayes 2 63.5% 
Li et al. (2007) 7 62.75% 
Malakasiotis and Androutsopoulos (2007) 10 61.75% 
Ferrés and Rodriguez (2007) 12 61.50% 

 
Therefore, our system outperformed the other machine learning systems, which 

used more features. Indeed, we used only two features (one symmetric and one non-
symmetric similarity measure), while, for example, in [11] the authors used 10 differ-
ent similarity measures (e.g. Levenshtein distance, Jaro-Winkler, Soundex, etc.).  

The approach of Ferrés and Rodriguez [5] for computing distance measures be-
tween sentences is based on the degree of overlapping between the semantic content 
of the two sentences. Obtaining the semantic content implies deep linguistic process-
ing. Upon this semantic representation of the sentences, several distance measures are 
computed. 

Li et al. [10] produced seven features for each entailment pair: lexical semantic 
similarity, named entities, dependent content word pairs, average distance, negation, 
task, and text length. The last two features are extracted from each pair itself, while 
others are based on the results of language analyzers. 

Finally, the system of Malakasiotis and Androutsopoulos [11] uses SVM’s to de-
termine whether each T–H pair constitutes a correct textual entailment pair. In  
particular, it employs four SVMs, each trained on the development dataset of the cor-
responding RTE subtask (QA, IR, IE, SUM) and used on the corresponding test data-
set. Preliminary experiments indicated that training a single SVM on all four subsets 
leads to worse results, despite the increased size of the training set, presumably be-
cause of differences in how the pairs were constructed in each subtask, which do not 
allow a single SVM to generalize well over all four. Their system is based on the as-
sumption that string similarity at the lexical and shallow syntactic level can be used to 
identify textual entailment. 

Thus, many ML systems need a complex linguistic processing in order to extract 
features for modeling the entailment recognition.  

5   Conclusions and Future Work 

We proposed combined use of symmetric similarity measure and non-symmetric 
similarity measure as features for a machine learning approach. We have shown that 
our system outperforms other machine learning approaches to RTE. Furthermore, we 
have shown that the use of two different types of measures improves the performance 
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of a machine learning system. Finally, our system has the advantage of simplicity and 
the use of a very limited feature set. 

Our system also has competitive accuracy, because the average accuracy for the 
RTE-3 is about 61%. The state-of the-art (shown by non-machine learning-based sys-
tems) for the RTE-3 is about 80%. 

In the future we plan to use other non-symmetric similarity measures, i.e., Corley 
and Mihalcea, Glickman. We will use syntactic and semantic measures (WordNet-
based similarity measures) to achieve better performance. In particular, we plan to test 
deeper semantic processing, including determining and using verb valencies [1]. Fi-
nally, we will test our system over the past RTE Challenge datasets as new test and 
training sets. 
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Abstract. Writers tend to express their ideas with different styles, de-
fined with the so called firm or stylome, which is an abstraction of the
general constraints and specific combinations of words within their lan-
guage they decide to follow. Although capturing this style has proven
to be very difficult, some advances have been achieved. Here, we present
a novel system that is trained with texts from the same author, and is
able to unveil some of its features, and to apply them to detect texts not
written by the same author, or, at least, not written with the previously
learned features. The system is an hybrid model based in self-organizing
maps and in information-theoretic aspects. In the model, mutual infor-
mation function of unknown texts are compared to the mutual infor-
mation function of texts from a known author. If the distance between
these two distributions exceeds a certain threshold, then the unknown
text is from a different author, otherwise the authorship is the same.
The decision threshold is obtained by the self-organizing map trained
with the texts from the same author. We present results in authorship
identification in several contexts including classic literature, journalism
(political, economical, sports), and scientific divulgation.

Keywords: authorship identification; anomalies detection; mutual
information; self-organizing maps.

1 Introduction

Authorship identification is a relevant task. In this problem, a text whose author
is not identified has to be compared in some way with other texts in order to
identify its authorship, or, at least, to rule out some possible authors. A human
expert is able to discriminate the authorship of a given text, within certain
constraints. That is, if he/she is presented with a text whose author is not
labeled, she may identify the name of the author, as an expert, she is supossed
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to have learnt the style and structural relationships authors tend to follow in
their texts. A particular case of this task is to decide if the author of a text is a
given individual or not [1].

The latter task is equivalent to that of anomaly detection, in which a system
is presented with a set of normal or habitual behavior [2]. When another be-
havior is presented to the system, it has to decide if it is normal or abnormal,
that is, if it is similar to the previous behaviors. This system should be able to
learn the correlations in those behaviors, such that the relevant ones are able to
discriminate the abnormal from the normal states [3].

A system able to decide if a text has as its author a given writer has to be
trained with some texts from that author. From those texts, the system has to
elucidate a group of measures, or identify some regularities, that are present in
other texts from the same author, but not in texts whose authorship is different
[4]. In this sense, it is a particular case of one-class learning, in which several
positive examples (member of class) are presented to the system, but no instance
of a non-member example is presented [5].

Several methods have been proposed, based in vocabulary size, syntactic pat-
terns, length of sentences, among others. There are many authorship attribution
methods based on soft-computing [6], several contributions based on computa-
tional linguistics [7], and many others based in statistical methods [8,9].

2 The Model

In our model, neither the lexicon nor the length of sentences, nor any other syn-
tactical structure is taken into account. We process the text as a time series, and
study them with non-linear time series analysis tools. The tools for time series
analysis we apply are mutual information function and self-organizing maps.

Our proposal is summarized as follows. A number of texts from the same
author define the habitual or common set. This set is the base for the method to
learn and identify the features that describe the stylistics of the author, and that
are supposed to be unique. Each one of this texts is processed as a time series
and the mutual information function is obtained for each one. Then, the average
mutual information function for all texts from the habitual author is calculated.
At the same time, all texts from the habitual set are mapped through a one-
dimensional self-organizing map, from where we obtain the weightened center of
mass of each text. The average distance between centers of mass is calculated and
from this quantity, we obtain a threshold. A text from a possibly different author
is presented to the system, so it obtains the mutual information function of it, and
compares this function to the average mutual information function previously
achieved from texts from the known or base author. If the distance between
these two functions exceeds the threshold indicated by the self-organizing map,
then the new text is identified as a text written by a different author.

It models the text from an author as a time series, in which time is only the
position of a word in the text, an the state associated to a word is its order of
apparition. The first word in the text is assigned to state 0, so the number of
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Fig. 1. Visual description of the proposed model for authorship identification

different symbols or states S, is 1, and the symbol or state sequence Q = [0].
From the second word, if it has not previously appeared, then its state is assigned
to the number of different states, followed by an increment of one in S. If the
current word i has previously appeared as a previously unseen symbol w, then
it is assigned that position. Formally, we have a transformation of a text into a
series of integer numbers, or symbols. W is the list of words to be transformed,
and W [n] refers to word in position n in list W . The new list of states or symbols
is Q. The transformation process is stated by the following algorithm:

1.The first word, at position n = 1 in W , is assigned state 0, so Q = [0].
The number of different states (words) is S = 1.
The next word to analyze is in position n = 2.

2. Repeat until all words in the text have been transformed.
p = h(W [n], Q) # verify if word W[n] has previously appeared

3. if p = −1: # word has not previously appeared.
Q[n] = S
S = S + 1 # Increment the number of different words.

4. else:
# word has previously appeared and state
# p has assigned to the first appeareance of it.
Q[n] = p
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where the function h(a,Q) returns the position of symbol a in the list Q, or
-1 if symbol a is not in Q. Q is the same lenghth as W , but now we have a
numeric list, which may be studied as a time series. From the new list W , me
may apply time series analysis. The first obvious step is to discretize this time
series in M codewords or symbols. In a given text, and varying from author
to author, there could exist up to thousands of different words or symbols, so
a discretization would reduce computing time. The range of different symbols
[1, S] is reduced to a discrete range in 1, 2, ...,M through a linear projection
x ∈ [1, S] → int(x×M/S).

One tool frequently applied in the nonlinear time series analysis context is
mutual information function, or MIF. It is widely applied to seek and quanti-
tatively characterize correlations between data that are not detected by linear
measures of correlation [14]. Mutual information function is able to unveil nonlin-
ear correlations between system X and system Y . It is a measure of information
between two possibly nonliearly correlated systems. It has been applied as an
abstraction of several sequences, such as in the context of molecular biology, in
which it is presented as an alternative form of the so called genomic signature
[15]. MIF has been able to generate very short descriptions of genomes at the
time that it approximates a bijective function between strings over an alphabet
of four symbols and quasi-unique descriptions [16]. It has been stated that MIF
from related organisms tend to be similar, whereas MIF from phylogenetically
distant organisms tend to be very different [16].

From the succesful results of MIF in the molecular biology context, we pro-
pose its use in the authorship identification problem. In order to determine the
authorship of a text, we propose the use of MIF as a first step. In the ap-
plication of MIF in time series analysis, there are not two systems, but only
one. Thus, system Y is to be created from system X by a shift of k positions.
That is, if X = [0, 1, 2, 3, 4, 0, 5, 6, 2, ..., iN − 2, N − 1, N ], a shift k = 1 leads
to system Y = [1, 2, 3, 4, 0, 5, 6, 2, ..., N − 1] and a shift of k = 2 will lead to
Y = [2, 3, 4, 0, 5, 6, 2, N − 2]. The second system is thus the first one with a
displacement of k positions. MIF answers the question if I am looking at sym-
bol i, how much information does it give about the symbol located k positions
downstream?

MIF is then a vector with K components in which each component k rep-
resents the average information symbol i gives about the symbol j located k
positions downstream from symbol i. From this, we can calculate the distance
between two MIF, as each MIF is a point in a K−dimensional space. K is the
maximum displacement for whom MIF is calculated.

We propose that MIF is a good method to capture the so called stylistics or
stylome of an author. In fig. 2, it is presented the MIF from three texts from the
same author, and MIF for a text from a different author. It is observed that the
texts from the same author present the similar MIF, whereas texts from different
authors presents differences in MIF.
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Fig. 2. Mutual information function for three texts from the same author and for a
text from a different author

The use of MIF as an authorship identification is as follows:

1. For each text i of a given author a, obtain MIF (i,K).
Calculate the average MIF, MIFa(K).

2. For the text j of an unknown author, calculate MIF (j,K).
Obtain distance between the two MIF, dij = dist(MIFa(K),MIFj ,K)).

3. If dij ≥ Θ:
authorship of text j does not correspond to author a

4. else:
text j has the same authorship (a).

Obtaining a threshold Θ such that the authorship identification process shows
as low errors as possible is a critical task. We propose that the non-supervised
neural network called self-organizing map constitute a good method to calcu-
late Θ. The self-organizing map (SOM) is a model of neural connections that
is able to achieve organization from disordered configurations [10]. One of the
major properties of the SOM is the ability to preserve in the output map those
topographical relations present in the input data, a highly desirable property for
data visualization and clustering [10,12]. This attribute is achieved through the
transformation of an incoming signal pattern of arbitrary dimension into a low-
dimensional discrete map (usually one or two-dimensional) and by adaptively
transforming data in a topologically ordered fashion [10,11]. Each input data
is mapped to a single neuron in the lattice, to the one with the closest weight
vector to the input vector, or best matching unit (BMU). The SOM preserves
neighborhood relationships during training through the learning equation, which
establishes the effect that each BMU has over any other neuron.

The SOM structure, or output map, consists of a low-dimensional lattice of
homogeneous units. Each unit n maintains a dynamic weight vector wn which is
the basic structure for the algorithm to lead to map formation. The dimension
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of the input space is considered in the SOM by allowing weight vectors to have
as many components as features in the input space. Weight vectors are adapted
accordingly to:

wn(t+ 1) = wn(t) + αn(t)hn(g, t)(xi − wn(t)) (1)

where α(t) is the learning rate at epoch t, hn(g, t) is the neighborhood func-
tion from BMU neuron g to neuron n at epoch t and xi is the input vector. In
general, the neighborhood decreases monotonically as a function of the distance
from neuron g to neuron n, and as a function of time. The SOM preserves rela-
tionships in the input data by starting with a large neighborhood and reducing
it during the course of training [10]. Both, neighborhood and learning parameter
are reduced by an annealing scheme.

SOM is able to learn some features that distinguishes the texts from the same
author. Here, we applied a one-dimensional SOM, that is, a chain of units to
map p−dimensional input vectors.

We propose the use of SOM as follows. Let TA be the group of texts from
author A, and T i

A be the ith text from author A. From the first algorithm, each
text is a time series of integers, which allows to construct vectors embedded in
a p−dimensional space. The t − th integer of the time series is associated to a
vector v(t) constructed as a window of length p:

v(t) = [x(t), x(t − 1), ..., x(t− p+ 1)]T (2)

Once each text, represented as a time series, has been associated to a set of
vectors, a low-dimensional representation of the distribution of those vectors is
formed (see. fig. 1). That representation is achieved through SOM, which intends
to approximate the density of vectors in the p-dimensional space. Each vector is
mapped to an unit, known as the best matching unit or BMU. Vectors that are
located in close positions in the p−dimensional space tend to be mapped to close
BMU, whereas vectors located in distant regions in the multidimensional space
tend to me mapped to distant BMU. This low-dimensional representation is the
base for the threshold Θ that distinguishes the authorship of texts, and now,
we explain why. For each text of the same author A, T i

A, the center of mass is
calculated, on basis of the number of vectors mapped to each unit. The distance
between pairs of centers of mass is a measure how different are two texts from
the same author. Each pair of distance between centers of mass is relevant to
compute the typical distance between texts from a given author, in the map
space. Once trained, all vectors are mapped to the SOM and the BMUs for each
vector is annotated. The center of mass of text t is calculated from the list of
BMUs:

CMt =
N∑

i=1

i× pi (3)

where pi is the relative frequency by which unit i was selected as BMU for vectors
from text t. The average distance between centers of mass for all available texts
from the same author is calculated. This quantity is CM . Θ, the threshold, for
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deciding if two MIF come from the same author, is a function of CM . That is,
it is necesary an equivalence between how far the texts from the same author
were mapped in the SOM, and the maximum distance that separates their MIF.
This maximum distance is the decision threshold.

As there are K displacements in the MIF, and there is a chain of N units in
SOM, an equivalence has to be calculated. That is, if two data sets are instances
of the same process (in this case, are texts from the same author) such that their
prototypical units are separated by MD units (distance MD), then the distance
between MIF for the two data sets should not exceed the threshold given by
equation 4.

There are two constraints for this function: 1. Θ = f(0) = 0, and 2. Θ =
f(N) = α∗ ×K. The first constraint states that if the average distance for the
centers of mass is 0, then, a threshold higher than 0 will lead to the decision of
another authorship of the text. The second one states that if the average distance
of centers of mass from texts of the same author is as high as possible (N), then
the threshold is maximum, that is, all possible texts will be considered as coming
from the same author. Of course these are the two extremes possibilities.

Threshold Θ may be any function (linear, quadratic, logarithmic, expone-
nially), as long as if r = 0, Θ = 0, and if r = N , Theta = α∗×K. We found out
that the best function in means of ROC is:

Θ = (N2 − (CM −N)2)
1
2 × α∗ ×K/N (4)

where N is the number of units in SOM, CM is the average distance between
the center of mass of the texts from habitual author, K is the maximum number
of shifts in MIF, and α∗ is the maximum mutual information found for any shift
≤ K.

In order to use SOM, at least two texts from an author have to be presented
to the SOM, otherwise, there will not be a direct way to calculate Θ. Some
alternatives have been proposed to estimate it, such as that in [13], but here we
suppose there are at least two texts from each author to calculate the decision
threshold.

By using this hybrid system, we are able to estimate the temporal relation in
texts through the MIF and also, we are able to estimate the spatial distribution
of symbols or words in the space of sequences of symbols.
MD per se is not a good authorship discriminat as it is achieved from a static

distribution, that is, vectors from texts are only a representation which do not
consider time [13].

As was explained in the introduction, the process of authorship identification
is related to the anomaly detection problem, in which a system is presented
with some examples of normal behavior. When a new behavior is presented to
the system, it has to decide if it is a normal behavior or if it is an anomaly or
novelty. This is an instance of one-class classification, and it is an open problem
in the machine learning and time series processing areas. In our contribution,
the texts from one author defines the habitual behavior, to be compared to other
texts in order to decide if they come from the same or other author. The proposed
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model is not based in any vocabulary measure, but in the relation followed by
the use of vocabulary.

3 Results

The hybrid system of MIF and SOM presentes a better performance than that
of SOM and MIF separately. Several texts from the same author were analyzed.
Political analysis texts, sport texts, scientific divulgation texts, scientific texts.

In the first set of experiments, the texts from six authors of daily columns
in newspapers were studied. The number of texts for each author varies from
45 to 345, and the length of each text varies from 916 to 1169 words. For each
one of the column authors, a small number of texts is selected to define the
threshold Θ through SOM. The rest of texts from the author, as well as texts
from other column authors, are analyzed in order to decide if the authorship is
the same or not. Results are shown as a ROC in fig. 3. This image shows the
rate of true positives (TP) as a function of false positives (FP). It is observed
that the performance is much better than that of a random clasifier, and better
than the SOM used as an anomaly detector scheme, as proposed in [13]. Also,
the classification rate is presented for the MIF but with a fixed threshold Θ of
α∗/10. A perfect authorship detector would climb directly to the point (0, 1.0).

The proposed method is affected by the group of texts that define the thresh-
old. If these texts are very similar with regard to the distribution in the embedded
space, then the average distance between centers of mass of those texts will be
small. This leads to a small Θ, which may be very restrictive even to texts from
the same author. The proper selection of texts that defines an author’s stylome
is still an open question.

Fig. 3. Average ROC curve for all considered authors. It is shown the behavior of a ran-
dom decision system and the behavior of our model (MIF-SOM). Also, the performance
of SOM and MIF as independent models is shown.
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4 Conclusions

Authorship identification is a difficult task, as it is very unlikely that a single
method can capture all relevant features an author exhibits in his/her texts, the
so called stylome. Thus, we proposed a hybrid model that considers the temporal
regularities identified by the mutual information function, tuned by the spatial
regularities captured by the self-organzing map.

To validate our model, we assigned to it the task of learning the attributes
of a given author through a smalll number of his texts. From those attributes,
the meodel should decide if a previously unseen text has the same authorship
than the first ones, or not. Our model performed very well fortexts from six
different column authors. Although our model is an accurately one, it still has
to be tested in more challenging environments. We are evaluating its capabilities
to differentiate among several literary styles.
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Abstract. The meaning of such verb-noun combinations as take care, under-
take work, pay attention can be generalized as DO what is designated by the 
noun. Likewise, the meaning of make a decision, provide support, write a letter 
can be generalized as MAKE what is designated by the noun.  These generali-
zations represent the meaning of certain groups of verb-noun combinations. We 
use supervised machine learning algorithms to predict the meanings DO, 
MAKE, BEGIN, and CONTINUE of previously unseen verb-noun pairs. We 
evaluate the performance of the applied algorithms on a training set using 10-
fold cross-validation technique. The learnt models have also been evaluated on 
an independent test set and the predictions have been checked manually to de-
termine the accuracy of the classifiers. The obtained results show that super-
vised machine learning methods achieve significant accuracy and can be used 
for semantic annotation of verb-noun combinations.  

Keywords: lexical functions, verb-noun combinations, meaning representation 
by means of hypernyms, supervised machine learning. 

1   Introduction 

The meaning of individual words can be described by definitions in conventional 
dictionaries for human usage like Longman Dictionary of Contemporary English or 
the Merriam-Webster English Dictionary. Often, most frequent words have many 
senses. For example, Longman Dictionary of Contemporary English [5] gives 47 
senses for the verb take, 44 for make, the number of senses for have reaches 49, but 
play looks very poor with only 10 senses! Combinations of verbs with prepositions, 
called phrasal verbs, like take after, make over, have on etc. are not counted as sepa-
rate senses otherwise the number of senses would have grown tremendously!   

Taking a careful look at definitions of the previously given verbs, one can notice 
that these verbs have some meanings in common. Note, that we have used word defi-
nitions from the Longman Dictionary of Contemporary English mentioned above; 
therefore in this Section, when referring to the dictionary we mean the Longman Dic-
tionary of Contemporary English.   

Coming back to the fact of meaning repetitions in verb definitions, we now give a 
few examples of verbs which have the meaning DO STH (STH = something) among 
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other senses. First, let us consider the verb take. The dictionary gives the following 
definition of take in the sense DO STH: ‘a word meaning to do something used with 
many different nouns to form a phrase that means: “do the actions connected with the 
nouns”: take a walk / take a bath / take a breath / take a vacation.’ The second exam-
ple is the verb make. In the dictionary, it also has the sense DO STH followed by the 
comment: ‘used with some nouns to mean that someone performs the action of the 
noun: make a decision / mistake.’ Thirdly, even the verb have which is typically used 
in the sense possess, can acquire the meaning DO STH in combination with some 
nouns. In this meaning, have is described as ‘a word meaning to do something, used 
in certain phrases: have a look / walk / sleep / talk / thing / a holiday / bath / shower’.      

Lastly, let us consider the verb play. One of its meanings given in the dictionary is 
‘to take part in a game or sport’ like golf, chess, etc. Though the exact phrase DO 
STH or the exact word DO is not encountered in the definition of play, we look for 
the definition of to take part in the dictionary and find: to take part is ‘to do an activ-
ity, sport etc. with other people’. Therefore it can be affirmed that play also has DO as 
one of its senses, because in the definition of play, we can substitute to take part by 
‘to do an activity, sport etc. with other people’.  

We will call the meaning DO STH, or just DO, the generalized meaning of the 
verbs take, make, have, and play, since DO is used in the first, more general, part of 
the verb definitions. Table 1 gives other examples of the generalized meaning DO. 
For clarity and illustration, verbs are given in combination with nouns.  

Table 1. Verbs with the meaning DO 

Verb Dictionary definition of the sense generalized as DO 
give somebody / sth  a 
smile / laugh / shout / 
push 

do something – to smile, laugh, shout etc.: He gave me a quick smile 
and a hug. | Ooh, the baby just gave a kick!

conduct a survey / 
experiment / inquiry etc 

to carry out a particular process, especially in order to get 
information  or prove facts: The company conducted a survey to find 
out local reaction to the leisure center.

carry sth out  to do something that needs to be organized and planned: They are 
carrying out urgent repairs. | A survey is now being carried out 
nationwide. | It won’t be an easy plan to carry out.

ask (a question)  to say or write something in order to get an answer, a solution, or 
information: That kid’s always asking awkward questions.

teach  to give lessons in a school, college, or university: The guy’s been 
teaching in France for 3 years now.  

Likewise, other generalized meaning can be determined. In this work, we are 
interested in generalized meanings DO, MAKE, BEGIN and CONTINUE. We do not 
give formal definitions for MAKE, BEGIN and CONTINUE but illustrate them with 
examples in Tables 2, 3, and 4, respectively. The examples are chosen to represent the 
given meanings in an exact and comprehensive way.  

It is a generally accepted fact that the meaning of an individual word depends on 
its context, i.e. the words it is used with in corpora. This fact is also true in the case of 
generalized meanings that we have selected. Verbs acquire these meanings when 
collocate with nouns belonging to a particular semantic group, for example, a group 
denoting actions. If verb-noun combinations are annotated with the meanings DO, 
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MAKE, BEGIN or CONTINUE, this annotation disambiguate both the verb and the 
noun. Word sense disambiguation is one of the most important and challenging tasks 
of natural language processing, and therefore semantic annotation of verb-noun 
combinations is a task of significant relevance. 

It should be noted here that the concept of generalized meaning we propose here is 
close to the notion of lexical functions developed by the Meaning-Text Theory. 
Lexical function is a mapping from one word (called keyword, for example, decision) 
to another it collocates with in corpora (called lexical function value). This mapping 
is further characterized by the meaning of semantically homogenuous groups of 
values and by typical syntactic patterns in which lexical function values are used with 
their respective keywords in texts. For the keyword decision, the lexical function 
Oper1, meaning ‘do, perform, carry out’, gives the value make. That is, to express the 
meaning ‘do, or perform, a decision’, one says in English make a decision. The 
formalism of lexical functions is intended to represent fixed word combinations, or 
collocations like make a decision, give a lecture, lend support, etc. For more 
information on lexical functions consult [6, 7]. We do not apply the formalism of 
lexical functions as it is. Our purpose is to predict semantic contents of verb-noun 
combinations, and the meanings we have chosen, are not exactly the meanings of 
lexical functions though have some resemblance to them.  Another difference is that 
lexical functions describe collocations, but generalized meanings are present in 
collocations as well as in free word combinations. Section 3 gives details concerning 
state-of-the-art research on lexical functions.  

The rest of the paper is organized as follows. Section 2 formulates our task.  
Section 3 gives a summary of related work. Section 4 explains what data was used in 
the experiments. Section 5 describes methodology. We present results and discuss 
them in Section 6. Section 7 outlines conclusions and future work. 

Table 2. Verbs with the meaning MAKE 

Verb Dictionary definition of the sense generalized as MAKE 
create to make something exist that did not exist before: Her behaviour was creating a lot of 

problems.  
cause  to make something happen: Heavy traffic is causing long delays on the freeway.  
build to make something, especially a building or something large: Are they going to build on this 

land?  
write to produce a new book, poem, song etc.  
produce to make things to be sold: Gas can be produced from coal.  

Table 3. Verbs with the meaning BEGIN 

Verb Dictionary definition of the sense generalized as BEGIN 
start to begin doing something: start learning German / work  
enter to start working in a particular profession or organization: Andrea is studying law as a 

preparation for entering politics.  
introduce be the start of; if an event introduces a particular period or change, it is the beginning of it: 

The death of Pericles in 429 BC introduced a darker period in Athenian history.  
launch to start something, especially an official, public, or military activity that has been carefully 

planned: launch a campaign / appeal / inquiry 
become to begin to be something: He became King at the age of 17.  
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Table 4. Verbs with the meaning CONTINUE 

Verb Dictionary definition of the sense generalized as CONTINUE 
keep to continue to have something and not lose it or get rid of it: No, we’re going to keep the 

house in Vermont and rent it out.  
maintain  to make something continue in the same way or at the same high standard as before: Britain 

wants to maintain its position as a world power.  
pursue  to continue doing an activity or trying to achieve something over a long period of time: 

Kristin pursued her acting career with great determination.  
sustain  to mak something continue to exist over a period of time: The teacher tried hard to sustain 

the children’s interest.  

run  to continue to be officially able to be used for a particular period of time: The contract runs 
for a year.  

2   Task 

The task of our work is to examine performance of supervised learning methods for 
prediction of the meanings DO, MAKE, BEGIN, and CONTINUE in Spanish verb-
noun combinations. We train classifiers on a manually compiled corpus of verb-noun 
pairs annotated with the above given meanings. After building classification models 
on the training data, the models are tested for prediction of the meanings on unseen 
data. The data used for testing the models are of two types. The first type of the test-
ing data is a part of the training set which is divided into the training section and the 
test section applying the 10-fold cross-validation technique. The second type of test-
ing data is an independent test set build on a corpus other than the corpus used to 
construct the training set. The details concerning data can be found in Section 4. 

3   Related Work 

The meaning of word combinations is often represented as a semantic relation be-
tween individual words that constitute word combinations. We will give a short  
review of two lines of research devoted to semantic relations.  

The first line is work on automatic detection of lexical functions mentioned in the 
Introduction. Lexical functions are semantic relations which hold between constitu-
ents of fixed word combinations, or collocations. Collocations may have different 
syntactic structures, and the verb-noun pattern is one of these structures. L.Wanner 
[16, 17] made experiments to classify Spanish verb-noun pairs according to nine lexi-
cal functions with the meaning ‘perform, experience, carry out something, ‘cause the 
existence of something, ‘begin to perform something, ‘continue to perform some-
thing’, etc. Verb-noun pairs were divided in two groups. In the first group, nouns 
belonged to the semantic field of emotions; in the second groups nouns were field-
independent. For classification, the following supervised learning algorithms were 
applied: Nearest Neighbor technique, Naïve Bayesian network, Tree-Augmented 
Network Classification technique and a decision tree classification technique based on 
the ID3-algorithm. As a source of information for building the training and test sets, 
hyperonymy hierarchy of the Spanish part of EuroWordNet [15, 12] was used. The 
average f-measure of about 70% was achieved in these experiments. The best results 
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for field-independent nouns were shown by ID3 algorithm (f-measure of 0.76) for  
the lexical function with the meaning ‘cause (by the noun functioning in utterances as 
the verb’s direct object) something to be experienced / carried out / performed’ and by  
the Nearest Neighbor technique (f-measure of 0.74) for the lexical function with the 
meaning ‘perform / experience / carry out something’.  

The second line of research on semantic relations in word combinations deals with 
automatic assignment of semantic relations to English noun-modifier pairs in [8, 9]. 
Though in our work, verb-noun combinations are treated, we believe that the princi-
ples of choosing data representation and machine learning techniques for detection of 
semantic relations between a noun and a modifier can also be are used to detect se-
mantic relations in verb-noun pairs. The underlying idea is the same: learning the 
meaning of word combinations. In [8, 9], the researchers examined the following 
relations: causal, temporal, spatial, conjunctive, participant, and quality. They used 
two different data representations: the first is based on WordNet relations, the second, 
on contextual information extracted from corpora. They applied memory-based learn-
ing, decision tree induction and Support Vector Machine. The highest f-score of 0.847 
was achieved by C5.0 decision tree to detect temporal relation based on WordNet 
representation.   

4   Data  

Verb-noun pairs were extracted automatically from the Spanish Web Corpus [11] by 
the Sketch Engine [4] and ranked by frequency. Thus we obtained a list of 83, 982 
pairs. From this list, we have taken the first one thousand pairs and processed them 
manually as follows.  

First, we removed all fallacious combinations extracted from the Spanish Web 
Corpus automatically due to parsing errors. Erroneous pairs included, for instance, 
past participles or infinitives instead of nouns, or contained symbols like --, « , © 
instead of words.  The total number of erroneous pairs was 61, so after their removal 
the list contained 939 pairs.  

Secondly, we disambiguated each verb and noun, annotating them with word 
senses of the Spanish WordNet [15, 12]. For some verb-noun pairs, relevant senses 
were not found in the above mentioned dictionary, and the number of such pairs was 
39. For example, in the combination dar cuenta, ‘give account’, the noun cuenta 
means razón, satisfacción de algo, ‘reason, or satisfaction of something’. This sense 
of cuenta is taken from Diccionario de la Lengua Española, ‘Dictionary of the Span-
ish Language’ [2]. Unfortunately, this sense is absent in the Spanish WordNet so the 
expression dar cuenta was left without sense annotation. All combinations that could 
be not annotated with senses of the Spanish WordNet were removed from the list.  

After the first two steps, 900 verb-noun pairs were left in the list. We have looked 
through the list and annotated all relevant combinations with the meanings DO, 
MAKE, BEGIN, and CONTINUE. We found 280 pairs with the meaning DO, 112 
pairs with the meaning MAKE, BEGIN was encountered in 25 pairs, and CON-
TINUE was observed to be the most rare meaning with only 16 verb-noun pairs. Thus 
the total number of verb-noun pairs annotated with four meanings was 433, and 467 
pairs had meanings other than DO, MAKE, BEGIN, CONTINUE. All 900 pairs were 
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included in the training sets. Table 5 demonstrates examples of the data. The exam-
ples are given as they are encountered in the list built automatically, so the nouns are 
used without articles or quantifiers.  

We build four training sets, one for each of the four meanings. All training sets in-
cluded the same 900 examples which were marked differently depending on the 
meaning chosen for a given set. For example, the training set for DO included 280 
positive instances marked as the class “yes” and the rest of the examples (620 in-
stances) were marked as the class “no”, i.e. these were instances of the meanings 
MAKE, BEGIN, and CONTINUE, as well as the verb-noun pairs with meaning other 
that DO, MAKE, BEGIN, CONTINUE.  

Table 5. Examples of verb-noun pairs 

Examples Meaning 
Spanish English lit. translation 

DO 
hacer justicia 
realizar actividad 
dar beso 

do justice 
realize activity  
give kiss 

MAKE 
hacer ruido 
establecer criterio 
encontrar solución 

make noise 
establish criterion  
find solution  

BEGIN 
iniciar proceso 
tomar iniciativa 
adoptar actitud  

initialize process  
take initiative  
adopt attitude  

CONTINUE 
mantener control 
llevar vida  
seguir curso  

maintain control  
lead life  
follow course  

Lastly, for each verb and noun in the training sets, we extracted all hyperonyms 
from the Spanish WordNet. We represented each verb-noun pair as a set of all hy-
peronyms of the noun and all hyperonyms of the verb. Both constituents of verb-noun 
pairs were considered as zero-level hyperonyms, they were also included in the set of 
hyperonyms. 

To build an independent test set, we extracted 5181 verb-noun pairs from the Span-
ish Treebank Cast3LB [1], a corpus other than the corpus used to construct the  
training sets. To evaluate the performance of classifiers, we used the test set in the 
following ratios: 100%, 75%, 50%, and 25%.  

We did not disambiguate verb-noun pairs for the test sets manually. Instead, for 
each verb-noun, we built all possible verb-noun combinations of all senses in the 
Spanish WordNet. As an example, let us consider the pair representar papel, ‘repre-
sent role’. The verb representar has 12 senses in the Spanish WordNet, and the noun 
papel, 5. This gives totally 60 combinations of representar and papel (12 multiplied 
by 5). Remember, that the test data included totally 5,181 verb-noun pairs which 
resulted in 96,079 instances in the test set.    

The training and test sets were formatted according to Attribute-Relation File For-
mat (ARFF) [14] to be accessible by machine learning methods described in Section 
5. Every hyperonym was presented as an attribute with two possible values, “1” if a 
corresponding hyperonym is encountered in a particular verb-noun pair, and “0” if it 
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is not. Thus each verb-noun pair was represented as a vector of zeros and ones. The 
last attribute was a categorical feature with two possible values, “yes” if a correspond-
ing verb-noun pairs has the meaning that is to be learnt by classifiers, and “no” if it is 
not.    

5   Methodology  

Our approach is based on supervised machine learning algorithms as implemented in 
the WEKA version 3-6-2 toolset [13, 3, 18]. We performed two groups of experi-
ments. In the first group of experiments, we evaluated the prediction of the meanings 
DO, MAKE, BEGIN, and CONTINUE on the training sets using 10-fold cross-
validation technique. In the second group of experiments, the same meanings were 
predicted for the instances of an independent test set. Table 6 lists all classifiers we 
experimented with.  

Table 6. Classifiers 

Classifier Classifier Classifier 
AODE                                  ClassificationViaClustering     VFI     

AODEsr                                ClassificationViaRegression    ConjunctiveRule  

BayesianLogisticRegression  CVParameterSelection            DecisionTable      

BayesNet                              Dagging                           JRip                      

HNB                                    Decorate                                NNge                    

NaiveBayes                            END                             OneR                    

NaiveBayesSimple                 EnsembleSelection                  PART                   

NaiveBayesUpdateable          FilteredClassifier                    Prism                    

WAODE Grading                                 Ridor                    

LibSVM                         LogitBoost                             ZeroR 

Logistic                          MultiBoostAB                         ADTree                

RBFNetwork                    MultiClassClassifier                BFTree                 

SimpleLogistic                  MultiScheme                           DecisionStump     

SMO                               OrdinalClassClassifier             FT                         

VotedPerceptron                  RacedIncrementalLogitBoost  Id3                        

Winnow                             RandomCommittee                  J48                        

IB1                                     RandomSubSpace                    J48graft                

IBk                                    RotationForest                        LADTree              

KStar                                   Stacking                                RandomForest      

LWL  StackingC                            RandomTree        

AdaBoostM1                          ThresholdSelector                   REPTree               

AttributeSelectedClassifier    Vote  SimpleCart  

Bagging                             HyperPipes                         
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6   Experimental Results  

6.1   Experiments on the Training Sets  

The purpose of our experiments was to evaluate performance of 68 classifiers on the 
training sets using 10-fold cross validation technique. The best five results for predict-
ing the “yes” class are presented in Tables 7, 8 (remember, “yes” and “no” classes are 
explained in Section 4 alongside with other details about data). P stands for precision, 
R for recall and F for f-measure. Together with the best results, Table 7, 8 show per-
formance of the four classifiers most frequently used in natural language processing, 
i.e. support vector machine (implemented in WEKA as SMO), C4.5 decision tree 
learner (J48 in WEKA), Naive Bayes algorithm, and nearest-neighbor instance-based 
learner (IB1 in WEKA). These 4 classifiers are left in the tables ranked by f-measure 
so it can be seen what algorithm is better for detecting each meaning.  

It is a common practice that in classification experiments, the performance of 
rules.ZeroR classifier is considered as the baseline. ZeroR is a trivial algorithm that 
always predicts the majority class. But in our training sets the majority class is always 
the class of negative examples. Remember, that the overall number of positive and 
negative instances in the training sets is 900, though the largest number of positive 
instances is 280 for the meaning DO which still is much less then the number of nega-
tive instances (620 in the case of DO). Therefore, ZeroR does not classify any test 
instances as positives, which always gives recall of 0 and undefined precision. For 
this reason, ZeroR should not be considered as the baseline. 

Table 7. Performance of WEKA Classifiers on DO and MAKE training sets 

DO MAKE 

Classifier P R F Classifier P R F 

PART                 0.898 0.857 0.877 JRip                   0.726 0.706 0.716 

SimpleCart  0.901 0.853 0.876 SimpleCart  0.728 0.688 0.708 

BLR              0.875 0.872 0.874 LADTree           0.706 0.706 0.706 

Bagging              0.884 0.857 0.870 REPTree           0.721 0.688 0.704 

BFTree               0.903 0.838 0.869 BFTree              0.730 0.670 0.699 

... ... ... ... ... ... ... ... 

SMO                 0.856 0.872 0.864 SMO                 0.689 0.651 0.670 

J48                      0.876 0.850 0.863 J48                     0.747 0.541 0.628 

NaiveBayes        0.762 0.711 0.735 IB1                    0.532 0.376 0.441 

IB1                     0.566 0.759 0.648 NaiveBayes       0.535 0.211 0.303 

The best classifiers for prediction of the meaning DO is PART, for the meaning 
MAKE, JRip, for BEGIN, Prism, and for CONTINUE, Ridor. All four classifiers are 
rule based classification algorithms. Inductive rule learning use separate-and-conquer 
strategy. It means, that a rule that works for many instances in the class is identified  
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Table 8. Performance of WEKA Classifiers on BEGIN and CONTINUE training sets 

BEGIN CONTINUE 

Classifier P R F Classifier P R F 

Prism                      0.778 0.737 0.757 Ridor                            0.813 0.813 0.813 

FT                           0.762 0.667 0.711 REPTree                       0.857 0.750 0.800 

SMO                       0.824 0.583 0.683 LWL  0.857 0.750 0.800 

VFI  0.750 0.625 0.682 EnsembleSelection       0.857 0.750 0.800 

NNge                      0.750 0.625 0.682 RandomSubSpace         0.857 0.750 0.800 

... ... ... ... ... ... ... ... 

JRip                        0.667 0.500 0.571 J48                                0.750 0.750 0.750 

IB1                          0.818 0.375 0.514 SMO                             0.786 0.688 0.733 

NaiveBayes            0.000 0.000 0.000 IB1                                0.500 0.313 0.385 

Prism                      0.778 0.737 0.757 NaiveBayes                   0.000 0.000 0.000 

 
first, then the instances covered by this rule are excluded from the training set and the 
learning continues on the rest of the instances. These learners are efficient on large, 
noisy datasets. Our training sets included 900 instances represented as vectors of the 
size 1109 attributes, and rule induction algorithms performed very well.  

The best state-of-the-art result for predicting a lexical function with the meaning 
‘cause’ is f-measure of 0.76 given by ID3 algorithm [17]. In our experiments, the best 
f-measure of 0.877 was shown by PART for the meaning MAKE. However, such a 
comparison is not fair, since our task was to predict the meanings DO, MAKE, BE-
GIN, CONTINUE but not lexical functions as explained in the Introduction.    

6.2   Experiments on the Test Sets  

Some of the best classifiers displayed in Tables 7, 8 were evaluated on an independent 
test set built as described in Section 4. Tables 9, 10 present the results for these classi-
fiers. We listed the values of precision, recall and f-measure for each classifier in this 
way: <precision>|<recall>|<f-measure>; BLR in the column Classifier stands for 
BayesianLogisticRegression. As we explain below, the test sets had such a big size 
that some classifiers failed to make predictions within a reasonable time period. For 
such classifiers, we put N/A instead of metrics as for the other classifiers.  

It was mentioned in Section 4, that since we did not disambiguate verb-noun pairs 
in the test sets, for each pair we build the number of instances equal to the number of 
senses for the verb multiplied by the number of senses for the noun. This has given us 
96079 instances and 10544 attributes in 100% test set, 73021 instances and 9495 
attributes in 75% test set, 48904 instances and 8032 attributes in 50% test set, and 
22254 instances and 5857 attributes in 25% test set. SimpleCart, FT, LWL had diffi-
culties in predicting the value of the class variable on test sets of sizes more than 25%. 
Among these three classifiers, SimpleCart was better because this algorithm was 
effective enough to process a 75% and 50% set.   SimpleCart and FT are decision tree 
algorithms, and LWL is a nearest-neighbor instance-based learner. Note, that almost 
all the best classifiers that could process a full-size test set, belong to the class rules. 
BayesianLogisticRegression also performs well and the only algorithm of the class 
trees that did not experience time problems was LADTree.   
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Table 9. Performance of WEKA classifiers on the test set 

Test set size Meaning Classifier 
100% 75% 

PART 0.261|0.864|0.400   0.304|0.864|0.382 
SimpleCart  N/A N/A DO 
BLR 0.178|0.830|0.293 0.212|0.818|0.337 
JRip 0.231|0.662|0.342 0.189|0.662|0.294 
SimpleCart N/A 0.168|0.662|0.268 MAKE 
LADTree 0.285|0.676|0.401 0.168|0.676|0.269 
FT N/A N/A 
SMO 0.331|0.793|0.467 0.567|0.793|0.661 BEGIN 
NNge 0.302|0.724|0.426 0.567|0.724|0.636 
Ridor 0.799|0.480|0.600 0.993|0.480|0.647 
REPTree 0.581|0.480|0.526 0.820|0.480|0.606 CONTINUE 
LWL N/A N/A 

Table 10. Performance of WEKA classifiers on the test set 

Test set size Meaning Classifier 
50% 25% 

PART 0.245|0.864|0.382 0.162|0.852|0.272 
SimpleCart 0.405|0.864|0.551 0.281|0.852|0.423 DO 
BLR 0.205|0.818|0.328 0.145|0.807|0.246 
JRip 0.189|0.662|0.294 0.174|0.662|0.276 
SimpleCart 0.203|0.662|0.311 0.177|0.662|0.279 MAKE 
LADTree 0.144|0.676|0.237 0.177|0.676|0.281 
FT N/A 0.409|0.724|0.523 
SMO 0.464|0.793|0.585 0.404|0.793|0.535 BEGIN 
NNge 0.603|0.724|0.658 0.451|0.724|0.556 
Ridor 0.958|0.480|0.640 1.000|0.480|0.649 
REPTree 0.694|0.480|0.567 0.667|0.480|0.558 CONTINUE 
LWL N/A 1.000|0.480|0.649 

As it is seen from Tables 9, 10, the best precision was shown by Ridor. This method 
(Ridor = RIpple-DOwn Rule learner) have been developed for knowledge acquisition 
where it is hard to add a new rule and be sure that it would not cause the inconsis-
tency of the rules generated before. Ridor algorithm is different from covering algo-
rithms for constructing the rule set; instead it generates exceptions for the existing 
rules that work within the confines of these rules thus not affecting other rules. Then 
it iterates on the exceptions for the best solution. This scheme allowed the classifier to 
reach 100% precision. Unfortunately, it can not boast the best recall which is only 
0.649 for the meaning CONTINUE on a 25% test set. Still, it is the second best recall 
in our experiments on test sets. The top recall is 0.658 shown by NNge for the mean-
ing BEGIN on a 50% test set.  

Another classifier that gives the best precision of 100% is LWL when performing 
predictions for the meaning CONTINUE on a 25% test set. But, like Ridor, it shows 
the same low recall of 0.658. However, a high precision of Ridor and LWL makes 
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them appropriate for fulfilling the tasks where precision is of special importance, for 
example, for automatic construction of dictionaries.  

7    Conclusions and Future Work 

We have shown that it is feasible to apply machine learning methods as implemented 
in the WEKA toolkit for predicting the meaning of unseen Spanish verb-noun collo-
cations. In particular, we trained classifiers to assign the meanings DO, MAKE, BE-
GIN and CONTINUE to a previously unseen verb-noun pair. 

Verb-noun pairs were represented as sets of hyperonyms for both the verb and the 
noun. As our experiments have shown, hyperonyms function sufficiently well as fea-
tures distinguishing between the meanings we chosen to be predicted by classifiers. 

The best f-measure achieved in our experiments is 0.877 using the training set and 
10-fold cross-validation technique. This is significantly higher than the previously 
reported result of 0.740 for f-measure, though the comparison is not fair because we 
looked for the meaning which is similar to the meaning predicted in [17], but not the 
same one. The highest f-measure achieved in the experiments on an independent test 
set was only 0.658. This could be explained by the fact that the best ratio between the 
training set and the test set has not yet been found by us. More experiments on test 
sets of various sizes are needed. 

In the future, we plan to test other classification methods that were not examined in 
our experiments as well as to work with data extracted from a raw corpus and lemma-
tized [10].  We also plan to study the effect of other features, such as WordNet 
glosses and to make experiments with word space models representing various simi-
larity measures between word combinations. We will experiment with different ratios 
between the training set and the test set.   
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Abstract. We present an optimization to elimination tree inference in
Bayesian networks through the use of unlabeled nodes, or nodes that are
not labeled with a variable from the Bayesian network. Through the use
of these unlabeled nodes, we are able to restructure these trees, and re-
duce the amount of computation performed during the inference process.
Empirical tests show that the algorithm can reduce multiplications by
up to 70%, and overall runtime by up to 50%.
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1 Introduction

Recursive decomposition refers to a class of algorithms for computing proba-
bilities from Bayesian networks (henceforth known as inference). In recursive
decomposition [10, 3, 6], variables in the network are conditioned, which decom-
poses the network into smaller and smaller problems. These smaller problems
are then solved, and their results combined to compute a global solution.

Recursive decomposition algorithms typically have an associated tree struc-
ture, either implicit or explicit, that determines the order in which computations
take place. These trees differ from technique to technique, and each tree type has
a specific set of properties. For example, a dtree [3] is a full binary tree - all non-
leaf nodes have exactly two children. By contrast, elimination trees [6] have no
restriction on the number of children each node can have, although each internal
node must be labeled by exactly one variable. These constraints on structure
affect how probabilities are computed, and each has its specific advantages.

In this paper, we consider a more general structure for elimination trees, in
order to optimize their associated inference algorithm. Specifically, we use un-
labeled nodes (a technique borrowed from dtrees), or nodes that are not labeled
by a variable from the Bayesian network. These unlabeled nodes allow the chil-
dren of a labeled internal node to be restructured from their current flat model
into a more general model, without affecting the current variable elimination
ordering. Through this restructuring, we are able to reduce both the number of
recursive calls and arithmetic operations that occur during the inference process,
lowering overall runtime. Note that this optimization occurs with no effect to
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the actual inference algorithm (hence maintaining its simplicity), and with only
a small effect on memory usage. While this paper focuses specifically on elimi-
nation trees, these techniques can be applied to other recursive models (e.g. the
compose operator for dtree construction [3]).

2 Background and Previous Work

We denote random variables with capital letters (e.g. X , Y , Z), and sets of
variables with boldfaced capital letters V = {V1, ..., Vn}. Each random variable V
has a discrete domain of finite size |V | containing values D(V ) = {0, ..., |V | − 1}.
An instantiation of a variable is denoted V=v, or v for short, where v ∈ D(V ).
A context, or instantiation of a set of variables, is denoted X=x or simply x.

Given a set of random variables V = {V1, ..., Vn} with domain function D, a
Bayesian network is a tuple 〈V,Φ〉. Φ = {φV1 , ..., φVn} is a set of probability dis-
tributions with a one-to-one correspondence with the elements of V. A Bayesian
network has an associated directed acyclic graph (DAG), and each φVi ∈ Φ is
the conditional probability of Vi given its parents in the DAG (called condi-
tional probability tables or CPTs). That is, if πVi represents the parents of Vi,
then φVi = P (Vi|πVi). The definition of a discrete variable function is the set
of variables over which it is defined. The family of a variable V in a Bayesian
network is defined as V plus the parents of V . Figure 1 shows the DAG of a
Bayesian network, taken from [11].

Tampering ( T)

Fire (F) Smoke (S)

Report (R)Alarm (A) Leaving (L)

Fig. 1. An example Bayesian network

Inference in Bayesian networks typically refers to the computation of prob-
abilities from the Bayesian network, given a set of observations. As a simple
example, given the Bayesian network in Figure 1, we may be interested in com-
puting P (F = 1|R = 1), i.e. the probability that a fire is occurring given that
people have been reported leaving the building. Inference in Bayesian networks
is NP-hard [2], however, many algorithms have been proposed that provide rea-
sonable runtimes under many circumstances. Three of the more popular classes
of algorithms include Junction Tree Processing [8], Variable Elimination [12],
and Recursive Decompositions [3, 6]. Each class of algorithms has its own spe-
cific advantages, depending on the application. Space precludes a more detailed
discussion of these inference techniques; the interested reader is referred to the
cited references for more information.

In this work, we focus on recursive decompositions. This class of algorithms
compiles the Bayesian network into a tree structure, and computes probabilities



210 K. Grant and K. Scholten

R

L

S T

F
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P(A | T, F) P(R | L)P( L | A)P( F )P( T )P(S | F )

{}*

{A}* {A}*

{F } {A, F }* {L}

Fig. 2. The network from Figure 1, arranged in an etree

using a recursive algorithm. One of the primary advantages of recursive decom-
position algorithms is that they permit a straightforward time-space tradeoff,
making them usable in memory-constrained environments. This paper focus on
on elimination trees; however, much of the discussion and proposed techniques
can be applied to other recursive inference techniques as well.

An elimination tree (etree) [6] is a tree whose leaves and internal nodes corre-
spond to the CPTs and variables of a Bayesian network, respectively. The tree
is structured such that all CPTs containing variable Vi in their definition are
contained in the subtree of the node labelled with Vi. Figure 2 shows one of the
possible etrees for the Bayesian network of Figure 1.

The function P (Figure 3) recursively computes the probability of a given
context over a subset of variables in an etree, using a top-down approach. We
use the following notation: if T is a leaf node, then φT represents the CPT at T .
If T is an internal node VT represents the variable labeling T , and chT represents
its children. Finally, if an etree T is used in the context of a tree node, then we
are referring to the root node of T .

The time complexity of P over an etree T is exponential on T ’s height, while
the space complexity is exponential only on the largest family in the Bayesian
network [6]. However, this complexity can be improved through a technique
called caching [3]. Let NV denote the internal node in an etree that is labeled
with variable V . Consider the tree from Figure 2, and consider calling node NS

when A = 0 and F = 0:1

P(NS , {A = 0 ∧ F = 0}) =
∑

s∈D(S)

P (S = s|F = 0) (1)

Notice that this equation does not depend on the value of A. Hence, when A = 1
and F = 0, the value returned from node NS will be exactly the same. By
caching this value at node NS , it needs only be calculated when A = 0, and
retrieved when A = 1.
1 In this particular example, P(NS, {A = 0 ∧ F = 0}) will always return 1. However,

this will not be the case if S is observed.



On the Structure of Elimination Trees 211

P(T , c)

1. if T is a leaf node
2. return φT (c)
3. elseif VT is instantiated in c
4. Total← 1
5. for each T ′ ∈ chT

6. Total← Total ∗ P(T ′, c)
7. else
8. Total← 0
9. for each vT ∈ D(VT )

10. Product← 1
11. for each T ′ ∈ chT

12. Product← Product ∗ P(T ′, c ∧ {vT })
13. Total← Total + Product
14. return Total

Fig. 3. Code for processing an etree given a context

Define the a-cutset of node N to be the set of variables labeling the nodes in
N ’s ancestry; the cache-domain of N (denoted CD(N), called a context in [3])
is the intersection of N ’s a-cutset and the domains of the CPTs in N ’s subtree.
The cache-domains of each node in Figure 2 are shown in curly braces to the
right of each node. The return value from N depends only on the assignment
to its cache-domain, and not its a-cutset. This is demonstrated in the previous
example: the cache-domain of node NS is {F}, since the cache values of this
node do not depend on A.

In order to avoid recomputing values, each internal node maintains a cache
of its computed values. The cache of N can be implemented as a function over
N’s cache-domain, and the algorithm for calculating probabilities from an etree
(Figure 3) can be very simply modified to perform caching. When a node is
visited, we check to see if the corresponding value is cached. If it is, the cached
value is returned; if not, the value is calculated, cached, and returned. Caching
in recursive decompositions reduces the complexity of inference from being ex-
ponential on height, to being exponential on the size of the cache-domains at
each node. The sizes of the cache-domains are determined by the width of the
variable elimination ordering associated with the tree. For more details regard-
ing caching, please see [3]. For the remainder of the document, we will assume
that our etree nodes maintain caches.

Dead Caches. In recursive decompositions, dead caches are caches whose val-
ues are only computed and never queried [1]. Consider the etree in Figure 2; in
particular, consider node NT . The cache-domain at this node is {A, F}. When
caching is employed, algorithm P visits a node once for each assignment of its
parent’s cache-domain and labeling variable. Hence, node NT is visited only
once for each assignment of its own cache-domain. Therefore, the cache values
are never actually used, only set. Dead caches can be removed from recursive
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decompositions with no runtime consequence. A cache is dead if its cache-domain
is equivalent to, or a superset of, its parent cache. Because of this simple test, de-
termining dead caches can be done offline. In our etree illustrations, dead caches
are marked with an asterisk.

Measuring Inference Cost. Our primary goal is to optimize the etree struc-
ture with regards to runtime. We focus on reducing some of the dominant oper-
ations that occur during inference, the idea being that this will translate to an
overall reduction in runtime.

Our first peformance metric is the number of recursive calls made by P
while performing inference. This metric has been considered in previous pub-
lications [1], and we have found this number to have a reasonable correlation
with runtime. We will also use number of floating-point multiplications when
determining performance, as a secondary measure to break ties when necessary.

One attractive property of these performance metrics is that they can be
computed quickly using simple formulae, without having to actually perform
inference. The number of recursive calls made at etree node N is:

RC(N) = |CD(N)| ∗ |VN | ∗ |chN | (2)

where the three multiplicands are the number of possible contexts of N ’s cache
domain, the number of states that N ’s labeling variable can take, and the number
of children that N has, respectively. Note that if N is a leaf, it makes no recursive
calls, so RC(N) = 0 in this case. The number of floating-point multiplications
performed at node N during inference can be computed in a similar manner:

FM(N) = |CD(N)| ∗ |VN | ∗ (|chN | − 1) (3)

While these metrics will be used by our algorithm when searching for an optimal
structure, we will also measure runtime when we evaluate the resulting etrees.

2.1 Related Work

As mentioned in the introduction, there are other recursive decomposition meth-
ods for Bayesian network inference. Each technique typically has its own tree
structure. One of the more well-known recursive decomposition techniques is
Recursive Conditioning [3], which uses a tree structure called a dtree. Like an
etree, each leaf of a dtree corresponds to a CPT from the Bayesian network,
and the internal nodes of the dtree are labeled with variables from the network.
Unlike etrees, however, the internal nodes of a dtree must be binary, and there
is no restriction on the number of variables that label each node. The algorithm
for computing over dtrees and etrees is similar, and it has been shown that for
a dtree, an etree of the same time complexity can be constructed [7]. One of the
advantages of etrees vs. dtrees is in their inference algorithm; the restriction of
a single variable to each internal node permits a very simple algorithm, whose
low-level properties make it portable, and accessible to non-experts.

There have been several techniques proposed for dtrees that attempt to opti-
mize their runtime. In [3], the authors present a method for balancing existing
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dtrees, while in [4], the authors present a method for directly constructing dtrees
of low height. While optimizing tree structure is the primary focus of this pa-
per, the primary difference between these techniques and those presented here
is that their optimizations attempt to minimize the height of the dtree, which
optimizes runtime for a non-caching model, whereas our optimization techniques
ignore tree height, and are designed primarily to optimize caching models.

The restructuring that we will describe is closely related to the optimal fac-
toring problem (OFP) [9], where inference is done by performing pair-wise com-
binations of CPTs using multiplication (and marginalization, when appropriate)
to obtain a distribution over query variables. The factoring problem is to per-
form these pair-wise combinations in the order that minimizes the number of
floating-point multiplications. While similar to the methods described here (i.e.
each internal node basically represents combinations of functions), there are sev-
eral differences from our approach. First, the inference algorithm described for
OFP operates on complete functions, rather than single values. Second, OFP
only performs pair-wise combinations, whereas we allow more than two chil-
dren per node. While this does not affect the number of multiplications, it can
be shown that restricting to pair-wise combination can result in more recursive
calls, decreasing the efficiency of our algorithm. Second, the authors apply OFP
across all functions in a network, whereas our restructuring takes place only at a
local level (across all children of one internal node). This means that operations
such as marginalization need not be considered in our restructuring. However,
because of their similarity, we are able to adapt a greedy heuristic from OFP
to provide a considerable speedup to this restructuring process, as discussed in
Section 5.

3 Unlabeled Elimination Tree Nodes

As mentioned, there is no restriction on the number of children that an internal
node in an etree can have. However, each internal node must be labeled with
exactly one variable. However, if etrees were allowed to contain internal nodes
with no labeling variable, it would permit a variation on their structure. For
example, Figure 4(a) shows node NF and its direct descendants from the tree in
Figure 2. Figure 4(b) introduces an unlabeled node below NF . This new node
now parents two of Fire’s children from the previous model. Fire now parents
the new node and its old node Smoke. Note that the modified tree still maintains
the properties of the etree set out in the previous section.

It would be fairly straightforward to modify the etree algorithm with a special
case to handle nodes with no labeling variable. However, rather than modify the
algorithm, we introduce a dummy variable to label all nodes with no labeling
variable. The dummy variable, unlike the other variables, does not correspond
to a variable in the Bayesian network, so its value has no effect on the values
obtained from the CPTs during inference. Furthermore, the dummy variable is
always “observed”, that is, its value is never unknown. Labeling each empty node
in this manner eliminates the need for modifications to the original algorithm.
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(d) RC = 12, Multiplies = 6

Fig. 4. Candidate structures for the children below F in the etree shown in Figure 2.
Each structure is labeled with the number of recursive calls (RC) and multiplications
that will be incurred during inference.
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(c) Etree with unlabeled node

Fig. 5. An example network and corresponding etrees. In this example, the structure
for NA’s children cannot be improved using unlabeled nodes.

We now demonstrate how restructuring affects algorithmic performance. The
number of recursive calls made by NF decreases by four, and the number of
recursive calls at the new node is eight, so the overall number of recursive calls
increases by four. Therefore, this restructuring of the tree has increased over-
head by increasing the number of recursive calls, and is therefore undesirable.
However, consider a different modification of the original etree, shown in Figure
4(d). In this case, the empty node now parents two different previous children
of Fire. It can be easily verified that the number of recursive calls is not affected
by this modification. However, the overall number of multiplications required is
reduced by two. Furthermore, if the variables in the example network had larger
domains, the restructuring of Figure 4(d) would decrease both the number of
recursive calls and the number of multiplications required.
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Note that it is not always possible to restructure the children of a node to
reduce cost: in some cases, a flat model with no unlabeled nodes is the best one.
Consider the network in Figure 5(a), and a possible etree for this network in
Figure 5(b). There is no restructuring at node NB (such as the one shown in
Figure 5(c)) that will result in a reduction in the number of recursive calls or
multiplications required by inference. For example, the tree in Figure 5(c) re-
quires the same number of multiplications as the one in Figure 5(b), but requires
more recursive calls, hence, the latter should be preferred.

4 Performing a Decomposition

Given the previous discussion, our goal is to restructure an existing etree using
unlabeled nodes, in order to reduce the runtime required by inference. The re-
structuring process is applied individually to each node having more than two
children. Each node is restructured such that it minimizes the number of recur-
sive calls made, breaking ties using number of multiplications. The new configu-
ration replaces the original structure. For example, when restructuring the etree
in Figure 2, we consider restructuring below NF , as it has three children. The
candidate structures are shown in Figure 4. Each candidate is annotated with
the number of recursive calls and multiplications that it requires.

Note that determining the best model for each node is a time consuming
process. However, the restructuring process is a compile-time step. That is, re-
structuring is performed offline, where its cost can be amortized over many runs
of the inference algorithm. However, when the number of children at a node is
sufficiently large, an exhaustive search over all possible structures may be infea-
sible. In the next section, we introduce a fast method for restructuring, at the
price of optimality.

While the restructuring process will typically reduce the number of children
at each node, the resulting structure will not necessarily be binary. Figure 5
demonstrates this, as the final structure will be Figure 5(b), where node NA has
three children.

We must consider what happens to the memory requirements of the etree
caches when the tree undergoes restructuring. In some cases, the memory is not
affected. Consider the etrees in Figures 4(b) and 4(d). Comparing these trees to
the original etree in Figure 2, we see that the memory requirements are identical,
once the dead caches are pruned. However, this is not guaranteed to be the case.
Figure 6(a) shows an etree node with three children. Restructuring this node
(Figure 6(b)) reduces the number of multiplications by 25%, while maintaining
the same number of recursive calls. However, we now need to store the cache at
the unlabeled node. In the worst case, the restructuring process has the potential
to increase the number of caches at each node N by chN−2. However, the process
can also decrease the required cache memory. Figure 7 shows an example. Figure
7(a) shows an etree node with three children prior to being restructured. Notice
that all children have caches that are not dead. In Figure 7(b), the number of
caches has increased, but the new cache renders two of the child caches dead.
Hence, we are now storing three caches instead of four.
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Fig. 6. A restructuring that reduces runtime, but increases memory. (a) shows a partial
elimination tree, and (b) shows that tree, restructured using an unlabeled node.
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(a) Original

{B, C}A

X {A,B}* Y {A,B}* Z {A, C}

{A,B}

(b) Restructured

Fig. 7. A restructuring that reduces both runtime and memory. (a) shows a partial
elimination tree, and (b) shows that tree, restructured using an unlabeled node.

In our test networks, the cache space typically increased, but by a reasonable
amount ( 8% on average, and < 24% in all cases). However, in situations where
an increase in space is not acceptable, the process could easily be modified to
ignore any restructurings that result in an increase in memory.

We evaluated these restructured etrees using 9 well-known benchmark net-
works.2 Each network was queried using no evidence, and no variable pruning
(e.g. barren variables) or local structure optimizations were applied (this forces
the inference algorithm to compute over the entire search space of the problem).
The etrees were first compiled into a conditioning graph [6], and used the index-
ing structure described in [5], to reduce overhead. All tests were performed on a
computer running at 2.66GHz with 2 GB of memory. Table 1 shows some mea-
surements from our experiments. For each network, the table shows the number
of recursive calls, number of multiplications, runtime, and cache memory usage
using the original etree and the restructured etree. The memory usage assumes
that each floating point value uses 4 bytes of memory.

The table shows several interesting points. First, the restructuring of the etrees
can have a significant effect on the amount of computation done by the algorithm.
The number of recursive calls was reduced in all networks, in some cases by over
50%. The number of multiplications were reduced as well, in some cases by over
70%. The overall runtime of the algorithm was reduced as well, although the
decrease was less by percentage than recursive calls and multiplications. This is
not surprising, as recursive calls and multiplications represent only a subset of

2 http://www.cs.huji.ac.il/~galel/Repository/

http://www.cs.huji.ac.il/~galel/Repository/
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Table 1. Experimental results. Table shows recursive calls (×106), multiplications
(×106), runtime (s), and memory (MB).

Network RC (×106) FM (×106) Runtime (s) Mem (MB)

Old New Old New Old New Old New

Barley 63.9 44.5 44.6 24.9 12.3 9.00 5.25 5.56

Diabetes 35.5 33.7 18.4 16.5 7.31 7.00 3.17 3.62

Mildew 19.9 19.6 10.1 9.82 3.94 3.89 0.68 0.71

Munin1 986 431 774 216 186 88.6 58.4 58.4

Munin2 12.7 10.8 7.38 5.35 2.56 2.21 2.30 2.37

Munin3 13.2 6.98 9.99 3.53 2.52 1.44 1.82 1.43

Munin4 54.8 34.6 39.6 18.8 10.6 7.16 6.90 8.49

Pigs 4.10 1.84 3.22 0.92 0.82 0.43 0.47 0.57

Water 11.6 8.93 7.05 4.34 2.35 1.90 0.98 1.19

the total operations that are going on; other significant operations, such as CPT
indexing [5], are not necessarily reduced by the restructuring.

Secondly, we can see that restructuring the tree generally results in an increase
in memory usage. However, the memory increase was relatively small, averaging
8% over our test cases, and never exceeding 24%. As mentioned, the restructuring
has the potential to also decrease memory usage. We can see that in Munin3,
the overall cache memory usage was actually decreased by 21%.

Note that the cost-benefit ratio is not consistent across all networks. For
example, there is only a 5% reduction in the number of recursive calls for the
Diabetes network, at the cost of a 14% increase in cache memory. However,
remember that these values can be computed offline, during tree construction.
Hence, such cost-benefit analysis can be made prior to runtime, allowing the
user to decide whether to use the original or reconstructed etree.

While these tests show the effect that restructuring has on overall inference,
they do not demonstrate the per-node savings in each network. Define the re-
cursive call ratio of node N to be the ratio between the number of recursive
calls that N requires after restructuring (which includes the extra recursive calls
made to and by the unlabeled nodes between N and its children), and those
required by N prior to restructuring. The multiplication ratio of node N is de-
fined similarly, replacing recursive calls with floating point multiplications in the
definition. Table 2 shows the maximum ratios across all nodes for each network.

The table shows several points. First, even in networks whose overall perfor-
mance was only affected slightly by restructuring (e.g. Diabetes, Mildew), there
existed nodes whose restructuring reduced the number of necessary multipli-
cations by nearly 50%. Furthermore, even in networks where restructuring did
have a substantial impact on overall inference, the per-node savings are even
more dramatic. A particularly striking example is in the Pigs network, where
the restructuring of one of its etree nodes reduced the number of recursive calls
at that node by over 75%, and multiplications by over 87%.
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Table 2. Maximum ratios between original and restructured nodes, in terms of
recursive calls (RC) and floating-point multiplications (FM)

Barley Diabetes Mildew Munin1 Munin2 Munin3 Munin4 Pigs Water

RC 0.34 0.68 0.69 0.25 0.26 0.26 0.25 0.23 0.50

FM 0.20 0.51 0.51 0.15 0.15 0.15 0.14 0.12 0.34

5 Fast Restructuring

When restructuring the children of a particular node, the algorithm described
in the previous section searches exhaustively through each possible structure. It
is easily shown that the number of ways to restructure the children of a node
grows exponentially with the number of children. Considering our particular
implementation, the algorithm was quite fast (< 0.1 s) for nodes with 7 children
or less. However, restructuring a node with 12 children took roughly 10 minutes,
and a 14 child node took over 10 hours. Hence, for networks whose elimination
tree contains nodes with many children, an exhaustive search may be infeasible.
In this section, we consider a greedy approach to restructuring. Our approach
is based on a heuristic from the optimal factoring problem [9], summarized in
Section 2.

A rough outline of the algorithm is as follows. Each node N is restructured
bottom-up, beginning with its children. At each iteration, we choose two nodes
whose combined cache-domains have the smallest weight. These two nodes are
removed from the pool of nodes, and become the children of a new unlabeled
node, which is then added back to the pool. Unlabeled nodes whose cache-
domains are the same are merged. Unlabeled nodes whose cache-domains are
equivalent to the cache-domain of N plus the labeling variable of N are absorbed
by node N (i.e. the unlabeled node is eliminated, and N adopts its children).

Table 3. Experimental results, comparing trees constructed exhaustively (Ex) and
using the greedy heuristic (Heu). Note that RT=restructuring time. Runtimes requiring
less than 0.01s are denoted by a dash.

Network RC (x106) Runtime(s) Mem(MB) RT (s)

Ex Heu Ex Heu Ex Heu Ex Heu

Barley 44.5 44.5 9.00 9.01 5.56 5.56 0.02 0.01

Diabetes 33.7 33.7 7.00 6.99 3.62 3.62 0.01 0.01

Mildew 19.6 19.6 3.89 3.88 0.71 0.71 – –

Munin1 431 431 88.6 88.8 58.4 58.4 0.37 0.08

Munin2 10.8 10.8 2.21 2.21 2.37 2.38 1.21 0.02

Munin3 6.98 7.01 1.44 1.44 1.43 1.43 13.4 0.02

Munin4 34.6 34.6 7.16 7.17 8.49 8.49 1.85 0.04

Pigs 1.84 1.84 0.43 0.43 0.57 0.57 1.66 0.01

Water 8.93 8.93 1.90 1.91 1.19 1.19 0.01 –
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This heuristic effectively solves the restructuring time issue, with nodes hav-
ing 100 children restructuring in less than half a second. The quality of the re-
structurings was examined over our test networks; the results of these tests are
shown in Table 3. As the table demonstrates, not only does the heuristic provide
a considerable speedup in restructuring times, but the trees resulting from fast
restructuring performed nearly as well as the exhaustive search algorithm in all
circumstances.

6 Conclusion

In this paper, we consider alternate construction methods for etrees, that are
designed to reduce runtime when performing inference. Specifically, we relax
the constraint that each internal node must be labeled by a variable from its
corresponding Bayesian network, and allow unlabeled nodes. Through the use
of these unlabeled nodes, we demonstrated that the amount of computation
required by these structures can be reduced considerably: over a 55% reduction in
recursive calls and a 70% reduction in multiplications over some of our test cases.
This optimization occurs with no effect to the variable elimination ordering, and
requires no modification to the actual inference algorithm; furthermore, it incurs
a relatively small memory cost. We also demonstrated a greedy approach to
restructuring, that’s based on the optimal factoring problem, which gives nearly
identical results to the exhaustive search, while improving the restructuring time
by orders of magnitude for nodes with many children. Although these techniques
were showed in the context of conditioning graphs, they could easily be applied
to other recursive decompositions (e.g. dtrees).

We are currently considering several extensions to this project. As an example,
restructuring the etree can result in an increase in cache memory requirements.
While the observed increases were quite reasonable in our test cases, there may be
networks for which memory increases may be unacceptable. In these situations,
one would still like to try to apply this restructuring optimization as much as
possible, while using (for example) the current cache sizes as an upper bound on
memory usage. One trivial approach would be to perform a tree restructuring,
and reject it if the resulting tree requires more memory. A more refined approach
would be to eliminate any restructurings that resulted in a memory increase, but
on a node-by-node basis. Finally, one could imagine an interplay between nodes,
where some nodes would be allowed to increase their memory usage if other
nodes decreased theirs.
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Abstract. Cache prefetching in memory management greatly relies upon effec-
tiveness of prediction mechanism to fully exploit available resources and for 
avoiding page faults. Plenty of techniques are available to devise strong predic-
tion mechanism for prefetching but they either are situation specific (Locality of 
reference principle) or inadaptable (Markovian model) and costly. We have 
proposed a generic and adaptable technique benefiting from past experience by 
employing hybrid of Case Based Reasoning (CBR) and Neural Networks 
(NNs). Here we will be concerned with improving adaptation phase of CBR us-
ing NN and its impact on predictive accuracy for prefetching. The level of pre-
dictive accuracy attained (specifically in case adaptation of CBR) is ameliorated 
by handsome margin with declined cost than contemporary techniques as would 
be affirmed by results.  

Keywords: Prefetching, Case Based Reasoning, Neural Networks, Locality of 
Reference, Markovian Model. 

