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Preface

This book constitutes the proceedings of the Third International Symposium
on Unifying Theories of Programming (UTP 2010) held at East China Normal
University, Shanghai, China, November 15–16, 2010 in conjunction with the 12th
International Conference on Formal Engineering Methods (ICFEM 2010).

This symposium followed on the success of the first one, held at Walworth
Castle (Durham, UK) in 2006, and the second, held at Trinity College (Dublin,
Ireland) in 2008. Based on the pioneering work of C.A.R. Hoare, He Jifeng,
and others on unifying theories of programming, the aims of this symposium
series are, as stated in UTP 2008, to continue to reaffirm the significance of the
ongoing UTP project, to encourage efforts to advance it by providing a focus
for the sharing of results by those already actively contributing, and to raise
awareness of the benefits of such a unifying theoretical framework among the
wider computer science and software engineering communities.

The program for the UTP 2010 symposium includes one invited tutorial, three
invited talks, and 12 regular paper presentations. I would like to warmly thank
our invited speakers, Ana Cavalcanti, He Jifeng, Jeff Sanders and Jim Woodcock,
as well as all the authors, for their enthusiastic and engaged participation in this
event.

There were in total 25 submissions made to UTP 2010. Each submission
was reviewed by at least three PC members. Based on the reviewers’ comments,
the Program Committee had careful online discussions and decided to select
12 papers to be included in the UTP 2010 proceedings. I would like to thank
all Program Committee members, not only for the excellent work in the paper
review and selection process, but also for their useful comments and suggestions
on the organization of this symposium. It would not have been possible to form
such a high-quality program without their hard work.

Thanks should also be given to Jim Woodcock and Huibiao Zhu for the help
and discussions especially in the initial stage of the organization, to Jeff Sanders
for valuable comments and suggestions on the UTP event, and to Geguang Pu
and his colleagues for excellent local organization for both UTP and ICFEM.

This symposium was organized using, and these proceedings were assembled
with the assistance of, EasyChair (www.easychair.org). I would like to thank
them for being there all the time!

September 2010 Shengchao Qin
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Specification Coverage for Testing in Circus

Ana Cavalcanti1 and Marie-Claude Gaudel2

1 University of York, Department of Computer Science
York YO10 5DD, UK

2 LRI, Université de Paris-Sud
and

CNRS, Orsay 91405, France

Abstract. The Unifying Theories of Programming underpins the devel-
opment of Circus, a state-rich process algebra for refinement. We have
previously presented a theory of testing for Circus; it gives a symbolic
characterisation of tests. Each symbolic test specifies constraints that
capture the effect of the possibly nondeterministic state operations, and
their interaction. This is a sound basis for testing techniques based on
constraint solving for generation of concrete tests, but does not sup-
port well selection criteria based on the structure of the specification.
We present here a labelled transition system that captures information
about a Circus model and its structure. It is useful for testing techniques
based on specification coverage. The soundness argument for the new
transition system follows the UTP style, but relates the new transition
relation to the Circus relational model and its operational semantics.

1 Introduction

We have recently proposed a theory of testing for Circus [24], a state-rich process
algebra that combines Z [37], CSP [28], and a refinement calculus [22]. Its se-
mantics is based on the Unifying Theories of Programming (UTP) [18]. Tutorial
introductions to the UTP can be found in [35,9].

Formal specifications have been widely applied as a starting point for software
testing; a few approaches can be found in [10,14,2,3,1,20]. Our testing theory
for Circus [6] instantiates Gaudel’s long-standing theory of formal testing [15].
Its foundation is the Circus operational semantics [36], which is described and
justified in the context of the UTP theory for Circus [24].

The main distinguishing feature of the Circus testing theory is its symbolic
nature: it provides a symbolic characterisation of traces, acceptances and initials,
and, most importantly, tests and exhaustive test sets. This takes advantage of the
symbolic nature of the Circus operational semantics, where unknown data values,
such as an input or the result of a nondeterministic choice, are represented by
loose constants, which we call symbolic variables. Tractability stems first from
the use of alphabets (of symbolic variables) in a manner akin to the use of
alphabets (of observational variables) in the UTP. Additionally, we exploit a
characterisation of process states as predicates of the UTP theory of relations,
using the light touch of the UTP approach for clarity and simplicity.

S. Qin (Ed.): UTP 2010, LNCS 6445, pp. 1–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The conformance relation considered in the Circus testing theory is process
refinement, which is characterised using the UTP notion of refinement. As usual
in testing, we consider divergence-free processes. We take the typical view that,
in a specification (as opposed to the system under test) divergence is a mistake
and should not be used. In other words, in the specification, divergence should
not be indicated as an allowed behaviour. Furthermore, in a program (as opposed
to a program model) divergence cannot be distinguished from deadlock.

In previous work, we have shown that, for divergence-free processes, refine-
ment can be characterised by the conjunction of traces refinement and conf .
This is justified in the UTP in [7], based on a relationship between the UTP and
the failures-divergences models of CSP. The conf relation [3] has been widely
explored in the testing community, and requires reduction of deadlock.

The (symbolic) exhaustive test sets for both traces refinement and conf are
potentially infinite. Practical techniques rely on selection criteria both to gener-
ate and to select a finite set of tests. Together, exhaustiveness and the selection
criteria justify the conclusions that can be reached from testing experiments.

The symbolic tests and test sets of Circus are ideal as a starting point to
consider well-known selection criteria based on constraints decomposition and
solving [1,11,17]. These allow us to explore the rich data models and ensure
meaningful coverage of possible observations. They cater for the infinite data
types of Circus models, with operations specified in the Z predicative style. The
symbolic tests, along with the symbolic traces and acceptance sets used to define
them, are a prerequisite for proposing and justifying test-data generation tech-
niques in any language combining control and complex data types. They specify
the constraint-solving problems that need to be addressed.

On the other hand, complementary selection criteria that have been widely
explored are based on coverage of the syntactic structure of the specification: ac-
tions, transitions, paths that link variable assignments and uses, and so on. The
labelled transition system defined by the Circus operational semantics, however,
abstracts from this structure, including from the particular way in which vari-
ables are used. Moreover, it includes transitions that do not correspond to ob-
servable behaviour; their coverage is unlikely to be interesting for testing.

In this paper, we present a new labelled transition system for Circus that
is appropriate for the definition of specification-based coverage criteria, and the
associated algorithms for test-case generation. We define the new system in terms
of two other new transition relations, which we also present here. We briefly
discuss the soundness of the new transition rules, but leave a complete account
as future work. For illustration purposes, we explain how we can use the new
transition system to define a definition-use selection criterion [13].

Section 2 provides an introduction to Circus, its operational semantics, and
testing theory. The specification-oriented transition system is described in Sec-
tion 3. Its use in testing is the subject of Section 4. Soundness is discussed in
Section 5. Finally, we present our conclusions in Section 6. Appendix A repro-
duces the rules of the operational semantics used in discussions and examples.
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2 Circus, Its Operational Semantics, and Testing

The UTP has been the basis for a now ten-year-old research agenda on the
development of the Circus family of languages based on a combination of Z
and CSP. There have been extensions to cater for time [32], synchronicity [4],
mobility [33], pointers [16], and object-orientation [8,29]. We give here a brief
description of the original Circus language, and its operational semantics [36].
Our results, however, are a starting point to consider coverage of specifications
for all Circus extensions. They are all justified using UTP theories.

2.1 Circus Notation

A Circus model is formed by a sequence of paragraphs, like in Z [37], but they
can define channels and processes, like in CSP and its machine-readable ver-
sion (CSP-M) [28]. Figure 1 presents a model of a resource manager. Its first
paragraph introduces a given set Resource including the valid resources. The
second paragraph declares two channels: insert is used to request the addition
of a resource in the pool, and get to request a resource from the pool. The last
paragraph is a basic (or explicit) definition for a process called ResourceManager .

A basic process definition is itself formed by a sequence of paragraphs. The
first paragraph of ResourceManager is a Z schema RM marked as the state
definition. Circus processes have a private state defined using Z, and interact
with each other and their environment using channels, like CSP processes.

The state of ResourceManager includes two components: a pool of resources,
and a cache that records a resource ready for delivery. The state invariant re-
quires that the cached resource is not in the pool as well.

Operations over the state can be defined by schemas just like in Z. For in-
stance, the schema Cache specifies an operation that caches a resource, if the
pool is not empty. The schema Cache includes the schema ΔRM to bring into
scope the names of the state components defined in RM and their dashed coun-
terparts to represent the state after the execution of Cache.

State operations are called actions in Circus, and can also be defined using
Morgan’s specification statements [22] or guarded commands from Dijkstra’s
language [12]. The operation Insert in our example, for instance, is defined by
an assignment. It adds a resource r? given as input to the pool.

CSP constructs can also be used to specify actions. For instance, the resource
manager has two components: a CacheManager and a PoolManager , specified
by separate actions. CacheManager accepts requests for a resource through the
channel get . When such a request occurs, the cache becomes empty and the
manager terminates. The PoolManager , on the other hand, accepts requests to
insert a resource in the pool, which is carried by Insert . It also monitors requests
for a resource (through get). When this happens, if the pool is not empty, the
manager terminates, otherwise, it waits for an element to be inserted in the pool
before terminating. The specification of PoolManager combines an assignment,
the action Skip, which terminates immediately, without changing the state,



4 A. Cavalcanti and M.-C. Gaudel

[Resource]

channel insert , get : Resource

processResourceManager =̂ begin

stateRM
pool : PResource
cache : Resource

cache �∈ pool

Init
RM ′

pool ′ = ∅

Cache
ΔRM

pool �= ∅

pool ′ = pool \ {cache ′}

Insert =̂ r? : Resource • pool := pool ∪ {r?}

CacheManager =̂ get !cache → Skip

PoolManager =̂⎛⎝µX •

⎛⎝ insert?r → Insert(r); X
�

get?x → (if pool �= ∅ → Skip � pool = ∅ → insert?r → Insert(r))

⎞⎠⎞⎠
• Init ;
(µX • (CacheManager � {cache} | {| get |} | {pool} � PoolManager); Cache; X )

end

Fig. 1. Resource manager in Circus

a schema operation, a conditional (in Dijkstra’s style), and an external choice (�).
Z and CSP constructs are intermixed freely in an action definition.

A main action at the end defines the behaviour of the ResourceManager .
After a call to the initialisation operation Init , a parallel composition combines
the CacheManager and the PoolManager . When the parallelism terminates, the
Cache operation updates the cache to make a resource available.

Like in CSP, the parallel operator defines a synchronisation channel set: com-
munications through channels in this set require agreement of both parallel
actions. In our example, get is in the synchronisation set. To avoid race con-
ditions, the parallel operator also associates with each action a partition of the
variables in scope over which it has write control. Both parallel actions can ac-
cess the value of the state before the parallelism starts. Both can write to all state
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components. An update, however, only becomes visible to other actions after
the parallelism terminates, and then only if the action has write control over the
changed variable. In our example, the CacheManager has control over cache,
and PoolManager over pool . (In fact, CacheManager does not change cache,
but we require the name sets to be a partition of the state.)

Processes can also be defined by composition using CSP constructs. For ex-
ample, in a distributed setting, we can have two resource managers available.

processResources =̂ ResourceManager � ResourceManager

In this case, we have two copies of a ResourceManager , each with its own private
state. A request to insert or get a resource is responded by either of them;
the choice is nondeterministic. Nondeterminism in Circus may arise from data
operations, like in Z, or from parallelism, like in CSP. We also have the explicit
operator for nondeterministic choice of CSP. In our example, the data operation
Cache is nondeterministic, as is the process Resources above.

A full account of Circus and its denotational semantics, including the UTP
theory that underpins it, is given in [25]. The Circus operational semantics [36]
is briefly discussed and illustrated in the next section.

2.2 Circus Operational Semantics

As usual, the operational semantics of Circus is based on a transition relation
that associates configurations. For processes, the configurations are processes
themselves. For actions, the configurations are triples. The first component is a
constraint over symbolic variables used to define labels and the state. The second
component is a total assignment in the UTP theory of relations of symbolic
variables to variables. The last component is an action.

The constraints in the configurations are texts that denote predicates (over
symbolic variables). Like in the UTP, we use typewriter font for pieces of text.
The syntax used to define them is that of the UTP relational theory, and of
Circus predicates, which are basically Z predicates [23].

State assignments are expressed using the UTP notation x := e for relational
assignments. They can also include declarations and undeclaration of variables
using the UTP constructs var x and end x . The declaration of a variable is
immediately followed by an assignment of a symbolic variable to it, so that state
assignments are deterministic programs that define a specific value (represented
by a symbolic variable) for all variables in scope. We use the notation var x := e
as an abbreviation for var x ; x := e. It is the combination of the constraint
over symbolic variables, and the state assignment of symbolic variables to all
variables in scope that, together, specify the state of a configuration.

To give the operational semantics of a process, we use a novel construct for a
basic process. It records the current local state of a process using a constraint and
a state assignment. The first transition rule for processes shown below introduces
the record of the local state. It is characterised using a (list of) fresh symbolic
variable(s) w0. The constraint defines that w0 is (are) of the appropriate type(s),
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and in the state assignment w0 is assigned to the state component(s) x. In all
transition rules, the symbolic variables introduced are assumed to be fresh.

⎛⎜⎜⎝
begin

state [ x : T ]
• A

end

⎞⎟⎟⎠ ε−→

⎛⎜⎜⎝
begin

state [ x : T ] | loc (w0 ∈ T | x := w0)
• A

end

⎞⎟⎟⎠
The semantics of composed processes is defined by providing a corresponding
basic process [23]. We, therefore, do not consider them here. The complete set
of transition rules is in [36]; some are presented below and in Appendix A.

The second transition rule for processes, which we omit here for conciseness,
applies to the extended form of a basic process. The rule allows a process to
evolve in accordance with the evolution of its main action in the state defined
by the loc clause. We therefore focus on the transition relation for actions.

The rule for designs (which are a simplified form of specification statement) is
below. The hypothesis requires the constraint to hold, the precondition to hold
in the current state s , and the design to be feasible. In this case, evolution to
Skip is silent (not labelled, or labelled by ε). The constraint is strengthened by
introducing fresh symbolic variables w0 that satisfy the postcondition, and the
state is updated by assigning w0 to all variables in scope. The state s is not
completely discarded, since it may contain variable declarations.

c ∧ (s; p) ∧ (∃ v ′ • s; Q)

(c | s |= p� Q)
ε−→ (c ∧ (s; Q [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs

Another rule states that, if the precondition does not hold, the design evolves
to Chaos, the action that diverges immediately.

The evolution of an output prefixing d!e→A, an action that outputs the value
of the expression e through channel d and then behaves like A, is labelled. The
label d.w0 involves the fresh constant w0; the new constraint defines its value to
be that of e in the current state s. The remaining action is A.

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

The transition rule for an input prefixing d?x→ A is as follows.

c ∧ T �= ∅ x �∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

The label is d?w0. In the new the state, x is declared and assigned w0. The only
restriction on w0 is that it has the same type as d. The remaining action let x • A
records the fact that x is in scope in A as a local variable. The construct let x • A
has been introduced specifically for use in the operational semantics. When A
terminates, a rule for let x • Skip closes the scope of x in the state and removes
the let x declaration. This is Rule (8) in Appendix A.
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The transition rules for sequences A1; B are standard. Evolution of A1 leads to
evolution of the sequence. When it terminates, a rule for Skip; B allows a silent
transition to B, thus removing the sequence.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l−→ (c2 | s2 |= A2; B)

c

(c | s |= Skip; A)
ε−→ (c | s |= A)

For an internal choice A1�A2, silent transitions are available to either A1 or A2 (in
a configuration with the same constraint and state assignment).

c

(c | s |= A1 	 A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 	 A2)
ε−→ (c | s |= A2)

The treatment of parallelism is more subtle. We introduce an extra form of action
par s | x • A that records the local state s of the parallel action A, which has
write control over the variables in x . The first transition rule for a parallelism
defines a silent transition that rewrites it in terms of this new construct.

The rule below allows evolutions of the first parallel action A1 that are either
silent or do not involve a channel in the synchronisation set to be reflected in
the parallelism. A similar omitted rule considers independent evolutions of A2.

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l �∈ cs⎛⎜⎜⎜⎜⎝

c | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ l−→

⎛⎜⎜⎜⎜⎝
c3 | s
|=⎛⎝ (par s3 | x1 • A3)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠

The next rule is for when the parallel actions can evolve by synchronising. In
particular, A1 can carry out an input d?w1, and A2 an output d!w2, where d is a
channel in the synchronisation set, and the values communicated are equal. The
transition rule establishes that, in this case, the parallelism as a whole actually
performs an output. The new constraint records the restriction that w1 = w2.

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2⎛⎜⎜⎜⎜⎝
c | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ d!w2−→

⎛⎜⎜⎜⎜⎝
c3 ∧ c4 ∧ w1 = w2 | s
|=⎛⎝ (par s3 | x1 • A3)

�cs�

(par s4 | x2 • A4)

⎞⎠
⎞⎟⎟⎟⎟⎠

Similar rules apply when A1 can output and A2 input, or when both A1 and A2
can output. When they can both input, the parallelism also performs an input.
We refer to the Appendix A for an account of all transition rules for parallelism.



8 A. Cavalcanti and M.-C. Gaudel

Perhaps the most interesting rule is the one that applies when both parallel
actions have terminated. In this case, the parallelism terminates.

c⎛⎜⎜⎜⎜⎝
c | s
|=⎛⎝ (par s1 | x1 • Skip)

�cs�

(par s2 | x2 • Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠ ε−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)

The state after the parallelism is defined by composing the local states of the par-
allel action. We keep from the local state s1 of the first action only the changes to
the variables in its name set x1. This is achieved by hiding (quantifying) the final
value of the variables in the complement set x2. The same applies for the changes
in s2. The conjunction of the quantifications defines the new state. We observe
that, alternatively, we can define the new state as s1; end x2 ∧ s2; end x1.

Rules for external choice require similar considerations. Actions in an external
choice can evolve independently, with local access to all variables, until an event
decides the choice, and consequently, makes the local changes global.

For a hiding A1 \ cs, the rules allow evolution of A1 to lead to evolution of the
hiding itself. In the rule below, evolution does not involve a hidden channel, so
the label for the hiding transition is that for the A1 transition.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) chan l �∈ cs

(c1 | s1 |= A1 \ cs) l−→ (c2 | s2 |= A2 \ cs)
If, on the other hand, A1 can communicate on a hidden channel, the correspond-
ing evolution of the hiding is silent. This is defined by Rule (20) in Appendix A.
Finally, Rule (21) specifies that if A1 terminates, so does the hiding.

Example 1. We consider the action defined below, in the context of a process
that has a state with components x and y, of type Z, for instance. Channels inp
and out also of type Z are in scope and used in E .

E =̂ x := 2; (y > x � out !(y − x )→ Skip � inp?z → Stop); x := y

As suggested by the transition rule for processes, we consider the transitions
from a state characterised by (w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1). We can justify
the following transitions using the Circus operational semantics described above.
The rule numbers mentioned refer to the list in Appendix A.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)
−→ [Rules (2) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x � out!(y− x)→ Skip � inp?z→ Stop); x := y

⎞⎠
−→ [Rule (10)]
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|=
(y > x � out!(y− x)→ Skip� inp?z→ Stop); x := y

⎞⎠
At this point two rules for internal choice apply, corresponding to the two choices
available. We pursue the first below, and the second afterwards.

−→ [Rules (11) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip); x := y

⎞⎠

−→ [Rules (12) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
(out!(y− x)→ Skip); x := y

⎞⎠
out!w3−→ [Rules (4) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip; x := y

⎞⎠
−→ [Rule (10)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y

⎞⎠
−→ [Rule (2)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip

⎞⎠
Considering the second option of the internal choice, we can proceed as follows.

−→ [Rules (11) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y

⎞⎠
inp?w3−→ [Rules (5) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; varz := w3
|=
(let z • Stop); x := y

⎞⎠
From here, we cannot proceed, as there are no transition rules for Stop.

All transitions above are valid when the associated constraints are satisfied. �
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Example 2. We consider the action defined below, in the context of a process
that has a state with a component x of type Z. Channels inpA, inpB , int , and
out , also of type Z, are in scope and used in PA.

PA =̂

⎛⎝x := 2;

⎛⎝ (inpA?y → int !y → out !(y − x )→ Skip)
�{| int |}�

(inpB?z1 → int?z2 → z1 > z2 � out !(z1 − x )→ Skip)

⎞⎠⎞⎠
Strictly speaking, we would need to define the sets of names of variables that
can be updated by each of the parallel actions. In this simple example, however,
they update no variables, so we omit these sets.

We consider below the transitions from the state (w0 ∈ Z | x := w0). We can
justify the following transitions using the Circus operational semantics.

(w0 ∈ Z | x := w0 |= PA)
−→ [Rules (2) and (9)]⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 | x := w1
|=

Skip;

⎛⎝ (inpA?y→ int!y→ out!(y− x)→ Skip)
�{| int |}�

(inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠

−→ [Rule (10)]⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 | x := w1
|=⎛⎝ (inpA?y→ int!y→ out!(y− x)→ Skip)

�{| int |}�
(inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠

−→ [Rule (13)]⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 | x := w1
|=⎛⎝par x := w1 • inpA?y→ int!y→ out!(y− x)→ Skip

�{| int |}�
par x := w1 • inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip

⎞⎠
⎞⎟⎟⎟⎟⎠

Now, there are two rules that are applicable (Rules (15) and (16)), reflecting the
fact that either of the parallel actions can evolve independently. So, we can have
the following sequence of transitions if the left-hand action evolves first.

inpA?w2−→ [Rules (5) and (15)]⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z | x := w1
|=⎛⎝par x := w1; var y := w2 • (let y • int!y→ out!(y− x)→ Skip)

�{| int |}�
par x := w1 • inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip

⎞⎠
⎞⎟⎟⎟⎟⎠
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inpB?w3−→ [Rules (5) and (16)]⎛⎜⎜⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z | x := w1
|=⎛⎜⎜⎝

par x := w1; var y := w2 • (let y • int!y→ out!(y− x)→ Skip)
�{| int |}�(
par x := w1; var z1 := w3 •
let z1 • int?z2→ z1 > z2 � out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
If the right-hand action evolves first, we have the following transitions. We choose
the names of the symbolic variables carefully, so that the same communicated
values are represented by variables of the same name. In our use of the opera-
tional semantics to define traces, initials, acceptances, and tests [6], this careful
choice is guided and fixed by an alphabet of symbolic variables.

inpB?w3−→ [Rules (5) and (16)]⎛⎜⎜⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 ∧ w3 ∈ Z | x := w1
|=⎛⎜⎜⎝

par x := w1 • inpA?y→ int!y→ out!(y− x)→ Skip
�{| int |}�(
par x := w1; var z1 := w3 •
let z1 • int?z2→ z1 > z2 � out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
inpA?w2−→ [Rules (5) and (15)]⎛⎜⎜⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z | x := w1
|=⎛⎜⎜⎝

par x := w1; var y := w2 • (let y • int!y→ out!(y− x)→ Skip)
�{| int |}�(
par x := w1; var z1 := w3 •
let z1 • int?z2→ z1 > z2 � out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
The configurations reached in both options are the same. (If we did not choose
the names of the symbolic variables appropriately, there would be syntactic
differences in the text of the constraint and state assignment, arising (just) from
the differentiated use of fresh names. For the sake of simplicity, we are choosing
the names in an adequate way as explained before. With the support of simple
pattern matching facilities, a tool can identify the commonality in any case.)

The next transition rule that applies is that for synchronisation of parallel
actions, when we have a matching input and output.

int!w5−→ [Rules (4), (7), (5), and (17)]⎛⎜⎜⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧ w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 | x := w1
|=⎛⎜⎜⎝

par x := w1; var y := w2 • (let y • out!(y− x)→ Skip)
�{| int |}�(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • z1 > z2 � out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
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We now have two choices again corresponding to the independent evolutions of
the parallel actions. If the left-hand action evolves first, we have the following.

out!w6−→ [Rules (4), (7), and (15)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1

⎞⎠ | x := w1

|=⎛⎜⎜⎝
par x := w1; var y := w2 • (let y • Skip)

�{| int |}�(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • z1 > z2 � out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
And again we have a choice of the silent evolution of the left-hand action, or the
evolution of the second action. Continuing with the evolution of the left-hand
action, we proceed with the following sequence of transitions.

−→ [Rules (8) and (15)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1

⎞⎠ | x := w1

|=⎛⎜⎜⎝
par x := w1; var y := w2; end y • Skip

�{| int |}�(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • z1 > z2 � out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→ [Rules (12), (7) and (16)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5

⎞⎠ | x := w1

|=⎛⎜⎜⎝
par x := w1; var y := w2; end y • Skip

�{| int |}�(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • out!(z1 − x)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
out.w7−→ [Rules (4), (7) and (16)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

⎞⎠ | x := w1

|=⎛⎝par x := w1; var y := w2; end y • Skip
�{| int |}�

par x := w1; var z1, z2 := w3, w5 • (let z1, z2 • Skip)

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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−→ [Rules (8) and (16)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

⎞⎠ | x := w1

|=⎛⎝par x := w1; var y := w2; end y • Skip
�{| int |}�

par x := w1; var z1, z2 := w3, w5; end z1, z2 • Skip

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→ [Rule (14)]⎛⎜⎜⎜⎜⎝
⎛⎝w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

⎞⎠ | x := w1

|=
Skip

⎞⎟⎟⎟⎟⎠
Various interleavings of the evolution of each of the parallel actions are possible.
The above is just an example. A second option, for instance, carries out all
the evolutions of the right-hand side action to Skip before evolving the left-
hand action. In this case, the order of communication of y − x and z1 − x on
out changes. The end configuration, with a careful choice of the names of the
symbolic variables as illustrated before, is the same in all cases. �

In the next section, we explain how the operational semantics is used to define
tests based on Circus models of a system.

2.3 Testing in Circus

In previous work, we have instantiated Gaudel’s long-standing testing theory to
Circus [15]. The conformance relation we have considered is process refinement.
This is the UTP notion of refinement applied to processes, that is, to their main
actions, where the state components are taken as local variables.

As already said, we take the view that, in specifications, divergences are mis-
takes. In programs, they are observed as deadlocks. We, therefore, consider a
theory for divergence-free models and systems under test (SUT ). In this case,
the refinement relation of Circus can be characterised by the conjunction of a
traces refinement relation, and a conf relation that requires reduction of dead-
lock. This is proved in [7], where both relations are defined in the UTP Circus
theory.

Accordingly, we have defined separate exhaustive test sets for traces refine-
ment and conf . We have taken advantage of the symbolic nature of the Circus
operational semantics, and defined the tests symbolically. These definitions spec-
ify how concrete tests can be obtained by a process of instantiation.

A test for traces refinement is constructed by considering a trace of the Cir-
cus model and one of the events that cannot be used to extend that trace to
obtain a new trace of the Circus model [5]. Such events are called the forbidden
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continuations of the trace. Traces and forbidden continuations are characterised
symbolically. The exhaustive test set includes all the tests formed by considering
all the traces and all their forbidden continuations.

For the process PA in Example 2, we have traces of communications over
inpA, inpB , and int . Below, we present a symbolic trace that specifies some of
them; it has an associated constraint over the symbolic variables used in the
specification of the trace. We call these pairs constrained symbolic traces.

(〈 inpA.w2, inpB.w3, int.w5〉, w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2)

Roughly speaking, the constrained symbolic trace can be obtained by evaluating
the operational semantics, collecting the labels together, and keeping the con-
straint over the symbolic variables used in the labels. The ? and ! decorations
that determine whether the communications are inputs or outputs are ignored.

There is a forbidden continuation of this trace for each of the channels in
scope. The only possible continuations involve communications over out , but
not all of them are allowed. For example, the following is the specification of the
forbidden continuations involving inpA; it is a constrained symbolic event.

(inpA.w6, w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2)

It records the constraint of the trace, and imposes no restriction on the value
w6 communicated via inpA, since no value is allowed. The specification for the
forbidden continuations involving out , on the other hand, is as follows.

(out.w6, w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2 ∧ w6 �= w2 − 2 ∧ w6 �= w3 − 2)

The symbolic tests corresponding to the above trace and the forbidden contin-
uation above (involving out) is as follows.

inc→ inpA?w2 : w2 ∈ Z→
inc→ inpB?w3 : w2 ∈ Z ∧ w3 ∈ Z→
inc→ int?w5 : w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2 → pass→
out?w6 : w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2 ∧ w6 �= w2 − 2 ∧ w6 �= w3− 2→
fail → Stop

We use extra special events inc, pass and fail to indicate a verdict. In the
execution of a testing experiment, the test is run in parallel with the SUT , with
all the model events hidden, so that the interaction between the test and the SUT
cannot be affected by the environment. In our example, the communications
over inpA, inpB , and int are hidden. The last special event observed in a testing
experiment provides the verdict. Due the possibility of nondeterminism, a trace
of the model is not necessarily available in the SUT . The inc event indicates an
inconclusive verdict: the SUT has not performed the proposed trace. If it does
perform the trace, we have a pass event, but if the SUT proceeds to engage in
the forbidden communication, then we have a fail .

The last event is that observed before the testing experiment leads to a dead-
lock. As already hinted, we do assume that we can observe a deadlock. In prac-
tice, this requires the definition of a timeout.
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A possible concrete test satisfying the test specification above is as follows.

inc→ inpA.0→ inc → inpB .1→ inc → int .0→ pass → out .2→ fail → Stop

There are, of course, infinitely many other choices, as there may be infinitely
many test specifications, in the case, for example, of nonterminating processes.

In the tests for conf , we use the traces and acceptances of a process. In the
exhaustive test set for conf , we have all tests formed by considering all traces of
the model, and all the acceptance sets after each of them.

In a conf test we check that, after the trace, the SUT does not deadlock if it
is offered all the events of an acceptance set. Acceptance sets, like refusals, are
more interesting for nondeterministic processes. So, we consider the action E in
Example 1. After the empty trace (〈 〉, True), the specification of the minimal
sets of acceptances is the following set of constrained symbolic events. They
record whether the communications are inputs or outputs. As explained below,
this is important in the creation of the concrete acceptance sets and conf tests.

{(out!w3, w3 > 0), (inp?w3, w3 ∈ Z)}

Roughly speaking, this is obtained by picking one of the continuations from each
of the stable states that can be reached via the empty trace. Stable states are
those from which there is no silent transition available. In our example, the stable
states are those from which just a transition with label out!w3 or label inp?w3
is available. These labels define the continuations.

The symbolic test for conf defined by the empty trace and the constrained
symbolic acceptance set above is as follows.

fail → (out !w3 : w3 > 0→ pass → Stop � inp?w3 : w3 ∈ Z→ pass → Stop)

Since the trace is empty, there is no need for inc events. Before offering the SUT
all the events of the acceptance set, we have a fail . The SUT cannot deadlock
when all events of an acceptance are available, so if it accepts any of them, then
we have a pass . Otherwise, the fail verdict stands.

In instantiating the above test, we can obtain the concrete test below.

fail → (out?w3 : w3 > 0→ pass → Stop � inp.0→ pass → Stop)

The output in the model becomes an input in the test, since any output produced
by the SUT is acceptable as long as it satisfies the associated constraint. For
the input, a concrete test chooses a particular value satisfying the constraint.

The constraints in the symbolic tests for both traces refinement and conf
define the constraint-satisfaction problems that need to be solved to obtain con-
crete tests. They provide a concise account of the state operations and their
properties. Selection of concrete tests can use criteria based on coverage of the
symbolic transition system, for instance. In addition, we can use the constraints
to apply standard techniques based on uniformity subdomains. A very simple
approach, for instance, considers, to start with, just one concrete test for each



16 A. Cavalcanti and M.-C. Gaudel

symbolic test (so that the constraints are themselves taken as definitions of uni-
formity subdomains: sets of tests that provide the same verdict).

What the symbolic tests do not provide is support for criteria based on the
structure of the models. For example, in the tests above, we have no record of
the way in which the variables x , y, z and so on are used. For larger examples,
uses of data operations can also be of interest. For instance, the symbolic tests
for the ResourceManager presented in Section 2.1 do not keep a record of the
use of the operations Cache, Insert , and so on. It is to address this issue that
we define a new transition system for Circus in the next section.

3 Specification-Oriented Transition System

The main distinguishing feature of the new transition system is its labels. They
record not only events, like in the operational semantics, but also guards and
state changes. Additionally, they are expressed in terms of the expressions of the
Circus model, rather than symbolic variables. For example, for the action E in
Example 1, we have transitions with labels x := 2, y > z, and out!z.

Furthermore, the specification-oriented system has no silent transitions; they
correspond to evolutions that are not guarded, and do not entail any communi-
cation or state change. These transitions do not capture observable behaviour,
and so are not interesting from a testing point of view.

We first discuss the definition of the new transition system for processes (Sec-
tion 3.1). It is specified in terms of a transition relation for actions (Section 3.4),
which is itself defined in terms of two other relations (Sections 3.2 and 3.3).

3.1 Processes

Like in the operational semantics, we have a transition relation =⇒ between
texts of process. It is defined in terms of the corresponding relation for actions
by the transition rule below. The labels are triples including a guard, an event,
and an action. As mentioned above, there are no silent transitions.

We have a single transition rule, which allows us to lift transitions of the main
action of a process in its local state to the process itself.

(state(P1) |= maction(P1))
l

=⇒ (state(P2) |= maction(P2))

P1
l

=⇒ P2

(1)

The local state of a process is characterised by the syntactic function state (P). It
is defined below for basic processes: those originally in the Circus notation, and
the extended form of process with a loc clause used in the operational semantics.

state(begin state [x : T] • A end) = (w0 ∈ T | x := w0)
state(begin state [x : T] loc (c | s) • A end) = (c | s)
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where w0 is a fresh symbolic variable. As mentioned in Section 2.2, there is no
need to consider the composed processes, which are defined in terms of basic
processes. Another syntactic function maction extracts the main action of a
basic process. Its simple definition is omitted.

Unlike in the operational semantics, we do not have a rule to introduce the
extended form of basic process as a first step of the evaluation. That is a silent
transition, which we do not keep in the specification-oriented system.

For actions, a transition (c1 | s1 |= A1)
(g,e,A)
=⇒ (c2 | s2 |= A2) establishes that in

the state characterised by (c1 | s1), if the guard g holds, then in the execution
of A1 the event e takes place, and afterwards A is executed. The new state is
then characterised by (c2 | s2) and the remaining action to execute is A2. In the
label, if the guard is True, we can omit it, and write just (e,A). Similarly, we
omit the event if its value is ε, and the action, if omitted, is Skip. We do not
have silent transitions, here defined as transitions with label (True, ε, Skip). So,
at least one of the components of a label has to be given explicitly. If it has only
one component given explicitly, we do not use the tuple notation.

The language used to write guards, events, and actions is Circus [23]. For ac-
tions, however, we include the extensions necessary to express the operational
semantics, add the UTP constructs for variable declaration (var x : T ) and un-
declaration (end x ), and two new constructs for parallelism and external choice.

The definition of (c1 | s1 |= A1)
(g,e,A)
=⇒ (c2 | s2 |= A2) uses a succession of other

transition relations that we define in the next sections.

3.2 Specification Labels

The first relation (c1 | s1 |= A1)
(g,e,A)
=⇒L (c2 | s2 |= A2) associates configurations

that are already related by a transition of the operational semantics. It, however,
records more information in the labels, as explained above, and formalised below
by the transition rules that define this new relation.

Basic actions. There are three rules for basic actions presented below: one for
designs, one for schemas, and one for assignment. They are basically the same
as the corresponding rules of the operational semantics (see Appendix A). The
difference is that we record the executed action (state change) in the label.

c ∧ (s; p) ∧ (∃ v ′ • s; Q)

(c | s |= p� Q)
p� Q

=⇒L (c ∧ (s; Q [w0/v
′]) | s; v := w0 |= Skip)

v ′ = outαs (2)

c ∧ (s; preOp)

(c | s |= Op)
Op

=⇒ (c ∧ (s; Op [w0/v
′]) | s; v := w0 |= Skip)

v ′ = outαs (3)

c

(c | s |= v := e)
v:=e
=⇒L (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(4)
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What we do not have are rules corresponding to those in the operational se-
mantics that cover the situation where the precondition of a design or schema
is false, and the action diverges. These are not useful in our work on testing,
where, as previously explained, we assume the absence of divergence.

Example 3. For components of our example action E introduced in Example 1,
we have the two transitions below. The numbers refer to the transition rules of
the new relation presented above, rather than those of the operational semantics.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 2)
x:=2=⇒L [Rule (4)]
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1 |= Skip)⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y

⎞⎠
x:=y
=⇒L [Rule (4)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip

⎞⎠
�

We do not use symbolic variables in labels. We still, however, keep the charac-
terisation of the state in terms of symbolic variables. This allows the combined
use of the operational semantics and the specification-oriented transition sys-
tem. This is useful both in the definition of the new transition system, and in
the testing techniques that we plan to explore, since as explained in Section 2.3,
Circus tests are expressed in terms of the symbolic variables.

Guards and prefixings. As previously mentioned, guards are also recorded in
labels. We present below a rule similar to Rule (12) of the operational semantics,
but which records the guard in the label.

c ∧ (s; g)

(c | s |= g � A)
g

=⇒L (c ∧ (s; g) | s |= A)
(5)

There is no rule here and in the operational semantics for when the guard does
not hold. This is a deadlock, represented by the absence of available transitions.

Example 4⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
y > x � out!(y− x)→ Skip

⎞⎠
y>x

=⇒L [Rule (5)]
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|=
out!(y− x)→ Skip

⎞⎠
�

As opposed to the transitions in the operational semantics, here the labels for
the transitions that apply to output prefixings record the expressions e whose
values are output (rather than symbolic variables representing those values).

c

(c | s |= d!e→ A)
d!e

=⇒L (c ∧ (s; w0 = e) | s |= A)
(6)

As discussed before, in the labels of =⇒L, there is no use of symbolic variables.
These labels record the text of the specification, rather than events with eval-
uated values (represented by symbolic variables). In this way, they record, for
instance, the specification variables used in the communication d!e.

Example 5⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
out!(y− x)→ Skip

⎞⎠
out.(y−x)
=⇒L [Rule (6)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip

⎞⎠
�

In the case of an input, the label records the input variable.

c ∧ T �= ∅ x �∈ αs

(c | s |= d?x : T→ A)
d?x
=⇒ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(7)

Just like in CSP, the input implicitly declares the input variable x.

Example 6⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
inp?z→ Stop

⎞⎠
inp?z
=⇒L [Rules (5) and (9)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; var z := w3
|=
let z • Stop

⎞⎠
�
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Variables. To record a variable declaration in a label, we use the UTP variable
declaration construct var x . It is not available in Circus, originally, but can be
defined as ∃ x • Skip in the UTP theory for Circus.

c ∧ T �= ∅ x �∈ αs

(c | s |= var x : T • A)
(var x:T)
=⇒L (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(8)

Like in the operational semantics, we assume that variable names are not reused.
When the action in the scope of a variable declaration finishes, the end of the

scope is also recorded. For that we use the UTP undeclaration construct end x .

c

(c | s |= let x • Skip)
(end x)
=⇒L (c | s; end x |= Skip)

(9)

Action operators. There are standard rules that reflect the fact that evolu-
tion of a component action leads to the evolution of the composed action that
uses it.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l

=⇒L (c2 | s2 |= let x • A2)
(10)

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l

=⇒L (c2 | s2 |= A2; B)
(11)

For the silent transitions of the operational semantics that are involved in the
evolution of a composed action, we have no corresponding transition rule. For
instance, we have no specific rule for an action Skip; A or an action A1 � A2. In
the following section, we give a transition relation that handles these actions.

Example 7. We consider again the action E of Example 1, and present below
transitions that are justified by the rules for the specification-oriented relation.
We observe that, in many cases, no such rule applies, and we indicate again the
transitions of the operational semantics that are possible.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)
x:=2=⇒L [Rules (4) and (11)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x � out!(y− x)→ Skip � inp?z→ Stop); x := y

⎞⎠
−→⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip� inp?z→ Stop); x := y

⎞⎠
As before, we consider each of the options of the internal choice in turn.
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−→⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip); x := y

⎞⎠
y>x

=⇒L [Rules (5) and (11)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
(out!(y− x)→ Skip); x := y

⎞⎠
out!(y−x)
=⇒L [Rules (6) and (11)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip; x := y

⎞⎠
−→⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y

⎞⎠
x:=y
=⇒L [Rule (2)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip

⎞⎠
For the second option of the internal choice, we proceed as follows.

−→⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y

⎞⎠
inp?z
=⇒L [Rules (7) and (11)]⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; varz := w3
|=
(let z • Stop); x := y

⎞⎠
From here, we cannot proceed with either kind of transition. �

Parallelism and external choice. For these, the use of global variables raises an
important issue. As already explained, parallel actions have access to the values
of the global variables before the start of the parallelism, and can change their
values locally. The name partitions define the updates that become visible after
the parallelism finishes. This raises an issue concerning the interpretation of
labels of transitions that reflect the evolution of parallel actions.
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Example 8. We consider the following action involving an interleaving. (In both
the operational and denotational semantics, interleaving is treated as a paral-
lelism with an empty set of synchronisation channels.)

PA =̂ x := 2; ((x := 3; out !x → Skip) ||[ {x} | { } ]|| (x := 4; out !x → Skip))

A naive approach to recording the evolution of the parallelism could lead to a
sequence of labels like (x := 2), (x := 3), (x := 4), out!x. A perhaps reasonable
interpretation of this path of execution would then be that the value 4 is output
via out . This is, however, not necessarily the case, since, if the output comes
from the first parallel action, then the value output is 3, and after two outputs,
the new value of x is 3, in spite of the intermediate x := 4. The sequence of
labels is not an accurate description of a path of execution of PA. �

Example 9. A similar situation arises with the external choice below.

ECA =̂ x := 2; ((x := 3; outA!x → Skip) � (outB !x → Skip))

A sequence of labels (x := 2), (x := 3); outB!x would be misleading, because the
assignment x := 3 is discarded once the choice for the other action is taken. �

In both cases, the difficulty is related to the fact that labels expose expressions
that occur in the local scope of alternative paths of execution. In the operational
semantics, this has been addressed by recording in the symbolic variables the
evaluated values of the expressions, and using the symbolic variables, rather
than the expressions themselves, to write the labels. Here, to record information
about the structure of the specification, we need to keep the expressions.

What we need is to record is the use of global variables as local variables in
parallel actions and external choices. For PA in Example 8, for instance, we need
local versions xl and xr of x for the left-hand and the right-hand parallel actions.
They are declared at the start of the parallelism, and the parallel actions use the
local instead of the global variables. When the parallelism terminates, the global
variables are updated in accordance with the name sets, and the local variables
undeclared. A possible path for the action PA, for instance, is as follows.

(x := 2), (varxl, xr := x, x),
(xl = 3), (xr := 4), (out!xl), (out!xr),
(x := xl; end xl, xr)

A related problem arises from the use of local variables in parallel paths of
execution. This is illustrated and explained in the example below.

Example 10. We consider the interleaving and external choice below.

PALV =̂ x := 2; (int?z → out !z → Skip) � (out !x → Skip)
ECALV =̂ x := 2; ((var z • x := z ; outA→ Skip) � (outB → Skip))

In the case of PALV , the labels int?z and out!z refer to a variable z that is not
in the scope of (the state of) PALV , but in the local state of its first parallel



Specification Coverage for Testing in Circus 23

action. The same holds for the labels varz and x := z in the case of ECALV ,
which correspond to state changes that are local to the first action in the choice,
and that are discarded if an interaction on outB occurs. �

In the operational semantics, this is again addressed by recording the local state
of parallel actions and of branches of an external choice. The local state is used to
evaluate any predicates or expressions when defining the constraint on symbolic
variables. Since only the symbolic variables are used in labels, their interpretation
is clear. Once again, however, here we need to keep the expressions.

For that, we in fact consider a single global scope declaring all variables. The
structure of the specification itself, and the fact that names are not reused,
enforces the appropriate use of the variables. In the case, of PALV , for instance,
we have the following possible sequence of labels (x := 2), (varxl, xr := x, x),
int?z, out!xr, out!z, (endz), (x := xr; end xl, xr). In this case, the scope of z
is declared inside that of the local versions xl and xr of x.

In summary, we provide an alternative view of the parallelism. It no longer
creates two local states as in the operational semantics. Instead, the parallelism
gives rise to two local copies of the global variables, which coexist, and at the end
of the parallelism are used to update the global variables. This is in contrast with
the parallel by merge in the UTP, where the the parallel actions work on local
copies of the global state, whose variables are undeclared, and the local states
are reconciled when needed. This is the view adopted in the Circus denotational
and operational semantics. Here, we keep an extended global state containing
the original (global) variables and their local copies.

To provide a transition system with these characteristics, we use a new con-
struct spar v | v1 | v2 | x := x1 • A, which is used to represent a parallel action
A in a state containing the original global variables v , copies v1 of these variables
that are only used by A, and copies v2 of these variables that are not used by A.
In addition, A has write control over the global variables x , which correspond to
the variables x1. In out example action PALV , for instance, for the first action
v is x , v1 is xl , v2 is xr , and if we assume that this is the action that has write
control over x , then x is itself the programming variable x , and x1 is xl .

The transition rule that introduces the use of this new construct is as follows.
The label in this case records the declaration of the new variables.

c

(c | s |= A1 � x1 | cs | x2 � A2)

var vl,vr:=v,v
=⇒L⎛⎜⎜⎜⎜⎝
c | s; var vl, vr := v, v
|=⎛⎝ (spar v | vl | vr | x1 := x1l • A1[vl/v])

�cs�

(spar v | vr | vl | x2 := x2r • A2[vr/v])

⎞⎠
⎞⎟⎟⎟⎟⎠

v ′ = outαs
v = x1, x2
fresh vl , vr

(12)

As opposed to the transitions for parallelism in the operational semantics, the
transitions here lead to change of state before the termination of the parallelism.
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As defined above, the state is first changed by a declaration of fresh copies vl
and vr of the global variables v. The parallel action A1 is transformed to record
that the original global variables are v, that it uses vl, but does not use vr.
There is also a record that the variables x1 in its name set take the value of the
variables x1l upon termination of the parallelism. Finally, the variables v are
renamed to vl in A1. The other action A2 is transformed in a similar way.

The renaming A[y/x] substitutes y for x in the action A covering also deco-
rated input, output, and dashed variables, to cater for the uses of x in schemas
and specification statements. For instance, (x : [x > 0, x′ = x − 1])[y/x] is
y : [y > 0, y′ = y− 1] and [ ΔS; x! : Z • x! = 3][y/x] is [ ΔS; y! : Z • y! = 3].

Example 11. We consider again the action PA of Example 2. We show the =⇒L

transitions, and as before in Example 7 repeat the transitions of the operational
semantics when no =⇒L transition is possible. We define that the first parallel
action has control over x , even though neither action actually updates x .

(w0 ∈ Z | x := w0 |= PA)
x:=2=⇒ [Rules (4) and (11)]⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 | x := w1
|=

Skip;

⎛⎝ (inpA?y→ int!y→ out!(y− x)→ Skip)
�{x} | {| int |} | {}�

(inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠

−→⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 | x := w1
|=⎛⎝ (inpA?y→ int!y→ out!(y− x)→ Skip)

�{x} | {| int |} | {}�
(inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠

var xl,xr:=x,x
=⇒ [Rule 12]⎛⎜⎜⎜⎜⎜⎜⎝

w0 ∈ Z ∧ w1 = 2 | x := w1; var xl, xr := x, x
|=⎛⎜⎜⎝

(spar x | xl | xr | x := xl • inpA?y→ int!y→ out!(y− xl)→ Skip)
�{| int |}�(

spar x | xr | xl | Skip •
inpB?z1→ int?z2→ z1 > z2 � out!(z1 − xr)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
The second parallel action has write control over no variables, so we write the
assignment to the empty list of variables as Skip. �

In this work, from the semantics of the new spar construct, we only need the
transition rules that allow silent independent evolutions of the parallel actions.
The rule that considers evolution of the first parallel action is presented below.
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(c | s; end v, y |= A1)
ε−→ (c3 | s3 |= A3)⎛⎜⎜⎜⎜⎝

c | s
|=⎛⎝ (spar v | x | y | x1 := z1 • A1)

�cs�

(spar v | y | x | x2 := z2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ ε−→

⎛⎜⎜⎜⎜⎝
c | s3 ∧ s; end x
|=⎛⎝ (spar v | x | y | x1 := z1 • A3)

�cs�

(spar v | y | x | x2 := z2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠
(13)

The action A1 is evaluated in the state s after the original global variables v and
the local variables y of A2 are undeclared. The updated state of the parallelism is
characterised by the conjunction of the state s3 reached by A1, with the original
state s, after the local variables x of A1 are eliminated. It is important to observe
that the input variables of s3 and s; end x are the same, but their sets of output
variables are disjoint, so that conjunction captures the effect of the parallelism.
This is akin to the construct for parallelism of designs considered in [18].

Going back to the specification-oriented transition system, independent evolu-
tion of the left-hand parallel action A1 is covered by the following rule. A similar
rule caters for evolution of A2. Like in the operational semantics, the state for A1
is the global state s, with the global variables v and the local variables y of A2
undeclared. To compose the new state we conjoin the after state s3 of A1, with
the original state s followed by the undeclaration of y.

Variables declared in the scope of A1, as flagged by the label l, are made global,
and so they need to be mentioned in the set of variables under the control of
A1 in both parallel actions. Similarly, if the scope of a variable is closed, then it
needs to be removed from the set of variables under the control of A1.

(c | s; end v, y |= A1)
l

=⇒L (c3 | s3 |= A3) chan l = ε ∨ chan l �∈ cs

(c | s |= (spar v | x | y | x1 := z1 • A1) � cs � (spar v | y | x | x2 := z2 • A2))

l
=⇒L⎛⎜⎜⎜⎜⎝

c3 | s3 ∧ s; end x
|=⎛⎝ (spar v | x � (end l), (var l) | y | x1 := z1 • A3)

�cs�

(spar v | y | x � (end l), (var l) | x2 := z2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠

(14)

The function end l gives the variables whose scope are closed in the label l.
For example, end(end x) = x. The function var l, on the other hand, gives the
variables declared in l. For example, var(var x) = x and var(d?x) = x. Both
end and var are syntactic functions that can be defined by induction on the
structure of the actions used in labels in the obvious way. The syntactic function
x � y removes from the list of variables x the variables in the list y.

Example 12. Proceeding with the previous example, we have the following se-
quence of transitions if the left-hand action evolves first.
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inpA?y
=⇒ [Rules (7) and (14)]⎛⎜⎜⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z | x := w1; var xl, xr := x, x; var y := w2
|=⎛⎜⎜⎝

(spar x | xl, y | xr | x := xl • (let y • int!y→ out!(y− xl)→ Skip))
�{| int |}�(

spar x | xr | xl, y | Skip •
inpB?z1→ int?z2→ z1 > z2 � out!(z1 − xr)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
Above and in what follows, for conciseness, instead of the text actually generated
by the application of the transition rules to describe the new state, we give a
semantically equivalent, but simpler, description.

inpB?z1=⇒ [Rule (7) and Rule similar to (14)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z

| x := w1; varxl, xr := x, x; var y := w2; varz1 := w3
|=⎛⎜⎜⎝

(spar x | xl, y | xr, z1 | x := xl•(let y • int!y→ out!(y− xl)→ Skip))
�{| int |}�(

spar x | xr, z1 | xl, y | Skip •
(let z1 • int?z2→ z1 > z2 � out!(z1 − xr)→ Skip)

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

The rule for synchronisation of an input d?a with an output d!e is as follows.

(c | s; end v, y |= A1)
(g1,d?a,LA1)

=⇒L (c3 | s3 |= A3)

(c | s; end v, x |= A2)
(g2,d!e,LA2)

=⇒L (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ ∃w0 • (s3; (w0 = x)) ⇔ (s4; (w0 = e))

(c | s |= (spar v | x | y | x1 := z1 • A1) � cs � (spar v | y | x | x2 := z2 • A2))

(g1∧g2,d!e,var a:=e; LA1; LA2)
=⇒L⎛⎜⎜⎜⎜⎝

c3 ∧ c4 ∧ ∃ w0 • (s3; (w0 = x)) ⇔ (s4; (w0 = e)) | s3 ∧ s4 ∧ s; end x, y
|=⎛⎝ (spar v | x � (end LA1), a, (var LA1) | y � (end LA2), (var LA2) | x1 := z1 • A3)

�cs�

(spar v | y � (end LA2), (var LA2) | x � (end LA1), a, (var LA1) | x2 := z1 • A4)

⎞⎠
⎞⎟⎟⎟⎟⎠

(15)

For the parallelism to progress, both guards in the labels have to be satisfied
jointly. As a result of the parallelism, we actually have an output d!e: this is
what is observed by the environment of the parallelism. In addition, the input
variable a is declared, and its value is initialized to that of e.
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The constraint ∃w0 • s3; (w0 = x ) ⇔ s4; (w0 = e) requires that there is a
value w0 that is both the value of a in the after state s3 of A1, and the value of
e in the after state s4 of A2. In fact, the value of the expression could be taken
in the original state s but an output does not change the state.

The new state is the conjunction of the after states s3 and s4 of the parallel
actions, and the original state s where the local versions x and y of the original
global variables are all undeclared. This is necessary because neither s3 nor s4
includes the original global variables. On the other hand, in s; endx, y, these
are the only output variables in scope. So, the conjunction is between predicates
with the same input variables, but disjoint sets of output variables.

As for the previous transition rule, variables declared or undeclared, as stated
in the labels, are recorded in the appropriate sets of variables of the paral-
lel actions. These include the implicit declaration of the input variable a, and
the variables declared or undeclared in the actions LA1 and LA2 of the
labels.

We omit the similar rules for synchronisation of an output and an input, two
inputs, or two outputs. For two inputs d?a and d?b, one of the input variables a
is implicitly declared by the input event, and the other b is declared explicitly,
and initialised to a. In the case of two outputs d!e and d!f, there are no variable
declarations. The output value is that of e, and the guard guarantees that e = f.

Example 13. Proceeding with our example, we have the synchronisation.

(int!y,var z2:=y)
=⇒ [Rules (6), (10), (7), and similar to (15)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧ w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5
| x := w1; varxl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=⎛⎜⎜⎝

(spar x | xl, y | xr, z1, z2 | x := xl • (let y • out!(y− xl)→ Skip))
�{| int |}�(

spar x | xr, z1, z2 | xl, y | Skip •
(let z1, z2 • z1 > z2 � out!(z1 − xr)→ Skip)

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Again, the parallel actions can both evolve independently. We consider below
one order of evolution: the first action evolves first.

out!(y−xl)=⇒ [Rules (6), (10), and (14)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1

)
| x := w1; varxl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=⎛⎜⎜⎝

(spar x | xl, y | xr, z1, z2 | x := xl • (let y • Skip))
�{| int |}�(

spar x | xr, z1, z2 | xl, y | Skip •
(let z1, z2 • z1 > z2 � out!(z1 − xr)→ Skip)

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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z1>z2=⇒ [Rules (5), (10), and similar to (14)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5

)
| x := w1; varxl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=⎛⎜⎜⎝

(spar x | xl, y | xr, z1, z2 | x := xl • (let y • Skip))
�{| int |}�(

spar x | xr, z1, z2 | xl, y | Skip •
(let z1, z2 • out!(z1 − xr)→ Skip)

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
out!(z1−xr)=⇒ [Rules (6), (10), and similar to (14)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)
| x := w1; varxl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=⎛⎝ (spar x | xl, y | xr, z1, z2 | x := xl • (let y • Skip))

�{| int |}�
(spar x | xr, z1, z2 | xl, y | Skip • (let z1, z2 • Skip))

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
end y
=⇒ [Rules (10) and (14)]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)
| x := w1; varxl, xr := x, x; var y, z1, z2 := w2, w3, w5; endy
|=⎛⎝ (spar x | xl | xr, z1, z2 | x := xl • Skip)

�{| int |}�
(spar x | xr, z1, z2 | xl | Skip • (let z1, z2 • Skip))

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
end z1,z2=⇒ [Rules (10) and similar to (14)]⎛⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)
|
(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; end z1, z2

)
|=
(spar x | xl | xr | x := xl • Skip) �{| int |}� (spar x | xr | xl | Skip • Skip)

⎞⎟⎟⎟⎟⎟⎟⎠
�

The rule that applies when both parallel actions terminate is as follows. The
label records the changes to the state.
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c⎛⎜⎜⎜⎜⎝
c | s
|=⎛⎝ (spar v | x, z1 | y, z2 | x1 := z1 • Skip)

�cs�

(spar v | y, z2 | x, z1 | x2 := z2 • Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠

x1,x2:=z1,z2; end x,z1,y,z2
=⇒L

(c | s; x1, x2 := z1, z2; end x, z1, y, z2 |= Skip)

(16)

In the final state of the parallelism, the local versions x and y of the global
variables are undeclared after they are used to update the global variables.

Example 14. We can now conclude our running example.
x:=xl; end xl,xr=⇒ [Rule (16)]⎛⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)
|
(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; endz1, z2; x := xl; end xl, xr

)
|=
Skip

⎞⎟⎟⎟⎟⎟⎟⎠
It is not difficult to prove that the final state of the parallelism is equivalent to
x := w1; its alphabet includes only x (and x ′). �

The rules for external choice are not given here.

Hiding. There are two rules for hiding. The first allows evolution of the action
to which the hiding is applied to lead to evolution of the hiding. This occurs
when the evolution is not via a communication through a hidden channel.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2) chan l �∈ cs

(c1 | s1 |= A1 \ cs) l
=⇒L (c2 | s2 |= A2 \ cs)

(17)

The second rule is for when the communication is through a hidden channel.
In this case, the communication disappears. The evolution, therefore, is only
possible if the guard is not True and the action is not Skip. In this case, we do
not have the possibility of introducing a silent transition.

(c1 | s1 |= A1)
(g,e,A)
=⇒L (c2 | s2 |= A2)

(g �= True ∨ A �= Skip) ∧ (chan e = ε ∨ chan e ∈ cs)

(c1 | s1 |= A1 \ cs) (g,ε,A)
=⇒L (c2 | s2 |= A2 \ cs)

(18)

Transitions of the operational semantics that are truly silent in the sense of the
=⇒L relation, so that they do not entail any guards, communications, or state
changes, are considered in the next section.
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3.3 Silent Transitions

As already explained, the specification-oriented transition system has no silent
transitions. In the previous section, we have defined a transition relation =⇒L

which indeed has no silent transitions, but is not defined for some configurations
for which there is a transition in the operational semantics. For instance, in Ex-
ample 7, the second transition and a few others are transitions of the operational
semantics. There are no corresponding transitions for =⇒L.