1   Introduction 

It is almost inevitable to live without information systems after revolutionary advent 
of Information Technology (IT) employed somehow in every aspect of human life. 
These systems are exploited in various I/O intensive applications with a broader scope 
overarching business, industry, academia, medical sciences etc. For operation of these 
information systems, the required level of storage and computing resource varies 
depending upon the volume of data and compute-intensiveness of applications while 
manipulating bulk of information. In previous decade, we can observe not only mas-
sive increase in capacity of storage media and computing resources but their dimin-
ished costs can’t go unnoticed as well. 

Despite the important role of Information Systems in human life, the issue of dis-
parity between ‘execution power of processors’ and ‘performance of peripherals’ 
(esp. Hard Disk Drives) is not new to the research community. With each day, this 
performance gap is widened because of delays involved in the form of seek time, 
rotational delay and block transfer time while manipulating the data. The more  
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alarming aspect is per year improvement where CPU speed improves by 50% each 
year and disk performance improves just by 8% a year [1]. 

We can observe a lot of efforts [2, 3, 4] made to match I/O performance of these 
peripherals to the speed of processors ending up in notable success. This improvement 
is courtesy to some available “cache prefetching” techniques with their respective 
pros and cons [2]. Prefetching is speculatively fetching data that will be accessed in 
future for preventing wastage of CPU cycles, searching from slow Hard Disk Drives 
(HDDs) and hence concealing IO latencies [3]. So the ultimate purpose of prefetching 
is to avoid the conditions of page fault where demanded page has to be accessed from 
HDDs and processor remains in stall state until data is fetched in main memory.   

We can assert prefetching as process of visualizing the future requests so a strong 
prediction mechanism is required   of prefetching right data before hand thus improv-
ing system performance by enhancing “ hit ratio of cache”. This requirement of right 
prediction has been acclaimed using various techniques such as ‘Locality of Refer-
ence Principle [3]’, ‘Markovian Model [5]’ and ‘Neural Networks [4]’ to mention a 
few.  

Locality of reference principle is congregation of two heuristics named ‘Temporal 
Locality’ and ‘Spatial Locality’. ‘Temporal locality’ is based on assumption that 
pages that have been referenced now are more likely to be re-referenced in near fu-
ture, so they must be retained in the memory (primary). Other principle is based on 
the probability of demanding the pages that lie in a sequence next to the currently 
accessed pages, so pages residing in next sequence are fetched in advance to exploit 
the benefits of prefetching. We can imply that both the heuristic have fundamental 
role in prefetching but are situation specific i.e. first heuristic is unable to deal with 
random requests and other one specifies no time for retaining the pages.    

Markov Prediction algorithm [5] has also been a strong candidate for its implemen-
tation in prefetching techniques. The last part of reference stream is compared with 
prefixes of previous reference streams. The remaining patterns are prefetched in 
memory. So the success of algorithm depends upon patterns in data stream. In addi-
tion to this dependence Markov algorithm does not adapt itself to the situation for 
decision make. 

In [4], Neural Network based model has been used to predict suitable candidate for 
prefetching but the technique has not been much effective in terms of prediction as 
well as cost (in terms of mean square error). The issues arose due to usage of raw data 
for experimentation and lack of appropriate knowledge base that could benefit the 
past experience. 

Considering these issues with prevalent techniques, we come up with hybrid of two 
Artificial Intelligence (AI) techniques named ‘Case Based Reasoning’ [4] and ‘Neural 
Networks’ [5] for improvising level of predictive accuracy in finding appropriate 
prefetch-candidates. We have tried to benefit the previous experience by having solu-
tion for newly emerging problems from CBR’s case base and on the other side util-
ized the adaptive nature of NN for problems having similar but inexact solutions in 
case repository of CBR (i.e. for case adaptation).  

CBR’s case adaptation is carried out through Rule Base Systems (RBSs) most of 
the time as observed during literature survey. But there are few short falls in RBS as 
given in [6]. Considering the concerns posed while using set of rules for CBR case 
adaptation, we work out this phase of CBR via NN (in hybrid of CBR and NN). The 
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proposed technique enhances the level of predictive accuracy compared to contempo-
rary techniques used for case adaptation. 

Few of these issues with RBS are given below [6]: 

― Dependent and independent attributes can’t be defined by user. 
― Even if attributes are defined, non-linear relation (as in our case) cannot be 

defined as IF then Else. 
― In order to devise the rule base system, user must have complete knowledge 

of underlying data to devise the assertions. 
― More intricate process when multiple case bases are used. 
― User must maintain rule base to be consistent with incremental growth of 

case base. 

In this paper resolution to some of the above issues is proposed. Different datasets 
(Integer strings) of different sizes have been used for carrying out different experi-
ments. These datasets are furnished in the CBR’s case base in form of cases each of 
length 9 (see section 3.1 for details). On the basis of first eight elements 9th element 
is predicted (as a candidate to be prefetched). Detailed view of experimental setup is 
available in section 3. 

Section 2 discusses architecture of proposed system, while Section 3 is furnished 
with implementation details. Section 4 contains the results and discussion on experi-
ments and comparison of an existing technique with the proposed one. Section 5 con-
cludes the work and reveals intended future direction. 

2   System Architecture  

The architecture of proposed system is presented in Figure 1. It has four main mod-
ules namely Preprocessor module, Case retrieval, Case Reuse and Case Adaptation. 

Dataset Preprocessing Module: This module is concerned with populating the CBR’s 
case base (or System’s Case Base). There has been an issue with representation of 
data due to randomness or absence of rich feature set for pattern extraction which will 
later be used. In order to address the mentioned limitation the preprocessing activity is 
incorporated in system that takes random sized Hex strings (each representing mem-
ory address) at constant temporal scale. The address strings plotted in a Suffix Trees 
[7] are generated using these address strings while keeping track of frequencies of 
each of the addresses in the address string. Later, these branches based on their occur-
rence frequency (repetitiveness) are extracted and placed in the CBR's case base.  

Case Retrieval module: This module provides query specific solution using cases 
from the case base i.e. for new address string (query). The algorithm in this module 
computes level of similarity of query string vs cases in the case base. This similarity 
is computed using uses ‘Tversky Ratio model [10]’ as a similarity metric. If computed 
similarity is 100%, that is ‘n-1’ elements of two cases are same then the solution of 
that problem will be selected and applied. 
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Conversely, the selected case which is similar to certain threshold (varied between 
60%-90%) is subjected to the Case Adaptation module for getting nearest but prob-
able solution.  

Case Adaptation module: The adaptation is carried out using case adaptation module 
in two ways i.e. ‘Majority Class Voting’ and ‘Neural Networks’ respectively (details 
in coming section). After adaptation is carried out, the adapted case will be reused and 
retained to the case base for future usage. 

Case Reuse module: This module has been discussed to make this paper self-
contained; though results of this component are not part of this work.  

3   Implementation Strategy 

In this section, the information details of proposed system are discussed. 

3.1   Data Preprocessing  

The core issue for building CBR model is to devise some technique for populating the 
case repository of CBR. In our system, this activity is carried out using Suffix Tries 
[8] where each random sized address string in Hex format is read over a constant 
temporal scale (reading each string for few micro-seconds). These Hex strings are 
converted to equivalent decimal for plotting address nodes on Suffix Trees. Each node 
in our suffix tree contains three parts: data part, frequency-counter and a flag. 

Data part of node contains actual address; frequency-counter refers to how many 
times that data occurred in a branch of suffices derived from address strings and flag 
is used to distinguish intermediary nodes from leaf nodes. 

 

Fig. 1. Architecture of the proposed system 
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For example, we get the tree in the form of Figure 3 on plotting the following two 
strings with their respective suffices: 

String 1     356982 
String 2     569249 

Whenever an occurrence of a suffix is repeated, the frequency of respective node is 
incremented by one. After all the address strings are plotted by “Preprocessor”, the 
next step is extraction of the repetitive patterns (i.e. branches of tree plotted); this 
extraction was done using Depth First Search (DFS). We extracted all the branches of 
length 9 with varying frequency depending upon number of cases yielded during 
branch extraction. Each of these branches of length n=9 was used to represent a case 
of CBR’s case base. According to our heuristic ‘n-1’ elements would refer to the 
problem attributes and nth element is considered as respective solution. 

In other words, a combination of first eight addresses refers to prediction of 9th 
address. This situation can better be apprehended from Figure 2. 

 

Fig. 2. Representation of a Case in CBR Case 

Once the case repository is populated, the CBR is ready for its operative tasks of 
retrieval and adaptation. However, There might be a question why length 9? We ex-
perimented different lengths of cases in CBR’s case base and observed an added cost 
in retrieval as well as adaptation using NN when length was kept more than 9. Reduc-
ing the length ended up in loss of predictive accuracy. So 9 was the lucky number 
exhibiting an acceptable tradeoff between the cost and accuracy (For practical pur-
pose it depends on the page and cache size). 

3.2   Case Retrieval 

Case retrieval is carried out by measuring the level of similarity among query cases 
and cases in case base. We used the similarity measures based on “Ratio Model” by 
Tversky [5] while performing similarity assessment in CBR: 

SMpq   =
CBin sdifferenceof#CBin matches of#

CaseQuery for  cases Addressed matched of#

+
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Once similarity assessment is complete, each case is assigned a rank in order to pre-
dict the level to which query case is similar to the cases in case base.  

Here, it’s worth mentioning that there is plethora of similarity metrics available but 
this is the only metrics that computes the ‘rank’ of similarity while preserving se-
quence and semantics of each case. One of the other options was using Fuzzy Logic 
[13] requiring clustering of dataset based upon feature weights. We neither had rich 
feature set nor the respective weights impeding the use of Fuzzy Logic based metric. 
The metric based on Euclidian distance provides the difference between the corre-
sponding attributes of problem case and query cases which was not workable in our 
model as we were more interested in finding the commonalities among the cases 
rather than computing the difference. So we found ratio model as an appropriate solu-
tion for our model. 

 

Fig. 3. Suffix tree 356982 and 569249 

3.3   Case Adaptation of CBR Cases  

After similarity assessment of new case, we make a decision about case adaptation in 
order to reach an appropriate solution if we have no similar problem and respective 
solution. The situation in which we have to go for adaptation is illustrated in the Fig-
ure 4. We retrieve a case that has different problem attributes (A1 and A3) and we 
need to predict the appropriate solution attribute (A9) based on adaptation technique. 

Adaptation was performed in two ways (1) Majority Class Voting and (2) Using 
Neural Networks. These two techniques were compared to find their respective impact 
on predictive accuracy in prefetching. We will describe each of the approaches briefly. 

3.3.1   Majority Class Voting (MCV) Based Adaptation 
The concept of majority class voting is used to perform adaptation while exploiting 
the frequency of solution attribute from retrieved cases. In other words, we classify 
the retrieved cases with respect to the last element of retrieved cases. We keep the 
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track of solution (9th element) for our problem case (first eight attributes) over the set 
of retrieved cases. On the basis of solution element, we classify the cases. Then prob-
ability of each class is computed for retrieved cases. The class with highest probabil-
ity will be most probable solution for our problem. In other words, the class contain-
ing maximum number of cases (in terms of solution attribute) is considered to be most 
appropriate solution for query case. 

 

Fig. 4. Case adaptation using MCV 

3.3.2. Neural Networks Based Adaptation 
The other task is to devise the computation model of Neural Networks for determin-
ing the predictive accuracy of NN in case adaptation. For the purpose of training and 
validation, we used the cases of CBR. We used Back Propagation Neural Networks 
with following configurations in Matlab7.   

 

These are the configuration parameters for the layers of NN which are based on the 
experiments performed to optimize the results. Since the problem case has eight attrib-
utes, so the input layer has eight neurons and one output is modeled by one neuron.  

We have described how CBR and NN work in their entirety with respect to opera-
tion of predictive accuracy. In order to evaluate hybrid of CBR and NN, training of 
neural network was performed on retrieved cases only. These cases were retrieved 
using metrics described in section 3.2. The validation set comprised of the query case 
with inexact match. We further evaluated our hybrid system to one of the existing 
systems [4] for predictive prefetching using neural networks only on following pa-
rameters (these parameters were used by author of paper and we address his approach 
as VANN).  
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Fig. 5. Case adaptation for page prediction 

The hybrid of system showed better performance than all contemporary systems as 
would be depicted in next section.    

4   Results and Evaluations 

We present the results based on observations made during the adaptation phase as 
mentioned in section 3.3. 

The comparison of two techniques is presented followed by a comparative analysis 
of proposed technique with an existing technique named ‘VANN [4]’. We used the 
same NN model and parameters as given in [4] for the comparison purposes. 

There were 1200 cases in our case base initially. Random query cases were given 
to retrieve the cases using our similarity metric discussed in 4.2 from the case base in 
the form of different sets (Each set carrying 100 cases). Firstly, the retrieved cases 
with similarity not equal to 100% were adapted using Majority Class Voting (MCV). 
We measured percent similarity to sort out most probable solution using MCV.  
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On the other side, to evaluate the case of CBR+NN, NN model was trained on sets 
of the retrieved cases. The retrieval of these cases was based upon CBR’s similarity 
metric and adaptation was carried out using Feed Forward Back Propagation Neural 
Networks. Training set (retrieved cases) and validation sets contained 600 and 800 
cases respectively. For the purpose of validation, we gave right cases in validation set 
to test the accuracy towards the required solution. 

We performed a comparative analysis of our technique with one of the existing ap-
proaches as asserted above, where we selected most frequently occurring branches 
from Suffix tree (frequency <=10) for CBR’s case base unlike previous training set 
with less frequent data patterns (frequency <=4). The model presented in [7] can 
hardly be compared to proposed model of ‘CBR+NN’ and none of the approaches can 
be compared to hybrid of CBR and Neural Networks. 

 

Fig. 6. Case Adaptation performance using CBR (MCV) vs. CBR+NN 

 

Fig. 7. Mean Square Error Cost model of “CBR+NN (a)” vs “VANN (b)” 
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This fact can be viewed from Figures 6, 7, 8 and Table 2. The predictive perform-
ance of proposed ‘CBR+NN’ when compared to performance of CBR (using Majority 
Class Voting concept in 3.2) ‘NN’ (section 3.3) and to VANN, has outperformed 
these techniques not only in terms of predictive accuracy but the cost associated was 
also minimal to a satisfactory level. 

Although the Mean Square Error (MSE) cost seems increasing exponentially at ini-
tial stage in both the cases (CBR+NN and VANN) but proposed model (Fig. 7a) 
would converge towards zero gradually contrary to cost of VANN (Fig. 7b) where 
one can observe not only inconsistent behavior since beginning but after 73rd itera-
tion it shoots up again. 

 

Fig. 8. Predictive Accuracy of CBR+NN vs. VANN 

All these experiments are also represented in the form of percent “Precision and 
Recall”. Standard precision and recall measures are computed as follows:  
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F-measure is a single measure that trades off Precision versus Recall [15]. We have 
taken average of results illustrated in the Figure 6 and Figure 8 and computed average 
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precision and recall using above formulas. Handsome amount of precision is being 
achieved using our technique which further strengthens effectiveness of proposed idea 
as shown in Table 1. Apart from precision, recall also suggests that overall coverage 
of getting results is also well comprehended. 

Table 1. Comparison in terms of Precision & Recall 

Techniques Precision Recall F-measure 
CBR+ANN 78% 90% 83.5% 
CBR(MCV) 59% 78% 67% 
VANN 43% 58% 49% 

The results revealed that proposed approach of “CBR+NN” has better predictive 
performance than fellow techniques. The differentiating aspect is usage of suffix tries 
in preprocessing mode, which provides rich and natural data patterns out of available 
data. The presence of these patterns provides effective learning for neural networks 
and training on retrieved cases will further purify the training set and hence improves 
the productiveness of proposed approach.  

5   Conclusion 

We propose the perfecting technique for high I/O intensive system and implemented 
its architecture (partially) to improve the predictive-ness in prefetching. We presume 
that it will lower down the impact of latency and would ensure optimum resource 
usage via prefetching. This prefetching would be based on intelligent pattern manipu-
lation specific to memory addresses. The novelty of approach is signified to incorpo-
ration of suffix tries for CBR’s case base population, and merger of Neural Networks 
with CBR in extracting and recognizing knowledge patterns for case adaptation. 

We look forward to evaluate the retrieval phase by devising different similarity 
metrics because the metrics used are very crude one. Eventually, we try to replace the 
BPNN by some other model such as RBF for further optimizing the solution by 
minimizing the training set. 
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Abstract. This paper addresses the supervised learning in which the class 
membership of training data are subject to uncertainty. This problem is tackled 
in the framework of the Dempster-Shafer theory. In order to properly estimate 
the class labels, different types of features are extracted from the data. The ini-
tial labels of the training data are ignored and by utilizing the main classes' pro-
totypes, each training pattern, in each of the feature spaces, is reassigned to one 
class or a subset of the main classes based on the level of ambiguity concerning 
its class label. Multilayer perceptrons neural network is used as base classifier 
and for a given test sample, its outputs are considered as basic belief assign-
ment. Finally, the decisions of the base classifiers are combined using Demp-
ster's rule of combination. Experiments with artificial and real data demonstrate 
that considering ambiguity in class labels can provide better results than classi-
fiers trained with imperfect labels.  

Keywords: Data with imperfect labels, Dempster-Shafer theory, Classifier 
combination, Neural network. 

1   Introduction 

In the classical supervised classification framework, a classifier is trained based on a 
learning set in the form of labeled patterns. However, in some applications, unambi-
guous label assignment may be difficult, imprecise and expensive. Such situations can 
occur when differentiating between two or more classes is not easy due to lack of 
information required for specifying certain labels to data or the difficulty of labeling 
complicated data of the problem at hand.   

Combination of multiple classifiers' decisions induced from different information 
sources has proved to be a promising approach for improving the performance of a 
classification system that deals with imprecise and uncertain information. The Demp-
ster-Shafer (D-S) theory of evidence [1] is a well suited framework for representation 
of partial knowledge. Compared to the Bayesian approach, it provides a more flexible 
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mathematical tool for dealing with imperfect information. It offers various tools for 
combining several items of evidence and, as understood in the transferable belief 
model (TBM) [2] , allows to make decision about the class of a given pattern through 
transforming a belief function into a probability function. Thanks to its flexible char-
acteristics to represent different kind of knowledge, the D-S theory provides a suitable 
theoretical framework for combining classifiers especially those learned using impre-
cise and/or uncertain data [3-7]. 

In this paper we propose a new approach within the belief functions and combining 
classifiers frameworks for dealing with supervised classification problems in which 
the labels of the learning data are imperfect. Several representations of the data are 
used and an approach is suggested, based on the supervised information, for detecting 
inconsistencies in the labels of the learning data and assigning crisp and soft labels to 
them. Multilayer perceptrons (MLP) neural network is used as base classifier and its 
outputs are interpreted as belief function. Final decision about the class of a test pat-
tern is made by combining the beliefs produced by the base classifiers using Demp-
ster's rule of combination.  

The paper is organized as follows. In Section 2 basic concepts of the D-S theory 
are reviewed. Details of our proposed method are described in Section 3. It is fol-
lowed by the experimental results on artificial and real data in Section 4 and finally, 
Section 5 draws conclusion and summarizes the paper.    

2   Dempster-Shafer Theory 

The Dempster-Shafer (D-S) theory of evidence [1] is a theoretical framework for 
reasoning with uncertain and partial information. Several models for uncertain reason-
ing has been proposed based on the D-S theory. An example is the transferable belief 
model (TBM) proposed by Smets [2]. In this section, the main notions of the D-S 
theory are briefly reviewed.  

Let 
1 M = {ω ,...,ω }Ω  be a finite set of mutually exclusive and exhaustive hypotheses 

called the frame of discernment. A basic belief assignment (BBA) is a function 
: 2 [0,1]m Ω →  verifying 

A Ω (A) = 1m⊆∑ . A BBA m such that ( ) = 0m φ  is called nor-

mal. The subsets A of Ω  with nonzero masses are called the focal elements of m and 
m(A) indicates the degree of belief that is assigned to the exact set of A and not to any 
of its subsets. There are belief and plausibility functions associated with a BBA and 
are defined respectively, as follow: 
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Bel(A) represents the total amount of probability that must be allocated to A, while 
Pl(A) can be interpreted as the maximum amount of support that could be given to A. 

Let m1 and m2 be two BBAs induced by two independent items of evidence. These 
pieces of evidence can be combined using Dempster’s rule of combination which is 
defined as: 

(2)



 Combining Neural Networks Based on Dempster-Shafer Theory 235 

A B  C

A B  

1 2
= 

1 2
=  

( )

( ) ( )

(3)
1 ( ) ( )

m C

m A m B

m A m B
φ

∩

∩

=

×

− ×

∑
∑

 

Combining BBAs using Dempster's rule of combination is possible only if the sources 
of belief are not totally contradictory which means that there exist two subsets 

ΩA ⊆ and ΩB ⊆ with A B φ∩ ≠  such that 
1( ) 0m A > and 

2( ) 0m B > . 

2.1   Discounting 

When an information source S is used in the belief function framework, its reliability 
can be taking into account by the discounting operation in which the original BBA m 
is weakened by a discounting rate α ∈ [0,1]. The resulting αBBA m  is defined by 

Shafer [1] and Smets [8]: 

( ) (1 ) ( ) Ω, Ω
(4)

( ) (1 ) ( )

m A m A A A

m m

α

α

α
α α

⎧ = − ∀ ∈ ≠⎪
⎨

Ω = + − Ω⎪⎩

 

The coefficient (1- α) cab be regarded as a confidence degree one has in the source of 
information. If α = 1, it means that S is not reliable and the information provided by 
this source is discarded. On the other hand, α = 0 indicates that the S is fully reliable 
and the belief function remains unchanged.  

2.2   Decision Making    

The approach adopted in this paper for decision making is based on the pignistic 
transformation which is defined in the TBM. By uniformly distributing the mass of 
belief m(A) among its elements for all A Ω⊆ , a pignistic probability distribution is 

defined as: 

{ }A Ω,ω A

1 m(A)
BetP(ω) , ω Ω (5)

A 1 m( )φ⊆ ∈
= ⋅ ∀ ∈

−∑

 
where A  is the cardinality of subset A and for normal BBAs, would be ( )m A  .  
Finally a test sample is assigned to class with the largest pignistic probability. 

3   The Proposed Method  

Fig. 1 shows the architecture of our proposed method. There are two main phases 
involved in the implementation of the method including relabeling the learning data 
and classifying an input test sample by combining decisions of neural networks 
trained on the learning data with new labels.  
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Fig. 1. Architecture of the proposed classification scheme. In the training phase, crisp and soft 
labels are assigned to the learning data and MLPs are trained on the data with new labels. In the 
test phase, the outputs of the MLPs are converted in the form of BBAs by making use of soft-
max operator. Final decision on a given test sample is made by combining the experts' beliefs 
with Dempster's rule of combination and using pignistic probability.  

3.1   Relabeling 

Let 
1 M = {ω ,...,ω }Ω  be a set of M classes and 

1X = [x ,...,x ]n  
be a data point described 

by n features in the training set which is associated to one class in Ω  with certainty. 
The goals of this stage are (i) to detect inconsistencies in the labels of the training data 
using the supervised information carried by the data and, (ii) to reassign each train 
sample to just one main class or any subset of the main classes based on the level of 
ambiguity concerning the class membership of that sample.  

Let P be a M n×  matrix containing prototype vectors of the main classes and let 

1[ ,..., ]i i iMD d d=  be the set of distances between train sample Xi and the M prototypes 

according to some distance measure (e.g. the Euclidian one). Initial label of Xi is 
ignored and by utilizing the information provided by the vector Di, uncertainty detec-
tion and class reassignment for this sample are performed in a three-step procedure:      

Step 1: The minimum distance between Xi and the class prototypes is taken from the 
vector Di,  

min( ) , 1, ..., (6)ij ikd d k M= =  

and dij is called dmin. 

Step 2: A value 0 1kμ< ≤  is calculated for each of M classes using the following func-

tion:     

min( ) , 1,..., (7)k i
ik

d
X k M

d

βμ
β

+= =
+

 

in which 0 < β < 1 is a small constant value and ensures that the utilized function 
allocates a value greater than zero to each of M classes even if 

min 0d = . 
kμ  is a  
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decreasing function of the difference between 
mind  and 

kd  and has values close to 1 

for small differences.  

Step 3: A threshold value 0< <1τ  is defined and based on the level of ambiguity re-

garding the class membership of the train sample Xi, this sample may be assigned to 
(i) a set of classes if the corresponding values of 

kμ  for these classes are greater than 

or equal to τ  or (ii) just one main class, which has the closest prototype to Xi and 
1kμ = , if Xi be far away from other main classes’ prototypes.  

Close distances between a train pattern and some of the class prototypes can be inter-
preted as an indication of ambiguity in the pattern’s label and in such cases a soft 
label is assigned to that train pattern. The above procedure is repeated for all training 
data and for all feature spaces.  

Since several representations of the data are employed to provide complementary 
information, it can be expected that if a soft label has been assigned to a train sample 
in one of the feature spaces, this sample could belong to one main class or a subset of 
the main classes with less uncertainty in the other feature spaces. In this way, the 
negative effects of crisp but imperfect labels of some learning samples on the classifi-
cation performance can be reduced. 

3.2   Training and Classification 

MLP neural network is used as base classifier. The learning set of each feature space, 
which consists data with new crisp or soft labels, is employed to train a base classi-
fier. Since different types of features are extracted from the data, each feature space 
has its own level of uncertainty in class labels. As a result, after the relabeling proce-
dure, the number and type of classes in each feature space could be different from the 
other one and base classifiers with different models (different number of output 
nodes) are trained on these feature spaces. In this way, diversity among the base clas-
sifiers can be achieved.   

In the test phase, same types of features as the training stage are extracted from the 
test data and they are applied to their corresponding trained base classifiers. The out-
put values of each base classifier can be interpreted as measures of confidence associ-
ated with different decisions. For combining the evidences induced by the feature 
spaces using Dempster’s rule of combination, the decision of each base classifier 
should be converted in the form of BBA. This can be done through normalizing the 
outputs of the base classifiers by a softmax operator as: 

1

exp( )
({ }) , 1,..., (8)

exp( )
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i j C

ji
j

O
m j C

O
ω

=

= =
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where Oji is the jth output value of the ith base classifier, C is the number of classes in 
the ith feature space after the relabeling stage and ({ })i jm ω is the mass of belief 

given to class 
jω .  
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Note that, although our method allows to compute a BBA mi that could has any fo-
cal set over the set of the main classes, the BBA contains only a set of states which 
have corresponding classes in the ith feature space after the relabeling stage.  

Before combining the opinions of different evidences, the belief function of each 
classifier is weakened by its discounting rate (the method of evaluation of the dis-
counting factor will be explained in Section 3.2.1) and the resulting BBAs are merged 
using Dempster’s rule of combination. The decision about the class of a given test 
sample is then made using the pignistic probability derived from the final BBA by the 
pignistic transformation.  

Note that, although the main contribution of our method is to classify data with 
imperfect labels, its application can be extended to classification problems which 
involve heavily overlapping class distributions and nonlinear class boundaries. 

3.2.1   Evaluation of the Discounting Factor 
To assess the reliability of information sources provided by different feature spaces, 
the method proposed by Eloudi et.al. [9] is used. This method is based on the TBM 
and for finding the discounting factor, minimizes the distance between the pignistic 
probabilities computed from the discounted beliefs and the actual values of data. The 
outline of this approach is summarized below.  

Let 
1 M{ω ,...,ω }Ω =  be a set of classes and 

1 n{X ,...,X }χ = be a set of n samples. Let 

jBBA (X )m be the normalized belief function for sample 
jX  which is defined on the 

set of classes. The class of each sample is known and
jc ∈Ω denotes the class of sam-

ple
jX . Let 

j(X )BetP α denotes the pignistic probability obtained from the dis-

counted BBA ( )jXmα . For each sample 
jX , an indicator function 

j,iδ
 
is defined as: 
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and sum of the Euclidian distances between the pignistic probabilities computed from 
the discounted BBAs and the indicator functions, is calculated as follows: 

n M
2

j ,
j=1 i=1

TotalDist = ( (X )( ) ) (10)i j iBetPα ω δ−∑∑  

The discounting factor α that minimizes the above distance is given by: 
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4   Experimental Results  

In this section, we report experimental results on artificial and real datasets to high-
light the main aspects of our proposed method. In our experiments, the centers of the  
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main classes are taken by averaging the learning data of each class and the resulting 
vectors are considered as the main classes’ prototypes. A value of β = 0.01 was 
adopted in the relabeling stage and validation sets were used to calculate the discount-
ing factor. 

4.1   Artificial Data  

We used a two-dimensional data so that the results could be easily represented and 
interpreted.  The dataset was made of three classes with equal sample size, Gaussian 
distribution and common identity covariance matrix and 150, 300 and 1500 samples 
were generated independently for training, validation and testing sets, respectively. 
The center of each class was located at one of the vertices of an equilateral triangle. In 
order to use different representations of the data, the classes were transferred to their 
near vertices in clockwise direction and in this fashion two other feature spaces were 
generated. In each feature space, a unique subset of each class overlapped with data of 
other classes. It means that the high uncertainty pertaining to class membership of a 
pattern in one of the feature spaces can be reduced because this pattern may be lo-
cated in non-overlapping or less ambiguous areas in the other feature spaces. To 
evaluate the performance of the proposed method in classification tasks with different 
levels of uncertainty in class labels, the length of the equilateral triangle (the distance 
between the neighborhood classes) was varied in {1,2,3} and in this way, three cases 
from strongly overlapping to almost separated classes were studied. Fig. 2 represents 
graphically the explained above procedure for generating the artificial data.   

 

Fig. 2. Generic representation of the artificial data. For generating new feature spaces, the 
classes are transferred to their near corners in the clockwise direction. To demonstrate how 
different parts of a class overlap with other classes in different feature spaces, class 1 is divided 
to four parts and the positions of these parts in the three feature spaces are shown. 

4.1.1   Soft and Crisp Label Generation 
There are two main issues in the relabeling stage including choice of the main classes’ 
prototypes and selecting the threshold value (τ ). Although an appropriate selection 
of prototype can play an important role in accurate assignments of crisp or soft labels 
to data, we focus our attention on the influence of considering uncertainty in the la-
bels of data on the performance of a classification method that confronts data with 
imperfect class labels or highly overlapping class distributions.  
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In order to examine how training samples with different levels of uncertainty in 
their labels are treated in the relabeling procedure, the results of partitioning the first 
training set with 0.8 = τ  is demonstrated in Fig. 3. Each partition is represented by a 
convex hull and its class label indicates that the samples of that partition were as-
signed to which subset of the main classes. It can be seen that soft labels were as-
signed to samples situated in the boundaries of the main classes or those located at 
ambiguous regions.    

 

Fig. 3. Representation of partitioning the first learning set into crisp and soft subsets by the 
proposed relabeling approach with = 0.8τ . a) first feature space, b) second feature space, c) 
third feature space 

4.1.2   Performance Comparison 
The performance of our proposed method was compared to three MLP neural net-
works trained separately on one of the feature spaces and ensemble networks con-
structed by merging the decisions of the single MLPs using three fixed combining 
methods (Averaging, Product and Max rules). The single MLPs and the ensemble 
networks discarded the possible uncertainties in class labels and employed data with 
initial certain labels. The MLPs were trained by Levenberg-Marquardt algorithm with 
default parameters and 80 epochs of training and had one hidden layer. Each neural 
network was trained 50 times with random initializations. To evaluate the perform-
ance of our proposed method based on different threshold values, we generated 19 
training sets from each original training data by varying τ  from 0.05 to 0.95 with a 
step size of 0.05. 

The average test error rates of the employed classifiers on the three datasets and for 
different number of hidden nodes are represented in Fig. 4. Note that, the classifica-
tion results of our proposed method with the best τ  for each dataset are shown. As 
can be seen, our method yields considerably better classification results than the other 
classifiers when the first dataset, as the most difficult set with highest level of ambi-
guity in class labels, was used (Fig. 4 (a)). As shown in Fig. 4(b) and Fig. 4(c), the 
differences between the test performances of our proposed scheme and the three en-
semble networks on the second and third datasets are small. So, it can be concluded 
that there is not much benefit to be gained from considering uncertainty in perfectly 
labeled data or in a classification problem with separated classes. 
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Fig. 4. Classification error rates as a function of number of hidden nodes for single MLPs, 
ensemble networks constructed by combining the MLPs using fixed combining method and our 
proposed method. a) first training set ( 0.8τ =  for our method), b) second training set ( 0.75τ =  
for our method), c) third feature space ( 0.7τ =  for our method). 

4.2   Real Data 

We applied our proposed method to the problem of classifying circular knitted fabric 
defects. The data consisted of five classes of knitted defect samples and defect-free 
fabric images (Fig. 5).  

 

Fig. 5. Samples of fabric images in our six-class problem. a) Vertical Strip, b) Horizontal Strip, 
c) Soil freckle, d) Crack, e) Hole, f) Defect-free. 

As can be seen from Fig. 5, four classes belong to either horizontal or vertical de-
fects which means that the extracted features from samples of these classes  can make 
overlapping areas in feature space. Moreover, little differences between samples of 
some defect classes and defect-free images may also cause vagueness in information 
provided by the learning data.   
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The feature vectors were computed from 128×128 pixels gray level images in three 
stages including wavelet decomposition, binary thresholding and morphological proc-
essing. Three wavelet filters of Daubechies family (db2, db5, db10) and three levels 
of decomposition were used based on extensive experiments. Horizontal and vertical 
detailed subimages at level 3 were used for further analysis since most of the defec-
tive fabrics had either horizontal or vertical defects. Detailed subimages were then 
converted to binary, binary level can vary from 0 to 1 and it was chosen to be 0.2 in 
our work, and a morphological filter (Opening) was applied to them to eliminate ir-
relevant parts which could be considered as defective areas. White areas in the final 
subimages were considered as defects and total number of white pixels in the final 
horizontal and vertical images made the first and second dimensions of the feature 
vector, respectively. Fig.6 illustrates three two-dimensional feature spaces which were 
achieved using the above feature extraction approach. 

 

Fig. 6. Representations of the fabric samples in the two-dimensional feature spaces obtained by 
making use of three wavelet filters. a) db2, b) db5, c) db10. 

The dataset involved 90 samples and all classes had equal number of patterns. 
Overall classification performance was evaluated using a K-fold cross validation 
method with K = 5. The data was divided into five subsets and in each round, three of 
the five subsets were employed for training while the fourth and fifth were used for 
validation and testing, respectively. The above procedure was repeated for all five 
subsets and the average classification rate on the test patterns was considered as a 
figure of merit. Similar to experiments carried out using the artificial dataset, we 
compared the performance of our proposed method on the real data with those of 
single and ensemble neural networks that relied on the initial imperfect labels. All 
MLPs were trained 100 times with random initial weights and 50 epochs of training 
and their architectures were similar to the former experiment.  

Table 1 gives the average test error rates of the proposed method (with the best 
threshold value ( 0.75τ = )), the ensemble networks and the single MLPs as a function of 
number of hidden nodes. 
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Table 1.  Error rates as a function of number of hidden nodes for single MLPs, ensemble net-
works and our  method ( 0.75τ = ). The minimum error rate of each network is typed in bold. 

No. of hidden neurons 3 5 7 9 11 
Average error rate (%)        
First MLP 47.1 36.72 33.79 32.37 32.39 
Second MLP 41.42 30.58 27.63 28.34 29.15 
Third MLP 41.19 34.87 33.81 33.75 34.09 
Averaging  28.11 20.34 18.25 18.33 18.25 
Product 36.08 19.34 17.98 18.21 18.95 
Max 32.69 24.45 22.78 22.58 22.83 
Proposed method 26.29 18.68 17.6 17.13 17.39 

Small differences between error rates of the proposed method and the ensemble 
networks can be interpreted by considering the poor choice of the main classes' proto-
types (center of classes) in the relabeling stage of our method. As mentioned earlier, 
our major interest is to investigate the effect of considering uncertainty in class labels 
in improving the classification results and utilizing complementariness between in-
formation sources in the framework of the D-S theory. So, the expectation is that by 
employing more complex algorithm for generating prototypes of the main classes, 
which is an open area of research, better classification results would be achieved 
using the proposed method 

We used the real data to examine the effect of utilizing discounting strategy on the 
performance of the proposed method and to explore how diverse classifiers were 
generated from the feature spaces using our proposed relabeling approach. Error re-
duction rates obtained by employing the discounting factor in our method for different 
threshold values and the best number of hidden neurons are presented in Table 2. 
Overall, discounting brought better performances compared with the situation that all 
information sources assumed to be fully reliable.      

Table 2. Error reduction rates (%) achieved by employing the discounting factor in the pro-
posed method as a function of the threshold value for the best number of hidden nodes  
(9 hidden nodes) 

Threshold value (τ) 0.15 0.35 0.55 0.75 0.95 
Error reduction rate (%)   0.16 0.39 4.94 3.87 0.22 

Table 3 lists the generated classes from each feature space after the relabeling stage 
for the best threshold value ( 0.75τ = ).  Here, we randomly selected one of the training 
sets produced by the five-fold cross validation. It can be seen that the number and 
type of generated soft class labels for each training set are almost different from an-
other one which indicates that the ensemble network was made by a set of diverse 
classifiers. Apart from the influence of τ on the label generation procedure, form of 
the produced class labels is related to the number of overlapping areas and amount of 
uncertainty pertaining to samples of each area. 



244 M. Tabassian, R. Ghaderi, and R. Ebrahimpour  

Table 3. Generated classes from the three feature space after the relabeling stage for the best 
threshold value ( 0.75τ = ) 

Produced classes            
Feature Set 1 ω1 ω2 ω3 ω4 ω5 ω6 ω2,4 ω3,6 ω1,3,6 ω3,5,6 - 
Feature Set 2 ω1 ω2 ω3 ω4 ω5 ω6 ω2,6 ω3,5 ω3,6 - - 
Feature Set 3 ω1 ω2 ω3 ω4 ω5 ω6 ω2,4 ω2,6 ω3,6 ω2,3,6 ω1,2,3,6 

5   Conclusion  

In this paper, a method for handling imperfect labels using belief functions has been 
presented. By extracting different types of features from data, the proposed method 
takes advantage of information redundancy and complementariness between sources. 
In each feature space and by making use of the proposed relabeling technique, the 
initial labels of the learning data are ignored and each train pattern is then reassigned 
to a class with crisp or soft label based on its closeness to prototypes of the main 
classes. MLP neural network is used as base classifier and its outputs are interpreted 
as BBA and in this way, partial knowledge about the class of a test pattern is encoded. 
The BBAs are then discounted based on the reliability of the base classifiers in identi-
fying validation patterns and are pooled using Dempster's rule of combination. 

Experiments carried out on controlled simulated data and a dataset of knitted fabric 
defects. It was shown that by considering the ambiguity in labels of the data, our 
method can outperform classifiers that rely on the initial imperfect labels.  
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Abstract. Recently Jaeger and others have put forth the paradigm of "reservoir 
computing" as a way of computing with highly recurrent neural networks.  This 
reservoir is a collection of neurons randomly connected with each other of fixed 
weights. Amongst other things, it has been shown to be effective in temporal 
pattern recognition; and has been held as a model appropriate to explain how 
certain aspects of the brain work.  (Particularly in its guise as “liquid state ma-
chine”, due to Maass et al.)  In this work we show that although it is known that 
this model does have generalizability properties and thus is robust to errors in 
input, it is NOT resistant to errors in the model itself.  Thus small malfunctions 
or distortions make previous training ineffective.  Thus this model as currently 
presented cannot be thought of as appropriate as a biological model; and it also 
suggests limitations on the applicability in the pattern recognition sphere.  
However, we show that, with the enforcement of topological constraints on the 
reservoir, in particular that of small world topology, the model is indeed fault 
tolerant. Thus this implies that "natural" computational systems must have spe-
cific topologies and the uniform random connectivity is not appropriate.  

Keywords: Reservoir Computing, Small world topology, robustness, Machine 
Learning. 

1   Introduction 

Recently Jaeger (Jaeger, "The ëcho state" approach to analysing and training recurrent 
neural networks, 2001), Maass (Maass, Natschläger, & Markram, 2002) and others 
have put forth the paradigm of "reservoir computing" as a way of computing with 
highly recurrent neural networks.  This reservoir is a collection of neurons randomly 
connected with each other of fixed weights. Amongst other things, it has been shown 
to be effective in temporal pattern recognition; and has been held as a model appro-
priate to explain how certain aspects of the brain work.  (Particularly in its guise as 
“liquid state machine”, due to Maass et al.)  

This is particularly impressive as processing in artificial neurons typically is a-
temporal. This is because the underlying basic neuronal model, that of McCullough-
Pitts (McCullough & Pitts, 1943) is atemporal by nature. As a result, most applica-
tions of artificial neural networks are related in one way or another to static pattern 
recognition. On the other hand, it has long been recognized in the brain science  
community that the McCullough-Pitts paradigm is inadequate. Various models of 
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differing complexity have been promulgated to explain the temporal capabilities 
(amongst other things) of natural neurons and neuronal networks.  

However, during the last decade, computational scientists have begun to pay atten-
tion to this issue both from the neurocomputational and biological  perspectives e.g. 
(Maass W. , 1999; Maass, Natschläger, & Markram, 2002; Maass, Natschlger, & 
Markram, 2004; Fernando & Sojakka, 2005; Jaeger, The "echo state" approach to 
analysing and training recurrent neural networks, 2001), and investigations as to the 
computational capabilities of various models are being investigated.  

Two such models, the “echo state machine” (Jaeger, The "echo state" approach to 
analysing and training recurrent neural networks, 2001) and the “Liquid State Ma-
chine” (see Fig. 1.) (Maass, Natschlger, & Markram, 2004; Maass, Natschläger, & 
Markram, 2002), have had substantial successes recently. These two models are iden-
tical on the abstract level and have recently been renamed “reservoir computing” 
(Lukosevicius & Jaeger, 2009).  In these models there is a somewhat different para-
digm of computation. Information is stored, not in "attractors" as is usually assumed 
in recurrent neural networks, but in the reverberating activity pattern in a sufficiently 
recurrent and inter-connected network. This information can then be retrieved by any 
sufficiently strong classifying detector. The idea is that the history of, e.g. timings of 
rocks thrown into a pond of water, is completely contained in the wave structure.)  
Moreover, the "persistence of the trace" (or as Maass put it, the "fading memory") 
allows one to recognize at a temporal distance the signal that was sent to the liquid; 
and sequence and timing affects of inputs. 

This is an exciting idea; and, e.g. Jaeger, Maass and his colleagues have published 
a series of papers on it.  Amongst other things, they have recently shown that once a 
detector has been sufficiently trained at any time frame, it is resilient to noise in the 
input data; and so it can be used successfully for generalization. (Maass, Natschläger, 
& Markram, 2002; Fernando & Sojakka, 2005).  In particular, experiments have been 
performed for speech recognition.  

 

Fig. 1. Liquid State Machine (figure taken from (Maass, Natschläger, & Markram, 2002)) 

However, there is a claim that this abstraction is faithful to the potential capabili-
ties of the natural neurons and thus is explanatory to some extent from the viewpoint 
of computational brain science. It is this issue we address in this paper. Note that one 
of the underlying assumptions is that the detector works without memory; that is the 
detector should be able to classify based on instantaneous static information; i.e. by  
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sampling the liquid at a specific time. That this is theoretically possible is the result of 
looking at the dynamical system of the liquid and noting that it is sufficient to cause 
the divergence of the two classes in the space of activation.  

Note that the detector systems (e.g. a back propagation neural network, a percep-
tron or an SVM) are not required to have any biological plausibility; either in their 
design or in their training mechanism, since the model does not try to account for the 
way the information is used in nature.  

Despite this, since natural neurons exist in a biological and hence noisy environ-
ment, for these models to be successful in this domain, they must be robust to various 
kinds of noise. As mentioned above (Lukosevicius & Jaeger, 2009) (Maass, 
Natschläger, & Markram, 2002) addressed one dimension of this problem by showing 
that the systems are in fact robust to noise in the input. Thus small random shifts in a 
temporal input pattern will not affect these models to recognize the pattern.  From a 
machine learning perspective, this means that the model is capable of generalization. 

However, there is another component to robustness; that of the components of the 
system itself.  

In this paper we report on experiments performed with various kinds of "damage" 
to these models and unfortunately have shown that, e.g. the LSM with any of the 
above detectors is not resistant, in the sense that small damages to the LSM neurons 
reduce the trained classifiers dramatically, even to essentially random values. 

Seeking to correct this problem, we experimented with different architectures of 
the liquid.  The essential need is that there should be sufficient recurrent connections 
so that on the one hand, the network maintains the information in a signal, while on 
the other hand it separates different signals.  The models typically used are random 
connections; or those random with a bias towards "nearby" connections.  Our experi-
ments with these topologies show that the network is very sensitive to damage be-
cause the recurrent nature of the system causes substantial feedback. 

Taking this as a clue, we tried networks with "hub" or "small world" (Albert-
László & Réka, 1999; Albert-László & Réka, 1999; Bianconi G, 2001; Albert R, 
2000) architecture.  This architecture has been claimed (Danielle & Bullmore, 2006; 
Chklovskii, 2009) to be "biologically feasible". 

The intuition was that the hub topology, on the one hand, integrates information 
from many locations and so is resilient to damage in some of them; and on the other 
hand, since such hubs follow a power rule distribution, they are rare enough that dam-
age usually does not affect them directly.  This intuition was in fact borne out by our 
experiments.  

2   Non Robustness of the Models 

2.1   The Experiments 

To test this resistance to noise, we downloaded the code of Maass et al from his labo-
ratory site1 and then implemented two kinds of damage to the liquid. We also reim-
plemented the LSM code so that we could handle variants.  These models use a kind 
of basic neuron that is of the "leaky integrate and fire" (LIF) variety and in Maass' 
                                                           
1 A neural Circuit SIMulator: http://www.lsm.tugraz.at/csim/ 
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work, the neurons are connected randomly.  In addition, some biologically inspired 
parameters are added: 20% inhibitory and a connectivity constraint giving a prefer-
ence to geometrically nearby neurons over more remote ones.  (For precise details on 
these parameters, see: neural Circuit SIMulator1) External stimuli to the network were 
always sent to 15% of the neurons, always chosen to be excitatory neurons.  Initially, 
we experimented with two parameters: (i) the percentage of neurons damaged (ii) the 
kinds of damages. 

The kinds were either transforming a neuron into a "dead" neuron; i.e. one that 
never fires or transforming a neuron into a "generator" neuron ,i.e. one that fire as 
often as its refractory period allows it, regardless of its input. 

We did experiments with different kinds of detectors: Adaline (Widrow & Hoff, 
1960), Back-Propagation, SVM and Tempotron (Gütig & Sompolinsky, 2006). 

Classification of new data could then be done at any of the signal points; We ran 
experiments as follows: we randomly chose twenty temporal inputs; i.e. random se-
quences of 0s and 1s of length 45, corresponding to spike inputs over a period of time; 
and trained an LSM composed of 240 integrate and fire neurons like in (Maass, 
Natschläger, & Markram, 2002) to recognize ten of these inputs and reject the other 
ten, each choice of architecture was run 666 times varying the precise connections 
randomly. 

We tested the robustness of the recognition ability of the network with the follow-
ing parameters: 

─ The neurons in the network were either leaky integrate and fire neurons (Maass 
W. , 1999) or Izhikevich (Izhikevich, 2003) style neurons. 

─ The average connectivity of the networks was maintained at about 20% chosen 
randomly in all cases although with different distributions. 

─ The damages were either "generators ",  i.e. the neurons issued a spike whenever 
their refractory period allowed it; or they were "dead" neurons that could not 
spike. 

─ The degree of damage was systematically checked at 1%, 2%…15% in ran-
domly chosen neurons. 

The results that shown in tables throughout the paper are in percents, over the (666) 
repeated tests.  100% indicates that all the 20 vectors of one test, over 666 repetitions 
of the test were fully recognize correctly. 50% indicates that only half the vectors over 
666 times were recognized (corresponding to chance baseline).  

2.2   Results 

First, there was not much difference between the detectors; so eventually we restricted 
ourselves to the Back-Propagation detector which had data points of 30 randomly 
sampled time points of the entire liquid. (To be fair, none of units of the liquid input 
were accessed by the detectors allowed to be input neurons of the liquid.) 

It turned out that while the detector was able to learn the randomly chosen test classes 
successfully with sufficient average connectivity almost any kind of damage caused the 
detector to have a very substantial decay in its detecting ability (See Table 1. ). 
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Table 1. Maass’s implementation: distribution preferring local connections 

Damage Non 5% 10% 
Dead Neurons 90.45% 80.35% 60.3 % 
Noisy Neurons 92.01% 59.08% 53.8% 

Reimplementing the LSM to allow for different connectivities; showed the same 
basic responses.  In fact, when the network is connected randomly without bias for 
geometric closeness, the network is even more sensitive (Compare Table 1.  and  
Table 2. ). After our later experiments, we returned to this point (see concluding  
remarks, below). 

Table 2. 10% random connections2 

Damage Non 1% 5% 10% 
Dead Neurons 100% 53% 53% 50% 
Noisy Neurons 100% 55% 53% 52% 

In Fig. 2. we illustrate the difference in reaction of the network by a raster (ISI) 
display. Note that with 10% damage, it is quite evident to the eye that the network 
diverges dramatically from the noise free situation. In Table 3. one can see this as 
well with 5% noise for purely random connectivity. Actually, with low degrees of 
damage the detectors under even the Maass connectivity show dramatic decay in 
recognition although not to the extremes of random connectivity. (See Table 2.) These 
results were robust and repeatable under many trials and variants. 

 

Fig. 2. Maass LSM (a) normal operation (b) with 10% dead damage (c) with 10% noise 

Accordingly, we conclude that the LSM, either as purely defined with random 
connectivity, or, as implemented in (Maass, Natschlger, & Markram, 2004) cannot 
serve as a biologically relevant model. 

                                                           
2 For all the Tables that shown in this paper, 50% is the baseline of random classification. 
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3   Topological Modifications and Restoration of Robustness 

3.1   Different Kinds of Basic Neurons 

In attempts to restore the robustness to damage, we experimented with the possibility 
that a different kind of basic neuron might result in a more resilient network.  Accord-
ingly, we implemented the LSM with various variants of "leaky integrate and fire 
neurons" e.g. with history dependent refractory period (Manevitz & Marom, 2002) 
and by using the model of neurons due to Izhikevich (Izhikevich, 2003). The results 
under these variants were qualitatively the same as the standard neuron. (The Izhike-
vich model produces a much more dense activity in the network and thus the detector 
was harder to train but in the end the network was trainable and the results under 
damage were very similar.). 

3.2   Allowing Detectors to Have Memory 

In trying to consider how to make the model more robust to damage, we focused first 
on the fact that the detector has no memory. Perhaps, if we allow the detector to fol-
low the development of the network for some time amount, both in training and run-
ning, it would be more robust. To check this, we took the most extreme other case; we 
assumed that the detector system in fact takes as input a full time course of its input 
neurons for about 30 iterations. This means that instead of a NN with input of 204; we 
had one with 30 times 204 time course inputs.  It seemed reasonable that (i) with so 
much information, it should be relatively easy to train the detector (ii) one could hope 
that damage in the liquid would be local enough that over the time period, the detector 
could correct for it. In order to test this, we re-implemented the LSM to allow for the 
time entry. 

Our detector was trained and tested as follows. There were 204 output units. At a 
“signal point” each of them was sampled for the next 30 iterations and all of these 
values were used as a single data point to the detector. Thus the detector had 204 
times 30 inputs. We chose separate detector points typically at intervals of 80. We 
then used back propagation on these data points.  This means that eventually the de-
tector could recognize the signal at any of the “signal points” after training there was 
no particular importance to the choice of separation of the signal points except that 
there was no overlap between the data points. While we did not control for any con-
nection between the intervals of data points (i.e. 80, and we also checked other time 
intervals) and possible natural oscillations in the network, we do not believe there was 
any.  As anticipated, there was no significant trouble in training the network to even 
100% of recognition of the training data. 

The "detectors" were three level neural networks, trained by back-propagation. We 
also did some experiments with the Tempotron (Gütig & Sompolinsky, 2006); and with 
a simple Adaline detector (Widrow & Hoff, 1960). Training for classification could be 
performed in the damage-less environment successfully with any of these detectors. 

We exhaustively ran tests on these possibilities. Some sample results with 5% and 
10% damage for the neural network detectors are presented in the Fig. 4. Through 
Fig. 9. below. (Since the results for the other detectors were similar, we did not run as 
many tests on them) 
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Table 3. 5% random connectivity 
 

Damage Non 1% 5% 10% 
Dead Neurons 100% 61% 58% 56% 
Noisy Neurons 100% 60% 58% 57% 

In all of these tests, following Maass, we assumed that approximately 20% of the 
neurons of the liquid were of the inhibitory type. The architecture of the neural net-
work detector was 204 input neurons (which were never taken from the neurons in the 
LSM which were also used as inputs to the LSM.) 100 hidden level neurons and one 
neuron for the output.  Results running the Maass et al. architecture are presented in 
Table 1. and can be compared with a random connected network of 20% average 
connectivity. See Table 4.  

Table 4. 20% random connectivity 

Damage Non 1% 5% 10% 
Dead Neurons 100% 79% 49% 49% 
Noisy Neurons 100% 97% 71% 63% 

The bottom line was that even with low amounts damage and under most kinds of 
connectivity, the networks would fail; i.e. the trained but damaged network loss of 
function was very substantial and in many cases could not perform substantially dif-
ferently from a random selection.  

3.3   Changing the Architecture 

Our next approach, and ultimately the successful one, was to experiment with differ-
ent architectures.  We looked at many variants of the following ideas: 

1. Random Connectivity as a baseline.  (Note: this is not a "straw dog".  This is actu-
ally the basic definition of the LSM.)  

2. Varying the amount of connectivity.  Lowering the average degree of connectivity 
shows decreased sensitivity in all architectures.  Unfortunately, lowering the con-
nectivity also decreases the strength the network has in representability and, impor-
tantly, in the persistence of the signal.  (That is, a low degree of connectivity 
causes the activity to die down quickly because of the lack of feedback.  Thus the 
network is bounded in time and cannot recognize an "older" input signal.)  Thus we 
see, as is to be expected from the analysis in (Jaeger, The "echo state" approach to 
analysing and training recurrent neural networks, 2001; Maass, Natschlger, & 
Markram, 2004)that a higher connectivity gives a larger set of "filters" that sepa-
rate signals, but on the other hand makes it more sensitive to changes.  In any case, 
even with low connectivities, the random topology was not robust; nor was the 
Maass topology. (While not at random levels of identification, as we have seen, 
e.g. in Table 1. it suffered very substantial decays with even small amounts of 
damages. In addition, our experiments with connectivities below 15% - 20%, show 
that the networks do not maintain the trace for very long. (Not shown here.) 
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3. "Hub" topologies (see Table 5.).  Here we designed by hand topologies with essen-
tially one hub.  In this case, the robustness was substantially increased but the per-
sistence was weak; and under the algorithm chosen, there were substantial discon-
nected components in the liquid. 

4. Small world topologies (see Table 6.).  In this system the connectivity follows a 
power rule law.  We constructed these networks in different ways.  In all cases, the 
number of connections was chosen based on the average connectivity desired. 

5. Assign a link from a uniformly randomly chosen neuron to a second neuron chosen 
randomly according to a power law.  In this case the input connectivity follows a 
power law; while the output connectivity follows a Gaussian distribution. 

6. Reversing the above.  In this case the input connectivity is Gaussian while the 
output connectivity is power law. 

7. We also replaced Gaussian with uniform in the above. 
8. We also tried choosing a symmetric network with Power law connectivity (ipso 

facto for both input and output). (Note that in this case, the same neurons served as 
"hubs" both for input and output.)  

9. Finally, we designed an algorithm to allow distinct input and output connectivity 
but both obeying the same power law. (See algorithm1 and algorithm 2 below). 

Algorithm 1. Generate a random 
number between min and max value 
with Power law distribution 
Input: min,max, size 
How_many_numbers 
counterArry = array 
Magnify = 5  
for  i = 1  to How_many_numbers 
 index = random(array.start , 
array.end) 
 end_array = array.end 
 candidate = array[index]  
 AddCells(array , Magnify); 
 for t = 0 to Magnify  
  array[end_array+t]=candidate 
 end for 
 shuffle(array) 
 output_Array[i] = candidate  
 counterArry[candidate]++ 
end for 
shuffle(counterArry) 
Output output_Array,counterArry 

Algorithm 2. Create the 
connectivity matrix for 
the liquid network using
the algorithm 1 
Input weight_Matrix 
use algorithm 1 to creart
(arraylist, counterArry)
counter = 0 
for i=1 to  
counterArry.lenght 
 for t=1 to counterArry[i]
  weight_Matrix[i,  
arraylist[counter]]=true
  counter++ 
 end for 
end for 

One problem with the various algorithms for designing power law connectivity is 
that under a "fair" sampling, the network might not be connected.  This means that 
such a network actually has a lower, effective connectivity.  Since we already knew 
that lower connectivity results in less sensitivity to noise, we decided to eliminate this 
problem by randomly connecting the disconnected components (either from an input 
or output perspective) to another neuron chosen randomly but proportionally to the 
connectivity.  (This does not guarantee connectivity of the graph, but makes it 
unlikely, so that the effective connectivity is not substantially affected.)  
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Table 5. One hub network 

Damage Non 1% 5% 10% 
Dead Neurons 100% 93% 66.73% 64.09% 
Noisy Neurons 100% 98% 84.33% 70.77% 

Table 6. Power-law distribution with small worlds 

Damage Non 1% 5% 10% 
Dead Neurons 100% 87% 71% 68% 
Noisy Neurons 100% 88% 79% 71% 

3.4   Results 

All architectures with a power law distribution, whether on the input, output or both 
sides resulted in substantial improvements in the resistance to noise, except for case 
(8) where the input and output hubs were the same.  This was even worse than the 
random baseline choice at the same connectivity.  The best result was obtained in case 
(9) when both input and output connectivity were power law; but distinctly chosen. 
Fig. 3 shows the connectivity distribution in this case.  Table 6. shows the results in 
this case for some sample damages in the 20% average connectivity situation. 

 

Fig. 3. Connection distribution according to the power-law 

The results presented are the average of many experiments.  However, since this 
work is about robustness, we thought it important to consider the distribution of such 
results over many experiments.  Thus, instead of giving less revealing statistics, we 
display the complete histograms for the different kinds of networks under different 
amounts of damages.  Note that for all figures and tables 50% is the random baseline. 

In Fig. 4. through Fig. 9., we display the histograms of hundreds of networks at 
different levels of success under each of the architectures.  The horizontal axis is the 
accuracy of classification and the vertical axis is the histogram count.  

Table 4., Fig. 6. and Fig. 7. show the distribution of damage for a random connec-
tivity network with average connectivity of 20%. 

Table 5., Fig. 8. and Fig. 9. show the distribution of damage for one hub network 
with average connectivity of 20%. 

Table 6., Fig. 4. and Fig. 5. show the robustness results for the power law small 
word distribution. 
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Fig. 4. Histograms of correctness results in 
liquid networks with different amounts of 
“dead” neuron damage for liquid networks 
with an average connectivity of 20% with a 
power law distribution of connectivity 

Fig. 5. Histograms of correctness results in 
liquid networks with different amounts of 
“noise generator” neuron damage for liquid 
networks with an average connectivity of 20%, 
with connectivity of a power law distribution 
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Fig. 6. Histograms of correctness results in 
liquid networks with different amounts of 
“dead” neuron damage for liquid networks with 
an average connectivity of 20% with a connec-
tivity of random connections distribution 

Fig. 7. Histograms of correctness results in 
liquid networks with different amounts of 
“noise generator” neuron damage for liquid 
networks with an average connectivity of 
20% with a random connections3 distribu-
tion of connectivity 
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Fig. 8. Histograms of correctness results in 
liquid networks with different amounts of 
“noise generator” neuron damage for liquid 
networks with an average connectivity of 20%, 
with distribution of one hub 

Fig. 9. Histograms of correctness results in 
liquid networks with different amounts of 
“dead” neuron damage for liquid networks 
with an average connectivity of 20%, with 
distribution of one hub 

                                                           
3 For all the Tables that shown in this paper, 50% is the baseline of random classification. 
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4   Discussion  

We have shown experimentally that the basic LSM is not robust to "damages" in its 
underlying neurons and thus without elaboration cannot be seen to be a good fit for a 
model for biological computation. We mention (data not shown here) that this result 
holds even if training is continued while the network is suffering damage. However, 
choosing different distributions of the connectivity can result in more robust mainte-
nance of the pertinent information over time. 

In the papers  (Danielle & Bullmore, 2006; Chklovskii, 2009), a distribution was 
chosen for biological reasons to allow preference for close neurons.  This distribution 
is superior to the totally random one, but is still not sufficiently robust.  Choosing a 
power law distribution and being careful to making the assignments differently for in 
and out connectivity proved to be the best.  This is thought of as a potentially biologi-
cal arrangement (Danielle & Bullmore, 2006; Albert-László & Réka, 1999); so LSM 
style networks with this additional topological constraint can, as of this date, are con-
sidered sufficiently biological. Other distributions may also work. 
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Abstract. Neural Networks (NNs) have been widely used in many industrial 
processes for prediction and optimization and they have been proven to be use-
ful tools for explaining complex processes. The main objective of this work 
consists of improving the accuracy of a Radial Basis Function Neural Network 
Redesigned by Genetic Algorithm and Mahalanobis distance for predicting a 
welding process. The evaluation function in this approach considers the use of 
the Coefficient of Determination 2R . The results indicated that the statistical 
method 2R  is a good alternative to validate the efficiency of the Neural Net-
work model. The principal conclusion in this work is that the Radial Basis 
Function Redesigned by Genetic Algorithm and Mahalanobis distance had a 
very good performance in a real case, considering the prediction of specific re-
sponses in a welding process.  

Keywords: Radial Basis Function; Genetic Algorithm; Mahalanobis distance; 
Hybrid Learning; Coefficient of Determination. 

1   Introduction 

Nowadays, the use of new approaches has been intensified and the companies are 
supporting in new technologies or numerical methods to improve processes, some of 
them are intelligent systems and statistical methods [2], [17], [22]. Intelligent systems 
are derived from different applications or techniques, such as: Fuzzy logic, Neural 
Networks, Evolutionary Algorithms and Hybrid systems. Intelligent systems simulate 
or try to imitate human reasoning for solving problems, tasks or decision-making, in 
complex problems [24], [30]. There are different types of intelligent systems for mod-
eling, predicting  and optimizing industrial processes; within these techniques are the 
Artificial Neural Networks (ANN) [2] [23]. Moreover, also there are different types 
such as artificial neural network Backpropagation, Support Vector Machines,  
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Adaptive Resonance Theory networks and Radial Basis Function Neural Network 
(RBFNN) [1], [11], [15], [20], [26]. Neural networks are able to process large amount 
of information using mathematical model [26]. A Neural Network (NN) is an inter-
connection of simple processing elements that represents the function of a single 
neuron. The interconnection is made by an artificial synapse called weights. The ad-
justment of these weights modifies the performance of the neural network. Neural 
networks have the ability to approximate functions using huge information from his-
torical or experimental sources [6], [7], [13], [30]. 

The Radial Basis Function Neural Network (RBFNN) has been developed to pre-
dict accurately the performance processes [1]. RBFNN is a second order or hyper-
spherical type function, the network value represents the distance for a given  
reference pattern. The Radial Basis Function (RBF) is a hybrid model because it uses 
both learning supervised and non-supervised. The advantage of these kinds of models 
is the short time that they need for training. The construction of networks of Radial 
Basis Function (RBF), in its basic form, includes three totally different layers: input, 
hidden and output layers (For more details about RBFNN see [1], [10], [13], [15], 
[20]). The Radial Basis Function Neural Network have problems in two situations, 

first in the distance given by 
2

itx −  that is called the Euclidean distance, which is 

composed of the input vector x  and the centers it . The second difficulty, is the way 

to calculate the centroids it , which are calculated in the different ways, e.g. using the 

Clustering K-means, through Simulation, Neural Networks or randomly, causing 
instability to the network. 

Moreover, alternative solutions for these problems are the evolutionary algorithms 
like evolutionary strategies, Genetic Algorithms (GAs). Other alternatives include 
Particle Swarm Optimization (swarm intelligence), among others. These methods 
have been successfully used for the selection of the optimal structure of RBFNN. 

One of the first works on these applications was realized by [3] where the authors 
made a training based on a practical data set used to demonstrate the performance of a 
Genetic Algorithm (GA) in the RBFNN; GA was used to find the hidden layers neu-
rons and centers in the RBFNN. In order to overcome this problem, various methods 
have been applied to improve the desired parameters and variables through develop-
ing models with intelligent systems like [16] that used a technique combining both 
Genetic Algorithm and RBFNN to determine parameters in this case centers and 
widths in the network structure. Other similar work was realized by [28], they made a 
theoretical study of the niche sharing mechanism and also applied it on the perform-
ance of a RBF. In [29] applied a similar method with coverage using orthogonal 
niches to predict better performance on chaotic time series. On the other hand, in [5] 
proposed another evolutionary algorithm Particle Swarm Optimization that was used 
to find the hidden layers neurons by means of modifying the centers in the RBFNN, 
the comparison was made by root mean squared errors. Other work using a Particle 
Swarm Optimization (PSO) was made by [25] where applied a Quantum-behaved 
PSO to improve the network parameters. As other application we found the work 
realized by [27] where they applied the Mahalanobis distance using a GA to find the 
variance-covariance matrix; this work improves prediction accuracy with symmetrical  
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evolved matrices. Finally it is important to mention the research presented in the arti-
cle proposed by [10] where a complete description of the development of the radial 
basis function neural network was made. It becomes giving a description of the struc-
ture and functioning of the network, this work mention the Euclidean distances, elec-
tion of the centers, adjustment of weights, using Gaussians functions among others. 
This work explains the Gaussian process and its graphical form as well as the local 
network model; it also explains the similarities and differences between the neural 
network radial basis, the local network model and the Gaussian process. 

The main objective of this work consists in improving the accuracy of the RBFNN 
using a Hybrid Learning Process with Genetic Algorithm and Mahalanobis distance 
considering the prediction of specific responses in a real welding process. The 
RBFNN and Hybrid Learning Process are reviewed in section II and III respectively. 
In section IV an application is illustrated and finally the results and one discussion are 
given in section V and VI respectively.  

2   Radial Basis Function Neural Network 

The RBFNN values represents the distance to a given reference pattern [13]. A RBF 
has three layers: input, hidden and output. The structure in a RBF, in its basic form, 
includes three total different layers: 

1. Input layer that consists of nodes source ix  (sensory units).  

2. The hidden layer is a hidden layer of high dimension and the units (neurons) 
that form are the basis functions for the input data ( )ii xϕ .  

3. Output layer jd  is the responsible for the activation of patterns considering 

the input layer network.  

The output layer neurons are linear. The hidden layer neurons calculate the difference 
between the vector of inputs and the weight synapses, called centroid. This difference 
applies a radial function with shape Gaussian mainly; but it has the advantage of be-
ing able to use other radial functions [10]. The function of transfer radial of Gaussian 
type adopts the following form:  

( ) ( )2
exp ii txtxG −−=−  . (1)

And it is simplified by (2):  

( ) ( )ii txGx −=ϕ  . (2)

Where ix  are the inputs and it  are the centers or centroid formed by the Euclidean 

distance or Euclidean norm of 
2

itx − . When it is introducing an input vector, each 

neuron in the hidden layer has a radial basis function. Each neuron in the hidden layer 
is the distance between the vector input and its vector of weights. This distance is 
multiplied by the vector of thresholds or bias [13]. The relationship between inputs 
and outputs from neural network is given by equation (3) where ( ) jj dxy = : 
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( ) ( )∑
=

+−=
m

i
i btxwGxy

1

 .      (3)

The equation is written in matrix form dGw = , the variable jd  is the output or re-

sponse, [ ]TNdddd ,,, 21 K=  and [ ]Tmwwww ,,, 21 K=  which represents the weights 

determined by equation (4), calculated by Pseudo inverse or by Ordinary Least Square 
(OLS): 

( ) dGGG

dGw

'' 1−

+

=

=
 .  (4)

There are different types of functions of radial basis, but in this work the function 
used is given by equation (5) because this function has been developed to predict 
accurately the performance processes [15] (For more details in Radial functions see 
[1]). 

( ) ( )rrxi ln2=ϕ  . (5)

Where r  is given by the distance between the input variable x  and the centroid it . 

3   Hybrid Learning Process 

The purpose of this section is to show a methodology to modify the RBFNN and also 
improve the parameters and variables that are associated with RBFNN learning proc-
esses; in this improvement, it is considering the use of a hybrid intelligent systems 
and statistical method. We propose to use a Genetic Algorithm and Mahalanobis dis-

tance. In addition, the fitness evaluation function is given for the metric 2R , where 
the objective is to maximize this  metric. 

3.1   Mahalanobis Distance 

The concept of distance for example, given two points ix , jx  belonging to pℜ , this 

establishes a distance or a metric among them, if a function d  is being defined with 
the following properties:  

• +ℜ→ℜ×ℜ ppd : , in other words, given two points in the space of 
dimensions p , its distance with this function is a non-negative number, 

( ) 0, ≥ji xxd ; 

• ( ) 0, =ji xxd , i∀ , the distance between an element and itself is zero. 

• ( ) ( )ijji xxdxxd ,, = , the distance is a symmetric function in its arguments. 
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• ( ) ( ) ( )jppjji xxdxxdxxd ,,, +≤ , if we have another three points, the sum 

of the lengths of any two sides of the triangle formed by the three points 
must always be greater than the third side. This property is known as 
triangular inequality. 

There are different types of distances like: Minkowski distance, the average, the fam-
ily of metrics Euclidean Weighted and the Euclidean distance which is the most used, 
e.g. it is applied in the neural network Radial Basis Function. Another measure is the 
Mahalanobis distance md  given by equation (6), created by P.C. Mahalanobis (1893-

1972), this distance is defined as follows: 

( ) ( )μμ −⋅Σ⋅−= − xxdm
1'  . (6)

The matrix Σ  is the covariance matrix and it is square mm ×  and symmetric. Note 

that Mahalanobis distance is distributed as a chi square 2χ  with p  degrees of 

freedom. The probability density function of a 2χ  random variable is 

( )
( )

( )
0212

222

1 >−−

Γ
= xxekx

kk
xf  where k  is the number of degrees of 

freedom. The mean and variance of the 2χ  distribution are k  and k2  respectively. 

Note that the chi square random variable is nonnegative and that the probability that 
the probability distribution is skewed to the right. However, as k  increases, the 
distribution becomes more symmetric. As ∞→k , the limiting form of the chi square 

distribution is the normal distribution. Define 2χ  as the percentage point or value of 

the chi square random variable with k  degrees of freedom such that the probability 

that 2X  exceeds this value is α . That is ( ) ( )∫
∞

==>
2

2

χ

αχ duufXP  (see the proof 

and more details of the Mahalanobis distance in [12] and [21]). For this reason and for 
its properties, this article uses the Mahalanobis distance.  Moreover, the Mahalanobis 
distance is a distance measure, its utility is that it is a way to determine the similarity 
between two multidimensional random variables. And it differs from Euclidean 
distance, because the Mahalanobis distance takes into account the correlation between 
random variables. 

3.2   Genetic Algorithm 

The Genetic Algorithms (GAs) are defined as a procedure search based on the 
mechanisms of genetics and natural selection. These types of algorithms solve 
difficult problems of a fast, suitable and reliable way [9]. Genetic algorithms (GAs) 
are the most used evolutionary algorithms. GA was developed by John Holland [14] 
and has grown as the most used paradigm to solve optimization problems [18]. There 
are several variants of the GA. Nevertheless, all of them have four general 
procedures: evaluation of the individuals, selection of the best individuals (in a 
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deterministic or stochastic way), crossover and mutation of individuals and fitness 
evaluation [8]. Every individual is a solution represented as a binary vector. A set of 
solutions represents a population of potential solutions or individuals making analogy 
to natural processes. The GA has binary vectors to represent parameters so real 
parameters representation requires a decoding procedure to use it in the evaluation 
procedure. The population begins with random solutions usually with low 
performance and high diversity. The evolutionary procedures (evaluation, selection, 
crossover and mutation) are applied of cyclical way, solutions of better performance 
are obtained and the diversity is lost. It is a more intelligent way to search solutions 
than “trial and error” procedure. The following steps are involved to generate a near 
optimal solution, represented by the neural network.  

Step 1: Generate a random population.  
Step 2: Evaluate every represented solution (a set of parameters) of the population.  
Step 3: Select the better evaluated individuals of the population.  
Step 4: Generate a new population using crossover and mutation considering the 

selected individuals.  
Step 5: Go to step 1 until an end condition is satisfied. 

3.3   Fitness Function and Evaluation 

The Fitness Function considers the coefficient of determination 2R , which represents 
(as regression models) the proportion of variance explained by the model or regressor 

x . A 2R closes to one imply that most of the variability of the prediction y , is 

explained by the model [19].  

( )

( )∑

∑

=

=

−

−
−=

n

i
i

n

i
ii

yy

yy

R

1

2

1

2

2

ˆ

1  . (7)

Therefore, we need to maximize the metric 2R  given by the equation (7) and 2R  is a 
global metric evaluation. Where iy  represent the experiment response, iŷ  the neural 

network predictions or the predicted output and y is the mean response [19]. 

3.4   Radial Basis Function Redesigned 

After having identified the problems related to the RBF, some modifications were 
made to improve its performance. One of these modifications is the calculation of the 
centroid; this calculation was made randomly and using the method of Clustering K-
means for different authors [20]; to replace these methods, another technique is being 
implemented to calculate centroids, which is derived from the Genetic Algorithm. 
Another modification to improve the neural network is to apply the Mahalanobis 

distance instead of the Euclidean distance 
2

itx − . Applying the GA and the 
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Mahalanobis distance to RBFNN, it rewrites the equation (6) and yields the 
following: 

( ) ( ) ( )iim AxAxAxd −Σ−= −1',  . (8) 

Where x  represents the input variables of the process, iA  are the centroids calculated 

by evolutionary algorithm and 1−Σ  is the inverse of the covariance matrix. As we 
mentioned, there are different types of Radial Basis Functions, of which we imple-
mented equation (5) in the modified neural network, therefore it is written as follows: 

( ) ( ) ( ) ( )Axdrrrx mi ,ln2 =⋅=ϕ  . (9) 

At the same way, the equations (2) and (3) are rewritten as: 

( ) ( )( )imi AxdGAx ,, =ϕ  . (10) 

( ) ( )∑
=

+⋅=
n

i
i bAxwxy

1

,ϕ  .   
(11) 

The following steps are involved to generate the Hybrid Learning Process, in the 
RBFNN.  

Step 1: Generate centroids with GA.  
Step 2: Calculate the Mahalanobis distance (Equation (8)).  
Step 3: Apply the Radial Basis Function (Equation (9) and (10)).  
Step 4: Generate the weights and predictions (Equation (4) and (11)). 
Step 5: Evaluate the fitness function in GA (Equation (7)). 
Step 6: Go to step 1 until an end condition is satisfied. 

4   Application 

In order to illustrate the application and efficiency of the hybrid learning process in 
RBF Redesigned, we applied the proposed RBF to some data of a welding process.  

The welding process used was a Laser welding process; in this type of processing, 
the Laser is used to create a union that has a narrow heat affected zone to reduce the 
surface roughness of the union and to eliminate the mechanical effects that cause 
other types of welding processes. Laser systems operating in pulsed or continuous 
mode can be used for this type of application process. This type of welding has three 
input variables and one output, mainly, the input variables are: the Width of the spot 
(which relates to and involves the pulse energy and power density), the other two 
factors are: Frequency and laser scan Speed were selected for the optimization of the 
energy consumed per unit of surface area treated. And the response variable for this 
type of process was the Penetration of the weld in the workpiece. The experimental 
results are illustrated in Table 1 (for more details about the Laser welding process  
see [4]). 
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Table 1. Experimental Data 

Parameters Response 
Speed Width Frequency Penetration 

1.1 4 3.5 0.6889 
1.1 5.6817 3.5 0.2953 
1.1 4 3.5 0.6186 

1.7727 
1.5 
0.7 
0.7 

4 
3 
5 
3 

3.5 
3 
4 
3 

0.6341 
0.9280 
0.4330 
1.0053 

0.7 
1.5 
1.5 
1.1 
1.1 
1.1 
1.1 
1.1 
1.1 
1.1 

0.4272 
0.7 
1.5 

5 
5 
3 
4 

2.3182 
4 
4 
4 
4 
4 
4 
3 
5 

3 
3 
4 

3.5 
3.5 
3.5 
3.5 

4.3008 
3.5 

2.6591 
3.5 
4 
4 

0.5568 
0.5413 
1.1599 
0.6186 
1.5466 
0.5413 
0.4330 
0.4794 
0.4952 
0.4021 
0.3557 
1.2218 
0.3403 

In the application, we made a Hybrid Learning Process to optimize the parameters 
of Radial Basis Function Neural Network with a Genetic Algorithm as a complement. 

In this model, it is required a solution ( )miAA i ,,2,1* K==  which maximize the 

metric 2R , so that the set of centers { }miAi ,,2,1 K=  must be determined. The Ge-

netic Algorithm uses a binary representation of the possible solution, this codification 
is necessary because GA manipulates bits. In the model, a sixteen binary representa-
tion per solution was used. The initial population matrix was of 250 rows which 
represents every individual and ( ) ( )mmmiAi ××==× 16,,2,116 K  matrix to repre-

sent every bit of the binary codified solution. That is, every individual of the popula-
tion represent a set of ( )mm×  codified solutions of 16 bits. Tournament selection of 

size 2 with single point crossover and a simple mutation were used [8]. Probabilistic 

crossover and mutation of 0.9 and 0.01 were used respectively.  The 2R  was used as 
an evaluation function with 50 generations in the GA. 

5   Results 

The RBF Redesigned with Evolutionary Algorithm and Mahalanobis distance model, 
using the data in Table 1 provided a 2R  equal to 94.08.  

The results show that RBF Redesigned with Genetic Algorithm and Mahalanobis 

distance is over 94% in 2R ; we refer to 2R  as the amount of variability in the data 
explained by the models, that is, the RBF Redesigned accounts for more than 94% of  
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Table 2. Data Predicted 

 Parameters Responses 

Run Speed Width Frequency 
Penetration 

Real 
Penetration 
(Predicted) 

1 1.1 4 3.5 0.6889 0.5491 
2 1.1 5.6817 3.5 0.2953 0.3576 
3 1.1 4 3.5 0.6186 0.5491 
4 1.7727 4 3.5 0.6341 0.6324 
5 1.5 3 3 0.9280 0.9146 
6 0.7 5 4 0.4330 0.3597 
7 0.7 3 3 1.0053 0.9107 
8 0.7 5 3 0.5568 0.4768 
9 1.5 5 3 0.5413 0.5138 

10 1.5 3 4 1.1599 1.1607 
11 1.1 4 3.5 0.6186 0.5491 
12 1.1 2.3182 3.5 1.5466 1.6008 
13 1.1 4 3.5 0.5413 0.5491 
14 1.1 4 3.5 0.4330 0.5491 
15 1.1 4 4.3008 0.4794 0.5511 
16 1.1 4 3.5 0.4952 0.5491 
17 1.1 4 2.6591 0.4021 0.4959 
18 0.4272 4 3.5 0.3557 0.5126 
19 0.7 3 4 1.2218 1.1904 
20 1.5 5 4 0.3403 0.3237 

the variability in the data. The metric is the quantity used to express the proportion of 
total variability in the response accounted by the model. So that 2R  indicates the 

proportion of variability in y  explained by the model. If the 2R  value is very close 
to 100% or above 80%, it means that the model will be a good predictor [19]. 

The prediction of the data with the RBF Redesigned model shown in Table 2, and 
the data had an appropriate performance with the RBF network modified, for validate 
the model, a testing was performed with the data and parameters of the run 19  
(Table 2) since they are the values with better penetration and better quality in the 
depth of the weld, and to see the performance of penetration and optimization of the 
proposed neural network. The parameters were Speed 0.7, Width 3 and Frequency 4. 
The result and final test was 1.2232 penetration in the real case, as shown in Figure 1, 
versus 1.1904 (Table 2) prediction. 

  

Fig. 1. Laser penetration welding process (Test) 
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6   Discussion 

The Hybrid Learning Process method proposed in this work, it is applied a Genetic 
Algorithm and Mahalanobis distance, instead of computing the centers matrix by 
Genetic Algorithm, it is determined in such a way that maximizes the Coefficient of 

determination 2R  and the Fitness Function depends on the prediction accuracy fitted 

by the hybrid learning approach, where the Coefficient of determination 2R  is a 
global metric evaluation. And the Mahalanobis distance is a distance measure, which 
it uses the correlation between variables and it takes the covariance and variance ma-
trix in the input variables; its utility is that it is a way to determine the similarity be-
tween two variables in this case between x  and iA ; where x  represents the input 

variables, iA  are the centroids calculated by a Genetic Algorithm. And this distance 

helps in reduce the variance into variables. Note that while 2R  is near to 100%, this 

indicates that the model is good for predicting and optimizing, the metric 2R , which 
tells us that if we have values above 80% will be good model to predict and optimize 

[19]. The metric 2R  with RBF Redesigned is 94.08; it indicates that the proposed 
model is a good method to predict a Laser welding process. 

As a conclusion, we can say that the neural network Redesigned in this work had a 
good performance, since the method of Hybrid Learning Process presented in this 
work applies a Genetic Algorithm to calculate the matrix of centers, where the Coef-

ficient of determination 2R , it becomes the statistical evaluation function of Genetic 
Algorithm, which helps the accuracy of the prediction and optimization of the net-
work of Radial Basis Function. And with these modifications, the contribution and the 
difference that exists in this work with others authors, it is that the method of Hybrid 
Learning Process not needs to calculate and aggregate the widths of the hidden layers 
of the RBF network. Hence, the method eliminate the way to get the centroids and 
Euclidean distance, which causing problems in the predictions. These problems are 
solved first, applying the Mahalanobis distance that takes into account the correlation 
between variables and secondly finding the centers with Genetic Algorithms consid-

ered in the evaluation function the Coefficient of determination 2R , that it is a good 
alternative method to validate the efficiency of the Neural Network model; where the 
GA finds the optimal centroids for improving the accuracy of the RBFNN; the form 
of parallel implicit search that has the GA stands out on other paradigms (Evolution-
ary Algorithms) that are much simpler than the GA; for this reason in this work the 
GA was in use. And the model proposed is a good tool for prediction in a real case 
(see Fig. 1).  
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Abstract. A new method for the retrieval of melodies from a database is de-
scribed in this paper. For its functioning, the method makes use of Dynamic 
Neural Networks (DNN). During training a set ofDNN is first trained with in-
formation of the melodies to be retrieved. Instead of using traditional signal de-
scriptors we use the matrix of synaptic weights that can be efficiently used for 
melody representation and retrieval. Most of the reported works have been fo-
cused on the symbolic representation of musical information. None of them 
have provided good results with original signals.  

Keywords: Music Information Retrieval; Dynamic Neuronal Networks;  
Musical Descriptors. 

1   Introduction 

With the explosive expansion of digital music and audio contents, efficient retrieval 
of such data is getting more and more attention, especially in large-scale multimedia 
database applications. In the past, music information retrieval was based on textual 
metadata such as title, composer, singer or lyric. However, these various metadata-
based schemes for music retrieval have suffered from many problems including ex-
tensive human labor, incomplete knowledge and personal bias.  

Compared with traditional keyword-based music retrieval, content-based music re-
trieval provides more flexibility and expressiveness. Content-based music retrieval is 
usually based on a set of extracted music features such as pitch, duration, and rhythm. 

In some works, such as in [1] and [2], only pitch contour is used to represent melo-
dies. Music melody is transformed into a stream of U, D, R, which stands for a note 
higher than, lower than, or equal to the previous note, respectively. This method sim-
plifies the melody so much that it cannot discriminate among melodies very well 
among melodies, especially when the music contains a lot of data. 

In order to represent the melody more accurately and discriminatively, new feature 
sets have been proposed. In [3], pitch interval and rhythm are considered as well as 
pitch contour. In [4], relative interval slope is used in music information retrieval, 
while in [5] four basic segment types (A,B,C,D) to model music contour are  
introduced. 
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When rhythm and pitch interval are considered, more complex similarity measures 
and matching algorithms should be used. In [5], the authors use a two-dimensional 
augmented suffix trees to search the desired song, rather than approximate string 
matching algorithm used in [1] and [2]. In [6], a new distance metric between query 
and songs is proposed. Its computation is very time-consuming for many parameters 
need to be adjusted to find the minimum distance. 

Among neural networks, dynamic networks such as Hopfield networks, Jordan and 
Elman [7] have been extensively used. On the other hand, multilayer neural networks, 
static in nature can achieve a dynamic behavior by reinforcing their own inputs sam-
ples of their previous values. 

In this paper, we describe a novel music retrieval proposal based on the use of dy-
namic neural networks (DNN). The idea is to put into operation a system for music 
retrieval. DNN are trained with samples of the melodies to be retrieved. We then use 
the synaptic weights of the DNN as descriptors for the recovery of the melody. 

The rest of this paper is organized as follows. In Section 2, we present an overview 
of ongoing research for analyzing music features and constructing MIR systems. In 
Section 3, we describe our music retrieval system using dynamic neural networks. In 
Section 4, we report and discuss some of the experimental results obtained. In section 
5, we finally conclude and describe future directions for research. 

2   Related Work 

In this section, we review some of the typical techniques and reported systems for music 
information retrieval. As we know, music can be represented in two different ways. One 
is based on musical scores such as MIDI and Humdrum [8]. The other is based on 
acoustic signals which are sampled at a certain frequency and compressed to save space. 
Wave (.wav) and MPEG Layer-3 (.mp3) are examples of this representation. 

2.1   Symbolic Analysis 

Many research efforts to solve the music similarity problem have used symbolic rep-
resentation: MIDI, musical scores, note lists and so on. Based on this, pitch tracking 
finds a ‘‘melody contour’’ for a piece of music. Next, a string matching technique can 
be used to compare the transcriptions of songs. Refer for example to [1], [9], [10], 
[11] and [12]. 

String matching has been widely used in music retrieval due to melodies are repre-
sented using a string sequence of notes. To consider human input errors, dynamic 
programming has been applied to the string matching; however, this method tends to 
be time consuming. An inexact model matching approach reported in [13] is based on 
a quantified inexact signature-matching approach to find an approximate model to 
users’ query requirements. It can enhance the reusability of a model repository and 
makes it possible to use and manage a model repository conveniently and flexibly. 
Zhuge tried to apply this theory to a problem-oriented model repository system 
PROMBS [14]. 
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There are also researches for symbolic MIR based on the ideas from traditional text 
IR. Using traditional IR techniques such as probabilistic modeling is described in 
[15], and using approximate string matching in [16]. Some work addressed other IR 
issues such as ranking and relevance. Hoashi [17] used relevance feedback for music 
retrieval based on the tree-structured vector quantization method (TreeQ) developed 
by Foote. The TreeQ method trains a vector quantizer instead of modeling the sound 
data directly. 

2.2   Acoustic Signal Analysis 

There are many techniques to extract pitch contour, pitch interval, and duration from a 
voice humming query. In general, methods for detecting pitches can be divided 
roughly into two categories: time-domain based and frequency-domain based. 

In the time-domain, ZCR (zero crossing rate) and ACF (auto correlation function) 
are two popular methods. The basic idea is that ZCR gives information about the 
spectral content waveform cross zero per unit time [18]. In recent works, ZCR ap-
peared in a different form such as VZCR (variance of ZCR) or SZCR (smoothing 
ZCR) [19]. On the contrary, ACF is based on the cross correlation function. While a 
cross correlation function measures the similarity between two waveforms along the 
time interval, ACF can compare one waveform with itself. 

In the frequency-domain, FFT (Fast Fourier Transformation) is one of the most 
popular methods. This method is based on the property that every waveform can be 
divided into simple sine waves. But, a low spectrum rate for longer window may 
increase the frequency resolution while decreasing the time resolution. Another prob-
lem is that the frequency bins of the standard FFT are linearly spaced, while musical 
pitches are better mapped on a logarithmic scale. So, Forberg [20] used an alternative 
frequency transformation such as constant Q transform spectrums which are com-
puted from tracked parts. 

In recent works for the automatic transcription, they used probabilistic machine 
learning techniques such as HMM (Hidden Markov Models) and ANN (Artificial 
Neural Networks) to identify salient audio features to reduce the dimensionality of 
feature space. Ryynanen and Klapuri [21] proposed a singing transcription system 
based on the HMM-based notes event modeling. The system performed note segmen-
tation and labeling and also applied multiple-F0 estimation method [22] for calculat-
ing the fundamental frequency. 

2.3  Recent MIR Systems 

For decades, many researchers have developed content based MIR (Music Informa-
tion Retrieval) systems based on both acoustic and symbolic representations, refer for 
example to [1], [9], [23] and [12]. 

Ghias [1] developed a QBH system capable of processing acoustic input in order to 
extract appropriate query information. However, this system used only three types of 
contour information to represent melodies. The MELDEX system [9] was designed to 
retrieve melodies from a database using a microphone. It first transformed acoustic 
query melodies into music notations; then it searched the database for tunes  
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containing the hummed (or similar) pattern. This web-based system provided several 
match modes including approximate matching for interval, contour, and rhythm. 

MelodyHound [23], originally known as the ‘‘TuneServer’’, also used only three 
types of contour information to represent melodies. They recognized the tune based 
on error-resistant encoding. Also, they used the direction of the melody only, ignoring 
the interval size or rhythm. The C-BRAHMS [24] project developed nine different 
algorithms known as P1, P2, P3, MonoPoly, IntervalMatching, PolyCheck, Splitting, 
ShiftOrAnd, and LCTS for dealing with polyphonic music.  

Suzuki [25] proposed a MIR system that uses both lyrics and melody information 
in the singing voice. They used a finite state automaton (FSA) as a lyric recognizer to 
check the grammar and developed an algorithm for verifying a hypothesis output by a 
lyric recognizer. Melody information is extracted from an input song using several 
pieces information of hypothesis such as song names, recognized text, recognition 
score, and time alignment information. 

Many other researchers have studied quality of service (QoS)-guaranteed multime-
dia systems over unpredictable delay networks by monitoring network conditions 
such as available bandwidth. McCann [26] developed an audio delivery system called 
Kendra that used adaptability with a distributed caching mechanism to improve data 
availability and delivery performance over the Internet. Huang [27] presented the 
PARK approach for multimedia presentations over a best-effort network in order to 
achieve reliable transmission of continuous media such as audio or video. 

3   Dynamic Neuronal Networks Applied to MIR 

Dynamic neural networks are an extension of static neural networks via the considera-
tion of time. The proposed dynamic models are developed based on static MLFN. In 
general, dynamics can be expressed by using a tapped-delay line, external dynamics 
and internal dynamics [28]. Tapped-delay line approach uses a sequence of delay to 
express dynamics and forms time-delay neural network [29] and [30].  So called ex-
ternal dynamic approach uses the historical information of output itself to get a kind 
of autoregressive type neural network [31] and [32]. 

3.1   Time Delay Neural Network 

Time delay neural networks (TDNN) arise as an extension of static neural networks, 
which are designed to explicitly include time relationships between input-output 
mappings. Time-lagged feedforward networks (TLFN) are a special type of dynamic 
networks that integrate linear filter structures inside a feedforward neural network to 
extend the non-linear mapping capabilities of the network with a representation of 
time [33]. Thus, in TLFN the time representation is brought inside the learning ma-
chine. The advantage of this technique is that the learning machine can use filtering 
information while the disadvantage is that the learning becomes complex since the 
time information is also coded in. TDNN is one of the specific cases of TLFN where a 
tapped delay line is given in the input followed by a multilayer perceptron (MLP) as 
shown in Figure 1. 
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Fig. 1. Structure of a Time Delay Neural Network 

Current input (at time t ) and D  delayed inputs (at time 1, 2, ...,t t t D− − − ) can 
be seen by the TDNN. The TDNN can be trained by using gradient descent back 
propagation. The ordered training patterns must be provided during the training  
process [34]. 

3.2   Proposed Method 

For training we used WAV files of the melodies. The set of melodies from a database 
is used to train a dynamic neural network (TDNN). This is shown in Figure 2. At the 
end of the training stage, the matrices of weights of the NN are obtained. Each set of 
weights (WNN_i) is used as a descriptor of a trained melody. 

This method is novel because it works in the time domain, not in the frequency 
domain which gives a digital signature, such as: 1) music features: pitch, duration, 
and rhythm, or 2) traditional descriptors: pitch contour, zero crossing rate, cross corre-
lation, FFT, and others.  

So, instead of using traditional digital signatures or features for a melody, we use 
the information directly from the melody signal. This reduces the level of a-priori 
knowledge of the melody by the user. 

 

Fig. 2. Structure training of the TDNN with melodies 
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Recovery of a melody is performed by means of  a segment of the melody as a 
query. This segment is processed by the bank of already trained TDNN with the syn-
aptic weights (WNN_i) obtained during training to obtain the error rate recovery 
(Re_i). Finally we use the argument of the minimum to obtain the index of the mel-
ody that contains the query input. This procedure is depicted in Figure 3. 

 

Fig. 3. Retrieval procedure of a melody using the proposed model 

Error recovery is given by equation (1), where 
ix  are the trained matrices of weights, 

iy  is the segment to recognize, and w  is the number of windows in which the  

segment was divided. 

( )2

1Re

N

j j
j

x y

i
w

=

−
=
∑

 
(1)

A problem is that input pattern has to compared will all the ANNs. A solution could 
be to use a distributed and parallel computing paradigm; Figure 4 shows a basic "fam-
ily tree" for a parallel computer architecture. 

 

Fig. 4. “Genealogy” of parallel computing systems 
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The control model dictates how many different instructions can be executed simul-
taneously. The terms SIMD (Single instruction, multiple data) and MIMD (multiple 
instruction, multiple data) date from parallel computing's early days; booth are still in 
use although no longer the only being a distinguishing feature of a parallel computer. 

The Memory model indicates how many CPUs can directly access a given memory 
location. All CPUs access a single memory in shared-memory computers, whereas 
distributed-memory computers use a separate memory for each CPU.  

The programming model refers to the restrictions concerning the number of execu-
tables that can participate in a parallel execution. In multiple-program, multiple-data 
model, the programmer creates a separate executables for each CPU; for the single-
program, multiple-data model, all instructions to be carried out by the all CPUs are 
combined into a single executable. 

4   Experimental Results 

Either for training or for retrieval, we used 16-bit WAV files (in stereo mode). One 
file was used to train a DNN. A maximum of 50 training iterations was used, and a 
maximum of 50 neurons were adopted for the hidden layer. At the end of training the 
corresponding weight matrices are obtained, which are used as descriptors for the 
learned melodies. 

Tests were performed with different numbers of neurons in the hidden layer, as 
well as different numbers of iterations. Using a database of Disney, the results of 
these tests are shown in Tables 1 and 2 and Figures 5 and 6, the error rate training is 
obtained with averaging errors of each TDNN, shown equation (2). 
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where 
ie  is the training error of each TDNN, and ε  is the total error rate training, 

theses shown in Table 1, and using the equation (1) shows in the Table 2.   
Through experimentation, we have observed that the system works effectively with 

a query composed of less than 1 percent of the total melody. In all cases, the melody 
was correctly recovered. 

Table 1. Table of error rate training, with different numbers of neurons and iterations 

 10 Iterations 30 Iterations 50 Iterations 
N. neurons Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum 

  5 1.36E-03 6.50E-03 1.10E-02 6.45E-04 5.55E-03 1.05E-02 3.19E-04 5.37E-03 1.07E-02 
 10 1.68E-03 5.71E-03 1.06E-02 3.63E-04 5.43E-03 1.05E-02 3.00E-04 5.17E-03 1.04E-02 
 15 3.05E-04 5.26E-03 1.05E-02 3.52E-04 5.17E-03 1.06E-02 2.87E-04 5.23E-03 1.06E-02 
 20 3.80E-04 5.26E-03 1.04E-02 2.87E-04 5.19E-03 1.04E-02 3.05E-04 5.00E-03 1.04E-02 
 25 2.90E-04 5.26E-03 1.05E-02 2.85E-04 5.14E-03 1.04E-02 2.94E-04 4.95E-03 1.02E-02 
 30 2.85E-04 5.22E-03 1.04E-02 2.99E-04 4.98E-03 1.01E-02 2.92E-04 5.01E-03 1.04E-02 
 35 2.82E-04 5.32E-03 1.04E-02 2.85E-04 4.92E-03 1.02E-02 2.88E-04 4.97E-03 1.02E-02 
 40 2.79E-04 5.62E-03 1.03E-02 2.82E-04 4.97E-03 1.02E-02 2.76E-04 4.96E-03 1.01E-02 
 45 3.17E-04 5.04E-03 1.03E-02 2.84E-04 5.08E-03 1.03E-02 2.88E-04 4.94E-03 1.01E-02 
50 2.84E-04 5.03E-03 1.03E-02 2.80E-04 4.96E-03 1.01E-02 2.80E-04 4.86E-03 1.01E-02 
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Table 2. Table of error rate recovery, with different numbers of neurons and iterations 

 10 Iterations 30 Iterations 50 Iterations 
N. neurons Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum 

  5 5.96E-03 2.32E-02 5.72E-02 5.49E-03 1.51E-02 2.30E-02 1.03E-02 1.47E-02 2.21E-02 
 10 5.54E-03 1.68E-02 2.59E-02 5.92E-03 2.15E-02 4.97E-02 8.93E-03 1.73E-02 2.99E-02 
 15 9.41E-03 1.69E-02 3.14E-02 6.21E-03 1.55E-02 2.50E-02 9.27E-03 2.01E-02 4.41E-02 
 20 9.56E-03 1.90E-02 4.52E-02 9.33E-03 2.18E-02 5.81E-02 8.02E-03 2.12E-02 5.54E-02 
 25 8.93E-03 1.70E-02 3.98E-02 9.45E-03 1.41E-02 2.23E-02 8.75E-03 1.53E-02 2.37E-02 
 30 9.44E-03 1.97E-02 4.85E-02 8.31E-03 2.01E-02 3.78E-02 8.32E-03 2.04E-02 5.32E-02 
 35 1.07E-02 2.89E-02 7.97E-02 9.59E-03 1.49E-02 2.44E-02 9.50E-03 2.26E-02 6.09E-02 
 40 1.26E-02 1.94E-02 3.58E-02 9.38E-03 2.07E-02 5.26E-02 1.23E-02 1.87E-02 3.75E-02 
 45 8.95E-03 1.76E-02 3.79E-02 9.26E-03 1.84E-02 4.36E-02 9.05E-03 1.73E-02 3.57E-02 
50 9.31E-03 1.44E-02 2.08E-02 1.11E-02 1.64E-02 2.74E-02 9.72E-03 1.81E-02 3.40E-02 

 

If for example, if we train the TDNN with a melody composed of 7,826,688 
frames, we observed that with only 20,717 frames the melody was correctly retrieved. 
This represents 0.264 percent of the total of the melody. With this we can conclude 
that recovering can be performed in this particular case with less than 1 percent of 
information of the melody. 

 

Fig. 5. Graphic of rate training, with different numbers of neurons and iterations 

 

Fig. 6. Graphic of rate recovery, with different numbers of neurons and iterations 
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5   Conclusion and Present Research 

Content-based music retrieval is a very promising method for large music library 
searching, yet it is a very challenging problem. We discussed various issues for con-
tent-based retrieval. In this paper, we have presented a preliminary approach for Mu-
sic Information Retrieval. The goal of this study was to explore a new line of research 
within the field of MIR. Not all people are experts in models auditory perception, so 
we have chosen a TDNN network type that is capable of solving the problem from the 
samples without using any descriptor or digital signature. Neither any preprocessing 
to the music files was performed. This can modify the melody content or even distort 
the information of the melody. Therefore, unlike other MIR reported techniques, we 
introduce the original melody directly into the net. 

The input to the bank of TDNN can be considered as a time series of the ampli-
tudes from the melody. The output of the network encodes a description of the mel-
ody in the matrix of weights. 

Through experimentation, we have observed that the system performs very well 
with queries composed with less than 1 percent of the total melody. In all cases, the 
corresponding melody was correctly recovered. 

In short, it can be concluded that a system retrieval based on the functioning of 
DNN could be a good option for MIR. 

Nowadays, we are doing the following. 1) We are going to increase the database of 
melodies to several thousands of samples to verify if the performance of the proposal 
continues to be as good as now, and 2) We are going to experiment with different 
kind of noises (additive, subtractive, mixed, Gaussian) to study the behaviour of the 
proposal. Once we have done this, we are going to test and if necessary make the 
corresponding modifications to the proposal when the queries are composed of parts 
of different versions of the melodies used for training, for example with queries com-
posed of parts of a melody but sang by people, this, of course represents the most 
difficult challenge to face. We are also planning to use associative memories to ac-
complish the same task. 
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1 Université d’Abomey-Calavi
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Abstract. Character classification is known to be one of many basic
applications in the field of artificial neural networks (ANN), while data
transmission with low size is important in the field of source coding. In
this paper, we constructed an alphabet of 36 letters which are encoded
with the Huffman algorithm and then classified with a back-propagation
Feed Forward artificial neural network. Since an ANN is initialized with
random weights, the performance is not always optimal. Therefore, we
designed a simple genetic algorithm (SGA) that choses an ANN and
optimizes its architecture to improve the recognition accuracy. The per-
formance evaluation is given to show the effectiveness of the procedure
used, where we reached an accuracy of 100%.

Keywords: Character Classification, Huffman Codewords, Artificial
Neural Networks, Genetic Algorithms, Neural network architecture.

1 Introduction

Artificial neural networks (ANN) are powerful data modeling tools that are able
to capture and represent complex input/output relationships. The motivation
for the development of neural network technology stemmed from the willing to
develop artificial systems that could perform intelligent tasks similar to those
performed by the human brain. According to [1], neural networks resemble the
human brain since they acquire knowledge through learning. The acquired knowl-
edge is then stored within inter-neuron connection strengths. The advantage of
neural networks lies in their ability to represent both linear and non-linear rela-
tionships directly from the data being modeled.
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The most common neural network models are known as supervised learning
ANN and require a target vector in order to learn the input patterns. The goal of
this network type is to create a model that maps the input pattern to the output
by using historical data so that the model can then be used to produce the out-
put when the desired input is unknown. Neural networks with their remarkable
ability to derive meaning from complicated or imprecise data, can be used to
extract patterns and detect trends that are too complex to be noticed by either
humans or other computer techniques. Therefore, a trained neural network can
be thought as an expert in the category of information it has been given to an-
alyze. Other advantages include adaptive learning, self-organization, real time
operation, fault tolerance via redundant information coding, etc. For short, the
term artificial neural networks encompass a great variety of different software
packages with many different types of artificial neurons, network architectures,
and learning rules [2].

Many research efforts have been performed in pattern recognition fields [3,4,7].
Many of these approaches are based on having all the learning patterns before
solving the classification problem, to design the algorithm.

One of the most classical applications in the ANN field is character recognition
[8] with many applications in areas like; business, post office, bank, security sys-
tem, etc. Furthermore, many other important fields are developed where charac-
ter recognition can be applied, like optical character recognition and handwriting
recognition. Indeed, a machine that reads banking checks can process many more
checks than the human eye in the same time. This kind of application saves time
and money, and eliminates the human factor, which would have to perform such
a repetitive task.

Before starting the neural network training, we have to pay particular atten-
tion to the preprocessing stage of the input data. Firstly, patterns presented to
the neural network need to have the same length. When constructing codewords
with the Huffman algorithm, the resulting symbols have variable length size. We
need to perform an strategy that builds all the input vectors to the same length
size while keeping all the relevant information stored at the same time.

Neural networks sometimes tend to fall into local optimum. A local optimum
of a combinatorial optimization problem is a solution that is either maximal or
minimal, within a neighboring set of solutions. A global optimum is the optimal
solution among all possible solutions. This problem can be reduced (but not
avoided) by using a simple genetic algorithm that can optimize a given neural
network’s architecture by heuristically finding the best setting when choosing
the optimal number of hidden layers and its neurons, activation functions, and
training methods.

This paper is organized as follows; Section 2 describes the Huffman codewords
construction while Section 3 presents the neural network design for the classifi-
cation of the 36 characters in the alphabet constructed for the data transmission.
In Section 5, the performance evaluation is given and analyzed. In Section 6 we
explain the design and implementation of a simple genetic algorithm, and we
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show the results and their analysis in Section 6.1. The concluding remarks and
future trends are shown in Section 7.

2 Huffman Codewords Construction

In 1951, David Huffman [9] gave the choice of a final exam and he had the
idea of using a frequency-sorted binary tree to quickly prove this method to
be the most efficient. Huffman codes are widely used in the area of compres-
sion and telecommunications given that the symbols have distinct probabilities
of incidence. This property is used to advantage by tailoring the code lengths
corresponding to those symbols in accordance with their respective probabilities
of occurrence. Symbols with higher probabilities of incidence are coded with a
shorter codeword, while symbols with lower probabilities are coded with longer
codewords. However, longer codewords still show up, but tend to be less frequent
and hence the overall code length of all codewords in a typical bit string tends
to be smaller due to the Huffman coding.

Table 1 presents each of the 36 symbols in the alphabet we used with their
random probability values. Table 2 shows the Huffman codeword of each symbol.

Table 1. A sample of generated random values for probability assignment to symbols

Symbols 0 1 2 3 4 5 6 7 8
Frequency 0.0469 0.0466 0.0464 0.0463 0.0463 0.0451 0.0442 0.0441 0.0438

Symbols 9 A B C D E F G H
Frequency 0.0410 0.0398 0.0394 0.0387 0.0383 0.0366 0.0359 0.0341 0.0328

Symbols I J K L M N O P Q
Frequency 0.0317 0.0317 0.0306 0.0264 0.0235 0.0204 0.0190 0.0135 0.0134

Symbols R S T U V W X Y Z
Frequency 0.0083 0.0076 0.0069 0.0061 0.0047 0.0047 0.0022 0.0020 0.0017

Table 2. Source symbols with their corresponding codewords

Symbols Codewords Symbols Codewords Symbols Codewords Symbols Codewords

0 1010 9 00100 I 01110 R 0100111
1 1011 A 00101 J 01111 S 1000100
2 1100 B 00110 K 10000 T 1000101
3 1101 C 00111 L 10010 U 1001110
4 1110 D 01000 M 000010 V 01001100
5 1111 E 01010 N 000011 W 01001101
6 00000 F 01011 O 010010 X 10011111
7 00010 G 01100 P 100011 Y 00111100
8 00011 H 01101 Q 100110 Z 100111101
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3 Artificial Neural Network Design

3.1 Input Vectors - Target Vectors

The use of a neural network requires more attention on the data to be pro-
cessed. Neural network training can be made more efficient if certain prepro-
cessing steps are performed on the network inputs and targets. Since the input
data are the codewords of the Huffman algorithm, an special care is required.
Indeed, Huffman coding is a compression method that converts characters into
variables length bit string [10]. Network-input processing functions transform
inputs into a better form for the network use. Processing functions associated
with a network output transform targets into a better form for network training,
and reverse transformed outputs back to the characteristics of the original target
data. In our case, since the Huffman codewords do not have the same length,
we completed the stream of bits with a stream of 2 by preceding the codeword
in order that each input data has a length of 9 characters, which is the value of
the longest length in the Huffman codes alphabet constructed. Table 3 presents
the codewords with their corresponding input vectors.

This strategy is efficient and can even help detect an error in a sequence of
input vectors in a stream of bits obtained by the Huffman coding.

Each target vector has 36 components composed of 1’ and 0’s defined in the
following way: the neural network should respond with a 1 in the position of
the letter being presented to the network. All other values in the output vector
should be 0.

Table 3. Source symbols with their corresponding codewords

Code- Input Code- Input Code- Input Code– Input
words Vectors words Vectors words Vectors words Vectors

1010 222221010 00100 222200100 01110 222201110 0100111 220100111
1011 222221011 00101 222200101 01111 222201111 1000100 221000100
1100 222221100 00110 222200110 10000 222210000 1000101 221000101
1101 222221101 00111 222200111 10010 222210010 1001110 201001110
1110 222221110 01000 222201000 000010 222000010 01001100 201001100
1111 222221111 01010 222201010 000011 222000011 01001101 201001101
00000 222200000 01011 222201011 010010 222010010 10011111 210011111
00010 222200010 01100 222201100 100011 222100011 00111100 200111100
00011 222200011 01101 222201101 100110 222100110 100111101 100111101

3.2 Neural Network Architecture

The network receives an input vector of nine features. It is then required to
identify the letter by responding with an output vector of 36 elements. Each of
the 36 elements of the output vector represents a letter.
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The neural network’s architecture is as follows:

– An input layer with 9 neurons (the total number of input features).
– An optional number of hidden layers (to be determined Heuristically).
– An output layer with 36 neurons (one neuron for each symbol in the

alphabet).

The output is then passed through the competitive transfer function so that only
one of the 36 outputs (representing the symbols in the alphabet), has a value of
1’s. Competitive transfer function is a neural network transfer function that can
calculate a layer’s output from the network’s input [5].

3.3 Learning Strategies

Learning (or training) in neural network theory means the adjustment of weights
for the connections such that a cost function is minimized [11]. The neural net-
work is first trained on ideal vectors until it has a low sum-squared error. Then,
the network is trained on all sets of ideal and noisy vectors. The neural net-
work is trained on 20 copies of noise-free alphabet at the same time as it is
trained on noisy vectors. The 20 copies of the noise-free are used to maintain
the network’s ability to classify ideal input vectors. The training is done using
the Levenberg-Marquardt algorithm [4], an algorithm implemented in [5].

The network is initially trained without noise. Data are divided into training,
validation and test sets since there is only one sample of each symbol and we
need to train on all of them. Validation data are used to stop training at the
point where the network has generalized as well as it can and further training
will only optimize the network’s performance on the training set. The expense
of generalization is measured by its performance on the validation set.

In addition, the neural network should be able to handle noise. The network
should make as few mistakes as possible when classifying vectors with noise of
mean 0 and standard deviation of 0.2.

4 Genetic Algorithms

Genetic algorithms [6] are proof implemented in a computer simulation in which
a population of abstract representations (called chromosomes or the genotype
of the genome) of candidate solutions (called individuals, creatures, or pheno-
types) to an optimization problem evolves toward better solutions. Traditionally,
solutions are represented in a binary mode as strings of 0’s and 1’s, but other
encodings are also possible. The evolution usually starts from a population of
randomly generated individuals and happens trough generations. In each gener-
ation, the fitness of every individual in the population is evaluated, while mul-
tiple individuals are stochastically selected from the current population (based
on their fitness), and modified (recombined and possibly randomly mutated) to
form a new population. This latter population is then used in the next iteration
of the algorithm. Commonly, the algorithm terminates when either a maximum
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number of generations has been produced, or a satisfactory fitness level has been
reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.

5 Performance Evaluation

Early results obtained with the ANN having 20 neurons in the hidden layer are
given in Table 4, where the average result from ten experiments is 82.78%.

Table 4. Recognition performance using the neural network classifier, from one out of
ten experiments with a 69.44% accuracy

Alphabet Code– Recognition Alphabet Code– Recognition
symbols words Performance symbols words Performance

0 1010 100% I 01110 100%
1 1011 100% J 01111 100%
2 1100 100% K 10000 100%
3 1101 100% L 10010 0%
4 1110 0% M 000010 0%
5 1111 100% N 000011 0%
6 00000 0% O 010010 0%
7 00010 0% P 100011 100%
8 00011 100% Q 100110 0%
9 00100 100% R 0100111 100%
A 00101 100% S 1000100 100%
B 00110 100% T 1000101 0%
C 00111 100% U 1001110 100%
D 01000 100% V 01001100 100%
E 01010 100% W 01001101 100%
F 01011 100% X 10011111 100%
G 01100 0% Y 00111100 0%
H 01101 100% Z 100111101 100%

The Feed Forward (FF) ANN trained with the 36 symbols had an accuracy
of 100% recognition performance in only six out of ten experiments, in the other
cases the experiments had recognition performaces from 38.89% to 69.88%. An-
other Feed Forward Time Delay (TDFF) ANN was used to also perform ten dif-
ferent experiments, with the same architecture than the FF ANN. The average
result from those experiments is 84.72%, with 100% accuracy in only three ex-
periments, and had performances from 16.67% to 97.22% recognition accuracy.
To asure that the ANN’s will have an optimal accuracy, we need to perform
some fine tunning on the network; heuristically search for the best neural net-
work, number of hidden layers in the architecture, the number of neurons in each
hidden layer, activation functions, and training method. Instead of performing
trial and error experiments, we designed a SGA that optimizes these variables,
and assures an accuracy of 100% in (almost) all the performed experiments; the
GA design and implementation is explained in Section 6.
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6 Simple Genetic Algorithm Design and Implementation

A SGA, was designed to improve the recognition accuracy of an ANN by search-
ing for the optimal architecture configuration, this algorithm was benchmarked
with the iris database [12], and then tested with the Huffman codewords. The
SGA optimizes the pattern recognizer by firstly choosing an ANN and the best
architecture. The SGA starts by randomly initializing a n number of binary chro-
mosomes stated by the user. These individuals have a size of nine bits where each
one representing a parameter to be optimized; the description of one individual
is shown in Figure 1. Each individual represents an experiment to be performed;
it chooses an ANN, a training method, a number of hidden layers, an activa-
tion function for each layer, and number of neurons on each layer. When the
first experiments of a given generation are completed, we obtain a recognition
performance ranging from 0 to 100%, which will be used as the fitness value
for each genotype. Once each individual has obtained a fitness value, the rulette
algorithm is performed to choose the next population of individuals, then all
individuals go thorugh a crossover and mutation operations before performing a
new set of experiments. The parameters to be optimized are described below.

– Type of ANN: two different ANN where used for these set of experiments,
namely a Feed Forward and a Feed Forward Time Delay NN. More neural
networks can be added at this point.

– Training Method: Two different training methods where used; scaled conju-
gate gradient back-propagation and Gradient descent with adaptive learning
back-propagation, we can also consider more training methods.

– The number of hidden layers: right now the algorithm chooses from cero to
four hidden layers even though more layers can be set.

– The activation function: two activation functions can be chosen, namely
hyperbolic tangent sigmoid transfer function and the logarithmic sigmoid
transfer function.

– The number of neurons: the number of neurons in each layer can be set from
1 neurons to 16, but more neurons can be stated by the user.

The SGA has a feature that makes the algorithm perform faster; each experiment
proposed by a genotype is stored in a dictionary, and each time a new experiment
is proposed, the algorithm searches through the dictionary, if the experiment has
been performed before, it skips that experiment and goes to the next individual.
With this method, the genetic algorithm performs faster since not all experiments

1 0 1 0 1 1 0 1 0 {{

Act.F.NN Layers

{
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{ {

No. Neurons

Fig. 1. Genotype design. The size can be dynamically modified if each variable needs
more choices.
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are executed in some generations. Of course the dictionary is empty every time
the first generation of the SGA starts.

The SGA was tested with the iris flower database which has on three classes:
Iris setosa, Iris virginica and Iris versicolor. each class has 50 samples where
each sample holds four features. To perform our experiment, each class in the
database was randomly divided into training and testing sets, 30 samples from
each class to train the ANNs and 20 samples to test them.

6.1 Results and Analysis

With a population of 50 individuals in 50 generations, a crossover rate of Rc = 0.5
and a mutation rate of Rm = 0.067 the SGA along with an optimized ANN
obtained a recognition performance of 98.33%, the genotype that achieved this
accuracy is shown in Figure 2 and its fenotype is as follows,

– a Feed Forward Neural Network,
– trained with Scaled conjugate gradient backpropagation,
– one hidden layer,
– having 16 neurons, and
– a logarithmic sigmoid transfer function.

Once the SGA was tested with the iris database, we experimented with the
Huffman codewords, using the same number of individuals, generations, and
crossover and mutation rates, achieving an 100% recognition performance, as
shown in Table 5. The winning genotype is shown in Figure 3 and its fenotype
is as follows;

– a Feed Forward Time Delay Neural Network,
– trained with Scaled conjugate gradient backpropagation,
– two hidden layers,
– having 16 neurons, and
– a logarithmic sigmoid transfer function.
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Fig. 2. Genotype that achieved the best accuracy with the iris flower database
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Fig. 3. Genotype that achieved the best accuracy with the Huffman codewords
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Table 5. Recognition performance using the hybrid system

Alphabet Code– Recognition Alphabet Code– Recognition
symbols words Performance symbols words Performance

0 1010 100% I 01110 100%
1 1011 100% J 01111 100%
2 1100 100% K 10000 100%
3 1101 100% L 10010 100%
4 1110 100% M 000010 100%
5 1111 100% N 000011 100%
6 00000 100% O 010010 100%
7 00010 100% P 100011 100%
8 00011 100% Q 100110 100%
9 00100 100% R 0100111 100%
A 00101 100% S 1000100 100%
B 00110 100% T 1000101 100%
C 00111 100% U 1001110 100%
D 01000 100% V 01001100 100%
E 01010 100% W 01001101 100%
F 01011 100% X 10011111 100%
G 01100 100% Y 00111100 100%
H 01101 100% Z 100111101 100%

7 Concluding Remarks and Future Trends

The performance of an ANN on its own sometimes gives an 100% accuracy, but
the architecture always has to be tuned heuristically by performig trial and error
experiments. Even though the patterns are well defined, as shown in the Huffman
codewords, an ANN can sometimes reach a local optimum and a recognition
performance as low as 16.67%. The SGA simplifies the tuning task and avoids
performing low performance experiments. Furthermore, the dictionary feature
in the SGA helps us perform the necesary experiments, and avoids repeating
previus ones. As we can see on the fenotypes from both experiments, with the
iris database and the Huffman codewords, the SGA always chooses the highest
number of neurons in each hidden layer, nevertheless, two hidden layers are
enough to achieve a good performance.

On future works, we are planing to apply this SGA on other pattern recogni-
tion tasks taking into account more configurations; we don’t think more hidden
layers are necessary to this point, given that more hidden layers means more
training time. Another topic is about the designing of a neural network archi-
tecture with variable length of the input vector for codewords discrimination.
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Abstract. This paper presents a fraud detection model using data mining tech-
niques such as neural networks and symbolic extraction of classification rules 
from trained neural network. The neural network is first trained to achieve an 
accuracy rate, the activation of the values in the hidden layers of the neural 
network is analyzed and from this analysis are generated classification rules. 
The proposed approach was tested on a set of data from a Colombian organiza-
tion for the sending and payment of remittances, in order to identify patterns as-
sociated with fraud detection. Similarly the results of the techniques used in the 
model were compared with other mining techniques such as Decision Trees  
and Naive Bayes. A prototype software was developed to test the model, which 
was integrated into RapidMiner tool, which can be used as a tool for academic 
software.  

Keywords: Data mining, neural networks, rule extraction, detection of fraud, 
experts.  

1   Introduction 

Nowadays many companies globally, use data mining techniques to recognize pat-
terns of fraudulent transactions. Among the techniques that have improved perform-
ance classification according to [1], [2], [3] are the neural networks given their high 
level of accuracy in the prediction and robustness to noise in the data.  However the 
neural networks have some disadvantages such as the learning time is high and the 
results are not explained is a black box, in many applications is highly desirable to 
extract the classification rules, so that experts easily interpret and verify the results. In 
recent years have developed algorithms that allow extraction of rules from the neural 
network to understand the classification results generated by the network, techniques 
such as clustering and decision trees [4],[5],[6] have been used with good acceptance. 
These techniques have been experimentally tested on problems of classification in 
synthetic data bases such as Iris, MONK's Problems, prognosis of hepatitis and heart 
disease.  

This paper presents a case of using neural networks and symbolic rules extraction 
in a Colombian organization. Specifically, we analyze the process of sending and 
payment of remittances, as well as the buying and selling of foreign currency in order to 
identify patterns related to money laundering. Initially, there are activities that involve 
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pre-processing to obtain high quality data, activities such as elimination of duplicate 
records, elimination of attributes that does not contribute with information, detection 
of missing values and data inconsistency were made to preprocess the data. Finally, 
we apply a neural network model in combination with an algorithm for extracting 
symbolic rules, which was applied to detect possible money laundering. The organiza-
tion of this chapter is as follows: Section 2 describes the topic  of extracting symbolic 
rules from a neural network in Section 3 provides a description of the proposed detec-
tion model, Section 4 presents the results of applying the proposed detection model, 
consisting of a neural network and symbolic extraction of rules, as well as comparison 
with other mining techniques such as Decision Trees and Naive Bayes, Section 5 
presents the conclusions and future work, and Section 6 references. 

2   Extraction of Rules from a Neural Network 

In the last two decades have seen a lot of research and applications of neural networks 
for a variety of classification problems in the real world. Several empirical studies 
have indicated that there are some problem domains for which neural networks offer 
superior classification accuracy compared to other learning algorithms [7]. 

One of the major disadvantages of neural networks is the lack of transparency in 
the knowledge generated, given the structure and parameters of the connections be-
tween network elements. That's why, that at the beginning of the nineties began to 
receive the concept of rule extraction (RE) to express the knowledge embedded in a 
neural network. Various concepts and algorithms have been developed to date [8] 
gives a comprehensive collection of research in this field. 

There are two main concepts in Rule Extraction. Both have in common that they 
take a trained ANN. The ANN (or its weights) is analyzed to extract a whole rule-set 
which should represent the knowledge embedded in the ANN [9]. In Figure 1 this 
simple context is shown. The two main concepts are the following: 

ANN
Rule Extraction Algorithm

Rule Set

Representing same knowledge

If Cond1=val1 and
Cond2

Then class= Type
A

 

Fig. 1. Principle on rule extraction from trained ANN 

i) Black-Box. We can treat an ANN as a black box, without considering its architec-
ture and weight values. Input vectors are mapped by the ANN to output vectors and 
the RE-algorithm is extraction rules by analysing the relation between in- and output. 
In some literature algorithms of this kind are also called “pedagogical” and ii) De-
compositional. This type of algorithm takes a look at the weights itself. There are 
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algorithms which try to cluster similar weights to simplify rules. Others search for 
dominant paths through the net. 

2.1   Rule Extraction Algorithms 

The main algorithms developed in the extraction of the rules of a neural network 
according to Andrew [8] and that have been implemented in applications real are: 

1. MofN Algorithm. It was published by Towell & Shavlik [10], is based on the 
algorithm "SUBSET". It differs from this in the way of doing the search for  
the rules of the form: IF (M of the following N antecedents are true) THEN. The 
steps of the algorithm are: i) With each hidden and output unit, form groups of 
similarly weighted links, ii) Set link weights of all group members to the average 
of the group, iii) Eliminate any groups that do not significantly affect whether the 
unit will be active or inactive, iv) Holding all link weights constant, optimize bi-
ases of all hidden and output units using the backpropagation algorithm, v) form a 
single rule for each hidden and output unit. The rule consists of a threshold given 
by the bias and weighted antecedents specified by the remaining links and vi) 
Where possible, simplify rules to eliminate superfluous weights and thresholds. 

2. VIA algorithm. The Validity Interval Analysis (VIA, VI-Analysis) was invented 
by Thrun in [11]. VIA is a “generic tool for analyzing Backpropagation-style arti-
ficial neural networks”. It’s a method for proving rules by propagating whole  
intervals through the net and making statements about the range where in- and 
outputs can lie. The rules extracted by VIA are if-then rules. There are two possi-
ble outcomes of the analysis process "VIA” : i) the routine converges. The result-
ing intervals are a sub-space that includes all the activation patterns consistent 
with the initial schedule or ii) Conflict (i.e. an empty interval). If you build an in-
terval is empty then the lower limit of the range exceeds its upper limit, thus there 
will be some activation pattern that satisfies the constraints imposed by the initial 
interval of validity. Therefore, the initial intervals are incompatible with the 
weights and biases of the network. 

3. SUBSET Algorithm. It was developed by Towell [10] is one of the first ap-
proaches to decompositional algorithm. "SUBSET" is a search based on the ex-
traction of rules of the form IF - THEN from a MultiLayerPerceptron network 
(SPLM) binary output units. Additionally, the network has only binary input val-
ues. The algorithm finds the combination of positive weights connected to a node 
that is active. These sets of connections with negative weights are combined to 
form rules that activate the node. The algorithm performs an exhaustive search on 
all incoming connections from one node and, as such, it is necessary to restrict 
the search space. 

4. RULENET algorithm. The RuleNet technique and the connectionist scientist 
game of McMillan [12], is one of the earliest examples in which a specialised 
ANN training regime incorporating the decompositional approach is used as the 
basis for extracting Boolean rules. The basic modus operandi in RuleNet is to it-
erate through the following steps: i) train an ANN, ii) extract the symbolic rules 
(using the connection strengths in the network), and iii) inject the extracted rules 
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back into the network. The process terminates when the resulting base of  
extracted rules adequately characterises the problem domain.  

3   Fraud Detection Model Based on Neural Networks and M of N 
Algorithm 

The problem of fraud has represented losses throughout history. Most financial insti-
tutions worldwide have adopted strategies to reduce the risk of fraud, strategies 
among which are the use of modern detection systems to determine, through a prob-
abilistic rating or application of rules, when a transaction is fraudulent. Many of these 
systems implement classification and prediction models through data mining tech-
niques such as neural networks, which is achieved with high accuracy [1], [2] but its 
major criticisms are: the time learning is expensive and way of classification, which is 
a black box, and in many applications is highly desirable to extract the classification 
rules, so that experts easily interpret and verify the results. 

This paper presents a fraud detection model, based on data analysis using data min-
ing techniques, specifically considering the use of the technique of extracting sym-
bolic classification rules from a neural network trained "MultiLayerPerceptron" for 
characterization of patterns of fraud, in order to assist the expert of the business to 
more easily examine and verify the results obtained to support decision making. The 
proposed model is based on a binary classification of usual and unusual transactions 
as illustrated in figure 2, which presents an overview of the interaction of different 
modules and communicating with elements outside the system (databases and files).   

Selection

Preparation and selection of data

Rule Extraction WSR_Rules

Neural Network 
model

Learning algorithm  
MultiLayerPerceptron

Presentation

neural 
network 
model

encoding 
attributes training neural 

network 
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ClusteringExtraction
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attributes

Write
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If Cond1=val1 and
Cond2

Then class= Type
A

 

Fig. 2. Model proposed fraud detection 
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The model consists of several modules that provide specific functionality in order 
to obtain the hidden knowledge that exists in the dataset. The modules are:  

1. Preparation and selection of data. Responsible for the connection to the source, 
the selection and construction of the dataset for the extraction of knowledge. 

2. Extraction of knowledge. It is the engine model proposed detection, consisting 
of: 
i) Learning algorithm. The process builds and trains a neural network "Multi-
layerPerceptron". The network model is built on based to the number of attributes 
and classes in the training dataset envelope which applies the "backpropagation" 
algorithm to obtain the trained neural network model that is validates against the 
entire data.  
ii) Adaptation of the rule extraction algorithm. Among the great variety of algo-
rithms and extraction methods carried out to date, work in this article focused on 
the MofN algorithm proposed by Towell [10], this algorithm was adapted as it 
describes in figure 3. The rules extracted are the shape: IF (M of the following N 
antecedents are true) THEN. 

3. Presentation of results. Responsible for the interaction with the user and the 
presentation of the final results of the learning process.  

4. Prediction. Responsible for inferring a prediction on a set of new data. This is 
part found knowledge to the classification of the data set. 
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Yes
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End

Clustering

Cluster exceed bias 
of the neuron ?

Delete Cluster

Pruning Rules

Read trained neural network 
model

Load model

Re-write rules
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pattern? Default rule
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Extracting Rules

Cluster Rules

A
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Fig. 3. Adaptation M of N Algorithm for the fraud detection model 
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4   Experimentation and Results 

The proposed model was applied to a Colombian organization that for the purposes of 
this article call it "XYZ Limited". This organization is dedicated to providing services 
related to foreign exchange as well as sending and payments remittance.   

The information includes data of successful transactions and denied this is 
stored in: i) Customers. Those making shipment, receipt, buy and sell currencies. 
The information is detailed in terms of basic personal data, financial information 
(economic activity, income, wealth) and additional information, ii) Transactions 
made by customers. The information is detailed on the amount of the transaction, 
type of operation, tax liens, collection site and details of the beneficiary and / or 
payer. With the present controls the transactions are classified as normal or  
unusual.  

After preliminary analysis, it is obtained  14 attributes have a great utility in data 
mining; these ones are: product, region target, country source, sex, marital status, 
economic activity, use of resources, cumulative amount, age, monthly income, num-
ber of transactions, entailed days, transaction status and client status. Taking com-
pletely different operations with the selected final attributes, the set of records is  
reduced to 157200. More information selection process carried out in the article [13] 
presents a more detailed description. 

4.1   Sampling 

Given the number of data about the type of the class of transactions, 97.29% are la-
beled data as usual and only 2.71% to unusual, due to the limited number of examples 
of unusual class (E). We carry out a stratified sampling of proportional in order en-
hance the number of examples of unusual transactions and have a sample both 
classes. For doing use the functionality provided by Oracle named "ORA HASH" 
[14]. In this scenario, the unusual class with 3207 records is increased (75.35% of 
total unusual records) and 4190 records from the usual class (2.67% of total usual 
operations). This sample was used as a set of training and testing for the evaluated 
different techniques. 

4.2   Parameters Setting 

The algorithms the neural network, decision trees (J48) and Naive Bayes were im-
plemented with the tool RapidMiner [15]. The classification models used, used the 
following configuration: 

• Cross-validation 10 folds. 
• Validation data set: 150.00 records. 
• Training and Test data set: 7397 records. 
• For the neural network are optimized the following parameters: i) Number of 

hidden layers and neurons = one hidden layer and eight neurons, ii) Momentum= 
0.0029999999, iii) Rate learning = 0.4 and iv) the sigmoid function was used as 
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activation function for nodes in the hidden layer and output. The number of itera-
tions is defined by 500 times.  

• For the decision tree was optimized the following parameter: i) confidence Factor 
= 0.25 used for pruning and ii) The minimum number of instances per leaf = 2 

4.3   Results and Comparison Model Classification 

In the table 1 is shows the results obtained by the neural network, J48 y Naive Bayes 
in term confusion matrix. The table 2 shows the results taking into account the labeled 
as unusual class (E), which are the main interest of this investigation, for the follow-
ing measures: Accuracy, Recall, Error, False Positive Rate (FP rate) and False Nega-
tive Rate (FN rate). 

In the same way, it was performed a behavioral analysis through ROC curves over 
classes labeled as unusual (E). Figure 4 shows a comparison between Naïve Bayes, 
J48 and NN algorithms. 

Analyzing the above results, the algorithm that gives better results for classifying 
classes labeled as unusual (E) is the neural network with  2% of precision in the clas-
sification that decision tree and 6%  to Naïve Bayes. Similarly, reviewing the ROC 
curves and area under these, all algorithms show good performance with an area 
greater than 0.9, emphasizing the neural network with a value of 0.962. Nevertheless, 
results obtained by J48 are close enough to NN. On the other hand, Naïve Bayes has a 
poor performance and is no convenient for this kind of problem, especially for the 
finding of unusual transactions; this judgment can be re-evaluated in a more complex 
analysis. 

Table 1. Confusion matrix for classification algorithms 
 

Prediction 
Neural Network J48 Naïve Bayes 

 

Usual Unusual Usual  Unusual Usual Unusual 
Usual (N) 138219 14725 139412 13529 135336 17533 
Unusual (E) 289 3967 370 3886 548 3708 

 
 

Table 2. Comparison of classification algorithms over data 
 

 Neural Network Decision Tree(j48)  Bayes 
Accuracy 90.45% 91.16% 88.49% 
Precision 21.22% 23.31% 17.46% 

Recall 93.21% 91.31% 87.12% 

Error 9.55% 8.84% 11.51% 

FP Rate 9.62% 8.84% 11.46% 

FN Rate 6.79% 8.69% 12.87% 
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Fig. 4. ROC curves for the classification algorithms 

Finally, the time used for training and validation set are shown in Table 3. 
 

Table 3. Time set training and validation1 
 

Algorithm Training(Seg) Validation(Seg) 

Neural Network 6660 150 
Decision Tree 15 5 

Bayes 5 5 

 
The previous table shows that the spent time by the neural network is notoriously 

high compared to the other models, which contrasts with its good performance of 
classification of false negatives, which are the focus of this work. 

4.4   Hypothesis Testing 

Although performance measures seems to be sufficient, it is necessary to prove if 
exist a significant difference between the shown models. For evaluating the classifier 
we used ANOVA test. In this case, we have a Null Hypothesis: H0=μ1 = μ2=… μL  

where μ1 is the average error and L is the number of algorithms. Then we have L 
algorithms and K observations: ) j=1... L   i=1... K 

Finally, the according Alpaydin [17] is accepting the null hypothesis H0 (all the 
means are equal) if given a value of significance; the expected error rate is less than 
Fα, L-1, L (k-1), in other case, H0 is rejecting. 

In this case, the focus is on testing whether the neural network model vs. Decision 
Tree and Naive Bayes significant differences in means error. For this task, we used 
the following parameters: Hypothesis: H0=μ1 = μ2=… μL, with L=3, K=10 and Confi-
dence (95%) = (α=0.05). The table 4 shows the results obtained. The probability ob-
tained given a confidence of 95% is considerably less than the alpha value set 
(Pr=0.0000001198< α =0.05), indicating that the average errors between the three 
classifiers (NN, J48 and Bayes) is different and have a significant change and one of  
 

                                                           
1 All the experiments were run on a computer with the following specs: RAM: 3 GB Intel  

Core 2 Duo T5550 / 1.83 GHz. 
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Table 4. Analysis of variances for NN and other models2 
 

Variation SS DF MSS F(Exp) F(Teo) Prob 

SSB 0.009 2 0.0045 60.810 3.3541 0.000000011 
SSW 0.002 27 0.000074    

Total 0.011 29     

 
these algorithms have better performance than the others. Similarly, in accordance 
with the above analysis we can see that:  60.810 ≠ F (2, 27) <F (0.005, 2, 27) =3.3541, and 
the null hypothesis is rejected. 

Given the above results, in order to determine which algorithm is the best perform-
ance, a new comparison was made between the neural network model and decision 
trees, just that the neural network model and probabilistic model Naive Bayes with 
the following parameters: Hypothesis: H0=μ1 = μ2=… μL, with L=2 , K=10 and  Con-
fidence (95%) = ( =0.05). 

In the table 5 shows the results of the comparison of the neural network vs. the de-
cision tree where 3.245635  F (1, 18) < F (0.005, 1, 18) =4.4138,  indicating that the aver-
age errors between the two classifiers (NN and J48) are similar and no significant 
variation to determine which one is better than another. 

 
Table 5. Analysis of variances for NN and J48 

 
Variation SS DF MSS F(Exp) F(Teo) Prob 

SSB 0.000157 1 0.000157 3.245 4.4138 0.10545 
SSW 0.000871 18 0.000048    

Total 0.001028 19     

 
Similarly, in the table 6 shows the results of the comparison of the neural network 

vs. Naive Bayes. In this case, the average errors between the two classifiers (NN and 
Bayes) are different and have significant variation, so the neural network algorithm 
has better performance. In accordance with the above analysis we can see that: 
180.139≠ F (1, 18) < F (0.005, 1, 18) =4.4138, and the null hypothesis is rejected. 

 
Table 6. Analysis of variances for NN and Bayes 

 
Variation SS DF MSS F(Exp) F(Teo) Prob 

SSB 0.00785 1 0.00785 180.139 4.4138 0.10545 
SSW 0.00078 18 0.000043    

Total 0.00863 19     

                                                           
2 The results obtained the ANOVA tests are shown with the following information: SS= Square 

sum, MSS= Mean square sum, DF= Degrees of freedom, F (Exp) = F distribution experimen-
tal, F (Teo) = F distribution theoretical, Pro= Probability, SSB= Sum of squares between 
groups and SSW= Sum of squares of the Group. 
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4.5   Extraction of Rules - MofN Algorithm 

The grouping distance parameter used in the algorithm was 0.25, according to the 
literature the most optimal [9]. During the initial phase extraction were obtained 140 
rules, in terms of the relationship between the input layers and hidden, just as between 
the hidden layer and output. After the process of pruning and re-writing the rules in 
terms of inputs and outputs are finally 51 rules. The rules obtained were validated for 
the entire data set. Here are the most important rules: 
 

 IF (1 of (Attrib->estadoCliente=I)) THEN E Confidence: 20% 
 IF (1 of (Attrib->estadoCliente=E)) THEN E Confidence: 60% 
 IF (1 of (Attrib->montoAcumulado=>=15981)) THEN E Confidence: 27% 
 IF (2 of (Attrib->estadoCliente=I, Attrib->paisOrigen=JAPON)) THEN E Confidence: 100% 
 IF (1 of (Attrib->estadoCliente=R)) THEN E Confidence: 21% 
 IF (1 of (Attrib->estadoCliente=A)) THEN N Confidence: 98.35% 
 IF (1 of (Attrib->paisOrigen=DESCONOCIDO)) THEN N Confidence: 100% 
 IF (1 of (Attrib->estadoCivil=SOLTERO) THEN N Confidence: 97.04% 
 IF (1 of (Attrib->montoAcumulado=<=769)) THE N Confidence: 98.57% 
 IF (1 of (Attrib->montoAcumulado=769-1514)) THEN N Confidence: 98.7% 
 IF (1 of (Attrib->montoAcumulado=1514-2259)) THEN N Confidence: 98.91% 
 IF (1 of (Attrib->diasVinculacion=1160-1278)) THEN N Confidence: 97.99% 
 IF(3 of (Attrib->actividadEconomica=HOGAR, Attrib->paisOrigen=ECUADOR, Attrib-

>numeroTransacciones=40-50, Attrib->numeroTransacciones=30-40)) THEN N Confidence: 
95.23% 

 IF (1 of (Attrib->actividadEconomica=EMPLEADO)) THEN N Confidence: 97.27% 
   
Given the model were obtained rules that characterize unusual cases (27 rules) and 
usual cases (24 rules). For the usual cases the rules have a confidence greater than 
97%, while for unusual cases, the average is less than 50%. 

4.6   Association Rules 

The JRIP algorithm was used. This technique obtained 16 rules for unusual cases with 
confidence in average is less than 50%. Examples of rules generated are: 

 
 (estadoCliente = E) => txestado=E Confidence:60% 
 (montoAcumulado = 5430-10661) and (numeroTransacciones = 1-10) =>    

txestado=E Confidence: 24% 
 (montoAcumulado = >=15981) => txestado=E Confidence:27% 
 (montoAcumulado = 10661-15981) => txestado=E Confidence: 18.21% 
 (montoAcumulado = 3749-5430) and (numeroTransacciones = 1-10) and (producto =  

SEND) => txestado=E Confidence: 14.98% 
 (montoAcumulado = 3749-5430) and (actividadEconomica = ESTUDIANTE) =>  

txestado=E Confidence: 15.70% 
 (montoAcumulado = 5430-10661) and (departamentoDestino = VALLE-DEL- 

CAUCA) and numeroTransacciones = 10-20) => txestado=E Confidence:4.86% 

4.7   Decision Tree 

The J48 was used, which were obtained 377 rules, 84.88% of usual cases and 15.12% 
for unusual cases. Examples of rules generated are: 

 

 IF estadoCliente = I: E Confidence: 20%  
 IF estadoCliente = R: E Confidence: 21%  
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 IF estadoCliente = E: E Confidence: 60%  
 IF estadoCliente = A| montoAcumulado = 10661-15981: E Confidence: 17.52%  
 IF estadoCliente = A | montoAcumulado = 3749-5430 numeroTransacciones = 1- 10: E  

Confidence: 7.32%  
 IF estadoCliente = A | montoAcumulado = 5430-10661 numeroTransacciones = 1-10: E 
 Confidence: 23.60%  
 IF estadoCliente = A | montoAcumulado = 2259-3749 | numeroTransacciones = 1-10  

actividadEconomica = ESTUDIANTE: E Confidence: 14.39%  
 IF estadoCliente = A | montoAcumulado <=769: N Confidence: 99.84%  
 IF estadoCliente = A | montoAcumulado =1514-2259: N Confidence: 99.66%  
 IF estadoCliente = A | montoAcumulado =5430-10661|numeroTransacciones = 20-30: N  

Confidence: 97.87%  
 IF estadoCliente = A | montoAcumulado =5430-10661| numeroTransacciones = 10-20|  

paisOrigen = AFGANISTAN: N  
 
Analyzing the rules obtained on the entire set of data, 81.16% have zero confidence, 
which does not add value. 

4.8   Comparison Rules Extraction Models 

The algorithm for extracting rules from the network reported unusual rules and usual 
rules, while the association rules algorithm had acted in breach, noting only unusual 
classes. Likewise, the decision tree was the only one present rules with a confidence 
equal to zero (81% of all generated rules.) It is highlighted that confidence to the 
usual rules more than 97%, however, the classification rules is unusual below 50%. 

In the table 7 presents a comparative summary of the results of testing of the ex-
traction algorithm implemented and. other techniques. 

 
Table 7. Experimental results rule extraction techniques 

 

Algorithm #Rules # Usual #Unusual Confidence=0 Time(seg) 

WSR-M of N 51 24 27 0 12 
J48 377 320 57 306 4 

JRip 16 0 16 0 18 

5   Conclusions 

The neural networks are one of the approaches used for inductive learning and have 
demonstrated good predictive behavior in a variety of interesting problems (i.e. fraud 
detection). However they have a great limitation, its learned hypothesis is often in-
comprehensible. To deal with this limitation, a number of research groups have de-
veloped techniques for the extraction of rules, which is to represent the functions of a 
neural network in one language, as rules of inference symbolic, which facilitates a 
better understanding. The focus of this paper has been adapted a neural network 
model and a method for extraction of rules, called MofN as part of a model of detec-
tion of fraud, in order to help examine and verify the expert business more easily 
results in support of decision making. 
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The adaptation in this thesis, MofN algorithm has a clear benefit on other algo-
rithms from extraction rules, because it requires no make pruning neural network to 
extract rules, which prevents a re-training, reducing processing times. This approach 
is scalable for large networks and problems with large spaces features domains. 

The results of the model proposed on the validation set (all data) were excellent 
performance rating, with an accuracy of the 90.45% for cases usual and 93.75% in 
unusual cases. 

The algorithm of extraction rules implemented in this paper applied on the trained 
neural network obtained rules of classification, which allows to know the attributes 
taken into account by the neural network to classify analyzed classes. The confidence 
of the rules generated for usual cases is greater than 97%, while for unusual cases 
confidence in its majority is less than 50%. This is due to the low number of records 
in unusual cases; however, the result is similar to other techniques as trees decision 
(J48) and Association (JRIP) rules. 

The rules obtained from the algorithm implemented in this study vs. the rules gen-
erated from decision tree (J48) to the data set studied, the decision tree rules are so 
numerous that an expert is a high operating loads, while the rules obtained with the 
proposed algorithm are less 20% of the rules of the tree. Similarly we found in the 
different experiments that 80% of the decision tree rules have zero confidence. 

The rule extraction processes are linear behavior, which contrasts with the learning 
process of neural networks, caused that time to extract the classification rules can not 
represent the entire model embedded in the network. 

The  ANOVA test, which is taken as performance measure " recall ", it was found 
that neural networks and decision trees do not show a statistically significant differ-
ence to say that an algorithm is better than the other, otherwise the model of Naive 
Bayes classification, the difference if significant and therefore it is best to use the 
neural network. 