We proceed with the definition of the specification-oriented transition system

by introducing a new transition relation (c1 | s1 |= A1)
(g,e,A)
=⇒SR (c2 | s2 |= A2). It

associates a configuration (c1 | s1 |= A1) to a configuration (c2 | s2 |= A2) if, by
starting from (c1 | s1 |= A1), following a transition from =⇒L, and then as many
silent transitions ε−→ as possible, we reach (c2 | s2 |= A2).

By considering as many silent transitions as possible, we ensure that a config-
uration (c1 | s1 |= A1) is related only to those configurations (c2 | s2 |= A2) that
can be reached after as much internal progress as possible has been made. For
testing, extra transitions that represent partial internal progress are of no value.
They would give rise to useless tests, and are avoided here.

To define the new relation (c1 | s1 |= A1)
(g,e,A)
=⇒SR (c2 | s2 |= A2), we consider

first the transitive closure −→ε∗ of the transition relation −→ of the operational
semantics when restricted to silent transitions with no corresponding transition
in =⇒L. It is defined by the two transition rules in the sequel.

(c1 | s1 |= A1)
ε−→ (c2 | s2 |= A2) (c1 | s1 |= A1) �L (c2 | s2 |= A2)

(c1 | s1 |= A1) −→ε∗ (c2 | s2 |= A2)
(19)

In the above rule, we write (c1 | s1 |= A1) �L (c2 | s2 |= A2) as an abbrevia-
tion for ¬ ∃ l • (c1 | s1 |= A1)

l=⇒L (c2 | s2 |= A2). We require that there is
no specification-oriented transition from (c1 | s1 |= A1) to (c2 | s2 |= A2) because
many of the silent transitions of the operational semantics correspond to (non-
silent) transitions of the specification-oriented system. For instance, the tran-
sitions for assignment are silent in the operational semantics, but not in the
specification-oriented system. What we want is to ignore transitions that gen-
uinely provide no information is terms of guards, events, or action execution.
Examples are the transitions for internal choice (see Rules (11) in Appendix A).

The second transition rule allows the composition of silent transitions.

(c1 | s1 |= A1) −→ε∗ (c2 | s2 |= A2)

(c2 | s2 |= A2)
ε−→ (c3 | s3 |= A3) (c2 | s2 |= A2) �L (c3 | s3 |= A3)

(c1 | s1 |= A1) −→ε∗ (c3 | s3 |= A3)

(20)

We again check that the transitions composed are truly silent.
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Example 15. In the context of our example action E , we have the following.⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x � out!(y− x)→ Skip � inp?z→ Stop); x := y

⎞⎠
−→ε∗⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip); x := y

⎞⎠
This corresponds to choosing the first action of the internal choice. For a choice
of the second action, we have the transition below.⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1

|=
Skip; (y > x � out!(y− x)→ Skip � inp?z→ Stop); x := y

⎞⎠
−→ε∗⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y

⎞⎠
We also have the transition below.⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1

|=
Skip; x := y

⎞⎠
−→ε∗⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y

⎞⎠
This corresponds to a single silent transition of the operational semantics. �

The new relation (c1 | s1 |= A1)
(g,e,A)
=⇒SR (c2 | s2 |= A2) is defined below.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2)
(c2 | s2 |= A2) −→ε∗ (c3 | s3 |= A3) (c3 | s3 |= A3) �

ε∗

(c1 | s1 |= A1)
l

=⇒SR (c3 | s3 |= A3)

(21)

We write (c1 | s1 |= A1) �ε∗ when (c1 | s1 |= A1) is a stuck configuration with
respect to−→ε∗, that is, when ¬ ∃ c2, s2, A2 • (c1 | s1 |= A1) −→ε∗ (c2 | s2 |= A2).

Since the configurations of the specification-oriented transition system are the
same as those of the Circus operational semantics, we can combine their transition
relations in a simple way. This has already been indicated in Example 7, where
we consider the two transition relations for a single example.
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It is possible that a =⇒L transition is followed by no −→ε∗ transitions. In
this case the =⇒L transition corresponds to a =⇒SR transition.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2) (c2 | s2 |= A2) �
ε∗

(c1 | s1 |= A1)
l

=⇒SR (c2 | s2 |= A2)
(22)

Example 16. Following from Examples 7 and 15, we can use the rules above to
justify the following transitions for our example action E . Again, we present
separately the two paths arising from the internal choice.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)
x:=2=⇒SR⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip); x := y

⎞⎠
y>x

=⇒SR⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
(out!(y− x)→ Skip); x := y

⎞⎠
out!(y−x)
=⇒SR⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y

⎞⎠
x:=y

=⇒SR⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip

⎞⎠
For the second option of the internal choice, we proceed as follows.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)
x:=2=⇒SR⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y

⎞⎠
inp?z

=⇒SR⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; varz := w3
|=
(let z • Stop); x := y

⎞⎠
From here, we cannot proceed once again. �
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If the behaviour of an action as described by the operational semantics starts
with (truly) silent transitions, then =⇒SR cannot give a complete account of its
execution, because it does not consider leading silent transitions.

Example 17. We consider the transitions below.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= (x := 0 � x := 1; y := 1) � x := 1)
−→
(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 0 � x := 1; y := 1)
−→
(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 1; y := 1)
x:=1=⇒L [Rules (11) and (4)]
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= Skip; y := 1)
−→
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= y := 1)
y:=1
=⇒L [Rule (4)]
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 ∧ w3 = 1 | x, y := w2, w3 |= Skip)

This justifies the following.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= (x := 0 � x := 1; y := 1) � x := 1)
−→
(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 0 � x := 1; y := 1)
−→
(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 1; y := 1)
x:=1=⇒SR [Rules (21) and (19)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= y := 1)
y:=1

=⇒SR [Rule (22)]
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 ∧ w3 = 1 | x, y := w2, w3 |= Skip)

We cannot, however, relate the initial configuration to any other configuration
using =⇒SR. �

We define a new transition rule that allows initial silent transitions.

(c1 | s1 |= A1) −→ε∗ (c2 | s2 |= A2) (c2 | s2 |= A2)
l

=⇒SR (c3 | s3 |= A3)

(c1 | s1 |= A1)
l

=⇒SR (c3 | s3 |= A3)
(23)

Example 18. Now, with Rule (23), we can proceed with Example 17 to infer the
following transitions.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= (x := 0 � x := 1; y := 1) � x := 1)
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x:=1=⇒SR [Rules (23),(21) and (19)]
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= y := 1)
y:=1

=⇒SR [Rule (22)]
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 ∧ w3 = 1 | x, y := w2, w3 |= Skip)

Once the starting configuration is defined, we have a unique =⇒SR transition. �

3.4 Composing Labels

Transitions with labels without an event cannot be (easily) observed during the
execution of a system in a testing experiment. A well known solution for this
issue of observability is the use of characterising traces, which identify the current
state of an SUT . We, however, want to minimise the number of such transitions,
and therefore we compose transitions whenever possible.

The possibility of combination of transitions is characterised by the syntactic
function ⊕ that combines labels; it is defined below.

(g, e, A1)⊕ A2 = (g, e, A1; A2)

An action can lead to a change of state, so when there is an action (different
from Skip) in a label, we cannot move forward any of the later guards or events.
Therefore, we can only compose (g, e, A1) with a label A2.

A guard potentially blocks an associated event, so if there is a guard (different
from True) and associated event in an label, we cannot move forward any later
guards. Additionally, we do not combine two labels that have events (different
from ε). Each transition should correspond to at most one observable event. So,
(g2, e, A) can only be composed with a previous label if it has only a guard g1.

g1 ⊕ (g2, e, A) = (g1 ∧ g2, e, A)

In conclusion, the domain of ⊕ includes exactly the pairs of labels where ei-
ther the second label contains only an action, or the first label contains only a
guard.

To define a system whose transitions are maximal in terms of label compo-
sition as defined by ⊕, we first consider a transitive closure for =⇒SR based
on label composition. Afterwards, we define the definitive specification-oriented
relation =⇒ as that for which no further label compositions are possible.

We define closure of =⇒SR in the standard way. The first rule allows a single
=⇒SR transition to be included in the closure.

(c1 | s1 |= A1)
l

=⇒SR (c2 | s2 |= A2)

(c1 | s1 |= A1)
l

=⇒∗
SR (c2 | s2 |= A2)

(24)
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The second rule allows proper composition when there are two consecutive tran-
sitions with labels that can be combined according to ⊕.

(c1 | s1 |= A1)
l1

=⇒∗
SR (c2 | s2 |= A2) (c2 | s2 |= A2)

l2=⇒SR (c3 | s3 |= A3)
(l1, l2) ∈ dom⊕

(c1 | s1 |= A1)
l1⊕l2

=⇒∗
SR (c3 | s3 |= A3)

(25)

Our last rule defines that a =⇒ transition exists when there is a corresponding
=⇒∗

SR, and it is (right) maximal, in the sense that there is no further =⇒SR

transition from the target configuration.

(c1 | s1 |= A1)
l

=⇒∗
SR (c2 | s2 |= A2) (c2 | s2 |= A2) �SR

(c1 | s1 |= A1)
l

=⇒ (c2 | s2 |= A2)
(26)

We use (c1 | s1 |= A1) �SR as an abbreviation for

¬ ∃ c2, s2, A2, l • (c1 | s1 |= A1)
l=⇒SR (c2 | s2 |= A2)

Example 19. Following from Example 16, we can use the rules above to justify
the following transitions for our example action E . Again, we present separately
the two paths arising from the internal choice.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)
x:=2=⇒⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip); x := y

⎞⎠
(y>x,out!(y−x),x:=y)

=⇒⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip

⎞⎠
For the second option of the internal choice, we do not have opportunities for
composition.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)
x:=2=⇒⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y

⎞⎠
inp?z
=⇒
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|=
(let z • Stop); x := y

⎞⎠
From here, we cannot proceed once again. �

All the transition relations above can be defined in the UTP Circus theory, so
that the soundness of the transitions rules that we have defined can be for-
mally justified. Before discussing soundness, however, we illustrate how the new
transition system can be useful in practical testing techniques.

4 Test-Selection Criteria Based on the New Transition
System: Examples

We perceive two approaches for selection of finite test sets from a Circus specifi-
cation. The first defines subsets of the exhaustive test sets as defined in [6] (see
Section 2.3), and the second is guided by the text of the Circus specification. The
first one is directly based on the operational semantics of Circus. The second one
is the main motivation for the definition of the specification-oriented transition
system presented above. This is what we consider in the sequel.

The selection approaches based on the structure of the tests in the exhaustive
test set does not take into account the structure of the specification and the
internal state changes that may occur during some unlabelled transitions of the
operational semantics. The symbolic exhaustive test sets cover by construction
the constrained symbolic traces of the specification. Introducing selection criteria
among the constrained symbolic traces to characterise a finite subset has the
merit of simplicity and of closeness to the underlying semantic model of Circus.
However, it is the coverage of this model that is considered, and the coverage of
the original specification is not taken into account.

For instance, coming back to action E of Example 1, we can note that there
is no mention of the variable x and of its definition in the constrained symbolic
traces. Thus, a selection criteria based on such traces cannot take into account
the coverage of, for example, variable definitions and their uses.

It is the same when an operation specified by a Z schema is used in the
specification: from Rule (3) of the operational semantics (see Appendix A), we
can see that the associated symbolic traces does not mention the operation,
and it is impossible to know which case has been covered or not by a symbolic
test. Since the labels of the specification-oriented transition system contain parts
of the text of the specification and record changes of state (see, for instance,
Rules (3) and (4) in Section 3.2), it becomes possible to select traces (of the
specification-oriented transition system, with these new labels) on the basis of
the structure of the specification. For illustration, we sketch how we can use the
new transition system to define data-flow-oriented test selection methods.

In the early nineties, some approaches have been proposed for generating test
cases from specifications written in languages including processes interactions
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and data types, such as Full LOTOS, SDL, or more generally EFSM (Extended
Finite State Machines). Several of these works have considered data-flow-oriented
selection criteria [34,30,31,27] like we do here.

Briefly, data-flow coverage criteria were originally developed for sequential
imperative languages, with the coverage of definition-use associations as moti-
vation [13]. In a data-flow graph, a definition-use association is a triple 〈d , u, v〉
where d is a node in which the variable v is defined, u is a node in which the
value of v is used, and there is a definition-clear path with respect to v from d to
u. The strongest data-flow criterion, all definition-use paths, requires that, for
each variable, every definition-clear path (with at most one iteration by loop)
is executed by a test. In order to reduce the number of paths required, weaker
strategies such as all-definitions and all-uses have been defined.

When using these criteria, is is assumed that the data-flow graph has unique
start and end nodes, and that there is no data-flow anomaly, that is, every path
from the start node to a use of v passes through a node with a definition of v .
Thus data-flow analysis is required both for checking the absence of anomalies
and constructing the set of definition-use associations. (Such analysis always pro-
vide an over-approximation of data-flow dependencies due to feasibility issues).

The transposition of these criteria to the specification-oriented transition sys-
tem of Circus requires a few adjustments. Since the relevant information is car-
ried by the labels of the transitions, the definition-use associations are defined
as triples of two transitions and one variable. In the first transition label, the
variable is defined by an assignment, or an input, or its declaration, or a Z op-
eration where it is an output, or a specification statement in which it is in the
frame. In the second transition label, it is used in a guard, or in the right-hand
side of an assignment, or in an output, or in a Z operation where it is an input,
or in a specification statement where it is used without decoration (in the pre
or postcondition). The notion of trace is used instead of path.

Example 20. In the case of our example action E , we have a definition-use as-
sociation for x whose first component is the following transition.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 2)
x:=2=⇒
(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1 |= Skip)

Indeed, x is defined in the label of this transition by an assignment. The second
transition of the association is as follows.⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x � out!(y− x)→ Skip); x := y

⎞⎠
(y>x,out!(y−x),x:=y)

=⇒⎛⎝w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip

⎞⎠
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The variable x is used (twice) in this second transition, and there is an empty
trace between the two transitions that is obviously definition clear with respect
to x . The third component of the association is just x itself. �

Since the association in the above example is the only definition-use association
for x in the simple action E , it means that it is sufficient to cover its two
transitions to satisfy the criterion “all definition-use traces” for x . We note that
the second definition of x in this example, namely x := y, does not need to be
covered. It comes from the fact that it is not associated to any use. It is not a
problem: since it has no effect, it would be useless to test it.

Example 21. Among the definition-use associations of action PA in Example 2,
with respect to the local variable xl corresponding to the program variable x ,
there is one whose first transition is as follows (cf. Examples 11 and 14).⎛⎜⎜⎜⎜⎝
w0 ∈ Z ∧ w1 = 2 | x := w1
|=⎛⎝ (inpA?y→ int!y→ out!(y− x)→ Skip)

�{x} | {| int |} | {}�
(inpB?z1→ int?z2→ z1 > z2 � out!(z1 − x)→ Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠

var xl,xr:=x,x
=⇒⎛⎜⎜⎜⎜⎜⎜⎝

w0 ∈ Z ∧ w1 = 2 | x := w1; var xl, xr := x, x
|=⎛⎜⎜⎝

(spar x | xl | xr | x := xl • inpA?y→ int!y→ out!(y− xl)→ Skip)
�{| int |}�(

spar x | xr | xl | Skip •
inpB?z1→ int?z2→ z1 > z2 � out!(z1 − xr)→ Skip

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
The second transition is as follows.⎛⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)
|
(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; end z1, z2

)
|=
(spar x | xl | xr | x := xl • Skip) �{| int |}� (spar x | xr | xl | Skip • Skip)

⎞⎟⎟⎟⎟⎟⎟⎠
x:=xl; end xl,xr=⇒⎛⎜⎜⎜⎜⎜⎜⎝

(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)
|
(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; endz1, z2; x := xl; end xl, xr

)
|=
Skip

⎞⎟⎟⎟⎟⎟⎟⎠
The third component is, of course, xl . �
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The definition-use association above forces, if the selection criterion used is “all
definition-use traces” for xl , the coverage all the interleavings of the parallel
actions. In the case where the weaker criterion“all definitions” is used, following
the pattern in [13], one interleaving only is required.

There are various conditions for applying data-flow testing methods to sequen-
tial programs that must be revisited for applying them to Circus. The existence
of a unique end node can be relaxed using the observation in [26] that, in a reac-
tive program, reaching again a start node is analogous to reaching the end node
of a sequential program. Following variants of this principle, some algorithms
for symbolic analysis of control dependencies are given in [26,19] and used for
data-flow analysis when there are several or no end nodes.

Data-flow analysis in presence of concurrency has been studied intensively.
Of special interest in the context of Circus is the work in [19] for IOSTS (Input-
Output Symbolic Transition Systems), where the main difference to Circus is that
the state is not hidden, and there are no shared variables between concurrent
processes. Another work of interest is the slicing algorithm for Promela in [21],
where both shared variables and communications are taken into account.

5 Soundness

In the UTP, the transition rules of an operational semantics can be defined as
theorems of the theory that characterises the corresponding relational model.
For that, we define the transition relation in terms of the constructs of the
theory (and refinement). This establishes the soundness of the operational se-
mantics. It has been carried out for designs and CSP [18], and for Circus [36].

For the Circus operational semantics, it is defined that the transition relation
(c1 | s1 |= A1)

ε−→ (c2 | s2 |= A2) holds if (a) there exists a valuation of the sym-
bolic variables used in c1 and c2 such that c1 and c2 hold, and (b) for every such
valuation, execution of A1 in the state s1 is refined by the execution of A2 in
s2 [36]. By requiring that c1 and c2 hold, we avoid configurations with unsatisfi-
able state specifications. Refinement is required, not equality, since a transition
reflects one, among the possibly many, available steps in the execution of A1.
As an example, we have the Rules 11 for internal choice in Appendix A: each
transition captures just one of the possible choices.

For a labelled transition (c1 | s1 |= A1)
d.w0−→ (c2 | s2 |= A2), it is required that

execution of A1 in s1 is refined by an external choice between d .w0 →A2 in the
state s2, and A1 itself in the state s1. This establishes that d .w0 →A2 (in s2) is
one of the possible behaviours of A1. The external choice captures the fact that
d .w0 may or may not be available, as the choice may be taken away by other
behaviours of A1. For example, if A1 may also terminate, make some internal
progress, or provide another external choice, these are all taken into account.

For the new specification-oriented transition system, we define the transition
relations in terms of the constructs of the original UTP Circus theory, and also
the −→ relation of the operational semantics. For example, in the new transition
system, we do not want to relate configurations that cannot be related by the
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Circus operational semantics. As already explained, it is not the objective of the
new system to introduce transitions, but to remove and to annotate.

The definition for a transition (c1 | s1 |= A1)
(g,e,A)
=⇒L (c2 | s2 |= A2) requires

(a) g �= True, or e �= ε, or A �= Skip.
(b) if e is a communication over a channel d, there is a symbolic variable w0 such

that (c1 | s1 |= A1)
d.w0−→ (c2 | s2 |= A2);

(c) if e is ε, then (c1 | s1 |= A1)
ε−→ (c2 | s2 |= A2) holds;

(d) for all valuations of the symbolic variables that satisfy c1 and c2, the following
properties hold:

(d1) A1 in s1 is refined by the external choice between A1 in s1 itself, and
(g � e → A; A2) also in s1; and, finally

(d2) g � var var(e); A in s1 is refined by the state s2 guarded by g in the
state s1.

With (a), we guarantee that there are no silent transitions. The inequalities there
are all syntactic, and this trivially holds for all transitions in Section 3.2. With
(b) and (c), we check that, for all valuations that satisfy the constraints, there
is a corresponding transition of the operational semantics. The condition (d1)
is similar to that used in the definition of labelled transitions of the operational
semantics, which was explained above. The difference is that instead of consider-
ing the prefixing in the new state s2, we use the label to construct the new state
for A2. That s2 is indeed the appropriate next state is guaranteed by (d2), which
requires that guarding A with g and declaring any variable implicitly declared
by e is refined by s2, guarded by g, all in s1. If e is ε, then var(e) is ε itself. We
define that, in this case, the variable declaration is Skip, and so can be omitted.

In establishing the soundness of the transition rules, we also need to show
that s2 is a total assignment. In most cases, this is trivial. We leave a complete
account of the soundness of our transition rules for another paper.

6 Conclusions and Future Work

In this paper, we have presented a novel transition system for a state-rich process
algebra, Circus. Its existing operational semantics takes forwards the UTP ideas
for an operational semantics for CSP by using symbolic variables to capture
nondeterminism in the state. It is the basis of a testing theory for Circus. What
we now present is an alternative characterisation of the evolutions of the Circus
models that records information about the way in which data is defined and
used. It is what we call a specification-oriented transition system for Circus.

We have briefly discussed how this new transition system can be used to
specify selection criteria based on the use of data. Once the traces of the new
transition system are selected, they are mapped to traces of the operational
semantics, and in this way to tests for traces refinement and conf .

We have also sketched the soundness argument of the transition system. It
is based on the UTP theory for Circus. A detailed account is going to be the
subject of another paper.
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In the new transition system, we still do not record in labels the internal and
external choices, or parallelisms. They are recorded, of course, in the actions of
the configurations. We, therefore, based solely on traces, cannot have coverage
criteria that requires, for instance, covering all actions in a parallelism. For that,
we will need to take into account the actions in the configurations themselves.
Internal choice is covered by the use of acceptance sets in tests for conf .

A first piece of future work is related to completeness. We need to prove that
we have the appropriate number of transitions to cater for all possible behaviours.
This can be achieved by taking the transition rules as the definition of the
transition relation, and recovering the denotational semantics using them. The
technique applied in the UTP requires us to use the transition relation to define
a semantic function that associates programs to relations of the UTP Circus
theory. If we can prove that the relations are those defined in the denotational
semantics, we have characterised the way in which concepts of the operational
and denotational semantics are related in a complete and consistent way.

In the case of the our specification-based transition system, we have restricted
ourselves to divergence-free processes. The completeness result, therefore, neces-
sarily has to be qualified. The specification-oriented system is not proposed as a
replacement for the Circus operational semantics. For =⇒L, proof of complete-
ness can rely on the corresponding result for the operational semantics.

The most exciting plans that we have for the future, however, are the im-
plementation of the new transition system (using a theorem prover), and the
definition and application of a variety of selection criteria.
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A Operational Semantics: Table of Selected Transition
Rules

c ∧ (s; p) ∧ (∃ v′ • s; Q)

(c | s |= p� Q)
ε−→ (c ∧ (s; Q [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs (1)

c

(c | s |= v := e)
ε−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(2)

c ∧ (s; preOp)

(c | s |= Op)
ε−→ (c ∧ (s; Op [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs (3)

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(4)
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c ∧ T �= ∅ x �∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(5)

c ∧ T �= ∅ x �∈ αs

(c | s |= var x : T • A)
ε−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(6)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l−→ (c2 | s2 |= let x • A2)

(7)

c

(c | s |= let x • Skip)
ε−→ (c | s; end x |= Skip)

(8)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l−→ (c2 | s2 |= A2; B)

(9)

c

(c | s |= Skip; A)
ε−→ (c | s |= A)

(10)

c

(c | s |= A1 	 A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 	 A2)
ε−→ (c | s |= A2)

(11)

c ∧ (s; g)

(c | s |= g � A)
ε−→ (c ∧ (s; g) | s |= A)

(12)

c

(c | s |= A1 � x1 | cs | x2 � A2)
ε−→

⎛⎝ c | s
|=
(par s | x1 • A1) � cs � (par s | x2 • A2)

⎞⎠ (13)

c⎛⎜⎜⎜⎜⎝
c | s
|=⎛⎝ (par s1 | x1 • Skip)

�cs�

(par s2 | x2 • Skip)

⎞⎠
⎞⎟⎟⎟⎟⎠ ε−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)

(14)

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l �∈ cs⎛⎜⎜⎜⎜⎝

c | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ l−→

⎛⎜⎜⎜⎜⎝
c3 | s
|=⎛⎝ (par s3 | x1 • A3)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠

(15)
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(c | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l �∈ cs⎛⎜⎜⎜⎜⎝

c | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ l−→

⎛⎜⎜⎜⎜⎝
c3 | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s3 | x2 • A3)

⎞⎠
⎞⎟⎟⎟⎟⎠

(16)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d ∈ cs c3 ∧ c4 ∧ w1 = w2⎛⎜⎜⎜⎜⎝

c | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ d!w2−→

⎛⎜⎜⎜⎜⎝
c3 ∧ c4 ∧ w1 = w2 | s
|=⎛⎝ (par s3 | x1 • A3)

�cs�

(par s4 | x2 • A4)

⎞⎠
⎞⎟⎟⎟⎟⎠

(17)

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2⎛⎜⎜⎜⎜⎝
c | s
|=⎛⎝ (par s1 | x1 • A1)

�cs�

(par s2 | x2 • A2)

⎞⎠
⎞⎟⎟⎟⎟⎠ d?w2−→

⎛⎜⎜⎜⎜⎝
c3 ∧ c4 ∧ w1 = w2 | s
|=⎛⎝ (par s3 | x1 • A3)

�cs�

(par s4 | x2 • A4)

⎞⎠
⎞⎟⎟⎟⎟⎠

(18)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l �= ε chan l �∈ cs

(c1 | s1 |= A1 \ cs) l−→ (c2 | s2 |= A2 \ cs)
(19)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs) ε−→ (c2 | s2 |= A2 \ cs)
(20)

c

(c | s |= Skip \ cs) ε−→ (c | s |= Skip)
(21)
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Abstract. Hoare and He’s approach to unifying theories of program-
ming, UTP, is a dozen years old. In spite of the importance of its ideas,
UTP does not seem to be attracting due interest. The purpose of this
article is to discuss why that is the case, and to consider UTP’s destiny.
To do so it analyses the nature of UTP, focusing primarily on unification,
and makes suggestions to expand its use.

1 Preamble

The history of science is a maze of roads not taken; of ideas not pursued. You
can’t drift in style from Shanghai to Beijing in a Zeppelin. Nor do you explain
the evolution of the Panda using Lamarckism. The Theremin has not replaced
the Stadivarius. Your laptop bears little resemblance to Babbage’s difference en-
gine. Those analogue computers, the astrolabe, slide rule and Bush’s differential
analyser, have all been interred in a graveyard for nondigital devices. And wither
quantum computing?1

It is interesting to speculate on the reasons for lack of success. They may
be social: too much has already been invested in alternatives (the world has
overlooked nonstandard calculus, in spite of its capturing the Leibnizian intuition
of infinitesimals and boasting a first-year textbook [20]). Or the reasons may be
commercial: a more powerful competitor has its own alternative or an alternative
offers better profitability (VHS quickly dominated Betamax [40]). Of course most
often the reasons are simply scientific (perpetual motion machines, the geocentric
solar system (or was it universe?) and phlogiston).

Science evolves by following pathways at the expense of those neglected, for
whatever reasons. Seldom does a choice between paths have the opportunity to
be weighed up publicly.

Is UTP a dead-end? The purpose of this paper is to reflect on and promote
discussion of just that question. The importunate reader might skip Section 2,
in which the problem confronting UTP is considered; Section 3, in which UTP is
‘kick started’; Section 4, in which alternative UTP projects are considered; and
instead move straight to the Conclusions.
� The first author was partially supported by the China HGJ Significant Project

2009ZX01036-001-002-4, and the second author by the Macao Science and Tech-
nology Development Fund, under the PEARL project grant number 041/2007/A3.

1 The reader is invited to a complementary parlour game: list ever-more insignificant
things which nonetheless prevail. Let’s start with ‘lorem ipsum’.
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2 UTP at the Crossroads

2.1 The Evidence

UTP is struggling. It seems that the previous two conferences (UTP2006 in
Durham [9] and UTP2008 in Dublin) required considerable organisational skill
on the parts of Steve Dunne and Andrew Butterfield respectively. Recall the
difficulty attracting interest in the present event, despite Shengchao Qin’s best
efforts. And witness the continued poor acceptance rate for papers. How many
Ph.D. theses has UTP supported? Are there case studies that make
non-specialists want to use it? Are there special conference tracks that have
the effect of incorporating UTP into the wider community?

For comparison, think of the manner in which Z [12,38] became established:
the early case study of IBM’s CICS [18]; the large number of M.Sc. and Ph.D.
theses (from Oxford alone); its integration into the wider community of Formal
Methods and the blossoming of case studies; tool support and its adoption by
industry; organisation of user-group meetings (which owe much to Jonathan
Bowen); expansion and re-use (for instance object-Z [8]); and the proliferation
of courses and books. A similar story could be told for the theories VDM, CSP,
CCS, . . .

It is now a dozen years since the UTP textbook [17] was published. Since Z
started with a whimper rather than a bang, comparison is difficult; perhaps for Z
a similar time would have elapsed by the mid 90s. By then it appeared stronger
and to be expanding much more rapidly than UTP does now. Surely the time
has come to reflect on the situation.

Let’s start, well, at the beginning. What might be expected of theories of pro-
gramming? Why seek to unify them? Finally, how might unification be expected
to go?