Future Works 

The results presented in this paper, indicate that the extraction rule "M of N" method 
is able to extract from a trained neural network model rules without have to pruning 
of the network, which is a feature to highlight in this method, compared to other tech-
niques used in the extraction rule. However, this method has some limitations sug-
gested as a future studies: 
• Clustering process. It is suggested to use different clustering techniques to build 

groups of similar weights to each neuron input of the network, in order to opti-
mize the rules generated in the process. 

• Optimal distance grouping. It is suggested to determine the current clustering 
process, the optimal value of distance required for the formation of groups. 

• Independence of the neural network architecture. We recommend further studies 
for the combination of techniques for extracting rules, independent of the neural 
network architecture employed. 

• Presentation of the rules learned by "M of N". Although the rules extracted from 
neural network by "M of N" are quite understandable, is to explore alternative 
representation. 
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Abstract. This paper describes nanocircuits that draw on negative dif-
ferential resistance and are capable of implementing complex threshold
functions in a single gate structure. Due to nanometer dimensions, high
operational frequencies and low power consumption these devices can
be used for efficient hardware realisation of artificial neural networks
(ANNs). We present state of the art in development of such circuit
and focus on Generalised Threshold Gates (GTGs) that are capable of
implementing arbitrary Boolean functions in a single gate structure. Al-
gorithm for implementing Boolean functions outputs circuits with pre-
defined weights and thresholds. This enables to construct application
specific ANNs and eliminates the requirement for network learning when
this kind of gates are used.

Keywords: Threshold logic, hardware implementation, negative differ-
ential resistance, synthesis.

1 Introduction and Previous Work

Threshold functions and artificial neural networks (ANNs) are known for many
years and have been thoroughly analysed. However, most works focused on the-
oretical capabilities of such elements and their software implementation rather
then constructing such elements in hardware. Not much attention was also paid
to ANN implementing Boolean functions, which, in our opinion, is due to two
main reasons:

– if we assume the general model of ANN’s neuron then it can be easily shown,
that all Boolean functions of n variables can be implemented with 2 level
neural networks,

– for more then 50 years it was uneconomical and infeasible to construct
threshold gates due to technology difficulties.

Despite technology obstacles several authors [1,2,3,4,5] studied theoretical pos-
sibilities of implementing Boolean functions using threshold logic. This was mo-
tivated by the fact that threshold gates, when implemented, would simplify the

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 303–314, 2010.
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implementation of such functions. Theory of threshold elements and ANNs was
developed without a practical hardware realisation of such elements [5,6,7,8].
Comprehensive work by Muroga [4] and Kohavi [5] defined parameters and prove
properties of switching circuits and threshold networks. Their result were later
used in the theory of artificial neural networks to determine their capabilities. In
particular it was presented that network build of linear perceptrons can imple-
ment only linearly separable functions, that constitute a subset of all Boolean
functions of n variables. This motivated others [6,8] to search for different types
of neurons. As a result neurons with square and polynomial activation functions
were proposed and proved that they enable to implement larger number of differ-
ent Boolean functions. This results where then used to analyse different aspects
of threshold networks and their capabilities. Unfortunately, majority of works
have focused on simple threshold gates, synthesising threshold networks and al-
gorithms for representing given Boolean function as a minimal sum of simple
threshold functions [4,5,9].

Above mentioned results were found interesting in recent years as technology
improved and enabled to construct devices that implement threshold functions.
Using threshold logic to implement Boolean functions became even more inter-
esting as these devices can be developed in nanotechnology. Small dimensions
and drawing on phenomenon that are parasitic for traditional CMOS technology,
e.g. Coulomb blockades, electron tunnelling and so on, are another advantages of
such circuits. Advances in nanotechnology enabled to construct electronic devices
that are feasible and immanently implement threshold functions. This extends
practical applications of threshold theory and enables to construct networks of
threshold elements that implement Boolean functions. On the other hand, recent
advances in nanodevices have showed that NDR-based gates can implement also
more complex threshold functions. Therefore, single nanogates may implement
larger set of complex Boolean functions and lead to further simplification in
threshold networks [10,11]. Above mentioned capabilities of NDR-based devices
has been widely known for last few years, however scientists have focused on tra-
ditional threshold logic and linear neural network applications. Less attention
was paid to threshold gate synthesis and there is no single paper on how NDR
gates affect real life application of artificial neural networks for Boolean function
synthesis.

The following sections will briefly introduce NDR-based circuits, their limits
and ability to implement different Boolean functions. Later on we will give a
formal prove that NDR gates can be used to construct ANNs that are capable
of implementing any Boolean function.

2 Hardware for Implementing Threshold Elements

Possibility to implement threshold functions is due to negative differential re-
sistance (NDR) that is a natural property of some circuits and devices. Unlike
resistors or transistors, that have non decreasing current to voltage (I-V) charac-
teristic, circuits that feature negative differential resistance have a part of their
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Fig. 1. Current to voltage (I-V) characteristic of single NDR device (left) and I-V
characteristic of a simple circuit of two NDRs connected serially (right)

I-V characteristic decreasing. It means that in some part of I-V characteristic cur-
rent that flows through the device decreases as the bias voltage (Vcc) increases.
As a result a stable operating point of NDR-based circuit can be located in
one of two positive differential resistance regions enabling circuit to switch be-
tween them. Moreover, this can by further extended to circuits with three or
more stable operating points that are capable of implementing multivalued logic
functions [12].

First circuits with NDR property were proposed in 70’s and were constructed
using CMOS technology [13,14]. They improved as a CMOS technology evolved
but unfortunately several obstacles (e.g. large power consumption) were never
eliminated and cause such structures to be out of practical interest. Situation has
changed at the end of XX-th century when technology limits of traditional CMOS
had become a serious threat to further development. This made scientists to look
for a new type of electronic devices that can be fabricated in nanotechnology.
They have come with different types of new transistors, tunnelling diodes and
other devices and realised that some of them have a natural property of negative
difference resistance [1,15]. Resonant tunnelling diodes (RTDs) are one of such
device that have received a lot of focus resulting in a number of papers presenting
their ability to implement different boolean functions [10,16] and constructing
complex functional units [11].

Although many researchers have studied capabilities of NDR devices they
have mostly focused on technological aspects of device fabrication and NDR-
based circuit development. Less attention was paid to future application and
circuit synthesis, especially that some problems have not been addressed so far.
There are several NDR gate structures that differ in parameters and properties,
however, all of them have one thing in common – branches of the circuit are
always switched on with a non complemented signals. This is due to the technol-
ogy limits which disallow to use a complementary transistor pair. In other words,
only transistors that are switched on with a logic 1 state can be fabricated. Two
gate structures have received a lot of attention in recent years – threshold gates
(TG) and generalised threshold gates (GTG) [16,17]. The difference between TG
and GTG is that GTG uses positive unate functions Ni(Xn) (i.e. negation free



306 M. Nikodem

Fig. 2. General structure of TG (left) and GTG (right) circuit. Note that the difference
is in complexity of functions switching circuit branches and their weights. In both
circuits only non complementary input signals are used.

functions) to switch on/off branches of the circuit instead of using input signals
directly. Precisely TG implements simple threshold function

Y (Xn) =

⎧
⎨

⎩
0 iff

n∑
i=1

wixi < T,

1 otherwise ,
(1)

while GTG implements

Y (Xn) =

⎧
⎨

⎩
0 iff

m∑
i=1

wiNi(Xn) < T,

1 otherwise ,
(2)

where Ni(Xn) is a positive unate functions of some input variables and T =
wD−wL. Weights wi in both TG and GTG circuits are determined by parameters
of NDR devices and are positive for upper and negative for lower branches.
Since TG element implements linearly separable function thus TG circuit can
only implement some functions (e.g. AND, OR, NOT) while implementing more
complex function is impossible. Capabilities of GTG circuit are enhanced as such
circuits can implement more complex functions. Artificial neurons of GTG type
were already proposed in [9], however this paper only briefly analyse such ANN
while there was no detailed analysis on its capabilities. As we will present in
next section a single GTG circuit, and consequently a GTG based ANN, can
realise any Boolean function.

3 Implementing Boolean Functions with Threshold
Elements

A well-known result from switching theory by Kohavi [5] is that any Boolean
function of n variables can be realised using a two layer switching network as-
suming that input variables and their complements are available. It follows that
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there exist a two layer ANN consisting of neurons, implementing linear threshold
function over the wighted sum of inputs (TG elements), that implements any
Boolean function of n variables. Moreover, there is at most 2n − 1 neurons,
implementing AND function, in the first (hidden) layer and a single neuron,
implementing OR function, in the second (output layer). If we use TG elements
to implement ANN where complementary signals are not available (which is
the case for NDR devices) then ANN has to consist of three layers in order to
implement all Boolean functions. This is formally stated in the following lemma.

Lemma 1. Three layer artificial neural network implemented with NDR-based
TG elements implements any Boolean function Y (Xn) of n variables.

Proof. If we use a TG element with two inputs x1, x2 where x1 is constantly
equal 1 and x2 is an input variable then setting weights to be equal 1 and -1
respectively, and threshold T = 0.5 yields the TG element to implement NOT
function (fig. 3). It follows that a first layer of a three layer ANN, consisting of

Fig. 3. Symbol of a TG element implementing NOT function

Fig. 4. Example of two artificial neural networks implementing 2 variable XOR function
using 3 (left) and 2 (right) NDR-based TG elements
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n nodes, computes complements of input variables that are used in successive
layers to implement the Boolean function as stated by Kohavi [5].

While using three layer circuit of NDR-based NDR elements enables to imple-
ment any Boolean function in many cases simpler ANN structures can be used.
For example, simple XOR function

Y (X2) = x1 ⊕ x2 = x1x2 + x1x2 (3)

can be implemented using two layer network with three or even two neurons
[18]. It follows that using TG elements one can construct an ANN to implement
a given Boolean function. Figure 4 presents two implementations of two vari-
able XOR function (3) implemented with three and two threshold elements and
corresponding ANN structures.

3.1 Capabilities of Generalised Threshold Gates

There are only a few papers that comment on GTG circuits implementing dif-
ferent boolean logic functions [3,11,16] but they focus on feasibility and physical
parameters rather then general capabilities of such structures.

A single GTG gate implements threshold function over the weighted sum of
unate functions (2). Since threshold and weights depend on parameters of NDR
elements thus we may assume that all NDR elements in GTG gate (except for wL

and wD) have the same parameters. This allows to set threshold to 0.5 and make
all weights equal to one and minus one depending on whether they correspond
to upper or lower branches. Moreover we may select functions Ni(Xn) in such a
way that they are positively unate and every function with index i is implied by
any successive function with index j > i, that is

Nj(Xn) ⇒ Ni(Xn) for any j > i. (4)

The following properties of Ni(Xn), Nj(Xn) functions follow from eq. (4):

Nj(Xn)Ni(Xn) = Nj(Xn), (5)
Nj(Xn) + Ni(Xn) = Ni(Xn), (6)

Nj(Xn)Ni = Nj(Xn) ⊕ Ni(Xn). (7)

If we use successive functions Ni(Xn) to alternately control upper and lower
branches then the resulting function implemented by GTG gate (2) simplifies to

Y (Xn) =

⎧
⎨

⎩
0 iff

m∑
i=1

(−1)i−1Ni(Xn) < 0.5,

1 otherwise .
(8)

Observe that term
m∑

i=1

(−1)i−1Ni(Xn) (9)
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is a real valued sum that is only equal to 0 or 1 (since Ni(Xn) is a Boolean
function) so this sum represents a Boolean function. Since we have selected
Ni(Xn) in such a way that Nj(Xn) ⇒ Ni(Xn) for any j > i thus the following
equalities hold:

N1(Xn) − N2(Xn) = N1(Xn) ⊕ N2(Xn)
N1(Xn) − N2(Xn) + N3(Xn) = N1(Xn) ⊕ N2(Xn) ⊕ N3(Xn)

...
m∑

i=1

(−1)i−1Ni(Xn) =
n⊕

i=1

Ni(Xn)

It follows that the GTG circuit implements function

Y (Xn) =

⎧
⎨

⎩
0 iff

m⊕
i=1

Ni(Xn) = 0,

1 otherwise ,
(10)

or equivalently

Y (Xn) =
m⊕

i=1

Ni(Xn). (11)

Equation (11) states that a GTG gate implements the XOR sum of positively
unate functions Ni(Xn) such that Nj(X) ⇒ Ni(Xn) for any j > i. However, it
is not known what is the set of Boolean functions that can be implemented in
such a way and how many terms the XOR sum consist of. This is stated in the
following theorem.

Theorem 1. Any Boolean function Y (Xn) of n variables can be implemented
as an XOR sum of unate functions Ni(Xn) such that Nj(X) ⇒ Ni(Xn) for any
j > i. The XOR sum consist of at most n elements.

Proof. First, observe that there are no complementary variables in sum-of-product
(SOP) representation of positively unate functions Ni(Xn). It is so, since positively
unate function is non decreasing one so when any input signal change from logic 0
to 1 then Ni(Xn) either stays unchanged or switches to 1.

Second, note that for any Boolean function Yi(Xn) there exist a function
Ni(Xn) that is positively unate and Yi(Xn) ⇒ Ni(Xn). It is so, since Ni(Xn) =1
is a positively unate function and any Yi(Xn) ⇒ 1. For most functions Yi(Xn)
there are several functions Ni(Xn) and the smallest one (in terms of number of
input vectors X

n for which Ni(Xn) =1) can be found. This can be easily done
through removing all complementary variables form the SOP representation of
Yi(Xn) (note that Yi(Xn) is any Boolean function, so it might not be positively
unate).

From the above analysis we may conclude that for any Boolean function
Y0(Xn) we may found the smallest unate function N1(Xn) and represent Y0(Xn)
as

Y0(Xn) = N1(Xn) ⊕ Y1(Xn). (12)
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If Y1(Xn) is not positively unate than we may found the smallest, positively
unate function N2(Xn) such that Y1(Xn) ⇒ N2(Xn) and

Y1(Xn) = N2(Xn) ⊕ Y2(Xn). (13)

Since Y0(Xn)Y1(Xn) = 0 and N2(Xn) is the smallest unate function for Y1(Xn)
thus N2(Xn) ⊂ N1(Xn) or equivalently N2(Xn) ⇒ N1(Xn) and N2(X)N1(X) �=
N1(X). Repeating the above procedure subsequently to successive functions
Yi(X) we are able to represent Y0(Xn) as

Y0(Xn) =
k⊕

i=1

Ni(Xn) ⊕ Yk(Xn). (14)

Observe that it follows from Yi−1(Xn) ⇒ Ni(Xn) that

Yi−1(Xn) ⊆ Ni(Xn) (15)
Yi(Xn) ⊂ Ni(Xn) (16)

Yi−1(Xn)Yi(Xn) = 0 (17)

Since Nj(Xn) ⊂ Ni(Xn) for any j > i and there are no complementary signals
in SOP representation of these functions thus products in Nj(Xn) are over the
larger number of variables then in Ni(Xn). Therefore, if we assume N1(Xn) is
a sum of single variables then products in N2(Xn) are over two or more input
variables. Consequently, Nk(Xn), for some k ≤ n, is a single product of all
variables (i.e. Nk(Xn) = x1x2 . . . xn). Since Yi(Xn) ⊂ Ni(Xn) (16) thus Yk(Xn) ⊂
x1x2 . . . xn and so it has to be equal 0.

Therefore, it follows from (14) that any n variable Boolean function Y0(Xn)
can be represented as an XOR sum of at most n positively unate functions
Ni(Xn). That is

Y0(Xn) =
k⊕

i=1

Ni(Xn), (18)

where k ≤ n.

The above theorem states that GTG gate can implement any Boolean function.
Consequently, ANN based on GTG gates would be possible to implement any
Boolean function using a single GTG-neuron.

3.2 GTG Gate Synthesis

Synthesis algorithm can be derived directly from the proof of theorem 1. How-
ever, implementing it that way requires formal definition of minimal positively
unate functions, and a method how to find such for a given boolean function. In
general the algorithm recursively searches for the smallest, positively unate func-
tions Ni(Xn) for given Yi−1(Xn) and computes Yi(Xn) = Yi−1(Xn) ⊕ Ni(Xn).
This is repeated until Yk(Xn) calculated equals 0. The algorithm outputs all
unate Ni(Xn) for i = 1, 2, . . . , k [10].
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Algorithm 1. Synthesis of GTG gates for ANN
Require: n–variable Boolean function Y (Xn)
Ensure: wL, wD determining threshold T and Ni(X

n) functions
1: if Y (0n) = 0 then wL = 1.0, wD = 1.5 ⇒ T = wD − wL = 0.5
2: else wL = 1.5, wD = 1.0 ⇒ T = wD − wL = −0.5,
3: construct the truth table for Y (Xn) – Y,
4: sort Y by the hamming weight of X

n vectors and function value so that the number
of switches k from 0 to 1 and vice verse is minimised,

5: set i = 1,
6: repeat
7: construct the truth table for function Ni(X

n) – Ni:

• take rows from Y starting from first row up to the row that precedes i-th
change of the Y (Xn) function value; set Ni(X

n) =0 for these rows,
• complete the table using remaining input vectors; set Ni(X

n) =1,

8: minimise and store function Ni(X
n),

9: set i = i + 1,
10: until i ≤ k

Fortunately, there is a simpler version of the algorithm that is similar to
threshold network synthesis algorithms and is efficient for small n (e.g. n < 10).
Algorithm 1 draws on the truth table of the given function Y (Xn) that is sorted
by Hamming weights of input vectors first and function values afterwards. This
ensures that the resulting truth table will minimise the number of switch-overs
of function value – this is known from other ANN synthesis algorithms. Later
on i-th switch-over is used to construct a new truth table for Ni(Xn) func-
tion. This is constructed in such a way that Ni(Xn) =0 for all input vectors
that fall before the i-th switch-over, and Ni(Xn) =1, otherwise. Finally, result-
ing functions Ni(Xn) are minimised. Example of such synthesis is presented on
fig. 5 where XOR function of three variables is synthesised.

Fig. 5. Successive steps of XOR3 synthesis for GTG circuit
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Fig. 6. Model and structure of GTG gate implementing XOR2 (left) and a transient
analysis of this circuit (right)

We have implemented the algorithm and have run it for different Boolean
functions. It was verified for Boolean functions of up to n < 10 variables since
its complexity grows exponentially with n. However, it is very unlikely that
Boolean functions of more then 10 or 15 inputs will be implemented in single
gate structure. This is due to the technological limits and parasitic effects that
nanocircuit will have to cope with. Therefore, more complex functions will prob-
ably be first decomposed and then implemented as a network of NDR-based
gates of small number of inputs.

Functions Ni(Xn) outputted from the synthesis algorithm were later used
to model the circuit in SPICE software and simulated to verify whether GTG
gate implements the given function. Figure 6 presents a logic model of GTG
gate implementing XOR2 function, gate structure and transient analysis from
SPICE.

4 Conclusions

It seems like after almost 50 years there is a real chance to take advantages of
threshold gates and logic for constructing Boolean logic circuits and electronic
devices. Despite the fact that, nanotechnology is still immature there is a great
attention paid to this kind of devices as they are thought to be future of electronic
circuits. Interesting properties, feasibility at nanometer integration scale, high
operational frequency and low power consumption are features that ensure these
kind of devices will gain a lot of attention in next years. Nevertheless, some
technological problems that threshold gates still experience nowadays, engineers
were never closer of making this kind of hardware an of the shelf technology.
Irrespective of technology details, that will be used to construct NDR devices in
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future, the theory of GTG circuit synthesis will work and will enable to construct
complex Boolean functions.

This paper presents state of the art in contemporary efforts for efficient hard-
ware implementation of threshold function. It is very likely that technical obsta-
cles will be solved in comming years enabling to use this type of nanocircuits to
construct application specific neural networks. We have briefly presented capa-
bilities of NDR-based circuits and gave a simple synthesis algorithm. It requires
memory that grows exponentially with number of variables, however, it is inde-
pendent of the function representation.
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Abstract. This paper is the first to consider the hybrid quantum-inspired evolu-
tionary algorithm (HQEA) on the no-wait permutation flow shop scheduling 
problem (PFSP) for minimizing the makespan. In this HQEA, the quantum 
chromosomes are encoded by using the quantum rotating angle and a simple but 
efficient converting mechanism for determining job sequence is proposed for 
the representation of solution firstly. Then, we adopt differential operation to 
perform the updating of quantum gate and the local search to perform exploita-
tion in the promising permutation-based solutions. We make the simulations on 
famous benchmarks and the comparisons with other state-of-the-art approaches 
demonstrate the effectiveness of the proposed HQEA for no-wait flow shop 
scheduling problem. 

Keywords: quantum-inspired evolutionary algorithm; no-wait; permutation 
flow shop; differential operation; local search. 

1   Introduction 

As an important part of the combinatorial optimization problems, the flowshop 
scheduling problem (FSP) is a class of scheduling problem which has been widely 
studied by many workers due to its importance both in academic and engineering 
fields. A FSP containing the same processing sequence of jobs for all machines is 
called as permutation FSP (PFSP). In this paper, we consider the no-wait PFSP with 
the criterion of minimizing the makespan which is widely adopted in the chemical 
processing, food processing and concrete ware production systems. In the no-wait 
PFSP, the word no-wait means the processing of each job has to be continuous and a 
job must be processed from the time of start to completion without any interruption. 
Therefore, the start of a job on the given machine must be delayed in order to meet 
the no-wait requirement which is different from the common PFSP. 

Given the processing time p(j, k) for job j on machine k in a n×m no-wait PFSP,  
the completion time of job j on machine k must be equal to the earliest start time on 
machine k+1. Suppose π = {J1, J2,…,Jn} be any a processing sequence of all jobs for 
no-wait PFSP, and let d(Ji-1, Ji) be the minimum delay on the first machine between 
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the start of job Ji and Ji-1 when job Ji is directly processed after job Ji-1. The minimum 
delay can be computed from the following expression: 
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Then the maximum completion time (makespan) can be calculated as: 
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The no-wait PFSP with the objective of minimizing the makespan is to find the per-
mutation π* in the set of all permutations Π satisfies the following criterion:  

∏∈∀≤ πππ )()( max
*

max CC                                      (3) 

The no-wait flowshop scheduling problem with more than two machines is strong 
NP-hard [1]. By now, the heuristic and meta-heuristic algorithms achieve global or 
sub-optimal optima within acceptable time range is most popular for dealing with the 
no-wait PFSP. These approaches are initiated from a set of solutions and try to im-
prove these solutions by using some strategies or rules which include constructive 
heuristic [2, 3], simulated annealing (SA) [4], genetic algorithm (GA) [4], hybrid GA 
and SA (GASA) [5], variable neighborhood search (VNS) [5], tabu search (TS) [6], 
hybrid and discrete particle swarm optimization (PSO) [7, 8]. Recently, Han and Kim 
[9] proposed the quantum-inspired evolutionary algorithm (QEA) for knapsack prob-
lem. However, due to its encoding and decoding scheme, the QEA can’t directly be 
applied to PFSP and the research of production scheduling based on QEA is just at 
beginning. Wang [10] is the first to adopt QEA to minimize makespan of PFSP. Quite 
recently, Gu [11] proposed a quantum genetic scheduling algorithm for stochastic 
FSP with the random breakdown, Niu [12] put forward a quantum-inspired immune 
algorithm for hybrid FSP with makespan criterion and Zheng [13] adopted a quantum 
differential evolutionary algorithm to solve the permutation flow shop scheduling.  

In this paper, we propose a novel hybrid QEA for no-wait PFSP, especially to de-
velop a hybrid strategy by combining Q-bit based search, differential operation and 
local search to achieve better performance. The organization of the remaining content 
is as follows. We will introduce each important part of the proposed quantum-inspired 
evolutionary algorithm as well as its implementation in section 2. In section 3, we 
make the simulation and comparisons of proposed HQEA with other algorithms for 
no-wait PFSP. Finally, we will make a brief conclusion to end this paper in section 4. 

2   Hybrid QEA for No-Wait PFSP 

The basic quantum-inspired evolutionary algorithm (QEA) is proposed by Han and 
Kim [9] firstly, and they adopted this new algorithm to solve the knapsack problem. 
The mechanism of QEA is based on the concepts and principles of quantum comput-
ing, such as the quantum bit and the superposition of states. The QEA can explore the 
search space with a smaller number of individuals and exploit the search space for a 



 Solving No-Wait FSP by a Hybrid Quantum-Inspired Evolutionary Algorithm 317 

global solution within a short span of time. However, QEA is not a quantum algo-
rithm, but a novel evolutionary algorithm (EA). Like any other EAs, QEA is also 
characterized by the representation of the individual, the evaluation function, and the 
population diversity. Inspired by the concept of quantum computing, QEA is designed 
with a novel Q-bit representation, a Q-gate as a variation operator, and an observation 
process based on the Q-bits. 

2.1   The Encoding and Decoding Strategy for No-Wait PFSP 

According to the principles of the basic QEA, each Q-bit has two probability ampli-
tudes, so the quantum chromosome with the problem dimension of m is composed by 
two strings of probability amplitudes shown in equation (4).  
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In this paper, we suppose the quantum chromosome is represented as: 

][ 21 mq θθθ L=                                               (5) 

where θi is the quantum rotating angle with the range of [0, π/2]. We operate on the 
rotating angle and update it with the updating operation.  

Since the updating operation is the key of the QEA and the essence of the updating 
procedure is to influence on the probability amplitude by changing the value of rotat-
ing angle, so we can directly practice on the quantum chromosomes represented in 
rotating angle. This provides a more effective way to deal with the Q-bits. Also, the 
encoding of quantum chromosome by using rotating angle can simplify the operations 
performed on them such as the differential operations by using only one variable. 
Therefore, we consider using the rotation angle to encode the quantum chromosome is 
more suitable for PFSP than probability amplitude which has been adopted to solve 
the PFSP by Wang [10], the stochastic FSP by Gu [11] and hybrid FSP by Niu [12]. 

As for the decoding process of the quantum chromosome presented in the form of 
rotating angle, since the solution to the PFSP is the technological order of all the jobs, 
therefore, we should convert the quantum chromosome which is represented by Q-bit 
into job sequences. In the decoding scheme adopted by Wang [10] and Gu [11], the 
representation needs several conversions (Q-bit chromosome → binary chromosome 
→ decimal chromosome → job order) and the computation is complicated when the 
problem scale becomes larger. We put forward a much simpler mechanism for con-
version which is an innovation in this paper. We define the rotating angles of 1,2,…,n 
are [θ1, θ2, …, θn], that the probability amplitude of job i is [cosθi, sinθi], then deter-
mine the job sequence according to the following procedure: 

Step 1: Obtain one quantum chromosome qi = [θi,1, θi,2, …, θi,n]  from the Q-bit based 
population, calculate tempi = [cosθi,1, cosθi,2,…,cosθi,n]  and initiate two empty 
arrays first() and last(). 

Step 2: Generate a random number η between [0, 1] and compare it with cosθi,job 
where job∈[1, n]. If cosθi,job>η, put job into first(), else put job into last(). Repeat 
until all Q-bits in qi are operated. 
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Step 3: Combine these two arrays first() and last() to one array permutation(), the 
element in permutation()is the processing job sequence for PFSP.  

For example, we have qi = [0.87,0.68,0.15,0.42,1.38,1.09], so tempi = [0.64,0.77, 
0.98,0.91,0.18, 0.46]. Then generate η as 0.76 which is larger than cosθi,1, so we put 
‘1’ into last(). We continue generate η as 0.37 and put ‘2’ into first() since it is smaller 
than cosθi,2. After we operated on all 6 Q-bits, we have first()= [2 3 6] and last()=[1 4 
5]. By combining these two arrays, we have permutation() = [2 3 6 1 4 5] which is the 
processing order for these 6 jobs. 

Here, suppose we have a scheduling problem with the scale of 100 jobs and we can 
make a comparison like this way: by the method proposed by Wang [10] and Gu [11], 
since 26<100<27, so the length of the quantum chromosome should be 100×7=700 at 
least, and three conversions are needed to get the job sequences which requires lots of 
calculating time. While, by our method, we just need a quantum chromosome with 
length of 100 and practice the conversion only once. Thus, the representation of the 
solution we proposed simplifies the decoding procedure greatly and can provide a 
more effective way to deal with no-wait PFSP. On the other hand, in [13], the quan-
tum chromosomes are also encoded in the form of rotating angle and a conversion 
mechanism called largest rotating angle value (LRAV) rule is adopted to make the 
decoding procedure. While, we notice that the LRAV rule is simply performed by 
sorting the rotating angle value in the quantum chromosomes, so it loses the diversity 
of the Q-bit and can not make full use of the probability amplitude information. By 
our decoding strategy, the η is generated randomly and the job sequence is determined 
by comparing the η and the probabilistic amplitude of each Q-bit which will provide 
us with good population diversity. 

2.2   Quantum Updating by Differential Operation 

Due to its simple concept and easy implementation of the differential evolution (DE) 
proposed by Storn and Price [14], we adopt the differential operation to update the 
quantum chromosomes. The differential operations include mutation, crossover and 
selection operation work on real number differential vectors and have excellent ability 
of overall search ability.  

In our HQEA, Suppose the quantum population Qg = [q1,g, q2,g,…, qn,g] (n is the 
population scale, g is the current evolutionary generation), individual qi,g = [θi,1,g, 
θi,2,g,…, θi,m,g] (m is the dimension of the problem, i∈[1, n]). Suppose vi,g+1 is the cor-
responding individual obtained by practicing the mutation operator on individual qi,g, 
and the mutation operator we adopted in this paper works as: 

, 1 1, 2, 3,( )i g r g r g r gv q F q q+ = + −                                       (6) 

where 1r , 2r , 3r ∈[1, n] and 1r ≠ 2r ≠ 3r ≠ i; qr1,g is called father basic vector, (qr2,g − 
qr3,g) is called father differential vector; F is a real and constant factor which controls 
the amplification of the differential variation. 

In order to increase the diversity of the parameter vectors, we also use the ui,j,g+1 (j
∈[1, m]) vector which is obtained by practicing kinds of crossover operation between  
 



 Solving No-Wait FSP by a Hybrid Quantum-Inspired Evolutionary Algorithm 319 

qi,g and mutative individual vi,g+1 obtained by equation (6). The bin crossover we will 
use in this paper is shown in equation (7): 

⎪⎩

⎪
⎨
⎧ =<+

+ otherwise

JrndjorCRrandforv
u

gji

gji
gji

,,

1,,
1,, θ

               (7) 

where CR is the crossover factor and Jrnd is chosen randomly from the interval [1, m]. 
Since the quantum chromosomes are encoded in the form of quantum angle, so the 

differential operations are directly practiced on the quantum angle and can provide the 
updating with excellent overall search ability and diversity. 

2.3    Local Search 

By adopting the proposed decoding mechanism, the Q-bits based population can be 
converted to permutative-based solution for scheduling, so the local search can be 
easily embedded to develop effective hybrid algorithms. In this paper, a simple local 
search method based on insert neighborhood is adopted to further improve the solu-
tion quality. We obtain the global best chromosome Best_g and suppose n is the job 
number for a special problem. After initializing iteration counter 0=k , flag found = 
false and makespan of Best_g as M(Best_g), then the local search works as: 

 
 
 
 
 
 
 

 
 
 
 
 
As for the insert neighborhood based local search, Pan [8] proposed a speed-up 

method for calculating the makespan when we remove or insert a job in job sequence. 
This speed-up method will also be embedded into the local search in our paper. 

2.4   The Main Procedure of HQEA 

The main procedure of hybrid quantum-inspired evolutionary algorithm for no-wait 
permutation flow shop scheduling is described as follows: 

Step 1: Initialize control parameters. Set the value of control parameters for differen-
tial operation and the maximum evolutionary generation tmax. Initialize iteration 
counter t = 0. 

Step 2: Initialize the population. Determine the initial population Pop0 = [chrom0,1, 
chrom0,2,..., chrom0,n], where chrom0,i = [θ0,1, θ0,2,..., θ0,m], n is the population scale, 
m is the number of jobs. 

while (found==false) and (k < n1/2) do  
  generate i, remove i-th job in Best_g and obtain a partial sequence temp 
  insert the removed job into the best position j(j≠i) in temp and calculate 

M(temp)  
  if M(temp) < M(Best_g) then 
    found=true 
  else 
    k = k +1 
  endif 
end 



320 T. Zheng and M. Yamashiro 

Step 3: Make the solution. Adopt the decoding strategy to make the solution for per-
mutation-base problem from the Q-bits based population. 

Step 4: Obtain objective values by evaluating Pop0; store the best individual into 
Best_θ and best job sequence into Best_g.  

Step 5: Perform the evolution. 
Step 5.1: Updating. Update the Popt-1 to Popt by using differential operations.  
Step 5.2: Make the solution. Adopt the decoding strategy to make the solution for 
permutation-based problem from the Q-bits based population. 
Step 5.3: Evaluation. Evaluate Popt and get makespan, compare with Bestt-1 and 
store the better one to Bestt. Update the Best_θ and Best_g. 
Step 5.4: Local search. Practice the local search on Best_g. 

Step 6: Stopping condition check. If the stopping condition t > tmax is met or the opti-
mum is found, output the optimum; else t ← t + 1 and go to step 5. 

3   Simulations and Comparisons 

3.1   Experiment Settings 

To test the performance of the proposed HQEA, computational simulation is carried 
out with 29 benchmarks from Carlier [15] and Reeves [16]. Thus far these problems 
have been used as benchmarks for study with different methods by many researchers. 
In order to make comparisons by using different methods, we adopt the relative per-
cent error (RE) which is widely used in other literatures. The BRE, ARE and WRE 
stand for the best, average and worst relative percentage error to the optimal solution 
named Cmax*. After n replications of simulations, the BRE, ARE and WRE will be 
calculated as follows (the M is short for makespan): 

*

*1

1
( , ) 100 (%)

n
best,avg,worst max

maxr

M C
BRE ARE WRE

C n=

−⎛ ⎞
= × ×⎜ ⎟⎜ ⎟

⎝ ⎠
∑         (8) 

Meanwhile, for the differential operations, we set the crossover factor CR = 0.9 and 
weight factor F = 0.1, and adopt the equation (6) and (7) to perform the evolution. For 
running of HQEA, we set population scale to be n (the number of jobs); set the maxi-
mum evolutionary generation tmax to be 500 and run the algorithm 20 times for each 
problem to make the discussion. 

3.2   Comparisons of HQEA and HPSO 

Firstly, to show the effectiveness of the proposed HQEA, we want to compare the 
HQEA with the HPSO developed by Liu [7] based on the Car and Rec benchmark 
problems. Here, the values of Cmax* for 8 Car problems are the optimal makespans or 
lower bound values known, while, for 21 Rec problems these values are provided by 
the famous RAJ algorithm [2]. The results are shown in Table 1. 

From Table 1, we can see that the HQEA provides the better optimization perform-
ance than the HPSO. For the Car problems with small scale, HPSO found the  
optimal 5 out of 8 problems in every running, while HQEA can find 7. For the Rec 
problems with relatively large scale, the two hybrid algorithms show the significant 
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improvement over RAJ algorithm which means the all the REs are much smaller than 
0. Compared with the HPSO, the BRE, ARE and WRE our HQEA obtained are better 
than those obtained by HPSO for almost all of the instances. On the other hand, we 
notice the ARE and WRE values resulting from HQEA are also very close to the BRE. 
All of these demonstrate that the proposed HQEA is a novel, effective and robust 
algorithm for the no-wait permutation flowshop scheduling problems. 

 
Table 1. Results of testing between HQEA and HPSO 

HPSO HQEA 
P N,M Cmax* 

BRE ARE WRE BRE ARE WRE 

Car1 11,5 8,142  0.00  0.00  0.00  0.00  0.00  0.00 
Car2 13,4 8,242  0.00  0.18  0.61  0.00  0.00  0.00 

Car3 12,5 8,866  0.00  0.06  0.24  0.00  0.00  0.00 

Car4 14,4 9,195  0.00  1.85  4.29  0.00  0.01  0.07 

Car5 10,6 9,159  0.00  0.00  0.00  0.00  0.00  0.00 

Car6 8,9 9,690  0.00  0.00  0.00  0.00  0.00  0.00 

Car7 7,7 7,705  0.00  0.00  0.00  0.00  0.00  0.00 

Car8 8,8 9,372  0.00  0.00  0.00  0.00  0.00  0.00 

Rec01 20,5 1,590 −3.77 −3.39 −2.96 −4.03 −4.03 −4.03 

Rec03 20,5 1,457 −6.59 −6.15 −3.36 −6.59 −6.59 −6.59 

Rec05 20,5 1,637 −7.39 −7.15 −6.66 −7.70 −7.58 −7.45 

Rec07 20,10 2,119 −3.63 −3.11 −2.31 −3.63 −3.62 −3.53 

Rec09 20,10 2,141 −4.58 −4.26 −3.60 −4.62 −4.57 −4.54 

Rec11 20,10 1,946 −3.34 −2.30 −1.28 −3.34 −3.33 −3.31 

Rec13 20,15 2,709 −6.05 −5.47 −4.80 −6.05 −5.92 −5.83 

Rec15 20,15 2,691 −6.02 −5.69 −4.91 −6.02 −6.02 −6.02 

Rec17 20,15 2,740 −5.58 −5.42 −5.07 −5.58 −5.58 −5.58 

Rec19 30,10 3,157 −9.15 −8.50 −6.46 −9.72 −9.34 −9.07 

Rec21 30,10 3,015 −5.70 −5.33 −4.74 −6.43 −6.12 −5.85 

Rec23 30,10 3,030  −10.80 −9.72 −8.65  −10.89  −10.19 −9.87 

Rec25 30,15 3,835 −5.71 −5.17 −4.25 −6.31 −6.03 −5.72 

Rec27 30,15 3,655 −6.13 −5.04 −4.13 −6.13 −5.56 −5.33 

Rec29 30,15 3,583 −7.81 −6.93 −5.69 −8.15 −7.73 −7.54 

Rec31 50,10 4,631 −5.92 −5.20 −4.51 −6.89 −7.32 −6.01 

Rec33 50,10 4,770 −5.51 −4.08 −3.17 −7.01 −6.54 −6.21 

Rec35 50,10 4,718 −6.02 −5.13 −3.98 −6.72 −6.54 −6.31 

Rec37 75,20 8,979 −8.89 −8.20 −7.40  −10.39 −9.97 −9.65 

Rec39 75,20 9,158 −6.79 −5.67 −4.26 −7.56 −7.21 −6,89 

Rec41 75,20 9,344 −7.94 −6.77 −5.91 −9.28 −8.87 −8.65 

AVE   −4.60 −4.02 −3.21 −4.93 −4.78 −4.54 

3.3   Comparisons of HQEA with Other Existing Approaches 

At last, we also make the comparison of HQEA with other existing approaches in-
clude the VNS and GASA by Aldowaian [5], the DS, DS+M, TS, TS+M and TS+MP 
by Grabowski [6] and DPSO by Pan [8]. Since the QDEA by Zheng [13] is similar  
to the proposed algorithm and has been adopted to solve the permutation FSP, we  
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Table 2. Comparisons of HQEA and other approaches 

P VNS GASA DS DS+M TS TS+M TS+MP QDEA DPSO HQEA 

Car1  0.70  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
Car2  0.20  0.00  0.62  0.62  0.00  0.00  0.00  0.00  0.00  0.00 

Car3  0.00  0.00  0.08  0.08  0.00  0.00  0.00  0.00  0.00  0.00 

Car4  1.60  0.00  2.77  2.77  0.00  0.00  0.00  0.00  0.00  0.00 

Car5  3.50  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

Car6  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

Car7  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

Car8  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

Rec01 −2.77 −3.96 −3.71 −3.58 −4.03 −3.96 −3.96 −4.03 −4.03 −4.03 

Rec03 −4.32 −4.46 −3.43 −4.43 −6.59 −6.59 −6.59 −6.59 −6.59 −6.59 

Rec05 −7.03 −6.90 −5.62 −5.62 −7.39 −7.64 −7.70 −7.70 −7.70 −7.70 

Rec07 −2.31 −3.45 −1.09 −1.09 −3.63 −3.63 −3.63 −3.63 −3.63 −3.63 

Rec09 −2.38 −4.48 −3.60 −3.60 −4.62 −4.58 −4.58 −4.62 −4.62 −4.62 

Rec11 −1.54 −3.34 −1.44 −1.44 −3.34 −3.34 −3.34 −3.34 −3.34 −3.34 

Rec13 −5.76 −5.65 −3.43 −3.43 −6.05 −6.05 −6.05 −6.05 −6.05 −6.05 

Rec15 −5.91 −6.02 −4.83 −4.83 −5.91 −6.02 −5.91 −5.93 −6.02 −6.02 

Rec17 −5.15 −5.47 −5.15 −5.15 −5.58 −5.58 −5.58 −5.58 −5.58 −5.58 

Rec19 −7.57 −5.45 −7.70 −7.44 −9.72 −9.25 −9.38 −9.72 −9.72 −9.72 

Rec21 −4.21 −2.22 −3.68 −3.68 −6.31 −6.30 −6.17 −6.23 −6.43 −6.43 

Rec23 −10.8 −6.70 −7.29 −7.29 −10.8 −10.7 −10.89 −10.9 −10.9 −10.9 

Rec25 −5.45 −2.69 −3.08 −3.08 −5.97 −6.31 −6.21 −6.17 −6.31 −6.31 

Rec27 −5.83 −2.60 −3.64 −3.64 −5.64 −6.10 −5.83 −6.10 −6.13 −6.13 

Rec29 −7.23 −3.99 −7.23 −7.23 −7.94 −8.28 −7.94 −8.02 −8.15 −8.15 

Rec31 −4.71  2.72 −3.76 −3.78 −5.90 −6.13 −6.22 −6.68 −6.74 −6.88 

Rec33 −5.35  4.78 −1.97 −2.01 −5.51 −6.31 −6.37 −6.79 −6.79 −7.01 

Rec35 −5.51  3.67 −4.94 −4.94 −6.08 −6.17 −5.91 −6.65 −6.80 −6.72 

Rec37 −10.0  5.89 −7.80 −7.92 −9.41 −9.49 −9.36 −10.4 −10.4 −10.4 

Rec39 −5.32  8.80 −4.97 −5.12 −7.00 −6.99 −6.91 −7.53 −7.71 −7.56 

Rec41 −7.41  6.79 −6.08 −6.08 −8.78 −8.57 −8.82 −9.26 −9.32 −9.28 

 
program the QDEA and apply it to no-wait PFSP. The values of BRE for all these 
approaches are shown in Table 2 along with that of HQEA. 

From Table 2, it can be seen that the BRE values obtained from HQEA are better 
than those of VNS, GASA, DS, DS+M, TS, TS+M and TS+MP almost for all in-
stances. Compared to the DPSO which is one of the most effective algorithms for the 
no-wait FSP, our HQEA performs approximately in the same level with DPSO since 
most of BRE for these two algorithms are exactly the same. All these demonstrate the 
effectiveness of the proposed HQEA for no-wait PFSP. Meanwhile, for the QDEA, 
although the differential operation is used to perform the quantum updating which 
works like the way we adopted in this paper, the sorting based decoding strategy used 
for solution representation and the variable neighborhood search (VNS) performed on 
the permutative job sequence make it different with our HQEA. Compared to the 
QDEA, our HQEA also can obtain better or at least equal scheduling results as shown 
in Table 2. So we can conclude that the decoding strategy and the local search  
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proposed in this paper are suitable for dealing with the no-wait PFSP and can be  
applied to tackle these types of optimization problems. 

4   Conclusions 

In this paper, we proposed a novel hybrid quantum-inspired evolutionary algorithm 
for solving the no-wait permutation flow shop scheduling problems. Based on the 
QEA, we studied the application of the HQEA by adopting a novel strategy to per-
form the updating of quantum gate and an effective converting mechanism for deter-
mining the solution for no-wait PFSP. We made the simulations based on famous 
benchmark problems and the results demonstrated the effectiveness of HQEA. For the 
future work, we can adopt this approach to deal with other shop scheduling problems 
like jobshop scheduling problems and make the comparisons with other algorithms. 
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Abstract. Evolutionary design of time series predictors is a field that
has been explored for several years now. The levels of design vary in
the many works reported in the field. We decided to perform a complete
design and training of ARIMA models using Evolutionary Computa-
tion. This decision leads to high dimensional search spaces, whose size
increases exponentially with dimensionality. In order to reduce the size
of those search spaces we propose a method that performs a prelimi-
nary statistical analysis of the inputs involved in the model design and
their impact on quality of results; as a result of the statistical analysis,
we eliminate inputs that are irrelevant for the prediction task. The pro-
posed methodology proves to be effective and efficient, given that the
results increase in accuracy and the computing time required to produce
the predictors decreases.

Keywords: Evolutionary Computation, Artificial Neural Networks,
ARIMA models, Time Series Forecasting.

1 Introduction

A time series is a sequence of observations of a given variable at equally spaced
periods of time. Time series result from the observation of processes in a bast
range of application areas such as: finance, economics and wind speed, among
others. Most of the systems that produce the time series can be modelled as
dynamic systems. In some cases, we do not have the domain knowledge of the
relationships between variables and therefore we cannot establish the differential
equations that govern the system of interest. Even in those cases, we can observe
the system’s variables and produce time series out of those observations.

One of the most widely used models to forecast behavior of time series is the
Box-Jenkins approach, also known as ARIMA models. This family of models
predict the behavior of the system by forming a function of past observations
and errors produced by the same model (see Section 3). ARIMA models have
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been traditionally produced by statistical means, although, recently evolutionary
computation has been used to determine the best model for the forecasting
task.

Another, also well known, alternative to solve the time series forecasting prob-
lem is to perform the statistical analysis to determine the inputs to the ARIMA
model, and substitute the ARIMA model by an Artificial Neural Network (ANN)
(e.g. [1]).

ARIMA models are linear models, while ANN are non-linear models. ANN
have been shown to be universal approximators [11]. So, an ANN model that
considers the same inputs as an ARIMA model is expected to have a smaller
error; i.e. ANNs are better approximators than linear models.

In producing ARIMA models or ARIMA-like ANN, the goal is to obtain the
model that minimizes the forecasting error. Obtaining the best model is, thus,
an optimization problem. Some works assume a given ANN architecture and use
evolutionary computation to train the network. Others design the architecture
and use back-propagation to train the network. Recently, Flores et al. ([8]) have
used evolutionary computation to solve both problems, the design of the ANN
architecture, and the training of the network.

In any case, the search spaces to determine ARIMA or ARIMA-like ANN
models are very large. The size of the search space grows linearly with the
number of variables for ARIMA models, and quadratically with the number
of variables for ANN models. This growth impacts exponentially the size of the
search spaces. That is, the size of the populations for any evolutionary algorithm
has to grow exponentially with the dimensionality of the problem, in order to
maintain a constant density of exploration of the search space.

Searching such a space, with an exponentially growing number of individuals,
means that the number of evaluations, and therefore the required time to produce
an optimal forecaster grows exponentially with the number of variables involved.
This effect is known as the course of dimensionality. See [20] for more details.

If we want to produce effective and efficient forecasters, we require to perform
a more intelligent search in those large search spaces. In particular, through a
preliminary skimming of the search space, we can gather information that lead
us to prune it. Pruning the search space allow us to search only those regions
that look more promising. The result of the pruning process is the production
of better forecasting models in less time.

The rest of the paper is organized as follows. Section 2 presents the related
work. There traditional features selection method and its limitation are men-
tioned as well as the previous work where ANN are used as predictors. Section 3
describes the ARIMA models and ANN in the context of time series prediction.
Section 4 presents our methodology to reduce the size of the search space. The
methodology used to evolve the models and the results are shown in Sections 5
and 6, respectively. Some conclusions and possible directions for future work are
given in Section 7.
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2 Related Work

Wind forecasting techniques assume that the time series, taken from measure-
ments, is the sum of different components and a random error. The goal of most
forecasting techniques is to separate and identify those components (trend, cycli-
cal, seasonal, and irregular). Recently, several techniques have been used from
the fields of statistics and artificial intelligence [10,3,1,18]. Scientists have even
combined them in order to reduce the forecasting error and to produce more
accurate predictions [22,23].

There have been a number of studies of wind speed behavior at La Venta,
Oaxaca [6,19,12]. Regarding time series forecasting, Cadenas and Rivera [1,2],
and Flores et al. [7], have made models for this purpose. Cadenas and Rivera [1]
discuss ARIMA techniques and Artificial Neural Networks (ANN) and make a
comparison between the two through the calculation of statistical errors (MAE,
MSE, and Theil’s U). The final result shows that ARIMA is the best for this case;
however, the authors mentioned that the factor that limits ANN performance
is the size of the training set presented to the network. Cadenas and Rivera [2]
present a comparison of ANN with different configurations, under minimum
operating requirements, and suggested the network model with the minimum
statistical errors. Flores et al. [7] modelled wind speed with genetic programming,
producing a forecasting model which reduces the statistical errors generated by
the ARIMA technique. Flores et al. [8] also modelled the wind speed using ANN
with evolutionary computation showing more accuracy compared against models
generated with genetic programming and the models proposed by Cadenas. But
in order to achieve this better accuracy more computational time was required.
This was cause by the dimensionality of the search space.

Moving away from the ANN field, our work is also related to feature selection
that uses methods such as [5,9]. These methods choose the predictors based on
the correlation between them and the output of the system. However, tradition-
ally these methods can only include the lag variables and are inapplicable to
select the moving average predictors of the ARIMA model.

The problem of feature selection has also been tackled using evolutionary
techniques. In [13,14] a two stage genetic programming was used to select the
features. That is, in the first stage GP used all the possible features to make
classifiers. This process was repeated n times thus creating n best-of-run clas-
sifiers. Then the process was repeated but now with only those features which
were used in 10 or more of the classifiers. At this stage all the features were used
at least once; however, there were features that appeared more frequently than
others and then those “popular” features were selected to create the final model.
These works used a similar approach than the one proposed here. However, our
procedure presents significant differences with respect to them.

Firstly, we focus on artificial neural networks. To the best of our knowledge,
no similar procedure has ever been applied to evolve ANN. Secondly, we not only
select the features based on the frequency they appear in the evolved models,
but also we take into consideration the quality of the ANN solution in which
those features appeared. Thirdly, we present a quality comparison between the
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ANN evolved using our procedure and ANNs evolved using all the features. This
comparison is presented in terms of the quality of the predictions and the time
required to obtain the ANN.

Our work bear some similarities with the methodology proposed in [16] and [4].
There a GA was used to evolve an ARMA and ARIMA models, respectively.
The GA was used to obtain the order of the autoregressive and moving average
components as well as the different variables involved in the model. As can be
seen, this is similar to objective of our work; however, there are some significant
differences. Firstly, here we use also a evolutionary algorithm to estimate the
model coefficients. Secondly, we propose a procedure to reduce the search space
that not only take in consideration the number of times a particular variable
appear in the model but also the quality of the model in which they appear.

Stochastic algorithms have also been proposed as an alternative to traditional
approaches for the estimation of model’s coefficients. In [21] a PSO was used
to do this job and a statistical approach identified the structure of the ARIMA
model.

3 ARIMA and ANN Models

An ARIMA model [15] is a statistical model that allows us to model time series,
and to predict their behavior. These models have the following form:

yt =
w∑

k=1

akyt−k +
w∑

k=1

bket−k + εt (1)

et = yt − ŷt,

where yt represents the measurement at time t in the time series and ŷt is the
forecasting produced by the ARIMA model; εt represents the effects of random
factors; w is the window width. The window represents how far behind in time
we consider measurements as probably important inputs for the ARIMA model.
Outside of the window, observations are not taken into account. Using statistical
procedures, the numerical value of the coefficients ak and bk are determined.

The ANN architecture used for prediction is the Multi-Layer Perceptron
(MLP). A MLP, as a universal approximator [11], can learn any function, given
it has enough neurons in the hidden layer. That fact allows the network to cap-
ture the different forms of the function to be modeled. Given an AR model, we
can design a MLP capable of reproducing the time series at least as well as the
ARIMA model itself. The output of the MLP is always a single neuron, repre-
senting the forecasting output, ŷt. Once the inputs to the MLP are specified,
the design process reduces to determine the number of neurons in the hidden
layer. Notice that the learning models for ANNs are designed to determine the
weights of the synaptic connections. Those learning models do not consider the
design of the network architecture. One way to design the neural network is to
perform a statistical analysis to determine what variables are important in the
forecasting. Those variables will be considered as the inputs to the ANN.
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4 Reducing the Search Space

It is a well know phenomena in the field of GA and Genetic Programming that
some of the variables or building components tend to disappear during the evo-
lutionary process. Inspired by this behaviour we started to analyse whether this
behaviour is present in the problem of evolving ANN predictors. Our preliminary
experiments shows us that the frequency of some of the lag variables decreases
to almost zero at the end of the evolutionary process while other variables be-
come dominant. In fact, this behaviour can be explain by Prince’s theorem [17]
which shows that the number of fit genes will increase each generation while the
number of unfit genes will decrease. This suggests that it may be possible to use
an evolutionary algorithm to discover which variables are important.

To prove this, we used a GA to train an ANN and to instantiate an ARIMA
model. The GA uses all the possible lag variables and the error terms up to a
limit, which for this time series was set to 18 (i.e., yt−1, . . . , yt−18, et−1, . . . , et−18),
run for a number of generations and tries to find the model that makes the fittest
prediction in a training set. From these characteristics, GA proceeds as it nor-
mally does in any other application. Being the only difference that we store for
each individual evaluated (i.e., model) its fitness and the lag variables and error
terms it uses.

From the information stored, we can infer not only which of the terms are
more frequently used but also the quality of the models in which they appear.
In order to decide which of the terms (i.e., yt−i and et−i) to use we decided to
compute the weighted frequency for each one of the involved variables. That is,

h(yt−i) =
1
a
·

∑

j∈G(yt−i)

1
f(j)

(2)

a =
w∑

i=1

∑

j∈G(yt−i)

1
f(j)

+
∑

j∈G(et−i)

1
f(j)

,

where G(x) is the set composed by the models where x (i.e., yt−i or et−i) was
involved and f(j) is the fitness of model j.

Fig. 1 presents the weighted frequency of all the ARIMA terms that cor-
responds to the best ANN model obtained for the experiments presented in
Section 6. The first 18 bins are the yt−i terms and the rest 18 bins are the et−i.
As can been seen, the figure can be used to discriminate which of the variables
are more “important” according to the fitness of the models produced and the
frequency of the variables. For example, our procedure selected the term yt−1

to be the most important variable, since it is the variable that appears in more
good models.

There are a number of procedures one could use to decide which variables
to include in the final model based on the information depicted in Fig. 1. For
example, one could decide to include the n variables presenting the higher values
or compute some statistical measure on those values and decide based on that
measure. In our proposal we are including those variables that have a frequency
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Fig. 1. Weighted frequency of the ARIMA variables of the best model of the ANN
experiments. The first 18 bins corresponds to the terms yt−1 and the rest to the terms
et−i. The horizontal line represents the mean of these values.

value greater than the mean. That is, we average the values of all the terms and
include in the final models only those variables that have a value higher than
the mean. The mean is shown in Fig. 1 with a horizontal line.

In the example shown in Fig. 1, only 14 out of 36 variables have a weighed
frequency higher than the average. The search space is being pruned consider-
ably; its dimensionality has decreased from 36 to 14. This fact speeds up the
search process; furthermore, by considering only those variables that appear
in promising models, we are discarding the inclusion of not so important vari-
ables, spending the computing time in the analysis of the best models. Section 6
presents the results obtained using this procedure.

5 Evolving ARIMA Models and ANN

The process used to obtain the ARIMA models and to train the ANN is a two-
step evolutionary technique. In the first step, the data needed by the variable
selection procedure, described in Section 4, is collected and, thus, at the end
of it we have the set of variables used in the final model. Now that the vari-
ables involved in the model have been identified, the next step is to estimate
the coefficients of the ARIMA models or the weights of the ANN. In all cases,
we used a generational genetic algorithm (GA) with fitness proportionate selec-
tion, one-point crossover (70%), and uniform mutation (70% with 20% of point
mutation).

The variables are identified using two nested GA processes. The individuals of
the first process (outer loop) contains the possible variables to use in the models
and the number of hidden neurons for the case of ANN. That is, the outer loop
proposes the architecture of the model. The second evolutionary process (inner
loop) estimates the coefficients of the ARIMA model or the weights of the ANN,
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depending of the model being evolved. That is, the inner loop instantiates the
ARIMA model or trains the ANN. At the end of this process the fitness of the
evolved model is computed in the training set. This fitness is then used in the
outer loop to guide the evolutionary process.

In the outer loop we used two different structures to represent the architecture
of the model. For the case of ARIMA models we used a binary string of length
36 that represents which variables are active in the model. Fig. 2 depicts the
structure used for this case.

yt−1 . . . yt−18 et−1 . . . et−18

0 . . . 1 1 . . . 1

Fig. 2. Chromosome used in the ARIMA experiments to decide which variables to
include in the model

For the case of evolving an ANN, besides the inputs to the net we require the
number of neurons in the hidden layer. As a result, we divided the chromosome
in two parts. The first part is equivalent to the one used in the ARIMA models
and the second part encodes the number of hidden neurons into a binary string.
The minimum number of neurons contained in the hidden layer is set to 18. As a
result, we are setting a limit to the number of neurons of the hidden layer. Fig. 3
shows the structure used for the ANN. The first part represents the variables
used as inputs in the ANN and the second part (shaded in the figure) indicates
the number of neurons in the hidden layer.

yt−1 . . . yt−18 et−1 . . . et−18 n

0 . . . 1 1 . . . 1 1 0 1 0 1

Fig. 3. Chromosome used in the ANN experiments to decide which variables to include
in the model. The last part of the chromosome (shaded in part) represents the number
of hidden neurons of the net.

The inner loop in both cases uses a real coded GA in order to identify the
coefficients of the ARIMA model or the weights of the ANN. The only difference
is the length of the chromosome. For instance, in the ARIMA case the length of
the chromosome is specified by the number of variables involved in the model.
On the other hand, in the ANN experiments the length of the chromosome is
specified by the number of variables involved and the number of hidden neurons.
That is, let m be the number of variables and n the number of hidden neurons.
Then, the length of the chromosome is n×m+ n.

The ANN we decided to use is a fully connected feed-forward network with 3
layers and n hidden neurons. We decided to use a fully connected feed forward
network because it is the best understood architecture, it has been proven to be
a universal approximator and has been used in previous works to predict times
series. The activation function was a sigmoid in all neurons.
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Table 1. Number of individuals evaluated for each step in the proposed methodology
and the traditional procedure that does not use the reduction of the search space

Reduction of Search Space Full Search Space

Model
Architecture identification

Parameter Estimation Outer loop Inner loop
Outer loop Inner loop

ARIMA 650 650 160, 700 10, 250 1, 100
ANN 330 330 16, 300 2, 040 1, 400

For comparison proposes, we performed another series of experiments which
does not perform the reduction of the search space. That is, it uses only the first
step of the procedure described here which is the two nested GA processes. In
this process, the final model is the best model found. In order to make a fair
comparison between our approach and the models evolved with the full search
space, we decided to use more computational to the later procedure. Tab. 1
shows the number of individuals evaluated for each methodology. As can be seen
from the table, we evaluated more individuals in the procedure that uses the full
search space than in the methodology proposed here.

6 Results

Let us start this section describing the wind time series used to test our method-
ology. The Comisión Federal de Electricidad (CFE, the governmental electricity
supplier in México) has made wind speed measurements since 1994, through a
network of measurement stations located in places of interest. The sensors are
located at different heights in the measurement towers (20m, 30m, and 40m from
ground level). Sensor’s characteristics are shown in Tab. 2.

Fig. 4 shows the monthly behavior of the wind speed in La Venta, Oaxaca,
for the period June 1994 to May 2000. From the figure, it may be observed a
seasonal behavior as well as the tendency of having the stronger wind speed at
the end of the year and in the middle of the year the wind speed is more calm.

As mentioned previously, we performed two sets of experiments. One to ob-
tain the ARIMA model and the other for the ANN predictor. Furthermore, for
the sake of comparison we evolved ARIMA and ANN models using a reduced
search space; we also included an ARIMA model created using the Box-Jenkins
approach (presented in [1]).

Table 2. Specification of the measurement sensors

Specification Anemometer Wind Vane

Measuring rank 0.78-45 m/s 0-360
Exactness 5 5
Resolution 0.78m/s 1 m/s
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Fig. 4. Wind speed times series in La Venta, Oaxaca

For the case of ARIMA models. Tab. 3 shows the variables that were selected
by the procedure described in Section 4. The complete ARIMA model is shown
in Equation (3).

yt = 0.4yt−1 + 0.23yt−2 + 0.68yt−3 − 0.3yt−4 + 0.2yt−9

−0.29yt−10 + 0.76yt−12 − 0.48yt−14 + 0.28yt−15

+0.03yt−16 − 0.2et−3 + 0.006et−5 + 0.1et−7 + 0.38et−11

−0.36et−12 + 0.002et−13 + 0.13et−17 − 0.16et−18.

(3)

For the case of ANN, Tab. 4 shows the variables that were selected as inputs in
the final step of our methodology.

In order to analyze whether our methodology is able to select the variables that
one would select using a traditional approach such as Box-Jenkins, Equation (4)
shows the ARIMA model proposed in [1]. As can be seen, comparing Tables 3
and 4 and Equation (4), our procedure selected almost all variables included
using a traditional approach. Furthermore, it incorporated variables that were
not selected by the statistics. We will see that these variables neglected by the
statistics are necessary to obtain a model with better accuracy.

yt = tt−1 + yt−12 − tt−13 − 0.997et−1

− 0.7976et−12 + 0.7956et−13.
(4)

In order to have a complete picture of the quality of the models produce with our
methodology, Tab. 5 shows the accuracy of the models in the validation set in

Table 3. Selected variables for the ARMA model

Inputs yt−1, yt−2, yt−3, yt−4, yt−9, yt−10, yt−12, yt−14, yt−15,yt−16

Errors et−3, et−5, et−7, et−11, et−12, et−12, et−13, et−17, et−18

Table 4. Selected variables for the ANN model

Inputs yt−1, yt−4, yt−5, yt−9, yt−13, yt−15

Errors et−2, et−3, et−6, et−8, et−10, et−12, et−13, et−14
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terms of the mean square error (MSE). The table also includes the time needed
to create the models. As can been seen from the table, the lowest MSE values
and lowest time correspond to the ANN model obtained with the method to
reduce the search space (pruning). In fact, comparing the MSE values and time
of the models obtained with the traditional procedure and the reduced search
space, we can see that in both cases the models evolved in a reduced search
space exhibit better accuracy and furthermore the time needed to obtain them
is shorter. The last column shows the accuracy of the ARIMA model obtained
using the statistical approach. These values corroborate that, for this time series,
our procedure not only selects the variables that are “important” but also makes
better predictions.

Table 5. Comparison in terms of the mean square error in the validation of the ARIMA
models, the ANN using GA with the traditional procedure and with reduced search
space. The last column presents an ARIMA model using a statistical approach.

ARIMA (GA) ANN
ARIMA

Normal Pruning Normal Pruning

Training set 4.53 3.79 3.41 0.87 4.43
Validation set 5.69 2.22 3.36 0.90 3.68

Time (minutes) 63.75 38.3 38.1 26.1 N/A

While the MSE values provides an objective indicator of the quality of the
models produced. It may be hard for the reader to appreciate the accuracy of the
predictions based on such figures. In order to provide a more visual indication
of the accuracy of the models, Fig. 5 shows the predictions in the validation set
(dotted line) for the ARIMA model and the ANN. The solid line in the figures
presents the actual time series. As can be seen both models follows closely the
actual time series.

(a) ARIMA (Validation Set) (b) ANN (Validation Set)

Fig. 5. Predictions made in the validation set (dotted line) with the best ARIMA
model and the ANN. The solid line represents the actual time series.
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7 Conclusions

We presented a methodology to reduce the search space of ARIMA and ANN
predictors. The idea here is to collect information from an evolutionary process
and decide, based on that information, which of the variables are the most im-
portant. By doing so, we are effectively reducing the dimensionality of the search
space and, as a consequence, its size.

In order to test our approach, we decided to create predictors following the
structure of an ARIMA model and ANN. The difference between our methodol-
ogy and previous work is that our methodology uses GA to identified both the
architecture of the model, as well as to estimate the coefficients of the ARIMA
model or weights of the ANN. We compare our methodology with a similar
procedure, which that does not use the reduction of the search space and with
an ARIMA model identified using the Box-Jenkins approach. In all cases our
methodology produced better models in terms of accuracy and also consumed
less computational resources.

Finally, we would like to suggest possible future work. We tested our method-
ology with the wind time series, as a future work we would like to test this
approach with time series involving more variables. Furthermore, the procedure
used to select the variables makes the decision based on the mean, we would
like to test whether another statistical test produce better results or going even
further by selecting only the m best variables.
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Abstract. Wireless Sensor Networks have become an active research
topic in the last years. The routing problem is a very important part in
this kind of networks that need to be considered in order to maximize the
network life time. As the size of the network increases, routing becomes
more complex due the amount of sensor nodes in the network. Sensor
nodes in Wireless Sensor Networks are very constrained in memory capa-
bilities, processing power and batteries. Ant Colony Optimization based
routing algorithms have been proposed to solve the routing problem try-
ing to deal with these constrains. We present a comparison of two Ant
Colony-based routing algorithms, taking into account current amounts
of energy consumption under different scenarios and reporting the usual
metrics for routing in wireless sensor networks.

Keywords: Wireless Sensor Networks (WSN), network life time, routing
algorithms, Ant Colony Optimization.

1 Introduction

Wireless Sensor Networks (WSN) consist of a large number of embedded sensors
having the capability to communicate among them via wireless links deployed in
an area that should be monitored. WSN are very effective in many fields such as
intrusion detection, weather monitoring, security and tactical surveillance, dis-
tributed computing, detecting ambient conditions such as temperature, movement,
sound, light, or the presence of certain objects, inventory control, and disaster
management [8]. Nowadays, these sensor nodes are equipped with a small pro-
cessor, constrained memory and constrained wireless communication capabilities.
Furthermore, the sensor nodes are very limited in terms of their battery capabil-
ities. For this reason, it is crucial to handle their energies properly [6]. A node
in the WSN measures some phenomena from the environment, then it sends the
measured data through others nodes to the base station. This base station could
be connected to an application or the Internet. The strategy to build the path
to the base station is known as a routing algorithm. The algorithms inspired by
some biological phenomena have become popular in some Artificial Intelligence
communities mainly because they have demonstrated to be competitive options
to solve some hard problems from engineering and science. Specifically, a family of
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Ant Colony Optimization (ACO) algorithms [4] have been successfully applied to
solve some routing problems in wired and wireless networks. We selected two ant-
based routing algorithms and programmed and executed them in order to compare
their performance under some metrics. The main contribution of this paper is the
calculation of these metric values based on realistic amounts of energy consump-
tion. Our goal is to give some light on the real earnings and feasibility of using this
kind of algorithms. The remainder of the paper is organized as follows. In Section
2 the related work is presented. Section 3 describes the ACO algorithms. The Ex-
periments are explained in Section 4. The results are described in Section 5, and
finally in Section 6 some conclusions are drawn.

2 Related Work

WSN can be considered ad-hoc networks. However, protocols for Mobile Ad-hoc
Networks (MANETs) can not be successfully applied to them because of WSN’s
special features [2]. There are a wide range of routing protocols that have been
used to solve the problem of routing in WSN, for example a hierarchical clus-
tering algorithm for sensor networks, called “Low Energy Adaptive Clustering
Hierarchy” (LEACH) [7] and the protocol called “Power-Efficient Gathering in
Sensor Information Systems” (PEGASIS) [10], they are two of the most used
routing protocols. LEACH is a cluster-based protocol, which includes distributed
cluster formation. It randomly selects a few sensor nodes as clusterheads and ro-
tate this role to evenly distribute the energy load among the sensors in the
network. The basic idea of the protocol PEGASIS is that in order to extend
network lifetime, nodes need only communicate with their closest neighbors and
they take turns in communicating with the base station. When the round of all
nodes communicating with the base station ends, a new round will start, and
so on. This reduces the power required to transmit data per round as the power
draining is spread uniformly over all nodes.

Moreover, very recently, some researchers have proposed routing protocols
based on the ACO algorithm, among them we can mention the following:

In [1] a Quality of Service (QoS) routing solution is proposed, it is named ACO
based QoS routing algorithm (ACO-QoSR), it searches for the best paths that
satisfied the QoS requirements by using intelligent artificial ants. ACO-QoSR
algorithm is the tradeoff between a certain guaranteed QoS requirements and
acceptable computational complexity.

In [17] is proposed a pheromone based energy-aware directed diffusion algo-
rithm (PEADD) for WSN that extend the network lifetime by using pheromone
and enhances the network reliability by maintaining remaining energy distribu-
tion relatively uniform among sensor nodes.

In [5] are shown the properties and review the main instances of network rout-
ing algorithms whose bottom-up design has been inspired by collective behaviors
of social insects such as ants and bees.

In [12] authors proposed an algorithm based on ACO for flat architectures
and localization awareness. This proposal tries to maximize the network lifetime
and deal, react and adapt itself to changes in the network.



Routing Algorithms for Wireless Sensor Networks 339

In [15] an Energy Delay Based on ACO (E&D) whose main goal is to find
the optimal routing not only to maximize the lifetime of the network but also
to provide real-time data transmission services.

In [14] the authors proposed the called Ant Colony Optimization-Based
Location-Aware Routing (ACLR) which is a flat and location awareness algo-
rithm. It fuses the residual energy and the global and local location information
of nodes, to define the probability to select the next hop for the ants.

In [2] is proposed an Energy-Efficient Ant-Based Routing Algorithm (EEABR)
for flat and location awareness architectures. In this proposal, the ants look for
less energy consuming paths meanwhile reducing the size of the ants during the
communication among nodes. Other similar ACO-based routing algorithms for
WSN are published in [9] where authors shown crucial biologically inspired mech-
anisms and the associated techniques for resolving routing in WSN, including
ant based and genetic approaches.

In [11] a novel routing approach using an ACO algorithm is proposed for WSN
consisting of stable or limited mobile nodes. This approach is also implemented
to a small sized hardware component as a router chip.

In [16] a routing algorithm for data aggregation based on ACO (ACAR) is
presented. The main idea of this algorithm is optimization of data aggregation
route by some cooperation agents called ants using the three heuristic factors
about energy, distant and aggregation gain.

Dorigo and Di Caro show a method in [3], which is called Ant-Net, based
on ant’s colonies. In this method the information that the ants provide appears
in each node like a routing table and a data structure that involve information
about local traffic and delay quantities. Below presents the basic ACO algorithm
and the two algorithms we are going to compare.

3 Ant Colony Optimization-Based Routing Algorithms
for WSN

The main characteristic of an ACO routing algorithm consists in the continual
acquisition of routing information through path sampling by using small control
packages called ants. The ants are placed inicially in the source node so with the
task of find out paths through the other nodes to the destination node sb. An ant
going from the source node to the destination node, collects information about
the quality of the path, and it uses this information to update the pheromone
levels of the intermediate nodes, reinforcing the pheromone of the good paths,
creating a form of distributed reinforcement learning based on stigmergy [5].

3.1 General Outline of the ACO Based Algorithms

Let us assume that a WSN consists of m static and identical wireless sensors
(nodes). The nodes are uniformly distributed in a flat region. The communication
area covered by each node is represented by a circle whose radius is r.



340 C. Domı́nguez-Medina and N. Cruz-Cortés

A WSN is formally described as a weighted undirected graph G(V, E, L).
Where

• V is the set of sensor nodes, V = {s1, s2, s3, ..., sm}.
• L is the set of weights.
• E is the set of edges, E ⊂ V × V ×L, for example, for any si, sj ∈ V , i �= j,

(si, sj , ψij(t)) ∈ E, where ψij(t)) is the cost to deliver a data package from
si to sj in the time t, in this case ψij(t) is the pheromone between si and sj .

Any node si has a set of neighbors, defined by:

N(si) = {sj|sj ∈ V, dij ≤ r} (1)

r is the wireless communication coverage of the nodes. dij is the distance between
si and sj where the coordinates of the node si are xi and yi, and the coordinates
of the node sj are xj and yj and is calculated by:

dij =
√

(xi − xj)2 + (yi − yj)2 (2)

The algorithm is composed of two phases. In the first phase it starts with a set
of ants placed in the source node so. When the ant k is at the node si at instant
t, the next-hop node sj ∈ N(si) will be selected randomly with a probability
P k

ij(t) calculated by:

P k
ij(t) =

[ψij(t)]α × [ξij(t)]β∑
sl∈N(si)

[ψil(t)]α × [ξil(t)]β
(3)

Where ξij is the location function defined by:

ξij =
1
dij

(4)

ψij(t) is the level of pheromone between node si and node sj in the time t.
α and β are the adjustable weights of ψij(t) and ξij(t), respectively.

When ant k reaches the destination node sb phase two begins. The ant k goes
back following the same route, depositing an increment of pheromone on that.
This increment of pheromone is defined as follows:

ψij(t+ 1) = (1 − p(t)) × ψij(t) +Δψij (5)

Where p(t) refers to the pheromone evaporating rate in the time t and Δψij

is the pheromone increment on the route between si and sj in the current
round travel.

Δψij =
n∑

k=1

Δψk
ij (6)
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Δψk
ij is the pheromone that ant k laid on the route between the node si and

the node sj in the current round travel giving by.

Δψk
ij =

{
1

Lk if k passed from si to sj

0 otherwise

}
(7)

Lk refers to the length of the route founded by ant k. When ant k has
returned to the suorce node so the ant k is eliminated.

Below we describe the routing algorithms that we are going to compare.

3.2 Ant Colony Optimization-Based Location-Aware Routing for
Wireless Sensor Networks (ACLR)

ACLR [14] tries to find an equilibrium between the lifetime and the delay of
the transmissions. In ACLR not all the si’s neighbors are candidates to be se-
lected to be the next-hop, only the nearer neighbors to the destination node are
candidates. This set is defined by:

C(si) = {sj |sj ∈ N(si), djb ≤ dib}. (8)

Each node in the WSN has a memory block in which the residual energy, the
location information of the node, its neighbors and the destination node are
stored. Each ant is a mobile agent that has a contraindication list to memorize
the nodes traversed by itself in a round travel. This contraindication list avoids
to select the nodes which have been traversed by the ant. The algorithm ACLR
is composed of two phases. In the first phase ants walk from the node so to the
node sb and the second phase is when ants return from sb to so. The two phases
are described below:

First phase: every ant follows the proposed routing scheme. The ant k starts
to look for a route from the source node so to the destination node sb. The
new transition probability formula that allows ant k to select the next node, is
defined as follows:

P k
ij(t) =

[ψij(t)]α × [ξij ]β × [ηij(t)]γ∑
sl∈C(si)

[ψil(t)]α × [ξij ]β × [ηil(t)]γ
(9)

This transition probability formula is composed not only for location ξij
and pheromone ψij(t) metrics but an energy metric ηij(t), which tries to
maximize the network lifetime. The location function proposed by ACLR,
ξij is defined by:

ξij = (
dob

doi + dij + djb
) × (1 − dij∑

sl∈C(si)
dil

) (10)

Where dob is the distance between node so and node sb, doi is the dis-
tance between node so and node si, dij is the distance between node si

and node sj , djb is the distance between node sj and node sb and dil is
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the distance between node si and node sl. ηij(t) is the energy function
proposed by ACLR and is defined as follows:

ηij(t) =
ej(t)∑

sl∈C(si)
el(t)

(11)

If there is not any next-hop neighbor to select, that is C(si) is empty, then ant
k returns to the previous-hop node. And si is added to the contraindication list
of the ant k. When ant k reaches the destination node sb, a route Rk from the
source node to the destination node is found by ant k. Lk is the length of Rk.
Second phase: Each ant returns to the source node from the destination node
along the route Rk. At the meantime, ant k updates the pheromone on each
segment of Rk, following the increment of pheromone defined in formula (5).
The ACLR defines Δψk

ij as follows:

Δψk
ij =

{
dob×Q

(doi+dij+djb)Lk if si to sj ∈ Rk

0 otherwise

}
(12)

Where Q is a constant, dob, doi, dij and djb have the same meaning as that
of formula (10), respectively. Lk is the length of the route that is found by
the ant k in the current round travel.

When the ant k has returned to the suorce node so, the ant k is eliminated.
When all ants have been eliminated, a new iteration of the algorithm is repeated
until it reaches a certain number of iterations.

In the experiments conducted in [14], it should be noted that they use an
arbitrary value for energy consumption. They assume that it consumes one unit
energy to directly deliver a data package between two nodes. They are not careful
on the size of the data packages sent between nodes (ants). This size is vital to
calculate the energy consumption in the WSN. Since the data packages they use
are of variable size, the energy consumption they calculate is not correct, because
it is not the same energy consumption for delivery small data packages that large
data packages. To be able to make a fair comparison between algorithms, we must
be careful in the way of calculate the energy consumption of each algorithm.
Below it is described the following routing algorithm that we will compare.

3.3 Energy-Efficient Ant-Based Routing Algorithm (EEABR)

EEABR [2] is an ACO based routing protocol for WSN, which considers the
energy efficiency of the underlying algorithm in order to maximize the networks
lifetime. It has been proved that the tasks performed by the sensor nodes that
are related with communications (transmitting and receiving data), spend much
more energy than those related with data processing and memory management.
Since one of the main concerns in WSNs is to maximise the lifetime of the
network, it would be preferable that the routing algorithm could perform as
much processing as possible in the network nodes, than transmitting all data
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through the ants to the base station to be processed there. In fact, EEABR tries
to minimize the data package size as much as posible.

This algorithm makes a strong difference between forward ants (from the
source node so to the destination node sb) and backward ants (from the des-
tination node sb to the source node so). The ant’s memory Rk only remem-
ber the last two nodes visited, this allows to have a constant ant size. When
the ant k pass through the node s, the node s is the responsible of memorize
the next information of the ant k: the previous visited node, the forward node,
the ant identification and a timer. EEABR is composed by two phases: first
phase concerning the forward ants and second phase concerning the backward
ants.

First phase (forward ants): when a node s received an ant k, the node s looks
into its memory and searches the ant identification in order to avoid the creation
of a possible loop. If there is not such record, the node s saves the required
information of k and initializes a timer for the ant k. The ant k decides which
node is the most convenient to jump to, according to the transition probability
formula that is computed as follows:

P k
ij(t) =

[ψij(t)]α × [ηij(t)]γ∑
sl∈C(si)

[ψil(t)]α × [ηil(t)]γ
(13)

Where ψij(t) is the level of pheromone between the node si and the node sj ,
calculated in the same way that (5). α and γ are the adjustable weights of
ψil(t) and ηil(t), respectively. ηij(t) is the energy function defined as follows:

1
C − ej

(14)

C is the initial energy level of the nodes, and ej is the energy of sensor j.
If the ant k had passed through the node s, then the ant k is eliminated.
When the ant k reaches the destination node sb, a backward ant is created
with the forward ant identification as well the forward ant memory.

Second phase (backward ants): the amount of pheromone that the backward ant
will lay is calculated according to the EEABR proposed increment of pheromone
of the ant k that is defined by:

Δψk
ij =

{ 1(
C−

[
Emink−F dk

Eavgk−F dk

])
×ϕBdk

k passed si,sj

0 otherwise

}
(15)

Where Emink is the minimum energy level registered by the forward ant k
through its route. Eavgk is the average energy of the visited nodes so far
registered by forward ant k through its route. Fdk represents the number of
nodes that the forward ant k has visited so far. ϕ is a coefficient and Bdk is
the traveled distance (the number of visited nodes) by the backward ant k
until node i.
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The timer is used to delete the record that identifies the backward ant, if for any
reason the ant does not reach that node within the time defined by the timer. It
is important to note that the key point of EEABR algorithm is to minimize the
size of data packages transmitted between nodes. Therefore, to make a real and
fair comparison between the ACLR and EEABR algorithms, we must be careful
in the way of calculate the energy consumption.

4 Experiments

In this Section we present the experimental comparison between the algorithms
ACLR and EEABR. To conduct our experiments, we consider the nodes Mica2
Motes of the company Crossbow 1. We know that the energy required to transmit
one bit between two nodes is 4.28 μjoules and the energy required to receive
one bit is 2.36 μjoules [13] . It is a fact that nodes consume energy simply
because of being on, even off or asleep, however, in our simulation the nodes are
always on, so this consumption of energy can be disregarded and only take into
account the energy consumption to transmit and receive data packages. With
these energy consumption values, it can be established that the comparison
between the protocols ACLR and EEABR would be more in line with reality
and more fair than the one made in their original proposals [14,2]. For this sake,
we execute the experiments using three different scenarios that were explained
in [2]. We also evaluate three metrics used in [14] to determine the performance
of the routing algorithms. These scenarios and metrics are defined as follows:

Scenarios. First scenario: all nodes start with the same initial energy level,
there is only one source node so and the destination node sb is fixed. Second
scenario: all nodes begin with the same initial energy level, the source node so

changes randomly at each iteration and the destination node sb is fixed. Third
scenario: the nodes’s initial energy level is randomly selected, the source node
so changes randomly at each iteration and the destination node sb is fixed.

Metrics. Energy Consumption: this metric refers to the total used energy in
the network in the process of finding the optimal routes from the source node so

to the destination node sb. To be fair in the comparision, we use the energy con-
sumption per bit that is shown in [13], for the transmitting and receiving data in
each node. As mentioned in the previous section, the energy required to transmit
one bit between two nodes is 4.28 μjoules and the energy required to receive one
bit is 2.36 μjoules. Latency: the time it takes a data package to be sent from the
source node so to the destination node sb it is called latency, it is the sum of tem-
poral delays into the network. This metric is commonly calculated as the average
of number of nodes visited per route. Energy Efficiency: it refers to the ratio of
the number of data packages received at sb by the total consumed energy.

Parameter values. The parameters’ values are the same for both algorithms,
established as follows: The deployed field has a surface area of 300 x 200 (m2).

1 ”http://www.xbow.com/”
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10000 nodes deployed uniformly. Number of ants equal to 20. Wireless commu-
nications radius of sensors is r=30 (m). α = 1, γ = 1. For the algorithm ACLR
β = 1 and Q = 1. For the algorithm EEABR ϕ = 1 and the pheromone evap-
orating rate p(t) equal to 0.95. The initial pheromone level for every pair of
adjacent nodes is set to ψij(0) = 0.01.

The energy consumption per bit transmited (as defined by [13]) is 4.28 μjoules,
and per bit received is 2.36 μjoules. We performed 50 iterations in each exper-
iment and for both algorithms we ran 20 independent experiments for each
scenario.

5 Results

The metric results for the first scenario are shown in Figures 1, 2 and 3 for
Energy Consumption, Latency and Energy Efficiency, respectively. It seems that
each routing algorithm has an especial focus, clearly the algorithm EEABR
outperforms the Energy Consumption in a better way than ACLR, this is a
result of its ant sizes, meanwhile the algorithm ACLR outperforms by some (2
or 3 nodes) the EEABR in all the 20 experiments in the Latency metric, wich
means that ACLR focuses on minimize the delay in data transmision. In the
Energy Efficiency metric, EEABR is more efficient than ACLR.

Fig. 1. First scenario. Energy consumption. Fig. 2. First scenario. Latency.

Fig. 3. First scenario. Energy efficiency. Fig. 4. Second scenario. Energy consump-
tion.



346 C. Domı́nguez-Medina and N. Cruz-Cortés

Fig. 5. Second scenario. Latency Fig. 6. Second scenario.Energy efficiency

Fig. 7. Third scenario. Energy consumption Fig. 8. Third scenario. Latency

Fig. 9. Third scenario. Energy efficiency

The results for Energy Consumption, Latency and Energy Efficiency metrics
are shown in Figures 4, 5 and 6, respectively for the second scenario. For the
Energy Consumption metric in this second scenario, the EEABR outperforms
ACLR in most of the cases (18 out of 20) with a difference less than the previous
scenario. Both algorithms present better values in general than their respective
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metric in the first scenario. This is because the source node is constantly changing
its position, therefore the found paths are more diverse. For the Latency metric
case, ACLR outperforms EEABR for most of the experiments. Furthermore,
notice that in this second scenario both algorithms perform better than the first
scenario. For the Energy Efficiency metric we can observe again that EEABR is
better than the ACLR (18 out of 20). Again, the results for this second scenario
are consistent with those from the first scenario.

In the third scenario, the metric values for Energy Consumption, Latency
and Energy Efficiency metrics are shown in Figures 7, 8 and 9, respectively.
We can observe that the Energy Consumption values are a little higher for
both algorithms than their respective metric in the second scenario, with similar
performance between them. Notice that the latency values for both algorithms
are similar in this scenario and similar to the second scenario as well and still
ACLR outperforms EEABR. Both algorithms have similar performance for the
Energy Efficiency metric in this scenario, being a little bit better EEABR than
ACLR (12 out of 20).

6 Conclusion

We can conclude, in general terms, the ACLR and EEABR presented good
performances in terms of the defined metrics. However, ACLR provides better
results finding shorter routes than EEABR, i.e. two or three nodes less on av-
erage. EEABR has shown better performance in Energy Consumption. If the
source node is changing its position, both algorithms presented better Energy
Consumption than the case when it is fixed. For the scenarios where the source
node is changing, the algorithms show better Latency performance than scenar-
ios where the source node is fixed. The algorithms are more efficient, in terms
of Energy Efficiency, if the source node is changing for each iteration. For the
third scenario, where the nodes’s initial energy values are set to different values,
the Energy Consumption is very similar for both algorithms, as well the Energy
Efficiency. In general, the algorithms present very consistent performance, how-
ever EEABR is more efficient maximizing the network’s lifetime. This efficiency
is due to the usage of slim ants. The results shown that the bio-algorithms to
solve the routing problem in Wireless Sensor Networks are viable options.
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Abstract. This article presents a method based on the multi-objective
evolutionary algorithm NSGA-II to approximate hyper-heuristics for
solving irregular 2D cutting stock problems under multiple objectives.
In this case, additionally to the traditional objective of minimizing the
number of sheets used to fit a finite number of irregular pieces, the time
required to perform the placement task is also minimized, leading to a
bi-objective minimization problem with a tradeoff between the number of
sheets and the time required for placing all pieces. We solve this problem
using multi-objective hyper-heuristics (MOHHs), whose main idea con-
sists of finding a set of simple heuristics which can be combined to find
a general solution for a wide range of problems, where a single heuristic
is applied depending on the current condition of the problem, instead of
applying a unique single heuristic during the whole placement process.
The MOHHs are approximated after going through a learning process
by mean of the NSGA-II, which evolves combinations of condition-action
rules producing at the end a set of Pareto-optimal MOHHs. We tested the
approximated MMOHHs on several sets of benchmark problems, having
outstanding results for most of the cases.

Keywords: Hiper-Heuristics; Multi-Objective Optimization; Cutting;
Evolutionary Computation.

1 Introduction

Bin packing and cutting stock problems are well-known classical problems with
many applications in different areas like operational research, logistics, engineer-
ing and related subjects. The basic idea and main goal consists of fitting a finite
number of pieces into a minimum number of bins, subject to a practical set of
restrictions and requirements. For small combinatorial problems, exact meth-
ods like linear programming can be applied. However, when larger and more
complex problems appear, exact solutions are not a reasonable choice since the
search space grows exponentially, and so does the time to find the optimal solu-
tion. Various heuristic and approximate approaches that guarantee finding near
optimal solutions have been proposed [11]. However, no reliable method that can
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solve a large variation of instances of a given problem has been found. In general,
methods work well for a few instances, but are deficient for many others.

A hyper-heuristic is a method used to define a high-level heuristic that controls
low-level heuristics [1]. The hyper-heuristic decides when and where to apply each
single low-level heuristic, depending on the given problem state and the search
space. In recent work, based on the research by Ross et al. [13], evolutionary
approaches have been used to generate hyper-heuristics for the 2D regular and
irregular cutting stock problems [15][16]. These methods assemble a combination
of single heuristics (each concerned with selection and placement of a piece), and
this combination takes into account the quality of partial solutions provided by
the single heuristics.

Nevertheless, the majority of the works devoted to the problems of bin pack-
ing and cutting stocks are focused on mono-objective solutions like minimizing
the trim loss; however these problems are naturally multi-objective, since sev-
eral (opposite) objectives can be optimized at the same time. Just recently some
works devoted to multi-objective cutting and packing problems have started to
emerge like [7][12]; the present article intends to contribute with another per-
spective of solution for these problems. In this work we are focused on problems
involving cutting 2D irregular pieces where two objectives need to be minimized:
the number of sheets used to cut a finite number of pieces with irregular shapes
and the time required to perform the placement of all the pieces inside the sheet.

The aim of this paper is to present a method based on the Multi-Objective
Evolutionary Algorithm (MOEA) [3] NSGA-II [4] to approximate generalized
Multi-Objective Hyper-Heuristics (MOHH) in order to solve the cutting-stock
problem describe above. We use NSGA-II with a variable-length representation.
This algorithm evolves combinations of condition-action rules through a learning
process, producing at the end a set of Pareto-optimal MOHHs. Finally, we test
the approximated MOHHs on several sets of benchmark problems. Results of
the proposed model in the 2D cutting-stock problem are truly encouraging.

The remainder of this paper is organized as follows. Section 2 describes the
multi-objective cutting-stock problem. Section 3 presents the proposed solution
based on MOHH. This is followed by the experimental setup, the results and
discussion in section 4. Finally, in section 5 we include our conclusions and some
ideas for future work.

2 Description of the Problem

The Cutting-Stock and Packing Problems (CuSPPs) are among the earliest prob-
lems in the literature of operational research. In 1939, Kantorovich [10] studied
applications in all the industries whose products were in a flat sheet form. An
extensive literature on the CuSPPs and their applications has developed since.
For example, Golden in [8] gives an abstract description of a variety of different
solution methods; in [2] Chen et al. discuss a number of solution methods, and
Dyckhoff in [5] lists a number of solution methods and applications and presents
a systematic categorization of cutting and packing problems.
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Here we solve instances of problems considered as Single Bin-Size 2D Cutting-
Stock Problems with Irregular Shape Pieces. We can define formally these prob-
lems as: given a set L = (a1, a2, ...an) of pieces to be cut, each one of size
s(ai) ∈ (0, Ao], from a set m of cutting stock sheets of size Ao, the multi-objective
goal of cutting the pieces from the sheets can then be modeled as follows.

minimize z1 =
m∑

i=1

yi (1)

minimize z2 =
n∑

i=1

ti (2)

s.t.
∑n

i=1 s(ai) ≤ mAo

where expression 1 minimizes the number yi of needed sheets, and expression 2
minimizes the time to place all the pieces inside the sheets, where ti indicates
the required time to put the piece ai inside a sheet, using a given heuristic.

Intuitively, the two objective functions are of conflicting nature. While a large
number of sheets allows the placement of all the pieces very fast, having z2 → 0,
the trim of material will be also large; on the other hand, a solution with z1 → 0,
will tend to require more time to place all the pieces in the best position in order
to do not waste material. This means that not a single solution x exists in the
set of feasible solutions X that equally minimizes both objective functions z1

and z2. Then, we have a vector optimization problem in which a solution x ∈ X
is evaluated with respect to a vector Z(x) = (z1(x), z2(x)). The solution of the
problem has consequently to be seen in the identification of all efficient outcomes
or the Pareto-set P , defined as follows:

Definition 1. (Dominance): Z(x) is said to dominate Z(x′) iff zk(x) ≤ zk(x′)
∀k = 1, . . . , K∧∃k|zk(x) < zk(x′). We denote the dominance of Z(x) over Z(x′)
with Z(x) � Z(x′).

Definition 2. (Efficiency, Pareto-optimality): The vector Z(x), x ∈ X is
said to be efficient iff ¬∃Z(x′), x′ ∈ X |Z(x′) � Z(x). The corresponding alter-
native x is called Pareto-optimal and the set of all Pareto-optimal alternatives
is the Pareto-set P .

3 Multi-Objective Hyper-Heuristics Solution Approach

Hyper-heuristics deal with the process of choosing good single heuristics for
solving the problem at hand. The idea is to discover a combination of single
heuristics that can perform well on a whole range of problems and in such a way
that one heuristic’s strengths make up for the drawbacks of another [14]. The
rationale is that there is no a unique best single heuristic to solve well all the
instances of a problem, since certain problems may contain features that would
enable a specific heuristic to work well, but those features may not be present in
other problems. Then, a combination of heuristics, selectively applied based on
the features present in a problem, may work well on a wide range of problems.
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3.1 Single Heuristics

For the 2D irregular cutting-stock problem, the related single heuristics must
define the exact location of the pieces inside the sheet. In this work two kinds of
single heuristics to be combined by the Multi-Objective Hyper-Heuristics (MO-
HHs) were considered: one kind for selecting the pieces and sheets, and the other
for placing the pieces into the sheets. The selection heuristics are shown below.
Some of these heuristics are described in more detail in [13] and [9].

- First Fit (FF). Consider the opened sheets in turn in a fixed order and place
the piece in the first one it fits.
- First Fit Decreasing(FFD). Sort pieces in decreasing order, and the largest
one is placed according to FF.
- First Fit Increasing (FFI). Sort pieces in increasing order, and the smallest
one is placed according to FF.
- Filler + FFD. Places as many pieces as possible within the open sheets. If
at least one piece has been placed, the algorithm stops. The FFD algorithm is
applied, otherwise.
- Next Fit (NF). Use the current sheet to place the next piece, otherwise open
a new one and place the piece there.
- Next Fit Decreasing (NFD). Sort the pieces in decreasing order, and the
largest one is placed according to NF.
- Best Fit (BF). This places the piece in the opened sheet where it best fits
(i.e. with the minimum waste).
- Best Fit Decreasing (BFD). Same as the previous one, but sorting the
pieces in decreasing order.
- Worst Fit (WF). It places the piece in the opened sheet where it worst fits
(i.e. with the largest waste).
- Djang and Fitch (DJD). It places pieces in a sheet, taking pieces by decreas-
ing size until the sheet is at least one-third full. Then, it initializes w, a variable
indicating the allowed waste, and looks for combinations of 1,. . .,5 pieces pro-
ducing a waste w. If any combination fails, it increases w accordingly.

The placement heuristics, described in detail in [17], are the following:

- Bottom-Left (BLI). The piece starts at the top right corner of the sheet and
it slides down and left with a sequence of movements until no other movement
is possible. If the final position does not overlap the sheet boundaries, the piece
is placed in that position. The heuristic does not allow a piece to skip around
another placed piece. It’s a simple and fast heuristic.
- Constructive Approach (CA). The heuristic starts by placing the first piece
at the bottom and left of the sheet. Then, the next piece is placed in one of the
five positions: (x, 0), (0, y), (x, y), (x, y)and (x, y), where x, x, y, and y are the
maximum and minimum coordinates in x and y in relation to the first piece. For
each position, the next piece slides following down and left movements, and the
one that places the piece deepest (bottom and left) is chosen, except in special
cases such as when a hole is formed.
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- Constructive-Approach (Minimum Area) (CAA). In this modification
of the previous heuristic, the best position from the list is selected based on which
one yields the bounding rectangle with minimum area, containing all pieces, and
that fits in the bottom left corner of the object.
- Constructive-Approach (Maximum Adjacency) (CAD). With the first
piece only the four corners of the sheet are considered. For the subsequent pieces,
the possible points are the same than in CA. For each position in the list the piece
starts in that position and its adjacency (i.e. the common boundary between its
perimeter and the placed pieces and the sheet edges) is computed. Then, the
piece is slid down and left and the adjacency is computed again. The position
with the largest adjacency is selected as the position of the new piece.

3.2 NSGA-II

In this paper we use the NSGA-II [4], a MOEA [3] with variable length chromo-
somes as the approach to approximate generalized MOHHs to solve the cutting-
stock problem as described above.

The NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) is a well
known and with good behavior MOEA proposed by Deb et al. in [4], used as
a reference for many works in multi-objective optimization. In this algorithm,
initially a random parent population P0 of size N is created. The population
is sorted based on the non-domination. Each solution is assigned a fitness (or
rank) equal to its non-domination level (1 is the best level, 2 is the next-best
level, and so on). Thus, minimization of this rank is assumed. The normal binary
tournament selection, recombination, and mutation operators are used to create
an offspring population Q0 of size N . After that, a combined population Rt =
Pt+Qt is formed. Next, the population Rt is sorted according to non-domination,
forming the fronts F = F1, F2, . . .. Since all previous and current population
members are included in Rt, elitism is ensured. Now, solutions belonging to the
best non-dominated set F1 are of best solutions in the combined population
and must be emphasized more than any other solution inside it. If the size
of F1 is smaller than N , all the members of the set F1 are chosen for the new
population Pt+1. The remaining members of the population Pt+1 are chosen from
subsequent non-dominated fronts in the order of their ranking. Thus, solutions
from the set F2 are chosen next, followed by solutions from the set F3, and so on.
This procedure is continued until no more sets can be accommodated. The new
population Pt+1 is now used for selection, crossover, and mutation to create a
new population Qt+1, and the process is repeated until a stop criteria is satisfied.

3.3 Model

In this work we adapted the evolutionary model proposed in [17], which produces
general hyper-heuristics using a simplified representation of the state of the
problem. A chromosome in the NSGA-II algorithm inside our model consists of
a number of points in this simplified state space, each point being labeled with a
given heuristic. Then, if we have a problem state S in the simplified state space,
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we find the nearest point in the chromosome and apply the heuristic recorded
on the points label. This will transform the problem to a new state S′, and the
process is repeated until a complete solution has been constructed.

A chromosome therefore represents a complete recipe for solving a problem,
using this simple algorithm: until the problem is solved, (a) determine the current
problem state S, (b) find the nearest point to it, (c) apply the heuristic attached
to the point, and (d) update the state. The NSGA-IIs task is to find a set P of
Pareto-optimal chromosomes that are capable of obtaining good solutions for a
wider variety of problems, taking in consideration the trade off between the two
minimization objectives defined in equations 1 and 2; the set of chromosomes P
are the multi-objective hyper-heuristics we are seeking.

Representation. Each chromosome is composed by a variable number of blocks.
The initial number of blocks is randomly created and after it, the evolutionary
process can create or delete blocks. Each block includes nine numbers. The first
eight lie in the range 0 to 1 and represent the problem state, so a block can
be seen as the labeled point. The label is the ninth number, which identifies a
particular action (single heuristic). The NSGA-II’s task is to create and evolve
a certain number of such labeled points, using the problem-solving algorithm
defined above, where to determine the nearest point we use Euclidean distance.

In the problem state, the first three numbers are related to rectangularity, a
quantity that represents the proportion between the area of a piece and the area
of a horizontal rectangle containing it. These numbers represent the fraction of
remaining pieces with high rectangularity [0.9,1], medium rectangularity [0.5,0.9]
and low rectangularity [0,0.5]. The fourth to seventh numbers are related to the
area of pieces, and are categorized as follows (Ao is the sheet area, Ap is the
piece area): huge (Ao/2 < Ap); large (Ao/3 < Ap ≤ Ao/2); medium (Ao/4 <
Ap ≤ Ao/3); and small (Ap ≤ Ao/4). The eighth number represents the fraction
of the total number of pieces that remain to be placed. The label is selected from
all possible combinations of selection and placement heuristics. Figure 1 shows a
graphical representation of a chromosome using the simplified state space. This
simplified feature space intends to represent the essential information about
the geometry (rectangularity), and occupied and free space of the problem’s
whole configuration in a given step of the solution process. More features can

Fig. 1. Graphical representation of a chromosome using the simplified state space



Approximating MOHHs for Solving 2D Irregular Cutting Stock Problems 355

be added or considered but with the corresponding increase in complexity. The
current problem’s state is compute in each step of the solution process, taking
the information stored in the model about the pieces assigned, pieces free and
open (available) sheets. Finally, there are 40 different combinations for the action
as shown in Table 1.

Table 1. List of possible actions

Action Selection Placement Action Selection Placement

1 FF BLI - Bottom Left 21 NFD BLI - Bottom Left
2 CA - Constructive 22 CA - Constructive
3 CAA - Constructive-M. Area 23 CAA - Constructive-M. Area
4 CAD - Constructive-M. Adjacency 24 CAD - Constructive-M. Adjacency
5 FFD BLI - Bottom Left 25 BF BLI - Bottom Left
6 CA - Constructive 26 CA - Constructive
7 CAA - Constructive-M. Area 27 CAA - Constructive-M. Area
8 CAD - Constructive-M. Adjacency 28 CAD - Constructive-M. Adjacency
9 FFI BLI - Bottom Left 29 BFD BLI - Bottom Left
10 CA - Constructive 30 CA - Constructive
11 CAA - Constructive-M. Area 31 CAA - Constructive-M. Area
12 CAD - Constructive-M. Adjacency 32 CAD - Constructive-M. Adjacency
13 Filler+FFD BLI - Bottom Left 33 WF BLI - Bottom Left
14 CA - Constructive 34 CA - Constructive
15 CAA - Constructive-M. Area 35 CAA - Constructive-M. Area
16 CAD - Constructive-M. Adjacency 36 CAD - Constructive-M. Adjacency
17 NF BLI - Bottom Left 37 DJD BLI - Bottom Left
18 CA - Constructive 38 CA - Constructive
19 CAA - Constructive-M. Area 39 CAA - Constructive-M. Area
20 CAD - Constructive-M. Adjacency 40 CAD - Constructive-M. Adjacency

The Fitness Functions. Each MOHH is evaluated using two fitness functions,
one for the waste of space in the sheet and another for the total time needed
to place the pieces on the sheet. The waste of space in a given sheet and the
corresponding fitness function are defined as:

W = 1 −
∑k

i=1 s(ai)
Ao

(3)

FF1 =
∑m

i=1 W 2
i

m
(4)

where k is the number of pieces inside the sheet, s(ai) the size of each piece,
Ao the size of the sheet and m is the number of sheets used. The second fitness
function is defined as:

FF2 =
n∑

i=1

t(h(ai)) (5)

where t(h(ai)) is the required time to place the piece ai using the heuristic h.
During the NSGA-II process, when a new individual (MOHH) is created (in

the first parent population or in the subsequent children populations), a set
of 5 problems is assigned to it. These problems are selected randomly from
the training set. Then, the individual is evaluated with each problem using the
previous fitness functions, the fitness values are added and averaged to obtain
two final fitness values:

FFTj(MOHH) =
∑5

i=1 FFj(pi)
5

; j = 1, 2 (6)
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where pi is the i-th problem assigned to the individual and index j indicates
the number of fitness function. During the evolution, if an individual from the
parent population survives for the next generation, a new problem is assigned
to it and the fitness functions are recomputed.

FFT l
j(MOHH) =

(FFT l−1
j ∗ np) + FFj(p)

np + 1
; j = 1, 2 (7)

where FFT l
j is the value of the j-th total fitness function for the generation l,

np is the number of problems the individual has solved until now and FFj(p) is
the value of the j-th fitness function for the new problem.

This task of assign new problems to old individuals and recompute their fitness
values continue during the whole evolutionary process.

Genetic Operators. In this work we use two uniform versions of cross-over and
mutation, the first version works at the block level and the second one works with
the internal elements of each block. In the block level cross-over a random number
of complete blocks is exchanged between two parent individuals to create two
children individuals; since the number of blocks in each chromosome (individual)
is variable, the random number is less or equal to the shortest chromosome. In
the block level mutation, given certain probability, a randomly selected block
can be deleted from the chromosome or a randomly created block can be added
to the chromosome. In the internal level cross-over and mutation, they select a
random number of blocks and for each block a random number of values to be
interchanged or mutate, depending on the operator.

4 Experimental Results

4.1 Problem Instances

For this work we generated 18 different types of problems, with 30 instances for
each type, totalling 540 instances. Their characteristics can be seen in Table 2.
We also added a problem from the literature [6], which was scaled by a factor of
10 in order to have the sheet size of 300× 300. Instances of type G are the only
problems with unknown optimal number of objects, since they were produced
after alterations to randomly generated problems with known optimum.

Table 2. Description of problem instances

Type Sheets Pieces Number of Optimum Type Sheets Pieces Number of Optimum
(size) Instances (size) Instances

Fu 300 × 300 12 1 unknown Type J 1000 × 1000 60 30 4
Type A 1000 × 1000 30 30 3 Type K 1000 × 1000 54 30 6
Type B 1000 × 1000 30 30 10 Type L 1000 × 1000 30 30 3
Type C 1000 × 1000 36 30 6 Type M 1000 × 1000 40 30 5
Type D 1000 × 1000 60 30 3 Type N 1000 × 1000 60 30 2
Type E 1000 × 1000 60 30 3 Type O 1000 × 1000 28 30 7
Type F 1000 × 1000 30 30 2 Type P 1000 × 1000 56 30 8
Type G 1000 × 1000 36 30 unknown Type Q 1000 × 1000 60 30 15
Type H 1000 × 1000 36 30 12 Type R 1000 × 1000 54 30 9
Type I 1000 × 1000 60 30 3
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4.2 Experiments with the Proposed Model

The problem instances are divided into a training and a testing set. The NSGA-
II is performed with the training set only, until a termination criterion is met
and the set P of general MOHH’s has been evolved. All instances in the testing
set are then solved with each member of the set P and the results are recorded.

In order to test the overall performance of the model, various experiments
were designed, which are described as follows:

– Experiment Type A. Instances are divided into two groups: Group A and
Group B. Group A is the training set and is formed by instance types A, B,
C, D, E, F, G, H and I plus the Fu instance. After running our model over
the training set, a set of Pareto-optimal MOHH were obtained and each one
was tested with Set B (instance types J, K, L, M, N, O, P, Q and R).

– Experiment Type B. This experiment is similar to Experiment Type A,
except that the training and testing sets are interchanged.

– Experiment Type C. This experiment takes the Fu instance and 15 in-
stances from each problem type (from A through R) to form the training
set. The remaining instances form the testing set.

– Experiment Type IV. It is the same as Experiment Type C, except that
the training and testing sets are swapped

The settings for NSGA-II were: 36 individuals, 80 generations, mutation and
cross-over probabilities of 0.1 and 0.9. With this, on average a single run of the
algorithm for one of the experiments takes about 12 hours to approximate the
Pareto-optimal set P , using a 2.8Ghz Core2Duro PC with 4Gb in RAM.

Table 3. Number of extra objects required for each MOHH for the testing set and the
average time for placing all the pieces. Experiment A.

HHa1 HHa2 HHa3 HHa4 HHa5 HHa6 HHa7 HHa8 HHa9 HHa10 HHa11 HHa12

Time 2926 312 2 1.8 9.7 33.5 1.6 1817.4 2920 4.8 3.6 3.2

Sheets

-1 0.4 0.4
0 90.4 69.6 0.0 0.0 0.0 0.0 0.0 49.3 90.4 0.00 0.0 0.0
1 7.4 19.4 0.4 0.4 0.4 22.2 0.4 42.2 7.4 0.4 13 16.3
2 1.5 0.0 14.4 14.4 14.4 33.7 14.4 8.5 1.1 14.4 32.2 13.7
3 0.0 0.0 7.4 8.2 7.4 21.1 7.4 0.0 0.4 7.4 25.9 9.3
4 0.0 0.0 4 4.4 4.1 10.4 4.1 0.0 0.0 4.1 14.1 13.3

>4 0.4 11.1 73.7 72.6 73.7 12.6 73.7 0.0 0.4 73.7 14.8 47.4

Table 4. Number of extra objects required for each MOHH for the testing set and the
average time for placing all the pieces. Experiment B.

HHb1 HHb2 HHb3 HHb4 HHb5 HHb6 HHb7 HHb8 HHb9 HHb10 HHb11 HHb12

Time 37.9 1074.9 6.1 3203.8 37.6 258.2 285.2 1.7 2.8 627.5 375.6 224.1

Sheets

0 9.6 97.4 11.1 97.4 9.2 62.4 69.4 9.2 9.2 80.1 70.5 55.7
1 26.9 2.6 1.1 2.6 27.3 24.4 20.3 10.7 10.7 13.7 19.6 1.5
2 28.8 0.0 12.9 0.0 28.8 8.9 7.0 23.2 23.2 4.8 8.5 3.0
3 19.6 0.0 6.6 0.0 19.9 4.1 3.3 16.2 16.2 1.5 1.5 3.0
4 10.7 0.0 56.1 0.0 10.7 0.4 0.0 10.3 10.3 0.0 0.0 2.6

>4 4.4 0.0 0.0 0.0 4.1 0.0 0.0 30.3 30.3 0.0 0.0 34.3
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Tables 3, 4, 5 and 6 show respectively the results for each one of the previ-
ously described experiments, where these results are the output of one single
run of the complete model for each experiment. The second row of the tables
represents the average normalized time a MOHH needs to solve a problem, us-
ing its combination of single heuristics. The time is not in real time, but was
measured by assigning a time score to each single heuristic, depending on the
number of trials or movements ir requires to place a piece inside a sheet; which
in fact depends on the current configuration of the previous placed pieces in
the sheet. These scores were assigned before the experiments, by solving all the
problems with every single heuristic to know the performance of each one for
every problem, where the most expensive heuristic has a value of 100, and the
rest of the heuristics have a fraction of this time. When applying the MOHH to
solve a group of problems, for every heuristic used during the solution process
its score is added and averaged at the end.

Taking as baseline the best single heuristic to solve each particular problem,
the rest of the rows in the tables show the number of extra sheets a MOHH
needs to place all the pieces with respect to that best heuristic. The number in
each cell is the percentage of problems where the MOHH needs from -1 to more
than 4 sheets to place all pieces with respect to the best single heuristic. It is
possible to observe how when a small number of extra sheets (-1 or 0) is needed,
the time to perform the placement is big, and the opposite when the placement
time is small the number of extra sheets is big, due to the conflicting objectives.
This allows for an user to select the best solution in accordance to his particular
needs: fastness, precision or an equilibrium.

Table 5. Number of extra objects required for each MOHH for the testing set and the
average time for placing all the pieces. Experiment C.

HHc1 HHc2 HHc3 HHc4 HHc5 HHc6 HHc7 HHc8 HHc9 HHc10 HHc11 HHc12

Time 4.2 276.4 2380.3 297.0 9.8 1.9 279.1 11.6 336.9 2306.7 2.4 234.0

Sheets

-1 0.4 0.7 1.5
0 4.4 69.6 91.9 69.3 4.8 0.0 66.3 4.8 72.6 90.7 0.0 55.9
1 24.1 24.4 7.8 24.8 24.1 5.9 23.7 18.9 21.5 8.5 6.7 26.7
2 25.9 4.4 0.0 4.8 25.9 13.7 5.6 23.0 5.2 0.0 16.3 7.8
3 24.4 1.1 0.0 1.1 24.8 13.3 4.4 28.1 0.7 0.0 17.4 3.3
4 11.9 0.0 0.0 0.0 11.5 8.5 0.0 14.1 0.0 0.0 17.8 3.3

>4 9.3 0.4 0.0 0.0 8.9 58.5 0.0 11.1 0.0 0.0 41.9 1.5

Table 6. Number of extra objects required for each MOHH for the testing set and the
average time for placing all the pieces. Experiment D.

HHd1 HHd2 HHd3 HHd4 HHd5 HHd6 HHd7 HHd8 HHd9 HHd10 HHd11 HHd12

Time 2.4 70.0 341.0 1.8 1.6 3.9 70.0 333.8 3.9 1.5 341.1 316.1

Sheets

0 0.4 10.3 72.7 0.4 0.4 4.1 10.3 72.7 4.1 0.0 72.7 70.1
1 8.9 22.1 22.9 5.5 5.5 24.4 22.1 21.8 24.4 5.9 22.9 20.7
2 16.2 31.7 3.7 14.0 13.3 29.9 31.7 3.0 29.9 12.5 3.7 5.2
3 12.5 20.3 0.7 10.0 10.7 20.7 20.3 1.1 20.7 11.4 0.7 2.2
4 15.9 12.5 0.0 7.0 5.5 12.9 12.5 0.7 12.9 5.5 0.0 1.5

>4 46.1 3.0 0.0 63.1 64.6 8.1 3.0 0.7 8.1 64.6 0.0 0.4
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Since the NSGA-II tries to find the majority of the elements from the Pareto-
optimal set P , the number of MOHHs found by the algorithm is sometimes
big. Because a lack of space, we present a subset of 12 MOHHs from P , by
splitting the set in 4 fronts and take 3 solutions from each one; trying in this
way to preserve the diversity. Except for the experiment D, where the model
found solutions with more balance between the two objectives, the rest of the
experiments produce a broad variation in solutions, with times scores ranging
from 1 to 3000, with the corresponding increase or decrease of needed sheets.

Given the relative novelty of hyper-heuristics and multi-objective cutting and
packing area, our results are in an early stage to be compared with other tech-
niques, because there are still few works in the area, and no one about irregular
cutting using the same set of problems to make feasible a direct comparison. For
that reason we present the results of MOHHs in comparison with the baseline
of the single heuristics.

5 Conclusions and Future Work

In this paper we have described experimental results of a model based on the
MOEA NSGA-II which evolves combinations of condition-action rules represent-
ing problem states and associated selection and placement heuristics for solving
multi-objective 2D irregular cutting-stock problems, where we wanted the (op-
posite) objectives of minimizing the number of sheets used to cut the set of
pieces and the total time to place the pieces inside the sheets. These combina-
tions found by the model are called Multi-Objective Hyper-Heuristics (MOHHs).
In general, the model efficiently approximate the set of Pareto-optimal MOHHs
after going through a training phase, and when applied to an unseen testing
set, those MOHHs solve the problems very efficiently taking in to account the
trade-off between the two objectives. Ideas for future work involve an analysis of
frequencies of use for each single heuristic inside each approximated MOHH, to
better understand which single heuristics are more employed during the solution
process, and probably approximate a more general MOHH from there; extending
the proposed strategy to solve problems with more complex structure like 3D
packing problems; including other objectives to be minimized, like the balance
weight, the number of cuts or the heterogeneousness inside a sheet; or including
other kinds of pieces with arbitrary shapes.
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12. Muñoz, C., Sierra, M., Puente, J., Vela, C.R., Varela, R.: Improving cutting-stock
plans with multi-objective genetic algorithms. In: International Work-conference
on the Interplay between Natural and Artificial Computation 2007, pp. 528–537
(2007)

13. Ross, P., Schulenburg, S., Blázquez, J.M., Hart, E.: Hyper-heuristics: learning to
combine simple heuristics in bin-packing problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2002, pp. 942–948 (2002)

14. Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Methodologies, ch.17, pp. 529–556. Springer,
Heidelberg (2005)
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Abstract. Evolutionary computation is inspired by nature in order to
formulate metaheuristics capable to optimize several kinds of problems.
A family of algorithms has emerged based on this idea; e.g. genetic algo-
rithms, evolutionary strategies, particle swarm optimization (PSO), ant
colony optimization (ACO), etc. In this paper we show a population-
based metaheuristic inspired on the gravitational forces produced by the
interaction of the masses of a set of bodies. We explored the physics
knowledge in order to find useful analogies to design an optimization
metaheuristic. The proposed algorithm is capable to find the optima of
unimodal and multimodal functions commonly used to benchmark evo-
lutionary algorithms. We show that the proposed algorithm works and
outperforms PSO with niches in both cases. Our algorithm does not de-
pend on a radius parameter and does not need to use niches to solve
multimodal problems. We compare with other metaheuristics respect to
the mean number of evaluations needed to find the optima.

Keywords: Optimization, gravitational interactions, evolutionary com-
putation, metaheuristic.

1 Introduction

Multimodal optimization problems deal with objective functions that commonly
contain more than one global optima and several local optima. In order to find all
the global optima in multimodal problems with classical methods, one typically
runs a given method several times with different starting points, expecting to find
all the global optima. However, these techniques do not guarantee the location
of all optima. Therefore, this kind of techniques are not the best way to explore
multimodal functions with complex and large search spaces. In the evolutionary
computation literature exists a variety of metaheuristics challenging the typical
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problems of classical optimization. E.g. In particle swarm optimization with
niches; the best particle makes a niche with all particles within a radius r,
until the niche is full; it then selects the next best no niched and its closets
particles to form the second niche; the process until all particles are assigned to a
niche. Objective function stretching, introduced by Parsopolous [1], [7] is another
algorithm whose strategy is to modify the fitness landscape in order to remove
local optima and avoid the premature convergence in PSO. In a minimization
problem, a possible local minimum is stretched to overcome a local maximum
allowing to explore other sections of the search space identifying new solutions.
GSA introduced by Rashedi [5], is a gravitational memory-less (does not include
a cognitive component in the model) metaheuristic capable to find only one
global optima in unimodal and multimodal problems with more than one global
optima, where a heavier mass means a better solution and the gravitational
constant G is used to adjust the accuracy search.

In our work we explore the properties of gravitational interactions in order
to make an useful metaheuristic to find optima in unimodal and multimodal
problems. In Section 2 addresses the main motivation of our work: The New-
ton’s Law of Universal Gravitation. In Section 3 we define the Gravitational
Interactions Optimization (GIO) metaheuristic for unimodal and multimodal
functions. Section 4 presents to the GIO metaheuristic with differents unimodal
and multimodal problems. Section 5 presents the conclusions of this work.

2 Newton’s Law of Universal Gravitation

The attraction force of two particles is proportional to their masses and inversely
proportional to their distance. The Law of Universal Gravitation was proposed
by Isaac Newton [10]. This law is stated in Definition 1.

Definition 1. The force between any two particles having masses m1 and m2,
separated by a distance r, is an attraction acting along the line joining the par-
ticles and has the magnitude. Shown in Equation (1).

F = G
m1m2

r2
(1)

where G is a universal gravitational constant.

The forces between two particles with mass are an action-reaction pair. Two
particles with masses m1 and m2 exert attracting forces F12 and F21 towards
each other whose magnitudes are equal but their directions are opposed.

The gravitational constant G is an empirical physical constant involved in the
computation of the gravitational attraction between particles with mass, which
can be determined by the maximum deflection method [11].

G = 6.673× 10−11N(m/kg)2 (2)

The gravitational force is extremely weak compared to other fundamental forces;
e.g. the electromagnetic force is 39 orders of magnitude greater than the gravity
force.
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Newton’s law of universal gravitation can be written in vectorial notation,
which considers both: The force of the masses and the direction of each force.
The vectorial notation is shown in Equation (3).

F12 = −Gm1m2

|r12|2
r̂12 (3)

Where F12 is the force exerted by m1 on m2, G is the gravitational constant, m1

and m2 are the masses of the particles, |r12| is the euclidean distance between
particles m1 and m2, and r̂12 is the unit vector, defined as r2−r1

|r2−r1| , r1 and r2 are
the locations of particles m1 and m2. (See Figure 1).

m1 m1 m1

m2 m2 m2

r12 r21 � �r12 F12�� �F21�

Fig. 1. The force exerted on m2 (by m1), F21, is directed opposite to the displacement,
r12, of m2 from m1. The force exerted on m1 (by m2), F12, is directed opposite to the
displacement, r21, of m1 from m2. F21 = −F12, the forces being an action-reaction pair.

3 Gravitational Interactions Optimization

In order to find one or more optima there exists a large variety of evolutionary al-
gorithms, e.g. genetics algorithms (GA) [4], evolutionary strategies (ES) [6], ant
colony optimization (ACO) [2] , particle swarm optimization (PSO) [8], elec-
trostatic PSO (EPSO) based on electrostatic interactions inspired upon PSO
[3], etc. There exist works related to design metaheuristics that take into ac-
count the distance in order to determine the cluster membership of the particles
computing and maximizing a ratio for all particles in the swarm with respect
to the particle to bo updated, e.g. FER-PSO [9]. We propose a Gravitational
Interaction Optimization metaheuristic (GIO) capable of solving optimization
problems. The motivation of the design of this metaheuristic is to find useful
properties and anolgies that can relate optimization problems with Newton’s
gravitational theory. In the approach presented in this paper, we abduct the
interactions exhibited by a set of bodies and use them to guide the search for
the global optimum in an optimization problem.

3.1 Gravitational Interactions for Unimodal Optimization

GIO is a population-based metaheuristic where a set of bodies are initially dis-
persed along the search space with a uniform random distribution. The fitness
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of bodies located on the search space are mapped as masses in a Gravitational
field where the solutions are evolved. Each body stores its current position B
and the best position so far Bbest according to the fitness function. Bodies are
allowed to interact in a synchronous discrete manner for a number of epochs.
The body interactions follow Newton’s gravitational law and move each body
to a new location in such way that whole population tends to reach the global
optimum (or multiple local optima for multi-modal problems).

The fitness function is a mapping that transforms a vectorX= (x1, x2, . . . , xn)
to a scalar f(X). This mapping associates the fitness value f(X) to each location
X = (x1 · · ·xn) of the search space. We assign a body B to every location X
in the search space where an individual of the population is found. Body B is
assigned a mass, whose magnitude is a function of the fitness of its location.

Newton’s law of universal gravitation describes the attraction forces that exist
between two punctual bodies with masses (described in vectorial form in 3).
Substituting we obtain Equation (4).

Fij =
M (f(Bi)) ·M (f(Bj))

|Bi −Bj |2
B̂ij (4)

Where M is the mapping function that associates the fitness value f of domain
{x : x ∈ �} a mass of codomain {y : y ∈ (0, 1]} for each position of the body Bi.
This mapping is computed using Equation (5).

M(f(Bi)) =
(

f(Bi) − minf(B)
maxf(Bbest) − minf(B)

(1 −mapMin) +mapMin

)2

(5)

Where Bi is the position of the ith body and Bj is the jth body that contributes
exerting a force on the mass Bi; |Bi−Bj| is the euclidean distance and Bij is the
unit vector between bodies Bi and Bj ; f(Bi) is the fitness of body Bi, minf(B)
is the minimum fitness value of the current positions of the bodies, maxf(Bbest)
is the maximum fitness value of the best positions so far, mapMin is a constant
with a small positive value near zero, such that (1 − mapMin) reescales the
fitness value f(Bi) to a mass between [0, 1) values. The result is squared to
emphasize the best and worst fitnesses.

One characteristic of the proposed method is the full interaction; i.e each
body Bi interacts with every other body Bj through their masses. Interactions
contribute to their displacement, according to the resultant force. Equation (6)
computes the resultant force exerted on body Bi by the bodies Bj .

Fik =
n∑

j=1

M (f(Bi)) ·M (f(Bj,best))
|Bi −Bj,best|2

ˆBiBj,best (6)

Where Fik is a resultant force of the sum of all vector forces between M(Bi)
and M(Bj,best), |Bi − Bbest,j | is the Euclidean distance between the current
positions of body Bi and the best position so far of the body Bj . In order
to avoid numerical errors we compute the force between masses M(Bi) and
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M(Pj,best) only if |Bi − Bj | ≥ ×10−5, ˆBiBj,best is the unit vector that directs
the force. In order to estimate a displacement that could enhance the solution of
particle Bi, it is neccesary to solve Equation (4) for Bj . Assuming that we want
to find a location of the body Bk with M (f(Bk)) = 1, Bk is computed using
Equation (7).

Bk =

√
M(f(Bi))

|Fik|
F̂ik (7)

To update the position of the bodies we use equation (8) and (9).

Vnew = χ (V +R·C·Bk) (8)

Bt+1 = B + Vnew (9)

V is the current velocity of Bi, R is a random real number generated in the
range of [0, 1) and is multiplied by the gravitational interaction constant C, in
order to expect random exploration distances with mean μ ≈ 1, we set C = 2.01,
this displacement is constrained multiplying by a constant with a value of 0.86,
in order to ensure the convergence. Bk is the main displacement computed by
equation (7).

The complete GIO algorithm is described the Algorithms 1, 2 and 3. Algo-
rithm 1 computes the the total force exerted by the masses M(f(Bj)) mass
M(f(Bi)); in order to prevent premature convergence and division by 0, we
compute only those pairs of bodies with a distance greater than ε. Algorithm
2 computes the velocities of the bodies, receives the bodies and computes the
resultant force that attracts the mass assigned to Bi. In order to prevent a di-
vision by 0 we compute the distance only if |Ftotal| > 0, the new velocity is
computed by Equation (8), and finally we update the velocity associated to Bi.
Algorithm 3 computes the new positions B of each iteration t, the algorithm
take as parameters the search range, the number of bodies nBodies, and the
maximum number of iterations tMax. The algorithm computes the velocities
with computeV elocities(bodies) (Algorithm 2), and updates the their positions
with updatePosition(), which implements Equation (9), limitPositions() lim-
its the positions of the bodies to the search space defined by the search range,
updateF itness() updates the fitness according to the new positions of the bodies
and finally we update the best position so far with updateBbest().

Algorithm 1. computeFtotal(index)
1: i← index
2: Ftotal← 0
3: for j ← 1 to nBodies do
4: if distance(Bi, Pj) > ε then
5: Ftotal← Ftotal + P̂ijM(f(Bi))M(f(Pj))/distance(Bi, Pj)

2

6: end if
7: end for
8: return Ftotal
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Algorithm 2. computeVelocities(bodies)
1: for i← 1 to nBodies do
2: Ftotal← computeF total(i)
3: if |Ftotal| > 0 then
4: distance←√

M(f(Bi))/|Ftotal|
5: else
6: distance← 0
7: end if
8: Vnew ← χ(V + R·C· distance· ˆFtotal)
9: updateV elocity(Bi, Vnew)

10: end for
11: return Ftotal

Algorithm 3. MainGravitationalInteraction(ranges, nBodies)
1: bodies← initializeParticles(nBodies, ranges)
2: for t← 0 to maxIter do
3: computeV elocities(bodies)
4: limitV elocity()
5: updatePosition()
6: limitPosition()
7: updateF itness()
8: updatePbest()
9: end for

This scheme develops good results for unimodal problems. The results of the
performace of the algorithm presented in this Section are presented in Section 4.

3.2 Gravitational Interactions for Multimodal Optimization

In the previous Subsection we showed the basic steps of the gravitational in-
teractions metaheuristic. This scheme works well for unimodal problems. For
multimodal problems it is necessary to add a cognitive component analogous
to the one used in PSO [8]; the cognitive component is a constant that gives a
weight to each body’s memory. The new positions of the bodies are computed
in order to find more than one optima with the Equations (10) and (11).

Adding the cognitive component to Equation (8) and using the constriction
factor χ (Equation 12), makes the new Equation (10) capable to find more than
one optimum in multimodal problems. The effect of this component is to make
the local search more robust restricting to the bodies to local search, unless
the gravitational forces of a cluster of masses overcome the force exerted by its
cognitive component.

Vnew = χ (V + C1·R1· (Bbest −B) + C2·R2·Bk) (10)

Bt+1 = B + Vnew (11)



Particle Swarm Optimization with Gravitational Interactions 367

where, analogous to PSO, C1 and C2 are the cognitive and the gravitational
interaction constants, R1 and R2 are real random numbers variables in the [0, 1)
range and χ is the inertia constraint (Proposed by Clerk ([8])). The inertia
constraint is used to avoid the bodies to explore out of the search space computed
by Equation (12).

χ =
2κ

|2 − φ−
√
φ2 − 4φ|

(12)

where φ = C1 + C2 > 4, C1 and C2; κ is an arbitrary value in the range
of (0, 1]. In our algorithm we set C1 = C2 = 2.01. The constriction factor in
our algorithm helps to converge through the iterations. To make multimomodal
Gravitational Interactions Algorithm (Algorithms 1, 2, and 3) described in the
previous subsection, we replace line 8 in Algorithm 2 by Equation 10.

4 Experiments

In order to test the performance of the Gravitational Interactions Optimization
algorithm for unimodal and multimodal functions, we tested both versions with
some functions commonly used to measure the performance of different kinds of
metaheuristics.

4.1 Test Functions

We show the performance of unimodal and multimodal Gravitational Interac-
tions Optimization algorithm with 3 unimodal and 4 multimodal functions. The
test functions tested are shown in the Table 1.

For unimodal optimization we used the functions in Figure 2: U1 is the Gold-
stein and Price function shown in Figure 2(a), U2 is the Booth function shown in
Figure 2(b) and U3 is the 4 variable Colville Function. For multimodal optimiza-
tion we used the functions of the Figure 3 M1 is the Branin’s RCOS Function
with 3 global optima (with no local optima) shown in Figure 3(a), M2 is the

Table 1. Test functions used for our experiments

Unimodal Test Functions

U1
U1 = [1 + (1 + (x + y + 1)2)(19− 14x + 3y2 + 6xy + 3y2)]· −2 ≤ x, y ≤ 2
[(30 + (2x− 3y)2)(18− 32x + 12x2 + 48y − 36xy + 27y2)]

U2 U2 = (x + 2y − 7)2 + (2x + y − 5)2 −10 ≤ x, y ≤ 10

U3
U3 = −1100 · (w2 − x)2 + (w − 1)2 + (y − 1)2 + 90 · (y2 − z)2 + · −10 ≤ w, x, y, z ≤ 10
10.1 · ((x− 1)2 + (z − 1)2) + 19.8 · (x−1) · (z − 1)

Multimodal Test Functions

M1 M1 = −
(
(y − 5.1x2

4π2 + 5x
π
− 6)2 + 10(1− 1

8π
)Cos(x) + 10

) −5 ≤ x ≤ 10
0 ≤ y ≤ 15

M2 M2 = Sin(5πx)6 −0 ≤ x ≤ 1

M3 M3 = −(x2 + y − 11)2 − (x + y2 − 7)2 −6 ≤ x, y ≤ 6

M4 M4 = −4
(
(4− 2.1x2 + x4

3
)x2 + xy + (−4 + 4y2)y2

) −1.9 ≤ x ≤ 1.9
−1.1 ≤ x ≤ 1.1
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Fig. 2. Fitness landscape of two test functions with one optima used for measure the
performance of Unimodal Gravitational Interactions
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Fig. 3. Fitness landscape of multimodal test functions used in our experiments

6 global maximum univariable Deb’s function shown in Figure 3(b), M3 is the
Himmelblau’s function with 4 global optima shown in Figure 3(c), M4 is the
Six-Hump cammelback function with 2 global optima and 4 local optima shown
in Figure 3(d).
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4.2 Results

In our experiments we consider ε = 1× 10−3 to be an acceptable error to deter-
mine if the solution obtained had reached the optimum. We used 100 bodies for
a maximum of 1000 iterations, we used as stop condition the inability of all the
bodies to enhance their fitness memory solutions by 1× 10−4, or when the algo-
rithm found all the optima. Each experiment was repeated 30 times. PSO with
niches requires two extra parameters: the radius r, and the maximum number
of particles on each niche nMax, we set M1 with r = 0.5 and nMax = 50, M2
with r = 0.1 and nMax = 15, M3 with r = 0.5 and nMax = 30, and M4 with
r = 0.5 and nMax = 25.

The performance of Gravitational Interaction Optimization (GIO) is com-
pared with Particle Swarm Optimization with niches (NPSO) in Table 2, con-
sidering the mean and the standard deviation of evaluations required to find
all the global optima (column Evaluations) and the percentage of successes
(column Success) to finding all the optima.

Table 2. Results of our experiments

PSO GIO Unimodal

Functions
Evaluations

Success
Evaluations

Success
μ σ μ σ

U1 1,394.44 399.22 20% 16,523.33 13,928.90 100%

U2 1,130.77 330.11 60% 6,057.55 3,984.54 70%

U3 764.00 777.75 83% 530.00 208.69 100%

NPSO GIO Multimodal

Evaluations Evaluations
μ σ μ σ

M1 2,529.17 764.13 80% 2,803.33 972.90 100%

M2 276.66 81.72 100% 390.00 88.44 100%

M3 3,400.00 0.00 00.3% 2,323.33 288.496 100%

M4 1,136.67 303.41 100% 1,600.00 501.721 100%

The obtained results show that Unimodal and Multimodal Gravitational In-
teractions have a higher probability to converge to global optima, avoiding pre-
mature convergence that PSO and PSO with niches with a similar number of
evaluations required for the functions tested.

5 Conclusions

We presented a new heuristic more reliable than PSO with no aditional param-
eters like the radius r and the maximum number of particles in a niche nMax
used in PSO with niches. In problems with high dimentions the radius r is deter-
mined by trial and error, because we can not to graph the objective function and
make a visual analysis. The same algorithm is used for unimodal and multimodal
cases. When used in its general form. (i.e. including the cognitive component),
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GIO solves both cases without the need of any a-priori information. Adding
the cognitive component allow us to solve both, unimodal and multimodal op-
timization problems, while GSA can only solve unimodal problems. While GIO
has proven to find all optima in a multimodal problem, GSA can only determine
one of them.
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Abstract. Exploration and exploitation are two important factors to consider in 
the design of optimization techniques. Two new techniques are introduced for 
particle swarm optimization: “resets” increase exploitation and “delayed up-
dates” increase exploration. In general, the added exploitation with resets helps 
more with the lbest topology which is more explorative, and the added explora-
tion with delayed updates helps more with the gbest topology which is more 
exploitive. 

Keywords: Particle Swarm Optimization, Search Intensification, Search  
Diversification. 

1   Introduction 

To perform an effective balance between exploration and exploitation, two tasks must 
be taken into account: quickly identify regions in the search space with high quality 
solutions without wasting too much time in regions which are either already explored 
or which do not provide high quality solutions, and perform an intense search exploit-
ing the collected search experience to locate the optimal solutions. These two tasks 
are conflicting and equally important so a trade-off between these two objectives – 
exploration and exploitation – must be achieved. 

Particle swarm optimization (PSO) [1] is a simple search technique that has shown 
excellent search abilities and good results in several optimization problems. Like 
many search techniques, standard PSO can not easily solve multi-modal optimization 
problems because of the lack of an explicit strategy to escape from local optima. This 
is usually faced as a problem of the balance between exploration and exploitation of 
the search space. Consequently, several techniques have been proposed to accomplish 
an effective trade-off between these two search components [2] [3] [4]. 

This paper presents and empirically analyses various forms of particle swarm op-
timization with resets with the aim of improving the balance between exploration and 
exploitation. The extreme resets and resets allowing exploration strategies are in-
spired by some well recognized metaheuristic techniques like intensification in Tabu 
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Search (TS) [5] [6] [7]. Delayed update is applied as a diversification strategy with its 
effectiveness caused by its prolongation on the exploration phase. 

Results for a set of multi-modal functions show that the global communication 
(gbest) and local communication (lbest) topologies of PSO can both benefit from 
resets and delayed updates. In general, resets (which increase exploitation) are more 
effective with lbest, and delayed updates (which increase exploration) are more effec-
tive with gbest. Conversely, resets are generally ineffective with gbest, and the bene-
fits of delayed updates degrade more quickly with lbest. 

This paper begins in section II with an introduction of relevant aspects that were 
considered to propose the resets and delayed updates strategies in section III. Experi-
ments with these techniques with the gbest and lbest models of PSO are performed on 
the multi-modal set of BBOB problems and their results are analyzed in section IV 
before a summary is provided in section V.  

2   Background 

The balance between exploration and exploitation is not new in the metaheuristic 
community (e.g. VNS, ILS, ACO) [8] [9] [10] [11]. Some metaheuristics can be seen 
as “intelligent” extensions of local search whose main objective is to escape from 
local optima to continue exploration of the search space to find other local optima and 
hopefully the global optimum. This is the case of Tabu Search (TS) [5] [6] [7] which 
combines local search with the use of choice rules to promote the search process to 
examine neighbors of elite solutions historically found (intensification) and unvisited 
regions or solutions that differ in various significant ways from those seen before 
(diversification). 

Other techniques benefit from a natural way to explore the search space by using a 
set of solutions rather than a single solution (e.g. Evolutionary Algorithms (EAs) 
[12][13][14]). To complement the intrinsic ability of (population-based) exploration 
with an exploitation approach, EAs use recombination operators of solutions with 
good features to hopefully get better solutions (exploitation) and mutation operators to 
diversify the search (exploration).  

Particle Swarm Optimization (PSO) [1][15] is related to EAs in the sense of using 
more than one solution to explore the search space, but unlike these algorithms it uses 
attractor coefficients towards high-quality solutions in its neighborhood leading the 
search to better areas and hopefully the global solution.  

Two popular communication topologies in PSO are the global topology or gbest 
model and the local topology or lbest model. In the first, the neighborhood of each 
particle is the whole swarm, so any member of the swarm benefits from what every 
other particle has learned. The second refers to any swarm model without global 
communication. The simplest form of a local topology is the ring model [16] where 
each particle is connected to only two particles in the swarm. 

As reported in the literature [15] [16], the gbest model has the advantage of fast 
convergence while the lbest model benefits from a longer exploration process. The 
fast convergence of the gbest model makes it vulnerable to premature convergence 
into local optima. On the contrary, the lbest model should explore in parallel different 
areas of the search space and its partial communication makes it less likely to  
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converge prematurely to local optima. Experimentally, this slower convergence leads 
to better overall performance [16]. In this sense, the two models can be characterized 
as more exploitive (gbest) and more explorative (lbest). 

A simple method to improve the balance between exploration and exploitation in 
PSO might be to use a topology in between the two extremes of the gbest and lbest 
topologies since the main difference between these two models is the social network 
the particles use to communicate. A logical procedure is to make experiments varying 
the numbers of neighbors of each particle to find a suitable value. Unfortunately, this 
idea results in a multi-objective problem of parameter optimization in which there is 
no single solution but a front of Pareto Optimal solutions [17]. These solutions have 
the characteristic that any one of them could be said the best solution because they are 
non-dominated solutions. As the communication network gets closer to the gbest 
model, convergence is faster but at the cost of to increase its vulnerability to stagnate 
in local optima. Conversely, if the solution approaches the lbest model, its capability 
of exploration is higher but at the cost of slower convergence. 

Another approach might be to vary from a more explorative to a more exploitive 
process while searching with the aim of tuning the balance between exploration and 
exploitation. This idea has been successfully performed in other search techniques 
like Simulated Annealing (SA) [18] [19] through its cooling rule – at the beginning of 
the search the temperature might be a greater value in order to sample the search 
space and gradually could decrease, following a specific rule, to converge into a local 
minimum at the end of the search. Another variant derived from the above is to alter-
nate phases of this process (e.g. cooling and reheating in SA) and thus provide an 
oscillating balance between exploration and exploitation [20]. A problem with these 
approaches is the difficulty in selecting an effective form in which the algorithm will 
turn from more explorative to more exploitive phases, and to determine what is the 
best moment to begin with another exploration-exploitation phase. 

To avoid these problems many algorithms go for another way to balance the explo-
ration and exploitation of the search space: they use a restart mechanism or multiple 
local optimizations like Memetic Algorithms [21]. The idea is very simple: perform a 
local search until certain conditions become satisfied (i.e. stagnation in local opti-
mum, no diversity, etc.) and then restart the algorithm in regions not visited. Simple 
restart is a “blind” process which is not guaranteed to search in promising unexplored 
regions. 

The next section presents some explicit strategies to improve the balance between 
exploration and exploitation in PSO. These strategies are influenced by the ideas 
discussed in this section and especially in the intensification phase of TS [5] [6] [7].  

3   Particle Swarm Optimization with Resets and Delayed Updates 

Resets. Resets are a simple way of concentrating the search effort in the most promis-
ing areas of the search space. The process builds from the standard PSO [16] by add-
ing a search intensification phase performed every k iterations – the particles are reset 
to the best positions individually collected during the last k iterations (which can be 
the initial point which would be the best position found in the previous k iterations). 
Resets are different from restarts in that no other parameters of the swarm are reset 
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(e.g. to their initial values). Like the intensification strategy in Tabu Search [5] [6] 
[7], a reset causes the swarm to return to promising regions to search them more thor-
oughly. The implementation requires storing the best solutions using an explicit 
memory – pkbest – to remember where they have had prior success. Two forms of 
resets arise from this procedure: the “resets” (R-PSO) and “resets allowing explora-
tion” (RE-PSO). The outline of these procedures is as follows: 

PSO with Resets (R-PSO). nbesti could be gbest or lbest depending on the topology 
used. 

for each time step t  
  for each particle i do 
   update velocity vi

t  and position xi

t  using equations 
     vi

t+1 = wvi

t + c1r1(pbesti

t - xi

t) + c2r2(nbesti

t - xi

t)  
     xi

t+1 = xi

t + vi

t+1 
   update pbesti

t and nbesti

t if necessary 
  end 
  if k iterations is reached then 
   for each particle i do 
     reset its position:  
      xi

t = pbesti

t 
  end 
end 

PSO with Resets allowing Exploration (RE-PSO). nbesti could be gbest or lbest de-
pending on the topology used. 

for each particle i do 
  pkbesti = pbesti 
end 
for each time step t  
 for each particle i do  
  update velocity vi

t  and position xi

t  using equations  
      vi

t+1 = wvi

t + c1r1(pbesti

t - xi

t) + c2r2(nbesti

t - xi

t)  
      x i

t+1 = xi

t + v i

t+1 
   update pbesti

t and nbesti

t if necessary 
  end  
  if k iterations is reached then 
   for each particle i do 
    if f(pbesti

t) < f(pkbesti) then 
      xi

t = pbesti

t 
    end 
    pkbesti = pbesti

t 
   end 
  end 
 end 

R-PSO performs the resets for each of the particles without any conditions. More 
specifically, once the amount of k iterations is reached, all the particles go back to 
their pbest. In contrast, RE-PSO only performs resets on the particles which have 
experienced an improvement in the past k iterations; otherwise the particles continue 



 PSO with Resets – Improving the Balance between Exploration and Exploitation 375 

on their way. The difference between these resets procedures, in respect to the balance 
of exploration and exploitation, is that RE-PSO should be more explorative than R-
PSO. If the particles don’t improve their pbest, it is possible that they are converged 
into a local optima. In this case, the logical movement is to search in other regions of 
the search space. 

 
Delayed Updates. Another method to alter the balance between exploration and ex-
ploitation is with “delayed updates”. This mechanism updates the pbest and gbest 
positions not in real time, but every k iterations. The effectiveness of this kind of 
update is caused by its prolongation on the exploration phase (decrement of the rate of 
convergence). The isolation of the particles (through incommunication) will permit a 
broader exploration of the search space around previous (local) best positions and in 
consequence also will produce a decrement of the rate of convergence in direct pro-
portion to the value of k. 

The implementation of this procedure can be done easily, and it only requires an 
extra variable to save the improvements of each particle during k iterations. In es-
sence, each particle will have two local memories: pkbest to store its best position 
found in the current period of k iterations and pbest to guide its movements during 
these k iterations (which will be the previous pkbest). The update process of this pro-
cedure is as follows: 

PSO with Delayed Updates (DU-PSO). nbesti could be gbest or lbest depending on 
the topology used. 

for each particle i do 
  pkbesti = pbesti 
end 
for each time step t  
  for each particle i do  
   update velocity vi

t  and position xi

t  using equations  
      vi

t+1 = wvi

t + c1r1(pbesti - xi

t) + c2r2(nbesti - xi

t)  
      xi

t+1 = xi

t + vi

t+1  
   update pkbesti if necessary 
  end  
  if k iterations is reached then 
   for each particle i do 
    if f(pkbesti) < f(pbesti) then 
      pbesti = pkbesti 
    end 
    update nbesti if necessary 
   end 
  end 
end 

The delayed updates mechanism can be easily combined with the two forms of resets. 
Both mechanisms are performed every k iterations, thus the same moment in which 
one of them is performed can be used to perform the other. The implementation of 
this can be done based in R-PSO and RE-PSO procedures, the difference stays in that 
the update of gbest is done after the update of pbest and the resets are performed. The 
process of this procedure is as follows: 
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PSO with Resets and Delayed Updates (RDU-PSO). nbesti could be gbest or lbest 
depending on the topology used. 

for each particle i do 
  pkbesti = pbesti 
end 
for each time step t  
  for each particle i do  
   update velocity vi

t  and position xi

t  using equations  
      vi

t+1 = wvi

t + c1r1(pbesti - xi

t) + c2r2(nbesti - xi

t)  
      xi

t+1 = xi

t + vi

t+1  
   update pkbesti if necessary 
  end  
  if k iterations is reached then 
   for each particle i do  
    if f(pkbesti) < f(pbesti) then 
      pbesti = pkbesti 
    end 
    reset its position:  
      xi

t+1  = pbesti 
    update nbesti if necessary 
   end 
  end 
end 

4   Analysis of Results 

To analyze the effects of the “resets” and the “delayed updates” mechanisms in gbest 
and lbest models of PSO, their implementations were applied to a subset of the Black-
Box Optimization Benchmarking (BBOB) problems [22] for D = 20 and with k = 1, 
10, 50, 100 and 1000. The BBOB problems come in five sets which are 1–separable 
functions, 2–functions with low or moderate conditioning, 3–unimodal functions with 
high conditioning, 4–multi-modal functions with adequate global structure, and  
5–multi-modal functions with weak global structure. The subset of “multimodal  
functions with adequate global structure” was selected for the experiments because 
their search spaces reward both exploration (multimodality) and exploitation (global 
structure).  