2.2 Theories of Programming

Once upon a time, in the early days of algol, a theory of programming consisted
of the syntax of a programming language, an advance that has been accorded the
name bnf for John Bachus and Peter Nauer. That ‘theory’ helped programmers
who, at a time when new programming languages were appearing fast, furious
and in a wide range of styles, could otherwise learn a new language only by
following examples.

But compiler writers required more: a semantics by which to validate and
compare their products. At first, semantic descriptions were informal. The case
of algol 60 provoked the transition to formality: its reports [30,3] of 1960 and
1963 in natural language were (inevitably?) criticised as being ambiguous [21].
The variety of semantic approaches was evident from the start: an axiomatic
semantics was given to Pascal [14] in 1971; an operational style was used for
pl/i [23] in 1971 and algol 68 [39] in 1975; and denotational semantics was
demonstrated on algol-like languages [25] by 1976. A theory of programming
consisted, by the mid 1970’s, of a language’s syntax accompanied by a seman-
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tic description. It seems fair to say that the unfortunate divergence between
programming and theoretical computer science dates from this time.

During the first half of the 1970’s programmers, now in the rôle of humble
software engineers, required yet more from a theory of programming. Support
was required for system engineering: for verification against a more asbtract
specification of a design that was either posited, or obtained by incremental
development in a manner supporting the top-down approach of engineering

Spec = Design0  Design1  . . .  Designn = Impl

(including algorithmic refinements over the same state space, and refinements
over distinct spaces by data representation). The important feature of the ‘do-
main of discourse’ is that it be powerful enough to express specifications, code,
and the combinations that arise at intermediate levels of design. The semantic
model is thus required to span various levels of abstraction and to be founded
on a (reflexive and) transitive notion of refinement.

That approach has since retained its importance because it enables:

– a design to be verified against a specification (without an understanding of
conformance, what does a specification mean?);

– abstract interpretation and model checking, firstly of the abstract model and
secondly of the property being checked against it;

– comprehension of a system incrementally, by layers of successively finer de-
tail; that approach has been traditionally used qualitatively to describe com-
plex software (for example operating systems [22]), and now is able to be
interpreted quantitatively;

– stepwise system derivation, of the kind begun by Dijkstra in the 1970’s for
simple programs but now extended to systems, through all layers of abstrac-
tion using laws and machine assistance;

– comprehension of new behaviours (like concurrency, probability and time)
when intuition alone is too risky as a basis for programming;

– program analysis of the usual kinds: data-flow, constraint-based, abstract
interpretation, type systems and effect systems [32].

This time theoreticians took longer to respond, though the first step was im-
mediate. In 1975 Dijkstra provided the predicate transformer model [7], then at
just one level of abstration and without explicit use of laws or the refinement
relation . Over the next fifteen years the concepts Dijkstra had introduced
for code were extended to the more general commands appropriate for software
engineering (unbounded nondeterminism, angelic choice and unenabled com-
mands (‘miracles’) [31,28,1,29], and data refinement [35]) and studied in both
the predicate-transformer and binary-relation models [15]. The result was, by
1990, what two decades later is still recognised as a ‘theory of programming’:

1. a semantic domain (X ,), incorporating a partial order representing
refinement
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2. a mapping [[ · ]] from the syntactically-defined ‘programming’ language to
the semantic domain X

3. accompanying laws that are sound (and ideally complete) with respect to
the semantic model.

2.3 Unification

But whilst theoretical support for such theories of programming is satisfactory,
applications remain scant. Examples include: functional programming languages
[27] (cartesian-closed categories); the guarded-command language [15] (predicate
transformers or binary relations); process algebras CSP [37] (failures and diver-
gences) and CCS [26] (transition trees); and receptive-process theory (for use in
asynchronous devices) [19] (failures and divergences).

The difficulty is that, as new features are incorporated, the complexity in-
creases due to the interaction between the new feature and (potentially) each
existing feature. The incorporation of probability with nondeterminism [24] is
certainly a success; but occam [36] has been of limited success semantically, due
to interactions between state, nondeterminism and synchronisation.

Fortunately in many paradigms of computation, a new feature interacts in
a severely circumscribed manner with previous features. So there is hope that
a satisfactory theory can be obtained incrementally, by adding new features
gradually to existing theory.

That, of course, is what is meant by unification in UTP, and why the ap-
proach is so vitally important. Without it there seems little chance of providing
a patently correct, comprehensible, semantics for something like occam which
combines, as already observed, various features that interact nontrivially. With-
out it that list of successes seems destined to remain short. But using it, one
might hope to describe occam, for example, in layers that correspond to sequen-
tial programs, nondeterministic programs, reactive programs, and finally occam
processes. Indeed that has been one of the principle motivations for UTP, and a
measure by which its success can be judged.

To demonstrate its utility, a unification of theories of programming ought to
explicate further pressing paradigms of computation. Examples include

– service computing
– real time
– object orientation (including mutable objects)
– component-based systems
– adaptivity and other self-∗ system properties
– hybrid and cyberphysical systems
– machine learning
– quantum computation
– game-theoretic semantics
– hardware systems
– biologically-inspired systems.
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If the unifying approach is as important as has just been reasoned from a scien-
tific viewpoint, why has it not been more widely adopted in a dozen years?

2.4 The Three-Chapter Problem

It has been observed that many students of UTP do not progress past Chapter
3 of Hoare and He’s eleven-chapter text [17]. The implication is that by being
exposed to only the first thirty percent of the book (85 pages of 282), their view
of UTP is dominated by relations, predicates and the healthiness conditions Hi,
for 1 ≤ i ≤ 4. Indeed there does seem to be evidence, amongst students and even
researchers, for the accuracy of this harsh claim.

Can the ‘three-chapter problem’ be related to our lack of progress in unifying
theories? Can that in turn be part of the reason behind the limited adoption of
UTP? Since there seems little hope of systematic progress in the area of pro-
viding theories of contemporary programming without use of unification, some
investigation seems required.

2.5 What Might Might Be Expected of Unification?

It has been argued in Section 2.2 that a theory of ‘programming’ consists of a
semantic domain (partially ordered), an interpretation of the language in that
domain and a collection of sound laws for the language constructs. The purpose
of this section is, in view of the UTP programme having seemingly stalled, to
consider afresh what might be expected from unification.

The expectation is that, by viewing theories hierarchically, a simple theory A
is to be embedded in a more complex C in a manner that enables A’s semantics
to be imported. So the semantics of the more complex C, as far as it concerns
just the features it shares with the simple language A, has already been provided
in A; only features unique to C (lying outside the range of the embedding) need
now be considered. The theory of C has been unified with that of A via the em-
bedding. Examples will be familiar to UTP aficionados ; several are considered in
Section 3.

The partial order  of each theory captures conformance. As usual there are
operators corresponding to its infimum, �, and supremum, �. The former arises
from abstraction, or information hiding, via local blocks and it is preserved
by the embedding ε—as is required for lifting a semantics that includes �—
iff for any family E (empty, nonempty and finite, or infinite) in the abstract
domain A,

ε. � E = �{ε.E | E ∈ E} . (1)

That condition is equivalent to ε being the embedding in an embedding-projection
pair (ε, π) known as a Galois connection and defined by the equivalence

ε.a C c ≡ a A π.c . (2)
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ε.a � c in (C,�C)

a � π.c in (A,�A)

ε π

Fig. 1. A Galois embedding gc(ε, π; A, C) relates abstract and concrete theories

The case in which ε is injective embeds A in C and so forms the basis of the
hierarchical approach. Then the connection is called a Galois embedding; see
Figure 1.

So Galois connections and embeddings must be expected to play a central
rôle in unifying theories. Moreover, in lifting semantics to a more detailed level,
the embedding ε must preserve further combinators. For instance preservation
of sequential composition,

ε.(r � s) = ε.r � ε.s ,

enables ε to be used to lift the behaviour of a sequential composition from one
level to the next in the hierarchy. Similarly for the other combinators, including
recursion (and hence) iteration. That way, laws in A are re-used in C: a major
benefit of unifying theories.

It will then be important to characterise the lifted space ran.ε as a subset of
C and furthermore to determine—if possible—the manner in which it generates
C. For that determines the C-semantics in terms of the A-semantics.

But now we find ourselves firmly in Chapter 4, without having mentioned
predicates or healthiness conditions. How can that be? From our present view-
point, predicates merely form the basis of certain models (predicate transformers,
for example!); and healthiness conditions are merely used in defining domains.
Suddenly both have disappeared from the centre of the stage on which we expect
unification to be performed.

Is it possible that there is an alternative entry to UTP which starts from Galois
connections—Chapter 4—instead of Chapter 3? If so, how does it go and what
then is the importance of Chapter 3? Perhaps by following it the ‘three-chapter
problem’ might be avoided.

3 A Fresh Start

3.1 Computability: Theory P
The theory of Computer Science began in the 1930s with the various models, by
Hilbert, Turing, Kleene, Church, Markov et al., of the concept of a computation
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abort nontermination
x := e assignment, with expression e

P if b else Q conditional
P � Q sequential composition

μ.F recursion

Fig. 2. Syntax for the space Predet of predeterministic programs. Assignment is as-
sumed to be predeterministic and recursion to be with respect to a continuous function.

(or of recursiveness). By modelling a ‘mechanism’, mathematicians had for the
first time to model the possibility of nontermination. Today such computations
are called predeterministic because from any initial state they are either nonter-
minating or deterministic, and written using syntax like that of Figure 2. The
set of all predeterministic programs over state space X is written Predet(X ).

Our intention is that sequential composition be associative with identity the
assignment skip (which changes no variable). More interestingly, if a nontermi-
nating program precedes or follows another program the result remains nonter-
minating:

abort � P = abort = P � abort . (3)

Of course recursion includes iteration as tail recursion.
The time-honoured model [5] for Predet(X ) consists of partial functions on

X , with refinement as extension; it is denoted P(X ):

P(X ) := (X �→ X ,⊇) .

It is a domain2 with least element the empty partial function, { }, with maximal
elements the total functions and with compact elements the partial functions
having finite domains. The semantic mapping is given in Figure 3. Both its
well-definedness, and soundness of the laws, are routine.

By starting with the ‘historical’ theory P(X ), explicit consideration of health-
iness conditions has been avoided: predeterminism is captured enitrely by the
type X �→ X .

3.2 An Alternative: Theory Q

A popular alternative, in view of models soon to come, is to replace the partial
functions with total functions whose range includes a ‘virtual’ element for non-
termination. Thus each partial function is made total on X by mapping each
element outside its domain to the virtual element ⊥. Furthermore, for the new
2 By ‘domain’ here is meant a complete partial order in which each element is the

supremum of its compact approximations. Recall that an element k is compact iff
any directed set E that exceeds it contains an element which does so: if k � �E
then ∃ e : E · k � e . In the case of partial functions, the domain conditions mean:
∀ f : P · f = ∩{k : P | #(dom.k) < ∞ ∧ k � f } . Indeed without loss of generality
there k ranges over singleton partial functions: #(dom.k) = 1 .
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[[abort]]P := { }
[[x := e]]P := λ x : X · e

[[P if b else Q ]]P := λ x : X · [[P ]]P .x if b.x else [[Q ]]P .x
[[P � Q ]]P := [[Q ]]P ◦ [[P ]]P

[[μ.F ]]P := ∪{ f : P(X ) | F .f ⊆ f }

Fig. 3. The P semantics of predeterministic programs, in which program P is denoted
by a partial function [[P ]]P and variable x is used for both its argument and the state
of the program. Recursion is the least fixed point of F , as given by the first recursion
theorem of Kleene (for instance [5], Theorem 10.3.1).

model to be closed under sequential composition, it must be ‘homogeneous’: the
virtual state ⊥ must also belong to the domain. Let

X⊥ := X ∪ {⊥} .

Now for the left zero law in (3) to hold, it suffices for each denotation f of a
program to be strict (with the flat ordering on X⊥):

f . ⊥ = ⊥ .

For the right zero law in (3) to hold, it suffices for f also to be up-closed at that
bottom element. Such relational behaviour is most easily captured by defining,
for a function f : X → X , its ‘(relational) strict and up-closed extension to
X⊥’ by

(f )⊥ := f ∪ {⊥}×X⊥

(an idea that is extended from functions f to relations in Section 3.3).
Writing pre.f for the set of elements of X not mapped by the extension f to

⊥,

pre.f := { x :X | f .x �= ⊥} ,

in order for ε to be isotone, the partial order of conformance must translate in
the new model to:

f  f ′ := (f �pre.f = f ′ �pre.f ) .

Thus

Q(X ) := ({(f )⊥ | ∃ f :X → X },) ,

and the translation function is

ε : P(X )→ Q(X )
ε.f := f ∪ { (x ,⊥) | x ∈ X⊥ \ dom.f } .
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·P

·

· Q

[[ · ]]P [[ · ]]Q

ε

Fig. 4. Using ε to translate the semantics of predeterministic programs from P to Q

[[abort]]Q = λ x : X ·⊥
[[x := e]]Q = ε.(λ x : X · e)

[[P if b else Q ]]Q = λ x : X · [[P ]]Q.x if b.x else [[Q ]]Q.x
[[P � Q ]]Q = [[Q ]]Q ◦ [[P ]]Q

[[μ.F ]]Q = �{ f : Q(X ) | F .f � f }

Fig. 5. The Q semantics of predeterministic programs, inferred from the P semantics
(Figure 3) using the technique of Figure 4

Theorem 1. The translation function ε : P(X )→ Q(X )

1. is an isotone bijection so that in particular ran.ε is the carrier of Q(X ) ;
2. ensures that the domain Q(X ) has least element the constant function ⊥,

maximal elements the functions f with pre.f = X and compact elements the
functions f with pre.f finite;

3. preserves total functions (i.e. assignment): if f is total then (ε.f )�X = f ;
4. preserves composition: ε.(f ◦ g) = (ε.f ) ◦ (ε.g) .

Now the Q semantics of Predet is obtained by translating the P semantics with
the embedding ε as indicated in Figure 4. Theorem 1 ensures accuracy of the
result and preservation of the laws; the result is given in Figure 5.

It is worth emphasising that the semantics is not defined anew, but translated
by ε from P . For example

[[abort � P ]]Q
= definition of Q semantics, Figure 4

ε.[[abort � P ]]P
= law of P semantics

ε.[[abort]]P
= definition of Q semantics again

[[abort]]Q .

3.3 Nondeterminism: Theory D

Nondeterminism arises for several reasons. Firstly, it might simply be inher-
ent in functionality being specified: locate x in an array (where x may occur
more than once); find a minimum spanning tree (where there may be several),
a shortest path, a Hamiltonian circuit, . . . . Secondly, it might be the result of
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abstracting the mechanism determining a choice made at a lower level of ab-
straction: a random-number generator whose seed and mechanism of generation
are concealed. Thirdly, it might be assumed in order to ensure that reasoning is
local: a choice determined by testing a global variable might be assumed to be
a nondeterministic choice in order to avoid global reasoning.

Predeterministic programs are extended to be finitely3 nondeterministic by
augmenting the language Predet with a binary combinator for nondeterministic
choice:

P �Q .

The set of such programs over state space X is written Prog(X ) and the rela-
tionship of conformance still written  . Its connection with nondeterminism is,
as already observed,

P  P ′ ≡ P � P ′ = P .

Important laws involving programs and nondeterminism include:

P � abort = abort (4)
(P �Q) � R = (P � R) � (Q � R) (5)
P � (Q � R) = (P � Q) � (P � R) . (6)

The first characterises the Dijkstra-Hoare approach: in order to guarantee en-
tirely correct implementations, a theory must ensure that the (nondeterministic)
possibility of an error is identified with certain error. In (5) the demonic choice
responsible for the nondeterminism is made first on both sides, which are there-
fore indistinguishable. Law (6) is more subtle because the choice is made first
on the right, but on the left only after P ; nonetheless, the two programs are
expected to have identical behaviour (because P on the left-hand side is a pro-
gram and not a more general kind of computation (like angelic choice) able to
offers behaviour which the later demonic choice can exploit).

What is the relationship between Prog(X ) and Predet(X ), i.e. between pro-
grams and predeterministic programs? The following law ‘quantifies’ the
relationship by expressing each program as the (not necessarily finitely) non-
deterministic combination of its predeterministic refinements.

∀P : Prog(X ) · P = �{Q : Predet(X ) | P  Q } (7)

A ‘dual’ law, extended from predeterministic programs to programs and hence
analogous to the ‘domain law’ in Footnote 2, expresses each program (and so in
particular, each predeterministic program) as the supremum of the compact
programs (defined in that footnote, and to be characterised semantically in
Theorem 2) it refines:
3 More precisely, the nondeterministic choice is now considered of any nonempty finite

set of programs. That is equivalent to the nondeterministic choice of two programs,
by induction and the laws of associativity, idempotence and commutativity of binary
nondeterministic choice.
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∀Q : Prog(X ) ·Q = �{K : Prog(X ) | K  Q , K compact } . (8)

A compelling model of nondeterministic programs [15] consists of allowing the
elements of the model Q(X ) to be multivalued, since Q(X ) already captures
nontermination with the value ⊥, and now would capture nondeterminism as
multi-valueness of a relation. Then the partial order of conformance, ‘at least as
deterministic as’, between such relations would be containment (as sets)

r  s ≡ r ⊇ s .

Let us determine the healthiness conditions on such a relation r on X⊥, using
the same method as for Q(X ). For the right zero law to hold in (3), it suffices
for r to be total on X , as were the elements of Q(X )

∀ x : X · ∃ x ′ : X⊥ · x r x ′ . (9)

For the left zero law, again it suffices for r to map ⊥ to all of X⊥.
In order for abort to be minimum in the refinement ordering of containment,

Law (4), it suffices for

x r⊥ ⇒ ∀ x ′ : X⊥ · x r x ′ .

Finally in order for the least upper bound, or intersection, of a chain of healthy
relations again to be healthy, as required for recursion, it suffices for the image
of each state to be finitary: to be either all of X⊥ or nonempty and finite

{ x ′ : X⊥ | x r x ′ } �= X⊥ ⇒ 0 < #{ x ′ : X⊥ | x r x ′ } < ∞ . (10)

Evidently being nonempty supersedes totality (9).
Those conditions can be abbreviated using the notation X ↔ X for the type

of all relations on X and r .(| x |) for the relational image of r at x

r .(| x |) := { x ′ : X⊥ | x r x ′ } .

That model is called D(X ), and has ordering ⊇ and carrier set

{r : X⊥ ↔ X⊥ |

⎛⎝⊥ r⊥

∀ x : X⊥ ·
(

x r⊥ ⇒ r .(| x |) = X⊥
r .(| x |) �= X⊥ ⇒ 0 < #r .(| x |) < ∞

)⎞⎠} .

There is a Galois connection from the model Q(X ) for predeterministic programs
to the model D(X ) , whose embedding is

ε : Q(X )→ D(X )
ε.f := f ∪ (X⊥\ pre.f )×X⊥ . (11)

In other words,

x (ε.f ) x ′ ≡ ( x ∈ pre.f ⇒ f .x = x ′ ) .
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Its adjoint π.r denotes the largest partial function in r which ‘accounts for all of
r ’s results at its arguments’. It may be thought of as the largest partial function
which approximates, in Q(X ), total relation r . Indeed that is the form for π
expected by adjunction:

π.r = ∪{ f :Q(X ) | ε.f ⊇ r } .

Then:

Theorem 2. The function ε : Q(X )→ D(X )
1. is an injection that preserves arbitrary suprema from Q(X ) under  to D(X )

under ⊇ : more generally, Definition (11) of ε makes sense if its argument is
merely a relation, and then for any subset F of the carrier of Q(X ) (not just
those having a well-defined supremum �F ∈ Q(X ) ),

ε. ∪ F = ∩{ ε.f | f ∈ F } ;

2. has adjoint π : D(X ) → Q(X ), thus gc(ε, π; Q(X ),D(X )), where

π.r = { (x , y) : r | y �=⊥ ∧ ∀ x ′ �=⊥ · x r x ′ ⇒ x ′ = y } (12)

which is (⊇,)-continuous: if R is a ⊇-directed subset of D(X ) then

π. ∩R = �{ π.r | r ∈ R } ; (13)

3. has range which generates D(X ) under nonempty finite unions:

D(X ) = {∪F | F ⊆ ran.ε is nonempty and finite } ;

4. ensures that the domainD(X ) has least element the universal relation on X⊥,
maximal elements the (total) functions and compact elements the relations r
with pre.r finite (extending Definition (4) from functions to relations); thus
each r : D is the supremum of compact elements which it refines (a fact
which is weaker than 3 since each compact element of D is a nonempty finite
union of elements of ran ε);

5. preserves sequential composition: ε.(idX ) = (idX )⊥ and ε.(f ◦ g) = (ε.g) �
(ε.f ) .

It is convenient to define an embedding from relations on X to those on X⊥ to
capture that part of the healthiness conditions relating to initial virtual state:

( · )⊥ : (X ↔ X )→ (X⊥ ↔ X⊥)
(r)⊥ = r ∪ {⊥}×X⊥ .

Since ( · )⊥ preserves arbitrary intersections (though only nonempty unions) it
is Galois from (X ↔ X ,⊇) to (X⊥ ↔ X⊥,⊇) . Its adjoint is restriction to X :

π : (X⊥ ↔ X⊥)→ (X ↔ X )
π.s := s ∩ (X×X ) ,
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[[abort]]D = X⊥×X⊥
[[x := e]]D = (λ x : X · e)⊥

[[P if b else Q ]]D = { (x , x ′) | x [[P ]]Dx ′ if b.x else x [[Q ]]Dx ′ }
[[P � Q ]]D = [[P ]]D � [[Q ]]D

[[μ.F ]]D = ∩{ d :D(X ) | F .d ⊇ d }
[[P 	 Q ]]D = [[P ]]D ∪ [[Q ]]D

Fig. 6. Important properties of the relational semantics for Prog . Function F is mono-
tone on D

a projection that preserves arbitrary intersections (as well as arbitrary unions as
expected from the basic property of Galois connections) and is surjective. The
embedding ( · )⊥ is injective (as expected from properties of Galois connections)
and preserves sequential composition:

(r � s)⊥ = (r)⊥ � (s)⊥ . (14)

The semantic space D(X ) is comprehensively more complex than P(X ). Our
task, then, is to define the semantics of Prog(X ) in D(X ) in such a way that the
simplicity of the P(X ) semantics is not obscured. That is achieved—of course—
by lifting with ε via Q(X ) .

For each P : Prog(X ) its relational semantics [[P ]]D is defined by Law (7) using
union for nondeterministic choice and the lifting (Figure 4), under the Galois
connection of Theorem 2, of the Q semantics of P ’s predeterministic refinements:

[[P ]]D = ∪{ ε.[[Q ]]P | Q ∈ Predet(X ) ∧ P  Q } . (15)

In particular, if P is itself predeterministic then

[[P ]]D = ε.[[P ]]Q .

For example skip, because it is deterministic, has semantics

[[skip]]D
= definition of D semantics

ε.[[skip]]Q
= Q semantics with skip abbreviating (x := x)

ε.(λ x : X · x )
= definition of ε

(λ x : X · x )⊥ .

A similar argument works for abort; as does the fact that [[abort]]Q is the least
element of Q(X ) and ε preserves minima (a basic property of Galois connec-
tions).

Thus the D semantics of Prog(X ) is defined by lifting on Predet(X ) and
otherwise by union. Now the properties, that before were a matter of definition
in the P semantics of Figure 3, are simply inferred, though with a little more
work than for the Q semantics as inferred in Figure 5; see Figure 6.
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Consider, for example, sequential composition. The proof relies on predeter-
ministic computations whose P semantics consists of a singleton partial function
(recall Footnote 2); thus the computation terminates from just a single state.
Writing Predet1(X ) for the set of such computations, for P ,P ′ : Prog(X ),

[[P � P ′]]D
= (15)

∪{ ε.[[R]]Q | R ∈ Predet(X ) ∧ P � P ′  R }
= Footnote 2 and set theory

∪{ ε.[R]Q | R ∈ Predet1(X ) ∧ P � P ′  R }
= property of Predet1(X )

∪{ ε.[[R]]Q | ∃Q ,Q ′ ∈ Predet1(X ) ∧ P  Q ∧ P ′  Q ′ ∧ R = Q � Q ′ }
= 1-point law

∪{ ε.[[Q � Q ′]]Q | Q ,Q ′ ∈ Predet1(X ) ∧ P  Q ∧ P ′  Q ′ }
= ε preserves sequential composition (Theorem 2, Part 5)

∪{ ε.[[Q ]]Q � ε.[[Q ′]]Q | Q ,Q ′ ∈ Predet1(X ) ∧ P  Q ∧ P ′  Q ′ }
= set theory

∪{ ε.[[Q ]]Q | Q ∈ Predet1(X ) ∧ P  Q } �
∪{ ε.[[Q ′]]Q | Q ′ ∈ Predet1(X ) ∧ P ′  Q ′ }
= Footnote 2 again

∪{ ε.[[Q ]]Q | Q ∈ Predet(X ) ∧ P  Q } �
∪{ ε.[[Q ′]]Q | Q ′ ∈ Predet(X ) ∧ P ′  Q ′ }
= (15)

[[P ]]D � [[P ′]]D .

The case of nondeterminism is similar using instead (in the third step) the prop-
erty that, for Q : Predet1(X ) ,

P � P ′  Q ≡ P  Q ∨ P ′  Q .

The proofs of Laws (4) to (6) are immediate from basic set theory.
There is an alternative to this approach to the semantics of Prog(X ) based on

Law (7) with ∪ for nondeterminism. It assigns semantics by structural induction
on P : Prog(X ) , ‘building in’ Equation (15) at each step. But then Law (7) must
be checked and so the amount of work is equivalent. The former approach has
been chosen because it seems to extend better to more complex domains, like
probabilistic domains.

In summary, a Galois connection has been used to lift the Q semantics, and
laws, to D.

3.4 Angelic Choice: Theory T

Just as Software Engineering brought to light (demonic) nondeterminism, so
the formal development process discussed in Section 2.2 revealed the utility of
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magic the command that is never enabled
	F nondeterminstic choice over F
�F angelic choice over F

Fig. 7. Syntax completing the space Comm(X ) of commands over state space X :
the unenabled command, and arbitrary nondeterministic and angelic choices. F is an
arbitrary set of commands.

‘partially enabled’ computations and ‘angelic’ choice. We call such computations,
which extend programs, commands.

An example of a partially-enabled command is choice of an element from a set
which happens to be empty; computation cannot be started—is not enabled—in
a manner that is dual to a computation that fails to terminate. This situation
arises when a procedure for choosing an element from a set is used in a context
which ensures the set is nonempty; but when developed ‘in isolation’, the empty
case must also be considered.

Angelic choice is simply supremum �, the dual of nondeterminism � . A simple
example is provided by the angelic choice of two consistent commands. The first,
R, chooses x nondeterministically between 0 and 1 whilst the second, S , chooses
nondeterministically between 1 and 2. Their angelic choice R � S is the weakest
program stronger than both: x := 1.

If R and S had not been consistent in that example then their angelic choice,
their supremum, would not have been a program. The supremum of an incon-
sistent set of commands is a command (though not a program) that is never
enabled. Notation for the command that is never enabled and for angelic choice
are introduced in Figure 7, as is our last ingredient of command space: arbitrary
(rather than just binary) nondeterminism. The set of commands on X is written
Comm(X ). As usual, the relation of conformance is  , satisfying (4). Of course
equivalently:

P  P ′ ≡ P � P ′ = P ′ .

With the extension from programs to commands, the previous laws must be
revisited for correctness. Law (5) remains valid: the nondeterministic choice is
made initially on both sides and so the demon resolving the nondeterminism,
confronted with the same choices, produces the same behaviours. But for just
that reason its partner (6) does not remain valid, and must be weakened: for
R,S ,T : Comm(X ) ,

R � (S � T )  (R � S ) � (R � T ) . (16)

Refinement there must of course hold by monotonicity. But equality may fail
since the demon (having memory but not prescience), has more choices the later
it acts. There are thus fewer choices on the right and so fewer behaviours than
on the left. The choices coincide if execution of R results in no angelic choice by
which the demon might profit: if R is free of angelic choice.
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Important laws involving the new combinators include:

R �magic = magic (17)
magic � R = magic (18)

(R � S ) � T = (R � T ) � (S � T ) (19)
R � (S � T ) � (R � S ) � (R � T ) . (20)

The first, (17), says that magic is indeed dual to abort and so is the greatest (or
‘most refined’) command (and thus equals the empty angelic choice �{ } ). The
second says that an unenabled command cannot be enabled by any sequential
successor (even abort). In (19) the choice is made initially on both sides so,
reasoning as above (with the angel in place of the demon), equality holds. But
(20) is dual to (16): on the right the angel acts early and—having prescience but
not memory—has more choices and so produces more behaviours; alternatively,
the refinement follows by monotonicity. The choices coincide if execution of R
results in no nondeterministic choices by which the angel might profit: if R is
predeterministic.

The relationship between commands and programs is given by the law anal-
ogous to (8) (evidently the analogue of (7) fails): for any command R

R = �{P : Prog(X ) | P  R } . (21)

In fact the domain property holds: without loss of generality, program P can be
assumed to be compact.

In the relational model D(X ), angelic choice must be intersection and par-
tial enabledness must therefore be captured by partial-ness of a relation. But
that means the healthiness condition of totality, (9), no longer holds. Because
nondeterminism is now arbitrary, the finitary condition (10) also fails (at both
ends of the inequality, in view of lack of totality). Thus all that remains is strict-
ness and upclosure. The extension to D(X ) consisting of relations satisfying just
strictness and upclosure, but with the same criterion of conformance, is called
R(X ) .