Table 1. Names of the “multimodal functions with adequate global structure” in the BBOB 
problem set 

 Function Name 
15 Rastrigin (rotated) 
16 Weierstrass 
17 Schaffers F7 
18 Schaffers F7, moderated ill-conditioned
19 Composite Griewank-Rosenbrock 
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Using the first five instances for each of these functions, five trials for each in-
stance were run for a total of 25 trials per function. The mean errors for these experi-
ments are reported in Tables 2-3.  

Table 2. BBOB Results for gbest PSO with Resets (R-PSOG) for D = 20. Mean error from 
known optimum for R-PSOG and gbest PSO with “resets allowing exploration” (RE-PSOG) on 
functions 15-19 of BBOB problem set with D = 20. For each value of k = 1, 10, 50, 100 and 
1000, 25 total trials were run – five independent trials on each of the first five instances of each 
BBOB function. Values in bold represent improvements of these algorithms over PSOG – a 
benchmark gbest PSO [23].  

Algorithm Function k=1 k=10 k=50 k=100 k=1000 PSOG 
 15 3.61E+02 6.63E+01 6.18E+01 5.64E+01 6.16E+01 5.89E+01 
 16 1.76E+01 5.91E+00 5.29E+00 6.15E+00 5.24E+00 5.25E+00 
R-PSOG 17 7.63E+00 1.41E+00 1.59E+00 1.50E+00 1.42E+00 1.15E+00 

 18 2.80E+01 4.43E+00 4.84E+00 5.21E+00 5.07E+00 3.65E+00 
 19 1.13E+01 3.83E+00 3.92E+00 3.89E+00 4.06E+00 3.98E+00 
 15 5.66E+01 6.87E+01 6.39E+01 6.48E+01 5.76E+01 5.89E+01 
 16 4.87E+00 6.38E+00 5.88E+00 5.19E+00 5.16E+00 5.25E+00 
RE-PSOG 17 1.35E+00 1.51E+00 1.29E+00 1.26E+00 1.28E+00 1.15E+00 
 18 3.80E+00 5.87E+00 4.19E+00 5.14E+00 4.63E+00 3.65E+00 
 19 3.86E+00 3.85E+00 3.98E+00 4.00E+00 3.98E+00 3.98E+00 

Table 3. BBOB Results for lbest PSO with Resets (R-PSOL) for D = 20. Mean error from 
known optimum for R-PSOL and lbest PSO with “resets allowing exploration” (RE-PSOL) on 
functions 15-19 of BBOB problem set with D = 20. For each value of k = 1, 10, 50, 100 and 
1000, 25 total trials were run – five independent trials on each of the first five instances of each 
BBOB function. Values in bold represent improvements of these algorithms over PSOL – an 
implementation based on the benchmark gbest PSO [23].  

Algorithm Function k=1 k=10 k=50 k=100 k=1000 PSOL 
 15 3.68E+02 4.86E+01 5.23E+01 5.40E+01 5.46E+01 5.59E+01 
 16 1.96E+01 6.16E+00 6.00E+00 6.06E+00 5.45E+00 5.45E+00 
R-PSOL 17 7.20E+00 7.56E-01 6.93E-01 7.29E-01 7.69E-01 6.80E-01 

 18 2.61E+01 3.11E+00 2.94E+00 3.21E+00 3.31E+00 3.55E+00 
 19 1.12E+01 3.67E+00 3.63E+00 3.44E+00 3.55E+00 3.67E+00 
 15 5.64E+01 4.95E+01 6.30E+01 5.21E+01 5.94E+01 5.59E+01 
 16 5.38E+00 5.98E+00 5.70E+00 5.94E+00 5.25E+00 5.45E+00 
RE-PSOL 17 7.00E-01 7.27E-01 7.44E-01 7.47E-01 6.74E-01 6.80E-01 
 18 2.98E+00 3.33E+00 3.10E+00 3.24E+00 2.78E+00 3.55E+00 
 19 3.58E+00 3.67E+00 3.79E+00 3.61E+00 3.74E+00 3.67E+00 

 
Analyzing the results in Tables 2-3, the following conclusions can be stated: 

1. Resets (which increase exploitation) provide little value to gbest models which are 
already exploitive enough. 

2. The resets allowing exploration mechanism produces better results than the resets 
mechanism. 

3. The improvements are more significant in the lbest model than the gbest model.  
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All this reconfirms the explorative character of the lbest model as well as the ex-
ploitive nature of the gbest model. As previously said, the two reset procedures are 
intensification mechanisms that turn both PSOs into a more exploitive search tech-
nique. Therefore, the lbest model exploits the benefits of these mechanisms more than 
the gbest model. Furthermore, the functions used in the experiments are multimodal, 
so they benefit from techniques with large capability to explore. Thus, the results get 
better when the resets are less extreme (R-PSO) but are combined with some explora-
tion (RE-PSO). 

While the intensification mechanisms encourage the exploitation of the search 
space favoring the lbest model, the stimulation of the exploration with “delayed up-
dates” gives more benefit to the gbest model (see Tables 4-5). To solve multimodal 
functions, the search strategy should be capable of escaping from local optima, so it 
needs an efficient mechanism of exploration. The Tables 4-5 show that the gbest 
model improves in performance on all functions with delayed updates for k = 10 and k 
= 50. Conversely, the benefits of delayed updates diminish more quickly with the 
lbest model and there are few improvements for k = 100. For both gbest and lbest 
models, k = 1000 leads to a search procedure that is too exploratory to converge to 
good solutions in reasonable time.  

Table 4. BBOB Results for gbest PSO with Resets & Delayed Updates (RDU-PSOG) for D = 
20. Mean error from known optimum for gbest PSO with “delayed updates” (DU-PSOG), RDU-
PSOG and RE-PSOG with “delayed updates” (REDU-PSOG) on functions 15-19 of BBOB 
problem set with D = 20. For each value of k = 1, 10, 50, 100 and 1000, 25 total trials were run 
– five independent trials on each of the first five instances of each BBOB function. Values in 
bold represent improvements of these algorithms over PSOG.  

Algorithm Function k=1 k=10 k=50 k=100 k=1000 PSOG 
 15 6.25E+01 5.14E+01 5.32E+01 6.39E+01 1.71E+02 5.89E+01 
 16 4.95E+00 4.17E+00 4.35E+00 5.07E+00 1.45E+01 5.25E+00 
DU-PSOG 17 1.14E+00 4.94E-01 5.72E-01 4.64E-01 3.27E+00 1.15E+00 
 18 5.14E+00 2.65E+00 3.35E+00 2.59E+00 1.19E+01 3.65E+00 
 19 3.85E+00 3.89E+00 3.83E+00 3.82E+00 5.15E+00 3.98E+00 
 15 3.38E+02 5.61E+01 5.33E+01 6.70E+01 1.72E+02 5.89E+01 
 16 1.91E+01 5.21E+00 4.27E+00 4.24E+00 1.52E+01 5.25E+00 
RDU-PSOG 17 7.38E+00 1.08E+00 8.83E-01 5.33E-01 3.23E+00 1.15E+00 
 18 2.48E+01 3.29E+00 2.78E+00 2.79E+00 1.16E+01 3.65E+00 
 19 1.15E+01 3.61E+00 3.87E+00 3.99E+00 5.38E+00 3.98E+00 
 15 6.34E+01 5.03E+01 5.07E+01 6.27E+01 1.63E+02 5.89E+01 
 16 5.77E+00 5.45E+00 4.37E+00 4.12E+00 1.51E+01 5.25E+00 

REDU-PSOG 17 1.18E+00 8.19E-01 6.18E-01 6.69E-01 3.42E+00 1.15E+00 
 18 4.71E+00 2.26E+00 2.67E+00 2.03E+00 1.13E+01 3.65E+00 
 19 3.89E+00 3.94E+00 4.13E+00 3.98E+00 5.07E+00 3.98E+00 

 
As results in Tables 4-5 show, both models benefit from delayed updates a little 

more than with its combination with any form of resets. In the gbest model, this is 
because the use of resets causes more exploitation, and the gbest model is already 
exploitive enough. In the lbest model, the cause seems to be related with an exces-
sively slow convergence. Delaying updates decreases the rate of convergence, which 
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is another reason why the gbest model benefited more from this strategy. The combi-
nation of delayed updates with resets, which is another form to slow the convergence 
(with the return every k iterations to visited regions), makes the search process in the 
lbest model more exploitive but with limited possibilities of convergence.  

Table 5. BBOB Results for lbest PSO with Resets & Delayed Updates (RDU-PSOL) for  
D = 20. Mean error from known optimum for lbest PSO with “delayed updates” (DU-PSOL), 
RDU-PSOL and RE-PSOL with “delayed updates” (REDU-PSOL) on functions 15-19 of BBOB 
problem set with D = 20. For each value of k = 1, 10, 50, 100 and 1000, 25 total trials were run 
– five independent trials on each of the first five instances of each BBOB function. Values in 
bold represent improvements of these algorithms over PSOL.  

Algorithm Function k=1 k=10 k=50 k=100 k=1000 PSOL 
 15 5.45E+01 4.66E+01 6.55E+01 8.06E+01 2.16E+02 5.59E+01 
 16 5.28E+00 4.79E+00 5.36E+00 6.11E+00 1.35E+01 5.45E+00 
DU-PSOL 17 7.83E-01 5.13E-01 5.93E-01 7.48E-01 4.66E+00 6.80E-01 

 18 3.30E+00 2.43E+00 2.68E+00 3.24E+00 1.57E+01 3.55E+00 
 19 3.72E+00 3.40E+00 3.65E+00 3.70E+00 5.82E+00 3.67E+00 
 15 3.88E+02 5.11E+01 6.99E+01 7.97E+01 2.21E+02 5.59E+01 
 16 1.95E+01 4.96E+00 4.90E+00 6.28E+00 1.56E+01 5.45E+00 
RDU-PSOL 17 7.01E+00 4.76E-01 5.33E-01 7.53E-01 4.66E+00 6.80E-01 
 18 2.77E+01 2.72E+00 2.41E+00 2.86E+00 1.66E+01 3.55E+00 
 19 1.10E+01 3.72E+00 3.87E+00 3.97E+00 5.62E+00 3.67E+00 
 15 5.80E+01 5.76E+01 6.77E+01 8.10E+01 2.21E+02 5.59E+01 
 16 5.51E+00 5.36E+00 5.15E+00 6.94E+00 1.44E+01 5.45E+00 

REDU-PSOL 17 6.01E-01 5.08E-01 5.70E-01 7.89E-01 4.43E+00 6.80E-01 
 18 3.17E+00 2.82E+00 2.94E+00 3.01E+00 1.64E+01 3.55E+00 
 19 3.76E+00 3.70E+00 3.95E+00 3.92E+00 5.79E+00 3.67E+00 

 
In parallel implementations, the communication overhead is very important be-

cause it influences the use of distributed and shared resources. As lbest tends to  
perform better than gbest and it uses less communication overhead, parallel imple-
mentations of PSO often use the lbest model. The above results suggest that the use of 
delayed updates may be a useful technique to try with parallel implementations of 
particle swarm optimization.  

5   Summary 

In order to improve the trade-off between exploration and exploitation in the search 
process of particle swarm optimization, the “resets” and “delayed updates” techniques 
have been introduced. Different PSO implementations that combine these techniques 
with the gbest and lbest models have been evaluated by using the multi-modal  
BBOB problems. The results show that with these new techniques, an improved  
balance between exploration and exploitation can be achieved on both models. Apply-
ing these insights to parallel implementations of PSO is a promising area for future 
research. 
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Abstract. Software systems have been increasingly used by our soci-
ety, so a failure in them can lead to large losses. To reduce the failures
of a software it is necessary to carry out the testing process appropri-
ately. The combinatorial testing helps in the testing process by provid-
ing structures with a test set of small size, like Mixed Covering Arrays
(MCAs). However, the problem of constructing an optimal test set is an
NP-complete problem leading to the development of non exhaustive ap-
proaches to solve it. This paper proposes a new approach of Tabu Search
(TS) called MiTS (that stands for Mixed Tabu Search) which focuses on
constructing MCAs. The approach is based on the use of a mixture of
neighborhood functions and a fine tuning process to improve the perfor-
mance of the TS. Experimental evidence shows a poor performance when
a single neighborhood function is used. In the other side, the TS (using
a mixture of neighborhood functions) is competitive in the construction
of MCAs over a known benchmark reported in the literature.

Keywords: Mixed Covering Arrays, software testing, Tabu Search.

1 Introduction

Software systems have been increasingly used by our society, so a failure in them
can lead to large losses [20]. For instance, the National Institute of Standards
and Technology (NIST) [23] reports that software defects affect to the USA
economy with close to �60 billion per year and assumes that approximately
�22 billion could be reduced through more effective testing techniques, in this
regards, Hartman [12] mentions that the quality of software is intrinsically re-
lated to the appropriate testing techniques used to deliver it. Based on this
fact, we see the importance of an adequate testing process. Despite these ad-
vantages, Hinch et. al. [15] comment that sometimes this stage consumes more
than the half of the total cost of the development, while Hartman [13] affirms
that it is more than 80% so, to carry out the verification in an exhaustive way,
most of the times is outside of a reasonable time and budget. For instance, sup-
pose that a system has 12 parameters each with 4 possible values, for testing
all the combinations it is necessary to use 412 = 16, 777, 216 test cases, this

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 382–393, 2010.
� Springer-Verlag Berlin Heidelberg 2010

http://www.tamps.cinvestav.mx/~jtj/
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quantity is too large for practical purposes. In the same way, when the number
of values of each parameter increases, also the total number of configurations
grows exponentially, for this reason, another alternative has to be taken in order
to conduct the tests using the minimum of possible cases and the maximum
coverage.

Recent studies have shown that close to 100% of the known failures of systems
of various kinds are exhibited using interactions of size 6 (i.e. taking all the pa-
rameters combinations of size 6) [17], this means that it is possible to construct
an effective test set, if it contains all the interactions of size 6 of the parameters
of a system, in this way, the overall number of test cases can be reduced signifi-
cantly. Under this criterion, the example given previously would require 14, 288
tests [7]. The combinatorial approach is an acceptable approach that influences
in the cost of the tests and the required degree of coverage [33]; this exposition
has even been used in the reduction of costs in the industry. This approach uses
combinatorial structures to represent the test cases, the most common ones are
Orthogonal Arrays (OAs), Covering Arrays (CAs) and Mixed Covering Arrays
(MCAs). In general, OAs, CAs and MCAs are matrices where each column con-
tains the values of each parameter and a row indicates the combination of each
of them to construct a test. When the matrix has the minimum possible number
of rows is called optimal.

The first work that used combinatorial structures in a practical application
was presented in 1926 by Fisher [9]. Fisher applied all the possible combinations
for each pair of factors, since then the tests of controlled interaction have been
used. In addition to the above, Hedayat, et. al. [14] reported that combinatorial
models are mainly used for the design of experiments, being important in all
areas of human research, e.g. in medicine, agriculture and manufacturing.

The main problem of interaction testing focuses on constructing a test set
which contains the coverage indicated with the minimum number of tests. In [19]
and [8] the NP completeness of the problem of constructing CA was reported.

Due to the complexity of the problem, different approaches have been imple-
mented to provide good solutions in a reasonable time. Some of these techniques
are: greedy algorithms [29], genetic algorithms (GA) [26], tabu search (TS) [22],
simulated annealing (SA) [6], ant colony optimization algorithm (ACO) [25], hill
climbing (HC) [6], great deluge (GD) [3], SAT model [21] among others. Previ-
ous TS implementations used a single neighborhood function to move from one
solution s to another solution s’. The present paper presents the construction of
MCA which uses a mixture of neighborhood functions.

This paper is organized as follows: the description of combinatorial testing
and OA, CA and MCA are given in section 2. Some techniques that have been
used for constructing CA are presented in section 3. An overview of the pro-
posed approach of TS with the details of its main components and values are
described in section 4. Then, the design of the experiment and computational
results are shown in section 5 and 6 respectively. Last section summarizes the
main contribution of this paper.
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2 Mixed Covering Arrays

If a software system has k parameters each with v possible values, it would take
vk configurations if it wants to be tested in an exhaustive way, however another
method called interaction testing can be used. The main goal of this approach
is to find the minimum possible number of tests which satisfies that all the
interactions of a predefined size are covered. The combinatorial structures used
for interaction testing are mainly orthogonal arrays and covering arrays [8].

An orthogonal array (OA), denoted by OAλ(N ; t, k, v), is an N × k array on
v symbols such that every N × t sub-array contains all the ordered subsets of
size t from v symbols exactly λ times. Orthogonal arrays have the property that
λ = N

vt . When λ = 1 it can be omitted from the notation and the OA is optimal.
An orthogonal array OA(N ; t, k, v) is a special type of CA(N ; t, k, v).

A covering array (CA) is a mathematical object, denoted by CA(N ; k, v, t)
which can be described like a matrix with N × k elements, such that every
N × t sub-array contains all possible combinations of vt symbols at least once.
N represents the rows of the matrix, k is the number of parameters, which
has v possible values and t represents the strength or the degree of controlled
interaction. A CA has the same cardinality in all their parameters. However,
software systems are generally composed with parameters that have different
cardinalities; in this situation a mixed covering array (MCA) can be used.

A mixed covering array, denoted by MCA(N ; t, k, v1v2 . . . vk), is an N × k
array where v1v2 . . . vk is a cardinality vector that indicates the values for every
column [6]. The MCA has the following properties:

1. Each column i (1 ≤ i ≤ k) contains only elements from a set Si with |Si| = vi.
2. The rows of each N × t sub-array cover all t -tuples of values from the t

columns at least once.

We use a shorthand notation to describe an MCA, it can be written like MCA
(N ; t, k, wr1

1 wr2
2 . . . wrs

s ) where k =
∑s

i=1 ri and wj ∈ {v1, v2, . . . , vk}, for all
1 ≤ j ≤ k. The minimum N for which there exists an MCA is called mixed
covering array number MCAN(k, t, v1v2 . . . vk).

To illustrate the use of a MCA with a simple instance, suppose that we want
to verify a Switch WLAN in four different aspects: monitoring, management,
maintenance and safety, the first aspect has three possible values and the rest of
them have two possible values as shown in Table 1. Every possible value of each
parameter is labeled like 0, 1 or 2 as the case.

Table 1. Parameters of a Switch WLAN, each with three possible values and the rest
with two

Monitoring Management Maintenance Safety
0 � PC Load balancing Interference Denial of service
1 � Access points Connection Barriers Ad-hoc Networks
2 � Sensors
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The MCA(6; 2, 4, 3123) is a test suite that covers all interactions between
pairs in the Switch WLAN where every row indicates the configuration of a test
case. The mapping of the MCA to the corresponding software test suite is shown
in Table 2.

Table 2. Mapping of the MCA(6; 2, 4, 3123) to the corresponding pair-wise test suite

0 0 1 1�
0 1 0 0�
1 0 0 1�
1 1 1 0�
2 0 1 0�
2 1 0 1�

Monitoring Management Maintenance Safety

PC Load balancing Barriers Ad-hoc Networks
PC Connection Interference Denial of service

Access points Load balancing Interference Ad-hoc Networks
Access points Connection Barriers Denial of service

Sensors Load balancing Barriers Denial of service
Sensors Connection Interference Ad-hoc Networks

3 Related Work

There are exact and approximated approaches for the construction of CAs [11].
The approximated methods do not guarantee that the provided solution is al-
ways optimal, in the other hand, the exact methods guarantee that the solution
delivered is optimal. A repository of CAs is available on line [28], some of them
are optimal or near to the optimal.

Some of the non-exact methods include genetic algorithms (GA), simulated
annealing (SA), tabu search (TS), hill climbing (HC), ant colony optimiza-
tion algorithm (ACO) and great deluge (GD). The greedy methods have been
implemented in the algorithms Automatic Efficient Test Generator (AETG),
Deterministic Density Algorithm (DDA), Test Case Generator (TCG) and In
Parameter Order (IPO) which was subsequently extended to In Parameter Or-
der General (IPOG). Another approaches like algebraic methods, constraint pro-
gramming (CP) and B&B have also been applied.

Shiba et al. [25] implemented GA, ACO and SA. Stardom [26] implemented
SA, TS and GA; from these last approaches SA was the one that reported the
best results. Stardom and Bryce [4] emphasize that SA and TS have constructed
many of the CA optimal or near to the optimal. Nurmela [22] also used TS for
constructing CA and MCA and reported some upper bounds for them, Walker
and Colbourn [16] employed TS using permutation vectors. Likewise Bryce and
Colbourn [2] implemented an hybrid technique of greedy methods with the meta-
heuristics TS, HC, SA and GD.

Some greedy algorithms generate one test at a time; some examples are AETG
[5], DDA [8], IPO [19], IPOG [18], TCG [30]. The algorithms AETG and TCG
have some variants like the ones implemented by Cohen et al. William and
Probert [32] proposed a method for constructing CAs based on algebraic methods
and combinatorial theory.

With respect to exact approaches, Bracho et. al. [1] implemented a backtrack-
ing algorithm called B&B for constructing binary CA of variable strength. Yang
and Zang [33] used a retrospective algorithm and incorporated it in a tool called
EXACT.
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This paper proposes an algorithm based on a TS approach to construct MCAs;
the contribution of this new approach is the use of a mixture of neighborhood
functions instead of a single one to form new solutions. The next section describes
in depth the proposed approach.

4 Proposed Approach

The Tabu Search (TS) meta-heuristic is a local search optimization approach
that copes with different problems of combinatorial optimization [24]. The TS
was proposed by Glover and Laguna [10]. The general idea behind TS is based
on a tabu list. The tabu list keeps track of some of the previous movements
done to transform the actual solution s into a new solution s′. Then, every time
that a new solution is created the movements found in the tabu list may be
avoided. The tabu list can be defined as a memory that stores information of
forbidden moves. Another distinguishing feature of TS is the aspiration criteria,
which allows the use of movements in the tabu list when they can create better
solutions than the best solution found so far.

The movements that form new solutions comes from the neighborhood func-
tion. A neighborhood function f(s) is a set of movements that allow the gener-
ation of new solutions s′ given a current solution s. The solution s′ is called a
neighbor of s. Whenever some of the movements performed by the neighborhood
function are random, the set of neighbors derived from s are called the neigh-
borhood and denoted by N (s). When more than one neighbor are possible, the
use of an objective function that evaluates their cost will decide the one that will
be chosen as the new solution s′. In optimization problems, the best solution
will be the one that minimizes or maximizes the value resulting from objective
function.

This paper proposes the algorithm Mixed Tabu Search (MiTS) to construct
MCAs of variable strength. The MiTS algorithm is a new approach based on
TS. The key feature of MiTS is the use of a mixture of neighborhood functions
to form N (s). The elements that defines the MiTS algorithm are: a) the initial
solution s0; b) the tabu list; c) the stop criterion; d) the neighborhood function
F(s,ρ1, ρ2, ρ3); and e) the evaluation function C(s).

The following paragraphs will describe each of the elements of the algorithm
MiTS. The description is done given the matrix representation of an MCA. An
MCA can be represented as a matrix M of size N × k. Each cell mi,j ∈ M can
take values from {0, 1, ..., vj − 1}, where vj is the cardinality of the alphabet
corresponding to the parameter j in the instance.

The initial solution so can be constructed by choosing each value mi,j of the
matrix M randomly or by generating M as a matrix with maximum Hamming
distance.

Let ri be a row of the matrix M (then, the row is a vector of size k). To
generate a random matrix M of maximum Hamming distance the following
steps are performed: a) generate the first row r1 at random; b) generate two
rows c1, c2 at random, which will be candidate rows; c) select the candidate
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row ci that maximizes the hamming distance (which is defined in Equation 1)
and added to the ith row of the matrix M; d) repeat from step b until M is
completed.

g(ri) =
i−1∑

s=1

k∑

v=1

h(ms,v, mi,v),

where h(ms,v, mi,v) =
{

1 if ms,v �= mi,v

0 otherwise

(1)

The hamming distance defined in Equation 1 is the number of different symbols
between two rows. An example is shown in Table 3; the number of symbols
different between rows r1 and c1 are 2 and between r2 and c1 are 3 summing up
5. Then, the hamming distance for the candidate row c1 is 5.

Table 3. Example of the hamming distance between two rows r1, r2 that are already
in the matrix M and a candidate row c1

M
r1 0 1 0 1 0 0 1 1

r2 1 1 0 0 0 1 1 1

c1 0 1 1 1 0 1 1 1

g(c1) = 5

The values for tabu list size T analyzed during the design of the MiTS algo-
rithm are shown in column 1 of Table 4; these values depends on the size of the
matrix M and in vmax =

∏i=t
i=1 wi (where wi is the ith cardinality of alphabet

in decreasing order). An element that belongs to the tabu list if formed by the
tuple (i, j, v, F ) i.e., a movement is tabu if the symbol v is generated more than
once by the same neighborhood function F (s) in the cell mi,j ∈M.

The evaluation function C(s) of a solution s is defined as the number of
combination of symbols missing in the matrix M. Then, the expected solution
will be zero missings.

The stop criterion for the MiTS algorithm is a given number of evaluations Eof
the objective function. The values considered are shown in column 2 of Table 4.
An alternative stop criterion is when the MCA has been created i.e., when the
number of missing is 0.

Table 4. Values for tabu list size T and number of evaluations E that were analyzed
when designing the MiTS algorithm

T E
T 1 = N ∗ k ∗ vmax/8 E1 = N ∗ k ∗ vt

max ∗ 100
T 2 = N ∗ k ∗ vmax/10 E2 = N ∗ k ∗ vt

max ∗ 150
T 3 = N ∗ k ∗ vmax/12 E3 = N ∗ k ∗ vt

max ∗ 200
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The three neighborhood functions proposed in this paper are F1(s), F2(s) and
F3(s). The function F1(s) randomly chooses a position (i, j) of the matrix M
and carries out all the possible changes of symbol that cell. This functions has
vj − 1 possible neighbors. The function F2(s) selects a column of M at random
makes all possible changes of symbol using only a single cell. The number of
neighbors generated with F2(s) are (vj−1)∗N . Finally, the function F3(s) makes
the change of symbols on each cell of M. The number of different neighbors is
(vj − 1) ∗ N ∗ k.

The pseudocode of MiTS is shown in the Algorithm 1. In this algorithm
the function F(s,ρ1, ρ2, ρ3) makes a roulette-wheel selection with the values
ρ1, ρ2, ρ3; the result will indicate which neighborhood function will be used to
create a neighbor. The function NumEvalRequired(s,ρ1, ρ2, ρ3) will determine
the number of evaluations performed by the neighborhood function used by
F(s,ρ1, ρ2, ρ3) to create a new neighbor.

Algorithm 1. Pseudocode of the MiTS algorithm
s �s0;1

sbest �s;2

while C(sbest) > 0 and e < E do3

s’ �F(s,ρ1, ρ2, ρ3);4

if C(s’) < C(sbest) then5

sbest �s’;6

end7

if NotInTabuList(s’) then8

s �s’;9

UpdateTabuList(s, s’);10

end11

e �NumEvalRequired(s,ρ1, ρ2, ρ3);12

end13

The design of the approach presented in this section was based on the premise
that using a mixture of neighborhood functions in TS, rather than used just one,
improves the construction of MCAs.

5 Experimental Design

MiTS was implemented in C language and compiled with gcc. The instances
have been run on a cluster using eight processing nodes, each with two dual-core
Opteron Processors. The features of each node are: Processor 2 X Dual-Core
AMD, Opteron Processor 2220, 4GB RAM Memory, Operating Systems Red
Hat Enterprise Linux 4 64-bit and gcc 3.4 Compiler.

The experiment has the main goal to fine-tune the parameters of the new TS
approach such that it achieves a quicker convergence. The parameters that were
adjusted are:
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– The initial solution so.
– The size of tabu list T .
– Maximum number of iterations E .
– Probabilities (ρ1, ρ2, ρ3) for the use of each neighborhood function Fi(s).

In order to find the best combination of values for so, T and E a MCA with pair
interaction was used. The MCA generated 32 configurations to be tested. The
different configurations are shown in Table 5a.

Table 5. Configurations used for constructing the test cases to fine-tune parameters

(a) Values of so, T and E .

Codification so T E
C1 Random way T 1 E1

C2 Random way T 2 E2

C3 Random way T 2 E3

C4 Random way T 3 E1

C5 Random way T 3 E2

C6 Hamming distance T 1 E2

C7 Hamming distance T 1 E3

C8 Hamming distance T 2 E1

C9 Hamming distance T 3 E3

(b) Probabilities for use each neighborhood function.

Codification ρ1 ρ2 ρ3 . Codification ρ1 ρ2 ρ3

C1-P 0.0 0.0 1.0 C12-P 0.4 0.0 0.6
C2-P 0.0 0.2 0.8 C13-P 0.4 0.2 0.4
C3-P 0.0 0.4 0.6 C14-P 0.4 0.4 0.2
C4-P 0.0 0.6 0.4 C15-P 0.4 0.6 0.0
C5-P 0.0 0.8 0.2 C16-P 0.6 0.0 0.4
C6-P 0.0 1.0 0.0 C17-P 0.6 0.2 0.2
C7-P 0.2 0.0 0.8 C18-P 0.6 0.4 0.0
C8-P 0.2 0.2 0.6 C19-P 0.8 0.0 0.2
C9-P 0.2 0.4 0.4 C20-P 0.8 0.2 0.0
C10-P 0.2 0.6 0.2 C21-P 1.0 0.0 0.0
C11-P 0.2 0.8 0.0

The probabilities ρ1, ρ2, ρ3 for the neighbor functions F1(s), F2(s), F3(s) were
obtained by solving the equation 2. The discrete values considered for each prob-
ability ρi were {0, 0.2, 0.4, 0.6, 0.8, 1.0} (this represent a granularity of 0.2). The
number of different valid configurations of probabilities resulting from solving
the equation 2 with a granularity of 0.2 were 21 (they are shown in Table 5b).

ρ1 + ρ2 + ρ3 = 1 . (2)

A design involving the configurations shown in Tables 5a and 5b was gener-
ated; the resulting test set now can be used to test the different parameters
of MiTS. The whole set of test cases included a total of 9 ∗ 21 = 189 dif-
ferent configurations; each configuration was used to construct the instance
MCA(30; 2, 19, 6151463823) 31 times. The following section presents some sta-
tistical results about the fine-tuning of MiTS using the test set described in this
section.

6 Computational Results

The main purpose of this section is to do an experimental comparison of MiTS
against the state-of-the-art algorithms for constructing MCAs. In order to do
the comparison first, we show the results from the fine-tuning of the main com-
ponents of MiTS. After that we present the best configuration values for the
components; those values will be used by MiTS to construct MCAs taken from
a benchmark found in the literature.



390 L. Gonzalez-Hernandez and J. Torres-Jimenez

During the fine-tuning the instance MCA(30; 2, 19, 6151463823) was solved
by MiTS. Each of the 189 valid configurations were tested 31 times with MiTS
to construct the desired MCA. The results from this experiment are summa-
rized in Table 6. The columns denote the different configuration values for the
components s0, T and E shown in Table 5b. The rows represent the valid prob-
ability configurations for the neighborhood functions, shown in Table 5a. Each
cell of Table 6 represents one of 189 configurations to be tested to measure the
performance of MiTS. The information in each cell contains how many times
(expressed as a percentage of the 31 times) MiTS constructed the MCA using
that configuration. The results show that, there are a lot of configurations where
MiTS could construct the MCA in less than 20% of the times; observe that in
this situation we found all the configurations involving only one neighborhood
function (like in rows C1-P, C6-P and C21-P). In the other hand, some config-
urations that involve a mixture of neighborhood functions made MiTS to have
the best performance, by constructing the MCA in more than 80% of the times
e.g., the configuration (C9, C2-P) and (C9, C3-P).

Table 6. Solved percentage of each configuration based on 31 runs

C1 C2 C3 C4 C5 C6 C7 C8 C9 Average

C1-P 6.45 16.13 9.68 3.23 6.45 3.23 12.90 3.23 6.45 7.53
C2-P 29.03 54.84 54.84 64.52 38.71 64.52 25.81 64.52 90.32 54.12
C3-P 38.71 58.06 74.19 87.10 61.29 67.74 58.06 74.19 87.10 67.38
C4-P 32.26 35.48 45.16 61.29 54.84 54.84 51.61 83.87 67.74 54.12
C5-P 19.35 12.90 45.16 58.06 48.39 45.16 45.16 58.06 83.87 46.24
C6-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C7-P 3.23 9.68 29.03 25.81 19.35 16.13 6.45 41.94 41.94 21.51
C8-P 12.90 38.71 38.71 64.52 41.94 32.26 29.03 48.39 64.52 41.22
C9-P 12.90 32.26 48.39 61.29 45.16 58.06 41.94 64.52 67.74 48.03
C10-P 19.35 6.45 25.81 29.03 25.81 16.13 25.81 41.94 45.16 26.16
C11-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C12-P 3.23 0.00 6.45 3.23 6.45 3.23 0.00 12.90 0.00 3.94
C13-P 0.00 3.23 0.00 9.68 3.23 6.45 3.23 6.45 19.35 5.73
C14-P 0.00 0.00 0.00 0.00 0.00 3.23 0.00 3.23 3.23 1.08
C15-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C16-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C17-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C18-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C19-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C20-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C21-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 8.45 12.75 17.97 22.27 16.74 17.67 14.29 23.96 27.50 17.96

According with the results shown in Table 6 the best configuration for MiTS
was (C9, C2-P); this configuration could find the solution in 90.32% of the 31
times that it was tried. The values suggested by the configuration (C9, C2-P)
are the Hamming distance as s0, the tabu list size T 3, the number of evaluations
E3 and the values {ρ1 = 0.0, ρ2 = 0.2, ρ3 = 0.8} as the probabilities values for
the neighborhood functions.

We now proceed to compare the MiTS algorithm with the state-of-the-art
approaches for constructing MCAs. The algorithm MiTS was configured with
(C9, C2-P). The benchmark was taken from the literature and is shown in the
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column 1 of Table 7. From column 2 to 9 are presented the results reported by
some of the state-of-the-art approaches. The results of constructing the MCAs
for the benchmark (using the approach presented in this paper) are shown in
column 10. Column 11 shows the best reported MCA sizes and column 12 depicts
the best time (in seconds) spent by MiTS. The results show that MiTS found
the best reported results in 8 of the 10 instances; in 4 of the 8 instances MiTS
improved the best reported results so far.

Table 7. Results of MiTS compared with some results previously reported. The *
means that the solution is optimal.

Instance TConfig IPO AETG TCG SA GA ACO DDA MiTS Best Time
[31] [2] [27] [2] [5] [5] [6] [25] [25] [8] reported [sec.]

MCA(N ; 2, 513822) 21 21 19 18 15 15 16 21 15 15* 0.03
MCA(N ; 2, 716151453823) 91 48 45 42 42 42 42 43 42 42* 0.26
MCA(N ; 2, 415317229) 39 34 41 35 30 37 37 35 30 29 25.22
MCA(N ; 2, 41339235) 29 26 28 26 21 27 27 27 22 21 5.81
MCA(N ; 2, 101918171 . . .
. . . 615141312111) 91 90 90* 0.55
MCA(N ; 2, 82726252) 70 64 64* 1.87
MCA(N ; 2, 665534) 56 50 50 3.94
MCA(N ; 2, 4534) 23 19 19 0.13
MCA(N ; 3, 524232) 114 100 108 106 100 100* 3.21
MCA(N ; 3, 101624331) 377 360 360 361 360 360* 37.18

7 Conclusions

This paper focused on constructing MCAs with a new approach of TS called
MiTS (Mixed Tabu Search), which uses a mixture of neighborhood functions. A
fine-tuning of the parameters of MiTS was done, in order to achieve a competitive
performance for it. The fine-tuning was carried out for the main components
of MiTS which are: initial solution s0, tabu list size T , maximum number of
evaluations E and the probabilities of selection {ρ1, ρ2, ρ3} for the neighborhood
functions F1(s), F2(s), F3(s). For each component different values were taken
into account.

The best configuration that resulted from the fine-tuning was used in a second
experiment to test the performance of MiTS against 8 state-of-the-art algorithms
that constructs MCAs. In the second experiment, the performance of MiTS over
10 instances taken from the literature was measured. The results showed that
MiTS results are of size equal to the best reported values in 8 of the 10 instances;
in 4 of these cases MiTS improved the best solution known. In general, MiTS
showed to be competitive in comparison with the state-of-the-art algorithms
reported in the literature when considered the time spent in the construction of
MCAs and the quality of the MCAs (in terms of its size).

In conclusion, the use of an appropriate mixture of neighborhood functions
with TS, combined with an adequate fine tuning of the parameters for its
main components, can lead to the design of TS implementation with a better
performance.
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Abstract. This work presents an application of a genetic algorithm in
the design of digital filters used to implement the discrete wavelet trans-
form. The best compression of a transformed signal is achieved when
its power is described by the smallest number of transformation coeffi-
cients. The individuals of the genetic algorithm aim to reach this target,
at the same time that they reduce the error of the reconstructed signal.
In the experiments we worked with grayscale images, and we compared
the performance of evolutionary and Daubechies filters. Experimental
results show the feasibility and convenience of finding custom wavelets
for each image, and support the idea that there is a suitable wavelet to
compress any given signal.

Keywords: Wavelet Transform, Digital Filtering, Data Compression,
Genetic Algorithm.

1 Introduction

The continuous wavelet transform allows to decompose a function/signal f(t) in
a set of basis Ψ∗s,t(t)1 called wavelets. Equation (1) shows how a function f(t)
can be decomposed into a set of basis function wavelets:

γ(s, t) =
∫
f(t)Ψ∗s,t(t)dt (1)

The wavelets comes from a mother wavelet by scaling and translation, that is:

Ψ(s, t) =
1√
s
Ψ(
t− τ

s
) (2)

where s is a scale factor, and τ is the translation factor. The factor 1√
s

gives
energy normalization across the different scales. An important difference with
Fourier analysis is that the wavelet basis are not specific, but the analysis de-
scribes the general properties of the wavelets. Consider the expansion of equation
1 Denotes complex conjugation.
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(1) into the Taylor series at t = 0 until order n for the continuous wavelet trans-
form, it takes us to equation (3):

γ(s, 0) =
1√
s
[

n∑

p=0

fp(0)
∫
tp

p!
Ψ(
t

s
)dt+O(n+ 1)] (3)

where f (p) denotes the p − th derivative of f , and the term O(n + 1) means
the rest of the expansion. Let Mp =

∫
tpΨ(t)dt, it is possible to demostate that

γ(s, 0) can be reexpressed as:

γ(s, 0) =
1√
s
[f(0)M0(s) +

f (1)(0)M1s
2

1!
+ . . .+

fn(0)Mns
n+1

n!
+O(sn+2)] (4)

A property of wavelets is that M0 = 0, so the first term in the equation (4) is
zero, and for a given wavelet the other moments migth be (near to) zero as well,
then the wavelet transform coefficients Ψ(s, τ) will decay as fast as sn+2 for a
smooth signal f(t). If theMN moments are lower than a threshold value, they are
considered negligible and the decomposition of a signal concentrates its power in
a small number of coeficients. This property is desirable from the point of view of
compression because that means that we were able to find an appropriate vector
space for the representation of the analyzed function but, what is the best wavelet
based filter for compressing a given signal? Certainly, this work is not the first
in dealing with this idea (see for example [1], [2]). In fact, motivated by related
works, we propose to choose parametric evolutionary wavelets for specific discrete
signals focused on achieving maximum compression. Typically compressors aim
to be as fast as possible and they must leave the compression as a second priority,
because there is a compromise between achieving greater compression and the
time invested in it [3]. Symmetric systems require that the compression time
be approximately equal to the decompression time, but systems like the Web,
digital encyclopedias, musical CD’s and other, which concentrate a large amount
of multimedia, can spend larger time and computing resources in the compression
than in the decompression task, and the latter will be done by many users with
limited resources systems.

The article is organized in sections: Section 2 describes basic concepts about
wavelets, the discrete wavelet transform, and its relation with bank filters. In sub-
section 2.4 we discuss the criteria to choose a parametric wavelet that achieves
the best modelling of two-dimensional signals (grayscale images) considering the
energy conservation. In section 3 we explain some experiments with grayscale im-
ages and compare the performance of the evolutionary and Daubechies-4 wavelet
based filters. In section 4 we report the results of the experiments, and finally,
in section 5 we comment about some conclusions and future work.

2 Wavelets, Filter Banks and Multiresolution Signal
Processing

Wavelets are mathematical functions associated with scaling functions that have
the property of being described as linear combinations of traslated and dilated
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versions of themselves. The most basic wavelet is the Haar wavelet which is asso-
ciated with the Haar scaling function. The Haar wavelet function is described by:

ψ(t) =

⎧
⎨

⎩

1, if 0 ≤ t < 1
2

−1, if 1
2 ≤ t < 1

0, otherwise
(5)

and the Haar scaling function is described by:

ψ(t) =
{

1, if 0 ≤ t < 1
0, otherwise

(6)

It can be shown that the Haar scaling function ϕ(t) satisfies the condition:

ϕ(t) = ϕ(2t) + ϕ(2t− 1) (7)

that allows to analyze a signal at different levels of decomposition because we
can express ϕ(t) using ϕ(2t), ϕ(2t) using ϕ(4t), and so on.

2.1 Discrete Wavelet Transform

The continuous wavelet transform described in equation (1) has several draw-
backs to make it practical, one of them is that for most functions the wavelet
transforms have no analytical solutions. A second is that when it is calculated
produces high redundance because of the continuously shifting between the scal-
able function and the signal, and altought this may be useful in some applica-
tions, it is not for data compression. To overcome this problem discrete wavelets
are introduced. Discrete wavelets are not continuously scalable and translatable,
but can only be scaled and translated in discrete steps. The modification of
equation (1) gives [4] :

ψj,k(t) =
1

√
s

j
0

ψ(
t− kτ0s

j
0

sj
0

) (8)

In equation (8), j and k are integers and s0 > 1 is a fixed dilation step. The
translation factor τ0 depends on the dilation step. The effect of discretizing the
wavelet is that the time-scale space is now sampled at discrete intervals. When
s0 = 2 the sampling of the frequency axis corresponds to dyadic sampling, and
for the translation factor τ0 = 1 we have dyadic sampling of the time axis. The
discrete wavelets can be made orthogonal to their own dilations and translations
by special choices of the mother wavelet, which means:

∫
ψj,k(t)ψm,n

∗(t)dt = 1, if j = m and k = n, but 0 otherwise (9)

A square integrable signal can be reconstructed by summing the orthogonal
wavelet basis functions, weighted by the wavelet transform coefficients [5]:

f(t) =
∑

j,k

γ(j, k)ψ(j, k)(t) (10)

this is the inverse wavelet transform for discrete wavelets.
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2.2 Multiresolution Analysis and Filters

The condition described in equation (7) for the Haar wavelet is a particular case
of the so-called multiresolution formulation [6] or two-scale relation [5]:

ϕ(t) =
∑

k

hkϕ(2t− k) (11)

where hk is a real sequence with even length. For example, in the Haar scaling
function {hk} = {1, 1}. With the two-scale relation the scaling function at a
certain scale can be expressed in terms of translated scaling functions at the
next smaller scale, that is:

ϕ(2jt) =
∑

k

hj+1(k)ϕ(2j+1t− k) (12)

And when the first scaling function is replaced by a set of wavelets, we can also
express the wavelets at level j in terms of translated scaling functions at the
next scale j + 1:

ψ(2jt) =
∑

k

gj+1(k)ϕ(2j+1t− k) (13)

Now a square integrable function f(t) can be expressed in terms of dilated and
translated scaling functions at a scale j as:

f(t) =
∑

k

λj(k)φ(2jt− k) (14)

If in equation (14) we step up a scale to j − 1, we have to add wavelets in order
to keep the same level of detail then the signal f(t) can be expressed as:

f(t) =
∑

k

λj−1(k)φ(2j−1t− k) +
∑

k

γj−1(k)ψ(2j−1t− k) (15)

As the scaling function φj,k(t) and the wavelets ψj,k(t) are chosen to be or-
thonormal, then the coefficients λj−1(k) and γj−1(k) can be calculated with the
next inner products:

λj−1(k) = 〈f(t), φj,k〉 (16)

γj−1(k) = 〈f(t), ψj,k〉 (17)

If we replace φj,k(t) and ψj,k(t) in (16) and (17), we get the next expressions

γj−1(k) =
∑

m

h(m− 2k)λj(m) (18)

γj−1(k) =
∑

m

g(m− 2k)γj(m) (19)

Equations (18) and (19) enclose an important result [6], they mean that the
wavelet and scaling function coefficients on a certain scale can be found by
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calculating a weighted sum of the scaling function coefficients from the previous
scale. In practice, the original sampled signal f(k) is equal to λ(k) at the largest
scale. The sequence {h(k)} satisfying equation (12) is called the scaling filter
associated to φ(x), whereas the sequence {g(k)} satisfying equation (13) is called
the wavelet filter associated to φ(x), and the next condition is accomplished:

gk = (−1)kh1−k (20)

In the frequency domain equation (12) and (13) become

Φ(ω) = H(
ω

2
)Φ(

ω

2
) (21)

Ψ(ω) = G(
ω

2
)Φ(

ω

2
) (22)

where H(ω) and G(ω) are the Fourier transform of hk and gk, respectively and
they are 2π periodic. For orthonormal multiresolution analysis, equation (12)
and equation (13) represent the impulse responses of quadrature mirror filters
(QMF) that have the following properties:

|H(ω)|2 + |G(ω)|2 = 1 (23)

and
H(ω)H∗(ω + π) +G(ω)G∗(ω + π) = 0 (24)

In the frequence domain, equation (20) means:

G(ω) = eiωH∗(ω + π) (25)

With this conditions, the sequences {h(k)} and {g(k)} forms a bank filter where
the first acts as a low-pass step, and the second as a high-pass step. There-
fore, the bank filter provides a coarse and detailed decomposition of a signal at
different resolution levels. The 2-step size in the variable k in equations (18)
and (19) is called the subsampling property, what means that after a scal-
ing filter follows a downsampling process. Now, the discrete wavelet transform
can be calculated by an iterative filtering and downsampling process, as shown
in the left part of Figure 1. The reconstruction of the original sampled sig-
nal is given by upsampling-digital filtering steps as shown in the rigth part of
Figure 1.

Fig. 1. Filter bank for the discrete wavelet transform: forward step (left) and reverse
step (right)
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2.3 Filter Sequences

It has been shown that the sequence {h(k)} must satisfy the following conditions:
∑

hk = 2 (26)

∑
hkhk+2m = 2δm (27)

∑
(−1)kkmhk = 0, for m = 0, 1, . . . ,M − 1 (28)

where M ≥ 1 and δm is the discrete Kronecker delta function. M is equal to the
number of vanishing moments of the wavelet corresponding to φ(x) and, as well
as in the continuous wavelet transform, it controls the compactess of the wavelet
representation of any given signal.

√
2jψ(2jx− k)k,j∈Z forms an orthonormal

basis for L2(R), the set of square integrable functions, and states the relation
between the multiresolution analysis and the wavelet analysis. For a filter of
length four the hk coefficients depend of the single parameter[7] θ1 ∈ [0, 2π] as
described in the next:

h0 = g3 = sinθ1sin(θ1 −
π

4
) (29)

h1 = −g2 = sinθ1sin(θ1 +
π

4
) (30)

h2 = g1 = cosθ1sin(θ1 +
π

4
) (31)

h3 = −g0 = cosθ1sin(θ1 −
π

4
) (32)

The filters obtained with equations (29) to (32) allow perfect reconstruction,
regardless of the θ parameter value. If θ1 = π

12 the hk coefficients correspond to
those given by the Daubechies-4 filter[8]. The Duabechies filter design criterion
focuses on the maximization of the vanishing moments, and the smoothness
of the wavelets which is measured with the number of derivatives they have.
For example, the simplest Haar (Daubechies-2) wavelet is not continuous and
therefore non-diferenciable, and other is the Daubechies-6 wavelet that has a
second order derivative. Larger Daubechies filters/wavelets have higher order
derivatives. In our approach, we propose to use a genetic algorithm to optimize
the parameters in order to achieve maximum compression. Our wavelets are
called evolets (from evolutionary wavelets), and the main idea is to identify the
optimal free parameters such that the corresponding filters give place to vector
spaces that model in the best way a given signal (and consequently there will
be a greater number of negligible transformation coefficients and compression).
Larger filters have more free parameters, and in fact a compactly supported
orthonormal wavelet of support size equal to 2N − 1 is parametrized by N − 1
free parameters[9]. For example, the Haar wavelet has one vanishing moment and
no free parameter, the Daubechies-4 filter (N = 2) has a single free parameter
as is described in equations (29) to (32), and the Daubechies-6 filter (N = 3)
has two free parameters.
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2.4 Image Processing and Energy Conservation

An image is a two-dimensional function f(x, y) with discrete values x ∈ [0, w]
and y ∈ [0, h], where w is the horizontal dimension or width, and h is the verti-
cal dimension or heigth. Each element at position (x, y) is called pixel. In case
of grayscale images f(x, y) takes values in [0, 255], where a zero value corre-
sponds to a black pixel, whereas the maximum value 255 is a white pixel. The
two-dimensional discrete wavelet transform is calculated applying a horizontal
transformation step followed from a vertical transformation step. This gives us
a pyramidal effect, that gives places to four subbands HH, HL, LH and LL, with
w
2 xh

2 wavelet coefficients. The HH subband stores the most detailed informa-
tion of the image, and the LL subband stores the most coarse information. A
second transformation level is applied to the LL subband, that generates other
four subbands, and the process continues while the width and heigth of the new
subbands are larger than the filter length. The two-dimensional inverse wavelet
transform is calculated in reverse order, starting at the top level of the pyrami-
dal subbands. The reconstruction introduces floating point operations, precision
errors and filtering errors that can be measured with the RMS error comparing
the original and the reconstructed images. Given an one-dimensional signal with
samples f0, f1, . . . , fn, its energy is defined as

E =
n∑

i=1

f2
i (33)

The cumulative energy of the signal is given by

Ec =
r∑

i=1

f2
i , for 0 ≤ r ≤ n (34)

When the wavelet tranform is aplied, the scaling factor can be chosen to conserve
the energy value at each level (and of course along all the levels) and therefore
it can be used to measure the efficiency of energy concentration. The higher
the concentration of energy in the lowest number of coefficients, the higher the
quality of the filter and the number of negligible coefficients, and consequently
it is more useful to compress a given signal[10]. We can sort the transformation
coefficients from largest to smallest and measure the cumulative energy. When it
reaches an aceptable value of the total, the remaining coefficients can be ignored,
and this determines a threshold for the coefficients that will be forced to be zero.
A peculiarity of the transformation coefficients, when a good filter is used, is that
a small number of them concentrates the most of the energy, therefore one way to
measure the efficiency of a filter is counting the number of coefficients which lie
below the threshold value, and that do not change substantially the cumulative
energy.

3 Experiments

In this work we use grayscale images which are typical in image processing.
They have dimensions of 64x64 pixels, that gives us a total of 4096 wavelet
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transform coefficients. We aims to discover the best hk sequences calculating the
free parameter (θ angle) given by the corresponding parametric equations. For
this purpose we appeal to a non-traditional genetic algorithm, the Vasconcelos
Genetic algorithm (VGA)[11], although some other can be used. The VGA is
characterized by:

– A population of even size P , with a temporal population of size 2P .
– Pairwise for crossover between the i-th and the (P − 1 − i)-th sorted indi-

viduals, i ∈ [0, P
2 − 1].

– Deterministic selection, the best P individuals from the temporal population.
– Anular crossover.

Each individual models a value for the parameter θ in the interval [0, 2π] using
32 bits of precision. The fitness function measures the number of non-zero coeffi-
cients whose value is higher than the threshold. The threshold value is automat-
ically calculated once the transformed coefficients are sorted in descending order
of magnitude, and the cumulative energy divided by the total energy is higher
than 0.999999. The parameters for the GA execution were: Number of gener-
ations G = 410, Probability of mutation Pm = 0.01, Probability of crossover
Pc = 0.95, and Population size P = 8 individuals. The evolutionary optimization
process to compress an image requires 2PG two-dimensional wavelet transfor-
mations. Consider that the wavelet transform for a vector with n components
has O(n) complexity, and that we do not require to apply the inverse wavelet
transform because the filters provide perfect reconstruction. In the experiments,
the execution time required for the VGA to calculate each parameter is near to
one minute running on a Debian/Linux PC, with 2 GB RAM and Intel Celeron
2.2 GHz processor.

4 Results

In Table 1 we compare the number of negligible coefficients (3th column) between
the evolutionary filters and the Daubechies-4 filter. The RMSE for the evolution-
ary wavelets (evolets) and Daubechies-4 are practically zero in all cases with a
10 digits precision.2 As we can appreciate, in all the cases, the number of negli-
gible coefficients for the evolutionary filters is higher than those of Daubechies-4.
That means that evolutionary filters concentrate the energy and model the re-
quiered vector space in a better way than those generated by Daubechies-4 filters.
The scaling and the wavelet functions for the filters of Table 2 can be obtained
with the iterative cascade algorithm [12][13]. They are shown in Figures 2, 3,
and 4.

Note that an image with horizontal or vertical lines or squares, such as the
frymire, gives a wavelet similar to the Haar filter. Experimentally we work with

2 The filters provides perfect reconstruction but in the practice, the reconstruction
error is given by the precision used in the implementations. Experimentally we note
that at least 8 decimal precision digits are required to get RMSE < 10−10, for the
Daubechies and evolets filter sequences.
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Table 1. Performance of the Evolutionary and Daubechies-4 filters with energy con-
centration on grayscale images

Image Filter #Coef. < Th Ep/Ef Th
(max. 4096)

1. Babbon.pgm Evolet 244 0.999999 0.7778971996
Daubechies 220 0.999999 0.7990381057

2. Barbara.pgm Evolet 361 0.999999 0.705232105
Daubechies 348 0.999999 0.713511222

3. Clegg.pgm Evolet 289 0.999999 1.0653692000
Daubechies 251 0.999999 1.1312476869

4. Frymire.pgm Evolet 365 0.999999 0.9938901303
Daubechies 279 0.999999 1.0866968793

5. Lena.pgm Evolet 469 0.999999 0.6745043947
Daubechies 464 0.999999 0.6662658774

6. Monarch.pgm Evolet 580 0.999999 0.5139496478
Daubechies 567 0.999999 0.5122595264

7. Peppers.pgm Evolet 404 0.999999 0.7384878482
Daubechies 392 0.999999 0.7030444566

8. sail.pgm Evolet 256 0.999999 0.8169891336
Daubechies 240 0.999999 0.7855762114

Table 2. Free parameter and the corresponding evolutionary filter sequences hk

Image Free parameter h0 h1 h2 h3

1. 1.22321408 0.52386620 0.82365289 0.18324057 -0.11654611

2. 1.03044130 0.61077362 0.78231644 0.09633315 -0.07520965

3. 3.97359197 0.01685386 -0.01608620 0.69025291 0.72319298

4. 3.92145800 -0.00195072 0.00196150 0.70905750 0.70514523

5. 1.29121813 0.49152851 0.83413935 0.21557826 -0.12703257

6. 1.28124697 0.49631357 0.83273971 0.21079320 -0.12563293

7. 1.35440831 0.46090502 0.84189305 0.24620175 -0.13478627

8. 1.35527121 0.46048359 0.84198550 0.24662318 -0.13487872

Fig. 2. Pairs of scaling (left) and wavelet (right) functions for the filters of Table 2.
(baboon image).
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Fig. 3. Pairs of scaling (left) and wavelet (right) functions for the filters of Table 2.
Each row: barbara, clegg, frymire, lena, and monarch.
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Fig. 4. Pairs of scaling (left) and wavelet (right) functions for the filters of Table 2.
Each row: peppers, and sail.

the same image and different dimensions (128x128, 256x256 and 512x512 pixeles)
and we note that the free parameter is very similar.

5 Conclusions and Future Work

We have shown experimentally that it is possible to get different filters for dif-
ferent signals adjusting the single free parameter to describe the four length hk

sequences that correspond to the QMF filters used to implement the discrete
wavelet transform. These filters provide perfect reconstruction, and the exper-
imental RMSE is zero in all cases. The function that measures the cumulative
energy allows to guide the fitness of the individual of a genetic algorithm, hence
the best of them increase the number of negligible coefficients and concentrate
the energy, which is convenient for signal compression. However, the execution
time suggests that this method, as is, cannot be used in real time applications. To
compress a single image we requiere to calculate the equivalent to 2PG = 6560
wavelet image transforms. We noticed that similar images give a similar value
for the free parameter, so we consider that it can be used in applications of
image classification. Future work will be focused on the reduction of the time
execution as well as the required computational resources to implement it in
hardware with limited resources. Also, we expect to design larger filters, to deal
with wavelet packet based filters, to reduce the search time, and to work with
automatic image classification.
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Abstract. A number of researchers have used historical numeric time
series data to forecast financial markets, i.e. stock prices, and they
achieved some results with reasonable accuracies. However, there are
various non-numerical factors that influence prices such as company’s
performance, government involvement, trends of the market, changes in
economic activity and so forth. We attempt to take such factors into ac-
count to our recent study. This paper surveys an application of a fuzzy
inference system, namely Standard Additive Model, for predicting stock
prices in cooperating with event-knowledge and several new training cri-
teria. Experimental results show that the integrated model yields the
outcomes which have error smaller than original model’s one.

Keywords: Standard Additive Fuzzy System, financial time series pre-
diction, event knowledge, fuzzy logic

1 Introduction

Stock market prediction has been a critical issue in the field of finance, mathe-
matics and engineering due to its potential financial gain. Many have attempted
to forecast the stock prices using various computational tools such as Support
Vector Machine [1], Multiple Linear Regression [2], Hidden Markov Model [3],
Neural Network (NN) and others [4]. NN is the most prominent technique over
the last decade, however it still shows shortcomings. It is considered as a ”black
box” in which it is not handy to keep track adjustments of parameters occurring
in the system. Instead, the inference fuzzy system is recommended [5]. A fuzzy
system bases on fuzzy logic which has the advantage that the solution to the
problem can be cast in terms that human operators can understand, so that their
experience can be used in the design. On the other hand, fuzzy logic solutions
are easy to verify and optimize.

There are many factors that can influence the share price. These factors can
be derived from the news release about companies or superpower national econ-
omy. These incidents are called ”events” [6]. The primary reason of incorporat-
ing event-knowledge (EK) in stock market prediction is based on an assumption
that the future price of a stock partially depends on various political and inter-
national events as alongside the various economic indicators. Thus, many studies

G. Sidorov et al. (Eds.): MICAI 2010, Part II, LNAI 6438, pp. 406–417, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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have used event information (qualitative factors) as well as quantitative data in
predicting stock markets. One of the first studies using the EK was performed
by Kohara et al. [7]. They incorporated EK extracted from the newspaper head-
lines and then made whether a particular event can positively influence the stock
market tendencies or not. Hong and Han [8] introduced an automated system
(KBNMiner) that acquires EK from the Internet for the prediction of interest
rates. What is notable from their study is that the web mining technique they
applied to predicting interest rates can also be used for stock price prediction.
Nonetheless, extracting/collecting the historical events is not a trivial task. Yan
et al. [9] showed an effective method to extract EK from the series data with an
assumption that EK was reflected in that series.

Most applications of time series forecasting rely on the goodness-of-fit as their
performance criterion. Regarding financial data, this criterion is not always ap-
propriate. Yao and Tan [10] proposed a profit based adjusted weight factor for
supervised training process. Instead of using the traditional least square error,
they add a factor which contains the profit, direction, and time information to
the error function. Their results show that this new approach does improve the
predictability of neural network models, for the financial application domain.
Another stopping criterion in training the system is the selective presentation
learning (SEL) algorithm which was given by Kohara [11]. The training data is
separated into large-change data and small-change data and large-change data
is presented more often than small-change one.

This paper surveys the incorporation between Standard Additive Model
(SAM) fuzzy system [12] incorporating with Genetic Algorithm (GA) using
event-knowledge and new performance criteria to forecasting stock prices. The
goal of this survey is to find a best model for financial time series prediction in
terms of profit earning.

The paper is organized as follows. Two next sections describe briefly about
the SAM fuzzy system and learning process. Section 4 presents the extracting
EK from data. Section 5 explains new training criteria. Survey results are shown
in section 6. Finally, our conclusion is summarized in the last section.

2 Standard Additive Model

A fuzzy inference system consists of m fuzzy rules (Fig. 1). Each fuzzy rule is
a conditional IF-THEN proposition of the form Rj : IF x = Aj THEN y = Bj ;
j = 1,m; where x ∈ Rn, y ∈ Rp, are multi-dimensional vectors, Aj and Bj are
fuzzy sets on the input space X and the output space Y respectively.

Because of SUM (summary) combination of fuzzy rules, this fuzzy system
is named Standard Additive Model (SAM). In SAM, each input x fires jth

fuzzy rule and results in fuzzy set Bj ’ determined by the PRODUCT opera-
tion between membership degree of if-part aj(x) in [0,1] and then-part fuzzy
set Bj : B′j = aj(x)Bj . The system can use some factored form such as aj(x) =
a1

j(x1)...an
j (xn) or aj(x) = min(a1

j(x1), ..., an
j (xn)). Then-part fuzzy set Bj ⊂ Rp

has set function bj : Rp → [0, 1] and volume Vj and centroid (center of gravity)
cj of fuzzy set.
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Fig. 1. SAM’s parallel combination structure

The defuzzification method of SAM is CoG (Centroid of Gravity) of B:

F (x) = Centroid

⎛

⎝
m∑

j=1

wjaj(x)Bj

⎞

⎠ =

m∑
j=1

wjaj(x)Vjcj

m∑
j=1

wjaj(x)Vj

=
m∑

j=1

pj(x)cj (1)

where wj is the corresponding weight of the jth rule. The convex weight:

pj (x) =
wjaj (x)Vj

m∑
k=1

wjak (x) Vk

(2)

The SAM fuzzy system can uniformly approximate continuous and bounded
measurable functions on compact domains. If y = f(x) is not analytically known,
we cannot write an equation in explicit form. However, we can use the relation-
ship between the input space X and the output space Y which given by Y =
F(x), a relationship that links subsets of the input space X to subsets of the
output space Y by fuzzy terms Rj = Aj × Bj . Fig. 2 illustrates the fuzzy rule
patches in the input-output space and how these patches cover the graph of f(x).

Fig. 2. Mapping of input space into output space in case of 2-D

2.1 Shape of Fuzzy Sets

The shape - membership function - of if-part fuzzy sets affects how well fuzzy
systems approximate nonlinear continuous functions [13]. There is no function
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as best selection, it depends on each specific application. In trying to achieve
accuracy and stability in application, all membership functions are examined in
this research. Some membership functions (e.g. trapezoid, difference hyperbolic
tangent, metrical difference logistic) often take much time in processing and
therefore they are less effective.

Fig. 3. Cauchy set function in 1-D case

Gaussian function gives richer fuzzy systems with simple learning laws that
tune the bell-curve means and variances. But this popular choice comes with a
special cost: it converts fuzzy systems to radial-basis-function neural networks or
to other well-known systems that predate fuzzy systems. The Cauchy function
is a bell curve with thicker tails than the Gaussian bell curve and with infinite
variance and higher order moments. Thus the Cauchy set function is chosen for
experiments in this research. The jth Cauchy set function (Fig. 3) centered at
mj and width dj > 0 is defined as

aj(x) =
1

1 +
(

x−mj

dj

)2 (3)

2.2 Constructing Fuzzy Rules

Based on the clustering results, the fuzzy rules system is constituted. The centers
of fuzzy rules cj are identified via centroid vectors. The width of jth fuzzy set,
for example, is set simply via its neighbors by the following formula

Vj =
|cj − cc|

r
(4)

where cj is the center of jth fuzzy set, cc is the center of the closest fuzzy set, and
r is the overlap coefficient. Generally, a prediction problem is considered as one
of non-linear function approximations wherein the function’s approximated value
will be used as the prediction. In order to improve approximating performance,
SAM needs a strong learning process aiming at obtain a set of robust fuzzy
rules. Through modifying volume and centroid of fuzzy rules, SAM relocates
automatically fuzzy patches’ position and size hereby the approximation can
be expected more accurate. Regarding SAM, a learning method is evaluated
whether well or not based on the way it ensures to maintain fuzzy patches at
curve points in graphical presentation of the f(x) function.
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3 Learning Process

The learning process of SAM (or fuzzy system, generally) usually encompasses
two main stages those are structure (unsupervised) learning and parameter (su-
pervised) learning as shown in Fig. 4. Also, optimal learning is employed to
eliminate unnecessary fuzzy rules.

Fig. 4. Learning process of SAM in cooperating with EK and new training criteria

3.1 Structure Learning

Kohonen’s Self Organizing Map (SOM) algorithm [14] has been applied in this
research. SOM as an unsupervised learning algorithm is one of the most popular
neural network algorithms and produces variation for improving its performance.
The SOM can be summarized as

wj [n+ 1] = wj [n] + α[n](x − wj [n]) (5)

where output neuronwj is the winner neuron and neighbor neurons to the winner
j at the iteration n. The learning coefficient α[n] at iteration n defines a decaying
constant with an iteration such as

α[n] = c(0)
(
1 − n

N

)
(6)

with predetermined constant c(0) and total number of iterations N. The SOM
holds the very advantageous preserving property that can capture the probability
distribution density of the input data without help of external supervision.

After clustering data patterns, the next task is to build up fuzzy rules from
their centroid vectors using fuzzy sets. Constructing fuzzy rules is stated in
previous section.
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3.2 Optimal Learning

Theoretically, regarding the fuzzy system in general or the SAM in particular,
the more number of fuzzy rules the more accuracy in approximation process.
Nevertheless, if a system has too many fuzzy rules, it would take a long time in
learning process. An optimal system will only keep necessary fuzzy rules.
One of solutions for the above problem is using Genetic Algorithm (GA) [15].
The detailed GA for SAM fuzzy system is as follows:

– Step 1: Initialize ten chromosomes. Each chromosome is a chain of binary
values describing status of corresponding rules in SAM. Value ”0” means the
rule is omitted while value ”1” means the rule is selected. Every generation
only uses ten chromosomes. One of individuals in the first generation contains
all rules (all gene values of chromosome are equal to ”1”).

– Step 2: Create new chromosomes by crossover (probability 0.5) and muta-
tion (probability 0.01).

– Step 3: Use roulette wheel with adaptive function to select ten best chro-
mosomes which have the minimal Fit(.) value.

Fit(m) = ln
(
σ̄2

ε

)
+
logn(m)

n
(7)

where:

σ̄ε =
1
n

n∑

j=1

(yj − F (xj))2 (8)

• m: number of used rules.
• n: number of training data samples.

– Step 4: If the stopping condition (i.e. expected error) is not satisfied, return
step 2.

– Step 5: Choose the best one in ten chromosomes at the final population.

The found binary chain of the best chromosome will be used for eliminating
unnecessary rules.

3.3 Parameter Learning

The gradient descent algorithm [16] has been deployed in this step. The aim of
parameter adjustment learning phase is to minimize the square of error:

E(x) =
1
2
(f(x) − F (x))2 (9)

The learning rule applies for variable ξ in SAM has following form:

ξ(t+ 1) = ξ(t) − μt
∂E

∂ξ
(10)

where μt is the learning rate. The learning rule for each parameter is expanded
in detail as follows.

∂E

∂F
= −(f(x) − F (x)) = −ε(x) (11)
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cj(t+ 1) = cj(t) + μt.ε(x).pj(x) (12)

Vj(t+ 1) = Vj(t) + μt.ε(x). [cj − F (x)] .
pj(x)
Vj

(13)

wj(t+ 1) = wj(t) + μt.ε(x). [cj − F (x)] .
pj(x)
wj

(14)

Parameters of Cauchy membership function are tuned:

mj(t+ 1) = mj(t) + 2μtε(x)pj(x)[cj − F (x)]
x −mj

d2
j

aj(x) (15)

dj(t+ 1) = dj(t) + 2μtε(x)pj(x)[cj − F (x)]
(x−mj)

2

d3
j

aj(x) (16)

All initial configuration parameters are chosen based on training data set. The
momentum technique is also integrated in the parameter tuning process. This
helps the supervised learning to avoid local minimum cases and to reduce the
learning time. The learning formula with momentum is as follows

ξ(t+ 1) = ξ(t) − μt
∂E

∂ξ
+ γΔξ(t) (17)

where γ is the momentum coefficient.

4 Extracting Event-Knowledge

Knowledge of the events is divided into two kinds: negative-event-knowledge
for events which tend to reduce stock prices and positive-event-knowledge for
events which tend to raise them. Event-knowledge (EK) is non-deterministic
knowledge showing only tendencies for stock price prediction. Actual stock price
movement is influenced by a wide range of factors including numerical economic
indicators and the EK. Therefore, the direction predicted using only EK does
not always correspond to actual direction of next-day’s stock price movement. In
Kohara’s experiments, the directions indicated by extracted EK corresponded
to the actual next-day’s direction approximately 60% of the time. The EK is
stated abstractly by IF-THEN rules as follows:

Rule 1: IF (domestic politics = good) THEN (event = positive-event)
Rule 2: IF (domestic politics = bad) THEN (event = negative-event)
Rule 3: IF (business prospects = good) THEN (event = positive-event)
Rule 4: IF (business prospects = bad) THEN (event = negative -event)

A set of above rules could be expanded with more factors to constitute prior
knowledge of system. The detailed extracting EK from time series algorithm
includes following steps:
- Step 1: Make smooth series by single exponential technique [17].
- Step 2: Compute the difference values between smoothed and original values.
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- Step 3: Normalize difference values into [0, 1].
- Step 4: Assign normalized value at (t+1) to EK value at (t).

Smoothing allows the model series-data to be represented as a really nonlinear
function that is assumed to present the trend of time series in normal condition.
The normalized difference value at (t + 1) shows the influence-degree of summa-
rized events at (t) onto time series at (t + 1). The near 1 (one) value presents
influence-degree of positive-EK whereas the value 0 (zero) represents the oppo-
site case. An EK value of 0.5 presents the normal condition or the balance of
influence degree between positive-EK and negative-EK. Application of EK into
SAM fuzzy system is depicted in Fig 5.

Fig. 5. EK(t) is fed to the system to predict value (t+1)

5 New Training Criteria

The traditional back-propagation training criterion is based on the Least Squares
or Ordinary Least Squares (OLS) error function.

EOLS =
1

2N

N∑

p=1

(tp − op)2 (18)

where N is number of data in training set. Just for convenience, we notate target
value f(x) and output value F(x) in Equation 9 by tp and op respectively from
now on. New functions are defined in using concept of Selective Presentation
Learning (SEL) and three criteria of Yao and Tan. They all are described in
following subsections.