The spaceR(X ) is a domain and a complete lattice with same least element as
D(X ) but greatest element ({ })⊥ and compact elements the cofinite ‘subsets’ of
X⊥×X⊥ . Moreover it is a Boolean algebra under the complement r �→ (X⊥×X⊥\
r)⊥ . However the natural embedding of D(X ) in R(X ) is not Galois. Otherwise
its adjoint π would map the greatest element in R(X ) to a greatest element of
D(X ); but no such element exists.4

Nonetheless the injection of D(X ) in R(X ) does generate R(X ) under arbi-
trary intersections, reflecting Law (21) (recall that from Theorem 2 nonempty
finite unions were used to generate D(X ) from Q(X ), reflecting Law (7)). Thus
the carrier set of R(X ) equals

{∩F | F ⊆ D(X ) } .

4 Since the natural embedding from D(X ) to R(X ) preserves arbitrary unions, why
is it not Galois by adjunction? Because suprema in R(X ) (arbitrary unions) are not
the same as suprema in D(X ); consider for example the empty union.
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[[magic]]R := ({ })⊥
[[	F ]]R := ∪{ [[P ]]R | P ∈ F }
[[�F ]]R := ∩{ [[P ]]R | P ∈ F }

Fig. 8. Relational semantics for Comm(X ); this augments the extension of the seman-
tics in Equation (15) from D to R using the natural embedding

The relational semantics of Comm(X ) may be thought of—like the semantics
for Prog—as follows.

1. Firstly, the R semantics equals the D semantics for commands that are code
(like skip). In other words the R semantics extends the D semantics.

2. Secondly, the R semantics is inferred from the D semantics by extending the
combinators of code to commands (as in the case of sequential composition,
or even arbitrary nondeterministic choice, on Prog from Predet). This is
possible because the natural embedding preserves those combinators.

3. Thirdly, it is defined for the (new) combinator of angelic choice by edict, to
be intersection.

Thus the R semantics of Comm is provided by Equation (15) (thus extended)
and Figure 8 (which also includes arbitrary nondeterminism and its empty case,
magic).

The proofs of Laws (17), (18) and (20) are now straightforward using basic
set theory. For example, for Law (20),

[[P � (Q � R)]]R
= R semantics of � and � from Figure 8

[[P ]]R � ([[Q ]]R ∩ [[R]]R)
⊆ set theory

([[P ]]R � [[Q ]]R) ∩ ([[P ]]R � [[R]]R)
= R semantics of � and � again

[[(P � Q) � (P � R)]]R .

Moreover equality holds in the middle step if, pointwise, the relation [[P ]]R either
maps to ⊥ (and hence to all of X⊥) or is single valued: as required, the command
P is predeterministic.

Unfortunately, for Identity (19) the analogous argument establishes only � ,
unless relation [[R]]R is a total function; in other words, command R is determin-
istic. Furthermore in Law (16) equality always holds (the existential quantifica-
tion of � distributing the ∪ of nondeterminism). It is inferred that the relational
model R(X ) does not fully capture angelic behaviour.

Thus stretching the relational model R(X ) from programs to commands re-
veals deficiencies. The situation is analogous to the introduction of nondeter-
minism: the model P(X ) was simply not expressive enough and so was extended
to D(X ). Now with the introduction of angelic choice, the relational model is in
turn not expressive enough and must be extended.
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Again, a more detailed model is needed. One possibility is the ‘binary mul-
tirelation’ model [33] of Rewitzky. Instead the premier model of sequential se-
mantics, Dijkstra’s predicate-transformer model, is chosen.

The predicate-transformer model (Dijkstra [7]) views each command as trans-
forming postconditions (predicates on final states) to preconditions (predicates
on initial states). For command P , the operational interpretation of its trans-
former semantics [[P ]]T is: for any postcondition q and any initial state x

[[P ]]T .q.x holds iff P terminates from x in a state satisfying q .

Of course that is sufficient to motivate a formal definition of the semantics. But
our interest here lies in reusing the relational semantics to infer the transformer
semantics, as far as that is possible.

Let (pred .X ,≤) denote the space of all predicates (i.e. conditions) on X par-
tially ordered by implication. The predicate-transformer model, T (X ), of com-
mands consists of those predicate transformers t : pred .X → pred .X that are
monotone

q ≤ q ′ ⇒ t .q ≤ t .q ′ ,

ordered under the lifting of the ordering on predicates

t ≤ t ′ := ∀ q : pred .X · t .q ≤ t ′.q .

Then T (X ) is a domain and complete lattice with least and greatest elements
the constant functions false and true respectively. Its compact elements are the
transformers t for which there is a finite subset F ⊆ X such that

∀ q :pred .X · t .q = ∨{ q.x | x ∈ F } . (22)

The space T (X ) is endowed with an involution (see Back and von Wright [2])

t∗.q := ¬t .¬q

that preserves sequential composition but exchanges nondeterministic with an-
gelic choice, enabledness with termination and magic with abort.

The embedding from relations R(X ) to transformers T (X ) is traditionally
called the weakest precondition

wp : R(X )→ T (X )
wp.r .q.x := ∀ x ′ : X⊥ · x r x ′ ⇒ (x ′ �=⊥ ∧ q.x ′) .

It is Galois, but with orders reversed. Writing (A,≤)∼ for (A,≥),

Theorem 3. The function wp : R(X ) → T (X )
1. is an injection that preserves arbitrary suprema from R∼ to T ∼ : for any

subset R ⊆ R ,

wp. ∪ R = ∧{wp.r | r ∈ R } ; (23)
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2. has adjoint the relational projection, rp : T (X ) →R(X ) completing a Galois
connection: gc(wp, rp; R∼, T ∼), where

x (rp.t) x ′ := x =⊥ ∨ ∀ q : pred .X · t .q.x ⇒ q.x ′ (24)

which of course preserves infima: for any subset T of the carrier of T (X ),

rp. ∨ T = ∩{ rp.t | t ∈ T } (25)

but moreover preserves suprema:

rp. ∧ T = ∪{ rp.t | t ∈ T } ; (26)

3. satisfies merely

wp.(r ∩ s) ≥ (wp.r) ∨ (wp.s) (27)

rather than equality (in contrast to the identities (23), (25) and (26));
4. has range ran.wp consisting of the conjunctive transformers,

t ∈ ran.wp ≡ ∀ q, q ′ : pred .X · t .(q ∧ q ′) = t .q ∧ t .q ′ , (28)

and that generates the carrier of T (X ) under angelic choice:5

T (X ) = {∨F | F ⊆ ran.wp } ; (29)

5. ensures that the domain T (X )∼ has least element the constant function λ q :
pred .X · true, greatest element the constant function λ q : pred .X · false and
with compact elements the transformers analogous (because of the reversal
of orders) to those described in (22);

6. preserves sequential composition: wp.(idX )⊥ = idpred.X and wp.(r � s) =
(wp.r) ◦ (wp.s), as does its adjoint rp in the reverse direction.

As expected from adjunction, the projection rp.t defined by (24) is the largest
relation that approximates t under wp .

The semantic space T (X ) appears deceptively simple although the manner of
expressing a computation is radically different from that in relations. Naturally
a Galois connection is used to bridge the gap!

The Galois connection can be used to lift much of the relational semantics to
transformers following our standard approach. As usual for Galois connections, it
maps the least element ({ })⊥ in R(X )∼ to the least element, the constant trans-
former true, in T (X )∼ thus providing the semantics of magic. For sequential
composition,

5 The space T (X ) is also generated by the composition of wp with its involution [2]—
∀ t · ∃ u, v : ran.wp · t = u∗ ◦ v—but that fact appears less useful here because the
transformer involution is not the lifting of an involution on relations [34].
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[[abort]]T := false
[[magic]]T := true
[[x := e]]T := λ q : pred .X · q [e/x ]

[[P if b else Q ]]T := [[P ]]T if b else [[Q ]]T
[[P � Q ]]T := [[P ]]T ◦ [[Q ]]T

[[μ.F ]]T := ∨{ t : T (X ) | F .t ≤ t }
[[	F ]]T := ∧{ [[P ]]T | P ∈ F }
[[�F ]]T := ∨{ [[P ]]T | P ∈ F }

Fig. 9. Transformer semantics for commands, inferred from Figure 8 using the wp
Galois connection

[[P � Q ]]T
= definition of T semantics

wp.[[P � Q ]]R
= definition of R semantics, Equation (15) and Figure 8

wp.([[P ]]R � [[Q ]]R)
= property of wp, Theorem 3.6

(wp.[[P ]]R) ◦ (wp.[[Q ]]R)
= definition of T semantics again

[[P ]]T ◦ [[Q ]]T .

It maps arbitrary unions in R(X ) to arbitrary conjunctions in T (X ), by (23),
thus providing the semantics of arbitrary nondeterminism. But the lack of equal-
ity in (27) means that wp can not be used to lift angelic choice from R(X ) to
T (X ) . That must simply be defined to be disjunction. The resulting transformer
semantics is given in Figure 9.

The proofs of Laws (17), (18) and (19) are now straightforward using elemen-
tary logic. For Law (20),

[[P � (Q � R)]]T
= T semantics of � and � from Figure 9

[[P ]]T ◦ ([[Q ]]T ∨ [[R]]T )
≥ monotonicity

([[P ]]T ◦ [[Q ]]T ) ∨ ([[P ]]T ◦ [[R]]T )
= T semantics of � and � again

[[(P � Q) � (P � R)]]T .

Moreover equality holds in the middle step if the transformer [[P ]]T is disjunctive;
in other words, the command P is predeterministic.

3.5 Refinement Calculus

For theoretical purposes a computation is conveniently described as a single
predicate; a form familiar to this audience is (p ∧ ok) ⇒ (P ∧ ok ′). Similarly
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for the purposes of specification; a familiar form is the body of a Z specification
[38]. But for development towards code, it is more convenient to reveal the
precondition, or predicate from which termination is assured. That idea, first
promoted by VDL [4], is incorporated into the ‘refinement calculus’ [28], the
main focus of [17]’s Chapter 3.

A specification statement

x : [p,P ]

consists of a frame x of variables (a list containing all those that may change),
precondition, p, a predicate whose free variables denote the initial state of the
computation and which represents the states from which termination is certain,
and a postcondition, P , a binary predicate in initial and final states which speci-
fies the computation when it terminates. Enabledness is captured by feasibility:
those initial states from which termination in a final state is possible

p[x0/x ] ⇒ ∃ x · P(x0, x )

(the substitution of x0 for x in the precondition is a technicality required by the
decision to use x as free variable in p).

The semantics of a specification statement is given (see, for example, [28]) as
a predicate transformer

ε.(x : [p,P ]).q := p ∧ (∀ x · P ⇒ q)[x/x0] ,

and the ordering on specification statements is that inherited from T . So, since ε
is in fact surjective, specification statements are ‘the same’ as T . Finally, having
gained experience of unification and the benefits it affords, our path has returned
to the context of [17]’s Chapter 3.

3.6 Chapter 3 Revisited

It may now be appreciated that, from the viewpoint of unification, [17]’s Chapter
3 contains two unifications, performed almost effortlessly because they occur
within the same, predicative, model [13]. To proceed in reverse order, a model of
‘feasible specification statements’ is defined as the subspace of single predicates
satsifying all four healthiness conditions H1 ∧ H2 ∧ H3 ∧ H4. A model of ‘not-
necessarily-feasible specification statements’ is defined by just the first three:
H1 ∧ H2 ∧ H3. And the general space of designs, of use whenever enabledness,
ok , and termination, ok ′, are observable, is defined by just the first two H1 ∧ H2.

Following the approach of the present paper, the original model of specifica-
tion statements as predicate transformers [28] is adopted, and Galois connections
are defined to relate to those other models. Chapter 3 is highly elegant in making
those connections actually injections. It does so by using a predicative seman-
tics with implication for refinement, using single-predicates (compared with the
p and P in the previous section) and moreover by establishing an isomorphism
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between certain laws and healthiness conditions on the semantic space of predi-
cates, which it then captured by closure operators. Little wonder, perhaps, that
the reader may be distracted from the task of unification.

Indeed most of that is subservient to the primary concern of unification. What
is the further benefit of ensuring that a model has that particular form? Of
primary importance is unification of new paradigms of computation and the
use of the unifying framework to simplify reasoning about realistic case studies.
Surely that kind of endeavour is of secondary importance and may even look
precious from outside the tight-knit UTP community.

That is why starting from Chapter 4 has been advocated, and only later
returning to Chapter 3 to see the special nature of the relational/predicative
injections.

4 Unifying Further

The field of program semantics is specialised and any single approach to it,
like UTP, even more so. Much of our hope for UTP must therefore lie in further
applications of unification and the techniques UTP provides, outside the confines
of program semantics. What for programming languages was semantics is now
thought of as behaviour.

The best examples are the complex systems currently preoccupying us: hybrid
systems like cyberphysical systems and those from biology and finance. Can the
hierarchical approach be used to describe them incrementally in such a way
that desirable properties ‘accumulate’? That would make accessible ‘closed form’
analysis, to complement simulation and model checking which appear to be the
sole techniques used at present.

The theories provided for incremental development, as summarised at the end
of Section 2.2, are founded on a uniform domain X of discourse. A typical ex-
ample is provided by the refinement calculus, which makes explicit the types
of all variables appearing in the development. Thus when a development step
involves a data refinement, both abstract and concrete spaces are included in
X . But data refinement is a special kind of increment which by definition pro-
hibits observation of information encapsulated in the concrete data type, which
is instead accessed only using the same operations as the abstract type.

In the setting of complex systems it may well be impractical to conceive the
domain X ab initio. Instead, the complexity of the system may be revealed incre-
mentally by successive Galois connections, following the approach of unification.

Here is an example from hardware design.

4.1 Beyond Programming

The Boolean model of signal values provides a satisfactory account of hardware
devices at one level of abstraction. Unfortunately it is quite abstract so, for
realistic design, simulations (typically in hspice) based on lower-level models
are required. One of the difficulties is in unifying the detailed model with the
Boolean model. This seems like an ideal test for the UTP approach.
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[[pow ]]B := out

[[ntran]]B := g ⇒ (s = d)

[[pow ]]H := [[pow ]]B ∧ δout

= out ∧ δout

[[ntran]]H :=

(
[[ntran]]B
g ∧ δg ∧ (¬s ∨ ¬d) ⇒ (δs = δd)

)

Fig. 10. Two devices, power and an n-type transistor, seen in two semantic models:
the Boolean model B and the driven model H

For example in the Boolean model, a wire connected to power by a p-type
transistor is accurately modelled as being high if the gate of the transistor is
low. But if the p-type transistor is replaced by an n-type transistor, the Boolean
model predicts the same result, which is wrong: the wire is only weakly high, a
result not able to be expressed in the model (but which is fatal because a chain
of such transistors successively reduces the signal until it is not merely weakly
high, but low).

A further observation—of ‘drive’—needs to be incorporated in the model.
This has been achieved elegantly by Hoare [16]. Each device is modelled first at
the Boolean level (as is standard) but then at the driven level (this is new) and
properties of the models ensure that the first is unified in the second. In fact
both are embedded in predicates and the second extends the first, in the style of
Chapter 3. Again, the situation is as in Figure 4, with the language being that
of devices, P the Boolean model and Q the driven model.

The Boolean model is given by the set of predicates whose free variables
are wire names from some set say W and whose ordering is equivalence (since
implication is too weak for the usual reason)

B(W ) := (pre.W , =)

For example the device pow which connects output out to power is modelled by
the predicate out = true. An n-type transistor ntran with gate g, source s and
drain d is modelled by the predicate which states that if the gate is high then
source and drain equilibrate. See Figure 10.

In the ‘driven model’ an extra Boolean observable δw is included for each wire
w in the Boolean model, representing whether or not that wire is driven to its
value. For example the output of power is always driven and so its description
in the driven model is its Boolean description conjoined with δout = true. The
driven description of the n-type transistor consists of its Boolean description
conjoined with a predicate relating drive of wires to their values: if the gate is
driven high and either source or drain is low then when they equilibrate, as is
guaranteed from the Boolean description, they are equi-driven. See Figure 10.

Thus the driven model extends the Boolean model by also containing a predi-
cate whose free variables are both the wires and their δ version. Its order conjoins
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the Boolean order with the assurance that the driven predicate Δ′ of the finer
device is stronger than that, Δ, of the coarser:

H(W ) := (pre.W × pre.(W ∪ δW ),�)

where

(B , Δ) � (B ′, Δ′) :=

(
B = B ′

Δ′ ⇒ Δ

)
.

Those examples suffice to confirm the example of weak signals mentioned above.
But our concern here is with the unification. The Boolean model B is embedded
in the driven model H by injection; and the ordering of H is stronger than that
of B. Thus the embedding is universally ∧-junctive and the models are related
by a Galois embedding.

Suppose it is required to model greater device detail. For example capaci-
tance may be modelled as persistence of drive—say after a cycle’s delay. That is
captured by a third model, the capacitive model, in which the driven model is
embedded. If, again, it is necessary to reason about time in more detail, a fourth
model could be defined in which one cycle is replaced by a clock, so that a signal
value and its single-cycle delay are replaced by a signal with values at discrete
times. And so on. The state information required in more detailed models may
be much more detailed than that of the abstract models (just Booleans, in this
case), but nonetheless the relationship is mediated by Galois connections.

The case being made is that the techniques developed in UTP stretch far
beyond theories of programming. They may be advantageously used to model,
and reason about, complex systems.

4.2 The Philosopher’s Stone?

When will the UTP approach, of unification, not be helpful? When the incre-
mental approach fails: when each feature is coupled so tightly with the others
that the full behaviour cannot be ‘teased out’ into strands enabling it to be
understood by approximation.

Consider a physical example. The n-body problem [6] requires the determina-
tion of the motion of n bodies, given their momenta at one instant and assuming
Newtonian interactions. Specification of the problem is easy, by differential equa-
tion; the challenge lies in finding the solution. The problem is difficult because
it must take into account all possible interactions between the bodies. There
seems to be no scope for unification unless approximation is allowed. In Physics,
approximation is a natural step to take because small changes in the momenta of
the bodies lead to small changes in the solution. So one can imagine progressively
more accurate solutions. In the case of discrete systems that kind of approxi-
mation is of little use (how do you approximate a bit?), and any method must
instead approximate complexity exactly at each level of abstraction, through a
series of abstractions. In that sense unification is our version of approximation
in Physics. In the n-body it seems unachievable.
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In the terms of Computer Science, the n-body problem is a distributed system
in which each process interacts with each other. That, then, is going to be dif-
ficult to analyse incrementally unless there is some very special structure to the
interactions. But if a process interacts with only a small number of others (for
example its nearest neighbours, if they are distributed spatially) then unification
might be expected.

5 Conclusion

Systems are inherently complicated. Since detail cannot ultimately be avoided,
theories must be as simple as possible. In the areas of traditional engineering,
where relationships between observables are assumed to be differentiable, ap-
proximation by simpler behaviours which approximate closely that of the real
system, provides a successful method. It has been argued that unification, de-
scribing complex behaviour exactly at varying levels of abstraction, is the equiv-
alent for the discrete systems of Computer Science.

In studying a complex system the first stage, then, must be to study its
abstractions (ignore real time, the hybrid nature of the system and so on). But
then must come a stage in which detail is restored. Then unification is our only
technique. We conclude that every effort must therefore be made to sustain the
theory of unification, UTP.

Unification might be appreciated as one of two ‘orthogonal’ techniques. That
of modularisation structures descriptions at a given level of abstraction. Uni-
fication structures complexity incrementally across levels of abstraction. The
former is reasonably well understood, is still being productively pursued at the
research level (information hiding), and is the foundation of almost all Software
Engineering. The UTP community appears to be guardians of the latter.

A single case study of the incremental approach has been presented, moving
from predeterministic (i.e. computable) computations through finitely nonde-
terministic programs to angelic and arbitrary nondeterministic commands. The
journey could readily have been continued to include probabilistic computations
and even quantum computations (to go in just one direction). At most of the
increments the semantic intuition and laws have been able to be lifted by Galois
connections. Where that has not been the case, valuable insight has been pro-
vided by the property that fails (for example failure of wp to map intersections
to disjunctions).

Though founded on unification, UTP offers further delightful distractions
along the way. Many of them are compressed in to Chapter 3, and so the case
has been made that, in teaching, attention be gently deflected to Chapter 4,
then its predecessor viewed in context. Perhaps ‘relational semantics’ is not as
important as might be thought from Chapter 3. As has just been seen in Section
3, it is not at all required for unification.

It has been suggested that unification offers a way of analysing complex sys-
tems, not just theories of programming. Indeed it has been claimed that only
by diversifying from program semantics will the techniques of UTP be properly
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and widely appreciated. It would be very persuasive were the method to be used
on complex systems currently being analysed by simulation or model checking,
like hybrid systems arising from cyberphysical, biological or financial study. But
within the confines of program semantics, it would be interesting to unify the
standard models with more recent models, like the game theoretic model.

Many important topics have been overlooked in this paper. Just two are: the
use of Galois connections for calculation by use of ‘trading’; and data refinement
in the domain of discourse and seen in terms of a Galois connection.

What, then, lies in store for UTP? It has been argued that the approach
it takes, and the techniques it provides for unifying theories, are scientifically
indispensible. But it has also been acknowledged that important ideas wither.
Is UTP becoming a road less travelled, destined for obsolescence? The former
appears to be true; the latter may be up to us. It seems obvious that (unless
it is rediscovered) the approach will die without serious action: more courses
might be taught, promoting unification; more students be engaged in MSc. and
PhD. degrees based on UTP; more unification be performed, mastering new
paradigms, making non-specialists want to use the method—good opportunities
are provided by hybrid, cyberphysical and biological systems; and an undue
amount of effort not be spent on second-order concerns. Otherwise, UTP will be
as familiar in 20 years’ time as are Zeppelins, Theremins and the slide rule.

What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from.
. . .
We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

Little Gidding [10]
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A Probabilistic BPEL-Like Language

He Jifeng

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, China

Abstract. Exception and failure are the typical phenomena of the ex-
ecution of long-running transactions. To capture the random features of
internet-based computing, this paper investigates a BPEL-like language
which is enriched with probabilistic choice operator. We extend the stan-
dard design model [12] with the new healthiness conditions to accommo-
date the coordination and compensation mechanisms of the language.

1 Introduction

The aim of the web services is to achieve the universal interoperability between
different web-based applications. Coordination and compensation mechanisms
are vital in handling exception and failure which occur during the execution of
a long-running transaction.

In recent years, in order to describe the infrastructure for carrying out long-
running transactions, various business modelling languages have been intro-
duced, such as XLANG, WSFL, BPEL4WS (BPEL) and StAC [22,13,7,6]. This
paper is an attempt at taking a step forward to gain some perspectives on the
random features of long-running transactions. The language examined in this
paper is an extension of the BPEL language with the following features:

1. It contains a probabilistic choice operator to describe the random feature
of the web-services whose behaviours rely on the status of the environment.
The probabilistic choice operator acts as a refinement of the nondeterministic
choice operator. In discussion of distributive laws of sequential composition,
we explore the substantial difference between these two choice operators.

2. The language is armed with the exception handling and compensation mech-
anism to improve the robustness of the programs.

3. The language provides a family of coordination operators in support of design
of highly dependable programs.

The model we adopt for our language enriches the design calculus with the
following ingredients:

1. Besides the logical variables ok and ok′ used in the design calculus to specify
the termination status of a program, the model we build for our BPEL-like
language presents new logical variables to describe the rollback and failure
status of transactions.

S. Qin (Ed.): UTP 2010, LNCS 6445, pp. 74–100, 2010.
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2. Corresponding to the additional left zeroes of the sequential composition,
we put forward new healthiness conditions for our programs.

3. We adopt the notion of final distribution to replace the final state used in
the design calculus to characterise the random feature of the outcome of a
web-service.

4. To capture algebraic properties of the probabilistic and nondeterministic
choices we impose convex-closed property on final distributions of our pro-
grams.

In summary, our novel contributions include

– A BPEL-like language equipped with the exception handling and compen-
sation mechanisms

– A family of coordination operators for improvement of design of highly de-
pendable programs

– A probabilistic model to handle exception and program failure.

2 Probabilistic Program Syntax

The language examined in this paper extends the Guarded Command Language
[8] by including the probabilistic choice operator, compensation operator and
coordination operator. The abstract syntax of the programming language is given
below.

P ::= ⊥ abort
fail failure
throw exception
skip empty command
x := e assignment
P � b � P conditional
P [[r]] P probabilistic choice
P � P Nondeterministic choice
P caughtbyP exception handling
P cpensP compensation
P elseP coordination operator
P seq P sequential composition
(μX • P (X)) recursion

where

– fail halts with indication of the failure of the execution.
– Let 0 ≤ r ≤ 1. P [[r]]Q makes a choice between programs P and Q with

probabilities r and 1− r respectively.
– P caughtbyQ runs program P first. If its execution throws an exception

case, then Q will be invoked to handle that exception.
– P cpensQ runs P as its primary task. Q is invoked only when the execution

of P fails.
– P elseQ behaves like P if its execution succeeds. Otherwise it will fire Q

on the same initial state as P .
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In the following sections, we will abbreviate the entire list of program variables
(x, y, , .., z) by the simple vector variable v.

3 A Probabilistic Model

In this section we work towards a precise characterisation of the class of de-
signs [12] that can handle new programming features such as program failure,
coordination and compensation.

3.1 State

To equip a language with exception handling mechanism, it is necessary to record
the cases when a program throws an exception. We add a new logical variable
eflag (standing for error-flag) to the standard design model for the description
of the current status of a program:

– eflag′ = false indicates it terminates successfully.
– eflag′ = true indicates it is forced to halt due to an exception case during

its execution.

To deal with the compensation mechanism we are required to figure out the cases
when a program decides to rollback its execution. By adopting the technique used
in handling the exception cases we introduce another logical variable forward
to describe the status of the execution of a program:

– forward′ = true indicates successful termination of the execution of the
forward activity of a program. In this case, its sequential successor will go
ahead with the initial state set up by the program.

– forward′ = false indicates it decides to undo the effect caused by the exe-
cution. In this case, the corresponding compensation module will be invoked.

As a result, the enriched state space S used in later discussion has the type

(V ar → V al) × ({eflag} → Bool) × ({forward} → Bool)

3.2 Final Distribution

We extend our standard states to probabilistic states by replacing the final state
with a final distribution over S.

Definition (Probabilistic distribution)

A final distribution is a total function from S into the closed interval of reals
[0, 1]. We define

PROB =df S → [0, 1]

where each member of PROB is a discrete function on the countable set S.
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We insist further that for any member prob of PROB the probabilities must
NOT exceed 1:

Σs∈S prob(s) ≤ 1 .

For any subset X of S we define

prob(X) =df Σs∈X prob(s) .

We use the notation 0 to denote the zero distribution, and define

prob1 ≤ prob2 =df ∀s ∈ S • (prob1(s) ≤ prob2(s))

For any prob ∈ PROB we have

0 ≤ prob

For any s ∈ S we introduce its corresponding point-distribution ηs:

ηs(t) =df

{
1 if t = s
0 otherwise

This paper identifies a probabilistic program as a predicate which relates initial
states to final distributions, and inherits the refinement relation defined in [12]:
probabilistic programs as follows:

P � Q =df ∀s ∈ S, prob′ ∈ PROB • (P (s, prob′) ⇒ Q(s, prob′))

3.3 Healthiness Condition

A subclass of predicates may be defined in a variety of ways. Sometimes it is
done by a syntactic property. Sometimes the definition requires satisfaction of
a particular collection of algebraic laws. In general, the most useful definitions
are these that are given in many different forms, together with a proof that
all of them are equivalent. This section will put forward additional healthiness
conditions to capture such a subclass of designs.

The introduction of error states has implication for sequential composition:
all the exception cases of program P are of course also the exception cases of
P ; Q. Rather than change the definition of sequential composition given in [12],
we enforce this rule by means a healthiness condition: if the program Q is asked
to start in an exception case of its predecessor, it leaves the state unchanged

(Req1) Q = II � eflag � Q

when the command II adopts the following definition

II =df prob′ = ηs

where s denotes all the variables in the alphabet of Q.
A predicate is Req1-healthy if it satisfies the healthiness condition Req1.

Define
H1(Q) =df (II � eflag � Q)
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Clearly H1 is idempotent,
H2

1 = H1

As a result, Q is Req1 healthy if and only if Q lies in the range of H1.
When a program starts to rollback the execution, its sequential successor

becomes void in the sense that it must keep silent when invoked in the state
where forward = false:
(Req2) Q = II � ¬forward � Q

This condition can be identified by the idempotent mapping

H2(Q) =df II � ¬forward � Q

in the sense that a program meets Req2 iff it is a fixed point of H2

Probabilistic choice is introduced to make a choice between its two components
with certain probabilities. Because this choice is made internally, it is impossible
to distinguish Q from Q [[r]] Q by comparing their external behaviours. Therefore,
we require all programs Q must meet the following convex-closure property:

(Req3) Q = Q [[ ]] Q

where

P [[ ]] Q =df ∃prob1, prob2 : PROB, ∃r : [0, 1] •

P [prob1/prob
′] ∧Q[prob2/prob

′] ∧

prob′ = r × prob1 + (1− r)× prob2

(Req3) is identified by the following idempotent mapping

H3(Q) =df Q [[]] Q

Our probabilistic model adopts the same refinement ordering as the standard
state model. Taking the ordering among final distributions into account, we re-
quire that every probabilistic program must satisfy following healthiness
condition:

(Req4) Q = Q ; (prob ≤ prob′)

where ; stands for the relational composition.
This healthiness condition is characterised by the idempotent mapping

H4(Q) =df Q; (prob ≤ prob′)

Lemma 3.1 (Commutativity)
Hi ◦ Hj = Hj ◦ Hi for all i and j.

Proof

(H1 ◦ H3)(P ) {Def of H3}
= H1(P [[]]P ) {Def of H1}
= II � eflag � (P [[]]P ) {II[[]]II = II}
= H1(P ) [[]]H1(P ) {Def of H3}
= (H3 ◦ H1)(P )
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(H1 ◦ H4)(P ) {Def of H4}
= H1(P ; (prob ≤ prob′)) {Def of H1}
= II � eflag � (P ; (prob ≤ prob′)) {II ; (prob ≤ prob′) = II}
= H1(P ) ; (prob ≤ prob′) {Def of H4}
= (H4 ◦ H1)(P )

(H4 ◦ H3)(P )

{Def of H3 and H4}
= (P [[]]P ); (prob ≤ prob′)

{Def of [[]]}
= ∃r : [0, 1], prob1, prob2 : PROB•

P [prob1/prob
′] ∧ P [prob2/prob

′]∧
prob′ ≥ (r × prob1 + (1− r)× prob2)

{Let X =df 1−Σtprob1(t), and Y =df 1−Σtprob2(t)}
{and Δ(s) =df prob′(s) − (r × prob1(s) + (1− r) × prob2(s))}

⇒ ∃r : [0, 1], prob1, prob2, prob3, prob4 : PROB•
P [prob1/prob

′] ∧ P [prob2/prob
′]∧

prob3 = prob1 + λt • (X ×Δ(t))/(r ×X + (1− r)× Y )∧
prob4 = prob2 + λt • (Y ×Δ(t))/(r ×X + (1− r) × Y )∧
prob′ = (r × prob3 + (1− r)× prob4)

{Def of H3 and H4}
⇒ (H3 ◦ H4)(P )

{Def of H3 and H4}
= ∃r : [0, 1], prob1, prob2, prob3, prob4 : PROB•

P [prob1/prob
′] ∧ P [prob2/prob

′]∧
prob3 ≥ prob1 ∧ prob4 ≥ prob2 ∧
prob′ = (r × prob3 + (1− r)× prob4)

{Calculation}
⇒ ∃r : [0, 1], prob1, prob2, : PROB•

P [prob1/prob
′] ∧ P [prob2/prob

′]∧
prob′ ≥ (r × prob1 + (1− r)× prob2)

{Def of H3 and H4}
= (H4 ◦ H3)(P )
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Theorem 3.2
Healthy predicates form a complete lattice with respect the refinement ordering
. Proof Define

H =df H1 · H2 · H3 · H4

Clearly H is a monotonic mapping. From Lemma 3.1 we conclude it is also
idempotent. It follows that a predicate P meets the healthiness conditions Req1–
Req4 if and only if it is a fixed point of H. The conclusion follows from Tarski’s
fixed point theorem [21].

In the following sections, we will confine ourselves to healthy predicates only.

4 Probabilistic Semantics

This section provides a probabilistic semantics to our language. Each program
will be defined as a healthy predicate.

4.1 Primitive Commands

The behaviour of the chaotic program ⊥ is totally unpredictable

⊥ =df H(true)

The execution of skip leaves program variables intact.

skip =df II

The execution of fail rollbacks the execution.

fail =df H1(prob′ = ηs[false/forward])

An exception case arises from the execution of throw

throw =df H2(prob′ = ηs[true/eflag])

4.2 Probabilistic Choice

Let P and Q be programs, and r a real satisfying 0 ≤ r ≤ 1. Probabilistic choice
P [[r]]Q selects P and Q with probabilities r and 1− r respectively.

P [[r]]Q =df ∃prob1, prob2 : PROB • P [prob1/prob
′] ∧ Q[prob2/prob

′] ∧

prob′ = r × prob1 + (1 − r)× prob2

Healthy predicates are closed under probabilistic choice operator:

Lemma 4.2

H(P )[[r]]H(Q) = H(P [[r]]Q)
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Proof

H3(P [[r]]Q)

{Def of H3}
= ∃prob1, prob2 prob3, prob4 : PROB, ∃p : [0, 1]•

P [prob1/prob
′] ∧ Q[prob2/prob

′] ∧ P [prob3/prob
′] ∧ Q[prob4/prob

′]∧
prob′ = p× (r × prob1 + (1− r)prob2)+

(1− p)× (r × prob3 + (1 − r)× prob4)

{H3(P ) = P and H3(Q) = Q}
⇒ ∃prob1, prob2, prob3, prob4, probP , probQ : PROB, ∃p : [0, 1]•

probP = p× prob1 + (1− p)× prob3 ∧
probQ = p× prob2 + (1− p)× prob4 ∧
P [probP /prob′] ∧Q[probQ/prob′] ∧ prob′=r × probP + (1− r) × probQ

{Def of [[]]}
= P [[r]] Q

{X � H3(X)}
⇒ H3(P [[r]]Q)

H4(P [[r]]Q)

{Def of H4}
= ∃prob1, prob2 : PROB • P [prob1/prob

′] ∧ Q[prob2/prob
′]∧

prob′ ≥ (r × prob1 + (1− r) × prob2)

{Let X =df (1−Σtprob1(t)) and Y =df (1−Σtprob2(t))}
{and Δ(s) =df prob′(s) − (r × prob1(s) + (1− r)× prob2(s))}

⇒ ∃prob1, prob2, prob3, prob4 : PROB•
P [prob1/prob

′] ∧ Q[prob2/prob
′]∧

prob3 = prob1 + λs • (X ×Δ(s))/(r ×X + (1− r)× Y )∧
prob4 = prob2 + λs • (Y ×Δ(s))/(r ×X + (1− r) × Y )∧
prob′ = (r × prob1 + (1− r)× prob2)

{H4(P ) = P, H4(Q) = Q}
⇒ P [[r]]Q

{X ⇒ H4(X)}
⇒ H4(P [[r]]Q)

Probabilistic choice is symmetric, associative and idempotent.
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Theorem 4.1

(1) P [[r]] Q = Q [[1− r]] P

(2) P [[1]] Q = P

(3) P [[r]] P = P

(4) (P [[p]] Q) [[q]] R = P [[(p× q)]] (Q [[r]] R)

where r =df (q − p× q)/(1− p× q),

and 1 p =df (1− p) � 0 ≤ p < 1 � 1

Proof (1) and (2) follow from the definition of probabilistic choice. (3) comes
from the healthiness condition Req3. We are going to prove the conclusion (4):

(P [[p]]Q)[[q]]R

{Def of [[p]]}
= ∃probP , probQ, probR : PROB•

P [probP /prob′] ∧Q[probQ/prob′] ∧R[probR/prob′]∧
prob′ = q × (p× probP + (1− p)× probQ) + (1 − q)× probR

{Def of r}
= ∃probP , probQ, probR : PROB•

P [probP /prob′] ∧Q[probQ/prob′] ∧R[probR/prob′]∧
prob′ = (p× q)× probP + (1− p× q)× (r × probQ + (1− r)× probR)

{Def of [[r]]}
= P [[p× q]](Q[[r]]R)

4.3 Nondeterministic Choice

Let P and Q be programs. P � Q selects P and Q with arbitrary probability

P � Q =df (P [[]] Q)

Healthy functions are closed under nondeterministic choice operator:

Lemma 4.3

H(P ) � H(Q) = H(P � Q)

Proof. From Lemma 3.1.

Nondeterministic choice is symmetric, associative and idempotent.

Theorem 4.2

(1) P � Q = Q � P

(2) P � (Q � R) = (P � Q) � R

(3) P � P = P
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Proof. From Theorem 4.1, and the fact that

P [[]] Q = ∃r : [0, 1] • (P [[r]]Q)

4.4 Conditional

Let P and Q be programs, and let b be a Boolean expression. P � b � Q selects
P and Q according to the value of b at the initial state. If the evaluation of b
fails, then the conditional choice will throw an exception case.

P � b � Q =df D(b) ∧ (b ∧ P ∨ ¬b ∧Q) ∨ ¬D(b) ∧ throw

where Db is true in just those circumstances in which the evaluation of e will
yield a value properly [?]. For example

D17 =df true

D(e + f) =df De ∧ Df

D(e/f) =df De ∧ Df ∧ (f �= 0)

D(e � b � f) =df (b ⇒ De) ∧ (¬b ⇒ Df)
provided that Db ≡ true

An expression e is well-defined if De ≡ true. For example

e �De � x

is well-defined.

Healthy predicates are closed under conditional choice operator.

Lemma 4.4

H(P ) � b �H(Q) = H(P � b � Q)

Proof

H4(P � b � Q)

{Def of H4}
= (P � b � Q); (prob� prob′)

{; distributes over ∨ and H4(throw) = throw}
= (P ; (prob ≤ prob′)) � b � (Q; (prob ≤ prob′))

{Def of H4}
= H4(P ) � b �H4(Q)
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Conditional choice enjoys the same properties as its counterpart in the Guarded
Command Language. Furthermore, it distributes through probabilistic choice.

Theorem 4.3

(1) (P [[r]]Q) � b � R = (P � b � R)[[r]](Q � b � R)

(2) P [[r]](Q � b � R) = (P [[r]]Q) � b � (P [[r]]R) if b is well-defined.

Proof

(2)P [[r]](Q � b � R) {Def of [[]]}
= ∃prob1, prob2 : PROB•

P [prob1/prob
′] ∧ (Q � b � R)[prob2/prob

′]∧
prob′ = (r × prob1 + (1− r)× prob2) {Def of � b�}

= ∃prob1, prob2 : PROB • P [prob1/prob
′]∧

(b ∧Q[prob2/prob
′] ∨ ¬b ∧ R[prob2/prob

′])∧
prob′ = (r × prob1 + (1− r)× prob2) {Predicate calculus}

= b ∧ (P [[r]]Q) ∨ ¬b ∧ (P [[r]]R) {b is well-defined}
= (P [[r]]Q) � b � (P [[r]]R)

4.5 Assignment

The execution of x := e assigns the value of e to variable x if e can be successfully
evaluated. Otherwise it behaves like throw

(x := e) =df H(prob′ = ηs[e/x]) �De � throw

Lemma 4.5

x := e is a healthy predicate.

Proof. From Lemma 4.4.

An assignment x := e is total if the expression e is well-defined. In the following
sections we will confine ourselves to total assignments because an assignment
x := e can always be converted to a conditional with total assignment as its
component.

Theorem 4.4

x := e = (x := (e �De � x)) �De � throw

4.6 Sequential Composition

For sequential composition we follow the Kleisli-triple approach to semantics
of programming languages [18], introducing a function ↑ to deal with sequential
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composition, which maps a binary relation P (s, prob′) to a ‘lifted’ relation (↑
P )(prob, prob′)

Definition 4.1 (Kleisli lifting)

↑ P =df ∃G : (S → PROB), ∀s : S • P (s, G(s))) ∧

prob′ = Σt∈S(prob(t)×G(t))

From the facts that Σs∈Sprob(s) ≤ 1 and that for all t ∈ S we have G(t) ∈
PROB we conclude that

Σs∈S(Σt∈S(prob(t)×G(t)(s))) ≤ 1

Lemma 4.6

Let α and β be nonnegative reals satisfying 0 < (α + β) ≤ 1. Then

↑ P (prob1, prob
′
1)∧ ↑ P (prob2, prob

′
2) ⇒

↑ P ((α × prob1 + β × prob1), (α× prob′1 + β × prob′2))

Proof. Define

r1(t) =df

⎧⎪⎨⎪⎩
(α× prob1(t))/(α× prob1(t) + β × prob2(t))

(α× prob1(t) + β × prob2(t)) > 0

0 otherwise

r2(t) =df

⎧⎪⎨⎪⎩
(β × prob2(t))/(α× prob1(t) + β × prob2(t))

(α× prob1(t) + β × prob2(t)) > 0

0 otherwise

LHS {Def of ↑}
⇒ ∃G, H : (S → PROB), ∀s : S • (P (s, G(s)) ∧ P (s, H(s)))∧

prob′1 = Σt(prob1 × G(t)) ∧ prob′2 = Σt(prob2 × H(t)) {Req3}
⇒ ∃G, H : (S → PROB),

∀s : S • P (s, r1(s) × G(s) + r2(s) × H(s))∧
α × prob′1 + β × prob′2 =

Σt(α × prob1(t) + β × prob2(t)) × (r1(t) × G(t) + r2(t) × H(t)) {Def of ↑}
⇒ RHS

Lemma 4.7

(1) ↑ (P ; (prob ≤ prob′)) ; (prob ≤ prob′) = ↑ P ; (prob ≤ prob′)

(2) skip; ↑ P = P
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(3) ↑ (P ; ↑ Q) = (↑ P ) ; (↑ Q)

(4) (prob ≤ prob′) ; ↑ P ; (prob ≤ prob′) = ↑ P ; (prob ≤ prob′)

Proof

(1) LHS

{Def of ↑}
= ∃G : S → PROB, ∀s : S • (P ; (prob ≤ prob′))(s, G(s))∧

prob′ ≥ Σt(prob(t)×G(t))

{Def of relational composition}
⇒ ∃H, G : S → PROB, ∀s : S • (P (s, H(s)) ∧H(s) ≤ G(s))∧

prob′ ≥ Σt(prob(t)×G(t))

{calculation}
⇒ ∃H : S → PROB, ∀s : S • P (s, H(s))∧

prob′ ≥ Σt(prob(t)×H(t))

{Def of ↑}
= RHS

{↑ is monotonic}
⇒ LHS

(2) skip; ↑ P {Def of skip}
= ↑ P [ηs/prob] {Def of ↑}
= ∃G : (S → PROB), ∀t : S • P (t, G(t))∧

prob′ = Σt∈S(ηs(t) × G(t)) {Def of ηs}
= ∃G : (S → PROB) • P (s, G(s)) ∧ prob′ = G(s) {predicate calculus}
= P

(3) LHS

{Def of ↑}
= ∃G : (S → PROB), ∀s : S • (P ; ↑ Q)(s, G(s))∧

prob′ = Σt(prob(t)×G(t))

{Def of (P ; ↑ Q)}
= ∃H, G : (S → PROB), ∀s : S • P (s, H(s))∧
↑ Q(H(s), G(s)) ∧ prob′ = Σt(prob(t)×G(t))

{Def of ↑}
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⇒ ∃G, H : (S → PROB)• ↑ P (prob, Σt(prob(t) × H(t)))∧
∀s : S• ↑ Q(H(s), G(s)) ∧ prob′ = Σt(prob(t) × G(t))

{Lemma 4.6}
⇒ ∃H : (S → PROB)• ↑ P (prob, Σt(prob(t) × H(t)))∧

↑ Q(Σt(prob(t) × H(t)), prob′)

{Def of ; }
⇒ RHS

{Def of ; }
⇒ ∃m : PROB• ↑ P (prob, m)∧ ↑ Q(m, prob′)

{Def of ↑}
⇒ ∃G : (S → PROB) • ∀s : S • P (s, G(s)) ∧ m = Σt(prob(t) × G(t))∧

∃H : (S → PROB), ∀s : S • Q(s, H(s)) ∧ prob′ = Σs(m(s) × H(s))

{Calculation}
⇒ ∃G, H : (S → PROB) • P (s, G(s)) ∧ Q(s, H(s))∧

prob′ = Σt(prob(t) × (Σs(G(t)(s) × H(s))))

{Lemma 4.6}
⇒ ∃G, H : (S → PROB) • ∀s : S • (P (s, G(s))∧

↑ Q(G(s), Σt(G(s)(t) × H(t)))) ∧ prob′ = Σt(prob(t) × (Σs(G(t)(s) × H(s))))

{Let K(s) = Σt(G(s)(t) × H(t))}
⇒ ∃K : (S → PROB), ∀s : S • (P ; ↑ Q)(s, K(s)) ∧ prob′ = Σt(prob(t) × K(t))

{Def of ↑}
⇒ LHS

(4) LHS {Def of ↑}
= ∃G : (S → PROB), ∃m : PROB, ∀s : S • P (s, G(s))∧

(m ≥ prob) ∧ prob′ ≥ Σt(m(t) × G(t)) {predicate calculus}
⇒ ∃G : (S → PROB), ∀s : S • P (s, G(s))∧

(prob′ ≥ Σt(prob(t) × G(t)) {Def of ↑}
= RHS {; is monotonic}
⇒ LHS

We define
P seq Q =df P ; ↑ Q ; (prob ≤ prob′)

Lemma 4.8

Healthy predicates are closed under sequential composition.
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Because sequential composition adopts a new definition, we are obliged to
reestablish its well-known properties.

Theorem 4.5

(1) skip seq P = P = P seq skip

(2) P seq (Q seq R) = (P seq Q) seq R

Proof

(1) skip seq P {Def of seq}
= skip ; ↑ P ; (prob ≤ prob′) {Lemma 4.7.(2)}
= P ; (prob ≤ prob′) {H3(P ) = P}
= P {H3(P ) = P}
= P ; (prob ≤ prob′) {↑ skip = (prob = prob′)}
= P ; ↑ skip ; (prob ≤ prob′) {Def of seq}
= P seq skip

(2) LHS {Def of seq }
= P ; ↑ (Q ; ↑ R ; (prob ≤ prob′)) ; (prob ≤ prob′) {Lemma 4.7(1), (3)}
= P ; ↑ Q ; ↑ R ; (prob ≤ prob′) {Lemma 4.7(4)}
= P ; ↑ Q ; (prob ≤ prob′) ; ↑ R ; (prob ≤ prob′) {Def of seq }
= (P seq Q) seq R

⊥, fail and throw all act as left zeroes of sequential composition

Theorem 4.6

(1) fail seq P = fail

(2) throw seq P = throw

(3) ⊥ seq P = ⊥
Sequential composition distributes backward over conditional, nondeterministic
and probabilistic choices.

Theorem 4.7

(1) (P � b � Q) seq R = (P seqR) � b � (Q seq R)

(2) (P [[r]] Q) seq R = (P seq R)[[r]](Q seq R)

(3) (P � Q) seq R = (P seq R) � (Q seq R)

(4) x := e ; (P [[r]]Q) = (x := e; P )[[r]](cx := e; Q)

(5) x := e; (P � Q) = (x := e; P ) � (x := e; Q)
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Proof

(1) (P � b � Q) seq R

{Def of conditional}
= (D(b) ∧ b ∧ P ∨ D(b) ∧ ¬b ∧Q ∨ ¬D(b) ∧ throw) ; ↑ R ; (prob ≤ prob′)

{; distributes over disjunction}
= D(b) ∧ b ∧ (P ; ↑ R ; (prob ≤ prob′))∨
D(b) ∧ ¬b ∧ (Q ; ↑ R ; (prob ≤ prob′))∨
¬D(b) ∧ (throw ; ↑ R ; (prob ≤ prob′))

{Theorem 4.6(2)}
= D(b) ∧ b ∧ (P seq R) ∨ D(b) ∧ ¬b ∧ (Q seq R)¬D(b) ∧ throw

{Def of conditional}
= (P seq R) � b � (Q seq R)

(2) (P [[r]]Q) seq R

{Def of [[]]}
= ∃prob1, prob2 : PROB, ∃G : (S → PROB)•
∀s : S •R(s, G(s)) ∧ P [prob1/prob

′] ∧ Q[prob2/prob
′]∧

prob′ ≥ Σt((r × prob1(t) + (1− r) × prob2(t))×G(t))

{Calculation}
⇒ ∃prob1, prob2, prob3, prob4 : PROB, ∃G : (S → PROB)•

∀s : S •R(s, G(s)) ∧ P [prob1/prob
′] ∧ Q[prob2/prob

′]∧
prob3 = Σt(prob1(t)×G(t)) ∧ prob4 = Σt(prob2(t)×G(t))∧
prob′ ≥ (r × prob3 + (1− r) × prob4)

{Def of seq}
⇒ ((P seq R)[[r]](Q seq R)) ; (prob ≤ prob′)

{Lemma 4.2}
= (P seq R)[[r]](Q seq R)

{Def of seq}
= ∃prob1, prob2, prob3, prob4 : PROB, ∃G1, G2 : (S → PROB)•

P [prob1/prob
′] ∧ ∀s : S •R(s, G1(s))∧

Q[prob2/prob
′] ∧ ∀s : S •R(s, G2(s))∧

prob3 ≥ Σt(prob1(t)×G1(t)) ∧ prob4 ≥ Σt(prob2(t)×G2(t))∧
prob′ = (r × prob3 + (1− r)× prob4)

{Calculation}
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⇒ ∃prob1, prob2 : PROB, ∃G1, G2 : (S → PROB)•
P [prob1/prob

′] ∧ ∀s : S • R(s, G1(s))∧
Q[prob2/prob

′] ∧ ∀s : S • R(s, G2(s))∧
prob′ ≥ (r × Σt(prob1(t) × G1(t)) + (1 − r) × Σt(prob2(t) × G2(t)))

{Let W (s) =df (r × prob1(s) + (1 − r) × prob2(s))}
⇒ ∃prob1, prob2 : PROB, ∃G1, G2, G : (S → PROB)•

P [prob1/prob
′] ∧ ∀s : S • R(s, G1(s))∧

Q[prob2/prob
′] ∧ ∀s : S • R(s, G2(s))∧

∀s : S • (W (s) = 0 ∧ G(s) = (r × G1(s) + (1 − r) × G2(s)∨
W (s) > 0 ∧ G(s) = (r × prob1(s) × G1(s) + (1 − r) × prob2(s) × G2(s))/W (s)∧
prob′ ≥ Σt(r × prob1(t) + (1 − r) × prob2(t)) × G(t)

{H3(R) = R}
⇒ ∃prob1, prob2 : PROB, ∃G : (S → PROB)•

P [prob1/prob
′] ∧ Q[prob2/prob

′] ∧ ∀s : S • R(s, G(s))∧
prob′ ≥ Σt(r × prob1(t) + (1 − r) × prob2(t)) × G(t)

{Def of [[r]] and seq }
⇒ (P [[r]]Q) seq R

(5) RHS {Def of seq }
= ∃r : [0, 1], prob1, prob2, prob3, prob4 : PROB•

P [s[e/x], prob1/s, prob′] ∧ Q[s[e/x], prob2/s, prob′]∧
prob3 ≥ prob1 ∧ Prob4 ≥ prob2 ∧
prob′ = r × prob3 + (1− r) × prob4 {calculation}

⇒ ∃r : [0, 1], prob1, prob2 : PROB•
P [s[e/x], prob1/s, prob′] ∧ Q[s[e/x], prob2/s, prob′]∧
prob′ ≥ r × prob1 + (1 − r)× prob2 {Def of seq }

⇒ LHS

= ∃G : S → PROB • ∀s : S • (P �Q)(s, G(s))∧
prob′ ≥ Σt∈Sηs[e/x](t)×G(t) {Def of ηs}

= ∃prob : PROB • (P �Q)[s[e/x], prob/s, prob′]∧
prob′ ≥ prob {Def of �}

= ∃r : [0, 1], ∃prob1, prob2 : PROB•
P [s[e/x], prob1/s, prob′] ∧ Q[s[e/x], prob2/s, prob′]∧
prob′ ≥ (r × prob1 + (1− r) × prob2) {Def of seq }

⇒ RHS
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4.7 Exception Handling

Let P and Q be programs. The notation P caughtby Q represents a program
which runs P first. If its execution throws an exception case then Q is invoked
to handle that case.

P caughtby Q =df H1,2(P seq φ(Q))

where H1, 2 =df (H1 ◦ H2)

and φ(Q) =df skip� ¬eflag � Q[false, true/eflag, forward]

Lemma 4.9

Healthy predicates are closed under the exception handling operator.

Lemma 4.10

φ(P ) seq φ(Q) = φ(P seq φ(Q))

φ(P ) seq φ(Q)

{Def of seq}
= φ(P ) ; ↑ φ(Q) ; (prob ≤ prob′)

{Def of φ}
= (skip � ¬eflag � P [false, true/eflag, forward]);

↑ φ(Q) ; (prob ≤ prob′)

{; distributes over conditional}
= (skip; (↑ φ(Q)); (prob ≤ prob′)) � ¬eflag�

(P [false, true/eflag, forward] ; ↑ φ(Q) ; (prob ≤ prob′))

{Lemma 4.7(2)}
= φ(Q) � ¬eflag � (P [false, true/eflag, forward] seq φ(Q))

{Def of φ}
= skip� ¬eflag � (P [false, true/eflag, forward] seq φ(Q))

{Def of φ}
= φ(P seq φ(Q))

Theorem 4.8

(1) P caughtby (Q caughtby R) = (P caughtby Q) caughtby R

(2) (throw caughtby Q) = Q = (Q caughtby throw)

(3) P caughtbyQ = P if P ∈ {⊥, fail, (v := e)}
(4) (P � b � Q) caughtbyR = (P caughtbyR) � b � (Q caughtbyR)

provided that b is well-defined.



92 H. Jifeng

(5) (P [[r]] Q) caughtby R = (P caughtby R) [[r]] (Q caughtby R)

(6) (P � Q) caughtby R = (P caughtby R) � (Q caughtby R)

Proof

(1) LHS {Def of caughtby}
= H1, 2(H1, 2(P seq φ(Q)) seq φ(R)) {Def of H1, 2}
= H1, 2(P seq φ(Q) seq φ(R)) {Lemma 4.10}
= H1, 2(P seq φ(Q seq φ(R))) {φ(S) = φ(H1, 2(S))}

= H1, 2(P seq φ(H1, 2(Q seq φ(R)))) {Def of caughtby}
= H1, 2(P seq φ(Q caught− byR)) {Def of caughtby}
= RHS

(3) LHS {Def of caughtby}
= H1, 2((P � b � Q) seq φ(R)) {Theorem 4.7(1) and D(b) = true}
= H1, 2((P seq φ(R)) � (Q seq φ(R))) {H1, 2 distributes over � b�}
= RHS

4.8 Compensation

Let P and Q be programs. The program P cpensQ runs P first. If its execution
fails, then Q is invoked as its compensation.

P cpens Q =df H1, 2(P seq ψ(Q))

where ψ(Q) =df (skip� forward ∨ eflag � Q[true/forward])

Lemma 4.11

Healthy predicates are closed under compensation operator.

Theorem 4.9

(1) P cpens (Q cpens R) = (P cpens Q) cpens R

(2) P cpens Q = P if P ∈ {throw, ⊥, (v := e)}
(3) (failcpensQ) = Q = (Q cpens fail)

(4) (P � b � Q) cpensR = (P cpensR) � b � (Q cpensR)

(5) (P [[r]]Q) cpensR = (P cpensR)[[r]](Q cpensR)

(6) (P � Q) cpensR = (P cpensR) � (Q cpensR)

(7) (v := e seq P ) cpensQ = (v := e) seq (P cpensQ)
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Proof

(3) Q cpens fail {Def of cpens}
= H1, 2(Q seq ψ(fail) {Def of seq }
= H1, 2(∃prob : PROB, ∃G : (S → PROB),

∀t : S • ψ(fail)(t, G(t)) ∧ Q[prob/prob′]∧
prob′ ≥ Σt(prob(t) × G(t))) {Calculation}

= H1, 2(∃prob : PROB, ∃G : (S → PROB),

∀t : S • ψ(fail)(t, G(t)) ∧ Q[prob/prob′]∧
prob′ ≥ Σt.forward=true(prob(t) × G(t)) +

Σt.forward=false × G(t)) {Def of ψ(fail)}

= H1, 2(∃prob : PROB, ∃G : (S → PROB),

∀t : S • ψ(fail)(t, G(t)) ∧ Q[prob/prob′]∧
prob′ ≥ Σt.forward=true(prob(t) × ηt) + Σt.forward=false × ηt) {Calculation}

= H1, 2(∃prob : PROB • Q[prob/prob′]∧
prob′ ≥ prob) {Q is healthy}

= Q {Q is healthy}
= H1, 2(Q; (prob ≤ prob′)) {Def of fail}
= H1, 2(Q; ↑ ψ(Q) ; (prob ≤ prob′)) {Def of cpens}
= fail cpensQ

4.9 Coordination

Let P and Q be programs. The program P elseQ behaves like P if its execution
succeeds. Otherwise it behaves like Q.

P elseQ =df ∃prob1, prob2 : PROB • P [prob1/prob
′] ∧ Q[prob2/prob

′] ∧

prob′ ≥ {forward = true}� prob1 +

prob1(forward = false)× prob2

where X � f denotes the result of restricting the domain of function f to the
set X .