5.1 Selective Presentation Learning

In ordinary training, the number of presentations of all training data is usu-
ally independent of the size of the changes in the target time series. Learning
process is usually stopped at the point of minimal mean squared error between
the network’s outputs and the actual outputs. The following two problems are
considered.

Problem 1: Generally, the ability to predict large changes is more important
than the ability to predict small changes. When all training data are presented
equally as in conventional learning, we assume that the systems learn small
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changes as accurately as large changes and thus cannot reflect large changes
more accurately.

Problem 2: The target function for forecasting problems is not always to min-
imize the average of prediction errors. Regarding financial market, maximizing
profits through financial dealing by using predicted values is more significant
than minimizing errors. Minimizing the average of prediction errors does not
always correspond to maximizing profits.

Kohara [7] overcame these problems by separating the training data into large-
change data and small-change data. Large-change data (small-change data) has
next-day changes that are larger (smaller) than a preset value. Large-change
data are presented to training process more often than small-change data. For
instance, all training data are presented in the first learning cycle, only large-
change data are presented in the second cycle, and so forth. The outline of the
selective presentation learning algorithm is as follows.

- Step 1: Separate the training data into large-change and small-change sets.
- Step 2: Perform supervised learning with more presentations of large-change
data than of small-change data.
- Step 3: Stop learning at the point satisfying a certain stopping criterion (e.g.
stop at the point having the maximum profit).

5.2 Yao and Tan’s Criteria

Yan and Tan added a factor which contains the profit, direction, and time infor-
mation to the error function. The following research hypotheses were proposed:

Hypothesis 1: In addition to ordinary least squares error function, a factor
representing the PROFIT could be added to the error function in order to im-
prove the forecast ability of models. This model is called Directional Profit (DP)
model. New profit adjust factor is a function of changes and direction.

fDP (p) = F (|tp − tp−1| , sign(Δtp, Δop)) (19)

The Directional Profit adjustment factor is stated as

fDP (p) =

⎧
⎪⎪⎨

⎪⎪⎩

a1 if Δtp ∗Δop > 0 and |Δtp| ≤ σ
a2 if Δtp ∗Δop > 0 and |Δtp| > σ
a3 if Δtp ∗Δop < 0 and |Δtp| ≤ σ
a4 if Δtp ∗Δop < 0 and |Δtp| > σ

(20)

where σ is a threshold of the changes of sample data; a1, ..., a4 are constant. The
standard deviation of the training data set is used.

σ =
1
N

N∑

p=1

(tp − μ) (21)
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where μ is the mean of the target series. The new error function will be

EDP =
1

2N

N∑

p=1

fDP (p)(tp − op)2 (22)

Hypothesis 2: A factor representing the TIME could be added to the error
function in order to improve the forecast ability of models. This model is called
Discounted Least Squares (DLS) model.

EDLS =
1

2N

N∑

p=1

w(p)(tp − op)2 (23)

where w(p) is the contribution of observation to the overall error

w(p) =
1

1 + e(a−
2ap
N )

(24)

Hypothesis 3: If PROFIT and TIME are useful factors of error function to
improve the forecast ability, an even better result could be achieved by using the
combination of both of them. This model is called Time dependent Directional
Profit (TDP) model.

ETDP =
1

2N

N∑

p=1

fDP (p) ∗ w(p)(tp − op)2 (25)

6 Experimental Results

We construct five models accompanied by event-knowledge (EK), namely EK Se-
lective Presentation Learning (EK-SEL) model, EK Directional Profit (EK-DP)
model, EK Discounted Least Squares (EK-DLS) model, EK Time dependent Di-
rectional Profit (EK-TDP) model and rough EK model which only incorporates
EK with Ordinary Least Squares (OLS). They are benchmarked with traditional
OLS model.

Five stock prices are tested in our study, they are iShares FTSE China In-
dex (FCHI), Microsoft Corporation (MSFT), Dell Inc. (DELL), The Coca-Cola
Company (KO) and Bank of America Corporation (BAC). All of them are down-
loaded from Yahoo Finance website http://finance.yahoo.com. The sampled pe-
riod ranges up to 01 Jan 2010. The first day of each dataset is exhibited in
Table 1. We choose 5% last data of series to be testing set and evaluate perfor-
mance of each model in terms of Mean Absolute Error (MAE) on those.

The configuration of SAM fuzzy system in five datasets is identical. In detail,
SAM uses 20 fuzzy clusters, learning rate is 0.0001, momentum coefficient is
0.9, number of generation in GA is 5 and training cycle is 4000 epochs. The
dimension of an input pattern is 4, it means four historical values in time series
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Table 1. Statistical results on five stock prices

FCHI MSFT DELL KO BAC

Num. of data 252 401 505 756 1007
First day 02Jan 09 02Jun 08 02Jan 08 03Jan 07 03Jan 06
MAE of OLS 1.6319 0.4887 0.5639 0.4131 1.2227
MAE of EK 0.8952 0.3914 0.5566 0.3525 0.5214
MAE of EK-SEL 1.2025 0.3249 0.3457 0.2209 0.4061
MAE of EK-DP 1.3379 0.3901 0.4073 0.2357 0.431
MAE of EK-DLS 1.0944 0.3956 0.3654 0.3674 0.5537
MAE of EK-TDP 1.1722 0.3687 0.4606 0.2429 0.5669
Best model EK EK-SEL EK-SEL EK-SEL EK-SEL

produce one predict value. This number is chosen by knowledge that stock price
of current day is affected by last four days and not cause over-fitting while using
large number. Note that with models which use EK, the dimension of an input
pattern is also 4, but the last element is EK value.

From the statistical results in Table 1, it is easy to realize that MAEs of
five new models are always smaller than MAEs in original model although the
number of testing data is different. Model EK-SEL surpasses other models in four
stock prices except FCHI. Criterion TDP was proved to achieve the performance
better than DP and DLS [10], however, while used with EK, it does not show the
excessive efficiency. The reason is stock prices in period end-half of 2009 were
altered much more than usual and model SEL contains significant factors than
TIME & PROFIT factors. Moreover, when we perform the supervised learning,
EK-DLS and EK-TDP models cause unstable error function because of using
Equation 24 with index factor p.

7 Conclusions

We have used event-knowledge and new training criteria to improve the ability to
predict large changes by SAM fuzzy system. The results of several experiments on
stock market prediction showed that model EK SEL outperforms conventional
approaches. We understand that success in several kind of stock prices does not
necessarily mean the same for others and the financial market often comprises
many complicated factors. Nevertheless, when data mining technique has been
advanced rapidly recently, our approach could be seen as new research direction
involves demands of economic forecasting.
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Abstract. A categorical syllogism is a rule of inference, consisting of two pre-
misses and one conclusion. Every premiss and conclusion consists of dual  
relationships between the objects M, P, S. Logicians usually use only true syl-
logisms for deductive reasoning. After predicate logic had superseded syllo-
gisms in the 19th century, interest on the syllogistic system vanished. We have 
analysed the syllogistic system, which consists of 256 syllogistic moods in to-
tal, algorithmically. We have discovered that the symmetric structure of syllo-
gistic figure formation is inherited to the moods and their truth values, making 
the syllogistic system an inherently symmetric reasoning mechanism, consisting 
of 25 true, 100 unlikely, 6 uncertain, 100 likely and 25 false moods. In this con-
tribution, we discuss the most significant statistical properties of the syllogistic 
system and define on top of that the fuzzy syllogistic system. The fuzzy syllo-
gistic system allows for syllogistic approximate reasoning inductively learned 
M, P, S relationships. 

Keywords: Syllogistic reasoning; fallacies; automated reasoning; approximate 
reasoning; human-machine interaction. 

1   Introduction 

Although syllogism were superseded by propositional logic [8] in the 19th century, 
they are still matter of research. For instance philosophical studies have confirmed 
that syllogistic reasoning does model human reasoning with quantified object rela-
tionships [2]. For instance in psychology, studies have compared five experimental 
studies that used the full set of 256 syllogisms [5], [12] about different subjects. Two 
settings about choosing from a list of possible conclusions for given two premisses 
[6], [7], two settings about specifying possible conclusions for given premisses [9], 
and one setting about decide whether a given argument was valid or not [10]. It has 
been found that the results of these experiments were very similar and that differences 
in design appear to have had little effect on how human evaluate syllogisms [5]. 
These empirically obtained truth values for the 256 moods are mostly close to their 
mathematical truth ratios that we calculate with our algorithmic approach [11]. 
                                                           
∗ This research was partially funded by the grant project 2009-İYTE-BAP-11. 
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Although the truth values of all 256 moods have been analysed empirically, mostly 
only logically correct syllogisms were used for reasoning or modus ponens and modus 
tolens, which are generalisations of syllogisms [13]. Uncertain application environ-
ments, such as human-machine interaction, require adaptation capabilities and ap-
proximate reasoning [15] to be able to reason with various sorts of uncertainties. For 
instance, we know that human may reason purposefully fallacious, aiming at deception 
or trickery. Doing so, a speaker may intent to encourage a listener to agree or disagree 
with the speaker's opinions. For instance, an argument may appeal to patriotism, family 
or may exploit an intellectual weakness of the listener. We are motivated by the idea 
for constructing a fuzzy syllogistic system of possibilistic arguments for calculating the 
truth ratios of illogical arguments and approximately reason with them. 

Firstly, the syllogistic system is discussed briefly, including its most significant 
statistical properties, followed by our main contribution, which is the fuzzy syllogistic 
system with its possible application for recognising fallacies and reasoning with them. 

2   The Syllogistic System 

A categorical syllogism can be defined as a logical argument that is composed of two 
logical propositions for deducing a logical conclusion, where the propositions and the 
conclusion each consist of a quantified relationship between two objects. 

2.1   Syllogistic Propositions 

A syllogistic proposition or synonymously categorical proposition specifies a quanti-
fied relationship between two objects. We shall denote such relationships with the 
operator . Four different types are distinguished  {A, E, I, O} (Table 1): 

• A is universal affirmative:  All S are P 
• E is universal negative:  All S are not P 
• I is particular affirmative:  Some S are P 
• O is particular negative:  Some S are not P 

One can observe that the proposition I has three cases (a), (b), (c) and O has (a), (b), 
(c). The cases I (c) and O (c) are controversial in the literature. Some do not consider 
them as valid [3] and some do [14]. We have experimentally proven that including 
these cases, harmonically completes the symmetry of the statistical structures of the 
syllogistic system [11]. 

2.2   Syllogistic Figures 

A syllogism consists of the three propositions major premise, minor premise and con-
clusion. The first proposition consist of a quantified relationship between the objects 
M and P, the second proposition of S and M, the conclusion of S and P (Table 2). 
Note the symmetrical combinations of the objects. 

Since the proposition operator  may have 4 values, 64 syllogistic moods are pos-
sible for every figure and 256 moods for all 4 figures in total. For instance, AAA-1 
constitutes the mood MAP, SAM - SAP in figure 1. 
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We shall denote a propositional statement with 1, in order to distinguish between 
possibly equal propositional operators of the three statements of a particular mood, 
where i {1, 2, 3}. 

Table 1. Syllogistic Propositions Consist of Quantified Object Relationships 

Operator 
Proposition 

( )
Set-Theoretic Representation of Logical Cases*

A All S are P

| (A)|=2

E All S are not P

| (E)|=2

I Some S are P
(a)+(b)+(c)=

(a)=3                (b)=2             (c)=2                   | (I)|=7

O
Some S are not 

P (a)+(b)+(c)=
(a)=3                (b)=2             (c)=2                 | (O)|=7

* Number of sub-sets of a case (a), (b), (c) and total number of sub-sets of a proposition | ( )|.

P       S

S P

S       P       SPS P

S P S       P S P

 

2.3   Statistics About the Syllogistic System 

The algorithm that we have introduced earlier [11] enables revealing various interest-
ing statistics about the structural properties of the syllogistic system [4]. The most 
significant once are as follows. 

First we calculate the truth values for every mood in form of a truth ration between 
its true and false cases, so that the truth ratio becomes a real number, normalised 
within [0.0, 1.0]. Thereafter we sort all moods in ascending order of their truth ratio 
(Fig 1). Note the symmetric distribution of the moods according their truth values. 25 
moods have a ratio of 0 (false) and 25 have ratio 1 (true), where each is 25/256 = % 
10.24 of all moods. 100 moods have a ratio between 0 and 0.5 and 100 have between 
05 and 1, where each is 100/256 = % 0.390625. 6 moods have a ratio of exactly 0.5, 
which is % 0.0234375 of all moods. 

For any three set, like M, P, S, in total 41 distinct intersections can be drawn. The 
256 moods have in total 2624 truth cases, which map those 41 intersections multiple 
times. These mapping structures are also inherently symmetric. A complete discus-
sion of all statistical details is presented in [4]. 
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Table 2. Syllogistic Figures 

Figure Name I II III IV

Major Premise
Minor Premise

Conclusion

M P
S M

S P

P M
S M

S P

M P
M S

S P

P M
M S

S P  

3   Fuzzy Syllogistic Reasoning 

Based on the symmetrical properties of the syllogistic system, we now define the 
fuzzy syllogistic system and a sample application for recognising fallacies. 

3.1   Fuzzy Syllogistic System 

From the structural properties of the syllogistic system [4], we elaborate now a fuzzi-
fied syllogistic system. 

One can see (Fig 1) that every syllogistic case is now associated with one truth ra-
tion. We utilise the symmetric distribution of the truth ratios, for defining the mem-
bership function FuzzySyllogisticMood(x) = {CertainlyNot; Unlikely; Uncertain; 
Likely; Certainly} with a possibility distribution that is similarly symmetric (Fig 1). 
the possibility distribution of FuzzySyllogisticMood that was presented earlier, has 
been adapted to the values of the moods, such that moods with equal values have now 
equal linguistic values. The linguistic variable was adopted from a meta membership 
function for a possibilistic distribution of the concept likelihood [16]. The complete 
list with the names of all 256 moods is appended (Table A1). 

As we have mentioned earlier, the algorithmically calculated truth ratios of the 256 
moods (Fig 1) mostly comply with those empirically obtained truth ratios in psycho-
logical studies [5]. Hence the suggested possibilistic interpretation should reflect an 
approximately correct model of the syllogistic system. 

3.2   Fuzzy Syllogistic Reasoning 

Our objective is to design a new model for automated reasoning, which uses the fuzzy 
syllogistic system as reasoning mechanisms. For this purpose, we specify following 
methodology: 

• Inductively accumulate sample instances of relationships between the objects M, 
P, S and classify them into the above mentioned 41 distinct sub-sets. 

• Calculate the truth values of the 256 moods for these M, P, S relationships. 
• Based on the cardinalities of the 41 sub-sets, calculate possible fallacies. 
• Fuzzy syllogistic reason with the mood that has the highest truth value. 

Fallacies may be identified manually, by a human, who is deciding on the proper se-
mantics of the M, P, S relationships. However, in this methodology, we identify falla-
cies fully automated, based on the cardinalities of the sample 41 sub-sets. 
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3.3   Fallacies in Categorical Syllogisms 

In logic, a fallacy is a misconception resulting from incorrect reasoning in argumenta-
tion. 7 fallacies are known in the literature for categorical syllogisms: 

•  Equivocation fallacy or fallacy of necessity: Unwarranted necessity is placed in 
the conclusion, by ignoring other possible solutions. 

•  Fallacy of undistributed middle: Middle term not distributed in at least one  
premiss. 

•  Illicit major/minor: Major/minor term undistributed in major/minor premiss,  
respectively, but distributed in the conclusion. 

•  Fallacy of exclusive premisses: Both premisses negative. 
•  Affirmative conclusion from negative premiss: Positive conclusion, but at least 

one negative premiss. 
•  E xistential fallacy: Both premisses universal, but particular conclusion. 

These fallacies comply exactly with the 7 rules for eliminating invalid moods, which 
were discovered already by Aristotle [1]. 

Likely
(false<true)

(100)

Unlikely
(true<false)

(100)
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nc
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)  
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5)
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N

ot
  

(2
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Fig. 1. 256 syllogistic moods sorted in ascending order of their TruthRatio(x) true/false, if num-
ber of truth cases of a mood is true<false and 1-false/true ratio, if false<true. Definition of the 
possibility distribution FuzzySyllogisticMood(x) with the linguistic variables CertainlyNot, 
Unlikely, Uncertain, Likely, Certainly and their cardinalities 25, 100, 6, 100, 25, respectively 

3.4   Recognising Fallacies: Procedure 

Our objective is to use the whole set of 256 syllogistic moods as one system of possi-
bilistic argument for recognising fallacies and reasoning with them. For that purpose, 
we specify the following steps: 
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1. Calculate all truth cases and the truth ratio of a given mood. 
2. Try to recognise fallacies with following rules, for identifying 

(a) possible false instances: reduction of A to I 
(b) possible true instances: reduction of E to O 
(c) further possible true instances: generalisation of I to A 
(d) further possible false instances: generalisation of O to E 
(e) complementing false instances: complementation of I to O 
(f) complementing true instances: complementation of O to I 

3. Try to map the initial mood x to any mood y with a truth ratio closer to 1: Truth-
Ratio(x) < TruthRatio(y) 

4. Approximately reason with the truth ratios. 

Rules (a)-(f) are generalisations of the above discussed reduction and conversion 
techniques. 

(a) (b) (c)

P         
MM   P        

         S

   

S    

M
         S

   

P          

 
Fig. 2. False syllogistic cases of the mood AIA-1 

3.5   Recognising Fallacies: Sample Application 

We will now discuss these steps experimentally on the following example (Fig 4). 
Firstly, we calculate the 3 true (Fig 3) and 3 false (Fig 2) cases of mood AIA-1 and 

its truth ratio of 0.5. 
Secondly, we identify following fallacies: 
• rule (a): Not all stories in The Child's Magic Horn (TCMH) are sad ¬ 1(A). The 

truth is that only some stories in TCMH are sad 1 (I). 
• rule (a): Not all stories I cry at are stories in TCMH, because I will possibly cry 

at some other stories as well ¬ 3(A). The truth is that only some of all the stories 
I cry at are stories in TCMH 3(I). 

Based on the identified fallacies and reductions 1(A) to 1(I) and 3(A) to 3(I), we 
can easily calculate the mood III-1 to be "more true" for the given sample propositions. 
In dead, mood III-1 has with 4 false/19 true cases 1-0.21=0.79, a better truth ratio. 

(a) (b) (c)

MS   SM   S         M         

P PP

 

Fig. 3. True syllogistic cases of the mood AIA-1 
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P: Sad A: all M are P
M: Stories in The Child's Magic Horn I:  some S are M
S: Tales I cry at

A: all S are P

1(A): All "Stories in The Child's Magic Horn" are "Sad"

2(I): Some "Tales I cry at" are "Stories in The Child's Magic Horn"

3(A): All "Tales I cry at" are "Sad"  

Fig. 4. Sample syllogistic inference with the mood AIA of the syllogistic figure 1 (AIA-1) 

 
Using mood III-1, we can now try to recognise further fallacies, by applying all 

combinations for complementing true or false possibilities, which yields the moods: 

• OII-1: 1-7/17 = 0.59 
• OOI-1: 1-7/17 = 0.59 
• IIO-1: 1-6/17 = 0.65 
• IOO-1: 1-5/17 = 0.71 
• IOI-1: 1-5/17 = 0.71 
• III-1: 1-4/19 = 0.79 
• OOO-1: 1-3/21 = 0.86 
• OIO-1: 1-3/21 = 0.86 

Thirdly, these are 8 further candidates for replacing the initial mood AIA-1: 3/3 = 0.5. 
We may now chose OOO-1 or OIO-1, since both have equal truth ratio of 0.86. 

In the last step, we may use the truth rations of the moods for fuzzy syllogistic  
reasoning as a model for approximate reasoning with quantified propositions. 

3.6   Discussion 

In the initial example (Fig 4), one can suspect possible fallacies in the positive gener-
alisations 1(A) and 3(A), by intuitively assuming possible false instances in them. 

The moods OOO-1 and OIO-1 have higher truth ratios than the initial mood 0.5 < 
0.86. Consider now the case OII-1 = 0.86 

• 1(O): Some "Stories in TCMH" are not "Sad" 
• 2(O): Some "Tales I cry at" are not "Stories in TCMH" 
• 3(O): Some "Tales I cry at" are not "Sad" 
and OOI-1 = 0.86 
• 1(O): Some "Stories in TCMH" are not "Sad" 
• 2(I): Some "Tales I cry at" are "Stories in TCMH" 
• 3(O): Some "Tales I cry at" are not "Sad" 

Although humans usually get confused from multiple existentially quantified proposi-
tions, we mostly assume intuitively that they are usually correct cases for reasoning, 
ie that they should have truth ratio close to 1.0. Nevertheless, these moods are  
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mathematically not fully correct, as their truth ratios are considerably below 1.0. Now 
consider the case OOII-1 = 0.59 

• 1(O): Some "Stories in TCMH" are not "Sad" 
• 2(I): Some "Tales I cry at" are "Stories in TCMH" 
• 3(I): Some "Tales I cry at" are "Sad" 

Usually, anyone will assume that this mood, like the both previous moods, is a correct 
case for reasoning. Although, their truth ratios differ with 0.86 – 0.59 = 0.27 consid-
erably within the value range [0.0, 1.0]. This experimentally proves, what was known 
since medieval time, that humans tend to assume that reasoning with existential quan-
tifiers are mostly confusion, but possibly correct. Possibly, because humans fail to 
combine multiple such fuzzy propositions logically correct. We can explain this phe-
nomenon with the possible sub-sets of the propositions | (A)| = 2, | (E)| = 2, | (I)| = 7 
and | (O)| = 7 (Table 1). Any figure including solely A or E propositions will have 6 
sub-sets in total. Any figure including solely I or O propositions will have 21 sub-sets 
in total. Deciding about the correctness of a particular example requires approving or 
disapproving the truth of every single sub-set. Thus, propositions that consist of mul-
tiple existential quantifications are “too fuzzy” for humans to be decided logically 
correctly. However, as soon as at least several true sub-sets exist, humans tend to as-
sume that the whole syllogism should be correct. 

Finally, consider the mood AII-1 = 1.0 

• 1(A): All "Stories in TCMH" are "Sad" 
• 2(I): Some "Tales I cry at" are "Stories in TCMH" 
• 3(I): Some "Tales I cry at" are "Sad" 

Assuming that 1(A) is really true, ie M is a real sub-set of P, then we get a tautology. 
However, if we always strictly apply the above rules for recognising fallacies, then we 
should be able to identify almost always possible true or false instances within a given 
proposition. Hence, tautologies should rather be rare cases in real life. 

4   Conclusion 

Our algorithmic approach for calculating the truth ratios of syllogisms has enabled us 
to reveal all structural properties of the complete syllogistic system. On top of the 
syllogistic system we have proposed a fuzzy syllogistic system that consists of possi-
bilistic arguments, which we have used in a sample application for recognising  
fallacies and fuzzy syllogistic reasoning with them. 

We believe that this approach may prove a practical approach for reasoning with 
inductively learned knowledge, where P, M, S object relationships can be learned 
inductively and the "most true" mood can be calculated automatically for those rela-
tionships. That shall be our future work, alon with examples including recognising 
intentional or unintentional fallacies, with the objective to facilitate automated  
human-machine interaction. 



426 B.İ. Kumova and H. Çakır 

References 

[1] Aristotle.: The Works of Aristotle, vol. 1. Oxford University Press, Oxford (1937) 
[2] Geurts, B.: Reasoning with quantifiers; Department of Philosophy; University of Ni-

jmegen (2002) 
[3] Brennan, J.G.: A Handbook of Logic. Brennan Press (2007) 
[4] Çakır, H., Kumova, B.İ.: Structural Analysis of the Syllogistic System. In: International 

Conference on Fuzzy Computation (ICF 2010), Valencia/Spain (2010) 
[5] Chater, N., Oaksford, M.: The probability heuristics model of syllogistic reasoning. Cog-

nitive Psychology 38, 191–258 (1999) 
[6] Dickstein, L.S.: The effect of figure on syllogistic reasoning. Memory and Cognition 6, 

76–83 (1978) 
[7] Dickstein, L.S.: Conversion and possibility in syllogistic reasoning. Bulletin of the Psy-

chonomic Society 18, 229–232 (1981) 
[8] Frege, L.G.F.: Begriffsschrift, eine der Arithmetischen Nachgebildete Formalsprache des 

Reinen Denkens. Verlag von Louis Nebert (1879) 
[9] Johnson-Laird, P.N., Steedman, M.: “The psychology of syllogisms. Cognitive Psychol-

ogy 10, 64–99 (1978) 
[10] Johnson-Laird, P.N., Bara, B.G.: Syllogistic inference. Cognition 16, 1–61 (1984) 
[11] Kumova, B.İ., Çakır, H.: Algorithmic Decision of Syllogisms. In: García-Pedrajas, N., 

Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6097, pp. 
28–38. Springer, Heidelberg (2010) 

[12] Oaksford, M., Chater, N.: The probabilistic approach to human reasoning. Trends in 
Cognitive Sciences 5, 349–357 (2001) 

[13] Russell, S., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice-Hall, 
Englewood Cliffs (2009) 

[14] Wille, R.: Contextual Logic and Aristotle’s Syllogistic. Springer, Heidelberg (2005) 
[15] Zadeh, L.A.: Fuzzy Logic and Approximate Reasoning. Syntheses 30, 407–428 (1975) 
[16] Zadeh, L.A., Bellman, R.E.: Local and fuzzy logics. In: Dunn, J.M., Epstein, G. (eds.) 

Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht (1977) 

Appendix A: Truth Degree of Syllogistic Moods 

The table (Table A1) shows the x = [1, 256] moods in 5 categories with TruthRatio(x) 
normalised in [0.0, 1.0]. False and true moods are sorted according their number of 
false and true cases, respectively. Unlikely and Likely moods are sorted in ascending 
order of their truth ratio. The table also shows the possibility distribution of the mem-
bership function FuzzySyllogisticMood(x)  {CertainlyNot, Unlikely, Uncertain, 
Likely, Certainly}. 
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Table A1. Possibility Distribution FuzzySyllogisticMood(x) over the Syllogistic Moods in 
Increasing Order of Truth Ratio of the Mood x 

Linguistic 
Value

Sum Mood x

CertainlyNot;
false;

ratio=0
25

EIA-1, EIA-2, EIA-3, EIA-4, AIE-1, AIE-3, IAE-3, OAA-3, IAE-4, 
AOA-2, AAE-3, EAA-3, EAA-4, AAE-1, AAO-1, EAA-1, EAI-1, 

AEA-2, AEI-2, EAA-2, EAI-2, AAA-4, AAE-4, AEA-4, AEI-4

Unlikely;
rather false;
0<ratio<0.5

100

EIE-1, IEE-1, EIE-2, IEE-2, EIE-3, IEE-3, EIE-4, IEE-4, AOE-2, 
OAA-2, OAE-2, AOA-1, IAA-1, OAE-1, OEE-1, IAA-2, EOE-3, 
OEE-3, AOE-4, EOE-4, OOE-3, AEA-1, AEE-1, AAA-3, AEA-3, 
AEE-3, EAE-3, EAE-4, EOE-1, EOE-2, OEA-2, OEE-2, OEA-4, 
OEE-4, OIE-1, OOE-1, OOA-4, OOE-4, IOA-3, IOE-3, OIE-3, 

IOA-4, IOE-4, IEA-1, IEA-2, IEA-3, IEA-4, IIA-1, IIA-2, IIA-3, 
IIA-4, IAE-1, OAA-1, OEA-1, AIE-2, IAE-2, OEA-3, AIE-4, AAA-2, 

AAE-2, EAA-1, EEE-1, EEA-2, EEE-2, EEA -3, EEE-3, EEA-4, 
EEE-4, IOA-1, IOE-1, IOA-2, IOE-2, OIA-2, OIE-2, OIA-4, OIE-4, 
OOA-2, OOE-2, OOA-3, IIE-1, IIE-2, IIE-3, IIE-4, AOE-3, IAA-3, 

OAE-3, IAA-4, OOA-1, OIA-1, OIA-3, AOE-1, AIA-2, EOA-3, 
AIA-4, AOA-4, EOA-4, OAA-4, OAE-4, EOA-1, EOA-2

Uncertain;
undecided;
ratio=0.5

6 AIA-1, AIO-1, AIA-3, AIO-3, AOA-3, AOO-3

Likely;
rather true;

0.5<ratio<1.0
100

EOO-1, EOO-2, OIO-1, OOO-1, OIO-3, AIO-2, EOO-3, AIO-4, 
AOI-1, AOO-4, EOO-4, OAI-4, OAO-4, IAO-3, IAO-4, OAI-3, 

AOI-3, III-1, III-2, III-3, III-4, OOO-3, OOI-2, OOO-2, IOI-1, IOO-1, 
OII-2, OIO-2, IOI-2, IOO-2, OII-4, OIO-4, IAI-1, OAO-1, OEO-1, 
AII-2, OEO-3, IAI-2, AII-4, AAI-2, AAO-2, EEI-2, EEO-2, EEI-3, 
EEO-3, EEI-4, EEO-4, EEI-1, EEO-1, IIO-1, IIO-2, IIO-3, IIO-4, 
IEO-1, IEO-2, IEO-3, IEO-4, OII-1, OOI-1, IOI-3, IOO-3, OII-3, 

IOI-4, IOO-4, OOI-4, OOO-4, EOI-1, EOI-2, OEI-4, OEI-2, OEO-2, 
OEO-4, AEI-1, AEO-1, AAO-3, AEI-3, AEO-3, EAI-3, EAI-4, 

OOI-3, AOO-1, IAO-1, OAI-1, OEI-1, IAO-2, EOI-3, OEI-3, AOI-4, 
EOI-4, AOI-2, OAI-2, OAO-2, IEI-1, EII-1, EII-2, IEI-2, EII-3, IEI-3, 

EII-4, IEI-4

Certainly;
true;

ratio=1.0
25

EIO-1, EIO-2, EIO-3, EIO-4, AII-1, AII-3, IAI-3, OAO-3, IAI-4, 
AOO-2, AAI-3, EAO-3, EAO-4, AAA-1, AAI-1, EAE-1, EAO-1, 
AEE-2, AEO-2, EAE-2, EAO-2, AAI-4, AAO-4, AEE-4, AEO-4  
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Big Five Patterns for Software Engineering Roles Using 
an ANFIS Learning Approach with RAMSET 

Luis G. Martínez, Antonio Rodríguez-Díaz, Guillermo Licea, and Juan R. Castro 
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Calzada Tecnológico 14418, Tijuana, México 22300 
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Abstract. This paper proposes an ANFIS (Adaptive Network Based Fuzzy In-
ference System) Learning Approach where we have found patterns of personal-
ity types using Big Five Personality Tests for Software Engineering Roles in 
Software Development Project Teams as part of RAMSET (Role Assignment 
Methodology for Software Engineering Teams) methodology. An ANFIS 
model is applied to a set of role traits resulting from Big Five personality tests 
in our case studies obtaining a Takagi-Sugeno-Kang (TSK) Fuzzy Inference 
System (FIS) type model with rules that helps us recommend best suited roles 
for performing in software engineering teams.  

Keywords: Fuzzy Logic, Uncertainty, Software Engineering, Psychometrics. 

1   Introduction 

Nowadays more and more mind-mapping and decision making programs find their 
way to our life. Use of effective decision making software for everyday planning and 
task management is on the rise in modern organizations. Web pages and Decision 
Groups commonly offer services for decision making and personnel selection with 
different methodologies applying psychometrics. 

Diverse personality tests like Jung, Myers-Briggs, Keirsey, Big Five, among other 
projective tests, can be used to know the sociopsychological characteristics and per-
sonality of individuals besides abilities for job placement and hiring, especially in 
assigning individuals to form a working team [1][2][3]. 

Effective use of psychometric instruments can add value to an organization. When 
used in selection and structured interview process, they enable companies to select 
more accurately those people who will perform best in a role. 

This paper proposes an ANFIS (Adaptive Network Based Fuzzy Inference System) 
Learning Approach to find personality type patterns of software engineering roles 
using Big Five Personality Tests while implementing RAMSET  (Role Assignment 
Methodology for Software Engineering Teams), a personality based methodology 
used in software project development case studies. Personality tests are based on 
interpretation; therefore to tackle uncertainty a Takagi-Sugeno-Kang (TSK) Fuzzy 
Inference System (FIS) type model with rules will help us recommend best suited 
roles for performing in software engineering teams. 
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The rest of the paper is organized as follows: section 2 is a brief background of 
personality and personnel selection relationships. Section 3 defines RAMSET’s steps 
and describes big five factors in general. Section 4 displays results of the big five 
personality test, the big five patterns and implementation of ANFIS model for RAM-
SET, concluding in section 5 with observations obtained from experience. 

2   Background 

Human Psychology studies are old, before the 80’s personality aspects were consid-
ered of low value in personnel selection. Personnel selection methodologically 
chooses individuals for the right job. The first tests [4] used for a programmer’s per-
formance prediction and personnel selection in software development projects where 
PAT test (Programmer Aptitude Test), WPT test (Wonderlic Personnel Test) and 
PMA test (Primary Mental Abilities). In personality analysis, different and popular 
tests exist, like Jung’s, Keirsey and Myers-Briggs Type Indicator (MBTI) tests. Ruth-
erford [5] manages Personality Inventories in his Software Engineering classes to 
integrate heterogeneous teams, obtaining good results in teams’ performance and 
individuals’ growth. Karn and Cowling [6] also implemented personality tests in 
Sheffield University England, documenting personality effects in Software Engineer-
ing Teams performance, mentioning that is a vast area and many subjects to consider 
relating software engineer’s personality and their teams. 

Feldt et al. [7] corroborate that empirical studies should collect psychometrics fo-
cusing in correlating personality ant attitudes to software engineering processes and 
tools. Personality type was measured with MBTI (Myers-Briggs Type Indicator) using 
Keirsey Temperament Sorter by Gorla and Lam [8], their survey study shows a rela-
tionship between Software Engineering Roles and MBTI dimensions, primarily analyz-
ing team leaders, analysts and programmers. These experiences resemble the findings 
by Capretz [9] in surveying people in the US working in software engineering.  

Shen [10] and colleagues have applied Myers-Briggs Type Indicator (MBTI) and 
Kiersey Temperament Sorter to form engineering design teams based on Wilde’s [11] 
own method of selection with this tests. They recommend a Sensing-Intuitive (SN) 
type as the most important preferred type linked to creativity for selection of engi-
neers in a leader role for design process. Also Sodiya et al. [12] from Nigeria have 
developed a tool integrating personality traits proposing a Cogno-Personality Assess-
ment Model for Software Engineering (CPAMSE) relating the Big Five Traits with 
roles and activities of engineers in software engineering. 

In contemporary psychology, the "Big Five" factors of personality are five broad 
domains or dimensions of personality which have been scientifically discovered to 
define human personality. The initial model was reported by Tupes and Cristal [13], 
Digman [14] advanced his model and Goldberg [15] extended it to the highest level of 
organization, and it is known as the “Five Factor Model” or FFM [16], is a purely 
descriptive model of personality. The big five personality tests are used to screen 
candidates for team building, selection, job analysis, training programs, coaching, 
counseling and leadership development. 

Personnel selection and assessment applies the measurement of individual differ-
ences to the hiring of people into jobs where they are likely to succeed. Industrial and 
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organizational psychologists who practice in this area use information about the job 
and the candidates to help a company determine which candidate is most qualified for 
the job. Job analysis is the process of determining knowledge, skills, abilities and 
personal characteristics required for a given job.  Based on results of job analysis, 
industrial and organizational psychologists choose selection methods which are most 
likely to be correlated with performance for the specific job. 

Wei-Shen and Chung-Chian [17] proposed a realistic personnel selection tool 
based on fuzzy data mining method feasible to assist businesses in finding eligible 
applicants through reliable information effectively and efficiently. Therefore agreeing 
that prediction of future organizational behavior of employees should be the focal 
point in the processes of personnel selection, finding the relationship between the 
attributes applicants owned and organizational behaviors. Their tool can assist busi-
ness manager to find eligible talent more efficiently. Their method is based on three 
types of behavior for a well-functioning organization: people must be induced to enter 
and remain with the organization; they must reliably carry out specific role or job 
requirements; and there also needs to be innovative and spontaneous activity that goes 
beyond role prescription [18].  

In Software Engineering Development Teams each member can take a different 
role, for our case studies we adopted those defined by Tomayko [19]:  architect, re-
sponsible for project creation, coordination and supervision; analyst, responsible for 
finding and following up on resources, requirement analysis and specifications; devel-
oper-programmer, responsible for implementation and code design; tester, responsible 
for tests and evaluation of the system; document specialist, responsible for compiling 
every document for evidence and defining documentation standards; and image and 
presentation role as a representative in charge of selling and promoting the product. 

As we can see Software Engineers have their typical fields of expertise like coordi-
nating, designing, programming, testing, evaluating, RAMSET methodology focus’ is 
to determine the best suited role for team performance relating personality test results 
with software engineering roles. We can choose from a set of different Personality 
Tests all revolving on the dimension types or personality traits that display the behav-
ior of the individual member of the team. Combining these tests we can acquire the 
most valuable information for decision making in assignment of roles. 

This paper specifically analyzes results of internet’s free Big Five Test applied in 
our different case studies with RAMSET methodology. 

3   Methodology 

At the University of Baja California, Tijuana Mexico teaching of Software Engineer-
ing in our Computer Engineering Program is being conducted with development of 
real software projects applying RAMSET: a Role Assignment Methodology for Soft-
ware Engineering Teams based on personality, what is unique about our methodology 
is a combination of Sociometric techniques, Psychometrics and Role Theory in Soft-
ware Engineering Development Projects, this methodology consists of the next steps: 

a) Survey for abilities and skills. 
b) Implementation of Personality Tests. 
c) Execute Personal Interviews. 
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d) Implementation of the Sociometric Technique. 
e) Assignment of Team Roles. 
f) Follow up of Team Role fulfillment. 

RAMSET methodology begins with a student’s survey enumerating related courses of 
software engineering he has taken, to know which programming languages and data 
base managers he is expert in. The next step is a series of personality tests; they could 
be Jung, MBTI, Big Five, Keirsey or similar tests. 

Subsequently we make an informal interview to know different aspects of his per-
sonality, what he likes to do, how he perceives himself at the end of his career studies, 
how he develops in the real world individually and with others, how he would like to 
participate in a team. After that a sociogram technique is applied to identify affinity 
for integration of teams.  Based on test results and interview information a team role 
is recommended to the instructor so individual members of each team develop a spe-
cific team role with all its functions. 

Big Five personality tests claim to measure your intensities in relation to the “Big 
Five” factors. The structure of the tests requires selecting options from multiple 
choice questionnaires. These big five personality tests equate your personality to your 
collective degrees of behavior in five factors. 

The Big Five factors are Openness, Conscientiousness, Extroversion, Agreeable-
ness, and Neuroticism (OCEAN, or CANOE if rearranged). The Neuroticism factor is 
sometimes referred to as Emotional Stability. And Openness factor sometimes is 
referred as Intellect. 

Openness (O) is a disposition to be imaginative, inventive, curious, unconventional 
and autonomous, has an appreciation for art, emotion, adventure, unusual ideas, curi-
osity and variety of experience. 

Conscientiousness (C) comprises of two related facets achievement and depend-
ability, has a tendency to show self-discipline, be efficient, organized, act dutifully 
and aim for achievement, plans rather than behave spontaneously. 

Extroversion (E) represents tendency to be sociable, outgoing and assertive, ex-
periences positive affect such as energy, passion and excitement. 

Agreeableness (A) is a tendency to be trusting, friendly, compassionate, coopera-
tive, compliant, caring and gentle. 

Neuroticism (N) represents tendency to exhibit poor emotional adjustment and ex-
perience negative or unpleasant emotions easily, such as anxiety, insecurity, depres-
sion and hostility. 

Because of uncertainty of personality traits a fuzzy based approach is considered to 
provide an integrated quantity measure for abilities of software development person-
nel which incorporates all aspects of personality traits involved for role assignment. 

Fuzzy based approaches have been considered like Lather’s [20] fuzzy model to 
evaluate suitability of Software Developers, also Ghasem-Aghaee and Oren’s 
[21][22] use of fuzzy logic to represent personality for human behavior simulation. 
Consequently encouraging engineering educators to make greater use of type theory 
when selecting and forming engineering design teams and delegating team roles, in 
benefit of achieving productivity and efficiency in team performance. 

The neuro-adaptive learning method works similarly to that of neural networks. 
This method has been applied in pattern recognition in areas like 3D object recogni-
tion[23], fingerprint matching[24] and human facial expression recognition[25]. 
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Neuro-adaptive learning techniques provide a method for the fuzzy modeling proce-
dure to “learn” information about a data set. Fuzzy Logic Toolbox software computes 
the membership function parameters that best allow the associated fuzzy inference 
system to track the given input/output data. The Fuzzy Logic Toolbox function that 
accomplishes this membership function parameter adjustment is called ANFIS. 

The acronym ANFIS derives its name from Adaptive Neuro-Fuzzy Inference Sys-
tem as defined by Jyh-Shing Roger Jang [26]. Using a given input/output data set, the 
toolbox function ANFIS constructs a Fuzzy Inference System (FIS) whose member-
ship function parameters are tuned (adjusted) using either a backpropagation algo-
rithm alone or in combination with a least squares type of method. This adjustment 
allows your fuzzy systems to learn from the data they are modeling.  

The modeling approach used by ANFIS is similar to many system identification 
techniques. First, you hypothesize a parameterized model structure (relating inputs to 
membership functions to rules to outputs to membership functions, and so on). Next, 
you collect input/output data in a form that will be usable by ANFIS for training. You 
can then use ANFIS to train the FIS model to emulate the training data presented to it 
by modifying the membership function parameters according to a chosen error criterion. 

 
Fig. 1. ANFIS Big Five Test Model 

 
Fig. 2. Big Five Test ANFIS Model Architecture 
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Fig. 3. Rules obtained in ANFIS Big Five Test Model 

In general, this type of modeling works well if the training data presented to AN-
FIS for training (estimating) membership function parameters is fully representative 
of the features of the data that the trained FIS is intended to model. 

Figure 1 shows our ANFIS model proposed where each Big Five trait is an input 
linguistic variable. Openness (O) takes a label value of one (1), conscientiousness (C) 
a label value of two (2), extroversion (E) a value of three (3), agreeableness (A) a 
value of four (4) and neuroticism (N) a value of (5). These input variables enter the 
ANFIS model and obtain an output variable that is the resulting Role recommended. 
Label values for Role are (1) analyst, (2) architect, (3) developer-programmer, (4) 
documenter, (5) tester and (6) presenter. 

The ANFIS under consideration has five variable inputs denoted by  x = { O, C, E, A, 
N }, with two Gaussian membership functions (B), a set of 32 rules and one output vari-
able Role (R). For a first-order Sugeno Fuzzy Model, a  k-th rule can be expressed as: 

Rule k-th:    

IF (x1 is kB1 ) AND (x2 is kB2 ) AND (x3 is kB3 ) AND (x4 is kB4 ) AND (x5 is kB5 ) 

THEN R is f k ( x ) , where 
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The corresponding equivalent ANFIS architecture is as shown in Fig. 2. The entire 
system architecture consists of five layers, these are {input, inputmf, rule, outputmf, 
output}. 

Using this architecture, with OCEAN traits as input linguistic variables and Roles 
as output linguistic variables, a Takagi-Sugeno-Kang (TSK) FIS type model was 
developed using the ANFIS Editor GUI, creating, training and testing it, to find ade-
quate rules to help us find best suited Role with OCEAN personality traits. Figure 3 is 
an abstract visualization of the rules generated by the model. 

4   Results 

Work of our case studies from 2007-2 to 2009-2, consisted of 72 software engineers 
working with real projects, assigning 80 roles in software development teams.  Of 
these 13 have been assigned as Analysts, 13 Architects, 17 Developers/Programmers, 
14 Documenters, 14 Tester and valuator, 9 Image and presentation. 

Big Five personality test results obtained are presented in Table 1 showing the 
means and standard deviation of each trait for every role. Each table row is a person-
ality vector unique for every Role, no two rows have exactly the same values for 
every one of their attributes, and this gives us a significant difference between each 
Role to recommend based on the Big Five Personality Test. 

Table 1. Results of OCEAN test for Software Engineering Roles 

 ROLE O C E A N 

  MEAN 

1 Analyst 50.615 63.143 51.571 45.846 64.286 

2 Architect 54.154 67.231 57.308 52.154 64.154 

3 Developer 51.667 52.778 44.111 54.471 59.222 

4 Documenter 55.000 61.286 51.929 52.000 58.857 

5 Tester 51.714 66.133 56.000 47.857 63.333 

6 Presenter 52.222 60.889 46.889 55.778 65.778 

  STANDARD DEVIATION 

1 Analyst 11.644 9.502 19.394 12.688 11.472 

2 Architect 8.735 10.910 16.317 10.846 7.978 

3 Developer 16.439 10.429 12.718 11.737 11.944 

4 Documenter 11.602 8.361 13.035 8.302 8.179 

5 Tester 15.066 10.596 20.340 12.538 16.189 

6 Presenter 15.279 15.136 12.534 14.507 9.871 

  TOTAL AVERAGE 

 Average 52.625 61.125 50.513 51.250 62.525 
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Fig. 4. Big Five Patterns (B5P) 

To see the big picture these results can be displayed relating them with a center 
point using a radar chart type, obtaining Big Five Patterns (B5P) for Software Engi-
neering Roles, these patterns are shown if figure 4, while figure 5 is a comparative of 
them. 

There are significative differences between each role. For example trait (E) is high 
for architect and tester, low for a developer. Trait (C) is high for most roles except for 
developer. Trait (A) is high for a presenter and developer, but low for an analyst. This 
can give us a glimpse of specific traits for a particular role. Thus one trait does not 
define the personality of a role, but a personality vector with all traits involved can 
give us differences between each role. 

These data was used for our ANFIS model obtaining figure 6 where it shows Input 
Trait and Output Role Relationships of this model. Whereas numeric values for 
linguistic variable Roles were (1) Analyst, (2) Architect, (3) Developer-Programmer, 
(4) Documenter, (5) Tester and (6) Presenter. Openness trait (O) covers roles 2 thru 4, 
Conscientiousness trait (C) engulfs roles 4 thru 6, Extroversion trait (E) from 3 thru 6, 
Agreeableness trait (A) reaches covers 2,3 and 4, and Neuroticism trait (N) reaches all 
roles. 
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Fig. 5. Big Five Patterns Comparative 

 

Fig. 6. Input Trait and Output Role Relationships 

Analizing data, range of trait means are from 50 to 60, we will consider low degree 
around 30-40 and high degree around 70-80 based on standard deviation. With these 
results we can assertain that a low degree of (E) is definitively recomended to place 
this person as a Developer-Programmer, this indicates a person highly Introverted, for 



 Big Five Patterns for Software Engineering Roles 437 

 

him is difficult to relate with others, although his high degree in trait (A) is an asset as 
he is very cooperative, trusting and compliant, attributes for a good programmer, also 
in B5P pattern figure of developer has a high degree of (O) indicating to be 
imaginative and creative, qualities for code design. 

Trait (N) is a most significative trait as envelopes a wide range of roles, those with 
low degree of (N) or better said with opposite trait a high degree of (ES) Emotional 
Stability is a quality of a leader presenting security, reassurance and selfconfidence. 

For a high degree of (E) as noted in B5P figures, an architect, analyst and tester 
present this quality, indicating that these roles are best suited for outgoing people, that 
can relate easilly with others, with passion and excitement in reaching goals and 
objectives. 

The set of rules obtained with ANFIS learning approach implemented in MatLab’s 
commercial Fuzzy Logic Toolbox [27], help us simulate our case studies and has 
given us another approach to start automating Role Assignment with RAMSET in 
software engineering projects. 

5   Conclusions 

The purpose of using RAMSET is identifying the individual’s qualities to carry out 
the most suitable role in an effective working team. Some personalities and big five 
traits have been identified to better perform a type of role this defined by a personality 
vector. The Big Five personality test is only one of many personality tests applied and 
proposed in RAMSET, as we can see trait-role relationship is not clearly identifiable 
for all specific roles, a combination of these different personality tests will give us a 
better defined identifiable result. 

Implementation of ANFIS models is a highly powerful tool to improve Data Base 
Rules arisen from this study; combination of different personality test FIS models will 
create a computer aided software tool invaluable for decision making in assignment of 
software engineering roles. 

We know that personality is an important factor to performance of the team, thus is 
latent the difficulty to assign the adequate role to each member so the team can per-
form with success. Automation of RAMSET will help us with this task and follow up 
of RAMSET with fuzzy logic approaches will define better this tool and confirm 
RAMSET as a methodology for integrating teams and an instrument to select person-
nel for Software Engineering Development Teams. 
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Abstract. In this work we present a new proposal to initialize the weights in a 
Backpropagation Neuronal Network (NN) using the coefficients from a FIR 
Low-Pass Filter to introduce a null in the radiation pattern in a seven-element 
array of antennas to eliminate interferences in a radar system. A radar system 
needs to eliminate the directional noise in order to obtain a cleaner signal. The 
method used to eliminate this kind of noise (jitter) has to be adaptive because 
the objective is in constant movement, therefore, the adaptation time must be as 
fast as possible. Our work is based on the window method to reduce the second-
ary lobes in fixed arrays of antennas. We modify the radiation pattern by  
introducing a null at 45.5º which corresponds to the secondary lobe where the 
interference is presented. This is achieved when we create windows from sever-
al FIR Low-Pass Filters. The coefficients of these filters are used to initialize 
the weight vectors of a Backpropagation Neural Network which performs the 
adaptive process to obtain the final parameters to achieve the noise elimination. 
For testing our proposal we calculate the Mean Square Error (MSE), the Signal 
Noise Relation (SNR) and we graphed the Radiation Pattern. In addition we 
calculated the Cross Correlation Index in each iteration, between the desired 
signal and our results. With this method we reduced the number of iterations re-
quired by the process. 

Keywords: Radar system, Noise elimination, Backpropagation, FIR low-pass 
filter. 

1   Introduction 

In this paper we used an asymmetrical, distributed equidistant, seven-element array of 
antennas which was used by Widrow in 1967 [1], another work using this approach 
was proposed by Davisson [2]. We calculate the radiation pattern by summing the 
weighted outputs in each element. The weights are equal to one [3] in the array factor 
from a fixed array antenna. With these values, the filter impulse response from a rec-
tangular window is formed and the magnitude response is a low-pass filter; therefore 
this window does not change the original radiation pattern.  

First we analyze the fixed arrays of antennas to modify the radiation pattern. In 
particular, we describe the process for reducing the secondary lobes. This reduction is 
                                                           
* Corresponding author. 
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achieved by the use of Hamming, Hann and Kaiser windows, low-pass filter, and 
truncated low-pass filter with Blackman window. With the use of these filter coeffi-
cients, we could observe a side lobes reduction in the fixed antenna arrays. 

It is important to emphasize the fact that with this method, the main lobe increased 
its half-power angle; this means that the main lobe became wider. The width of the 
beam is related to the cutoff frequency of filters which depends on the number of the 
coefficients. Then, there is no control on that frequency. Due to the above, in this 
work we proposed a truncated low-pass filter, since we need the cutoff frequency data 
to calculate the coefficients. 

As a second step, the weights obtained by the windows are used to initialize the 
weight vector for the Backpropagation Neural Network used to implement the adap-
tive array of antennas. With this proposal we modified the original radiation pattern 
since the first iteration of the algorithm, and we achieved lower amplitude of side 
lobes with respect to the original pattern. Our goal is to reduce the amplitude of sec-
ondary lobes where the interferences are showed. Therefore, we need to place a null 
in the direction of one of the side lobes. 

Finally, we modified the radiation pattern of the array by placing a null in the di-
rection of an interfering signal known a priori. In this case the direction of the interfe-
rence is located at 45.5 º and 24º, where the secondary side lobe is. After training the 
Backpropagation neural network, we obtained the final weights for the adaptive array, 
considering that the main lobe must preserve the same half-power angle, and the null 
must be inserted in the specified direction.  

For verifying the reduction in the number of iterations, we calculated the mean 
square error, the signal to noise ratio and then we plotted the radiation pattern to veri-
fy whether the null was inserted or not in the desired direction. In addition, for each 
step, we calculated the cross correlation index between the desired signal and the 
output of the array to determine the number of iterations required for each window to 
insert a null in the radiation pattern. 

2   Materials and Methods 

In this section we present the basic necessary concepts to understand our proposal. 
First, we present the antenna system used in this work. Then, we describe the second-
ary lobes reduction process. Finally, we present the design of the Backpropagation 
neural network.  

2.1   Antenna System 

The antenna system we used consists of an array of asymmetrical antennas with an 
equidistant separation between elements of λ/2 as it is shown in Figure 1, where λ is 
the wavelength. We can observe the generated radiation pattern, which consists of a 
main lobe at 0º and side lobes at ± 24 ° and ± 45.5 ° respecting  to the vertical axis. 

The side lobes or secondary lobes usually are unwanted because they radiate elec-
tromagnetic energy in one or more directions, so it is necessary to reduce or eliminate 
them.  When Wu weights are equal either to one or to the coefficients of the windows, 
then we have fixed arrays [1] [2], and when the weights change over time it is an 
adaptive array. 
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Fig. 1.  Asymmetric array of dipole antennas 

For obtaining the radiation pattern of the total far field antenna array, we used the 
superposition principle, which states that the field (Eθ) produced by a set of sources is 
the sum of the fields of individual sources of the Array Factor (AF) multiplied by the 
field element. To illustrate the radiation pattern of the asymmetric we obtained the 
array factor from Figure 1: 

 
(1)

In vectorial form W ·  (2)

where:  π θ , π θ , π θ ,1,  π θ , π θ , π θ  (3)

Then the field produced by the asymmetric array of antennas from Figure 1 is given 
by: 

è
 η4ð

sin è  (4)

where L is the length of the dipole,η is the intrinsic impedance of the medium,  is 
the angle respecting to the z-axis in spherical coordinates, and r is the distance from 
the antenna to a reference point. From the array factor in (1), the weight vector is 
taken as the impulse response of the rectangular window with 7 coefficients: , , , , , , [1, 1, 1, 1, 1, 1, 1] (5)

Fourier transform is applied to obtain the magnitude response of the filter, as  
follows: 
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 (6) 

Figure 2 shows the magnitude response of the filter. We can observe a main lobe and 
several side lobes in the range from 0 to π/2. It shows a behavior of a low-pass filter 
with cutoff frequency of ωc = 0.0640π. 

 

Fig. 2.  Normalized magnitude response  

The value ωc is used to calculate the low-pass filter coefficients which are used to 
initialize the weight vector of the Backpropagation neural network. 

2.2   Secondary Lobes Reduction 

In fixed arrays, the windows and low-pass filter coefficients are used in the factor 
array [2] [5] for reduction of side lobes. There are several window functions and me-
thods to reduce the amplitude of secondary lobes. In this paper we present only some 
windows which are calculated by the following expressions: 

 0.54 0.46 cos 2 , 0  (7)

0.5 1 cos 2 , 0  (8)

1 2 1⁄ 0
0        other case        (9)

where:   I0(X) is the Bessel function. 1 cos 2 1  (10)

We can notice that ωc is not needed to obtain the coefficients. The number of  
coefficients, n, varies depending on the number of elements in the antenna array.  
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From figure 1 we concluded that seven coefficients (n = 7) are needed. Now, tak-
ing as a reference the impulse response of the rectangular window in (5) and knowing 
that this window behaves as a low-pass filter, we proposed to calculate the coeffi-
cients for a low-pass FIR filter truncated, because in contradiction to the window 
functions, the value of the cutoff frequency is taken into account and we can control 
the width of the main lobe. The frequency response of an ideal low-pass filter has a 
linear phase response. The truncated filter takes only some values of the coefficients 
of the impulse response in the range of -M ≤ n ≤ M and the coefficients out of the 
range are equal to zero, therefore we have a finite length of N = 2M + 1: sin

0 , 0 1
 (11)

The coefficients obtained in (7 – 11) are used to initialize the weight vector in the 
adaptive antenna array. The goal of this proposal is to reduce the number of iterations 
taken by the adaptation process to insert a null.  In this paper, the direction of the 
interference coincides with the angle of the side lobes at 24º, 45.5º and 90º. 

2.3   Backpropagation Neural Network 

The Backpropagation model proposed by Rumelhart and McClelland has become one 
of the most powerful tools for pattern recognition in the neural network approach. It 
reduces the mean quadratic error between the desired signal and the current output of 
the network with respect to the connection weights in each iteration. The structure of 
a multilayer neural network with one hidden layer was used in this work Figure 3: 

 
Fig. 3.  Backpropagation neural network structure 

The input and the output layer have seven neurons which correspond to the seven-
element antenna array. We used the nonlinear sigmoid activation function. 

Table 1 shows the coefficients values used to initialize the weight vector of the 
Backpropagation neural network. These values were obtained after applying the  
different windows.  
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Table 1. Coefficients used for weight vector initialization for Backpropagation neural network 

N WOnes WWHamming WWHann WWKaiser WFPBN WFPBBlack 

1 1 0.0800 0 0.9403 0.9405 0 

2 1 0.3100 0.2500 0.9732 0.9733 0.0083 

3 1 0.7700 0.7500 0.9933 0.9933 0.0403 

4 1 1.0000 1.0000 1.0000 1.0000 0.0630 

5 1 0.7700 0.7500 0.9933 0.9933 0.0386 

6 1 0.3100 0.2500 0.9732 0.9733 0.0077 

7 1 0.0800 0 0.9403 0.9405 0 

The low-pass filter coefficients from FPB window were normalized because they 
yielded the best results.  The neural network places a zero at a time and calculates the 
Signal to Noise Ratio (SNR), the Root Mean Square Error (MSE) and the correlation 
index between the desired signal and the output. 

Equation (12) is used to calculate the signal to noise ratio (SNR), Mean Square  
Error (MSE) is calculated with (13-15) and (16) is used for calculating the maximum 
rate correlation (MC) of the output signal.  10 ··  (12)

where: 

• vS = desired signal vector 
•  vl = interference angle vector 
• We = input weights 

 (13)

1 2  (14)

 (15)

where:  

• ep = induced error for each pattern 
•   error in each output 
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•  tk  desired signal 
•  output network in each neuron  ∑∞

∞∑∞
∞ ∑∞

∞
 (16)

where:  

• Ssal  output signal 
• SD  desired signal 

The resulting parameters from the Backpropagation neural network introduced a zero 
in the side lobes at ± 45.5° ± 24°. 

3   Experiments and Results 

For testing the results from each window we calculated the following parameters from 
iterations 6 through 9:  

  1.- Signal to noise ratio.  
2.- Root mean square error.  
3.- Correlation index. 

Table 2 shows the case when a zero is introduced in the first secondary lobe at 45.5º. 
We can observe that Kaiser window presents a signal to noise ratio of 69.210041 dB 
which is the greatest value in iteration 9. Result from FPBN window is very similar to 
Kaiser window with a value of 69.192511 dB. On the other hand, Kaiser induces a 
very small MSE of 0.445892 which is slightly greater than the obtained by the win-
dows: Ones equal to 0.413471 and FPBN equal to 0.445830.  Finally, the correlation 
index between the desired signal and filtered signal is 93.718763 for Kaiser, 
93.713275 for FPBN, and 91.867102 for Ones windows.  

There are correlation index values greater than the above results such as Hamming 
and Hann windows with 99.967892 and 99.959186, respectively; however, Kaiser, 
Ones and FPBN windows provided better results for the three benchmarks. 

Now, we need to plot the radiation pattern to find out which window introduces 
the null in the desired direction.  

Observing figures 5, 6 and 9 we notice that Hamming, Hann and FPB with 
Blackman window affect the half-power angle because they increase it. This implies 
that the gain or the directivity of the main lobe decrease just as the efficiency, and 
what we look for is to concentrate the greatest quantity of energy in the main lobe 
with the lowest half-power angle. However, Kaiser window (figure 7) shows the best 
results because the secondary lobe at 45.5 º is almost vanished in 7 iterations (blue-
circled line). 

Figure 4 shows the radiation pattern when Ones window is used for initialization. 
It can be observed that the shape of the main lobe is preserved at any iteration, and in  
8 and 9 iterations, the Ones window introduces a null in the assigned direction.  Ac-
cording to Table 2, this window shows the greatest SNR and the lesser MSE, although 
the correlation index presents low percentage.  
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Table 2. The values of the parameters SNR, MSE and CI from iterations 6 through 9 when a 
zero is introduced at 45.5º 

Window 
Number 

of  
Iterations  

SNR (dB) MSE 
Correlation 
Index (%) 

Ones 

6 31.212157 1.266932 81.710410 

7 40.915319 0.647964 85.987729 

8 52.387430 0.439700 89.364769 

9 64.169735 0.413471 91.867102 

Hamming 

6 53.120361 2.618072 99.903037 

7 55.881995 2.552359 99.935632 

8 58.643200 2.489031 99.955330 

9 61.387413 2.427984 99.967892 

Hann 

6 51.925578 3.029346 99.874932 

7 54.781435 2.949531 99.917795 

8 57.758855 2.872518 99.943189 

9 60.899062 2.798211 99.959186 

Kaiser 

6 37.526094 0.778117 85.349271 

7 47.750276 0.501622 88.999118 

8 58.422886 0.453040 91.735617 

9 69.210041 0.445892 93.718763 

FPBN 

6 37.506085 0.779135 85.338363 

7 47.729840 0.501797 88.990206 

8 58.403802 0.452999 91.728601 

9 69.192511 0.445830 93.713275 

FPB with 
Blackman 
window 

6 19.266619 6.859073 89.040618 

7 18.914237 6.828505 92.341726 

8 18.617182 6.792110 94.568791 

9 18.366871 6.749118 95.427260 



448 C. Campa, A. Acevedo, and E. Acevedo 

 

Fig. 4.  Ones window initialization 

Figure 5 illustrates the radiation pattern when initializing with the Hamming win-
dow. We can observe that the main lobe is wider than the original.  However, a null is 
inserted in the assigned direction in each iteration.  According to Table 2, this window 
provides the best correlation index between the desired signal and the filtered signal, 
because it inserts a zero very quickly, but does not preserve the half-power angle of 
the original pattern. 

 

 

Fig. 5.  Hamming window initialization 

Figure 6 shows the radiation pattern when the Hann window is used for initializing. 
We can notice that the main lobe is wider than the original and is even wider than the 
obtained with the Hamming window.  Like Hamming, it inserts a null in the assigned 
direction in each iteration and provides a great correlation index between the desired 
signal and the filtered signal.  It inserts a zero very quickly, but does not preserve the 
half-power angle of the original pattern.  
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Fig. 6.  Hann window initialization 

Figure 7 shows the radiation pattern with the Kaiser window initialization. The 
shape of the main lobe is preserved in any iteration. Null is introduced in the assigned 
directions until iterations 8 and 9 are reached. We can observe from Table 2 that SNR 
is one of the largest and presents a low MSE, although the correlation index percen-
tage is low compared with Hann and Hamming window results. 

 

Fig. 7.  Kaiser window initialization 

Figure 8 shows the radiation pattern when we use the FPBN window initializa-
tion. This window presents a similar behavior to Ones and Kaiser windows. Ac-
cording to Table 2 the SNR is one of the largest and has a small MSE, although  
the rate of correlation has a low percentage compared with Hann and Hamming  
window.  

Same process is performed to find out which windows provides the coefficients 
for initializing the weight vector of Backpropagation neural network that will pro-
duced  best results to eliminate the secondary lobe at 24°, but discarding the three 
above windows which widened the main lobe. 
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Fig. 8.  FPBN window initialization  

Table 3 shows the benchmarks when a zero is introduced at 24º. It can be observed 
that more iterations are required to achieve the goal. This is because the closer the 
secondary lobe is from the main lobe the harder is the elimination of the lobe because 
it contains more energy. The results show that the FPBN window presents the best 
efficiency, at iteration 12, it shows a SNR equal to 147.697961dB and the lowest 
MSE equal to 0.479700 but the best correlation index is obtained with the Kaiser 
window (94.683943%).  

Table 3. The values of the parameters SNR, MSE and CI from iterations 9 through 12 when a 
zero is introduced at 24º 

Window 
Number of 
Iterations 

SNR (dB) MSE 
Correlation 
Index (%) 

Ones 

9 20.373207 2.869320 92.276890 

10 25.091940 2.206256 93.102566 

11 36.996036 1.223430 94.064350 

12 69.032278 0.520028 94.473918 

Kaiser 

9 39.328505 1.075121 91.497611 

10 84.732492 0.519505 92.649002 

11 117.221341 0.484442 93.732544 

12 147.472620 0.479735 94.683943 

FPBN 

9 39.245646 1.078720 91.496478 

10 84.987599 0.520054 92.646636 

11 117.464164 0.484406 93.729652 

12 147.697961 0.479700 94.680936 
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Figure 9 shows the radiation pattern with the Ones window initialization. The 
shape of the main lobe is preserved and the zero is introduced in the assigned direc-
tion at  iteration 12. According to Table 3, this window presents the worst results with 
a SNR = 69.032278 dB, a MSE = 0.520028 and CI = 94.473918.  

We can observe the results from the Kaiser window initialization in figure 10.  
The shape of the main lobe is preserved.  At iterations 10 and 11 the null has been 
inserted at the assigned direction.  According to Table 3, its SNR is one of the largest, 
it presents a low MSE and the greatest percentage of correlation index. 

 

Fig. 9.  Ones window initialization 

 

Fig. 10.  Kaiser window initialization 

Figure 11 shows the radiation pattern when the FPBN window is used for initiali-
zation.  According to Table 3, this window presents the largest SNR, the lowest MSE 
and the correlation index is slightly lower than the obtained by the Ones window. 

From the above results, we can conclude that the FPBN window is the best option 
for initializing the weight vector for Backpropagation neural network because it ob-
tains the suitable results at iteration 10.   
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Fig. 11.  FPBN window initialization 

Table 4 shows the best results obtained by FBPN and Kaiser windows for elimi-
nating secondary lobes at 24º and 45.5º, respectively.  

Table 4. The best results obtained by FBPN and Kaiser windows to eliminate the secondary 
lobes at  24º and 45.5º, respectively 

Angle Window Iteration SNR (dB) MSE Correlation Index (%) 

24º FPBN 10 84.987599 0.520054 92.646636 

45.5º Kaiser 7 47.750276 0.501622 88.999118 

4   Conclusions 

The behavior of several windows is similar to a low-pass FIR filter, therefore their 
results can be considered as filter coefficients.  

When we applied these values to initialize the weight vector of a Backpropagation 
neural network, we could observe a reduction in the number of iterations required  
for eliminating secondary lobes in a radiation pattern from a seven-element antenna 
array.  

Some windows such as Ones, Hamming, Hann, Kaiser, FBPN and FBPN with 
Blackman were used to achieve the elimination of secondary lobes at 24º and 45.5º, 
where an apriori known interference is located.  

From the obtained results, we could observe that Hamming, Hann and FBPN with 
Blackman window widened the main lobe therefore they were discarded. 

Two windows were suitable for providing the coefficients to initialize the weight 
vector of the Backpropagation neural network and for eliminating secondary lobes: 
FBPN window to introduce a null at 24º and Kaiser window to introduce a null at 
45.5º.  
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The use of several windows affected the number of iterations required to achieve 
the secondary lobes elimination. In this work, the best results were reached at iteration 
10 and 7, when we applied FBPN and Kaiser windows, respectively. 

In other studies we can observe the reduction of the secondary lobes, but that solu-
tion needs a lot of iterations. They proposed a solution to obtain the weights but they 
do not consider the processing time as an issue because they applied it in fixed anten-
na arrays [5].  
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Abstract. In this paper we describe a method for the optimization of type-2 
fuzzy systems based on the level of uncertainty considering three different cases 
to reduce the complexity problem of searching the solution space. The proposed 
method produces the best fuzzy inference systems for particular applications 
based on a genetic algorithm. We apply a Genetic Algorithm to find the optimal 
type-2 fuzzy system dividing the search space in three subspaces. We show the 
comparative results obtained for the benchmark problems. 

Keywords: Type-2 Fuzzy Logic, Genetic Algorithms. 

1   Introduction 

We describe in this paper a method for the optimization of type-2 fuzzy systems. The 
main goal of this research was to develop the optimization method for type-2 fuzzy 
systems based on the footprint of uncertainty (FOU) of the membership functions; we 
use benchmark problems to test the optimization method for the fuzzy systems and 
describe the simulation results.  

The motivation for this work is that currently there are no systematic methods for 
constructing optimal type-2 fuzzy systems for particular applications. In most of the 
cases an optimization method is used, but no clear explanation of the solution is ob-
tained. For these reasons we propose a systematic method for optimizing type-2 fuzzy 
systems based on the FOU. 

This paper is organized as follows: Section 2 shows an introduction to the theory of 
soft computing techniques, section 3 describes the development of the evolutionary 
method; in section 4 the simulation results are presented, section 5 shows the  
conclusions and finally the references are presented. 
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2   Soft Computing Techniques 

The term soft computing refers to a family of computing techniques comprising four 
different areas: Fuzzy Logic (FL), evolutionary computation (EC), neural networks 
(NN), and probabilistic reasoning (PR). The term soft computing distinguish these 
techniques from hard computing that is considered less flexible and computationally 
demanding. Imprecision results from our limited capability to resolve detail and en-
compasses the notions of partial, vague, noisy and incomplete information about the 
real world [1, 2, 3, 4, 5].  

2.1   Type-2 Fuzzy Logic 

The original theory of Fuzzy logic (FL) was proposed by Lotfi Zadeh [6], more 
than 40 years ago, and this theory cannot fully handle all the uncertainty that is 
present in real-world problems. Type-2 Fuzzy Logic can handle uncertainty be-
cause it can model and reduce it to the minimum their effects. Also, if all the un-
certainties disappear, type-2 fuzzy logic reduces to type-1 fuzzy logic, in the same 
way that, if the randomness disappears, the probability is reduced to the determin-
ism [4, 7, 8].  

Fuzzy sets and fuzzy logic are the foundation of fuzzy systems, and have been 
developed looking to model the form that the brain manipulates inexact informa-
tion. Type-2 fuzzy sets are used to model uncertainty and imprecision; originally 
they were proposed by Zadeh in 1975 and they are essentially “fuzzy-fuzzy” sets in 
which the membership degrees are type-1 fuzzy sets (See Fig. 1) [4, 5, 9, 10, 11, 12, 
13, 16]. 

 

Fig. 1. Basic structure of Type-2 Fuzzy Inference System 

2.2   Genetic Algorithms 

To use a genetic algorithm (GA) one should represent a solution to the problem as a 
genome (or chromosome). The genetic algorithm then creates a population of solu-
tions and applies genetic operators such as mutation and crossover to evolve the solu-
tions in order to find the best one. It uses various selection criteria so that it picks the 
best individuals for mating (and subsequent crossover).  
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The objective function determines the best individual where each individual must 
represent a complete solution to the problem you are trying to optimize. Therefore the 
three most important aspects of using genetic algorithms are:  

(1) definition of the objective function,  
(2) definition and implementation of the genetic representation, and  
(3) definition and implementation of the genetic operators [14]. 

3   Method Description 

Based on the theory described above, a new method for optimization of the member-
ship functions of type-2 fuzzy systems based on the level of uncertainty is proposed. 
In particular, the method includes optimizing the membership functions based on the 
uncertainty of the type-2 fuzzy system.  

3.1   Optimization of the Fuzzy System Based on the Level of Uncertainty 

Fuzzy systems can be robust and flexible in domains subject to imprecision and un-
certainty. The linguistic representation of knowledge allows a human to interact with 
a fuzzy system in an intuitive, seamless manner [5].  