Lemma 4.12

Healthy predicates are closed under the coordination operator.
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Proof

H3(P elseQ)

{Def of else and H3}
= ∃prob1, prob2, prob3, prob4, prob5, prob6 : PROB•

P [prob1/prob′] ∧ Q[prob2/prob′] ∧ P [prob4/prob′] ∧ Q[prob5/prob′]∧
prob3 ≥ {forward = true} � prob1 + prob1(forward = false) � prob2 ∧
prob6 ≥ {forward = true} � prob4 + prob4(forward = false) � prob5 ∧
∃r : [0, 1] • prob′ = (r × prob3 + (1 − r) × prob6)

{Let W =df r × prob1(foward = false) + (1 − r) × prob4(forward = false)}
⇒ ∃r : [0, 1], ∃prob1, prob2, prob4, prob5 : PROB•

P [prob1/prob′] ∧ Q[prob2/prob′] ∧ P [prob4/prob′] ∧ Q[prob5/prob′]∧
prob′ ≥ {forward = true} � (r × prob1 + (1 − r) × prob4) +

W × (r × prob1(forward = false) × prob2/W +

(1 − r) × prob2(forward(forward = false) × prob4)/W )

{H3(P ) = P and H3(Q) = Q}
⇒ P elseQ

{X � H3(X)}
⇒ H3(P elseQ)

Theorem 4.10

(1) P else (Q else R) = (P else Q) else R

(2) P else Q = P if P ∈ {⊥, (v := e), (v := e; throw)}
(3) (x := e fail) elseQ = Q

(4) (P � b � Q) elseR = (P elseR) � b � (Q elseR)

(5) (P [[r]]Q) elseR = (P elseR)[[r]](Q elseR)

(6) (P � Q) else R = (P else R) � (Q else R)

Proof

(1) LHS {Def of else}
= ∃prob1, prob2, prob3, prob4 : PROB•

P [prob1/prob
′] ∧ Q[prob3/prob

′] ∧ R[prob4/prob
′]∧

prob′ ≥ {forward = true} � prob1 +

prob1(forward = false)× prob2 ∧
prob2 ≥ {forward = true} � prob3 +

prob3(forward = false)× prob4 {Calculation}
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⇒ ∃prob1, prob3, prob4•
P [prob1/prob

′] ∧ Q[prob3/prob
′] ∧ R[prob4/prob

′]∧
prob′ ≥ {forward = true} � prob1 +

prob1(forward = false)× ({forward = true}"}prob3 +

prob1(forwatd = false)× prob3(forward = false)× prob4 {Calculation}
= ∃prob1, prob3, prob4, prob5•

P [prob1/prob
′] ∧ Q[prob3/prob

′] ∧ R[prob4/prob
′]∧

prob′ ≥ {forward = true} � prob5 +

prob5(forward = false)× prob4 ∧
prob5 = {forward = true} � prob1 +

prob3(forward = false)× prob3 {Def of else}
⇒ RHS {Def of else}
= ∃prob1, prob3, prob4, prob5 : PROB•

P [prob1/prob′] ∧ Q[prob3/prob′] ∧ R[prob4/prob′]∧
prob′ ≥ {forward = true} � prob5 +

prob5(forward = false) × prob4 ∧
prob5 ≥ {forward = true} � prob1 +

prob1(forward = false) × prob5 {Calculation}
⇒ ∃prob1, prob3, prob4 : PROB•

P [prob1/prob′] ∧ Q[prob3/prob′] ∧ R[prob4/prob′]∧
prob′ ≥ {forward = true} � prob1 +

prob1(forward = false) × ({forward = true} � prob3) +

(prob1(forward = false) × prob3(forward = false)) × prob4 {calculation}
= ∃prob1, prob2, prob3, prob4 : PROB•

P [prob1/prob′] ∧ Q[prob3/prob′] ∧ R[prob4/prob′]∧
prob2 = {forward = true} � prob3 +

prob3(forward = false) × prob4 ∧
prob′ ≥ {forward = true} � prob1 +

prob1(forward = false) × prob2 {Def of else}
⇒ LHS

4.10 Normal Form

Let { ri | 1 ≤ i ≤ n} be a set of positive reals satisfying

Σi ri ≤ 1
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Let {Pi | 1 ≤ i ≤ n} be a set of programs. We define the generalised probabilistic
choice as follows:
pchoice(r1&P1, ..., rn&Pn) =df(

P1[[r1]]pchoice(r2/(1− r1)&P2, ..., rn/(1− r1)&Pn) r1 < 1

P1 r1 = 1

)
pchoice() =df ⊥
Let {bi |1 ≤ i ≤ n} be a set of well-defined boolean guards satisfying

bi ∧ bj = false

As usual we define the alternation construct

if(b1 → P1, ..., bn → Pn)fi =df

∨
i

(bi ∧ Pi) ∨
∧
i

¬bi ∧ ⊥

The normal form we adopt for our language is an alternation of the form:

if

⎛⎜⎝ b1 → pchoice(p1& P1, ... pm& Pm),

......

bk → pchoice(q1& Q1, ... qn& Qn)

⎞⎟⎠fi,

where Pi and Qj have the form

R1 � ... � Rn

where all Rk lie in the following set

{v := e, (v := e; fail), (v := e; throw)}

where the expression e is well-defined.

Theorem 4.11

All finite program can be reduced to a normal form.

5 Link with the Original Design Model

This section explores the link between the model of Section 2 with the original
design model given in [12].

For any design P and Req-healthy design Q we define

F(P ) =df H(P ; success)

G(Q) =df Q[true, false/forward, eflag]; (forward ∧ ¬eflag)⊥
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Theorem 5.1

F and G form a Galois connection:

(1) G(F(P )) = P

(2) F(G(Q))  Q

Proof. G(F(P )) {Def of F and G}
= P ; success; (true � (v′ = v)) � forward ∧ ¬eflag � ⊥)

{Def of success}
= P ; (true � (v′ = v)) {unit law of ; }
= P

F(G(Q)) {Def of F and G}
= H(Q[true, ¬false/forward, eflag];

(true � (v′ = v) � forward ∧ ¬eflag � ⊥); success)

{Def of H, (P � b � Q); R = (P ;R) � b � (Q;R)}
= Q; (success � forward ∧ ¬eflag � ⊥) {Def of sucess}
= Q; ((true � (v′ = v ∧ forwared′ = forward ∧ eflag′ = eflag))

�forward ∧ ¬eflag � ⊥) {⊥ � D}
� Q; (true � (v′ = v ∧ forwared′ = forward ∧ eflag′ = eflag))

{unit law of ; }
= Q

F is a homomorphism.

Theorem 5.2

(1) F(true # (v′ = v)) = skip

(2) F(true # (x′ = e ∧ y′ = y ∧ z′ = z)) = (x := e)

provided that e is well-defined.

(3) F(true) = ⊥
(4) F(P1 � P2) = F(P1) � F(P2)

(5) F(P1 � b � P2) = F(P1) � b � F(P2)

provided that b is well-defined.

(6) F(P1; P2) = F(P1);F(P2)

(7) F(b ∗ P ) = b ∗H F(P )
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Proof

(6) F(P1; P2) {Def of F}
= H(P1; P2; success} {success; P2; success =

P2; success}
= H((P1; success; P2; success)) {(forward ∧ ¬eflag)�; success; Q =

(forward ∧ ¬eflag)�; success;H(Q)}
= H((P1; success);H(P2; success)) {Theorem 2.4}
= H(P1; success);H(P2; success) {Def of F}
= F(P1) ; F(P2)

(7) LHS {fixed point theorem}
= F((P ; b ∗ P ) � b � (true # (v′ = v))) {Conclusion (1), (5), (6)}
= (F(P ); LHS) � b � skip

which implies that LHS � RHS

G(RHS) {fixed point theorem}
= G((F(P ); RHS) � b � skip) {G distributes over � b�}
= G(F(P ); RHS) � b � G(skip) {Def of G}
= (F(P )[true, false/forward, eflag]; RHS;

(foward ∧ ¬eflag)⊥) � b � (true # (v′ = v)) {Def of F}
= (P ; success; RHS;

(forward ∧ ¬eflag)⊥) � b � (true # (v′ = v)) {Def of success}
= (P ; RHS[true, false/forward, eflag];

(forward ∧ ¬eflag)⊥) � b � (true # (v′ = v)) {Def of G}
= (P ;G(RHS)) � b � (true # (v′ = v))

which implies

G(RHS) � (b ∗ P ) {F is monotonic}
⇒ F(G(RHS)) � LHS {Theorem 5.1(2)}
⇒ RHS � LHS

6 Conclusion

This paper presents a design model for compensable programs. We add new
logical variables eflag and forward to the standard design model to deal with
the features of exception and failures. As a result, we put forward new healthiness
conditions Req1 and Req2 to characterise those designs which can be used to
specify the dynamic behaviour of compensable programs.

This paper treats an assignment x := e as a conditional (Theorem 4.1). After
it is shown that throw is a new left zero of sequential composition, we are allowed
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to use the algebraic laws established for the conventional imperative language
in [12] to convert finite programs to normal form. This shows that the model
of Section 2 is really a conservative extension of the original design model in
[12] in the sense that it preserves the algebraic laws of the Guarded Command
Language.
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Abstract. This paper presents an approach for modelling interactions
between users and systems in the Unifying Theories of Programming.
Working in the predicate calculus, we outline generic techniques for cal-
culating a user’s observations of a system and, in turn, for identifying the
information that a user can deduce about the system’s behaviour from
those observations. To demonstrate how this approach can be applied in
practical software development, we propose some alternative refinement
relations that offer greater flexibility than classical refinement by utilis-
ing knowledge of the observational abilities of users.

Keywords: UTP, multi-user systems, co-operating and independent
refinement, information flow, distributed testing.

1 Introduction

This paper is concerned with software systems whose purpose is to provide a
range of services to multiple end-users. This class of multi-user systems encom-
passes a large range of software products, from operating systems and database
software to telecommunications networks and cloud computing services.

A multi-user system consists of a central server that receives requests from
multiple users (clients) and delivers service in response to those requests. Nat-
urally, the system may offer different services to different users. It is usual to
provide each user with its own private interface to the system, to ensure that
the system can distinguish between its users and to ensure that users do not
interfere with each other’s interactions with the system. These interfaces impose
a structure on the system’s environment and allow the system’s designers to
model the interactions that users can perform with the system.

When working in process algebras such as CSP, it is usual to model the users of
a system as individual processes operating in parallel with a process representing
the system [1]. By analysing the synchronisations between the system and the
user processes, this approach may be used to verify that a system specification
delivers the functionality expected by its users. However, this approach is suitable
only for reasoning about systems expressed in the same semantic domain in which
the user processes are formulated. This may be problematic if the designers of a
system wish to analyse its interactions with users in a more concrete description
of the system (such as a program), or a system description that consists of

S. Qin (Ed.): UTP 2010, LNCS 6445, pp. 101–119, 2010.
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multiple components expressed in different formalisms. In such circumstances,
it may be necessary to adopt a more general approach for reasoning about the
interactions between a system and its users.

Our main contribution in this paper is a systematic approach for formally
modelling the interactions between users and systems in Hoare and He’s Unifying
Theories of Programming (UTP) [2]. This approach fits seamlessly within the
predicate semantics of the UTP; it can, therefore, be integrated with existing
UTP theories to support the analysis of multi-user systems that are specified in
languages with a UTP semantics.

This paper is structured as follows. Section 2 provides an overview of the UTP.
Section 3 formalises two distinct classes of observations of multi-user systems
and introduces our approach for modelling the abilities of users to observe a
system’s execution. Building on this approach, Section 4 presents a method for
calculating the space of observations that individual users can make of a system.
This method is extended to the UTP theory of designs in Section 5 and applied
to a byte register in Section 6 as a simple worked example.

To demonstrate how our approach can be advantageous in formal software
development, Section 7 describes some alternative notions of refinement that
are based on the observational abilities of users. These refinement relations offer
system designers the ability to carry out refinement steps that do not compro-
mise the system’s functionality from the perspective of its users, but which are
nevertheless forbidden by classical refinement.

In Section 8, we survey some areas of research addressing multi-user systems
in a formal setting and discuss the relevance of our approach to those areas.
Finally, we present our conclusions and outline some topics for future work.

2 Unifying Theories of Programming

The semantic model of the UTP is the alphabetised relational calculus. In the
UTP, specifications and programs alike are expressed as predicates over an alpha-
bet (set) of observational variables. The purpose of the observational variables
is to record all of the information about a program’s behaviour that is visible to
the program’s environment whenever an observation of the program is made.

In the UTP theory of relations, a program operation is expressed as a predi-
cate that relates initial observations of the program state to the corresponding
observations of the program state taken after (or during) the execution of the
operation. The observational variables representing intermediate observations
of a program state are decorated with a prime, to distinguish them from the
(undecorated) observational variables of the initial program state.

Central to the UTP is the refinement ordering between predicates, which is
characterised by implication: [2]

S  T � [T ⇒ S ] (1)

where the square brackets denote universal quantification over all free variables.
Hence, S  T asserts that every observation of T is a possible observation of S .
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The UTP is best known as a framework for giving a denotational semantics
to various programming paradigms and the features of programming languages.
However, the UTP also features a powerful standalone notation for reasoning
about program correctness. We adopt the UTP in this capacity as the framework
in which we cast our approach for reasoning about multi-user systems.

3 Preliminaries

3.1 System-Level and Interface-Level Observations

We model an observation of a UTP predicate S as a predicate that associates
each observational variable in S ’s alphabet with a single value. For instance,
the predicate x = 42 ∧ y = 99 records a possible observation of the predicate
x > 0 ∧ y > x . We distinguish between two separate classes of observations:

– A system-level observation records the entirety of the information about the
behaviour of a system (expressed as a predicate) that may be acquired by
monitoring the whole of the system’s environment.

– An interface-level observation records the information that a specified user
acquires when it observes a system’s behaviour through its interface. Hence,
each interface-level observation is a projection of a system-level observation.

While a system-level observation provides all the information about a system’s
behaviour that is visible to the environment, an interface-level observation pro-
vides only a subset of that information. Throughout this paper, we assume that a
user’s observation of a system provides the only source of information about the
execution of the system that is available to the user. Hence, a user can neither
inspect the internal state of the system directly, nor can it monitor the aspects
of the system’s behaviour that are not visible through its interface. Unless stated
otherwise, we require that users are isolated from each other and do not share
their observations of the system with other users.

Following the UTP notational conventions, we denote the list of undashed
variables s1, . . . , si of a system-level observation by s and the corresponding list
of dashed variables by s ′. Likewise, we denote the lists u1, . . . , uj and u ′

1, . . . , u
′
j

of variables of an interface-level observation by u and u ′ respectively. In keeping
with our assumption that system-level variables are hidden from users, we enforce
the condition that the sets of variables in s and u (and s ′ and u ′) are disjoint.

3.2 Views

A user’s interface to a system is modelled by a predicate known as a view. A
view defines the mapping between interface-level observational variables and
system-level observational variables. Thus, a view determines which aspects of
each system-level observation are relayed to the user associated with that view.
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Example 1. Suppose x and y are observational variables of an arbitrary system-
level predicate. Consider the following views:

A � xA = x ∧ yA = y

B � zB = max(x , y)

C � xC = x ∧ (zC = 0 � x < y � zC = 1)

View A provides a user with complete knowledge of the values of x and y, since
they are a function of the interface-level observational variables xA and yA. View
B provides a user with the value of the larger of x and y, but no indication of
whether x < y, x = y or x > y. View C provides the value of x , but offers only
partial information about y’s value in relation to x ’s value.

When dealing with multiple views, each representing a different interface to a
system, we require that each view’s set of interface-level observational variables
is disjoint from those of the other views. (All of the views listed in Example 1
are pairwise disjoint.)

Definition 1 (Disjoint views). A pair of views V1(s , u1) and V2(s , u2) are
said to be disjoint if and only if u1 ∩ u2 = ∅.

3.3 Healthiness Conditions for Views

To ensure that all views represent a viable mapping between system-level and
interface-level observations, it is necessary to impose some constraints on the
structure of views. We capture the space of viable views by defining two health-
iness conditions VH1 and VH2.

Definition 2 (VH1). A view V (s , u) is VH1-healthy if and only if, for every
system-level observation over the variables in s and s ′, there is a complementary
interface-level observation over the variables in u and u ′ that satisfies V :

VH1(V ) iff ∀ s , s ′ • ∃ u, u ′ • V (2)

The purpose of VH1 is to ensure that a view maps each system-level observation
to at least one interface-level observation. It follows that predicates such as
x = y, x > 0 and false are not VH1-healthy views, because they restrict the
domain of x .

While VH1 insists that a view describes a total mapping from system-level to
interface-level observations, it does not require that mapping to be functional —
i.e. each system-level observation maps to exactly one interface-level observation
— although this will often be the case for views in practice. Moreover, VH1
does not place any restrictions on whether an interface-level observation maps
to zero, one or multiple system-level observations.

It is possible to write a “time-travelling” VH1-healthy predicate where the
values of the initial (undashed) interface-level observational variables depend
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upon the values of the intermediate (dashed) system-level observational vari-
ables. Such a predicate cannot correspond to a user’s interface of a system in
reality, since an intermediate observation of a system state can only be made
once a system has started, whereas an initial observation describes the system
state before execution commences.

Another class of undesirable VH1-healthy predicates are those featuring de-
pendencies between the initial and intermediate system-level variables (such as
x ′ = x + 1), or the initial and intermediate interface-level variables. These pred-
icates impose functional requirements on the structure of systems and therefore
should not be considered to be views. We exclude these predicates — along with
the aforementioned “time-travelling” predicates — from the space of views by
defining a second healthiness condition VH2.

Definition 3 (VH2). A view V (s , u) is VH2-healthy if and only if it places no
dependencies between s and s ′, u and u ′, or s ′ and u:

VH2(V ) iff ((∃ s , u • V ) ∧ (∃ s ′, u • V ) ∧ (∃ s ′, u ′ • V )) = V (3)

We say that a view that satisfies both VH1 and VH2 is VH-healthy. All of the
views in Example 1 are VH-healthy, as are all the views that we consider in the
following sections.

The following lemma states that the view obtained by taking the conjunction
of disjoint VH-healthy views is itself a VH-healthy view, which gives at least as
much information about a system’s behaviour as each view individually.

Lemma 1 (Conjunction of VH-healthy views). If V1(s , u1) and V2(s , u2)
are disjoint VH-healthy views over the same set of system-level observational
variables s, then (V1 ∧ V2)(s , u1 ∪ u2) is also VH-healthy.

4 Relating Users and Systems

In this section, we define predicate transformers for calculating the aspects of
a system’s behaviour that are visible to a user through a specified view and,
given an interface-level observation of the system, the information that a user
can deduce about the system’s behaviour.

4.1 Calculating Interface-Level Predicates

Given a system-level predicate S and a view V , it is possible to derive a predicate
that encodes the space of all interface-level observations that can be made of S
when viewed through V . We define a predicate transformer P (for “project”) to
calculate this predicate.

Definition 4 (P predicate transformer). The interface-level predicate ob-
tained by substituting V (s , u) into a predicate S (s) is given by:

P (V ,S ) � ∃ s , s ′ • V ∧ S (4)
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The predicate P (V ,S ) is the image of S as viewed through V ; in other words,
P (V ,S ) is satisfied by exactly those interface-level observations that can be
made by viewing S through V . Notice that applying P (V ) to S hides the system-
level observational variables in S .

Example 2. Consider the system-level predicate E � x +y = 10, where x , y ∈ N.
For the views listed in Example 1, the projections of E are:

P (A,E ) = xA + yA = 10
P (B ,E ) = zB ≥ 5 ∧ zB ≤ 10
P (C ,E ) = (zC = 0 ∧ xC ≥ 0 ∧ xC ≤ 4) ∨ (zC = 1 ∧ xC ≥ 5 ∧ xC ≤ 10)

A view can be regarded as a special kind of linking predicate between two data
types, where system-level observational variables are instances of the concrete
data type, and interface-level observational variables are instances of the abstract
data type. It follows that applying P (V ) to a predicate S may be interpreted
as performing data refinement on S in reverse, because concrete (system-level)
observations are replaced by abstract (interface-level) observations. This suggests
that existing techniques for reasoning about data refinement can be applied to
identify results concerning the application of P (V ) to predicates. Moreover, the
application of views to translate from system-level to interface-level models of
systems is related to abstract interpretation [3].

We now present some properties of P that we use later in the paper.

Lemma 2 (P is order-preserving). Provided that S and T are predicates
defined over the same space of system-level observational variables as V :

S  T ⇒ P (V ,S )  P (V ,T ) (5)

If a view V is divided into two parts V1 and V2, such that V = (V1 ∧ V2) and
V1 and V2 are disjoint, then the interface-level predicate P (V1,S ) ∧ P (V2,S )
that is generated by projecting S through V1 and V2 separately is satisfied by a
(potentially) larger space of observations than P (V ,S ) itself. We generalise this
result to an arbitrary number of views in Lemma 3.

Lemma 3 (Splitting V may weaken P (V )). When V1, . . . ,Vn are pairwise
disjoint views over the same space of system-level observational variables:

P

(( ∧
i∈1..n

Vi

)
,S

)
⇒

∧
i∈1..n

P (Vi ,S ) (6)

4.2 Calculating System-Level Predicates

Given an interface-level predicate U formed by projecting a system-level predi-
cate S through view V , it is possible to recover some (if not all) knowledge of
the definition of S by substituting V back into U . We formalise this process by
defining another predicate transformer R (for “retract”).
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Definition 5 (R predicate transformer). The system-level predicate obtained
by substituting V (s , u) into an interface-level predicate U (u) is given by:

R (V ,U ) � ∀ u, u ′ • V ⇒ U (7)

R (V ,U ) recovers the weakest system-level predicate T such that the projection
of each system-level observation of T through V matches an interface-level ob-
servation of U , and each observation of U corresponds to an observation of T
projected through V . It follows from R’s definition that [V ∧ T ⇒ U ] [2].

The P and R predicate transformers are not inverses of each other, since
a view need not define a one-to-one correspondence between system-level and
interface-level observations. They do, however, form a Galois connection between
system-level and interface-level predicates under the refinement ordering.

Theorem 1 (P and R form a Galois connection). The P and R predicate
transformers form a Galois connection (axiality) between the spaces of system-
level and interface-level predicates linked by a given view. Thus:

U  P (V ,S ) if and only if R (V ,U )  S (8)

Corollary 1. By substituting P (V ,S ) in place of U in Theorem 1, we obtain:

R (V ,P (V ,S ))  S (9)

Corollary 1 implies that every system-level observation of S is also a system-
level observation of R (V ,P (V ,S )). This conforms to the intuition that ap-
plying P (V ) to a system-level predicate S may discard information about the
observations permitted by S , which cannot be recovered by applying R (V ) to
P (V ,S ).

Example 3. Continuing from Example 2, the system-level predicates recovered
by applying R (V ) to each interface-level projection of E are as follows:

R (A,P (A,E )) = x + y = 10

R (B ,P (B ,E )) = max(x , y) ≥ 5 ∧ max(x , y) ≤ 10

R (C ,P (C ,E )) = (x ≥ 0 ∧ x ≤ 4 � x < y � x ≥ 5 ∧ x ≤ 10)

Observe that R (A,P (A,E )) = E , because view A preserves the values of x and
y in xA and yA. However, both R (B ,P (B ,E )) and R (C ,P (C ,E )) are weaker
predicates than E , because information about the exact values of x and y is
discarded when P (B) and P (C ) are applied to E .

4.3 Observations and Deductions

Users can acquire knowledge about a system’s behaviour in two ways: by ob-
servation and by deduction. While we assume users can only observe a system’s
behaviour through an interface supplied by the system, there may be nothing to
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prevent a user from possessing a priori knowledge of the design of the system
or its interface. Hence, if a user has knowledge of the system’s implementation
then, given a projection of a system-level observation through its view, the user
may apply this knowledge to rule out potential system-level observations that
are incompatible with its own observation and thereby deduce more detailed
information about the system behaviour.

When φ is an interface-level observation of a predicate S viewed through V ,
the predicate describing all system-level observations of S that are compatible
with φ is given by R (V , φ) ∧ S . Thus, a user that knows the definition of S
can deduce more (but not necessarily all) information about the system-level
observation of S than it can from R (V , φ) alone. In turn, if a user at V has
knowledge of the structure of another user’s view W , then the user can infer all
observations of S through W that are compatible with its own observation φ by
calculating P (W , (R (V , φ) ∧ S )).

We note in passing that, at the level of a system’s implementation, a user’s
interface will exhibit physical and temporal characteristics (such as fluctuations
in responsiveness) that are not modelled at the abstract level of a view. By
monitoring these properties of its interface, a user may be able to deduce greater
knowledge about the internal state of the system than can be calculated from
its interface-level observation of the system alone.

5 Reasoning about Multi-User Designs

The UTP theory of designs represents the space of terminating programs with
precondition (assumption) P and postcondition (commitment) Q : [2]

P # Q � ok ∧ P ⇒ ok ′ ∧ Q (10)

The Boolean variables ok and ok ′ facilitate reasoning about termination: ok
records that the program has started and ok ′ signifies that the program has
terminated. Thus, if the program is started in an initial state that satisfies P ,
then the program is guaranteed to terminate in a final state satisfying Q .

We interpret a design as a system that starts in an initial state consisting of
inputs from users and terminates in a final state that yields outputs to users. It is
reasonable to expect that users can identify when a system has started and when
it has terminated. Since system-level variables are not directly visible to users
(Section 3.1), it is necessary to extend the alphabet of a view V by introducing
new interface-level observational variables okV and ok ′

V corresponding to ok
and ok ′. We require that V guarantees that okV = ok and ok ′

V = ok ′. This
requirement is encoded by the OK healthiness condition.

Definition 6 (OK and VHD). A view V (s , u) is OK-healthy if and only if
V = OK(V ) holds:

OK(V ) � V ∧ okV = ok ∧ ok ′
V = ok ′ (11)

We say a view is VHD-healthy if it is both VH-healthy and OK-healthy.
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Since designs are defined in terms of ok and ok ′, we generalise the definition
of a design by substituting okV and ok ′

V in place of ok and ok ′. Definition 7
introduces a shorthand for interface-level projections of designs.

Definition 7 (Interface-level design). Provided V denotes a view:

P #V Q � okV ∧ P ⇒ ok ′
V ∧ Q (12)

The P predicate transformer can be applied to a VHD-healthy view V and
a design to obtain an interface-level design that expresses the interface-level
projection of the behaviour of the design.

Lemma 4 (P and designs). Whenever V is VHD-healthy, then P (V ,P # Q)
can always be written in the form of an interface-level design:

P (V ,P # Q) = (∀ s , s ′ • V ⇒ P) #V P (V ,Q) (13)

The precondition of P (V ,P # Q) is the weakest condition over interface-level
observations that is sufficient to ensure that, whenever φ is an interface-level
observation that satisfies that precondition, then all system-level observations
compatible with φ satisfy P . Therefore, if a user’s initial observation of P # Q
(projected through V ) satisfies the precondition of P (V ,P # Q), then the user is
guaranteed that P is satisfied. It follows that if the precondition of P (V ,P # Q)
is satisfied, then Q will hold upon the termination of P # Q , as will the interface-
level projection P (V ,Q) of Q .

If no projection of the initial system-level observational variables through
V provides sufficient information about the initial system-level observational
variables to guarantee that P holds, then the precondition of P (V ,P # Q)
collapses to false and so nothing is guaranteed about the final observation of
P (V ,P # Q).

6 Worked Example: A Byte Register

We now consider the application of the theory developed in the previous sections
to a simple multi-user system. The purpose of this example is to demonstrate how
the specification and design of multi-user systems may be guided by calculating
the interface-level observations of a system and identifying the information that
users can deduce from these observations.

Our example focuses on a register capable of storing a single byte. We model
the register’s value by an integer variable x with domain 0..255. The register
also features a Boolean variable y that indicates numeric overflow when set.

Consider an operation that doubles the value stored in x , provided that the
initial value of x lies in the range 0..127 and the overflow bit is not set. We model
this operation as a UTP design as follows:

DBL � x ∈ 0..127 ∧ y = 0 # x ′ = 2x ∧ y ′ = 0
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Suppose that two users can observe the register: the first user (with view H ) can
observe the values of the higher four bits of the value of x , and the second user
(with view L) can observe the lower four bits of x . The overflow bit y is visible
to both users. The views of these users are given by:

H � OK

(
xH =

⌊ x
16

⌋
∧ x ′

H =
⌊

x ′

16

⌋
∧ yH = y ∧ y ′

H = y ′
)

L � OK (xL = x mod 16 ∧ x ′
L = x ′ mod 16 ∧ yL = y ∧ y ′

L = y ′)

Effectively, the H view masks out the lower four bits of the register from the
first user’s observations, while the L view hides the higher four bits from the
second user. Both of these views are VHD-healthy.

We now investigate the projections of DBL’s behaviour through H and L.
The calculation of P (H ,DBL) is simplified by applying Lemma 4:

P (H ,DBL) =

⎛⎝∀ x , y, x ′, y ′ • H ⇒ x ∈ 0..127 ∧ y = 0
#H

∃ x , y, x ′, y ′ • H ∧ x ′ = 2x ∧ y ′ = 0

⎞⎠
= xH ∈ 0..7 ∧ yH = 0 #H (x ′

H = 2xH ∨ x ′
H = 2xH + 1) ∧ y ′

H = 0

P (H ,DBL) indicates that a user at H can only be certain that DBL’s precon-
dition is satisfied when xH ∈ 0..7, since any other value of xH corresponds to a
value of x that violates the precondition of DBL.