For the Fuzzy Inference System optimization based on the level of uncertainty; the 
first step is obtain the optimal type-1 Fuzzy Inference System, which allows us to find 
the uncertainty of their membership functions. In this case we used ℇ (epsilon) for 
representing the uncertainty. For the next step we used three cases to manage the use 
of genetic algorithms for all situations. These are: 

1. Equal value of uncertainty for all membership function. We can see in Fig. 2 dif-
ferent membership functions with the same footprint of uncertainty. 

 

Fig. 2. Representation of equal value of uncertainty for all membership function 
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2. Different value of uncertainty in each input. We can see in Fig. 3 different member-
ship functions with the same footprint of uncertainty for each input in the fuzzy  
system. 

 

Fig. 3. Representation of different value of uncertainty in each input 

3. Different value of uncertainty for each membership function. We can see in Fig. 4 
different membership functions with different footprint of uncertainty. 

 

Fig. 4. Representation of different value of uncertainty for each membership function 
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In Fig. 5 we can see how the inputs in fuzzy inference systems affect the output, to 
find the largest percentage of data inside the output interval.  

 

 

Fig. 5. Data inside the output interval, where superior line indicates the upper value in the 
interval output, inferior line indicates the lower value in the interval output and middle line 
indicates the original output value of the fuzzy inference system 

We consider the optimization of type-2 fuzzy systems based on the above men-
tioned three cases. As a consequence our proposed method is illustrated in Fig. 6.  

Data inside the interval output 

Second Input 

First Input 
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Fig. 6. Representation of Optimization to Type-2 Fuzzy Inference Systems based on level of 
uncertainty 

This method focuses on the optimization of type-2 fuzzy systems with respect to 
the footprint of uncertainty of their membership functions; the main thing is to get a 
type-2 fuzzy system that is optimal for the problem to be solved; making a compari-
son between the performance of the three previous cases where we use a genetic algo-
rithm to obtain the type-2 fuzzy logic system, penalized by the width of the footprint 
of uncertainty. 

4   Simulation Results 

We describe in this section simulation results for two benchmark problems. The type-
2 fuzzy systems were implemented with the type-2 fuzzy logic toolbox developed 
previously by our group [10].  

 

ɛ Equal 
value of 
uncertainty 
for all 
membership 
function

GA GA GA 

ɛ  
Different 
value of 
uncertainty in 
each input 

ɛ Different 
value of 
uncertainty for 
each  
membership 
function 

Comparison 

Type-2 FIS 
Optimal 

Type-1 FIS 
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4.1   Miles Per Gallon (MPG) Benchmark Problem 

The first benchmark problem is known as automobile MPG (Miles per Gallon) pre-
diction. This problem is a typical nonlinear regression problem, in which several 
attributes (inputs variables) as number of cylinders, weight, model years, etc., are 
used to predict another continuous attribute (output variable) in this case MPG. The 
original data base contains 384 data, the first 192 were used for training data and the 
other 192 for testing. Jang et al. in [15], found the best model takes "weight" and 
"model year" as the inputs variables for the type-1 fuzzy inference system with two 
membership functions for each input.  

Based on those results to obtain a type-2 fuzzy inference system we use the type-1 
fuzzy system as a basis to manually perturb its value with an epsilon in the member-
ship functions, in this case of the two most significant variables and reducing the 
input data for training, the following results are obtained. We propose an index to 
evaluate the fitness of the fuzzy systems:  

εn

N
Index

+
=

1
 

Where N equals to data inside the interval output between the total output data; n 

equals to number of fuzzy systems; and ɛ equals to value of increased uncertainty of 
the membership functions for table 1, 2 and 3.  

 For the first case, 20 fuzzy systems were obtained by increasing the values of 
equal epsilon by 10%. For case two, where the increase of epsilon is different per 
input, 30% increase for the first input and 10% in second input; and for the third case 
where the increase of epsilon is different per membership function 15% 5% 10% 20% 
increase respectively.  

Table 1 shows the simulation results with manual increase for Equal Value of  
Uncertainty for all Membership functions, for the MPG benchmark problem.  

Table 1. Equal value of uncertainty with manually increase (10% Increase) 

No. N n Epsilon ( ɛ ) Index 
Data inside 
the interval 

output 
Base 0.3418 20 0 0.11 67/192 

1 0.602 20 0.1 0.2 118/192 

2 0.7296 20 0.2 0.24 143/192 

3 0.7857 20 0.3 0.26 154/192 
4 0.7908 20 0.4 0.26 155/192 
5 0.8061 20 0.5 0.27 158/192 
6 0.8265 20 0.6 0.28 162/192 

7 0.8469 20 0.7 0.28 166/192 
8 0.8571 20 0.8 0.29 168/192 
9 0.8571 20 0.9 0.29 168/192 

10 0.8622 20 1.0 0.29 169/192 

11 0.8622 20 1.1 0.29 169/192 
12 0.8622 20 1.2 0.29 169/192 
13 0.8622 20 1.3 0.29 169/192 
14 0.8622 20 1.4 0.29 169/192 

15 0.8622 20 1.5 0.29 169/192 

16 0.8622 20 1.6 0.29 169/192 
17 0.8622 20 1.7 0.29 169/192 
18 0.8622 20 1.8 0.29 169/192 
19 0.8673 20 1.9 0.29 170/192 
20 0.8673 20 2.0 0.29 170/192 
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Table 2. Different  value of uncertainty in each input with manually increase (30% Increase 
first input and 10% in second input) 

No. N n Epsilon ( ɛ ) Index 
Data inside 
the interval 

output 
Base 0.3418 20 0 0.07 67/192 

1 0.6531 20 0.2 0.13 128/192 
2 0.7602 20 0.4 0.15 149/192 
3 0.8214 20 0.6 0.16 161/192 
4 0.852 20 0.8 0.17 167/192 
5 0.8571 20 1.0 0.17 168/192 
6 0.8622 20 1.2 0.17 169/192 
7 0.8622 20 1.4 0.17 169/192 
8 0.8622 20 1.6 0.17 169/192 
9 0.8622 20 1.8 0.17 169/192 

10 0.8673 20 2.0 0.17 170/192 
11 0.8827 20 2.2 0.18 173/192 
12 0.8929 20 2.4 0.18 175/192 
13 0.8827 20 2.6 0.18 173/192 
14 0.8622 20 2.8 0.17 169/192 
15 0.8469 20 3.0 0.17 166/192 
16 0.8469 20 3.2 0.17 166/192 
17 0.8469 20 3.4 0.17 166/192 
18 0.8469 20 3.6 0.17 166/192 
19 0.8469 20 3.8 0.17 166/192 
20 0.8469 20 4.0 0.17 166/192 

Table 2, shows the simulation results with manual increase for different value of 
uncertainty in each input for the benchmark problem. 

Table 3, shows the simulation results with manual increase for different value of 
uncertainty in each Membership function (15% 5% 10% 20% Increase respectively) 
for the benchmark problem. 

Table 3. Different value of uncertainty in each Membership function with manually increase 
(15% 5% 10% 20% Increase respectively) 

No. N n Epsilon (  ɛ  ) Index 
Data inside 
the interval 

output 

Base 0.3418 20 0 0.1 67/192 
1 0.6582 20 0.125 0.19 129/192 
2 0.7602 20 0.25 0.22 149/192 
3 0.7959 20 0.375 0.23 156/192 
4 0.8112 20 0.5 0.23 159/192 
5 0.8418 20 0.625 0.24 165/192 
6 0.852 20 0.75 0.24 167/192 
7 0.8571 20 0.875 0.24 168/192 
8 0.8571 20 1 0.24 168/192 
9 0.8571 20 1.125 0.24 168/192 

10 0.8622 20 1.25 0.25 169/192 
11 0.8622 20 1.375 0.25 169/192 
12 0.8622 20 1.5 0.25 169/192 
13 0.8622 20 1.625 0.25 169/192 
14 0.8724 20 1.75 0.25 171/192 
15 0.8724 20 1.875 0.25 171/192 
16 0.8878 20 2 0.25 174/192 
17 0.8673 20 2.125 0.25 170/192 
18 0.8571 20 2.25 0.24 168/192 
19 0.8469 20 2.375 0.24 166/192 
20 0.8469 20 0.125 0.24 166/192 
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We can observe that in case two, where the increase of epsilon is different for each 
input, we get the best index with less increase of uncertainty in their membership 
functions for this problem. 

4.2   Adaptive Noise Cancelation (ANC) 

The simulation results based on the benchmark problem of Adaptive Noise Cancella-
tion of a transmitted signal are presented in this section. The objective of ANC is to 
filter out an interference component by identifying a linear model between a measur-
able noise source and the corresponding unmeasurable  interference. ANC using lin-
ear filters has been used successfully in real-world applications such as interference 
canceling in electrocardiograms, echo elimination on long-distance telephone trans-
mission lines, and antenna sidelobe interference canceling. The original data base 
contains 601 data points [15].  

For this benchmark problem we used a genetic algorithm, which we used a roulette 
wheel selection method, multi-point crossover and real-valued mutation. 

Table 4 shows the simulations results with a GA for Equal Values of Uncertainty 
for all MF’s for ANC benchmark problem. 

Table 5, shows the simulations results with a GA for different values of uncertainty 
in each input for ANC benchmark problem. 

Table 4. Equal Value of Uncertainty for all MF’s 

Individuals Generation Mutation Crossover Time  
Execution 

Epsilon Data inside the 
interval output 

80 100 0.1 0.4 1:50:28 1.00183 524/601 
150 200 0.3 0.7 6:36:42 1 525/601 
100 100 0.001 0.5 2:13:45 1.02672 526/601 
40 50 0.8 0.9 0:55:31 1 529/601 
30 30 0.5 0.6 0:12:26 1.00441 530/601 
50 50 1 1 0:33:36 1.00355 530/601 
60 30 0.4 0.85 0:46:34 1 538/601 
35 30 0.95 1 0:26:21 1 552/601 
25 30 0.8 1 0:19:02 1 556/601 
15 100 1 1 0:20:36 1 564/601 
10 100 0.9 1 0:13:20 1 565/601 
10 30 0.6 0.8 0:08:18 1.502 579/601 
5 30 0.7 0.9 0:04:04 2 597/601 
20 30 0.5 0.7 0:16:09 2 600/601 
15 30 0.35 0.85 0:12:11 3.4934 601/601 

Table 5. Different value of uncertainty in each input 

Individuals Generation Mutation Crossover Time Execution
Epsilon 

First 
Input 

Epsilon 
Second 
Input 

Data inside the 
interval output 

80 100 0.1 0.4 0:50:58 1.500 1.500 584/601 
150 200 0.3 0.7 3:09:31 2.000 1.663 597/601 
100 100 0.001 0.5 1:08:40 1.505 1.501 580/601 
40 50 0.8 0.9 0:25:55 1.300 2.693 572/601 
30 30 0.5 0.6 0:11:48 2.000 1.000 598/601 
50 50 1 1 0:33:17 2.064 1.061 599/601 
60 30 0.4 0.85 0:15:25 2.000 3.459 597/601 
35 30 0.95 1 0:13:28 2.000 2.000 597/601 
25 30 0.8 1 0:09:44 1.500 2.500 597/601 
15 100 1 1 0:10:09 2.000 1.167 599/601 
10 100 0.9 1 0:06:37 1.500 1.520 588/601 
10 30 0.6 0.8 0:04:07 1.000 1.000 593/601 
5 30 0.7 0.9 0:01:57 1.001 1.000 582/601 

20 30 0.5 0.7 0:07:56 2.000 1.534 601/601 
15 30 0.35 0.85 0:05:45 1.000 1.500 567/601 
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Table 6. Different  value of uncertainty in each Membership function 

Individua 
ls 

Gen
erati
on 

Mutation Cross 
Time 

Execution 

Epsilon 
1th MF 

1th Input 

Epsilon 
2th MF 1th 

Input 

Epsilon 
1th MF 

2th Input 

Epsilon 
2th MF 

2th Input 

Data inside 
the interval 

output 
80 100 0.1 0.4 2:01:39 2.000 1.001 1.000 1.000 592/601 

150 150 0.3 0.7 5:34:46 1.500 2.000 3.981 3.713 597/601 
100 100 0.001 0.5 2:16:09 1.510 2.048 3.906 3.571 593/601 
40 50 0.8 0.9 0:24:59 2.000 1.588 3.237 2.332 598/601 
30 30 0.5 0.6 0:11:23 1.500 2.000 3.747 3.500 601/601 
50 50 1 1 0:33:06 2.000 1.000 1.009 1.000 595/601 
60 30 0.4 0.85 0:23:07 2.000 1.000 1.012 1.047 592/601 
35 30 0.95 1 0:14:47 4.000 3.860 3.519 4.000 601/601 
25 30 0.8 1 0:09:40 2.003 3.625 4.000 2.600 601/601 
15 100 1 1 0:20:56 1.000 1.000 1.025 1.000 560/601 
10 100 0.9 1 0:13:15 2.031 2.000 3.465 1.830 576/601 
10 30 0.6 0.8 0:04:00 1.006 2.000 3.252 2.725 601/601 
5 30 0.7 0.9 0:01:56 1.047 1.698 1.640 1.523 600/601 
20 30 0.5 0.7 23:07:16 3.963 4.000 1.979 1.981 601/601 
15 30 0.35 0.85 0:05:58 1.000 2.943 3.997 3.594 601/601 

Table 6, shows the simulations results with a GA for different values of uncertainty 
in each Membership function for ANC benchmark problem. 

We can observe that the best result in ANC benchmark problem with a GA is for 
different value of uncertainty in each input, where we have the total data inside the 
interval output with a less average value of epsilon. 

5   Conclusions 

We presented in this paper a description of an optimization method for the member-
ship functions of type-2 fuzzy systems based on the level of uncertainty. Simulation 
results for the Miles per Gallon and Adaptive Noise Cancellation benchmark prob-
lems are presented. For ANC problem we can see that varying the uncertainty of the 
membership functions with the GA changes the fitness of the fuzzy systems and the 
optimal fuzzy system can be obtained.  
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Abstract. We describe in this paper an approach for mathematical function op-
timization using fuzzy logic for parameter tuning combining Particle Swarm 
Optimization (PSO) and Genetic Algorithms (GAs). The proposed method 
combines the advantages of PSO and GA to give us an improved FPSO+FGA 
hybrid method. Fuzzy logic is helpful to find the optimal parameters in PSO 
and GA in the best way possible. Also, with the tuning of parameters based on 
fuzzy logic it is possible to balance the exploration and exploitation of the pro-
posed method. The hybrid method is called FPSO+FGA and was tested with a 
set of benchmark mathematical functions.  

Keywords: FPSO, FGA, Fuzzy Logic. 

1   Introduction 

We describe in this paper an evolutionary method combining PSO and GA, to give us 
an improved FPSO+FGA hybrid method. We apply the hybrid method to mathemati-
cal function optimization to validate the new approach. In this case, we are using a set 
of mathematical benchmark functions [4][5][13] to compare the optimization results 
among a GA, PSO and FPSO+FGA. 

Several approaches had been proposed for PSO and GA, for example, in [15] can 
be seen an approach with GA and PSO for control vector for loss minimization of 
induction motor. In [16] it can be seen an approach with PSO, GA and Simulated 
Annealing (SA), for scheduling jobs on computational grids using a fuzzy particle 
swarm optimization algorithm.  

The main motivation of this method is to combine the characteristics of a GA and 
PSO [1][2]. We are using several fuzzy systems to perform dynamical parameter 
adaptation. For decision making between the methods depending on the results that 
we are generating we are using another fuzzy system. The paper is organized as fol-
lows: in section 2 a description of Genetic Algorithms for optimization problems is 
presented, in section 3 the Particle Swarm Optimization is presented, in section 4 the 
proposed method FPSO+FGA, mathematical description and the fuzzy systems are 
described, in section 5 the experimental results are described, and finally in section 6 
the conclusions obtained after the study of the proposed evolutionary computing 
methods are presented.  
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2   Genetic Algorithms for Optimization 

Holland, from the University of Michigan initiated his work on genetic algorithms at 
the beginning of the 1960s. His first achievement was the publication of Adaptation in 
Natural and Artificial System [7] in 1975. 

He had two goals in mind: to improve the understanding of natural adaptation proc-
ess, and to design artificial systems having properties similar to natural systems [8]. 

The basic idea is as follows: the genetic pool of a given population potentially con-
tains the solution, or a better solution, to a given adaptive problem. This solution is 
not "active" because the genetic combination on which it relies is split between sev-
eral subjects. Only the association of different genomes can lead to the solution. 

Holland’s method is especially effective because it not only considers the role of 
mutation, but it also uses genetic recombination, (crossover) [9]. The essence of the 
GA in both theoretical and practical domains has been well demonstrated [1]. The 
concept of applying a GA to solve engineering problems is feasible and sound. How-
ever, despite the distinct advantages of a GA for solving complicated, constrained and 
multiobjective functions where other techniques may have failed, the full power of the 
GA in application is yet to be exploited [12] [14]. 

The Simple Genetic Algorithm can be expressed in pseudo code with the follow-
ing cycle: 

1. Generate the initial population of individuals aleatorily P(0).     
2. While (number _ generations <= maximum _ numbers _ generations)    
       Do:     
           {   
              Evaluation;   
              Selection;   
              Reproduction;   
              Generation ++;   
           }   
3. Show results    

4. End 

3   Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Eberhart and Kennedy in 1995, inspired by the social behav-
ior of bird flocking or fish schooling [3]. 

PSO shares many similarities with evolutionary computation techniques such as 
Genetic Algorithms (GA) [6]. The system is initialized with a population of random 
solutions and searches for optima by updating generations. However, unlike the GA, 
the PSO has no evolution operators such as crossover and mutation. In PSO, the po-
tential solutions, called particles, fly through the problem space by following the 
current optimum particles [10].   

Each particle keeps track of its coordinates in the problem space, which are associ-
ated with the best solution (fitness) it has achieved so far (The fitness value is also 
stored). This value is called pbest. Another "best" value that is tracked by the particle 
swarm optimizer is the best value, obtained so far by any particle in the neighbors of 
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the particle. This location is called lbest. When a particle takes all the population as its 
topological neighbors, the best value is a global best and is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing 
the velocity of (accelerating) each particle toward its pbest and lbest locations (local 
version of PSO). Acceleration is weighted by a random term, with separate random 
numbers being generated for acceleration toward pbest and lbest locations.  

In the past several years, PSO has been successfully applied in many research and 
application areas. It is demonstrated that PSO gets better results in a faster, cheaper 
way compared with other methods [11].   

The pseudo code of the PSO is as follows: 

For each particle  
    Initialize particle 
End 
Do 
    For each particle  
        Calculate fitness value 
        If the fitness value is better than the best fitness value (pBest) in history 
            set current value as the new pBest 
    End 
    Choose the particle with the best fitness value of all the particles as the gBest 
    For each particle  
        Calculate particle velocity  
        Update particle position  
    End  
While maximum iterations or minimum error criteria is not attained 

4   FPSO+FGA Method 

The general approach of the proposed method PSO+GA can be seen in Figure 2. The 
method can be described as follows:  

1. It receives a mathematical function to be optimized 
2. It evaluates the role of both GA and PSO.  
3. A main fuzzy system is responsible for receiving values resulting from step 2.  
4. The main fuzzy system decides which method to use(GA or PSO) 
5. Another fuzzy system receives the Error and DError as inputs to evaluates if 

is necessary change the parameters in GA or PSO. 
6. There are 3 fuzzy systems. One is for decision making (is called main fuzzy), 

the second one is for changing parameters of the GA (is called fuzzyga) in this 
case change the value of crossover (k1) and mutation (k2) and the third fuzzy 
system is used to change parameters of the PSO (is called fuzzypso) in this 
case change the value of social acceleration (c1) and cognitive acceleration (c2). 

7. The main fuzzy system decides in the final step the optimum value for the 
function introduced in step 1. Repeat the above steps until the termination 
criterion of the algorithm is met. 
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Fig. 1. The FPSO+FGA scheme 

The basic idea of the FPSO+FGA scheme is to combine the advantages of the indi-
vidual methods using a fuzzy system for decision making and the others two fuzzy 
systems to improve the parameters of the FGA and FPSO when is necessary. 

As can be seen in the proposed hybrid FPSO+FGA method, it is the internal fuzzy 
system structure, which has the primary function of receiving as inputs (Error and 
DError) the results of the FGA and FPSO outputs. The fuzzy system is responsible for 
integrating and decides which are the best results being generated at run time of the 
FPSO+FGA. It is also responsible for selecting and sending the problem to the “fuz-
zypso” fuzzy system when the FPSO is activated or to the “fuzzyga” fuzzy system 
when FGA is activated. Also activating or temporarily stopping depending on the 
results being generated. Figure 3 shows the membership functions of the main fuzzy 
system that is implemented in this method. The fuzzy system is of Mamdani type 
because it is more common in this type of fuzzy control and the defuzzification 
method is the centroid. In this case, we are using this type of defuzzification because 
in other papers we have achieved good results [4]. The membership functions are of 
triangular form in the inputs and outputs as is shown in Figure 2. Also, the member-
ship functions were chosen of triangular form based on past experiences in this type 
of fuzzy control. The fuzzy system consists of 9 rules. For example, one rule is if 
error is Low and DError is Low then best value is Good (view Figure 3). Figure 4 
shows the fuzzy system rule viewer. Figure 5 shows the surface corresponding to this 
fuzzy system. The other two fuzzy systems are similar to the main fuzzy system. 

 

Fig. 2. Membership functions of the fuzzy system 
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Fig. 3. Rules of the fuzzy system 

 

Fig. 4. Rule viewer for the fuzzy system 

 

Fig. 5. Surface of the main fuzzy system 

4.1   Mathematical Description of the FPSO+FGA 

This section describes the formal mathematical definition of the proposed method 
FPSO + FGA. The mathematical description for the FPSO is defined as follows: 

Equation 1 shows a fundamental part of traditional PSO algorithm; were c1 and c2 

are represented by constants values. In equation 2 it is described the way in which the 
basic equation of PSO is modified to achieve the goal, and then, convert part of it in 
fuzzy parameters, we can see the differences between two equations that c1 and c2 in 
equation 2 are those that change, because an essential part of the proposed method lies 
in those two variables. Traditionally these two variables are constant, in this case, the 
importance of these two accelerations, is that we decided to obtain these two as fuzzy 
parameters.  
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Where )(tvij  is the velocity of particle i in dimension j = 1,…,nx at time step t, 

)(txi j  is the position of particle i in dimension j at time step t, c1 and c2  represents 

the cognitive and social acceleration. In this case, these values are fuzzy because they 
are changing dynamically when the FPSO is running, and are defined by expressions 

3 and 4, and jr1 (t), jr2 ~U(0,1) are random values in the range [0,1]. 
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(3) 

Where: 1c = Percentage of cognitive acceleration of the particle i. 

 1c
r = Number of rules of the fuzzy system corresponding to 1c . 

ic1 = Output result for rule i corresponding to 1c . 

1c
iμ = Membership function of rule i corresponding to 1c . 

 

(4)

Where: 2c = Percentage of cognitive acceleration of the particle i. 

 
2c

r = Number of rules of the fuzzy system corresponding to 1c . 

2ic = Output result for rule i corresponding to 1c . 

2c
iμ = Membership function of rule i corresponding to 1c . 

For the FGA the mathematical description is defined as follows:  
Several crossover operators have been developed for GAs, depending on the format in 
which individuals are represented. For binary representations, uniform crossover, one 
point crossover and two points cross over are the most popular. In this case we are 
using two points crossover with a fuzzy crossover rate because we are adding a fuzzy 
system called ‘fuzzyga’ that is able of change the crossover and mutation rate. 

As in the FPSO, also in the FGA, we are tuning the parameters with a fuzzy sys-
tem; in this case, the parameters adjusted are the crossover (k1) and mutation (k2). The 
expressions 5 and 6 show how the values for k1 and k2 were obtained. 
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(5)

Where: 1k = Percentage of crossover of the particle i. 

 1k
r = Number of rules of the fuzzy system corresponding to 1k . 

1ik = Output result for rule i corresponding to 1k .  

1k
iμ = Membership function of rule i corresponding to 1k . 

 

(6) 

Where: 2k = Percentage of mutation of the particle i. 

 2k
r = Number of rules of the fuzzy system corresponding to 2k . 

2ik = Output result for rule i corresponding to 2k . 

1k
iμ = Membership function of the rule i corresponding to 2k . 

4.2   Definition of the Fuzzy Systems Used in FPSO+FGA 

‘fuzzypso’: In this case we are using a fuzzy system called ‘fuzzypso’, and the struc-
ture of this fuzzy system is as follows: 

Number of Inputs: 2 
Number of Outputs: 2 
Number of membership functions: 3 
Type of the membership functions: Triangular  
Number of rules: 9 
Defuzzification: Centroid 
The main function of the fuzzy system called ‘fuzzypso’ is to adjust the parameters of 
the PSO. In this case, we are adjusting the following parameters: ‘c1’ and ‘c2’ ; where: 
‘c1’ = Cognitive Acceleration 
‘c2’ = Social Acceleration 
We are changing these parameters to test the proposed method. In this case, with 
‘fuzzypso’ is possible to adjust in real time the 2 parameters that belong to the PSO.  
 ‘fuzzyga’: In this case we are using a fuzzy system called ‘fuzzyga’, the structure of 
this fuzzy system is as follows: 
Number of Inputs: 2 
Number of Outputs: 2 
Number of membership functions: 3 
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Type of membership functions: Triangular  
Number of rules: 9 
Defuzzification: Centroid 
The main function of the fuzzy system called ‘fuzzypso’ is to adjust the parameters of 
the GA. In this case, we are adjusting the following parameters: ‘k1’, ‘k2’; where: 
‘k1’ = mutation 
‘k2’ = crossover 
‘fuzzymain’: In this case, we are using a fuzzy system called ‘fuzzymain’. The struc-
ture of this fuzzy system is as follows: 
Number of Inputs: 2 
Number of Outputs: 1 
Number of membership functions: 3  
Type of membership functions: Triangular  
Number of rules: 9 
Defuzzification: Centroid 
The main function of the fuzzy system, called ‘fuzzymain’ is to decide on the best way 
for solving the problem, in other words if it is more reliable to use the FPSO or FGA. 
This fuzzy system is able to receive two inputs, called error and derror, it is to evaluate 
the results that are generated by FPSO and FGA in the last step of the algorithm. 

5   Experimental Results 

To validate the proposed method we used a set of 5 benchmark mathematical func-
tions; all functions were evaluated with different numbers of dimensions, in this case, 
the experimental results were obtained with 32, 64 and 128 dimensions.  

Table 1 shows the definitions of the mathematical functions used in this paper. 
The global minimum for the test functions is 0.  

Table 1. Mathematical functions 
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N
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=
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1 1
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⎛ ⎞
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Tables 2, 3 and 4 show the experimental results for the benchmark mathematical 
functions used in this research. The table shows the experimental results of the 
evaluations for each function with 32, 64 and 128 dimensions; where it can be seen 
the best and worst values obtained, and the average of 50 times after executing the 
method. 

Table 2. Experimental results with 32 dimensions 

Function Average Best Worst 
De Jong’s 0.0111 0.0299 1.5926 

Rotated Hyper- Ellipsod 0.9970 0.0690 8.4104 
Rosenbrock’s Valley 1.0023 0.3422 9.8790 

Rastrigin’s             0.7890 0.0012 3.3345 
Griewank’s              0.8801 0.1045 4.5678 

Table 3. Experimental results with 64 dimensions 

Function Average Best Worst 
De Jong’s 0.2529 0.0123 1.79 

Rotated Hyper- Ellipsod 4.0255 2.1667 42.872 
Rosenbrock’s Valley 3.0568 2.5340 7.7765 

Rastrigin’s            2.3443    0.9766 5.6666 
Griewank’s              2.0967    0.9981 6.4561 

Table 4. Simulations results with 128 dimensions 

Function Average Best Worst 
De Jong’s 0.2060 0.1681 2.089 

Rotated Hyper- Ellipsod 4.9908 3.0999 78.09 
Rosenbrock’s Valley 6.0676 2.9909 9.0456 

Rastrigin’s            3.4433 1.0100 10.098 
Griewank’s           4.3245 1.5567 12.980 

6   Conclusions 

The analysis of the experimental results of the evolutionary method considered in this 
paper, the FPSO+FGA, lead us to the conclusion that for the optimization of this 
benchmark mathematical function this method is a good alternative, because it is 
easier and very fast to optimize and achieve good results than to try it with PSO or 
GA separately [5], especially when the number of dimensions is increased. This is, 
because the combination PSO and GA with fuzzy rules gives a hybrid method 
FPSO+FGA.  
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Abstract. In this paper we apply to Bio-inspired and evolutionary optimization 
methods to design fuzzy logic controllers (FLC) to minimize the steady state  
error of linear systems. We test the optimal FLC obtained by the genetic algo-
rithms and the PSO applied on linear systems using benchmark plants. The bio-
inspired and the evolutionary methods are used to find the parameters of the 
membership functions of the FLC to obtain the optimal controller. Simulation 
results are obtained with Simulink showing the feasibility of the proposed  
approach.  

Keywords: Fuzzy Logic Controllers, Genetic Algorithms, Particle Swarm  
Optimization. 

1   Introduction 

Optimization is a term used to refer to a branch of computational science concerned 
with finding the “best” solution to a problem. Here, “best” refers to an acceptable (or 
satisfactory) solution, which may be the absolute best over a set of candidate solu-
tions, or any of the candidate solutions. The characteristics and requirements of the 
problem determine whether the overall best solution can be found [1]. Optimization 
algorithms are search methods, where the goal is to find a solution to an optimization 
problem, such that a given quantity is optimized, possibly subject to a set of con-
straints [1],[2],[3]. Some optimization methods are based on populations of solutions. 
Unlike the classic methods of improvement for trajectory tracking, in this case each 
iteration of the algorithm has a set of solutions. These methods are based on generat-
ing, selecting, combining and replacing a set of solutions. Since they maintain and 
they manipulate a set, instead of a unique solution throughout the entire search proc-
ess, they use more computer time than other metaheuristic methods. This fact can be 
aggravated because the “convergence” of the population requires a great number of 
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iterations. For this reason a concerted effort has been dedicated to obtaining methods 
that are more aggressive and manage to obtain solutions of quality in a nearer horizon. 
This paper is concerned with bio-inspired optimization methods like genetic algo-
rithms (GA) and particle swarm optimization (PSO) to design optimized fuzzy logic 
controllers (FLC) for linear and non-linear problems. The bio-inspired methods are 
used to find the parameters of the membership functions obtaining the optimal FLC 
for plant control.  

This paper is organized as follows: Section 2 presents the theoretical basis and 
problem statement. Section 3 introduces the controller design where a GA and PSO 
are used to select the parameters. Robustness properties of the closed-loop system are 
achieved with a fuzzy logic control system using a Takagi-Sugeno model where the 
error and the change of error, are considered as the linguistic variables. Section 4 
provides a simulation study of linear systems using the controller described in Section 
3. Finally, Section 5 presents the conclusions. 

2   Theoretical Basis and Problem Statement 

2.1   Particle Swarm Optimization (PSO) 

PSO is a population based stochastic optimization technique developed by Eberhart 
and Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling 
[4]. PSO shares many similarities with evolutionary computation techniques such as 
Genetic Algorithms (GA) [5]. The system is initialized with a population of random 
solutions and searches for optima by updating generations. However, unlike the GA, 
the PSO has no evolution operators such as crossover and mutation. In the PSO, the 
potential solutions, called particles, fly through the problem space by following the 
current optimum particles [6]. Each particle keeps track of its coordinates in the prob-
lem space, which are associated with the best solution (fitness) it has achieved so far 
(The fitness value is also stored). This value is called pbest. Another "best" value that 
is tracked by the particle swarm optimizer is the best value, obtained so far by any 
particle in the neighbors of the particle. This location is called lbest. When a particle 
takes all the population as its topological neighbors, the best value is a global best and 
is called gbest [7]. 

The particle swarm optimization concept consists of, at each time step, changing 
the velocity of (accelerating) each particle toward its pbest and lbest locations (local 
version of PSO). Acceleration is weighted by a random term, with separate random 
numbers being generated for acceleration toward pbest and lbest locations [6]. In the 
past several years, PSO has been successfully applied in many research and applica-
tion areas. It is demonstrated that PSO gets better results in a faster, cheaper way 
compared with other methods [8], [9]. Another reason that PSO is attractive is that 
there are few parameters to adjust. One version, with slight variations, works well in a 
wide variety of applications. Particle swarm optimization has been used for ap-
proaches that can be used across a wide range of applications, as well as for specific 
applications focused on a specific requirement [8]. 
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2.2   Genetic Algorithms (GA) 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evo-
lutionary ideas of natural selection and genetic processes [10]. The basic principles of 
GAs were first proposed by John Holland in 1975, inspired by the mechanism of 
natural selection where stronger individuals are likely the winners in a competing 
environment [11], [12], [13]. GA presumes that the potential solution of any problem 
is an individual and can be represented by a set of parameters. These parameters are 
regarded as the genes of a chromosome and can be structured by a string of values in 
binary form. A positive value, generally know as a fitness value, is used to reflect the 
degree of "goodness" of the chromosome for the problem which would be highly 
related with its objective value.  The GA works as follows: 

1. Start with a randomly generated population of n chromosomes (candidate so-
lutions to a problem). 

2. Calculate the fitness of each chromosome in the population. 
3. Repeat the following steps until n offspring have been created: 

a. Select a pair of parent chromosomes from the current population, 
the probability of selection being an increasing function of fitness. 
Selection is done with replacement, meaning that the same chromo-
some can be selected more than once to become a parent. 

b. With probability (crossover rate), perform crossover to the pair at a 
randomly chosen point to a form two offspring.  

c. Mutate the two offspring at each locus with probability (mutation 
rate), and place the resulting chromosomes in the new population. 

4. Replace the current population with the new population. 
5. Go to step 2. 

The simple procedure just described above is the basis for most applications of GAs. 

2.3   Problem Statement 

To test the optimized FLC’s obtained with the bio-inspired methods; we used differ-
ent linear systems. We consider two benchmark problems called Plant 1 and Plant 2 
with different levels of complexity. 

Plant 1 is given by the following second order transfer function: 
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where wn  is the natural frequency and ε is the coefficient damping. 

Plant 2 is given by the following transfer function: 
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3   Fuzzy Logic Control Design 

In this section we design a fuzzy logic controller (FLC) where the optimal controller 
was found with the GAs and the PSO. For the FLC a Takagi-Sugeno type of fuzzy 
system is used with two inputs a) error, and b) error change, with three membership 
functions for each input, “Negative, Zero and Positive” (Gaussian and triangular), and 
one output, defined with constant values [14],[15],[16],[17],[18],[19],[20],[21]. Fig 1 
shows the FLC membership functions for the plant control and Table I show the 
Fuzzy Rules. 

 

 

 

Table 1. Fuzzy rules of the FLC 

 Negative Zero Positive 
Negative N N Z 

Zero N Z P 
Positive Z P P 

Fig. 1. Gaussian and Triangular membership functions and table 1 show the fuzzy rules 

Once we obtained the FLC design, we set the parameters of both methods: the GA 
chromosome has 17 genes of real values that represent the two inputs, error and error 
change and one output constant values and using different values in the genetic opera-
tor’s; mutation and single point crossover. We use different values for the cognitive, 
social parameters of the PSO and inertial value to balance the swarm. Both bio-
inspired methods use the same space of solutions (population) that we use to find the 
optimal values of the parameters of the membership functions. Table 2 shows the 
parameters of the membership functions, the minimal and the maximum values in the 
search range for the GA and PSO to find the best fuzzy controller system for the  
linear plants. 

Table 2. Parameters of the Membership Functions 

Plant 1 Plant 2 
MF 

Type 
Point 

Min 
Value 

Max 
Value 

MF 
Type 

Point 
Min 

Value 
Max 

Value 
a 0.3 0.6 a 1.8 2.8 Gauss 
b -1 -1 

Gauss 
b -05 -5 

a -0.3 -0.8 a -0.5 -4 
b 0 0 b 0 0 Triang 
c 0.3 0.8 

Triang 
c 0.5 4 

a 0.3 0.6 a 1.8 2.8 
Gauss 

b 1 1 
Gauss 

b 5 5 
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4   Simulation Results 

In this section, we evaluate, through computer simulations performed in MATLAB® 
and SIMULINK®, the designed FLC for the benchmark problems (Plant 1 and Plant 
2). We changed the parameters values of the GA to find our best FLC, using the 
maximum number of generations to stop the method. In PSO we only change the 
values of the cognitive a social constants to find the best FLC, and we used the maxi-
mum number of iterations to stop the method. 

4.1   Plant 1 Using the GA 

Table 3 presents the main results of the FLC obtained with genetic algorithms show-
ing in the ninth row the best result. 

Table 3. Results of the Type-1 FLC Obtained by genetic algorithms 

No Indiv Gen 
% 

Remp 
Cross Mut 

GA 
Time 

Average 
error 

1 90 75 0.7 0.5 0.2 0:19:48 0.03667 
2 120 70 0.7 0.5 0.1 0:23:36 0.04236 
3 90 75 0.7 0.5 0.2 0:20:25 0.07037 
4 90 35 0.7 0.5 0.2 0:09:10 0.07081 
5 50 45 0.7 0.7 0.1 0:06:45 0.07682 
6 40 25 0.7 0.7 0.4 0:03:00 0.08112 
7 45 30 0.7 0.6 0.2 0:04:03 0.08260 
8 70 45 0.7 0.5 0.1 0:10:08 0.08757 
9 150 80 0.7 0.7 0.1 0:33:25 0.08868 

10 20 15 0.7 0.8 0.3 0:00:54 0.09151 

Fig. 2 shows the membership functions of input 1 and input 2 obtained by the ge-
netic algorithm and Fig 3 shows the evolution of the genetic algorithm giving the best 
FLC for controlling the plant. 

 

Fig. 2. Input 1 and input 2 membership functions of the optimized FLC 
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Fig. 3. Evolution of the GA for the FLC optimization 

Fig. 4. Shows the control result of plant 1 using the optimized FLC obtained with the 
GA. 

 

Fig. 4. Closed-loop response of plant 1 with the optimized FLC 

4.2   Plant 1 Using the PSO 

Table 4 presents the main results of the FLC obtained with the PSO method showing 
in the fourth row the best result. 

Table 4. Results of the FLC Obtained by PSO 
y

No. Swarm 
Max 
Iter 

C1 C2 Inertia 
Time 
exec 

Average 
error 

1 200 70 1 1 1 0:05:27 0.06321 
2 200 70 0.5 0.5 1 0:07:35 0.05276 
3 200 70 0.25 0.25 1 0:15:35 0.05576 
4 200 70 0.15 0.15 1 0:19:15 0.09717 
5 200 70 0.05 0.05 1 0:26:10 0.09400 
6 200 70 0.005 0.005 1 0:26:56 0.11377 

 



 Fuzzy Logic Controllers Optimization Using Genetic Algorithms and PSO 481 

Fig 5 shows the membership functions of input 1 and input 2 obtained by the PSO 
and Fig 6 shows the particles behavior of the PSO giving the best FLC for controlling 
the plant 1. 

 

 

Fig. 5. Input 1 and input 2 membership functions of the optimized FLC 

 

Fig. 6. Particles behavior of PSO 

Fig. 7 Shows the control result of plant 1 using the optimized FLC obtained with 
the PSO. 

 
Fig. 7. Closed-loop response of plant 1 with the optimized FLC 
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4.3   Plant 2 Using the GA 

Table 5 presents the main results of the FLC obtained with the genetic algorithms 
showing in the seven row the best result. 

Table 5. Results of the FLC Obtained by Genetic algorithms for Plant 2 

  

No Indiv Gen % 
Remp Cross Mut GA 

Time 
Average 

error 
1 120 70 0.7 0.5 0.1 0:22:30 0.10676 
2 70 45 0.7 0.5 0.1 0:10:42 0.10681 
3 150 80 0.7 0.7 0.1 0:31:09 0.10723 
4 90 35 0.7 0.5 0.2 0:10:43 0.10918 
5 90 75 0.7 0.5 0.2 0:23:01 0.10935 
6 90 75 0.7 0.5 0.2 0:17:57 0.10969 
7 45 30 0.7 0.6 0.2 0:04:32 0.11193 
8 40 25 0.7 0.7 0.4 0:03:17 0.11784 
9 50 45 0.7 0.7 0.1 0:07:51 0.11831 
10 20 15 0.7 0.8 0.3 0:01:02 0.12315 

 
 
Fig 8 shows the membership functions of input 1 and input 2 obtained by  the GA 

and Fig 9 shows the evolution of the GA giving the best FLC for controlling the  
plant 2. 

 

 

Fig. 8. Input 1 and input 2 membership functions of the optimized FLC 
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Fig. 9. Evolution of the GA for the FLC optimization 

Fig 10 shows the control result of plant 2 using the optimized FLC obtained with 
the GA. 

 

Fig. 10. Closed-loop response of plant 2 with the optimized FLC 

4.4   Plant 2 Using the PSO 

Table 6 presents the main results obtained with the PSO method of Plant 2 showing in 
row five the best result. 

Table 6. Results of the FLC Obtained by PSO for Plant 2 

No Swarm 
Max 
Iter C1 C2 Inertia 

Time 
exec 

Average 
error 

1 200 70 1 1 1 0:04:59 0.14286 
2 200 70 0.5 0.5 1 0:07:11 0.12527 
3 200 70 0.25 0.25 1 0:10:21 0.14508 
4 200 70 0.15 0.15 1 0:16:25 0.15090 
5 200 70 0.05 0.05 1 0:17:56 0.13431 
6 200 70 0.005 0.005 1 0:21:18 0.14513 
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Fig 11 shows the membership functions of input 1 and input 2 obtained by  the 
PSO and  Fig 12 shows the particles behavior of the PSO giving the best FLC for 
controlling the plant 2. 

 

Fig. 11. Input 1 and input 2 membership functions of the optimized FLC 

 

Fig. 12. Particles behavior of PSO 

Fig 13 shows the control result of plant 2 using the optimized FLC obtained with 
the PSO. 

 

Fig. 13. Closed-loop response of plant 2 with the optimized FLC 
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5   Conclusion 

We described in this paper the application of bio-inspired methods to design opti-
mized fuzzy logic controllers using genetic algorithms and particle swarm optimiza-
tion. To test these optimized FLC’s we use different systems. In particular we  
presented results of a genetic algorithm and PSO using two benchmark problems with 
different level of complexity. The main result shows that the FLC obtained by GA 
and PSO gets stability in less than 10 seconds. On the other hand, the FLC’s obtained 
by PSO are better than the FLC’s obtained by GA because the PSO is less time con-
suming in the process and achieves lower overshoot in one of the plants, the plots of 
the results shows this difference.  

We have achieved satisfactory results with genetic algorithms and PSO; the next 
step is to solve the problem using Type-2 FLC in a perturbed environment and con-
sidering multiple objective optimization to obtain better results. Moreover, we will 
extend the results for nonlinear systems. 
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Abstract. A method of FPGA implementation of fuzzy system with parametric 
membership functions and conjunctions is proposed. The implemented system 
is based on a Sugeno fuzzy model with two input variables. Fuzzy sets in the 
premises of the rules are given by parametric triangular membership functions 
and conjunction operations are defined by parametric (p)-monotone sum of ba-
sic t-norms. The paper presents the hardware design of a 8-bit configurable 
fuzzy system, implemented on the DE2 development board from Altera using 
VHDL language. 

Keywords: FPGA, fuzzy system, conjunction, Altera, VHDL. 

1   Introduction 

The great popularity of fuzzy systems in solving everyday problems [1,2] has created 
the need in hardware implementation of highly reconfigurable fuzzy systems that can 
be easy adopted to various applications or to change of environment where fuzzy 
system is operated. Such reconfigurable fuzzy systems can be developed on two lev-
els: on the level of the fuzzy model and on the level of hardware implementation. This 
paper presents a method of hardware implementation of fuzzy systems that recon-
figurable on both levels. On the level of fuzzy model we consider fuzzy systems with 
parametric membership functions and parametric operations. A parameterization of 
membership functions is a common approach to construction of fuzzy systems [3]. A 
parameterization of operations does not so common but also used in fuzzy modeling 
[4-11]. But parameterization of both fuzzy sets and fuzzy operations is a sufficiently 
new approach in fuzzy modeling [12]. Such parameterization of fuzzy systems gives 
possibility to construct highly reconfigurable fuzzy systems with high adaptive possi-
bilities. On the level of hardware we consider FPGA (Field Programmable Gate Ar-
ray) implementation of fuzzy systems, i.e. an easily reprogrammable integrated circuit 
[13-31] that can be adopted to the change of parameters of fuzzy system and more-
over to the change of the structure of fuzzy system.  
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Usually in fuzzy systems as conjunction operation they are used min or product 
operations. As parametric conjunction operations in fuzzy models it is possible to use 
parametric t-norms [4] or parametric fuzzy conjunctions introduced in [5,6] and hav-
ing more simple form than t-norm. But both types of parametric conjunctions are 
complicated for hardware implementation. FPGA implementation of fuzzy systems is 
considered in many works [13-25]. Parametric conjunctions sufficiently simple for 
hardware implementation have been introduced in [22,25]. These conjunctions use 
basic t-norms together with parametric functions called generators. More simple pa-
rametric conjunctions suitable for hardware implementation have been introduced in 
[33]. These conjunctions use only basic t-norms together with some parameter p 
without generator functions. FPGA implementation of these operations was proposed 
in [34]. In our paper we extend results obtained in [34] and we show how to use these 
parametric operations in Sugeno fuzzy systems with parametric membership functions 
implemented in FPGA. 

We consider Sugeno model with two inputs when each input have three linguistic 
values represented by parametric triangular membership values and the fuzzy system 
contains 9 rules. Our Sugeno fuzzy model contains parametric operation AND repre-
sented by (p)-monotone sum of basic t-norms [33]. FPGA implementation of these 
operations were proposed in [34] for this reason and due to limitation of the paper size 
we give here only very short description of hardware implementation of these opera-
tions with the reference on the original paper [34] for details.  

The paper has the following structure. In the section 2 we discuss Sugeno fuzzy 
models that we consider in this work. The (p)-monotone sum of basic t-norms is dis-
cussed in Section 3. Section 4 presents logic diagrams of modules used in FPGA 
implementation of Sugeno fuzzy system with parameterized membership functions 
and operations. Section 5 contains discussion of simulation results. Section 6 contains 
conclusions and directions of future work. 

2   Sugeno Fuzzy Model 

Sugeno fuzzy models with two inputs consist on the following rules [3]: 

Ri: If x is Ai AND y is Bi then z= fi(x,y),  

where x,y are input variables, Ai and Bi  are fuzzy sets defined on domains X and Y of 
x and y respectively, z is the output of the rule Ri and  fi is a real valued function. The 
details of calculation of the output values of Sugeno models can be found in [3]. 
Fuzzy sets Ai, Bi  are defined by their membership functions Ai:X→L, Bi:Y→L where L 
is a set of membership values. In traditional fuzzy systems it is used the set of mem-
bership values L= [0,1]. In digital representation of membership values with m bits as 
in [33] we use the set of membership values L= {0,1,2,…, 2m-1} with maximal value 
2m-1 denoted as I. This value will represent the full membership corresponding to the 
value 1 in traditional set of membership values [0,1]. For example, I= 15 if m= 4 and 
I= 255 if m= 8. Many concepts of fuzzy systems have straightforward extension on 
digital case when we replace the set of membership values [0,1] by L= {0,1,2,…, 2m-
1} and maximal membership value 1 by I = 2m-1.  
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In our simulations we use m= 8 bits for representation of membership values and 
hence I= 255. Input variables x and y have three fuzzy values {XS, XM, XL} and {YS, 
YM, YL} defined as shown in Fug. 1 by parameter values Px and Py respectively. These 
fuzzy values can be considered as formalizations of linguistic values SMALL, MID-
DLE, LARGE of variables x and y respectively. For simplicity of fuzzy system im-
plementation we use also m= 8 bits for representation of domains X and Y such that X 
= Y = L. Generally it can be used more bits for such representation but in any case we 
can consider such x and y as normalized inputs of fuzzy system. The fuzzy sets XS, 
XM, XL and YS, YM, YL are used as fuzzy sets Ai and Bi  in rules Ri and the system con-
tains 9 rules corresponding to all possible combinations of fuzzy values Ai,Bi.  

 
Fig. 1. Membership functions of input variables of fuzzy system depending on parameters Px 
and Py 

The functions fi(x,y) are defined as follows: 

fi(x,y) = (ai*x+bi*y+ci)/3, 

where  the parameters ai,bi,ci take values in L. The functions fi  are constructed to take 
values in L by means of operation * that can be considered as normalized multiplica-
tion of two values from L. For any two values p, q from L this operation is defined as 
follows: 

p*q = floor(pq/(I+1)), 
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where pq is the usual multiplication of p and q and the operation floor(d) rounds the 
element d to the nearest integer less than or equal to d. We use such type of normali-
zation of digital values because the usual multiplication of two digital values and the 
normalization of the result can be simply implemented in the DE2 development board 
of Altera using VHDL language [30]. The result s=pq of the multiplication will take 
value in extended set of digital values defined by 2m bits and the normalization opera-
tion floor(s/(I+1))  can be simply implemented by cutting m right bits from the result 
of multiplication s.  

The output of the Sugeno model for given input values x and y is calculating as 
follows [3]. For each rule Ri it is calculated membership values µi(x) of x in Xi and 
µi(y) in Yi and the firing value of the rule wi= T(µi(x),µ i(y)) where T is a fuzzy  
conjunction used as connective AND. The fuzzy conjunctions used in this work will 
be considered in the following section. The output of the system is calculated as 
follows: 

z = (w1z1+w2z2+…+w9z9)/(w1+w2+…+w9), 

where zi = fi(x,y) is the output of the rule Ri. 
In Sugeno fuzzy model we use parametric conjunction operations AND considered 

in the following Section. 

3   Parametric Conjunctions 

Fuzzy conjunction operation is a function T:L×L → L satisfying on L conditions: 

T(x,I) = x,                     T(I,y) = y,       (boundary conditions) 

T(x,y) ≤ T(u,v),        if  x ≤ u, y ≤ v.                  (monotonicity) 

Commutative and associative conjunctions are called t-norms [32]. Usually in fuzzy 
systems as conjunction operation they are used the simplest conjunctions such as min 
o product operations. As parametric conjunction operations in fuzzy models it is pos-
sible to use parametric t-norms [4] or parametric fuzzy conjunctions introduced in 
[5,6] and having more simple form. But both types of parametric conjunctions are 
complicated for hardware implementation. Here, as a parametric conjunction we use 
(p)-monotone sum of basic t-norms that have simple FPGA implementation [33,34]. 

We consider here the following basic t-norms: 

TM(x,y) = min{x,y},                                             (minimum) 

TL(x,y)= max{x+y –I, 0},                    (Lukasiewicz t-norm) 
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It can be shown that any fuzzy conjunction T satisfies the following inequalities: 

TD(x,y) ≤ T(x,y) ≤ TM(x,y). 
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We will say that T1 ≤ T2   if   T1(x,y) ≤ T2 (x,y)   for all x,y from L. For example, we 
have: TD ≤ TL ≤ TM. 

Suppose a,b∈L and a ≤ b. The set of all elements c∈L such that  a ≤ c ≤ b  will be 
denoted as [a,b]. Suppose p∈{0,1,…, 2m-2} is a parameter. (p)-monotone sum of 
basic t-norms is defined as follows [33]. Define a partition of L on two sets: X1 = [0,p] 
and X2= [p+1,I]. These sets define a partition of L×L on four sections: Dij=Xi×Xj, 
i,j∈{1,2} as shown in Fig. 2. Select a sequence of fuzzy conjunctions (T11, T21, T12, 
T22) ordered as follows: T11≤ T12 ≤ T22, T11 ≤ T21 ≤ T22. Define a function T on L×L by 
T(x,y) = Tij(x,y) if (x,y)∈Dij, i,j∈{1,2}. This function T is called a (p)-monotone sum 
of fuzzy conjunctions Tij, i,j∈{1,2} and it will be a fuzzy conjunction [33]. It is clear 
that fuzzy conjunction T can be defined as follows: 
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Fig. 2. Partition of  L×L on sections Dij=Xi× Xj defined by parameter value p 

As conjunctions (T11, T21, T12, T22) in the definition of (p)-monotone sum we will 
use basic t-norms TD, TL, TM. For example, (p)-monotone sum defined by basic  
t-norms (TD, TL, TL, TM) will be denoted as conjunction TDLLM and defined as follows: 
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Fig. 3 depicts on the left the locations of basic t-norms used in the construction of 
TDLLM in sections D11, D21, D12, D22. On the right it is shown the shape of this digital 
fuzzy conjunction when the membership scale L is defined by m= 4 bits with parame-
ter value p = 9.  

(p)-monotone sum will be commutative if T21 = T12. By means of basic t-norms it 
can be constructed 7 different non-trivial (p)-monotone sums defined by the following 
sequences of basic t-norms: DDDL, DDDM, DLLL, DLLM, DMMM, LLLM, LMMM. 
All of them have been implemented in [34] in FPGA.  

In the following section we will propose the method of FPGA implementation of 
these operations in Sugeno model.  

 

Fig. 3. Parametric conjunction TDLLM obtained by (p)-monotone sum of basic t-norms:  
TD- drastic, TL- Lukasiewicz and TM– minimum t-norms 

4   FPGA Implementation of Sugeno Model 

Figures 4-6 depict logic diagrams implementing fuzzy sets of input variables. Fig. 7 
depicts logic diagram of comparator of inputs for triangular fuzzy set. 

 

Fig. 4. Logic diagram for fuzzy set XS  
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Fig. 5. Logic diagram for fuzzy set XM with one multiplier and one divider 

 

Fig. 6. Logic diagram for fuzzy set XL 

 

Fig. 7. Logic diagram of comparator of inputs 

Logic diagrams of parametric conjunctions given by (p)-monotone sum of basic t-
norms have been developed in [34]. Due to limitations in paper size here we present 
only some components of resulting diagrams. Figures 8-10 depict logic diagrams of 
basic t-norms. Fig. 11 depicts resulting logic diagram integrating 7 commutative (p)-
monotone sums of basic t-norms, see  [34]. 
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Fig. 8. Logic diagram of t-norm TM 

 

Fig. 9. Logic diagram of t-norm TL 

 

Fig. 10. Logic diagram of t-norm TD 
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Fig. 11. Logic diagram integrating all commutative (p)-monotone sums of basic t-norms [34] 
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Figures 12-15 depict logic diagrams used in calculation of output of rules.  

 

Fig. 12. Calculation of outputs of rules weighted by firing values of rules 

 

Fig. 13. Logic diagram of the output of rules 

The parameters ai, bi, ci are stored in a memory as shown in Fig. 14.  

 

Fig. 14. Memory that stores the values of the parameters of the outputs 
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Fig. 15. Logic diagram of aggregation of outputs of fuzzy rules 

5   Simulation and Discussion of Results 

The developed approach was used for hardware implementation of Sugeno fuzzy 
systems with 2 input variables X and Y. Each input variable has 3 possible fuzzy val-
ues as shown in Fig. 1. Fuzzy system contains 9 rules corresponding to all combina-
tions of the input fuzzy values. We have done simulation of Sugeno fuzzy models for 
all 7 parametric conjunctions considered above.  Fig. 16 depicts obtained surfaces for 
parameter values Px=70, Py=180 and P=30.  

 

Fig. 16. Output surfaces of Sugeno fuzzy systems for all types of parametric conjunctions 

The parameters a,b,c of linear functions in consequents of 9 rules of Sugeno fuzzy 
system were defined as follows:  

 
a=[100 40 70 50  30 200 200 50 40],  
b=[20  50 80 30  50 40  30  30 200],  
c=[20  60 90 200 60 10  40  60 30]. 
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Note that Sugeno fuzzy systems with parametric conjunctions considered in this paper 
generalize Sugeno fuzzy systems with traditional conjunction operations such as min, 
drastic and Lucasiewicz conjunctions because these basic conjunctions can be ob-
tained from parametric conjunctions when parameter P takes values 2m-2 or 0.  

6   Conclusions 

This paper presents a method of hardware implementation of highly reconfigurable 
fuzzy system. This system is reconfigurable on two levels: on the level of the model 
and on the level of the hardware implementation. This system uses Sugeno fuzzy 
model with parametric membership functions and parametric operations that gives 
possibility to adjust both membership functions and operations used in the system.  
The system is implemented on the DE2 development board from Altera that gives 
possibility to easy reconfigure hardware if underlying fuzzy model will be reconfig-
ured. Such high reconfigurability of the system gives possibility to easy adopt the 
system to various application and to change of environment where fuzzy system can 
be applied. The obtained results can be extended on Sugeno fuzzy models with other 
types of parametric operations.  
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Abstract. The pneumatic actuators can be a useful way to control the position 
of a manipulator robot, instead of an electrical actuator. The major problem 
with pneumatic actuators is the compressibility of the air, due to the fact that the 
mathematical model is a system formed by a set of highly non-linear equations 
then a simple PID control is not enough to control the robot position, and fuzzy 
logic is a good option. This work is focused on the hardware implementation of 
Fuzzy logic algorithm into FPGA system. This paper also presents a methodol-
ogy to implement a pneumatic control using fuzzy logic, into a FPGA device, 
which is the main contribution of this work. The air flow is controlled with a 
pulse width modulation, applied to the pneumatic electro- valve, with 25 ms of 
period.  

Keywords: FPGA, Hardware, Fuzzy Logic, pneumatic, Robot. 

1   Introduction 

Fuzzy logic is widely used to control many industrial systems, especially for systems 
with a no linear behavior, where a PID control is not enough to get satisfactory re-
sults. However, the use of fuzzy logic algorithms implemented in hardware, has been 
used in different ways. Fuzzy logic algorithms and its hardware implementation have 
been developed for several kinds of control, such as Barriga and Sánchez-Solano [1] 
who develop an automatic synthesis of fuzzy logic controllers, and its implementation 
[2].  Later, in 1998, an XFuzzy software is reported [3]; this software is used to de-
velop fuzzy algorithms and its implementation. A digital fuzzy controller has been 
implemented in 1999, with SISO (single-input-single-output) and MIMO (multiple-
input-multiple-output) models [4]. In 2004, a hardware implementation of fuzzy sys-
tem type 2 has been developed [5]. A fuzzy controller is implemented for electric 
vehicle, for fuzzy systems with dynamic reconfiguration, implemented with an 
FPGA; the methodology used is co-evolutionary cooperation; the objective is to  
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increase the computing speed of the system [6] [7]. The popularity of fuzzy logic 
controllers for industrial applications is increasing with time, especially when the 
mathematical models are not available or inaccurate; for that a hardware implementa-
tion of the fuzzy algorithm is necessary with FPGA technology [8]. However, fuzzy 
logic implementation can be used for traffic control [9]. 

About hardware implementation of fuzzy controller on FPGAs, several works have 
been developed. In 1994, a fuzzy implementation is developed into a microcontroller 
for embedded control solutions [10a]. In 2008 is presented a flexible architecture that 
allows to implement an embedded nonlinear fuzzy controller into FPGA [10b] [10c], 
using a Simple Tuning Algorithm. Also, a generic algorithm is used into a Fuzzy 
system for FPGA implementation [10d]. 

In robotic field, the pneumatic actuators has been used previously in [10], [11], 
[12], [13], where several kind of controllers are used for position control, including 
PID, fuzzy logic and neural networks, with practical results comparisons. This paper 
is focused into fuzzy logic hardware implementation for position control of a pneu-
matic robot with one degree of freedom, as shown in figure 1, where X the rod dis-
placement and θ is the arm position with vertical reference. 

 

Fig. 1. Pneumatic robot with one degree of freedom 

The contribution of this work is the process to control an electro-valve, for rod dis-
placement, such as shown next. The control is applied for PWM signal, applied to the 
electro-valve, using a hardware implementation of a fuzzy algorithm into a FPGA. 
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2   The Pneumatic System 

The pneumatic system used for the pneumatic robot is shown in figure 2. The digital 
signals EV1 and EV2 are used to control the air flow in the pneumatic cylinder. To con-
trol the air flow a 5 ports 4 way and 3 position electro-valve with closed center is used.  

 

Fig. 2. Pneumatic system used for on one degree of freedom robot 

The cylinder used in this work, is the same used in [10], with chambers on both 
sides as figure 3 shown, and its mathematical model is explained in next section. 

 

Fig. 3. A pneumatic cylinder diagrams, with internal variables of pressure and air mass flow 

2.1   Mathematical Model 

The mathematical model, called Thermo-Mechanical simplified model in [10] and 
corresponding to the pneumatic cylinder (it is shown in figure 3), is defined in (1) to 
(10). The mathematical model is divided in several sections, according with the rod 
displacement defined by X, as shown in figure 1. 

For the interval 0 ≤ X ≤ L: 

X
dt

d
X =&  (1)
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X
dt

d
XD 2

2

=&  (2)

For the interval 0 ≤ X ≤ Lalp: 
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Due to the non-linear behavior of the air, and the non-linear mathematical model, the 
system behavior is complex. For this reason a fuzzy logic algorithm is used in this work. 

2.2   Air Mass Flow Control 

With the use of PWM method, the air flow can be controlled, and the rod can be 
changed its position inside the pneumatic cylinder. The electro-valve is a SY5320-
6LZ-01, manufactured by SMC Company, with 19 s time delay. A PWM cycle with 
its timing data is shown in figure 4; this PWM signal is applied on the electro-valve to 
control the rod speed. 

 

Fig. 4. Timing diagram of PWM signal 
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To control the displacement direction of the rod, digital signals EV1 and EV2 are 
used. If the rod has to spin backwards to the cylinder, signal EV2 must be set HIGH 
and signal EV1 is set LOW. However, if the rod has to go out the cylinder, signals 
EV1 and EV2 are set HIGH and LOW, respectively. The rod speed depends directly of 
tA time, and this time is set by the fuzzy logic algorithm. Table 1 shows the meaning 
of each variable involved in figure 4. The fuzzy Logic is develop to adjust the tA time, 
and control the air flow. 

The time of duty cycle is divided in 256 parts, depending of the speed desired by 
the system. The Fuzzy Logic algorithm gives the output needed by the controller. 

Table 1. Variables involved in PWM timing diagram 

Variable Description Unit 
TPWM Cycle of the PWM Seconds 
tDC Duty cycle time Seconds 
tD Delay time Seconds 
tA High time applied Seconds 

3   The Fuzzy Algorithm 

The duty cycle of PWM signal (tDC) is set by the fuzzy algorithm. If tDC is lower than 
tD, the rod does not move by any means. Conversely, if tDC is equal or greater than tD, 
the rod may move in any way, either fast or slow. 

Figure 5 shows a block diagram of the system to control the arm position, control-
ling the angle θ. With the sign of the error signal, the direction of rod movement is 
defined, and the electro-valve gets the PWM signal from the PWM generator, and the 
air flow is used into the pneumatic cylinder. Due to the robot topology, the most im-
portant variable is the output angle value. Therefore, the path planning for the robot 
and the angle speed control are not a problem. 

 

Fig. 5. Block diagram to control the rod displacement X 

In figure 5, first step to consider is to compute the error. The error is the input of 
the fuzzy logic algorithm, where the output is the duty cycle value, needed for the 
PWM Generator block. This block deliver the PWM signal to the electro-valve, and 
joint with the error, the rod movement is generated in the right direction. 

The fuzzy logic algorithm is designed with Matlab software. The algorithm consid-
ers just the error (E) as the input, and the output is the duty cycle for the PWM gen-
erator. Figure 6 and 7 show the membership functions for the input and the output 
variables. The direction of rod movement is defined by the error, defined by (11).  

E = Sp –X . (11)
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Where: 
 

 E = Error 
 Sp = Set point 
 X = Actual position 
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Fig. 6. Membership functions for the input (Error) 
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Fig. 7. Membership functions for the output (DC) 

The rules used in this case are shown next. 

Rule 1: if Error is E-2 then DC is H 
Rule 2: if Error is E2 then DC is H 
Rule 3: if Error is E0+ then DC is Z 
Rule 4: if Error is E0- then DC is Z 

The actual position is sensed by an optical encoder. The interval of movement  
of the arm is 0 to 170 degrees, represented by 0 to 1820 counts of the encoder. 
Therefore, the resolution of movement measure is 0.0934° by each count  
of the encoder. The output interval is 0 to 255, this value represent the duty  
cycle value for PWM generator, and give us a good resolution for the flow  
control. 
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The method used for rules evaluation is Mamdani, and the defuzzification method 
is centroid. By experimentation, the minimum value of DC to get a rod displacement 
is 47, and the movement is faster with 75. Therefore, the output range for DC is from 
45 to 75, as figure 8 shows. 
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Fig. 8. Surface of the fuzzy rules (Error input versus DC output) 

The hardware implementation of the fuzzy logic algorithm is explained in the next 
section. 

4   Hardware Implementation 

The fuzzy algorithm hardware implementation has been developed in several ways, as 
proposed in [10c], where a hardware realization is presented, including fuzzification 
and inference engine. Their proposal to improve the fuzzification is based on the 
arithmetic calculation method. Also, this realization reduces the hardware cost by 
mean of reducing its complexity. However, when the hardware cost is reduced, the 
time solution is increased. The realization proposed in this work, has the main advan-
tage in the computing speed, due that the defuzzification result is obtained in just one 
clock cycle. The LUT shown in figure 9 contain the result of the fuzzy rules and the 
output value. The process to obtain the LUT is explained on 4.1. 

The hardware implementation is developed using a Xilinx board Spartan-3 Starter 
Kit, with an FPGA device XC3S200, with 200K gates. A hardware description lan-
guage is needed to implement the fuzzy algorithm, and VHDL is the used description 
language. The description block diagram is shown in figure 9. 

The Counter module takes the pulses from the optical encoder, and signals B and 
SEG are used to show the arm position with 4 seven segments display. The counter 
output is the signal C with 12 bit wide. The signal C is the input of the Error module, 
where (1) is computed; the output is the signal R. The signal R is connected to the 
look-up table (LUT) module, to get the output for the PWM duty cycle; also, the more 
significant bit of signal R is used to determine if the rod goes outward or goes inward. 
If the error is positive, then PWM signal goes out through the EV1 signal; when the 
error is negative, the PWM signal is assigned to EV2. The PWM module gets the 
value of Duty Cycle with M signal, and the rod direction with S signal. 
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Fig. 9. Block diagram of the fuzzy logic hardware implementation 

Next, the hardware implementation of fuzzy algorithm is described. 

4.1   Implementation of Fuzzy Logic 

First, the fuzzy logic is designed in MATLAB, then the LUT module shown in figure 
8 is created. To create this module, a process of module generation is used as shown 
in figure 10, where n is the bit resolution used for the fuzzy system. In this case n=8. 
With n>8, the PWM change is not detected by. 

 

Fig. 10. Process for look-up table generation 

The Matlab code used to get a digital Fuzzy Logic Algorithm as LUT, is shown 
next. 

% Open VHDL file 
 fid = fopen('fuzzy_PWM.vhd','wt'); 
  
 %Description header 
 fprintf(fid,'library IEEE;\n'); 
 fprintf(fid,'use IEEE.std_logic_1164.all;\n'); 
 fprintf(fid,'\n'); 
 fprintf(fid,'entity fuzzy_PWM is\n'); 
 fprintf(fid,'   port(\n'); 
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 %Coefficient of Error as index 
 fprintf(fid,'      E : in  std_logic_vector(%d downto 0);\n',m-1); 
 %Defuzzification coefficient DC 
 fprintf(fid,'      DC: out std_logic_vector(%d downto 0)\n',k-1); 
 fprintf(fid,'      );\n'); 
 fprintf(fid,'   end fuzzy_PWM;\n'); 
 fprintf(fid,'\n'); 
 fprintf(fid,'architecture LUT of fuzzy_PWM is\n'); 
 fprintf(fid,'begin\n'); 
 fprintf(fid,'   process(E)\n'); 
 fprintf(fid,'   begin\n'); 
 fprintf(fid,'      case E is\n'); 
 %Automatic table generation 
 for i=1:n 
     fprintf(fid,'         when "'); 
     %Index binarization 
     for j=1:m 
         fprintf(fid,'%d',x(i,j)); 
     end; 
     fprintf(fid,'" => P <= "'); 
     %Coefficient binarization 
     for j=1:k 
         fprintf(fid,'%d',DAT(i,j)); 
     end; 
     %Decimal values 
     fprintf(fid,'"; -- Index %d   Coefficient %d\n',i-1,out(i)); 
 end; 
 %End VHDL file 
 fprintf(fid,'         when others => null;\n'); 
 fprintf(fid,'      end case;\n'); 
 fprintf(fid,'   end process;\n'); 
 fprintf(fid,'end LUT;\n'); 
  
 %Close file 
 fclose(fid); 

The X signal has the digital information of the Error input, and DAT has the digital 
information of DC output. This MATLAB algorithm generates the LUT module of 
figure 9. The out of the module LUT is connected to the PWM Generator Module, 
which is described next. 

4.2   PWM Module 

A descriptive block diagram of PWM module is shown in figure 11. The timing  
values used for PWM signal for figure 4 are shown in table 2.  

Table 2. Timing values assigned for table 1 

Variable Value Unit 
TPWM 25 miliseconds 
tDC 0 a 25 miliseconds 
tD 19 miliseconds 
tA 0 a 7 miliseconds 
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Fig. 11. PWM hardware description 

Where TCLK is the clock period. Therefore, the clock period is TCLK = 50 ns. D 
value computed is D=1250000, in hexadecimal is $1312D0, with 21 bit, according 
with (12). 

D = TPWM / TCLK . (12)

5   Results 

The Spartan-3 board and power interface to control the electro-valve are shown in 
figure 12; also pneumatic manipulator with one degree of freedom is shown in the 
same figure. The air pressure to work with the cylinder is 0.4 MPa, and the step re-
sponse is shown in figure 14.  

  

(a)     (b) 

Fig. 12. System of the pneumatic robot with one degree of freedom. (a) Spartan-3 kit, power 
interface and electro-valve used with the pneumatic manipulator. (b) A pneumatic manipulator 
with one degree of freedom. 

The implementation of the system into FPGA let us to verify the system behavior. 
Figure 13 shows the test, with different values of set point.  
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Fig. 13. Test of the system response, with different set point 

In figure 13, the flat line is the set point, the error in all cases are around 1°, which 
is good for this test of implementation. 

6   Conclusions 

This work is using a Fuzzy Logic algorithm to control the arm position, and the hard-
ware implementation is very important, because the system has not any dependency 
of a PC. In other works developed, the hardware implementation of Fuzzy Logic has 
been oriented with electrical motors, systems without a mathematical model, but 
works with hardware implementation applied to pneumatic cylinder is not reported. 
The major advantage of this realization is the computing speed, due that the fuzzy 
algorithm is computed in just one clock cycle. This let us to make other process in 
parallel, such as RS232 communication, data acquisition, etc. To continue with this 
work, a planning trajectory will be developed, also, a second degree should be added 
to the actual robot. 

As future work, a multivariable control have to be implemented, with more degree 
of freedom for the robot, considering more complex path planning and the pressure 
control into the chambers of pneumatic cylinder. 
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López, Rodrigo II-361
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Martinez-Soto, Ricardo II-475
McCasland, Roy I-348
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Montes-y-Gómez, Manuel I-24
Mora-Gonzalez, Miguel II-92
Morales, Eduardo F. I-105, I-278, II-56
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Rodŕıguez-Soriano, Norma Yolanda

I-467
Rollon, Emma I-386
Romero, Anna I-266
Romero, Leonardo I-154
Rosso, Paolo I-24
Rudas, Imre II-487
Ruiz, Marco Antonio I-422

Salinas-Gutiérrez, Rogelio II-104
Salinas-Luna, Javier II-92
Sanchez-Diaz, Guillermo II-92
Sánchez Fernández, Luis Pastor I-221,

I-436
Sánchez-Vega, Fernando I-24
Sang, Do-Thanh II-406
SanJuan, Eric I-13
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