Assuming the precondition of DBL holds, the value of the fifth most significant
bit of x determines whether x ′

H = 2xH or x ′
H = 2xH + 1. However, since this bit

cannot be observed by a user at H , that user can only be certain of the value of
x ′
H once the operation is complete.
It is instructive to consider what can be observed of DBL through L:

P (L,DBL) =

⎛⎝∀ x , y, x ′, y ′ • L⇒ x ∈ 0..127 ∧ y = 0
#L

∃ x , y, x ′, y ′ • L ∧ x ′ = 2x ∧ y ′ = 0

⎞⎠
= false #L x ′

L = 2xL mod 16 ∧ y ′
L = 0

= true

Since an observation at L provides no information regarding the upper four bits
of x , a user at L cannot determine in any circumstances whether the precondition
of DBL is satisfied. Thus, from the perspective of L, nothing can be guaranteed
about DBL’s behaviour, as is reflected by the outcome of the calculation above.

Depending on the context in which the register is used, this limitation may
be unacceptable. Hence, we relax the precondition of DBL to cover all values of
x that can be stored by the register and, when x ≥ 128, to assign an arbitrary
value from the range 0..255 to x ′ and set y ′ to 1:

DBL2 � x ∈ 0..255 ∧ y = 0 #

⎛⎝ x ′ = 2x ∧ y ′ = 0
� x ∈ 0..127 �

x ′ ∈ 0..255 ∧ y ′ = 1

⎞⎠
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Observe that DBL  DBL2, because the postcondition of DBL2 reduces to the
postcondition of DBL when the precondition of DBL is satisfied.

The interface-level observations of DBL2 through L are given by:

P (L,DBL2) = xL ∈ 0..15 ∧ yL = 0 #

⎛⎝ x ′
L = (2xL) mod 16 ∧ y ′

L = 0
� xL ∈ 0..7 �

x ′
L ∈ 0..15 ∧ y ′

L = 1

⎞⎠
After the DBL2 operation completes, the user at L can determine if the double
operation was successful by checking that y ′

L = 0.
One may now proceed to refine DBL2 to the implementation level. Of course,

if one carries out data refinement on the variables of DBL2 (such as replacing
x with eight Boolean variables to represent the bits of the register), then the
corresponding data refinements must also be made to the H and L views.

7 Refinement of Multi-User Systems

S  T mandates that every system-level observation of T is a system-level
observation of S . This condition is sufficient to ensure that a concrete design T
satisfies all the functionality properties of its abstract predecessor S . However,
this condition is sometimes too strong for stepwise developments of multi-user
systems, since it forbids some classes of reasonable refinement steps that do not
impair functionality. This point is illustrated by the following example.

Example 4. Consider an operation on the aforementioned register that doubles
the lower four bits of x and the upper four bits of x in isolation:

INDBL2 � x ∈ 0..255 ∧ y = 0 #

⎛⎜⎜⎜⎝
x ′ mod 16 = (2x ) mod 16

∧

⎛⎜⎝
⌊

x ′
16

⌋
=
(
2
⌊

x
16

⌋)
∧ y ′ = 0

� x ∈ 0..127 �
x ′ ∈ 0..255 ∧ y ′ = 1

⎞⎟⎠
⎞⎟⎟⎟⎠

Notice that DBL2 � INDBL2, because when x ∈ 0..127 ∧ y = 0, INDBL2
always sets the fourth most significant bit of x ′ to 0 regardless of the value of
the fifth most significant bit of x , unlike DBL2. However, the users at H and
L cannot individually tell INDBL2 apart from DBL2, since each interface-level
observation of INDBL2 matches an interface-level observation of DBL2.

The proposed transition from DBL2 to INDBL2 indicates that, when developing
a multi-user system, it may be more appropriate (in some cases) to carry out
refinement w.r.t. the interface-level observations of the system, rather than the
system-level observations of the system as a whole.

7.1 Interface-Level Refinement

This section outlines some alternative notions of refinement that are defined in
terms of the interface-level observations of systems, instead of system-level ob-
servations. These refinement relations are more flexible than the classical notion
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of refinement, because they allow particular refinement steps to introduce new
behaviours into a system in a controlled manner, while preserving the correctness
of the system from the perspective of its users.

First, we introduce an notion of refinement which we call user refinement. We
say that T is a user refinement of S w.r.t. a view V if and only if every interface-
level observation of T made through V corresponds to an observation of S made
through V . Intuitively, user refinement allows new system-level observations
to be added to a predicate, provided that no interface-level observations are
introduced to the projection of the predicate through V .

Definition 8 (User refinement). For a given view V , T is a user refinement
of S — denoted by S V T — if and only if:

S V T � P (V ,S )  P (V ,T ) (14)

It follows from Lemma 2 that S  T implies S V T . Unlike , V is not a
partial order in the general case, although it is always a pre-order.

7.2 Co-operating and Independent Refinement

Jacob [4,5] proposed two notions of refinement — known as co-operating refine-
ment and independent refinement — intended for application in the development
of multi-user systems.

Co-operating refinement allows users to exchange their observations of a sys-
tem after its execution has terminated. Hence, the users may potentially
reconstruct more information about the system behaviour than they could
obtain from their individual observations alone.

Independent refinement assumes users cannot communicate with each other;
instead, the only information that each user can obtain about the behaviour
of a system is their own interface-level observation of the system.

We express co-operating and independent refinement in the UTP by extend-
ing the definition of user refinement to a set of disjoint views W (representing
multiple users) in different ways.

Definition 9 (Co-operating and independent refinement). Co-operating
and independent refinement generalise  as follows:

S co
W T � S ∧

W T (15)

S ind
W T �

∧
V∈W

S V T (16)

As with V , the co
W and ind

W orderings are pre-orders but not partial orders
[4]. When W contains only a single view V , the co

W and ind
W relations reduce

to the definition of V .
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Theorem 2 (Ordering on refinement relations). Standard refinement is
a stronger ordering than co-operating refinement which, in turn, is a stronger
ordering than independent refinement:

S  T ⇒ S co
W T (17)

S co
W T ⇒ S ind

W T (18)

As established by Theorem 2, co-operating and independent refinement are
weaker than the conventional definition of refinement, because they allow non-
determinism to be added to a specification, so long as no new interface-level
observations of the specification are possible. However, these notions of refine-
ment are strong enough to preserve the functionality inherent in a system’s
specification from the perspectives of the users of the system.

Example 5. Returning to Example 4, it is the case that DBL2 ind
{H ,L} INDBL2,

since DBL2 H INDBL2 and DBL2 L INDBL2 both hold. This means that
INDBL2 can safely substitute for DBL2, provided that the users at H and L are
unable to communicate with each other. However, we do not have DBL2 co

{H ,L}
INDBL2, because if the users at H and L combine their observations, they can
identify behaviours of INDBL2 that are not behaviours of DBL2.

Relaxing the notion of refinement to co-operating or independent refinement
provides an extra degree of flexibility when making design choices for a system.
In particular, INDBL2 allows the users at H and L to access separate registers
without needing to keep those registers synchronised, which means that an im-
plementation of INDBL2 may provide each user with their own local instance of
the register. More generally, these refinement relations offer the opportunity to
distribute a system’s workload across multiple processors, provided the refined
system produces the same results to its users.

A spectrum of refinement relations may be constructed from the co relation.
A set of views W may be partitioned into subsets W1, . . . ,Wn to represent
groups of users, whereby users associated with views in the same group may co-
operate but users associated with views in different groups are isolated from each
other. Thus, a multi-user refinement relation which accounts for the boundaries
separating these users is given by:

S grp
W T � S co

W1
T ∧ . . . ∧ S co

Wn
T (19)

The notion of co-operating refinement may also be applicable in the develop-
ment of distributed systems composed of multiple interacting components. For
instance, it may be desirable to replace one component Z of the system with
another component Z ′. This replacement can be carried out with the assurance
that other components of the system are not affected by the change, if it can be
shown that Z co

W Z ′ holds, where W is the set of views representing the chan-
nels through which the other components interact with Z . The replacement is
justified because these other components cannot distinguish Z ′ from Z by their
interactions with Z ′, even if they share information about those interactions
with each other.
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7.3 Reasoning about Information Flow

An important topic in theoretical studies of computer security is to measure
the information that a low-level (unprivileged) user of a system can learn about
the activities of other high-level users by observing the system. If the high-level
interactions are associated with sensitive or intrinsically valuable data, then it is
imperative that the low-level user is unable to deduce confidential information
about this data by monitoring the system’s execution [6].

In Section 4.3, we described how one user can deduce information about the
observations of another user. We are now able to define an ordering for comparing
systems according to the amount of information about high-level observations
that can “flow” to a low-level user.

Definition 10 (Security ordering). Let H and L denote the (disjoint) views
of a high-level user and a low-level user respectively. Then, a system T provides
no more information flow from H to L than a system S if and only if:

S �H
L T � S L T ∧ (P (L ∧ H ,T )  P (L ∧ H ,S ) ∧ P (L,T )) (20)

The �H
L relation encodes a security ordering on predicates [5,7]. The first condi-

tion ensures that, from the perspective of a low-level user at L, every observation
of T is an observation of S . The second condition requires that, for every ob-
servation φ of T viewed through L, the set of H observations of S that are
compatible with φ is a subset of the H observations of T compatible with φ.
These conditions together guarantee that the low-level user can deduce no more
information about the activities at H from an observation of T as it can from
the equivalent observation of S . Hence, if S �H

L T holds, then we say that T
provides no more information flow about activities at H to the low-level user
as does S . (Of course, this assertion applies only so far as the semantic model
of S and T , as it excludes from consideration factors such as the probability
distribution or the timing characteristics of system behaviours.)

8 Related Work

Our approach for reasoning about multi-user systems in the UTP opens up
several new avenues of investigation. We briefly review two areas of research in
which we believe our approach is particularly relevant.

Information Flow Security. A multitude of techniques for measuring and re-
stricting information flow within systems — to guarantee the secrecy of confi-
dential data — have been defined within frameworks based on trace semantics
[5,8,9,10]. In these frameworks, a user’s observation is given by applying a pro-
jection function to the system trace. Our notion of a view is a generalisation of
these projection functions, because a view may cover other observational vari-
ables besides the trace variables, such as the variables recording the refusal set
associated with a trace (when working in the UTP theory of reactive designs.)
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Refining a specification may introduce new paths of information flow into the
specification, thus enabling a low-level user to deduce more detailed informa-
tion about the activities of a high-level user and potentially violating security
requirements [7]. Various techniques have been proposed to resolve this prob-
lem, such as ensuring that the system appears deterministic from the low-level
user’s viewpoint [11] or strengthening the definition of refinement to preserve
information flow security properties [12]. The refinement relation obtained by
intersecting the  and � orderings is an example of the latter approach, but
it may be too strong a refinement relation for practical use. It is perhaps more
appropriate to employ a weaker notion of refinement (such as co-operating or
independent refinement) together with the � ordering in the development of
multi-user systems where information security is a priority.

Distributed Testing. When testing distributed systems, it is customary to place
an isolated tester (user) at each interface of the system. For the results of test
runs to be useful, it should be possible to combine the observations of multiple
testers in order to reconstruct the exact trace of a system. However, if testers
are physically separated and no global clock is present, then it may be difficult
(or impossible) to rule out alternative behaviours of the system.

Recent work has identified conditions under which tests of distributed systems
(modelled as finite state machines) can be designed and controlled to ensure
that the exact system behaviour can always be identified, without requiring
testers to synchronise their actions externally of the system under test [13,14].
This problem can be stated using our terminology as follows: for every set of
interface-level observations {φ1, . . . , φn} of a system S projected through views
V1, . . .Vn , there must exist a unique system-level observation Φ of S such that
P (Vi , Φ) = φi for each i ∈ 1..n.

9 Conclusions

We have presented an approach for studying multi-user systems in the UTP. We
have described how the observational abilities of users can be modelled as UTP
predicates (views) and have identified predicate transformers for calculating the
projection of a system’s behaviour to its users. The novelty of our approach is
that, by codifying these concepts in the UTP explicitly, we obtain a semantically
appealing method for reasoning about specifications of multi-user systems across
the spectrum of UTP theories.

We have also investigated some alternative notions of refinement that are
based on what users can deduce about the system’s behaviour from their obser-
vations. These refinement relations afford the implementer of a system greater
flexibility in making particular design decisions that would be prohibited by
classical refinement.

The emphasis of this paper is on generality. Our approach is sufficiently ab-
stract to be used in combination with a variety of UTP theories; for instance,
we have demonstrated its application within the theory of designs in Section 5.
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Moreover, our definitions of co-operating and independent refinement are not
tied to the semantics of particular UTP theories. Indeed, these refinement re-
lations may potentially be applied in practice to the stepwise development of
multi-user systems, wherever the observational abilities of users are known.

A drawback of our approach is that applying the P and R predicate transform-
ers can be tedious and error-prone if carried out manually, because a view may
define a complex relation between interface-level and system-level observational
variables. With the emergence of tool support for the UTP, there is potential for
overcoming this difficulty by mechanising our approach. This would enable some
of the techniques described in this paper — such as reasoning about information
flow between users, or verifying co-operating or independent refinements over
systems — to be carried out with machine assistance.

The focus of our current research is to integrate our approach with the UTP
semantics of the Circus formalism [15], in order to reason about the observa-
tional abilities of users of systems modelled in Circus. We envisage the work
presented in this paper will provide the foundations for a comprehensive plat-
form for analysing Circus systems from the perspective of their users.
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A Proofs

Lemma 1

Proof. We assume that V1 and V2 are VH-healthy individually. To prove that
V1 ∧ V2 is VH-healthy, it is sufficient to show that V1 ∧ V2 is VH1-healthy and
VH2-healthy separately.

VH1(V1) ∧ VH1(V2)
⇔ 〈 definition of VH1 〉
(∀ s , s ′ • ∃ u1, u ′

1 • V1) ∧ (∀ s , s ′ • ∃ u2, u ′
2 • V2)

⇔ 〈 predicate calculus 〉
∀ s , s ′ • (∃ u1, u ′

1 • V1) ∧ (∃ u2, u ′
2 • V2)

⇔ 〈 assumption: V1 and V2 are disjoint 〉
∀ s , s ′ • ∃ u1, u ′

1, u2, u ′
2 • V1 ∧ V2

⇔ 〈 definition of VH1 〉
VH1(V1 ∧ V2)

The proof that V1 ∧ V2 is VH2-healthy follows similarly. ��
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Lemma 2

S  T ⇒ P (V ,S )  P (V ,T )

Proof

S  T
⇔ 〈 definition of  〉
[ ∀ s , s ′ • T ⇒ S ]
⇒ 〈 predicate calculus 〉
[ ∀ s , s ′ • (V ∧ T ) ⇒ (V ∧ S ) ]
⇒ 〈 predicate calculus 〉
[ (∃ s , s ′ • V ∧ T ) ⇒ (∀ s , s ′ • V ∧ S ) ]
⇒ 〈 predicate calculus 〉
[ (∃ s , s ′ • V ∧ T ) ⇒ (∃ s , s ′ • V ∧ S ) ]
⇔ 〈 definition of P 〉
[P (V ,T ) ⇒ P (V ,S ) ]
⇔ 〈 definition of  〉
P (V ,S )  P (V ,T ) ��

Lemma 3

P
((∧

i∈1..n Vi

)
,S
)
⇒

∧
i∈1..n P (Vi ,S )

Proof

P
((∧

i∈1..n Vi

)
,S
)

⇔ 〈 definition of P 〉
∃ s , s ′ •

(∧
i∈1..n Vi

)
∧ S

⇒ 〈 predicate calculus 〉∧
i∈1..n ∃ s , s ′ • Vi ∧ S

⇔ 〈 definition of P 〉∧
i∈1..n P (Vi ,S ) ��

Theorem 1

U  P (V ,S ) ⇔ R (V ,U )  S

Proof

U  P (V ,S )
⇔ 〈 definition of  and P 〉
[ (∃ s , s ′ • V ∧ S )⇒ U ]
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⇔ 〈 predicate calculus 〉
[ (∀ s , s ′ • ¬ V ∨ ¬ S ) ∨ U ]
⇔ 〈 s , s ′ not free in U and s , s ′ covered by universal closure 〉
[¬ V ∨ ¬ S ∨ U ]
⇔ 〈 u, u ′ not free in S and u, u ′ covered by universal closure 〉
[¬ S ∨ (∀ u, u ′ • ¬ V ∨ U ) ]
⇔ 〈 predicate calculus 〉
[S ⇒ (∀ u, u ′ • V ⇒ U ) ]
⇔ 〈 definition of  and R 〉
R (V ,U )  S ��

Lemma 4

P (V ,P # Q) = (∀ s , s ′ • V ⇒ P) #V P (V ,Q)

Proof

P (V ,P # Q)
⇔ 〈 definition of P and # 〉
∃ s , s ′ • V ∧ (ok ∧ P ⇒ ok ′ ∧ Q)
⇔ 〈 unfold implication 〉
∃ s , s ′ • V ∧ (¬ ok ∨ ¬ P ∨ (ok ′ ∧ Q))
⇔ 〈 distributivity, twice 〉
(∃ s , s ′ • V ∧ (¬ ok ∨ ¬ P)) ∨ (∃ s , s ′ • ok ′ ∧ V ∧ Q)
⇔ 〈 V is VHD-healthy 〉
(¬ okV ∨ ∃ s , s ′ • V ∧ ¬ P) ∨ (ok ′

V ∧ ∃ s , s ′ • V ∧ Q)
⇔ 〈 de Morgan, twice 〉
¬ (okV ∧ ∀ s , s ′ • ¬ (V ∧ ¬ P)) ∨ (ok ′

V ∧ ∃ s , s ′ • V ∧ Q)
⇔ 〈 predicate calculus 〉
(okV ∧ (∀ s , s ′ • V ⇒ P)) ⇒ (ok ′

V ∧ ∃ s , s ′ • V ∧ Q)
⇔ 〈 definition of P and #V 〉
(∀ s , s ′ • V ⇒ P) #V P (V ,Q) ��

Theorem 2

Proof. Equation 17 is a consequence of Lemma 2 and Definition 8. Equation 18
follows from Lemma 3. ��
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Abstract. This paper presents a framework for reasoning about the se-
curity of confidential data within software systems. A novelty is that we
use Hoare and He’s Unifying Theories of Programming (UTP) to do so
and derive advantage from this choice. We identify how information flow
between users can be modelled in the UTP and devise conditions for ver-
ifying that system designs may not leak secret information to untrusted
users. We also investigate how these conditions can be combined with
existing notions of refinement to produce refinement relations suitable
for deriving secure implementations of systems.
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1 Introduction

When designing a computer system that stores or manipulates confidential data,
it is vital to define a security policy for this data and to obtain reliable assurances
that the system never discloses this data to untrusted users in violation of the
security policy. In software engineering, a security policy is usually implemented
by combining access control mechanisms with user authentication schemes and
cryptographic measures [1]. However, access control does not restrict how data
can be manipulated once it has been released to users, so it cannot prevent
confidential data from propagating indirectly to low-level users [2].

A radically different approach to computer security is to specify constraints
on the information flow between a system and its users. We say that information
flows from a high-level user (H) to a low-level user (L) whenever L’s observations
of a system are perturbed by the activities performed by H. To ensure that a
system does not leak sensitive or valuable data to L, it is necessary to design
the system with built-in restrictions on information flow [1]. These constraints
are known as confidentiality properties, since they codify an upper limit on the
flow of information about H activities classed as confidential to L. Confidential-
ity properties specify what information must not be disclosed to L, but unlike
models of access control, they allow the designers of a system to decide how that
information should be protected.

The confidentiality property known as noninterference [3] mandates that H’s
actions must have no effect on L’s observations of the system; effectively, L
cannot determine whether or not H has interacted with the system at all. It
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follows that a system satisfying noninterference cannot disclose confidential in-
formation to L. However, noninterference is too strong a requirement for many
kinds of software products, because it is often necessary for H to communicate
some kinds of data to L. We contend that software developers should be able
to specify custom confidentiality properties that are tailored to the intricacies
of the system domain, rather than choosing from a limited range of ready-made
noninterference-like confidentiality properties.

The central topic of this paper is a novel encoding of confidentiality prop-
erties in Hoare and He’s Unifying Theories of Programming (UTP) [4]. Our
encoding is inspired by Mantel’s Modular Assembly Kit for Security Properties
(MAKS) [5,6]. The MAKS is designed for expressing a wide range of confiden-
tiality properties in the security literature in a uniform trace-based style. We
generalise the foundations of the MAKS to the UTP, which allows us to define
a class of confidentiality properties in a predicate style across the spectrum of
existing UTP theories. Moreover, these predicates can be applied to verify that
a software specification (written in a language with a UTP semantics) satisfies
a given confidentiality property by means of formal proof.

This paper is structured as follows. We provide an overview of the UTP in
Section 2. In Section 3, we describe the foundations of our approach for mod-
elling the observations of users in the UTP. This approach provides the basis
of our encoding of confidentiality properties in the UTP, which we present in
Section 4. We investigate how refinement can be extended to accommodate con-
fidentiality properties in Section 5. We examine the relationship between our
work and existing techniques for applying confidentiality properties in rigorous
software developments in Section 6 and summarise our work in Section 7.

2 Unifying Theories of Programming

The UTP provides an abstract framework for modelling the denotational seman-
tics of a wide range of programming paradigms and the features of programming
languages [4]. The UTP features a powerful standalone notation for specifying
the behaviour of systems and reasoning about program correctness.

The mathematical foundation of the UTP is the alphabetised relational cal-
culus. In the UTP, specifications and program constructs alike are expressed as
predicates over an alphabet (a set) of observational variables. The observational
variables in a predicate record all of the information about a program’s execution
that is visible when an observation of the program is made. These variables are
grouped into two classes: by convention, undashed variables (x , y, . . .) record the
initial observation of the program state taken before execution commences, while
dashed variables (x ′, y ′, . . .) record an intermediate observation of the program
state taken during (or after) the program’s execution [4].

Example 1 gives a UTP specification of a simple system that we use later.

Example 1. Consider a simple guessing game played by two users Laurel (L)
and Hardy (H). H chooses a number n ∈ 0..9, which is concealed from L. L
makes a guess g of the value of n. L is informed whether its guess was correct or
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greater or smaller than n by setting t to 0, a positive value or a negative value
respectively.

We model all acceptable runs of the game by defining a UTP predicate G0:

G0 � n ∈ 0..9 ∧ (g = n ⇒ t = 0) ∧ (g > n ⇒ t > 0) ∧ (g < n ⇒ t < 0) (1)

While G0 represents the game as seen by the environment as a whole, we expect
that L is unable to observe the value of n. However, this expectation is not
recorded in G0. If we wish to reason about L’s observations of G0, we need to
define a mapping from G0’s behaviours to the aspects of G0 visible to L.

3 Modelling User Observations

This section outlines a UTP approach for modelling the observational abilities
of users. We cover this approach in greater depth elsewhere [7]; here, we present
only the details that are essential for studying information flow in the UTP.

Observations. An observation of a UTP predicate S is any predicate that maps
each variable in S ’s alphabet to a single value, such that S is satisfied by that
mapping. (For example, n = 3 ∧ g = 7 ∧ t = 42 is a valid observation of G0.)

Given a predicate S representing a system, we distinguish between two classes
of observations of S . A system-level observation of S describes the behaviour of
S in its entirety. The list of undashed variables (s1, . . . , si) of a system-level
observation is denoted by s and the corresponding list of dashed variables by s ′.
Whenever Φ is a system-level observation of S , we have:

(∃1 s , s ′ • Φ) ∧ [ Φ ⇒ S ] (2)

The first condition requires that Φ is satisfied by exactly one valuation of the
system-level variables in S ’s alphabet. The second condition states that Φ is an
actual observation of S .

It is often reasonable to expect that individual users cannot observe all of
a system’s behaviour; rather, each user is provided with an interface to the
system, through which it can observe some elements of the system’s behaviour.
We say that a user’s observation of a system is an interface-level observation. To
record interface-level observations, we introduce separate lists of interface-level
observational variables u = (u1, . . . , uj ) and u ′ = (u ′

1, . . . , u
′
j ), which must be

disjoint from s and s ′.

Views. A view is a predicate that formalises a user’s interface to a system by
defining a total relation from system-level observations to interface-level ob-
servations1. The interface-level observational variables in a view’s alphabet are
decorated with the view’s identifier: for example, xV refers to an interface-level
variable associated with view V , whereas x refers to a system-level variable.
1 The theory presented in Section 4 is unchanged if views are required to be functional.

However, by relaxing this requirement, we allow for the possibility that a user’s
interface gives a non-deterministic (noisy) representation of a system’s behaviour.
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Given a system-level observation Φ and a view V , the set of interface-level
observations corresponding to Φ is given by calculating the image of Φ as pro-
jected through V . A view should not restrict the domains of the system-level
observational variables in any way; that is, predicates such as x < y, x ′ = 0 and
false are not views. Moreover, we exclude “time-travelling” predicates such as
xV = x ′ (which demands a user with view V can observe the value of x ′ before
it is computed) from the space of views. (These constraints on views may be
formalised in the UTP as healthiness conditions [7].)

Example 2. Returning to Example 1, we may expect that H can observe the
values of all variables in G0’s alphabet, but the value of n is hidden from L. The
observational abilities of L and H are modelled by the following views:

L � gL = g ∧ tL = t (3)

H � gH = g ∧ nH = n ∧ tH = t (4)

The view H gives H total information about the state of G0. The view L allows
L to observe its own guess and the outcome of that guess, but it does not directly
reveal the value of n to L.

We insist that views associated with different users are interface-disjoint ; that
is to say, they share no interface-level observational variables.

Calculating Interface-Level Predicates. Given a system-level predicate S and
a view V , we can derive a predicate that encodes the space of all interface-
level observations that can be made of S when viewed through V . We define a
predicate transformer P (for “project”) to calculate this interface-level predicate:

P (V ,S ) � ∃ s , s ′ • V ∧ S (5)

The predicate P (V ,S ) is the image of S as projected through V . Hence, P (V ,S )
is satisfied by exactly those interface-level observations that can be made by
monitoring the behaviour of S through V .

Given two interface-disjoint views V1(s1, u1) and V2(s2, u2) of the same system
(i.e. s1 = s2), the view V1 ∧ V2 represents the combination of the interfaces
corresponding to V1 and V2. Hence, P (V1 ∧ V2,S ) is a predicate with alphabet
u1 ∪u2 describing the relation between interface-level observations of S as made
through V1 and V2.

Example 3. Applying P (L ∧ H ) to G0 yields the predicate:

P (L ∧ H ,G0) = ∃ g,n, t •
(

gL = g ∧ tL = t
∧ gH = g ∧ nH = n ∧ tH = t

)
∧ G0

=

⎛⎝ nH ∈ 0..9 ∧ gL = gH ∧ tL = tH
∧ (gH = nH ⇒ tL = 0)
∧ (gH > nH ⇒ tL > 0) ∧ (gH < nH ⇒ tL < 0)

⎞⎠ (6)

This predicate represents all compatible H- and L-observations of G0.
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4 Encoding Confidentiality Properties

When designing a system S , we may wish to prevent L from acquiring informa-
tion about confidential features of H’s interactions with S . Hence, our goals are
to specify which aspects of H’s observations of S are classed as confidential and
to verify that L cannot use its observations of S to deduce information about
those aspects.

In the worst case, L may possess complete knowledge of the implementation
of S and the structure of its own view and that of H. Hence, for each observation
φ that L can make of S , L can deduce the set of H observations consistent with
φ. The predicate that encodes this subset of H observations is given by:

ΩH
L (S , φ) � ∃ uL, u ′

L • P (L ∧ H ,S ) ∧ φ (7)

(Quantifying over uL and u ′
L hides L’s observational variables, leaving a predi-

cate over H’s observational variables.) From L’s perspective, the H-observations
encoded by ΩH

L (S , φ) are indistinguishable; that is, L is unable to identify which
of those observations corresponds to H’s actual observation of S .

For S to be considered secure, L must not be able to deduce confidential
information about H for any observation of S that it can make. Following the
MAKS approach [5,6], we encode this requirement in terms of two parameters:

– The restriction R is a predicate over H’s observational variables (uH , u ′
H )

that represents the space of H observations featuring confidential activities.
A H observation is classed as confidential if and only if it features in R.

– The closure requirement Q is a predicate that relates confidentialH observa-
tions (in R) to alternativeH observations that are not classed as confidential.
Whenever Q relates a confidential activity ψ to a non-confidential activity
ψ̃ such that ψ and ψ̃ are indistinguishable to L, we say that ψ̃ represents a
cover story for ψ. The presence of ψ̃ in a system ensures that if H performs
ψ, then L is unable to deduce whether ψ (rather than ψ̃) has occurred.

The cover stories in Q are encoded over a renaming (ũH , ũ ′
H ) of the variables

in uH and u ′
H , in order to distinguish between confidential H activities and

non-confidential cover stories. We assume that the domain and co-domain of
the relation encoded by Q are disjoint, so that no cover story observations are
themselves classed as confidential.

We are now ready to present a formal definition of the space of properties
that we call confidentiality properties.

Definition 1 (Confidentiality property). A confidentiality property is a tu-
ple of the form π = 〈H ,L,R,Q〉, where H and L denote the views of H and L,
R is a restriction and Q a closure requirement over H .

We do not claim that all confidentiality properties described in the literature can
be expressed as a 〈H ,L,R,Q〉 tuple (or a combination of such tuples). Neverthe-
less, Mantel has demonstrated that many confidentiality properties can indeed



Unifying Theories of Confidentiality 125

be encoded as combinations of pairs of restrictions and closure requirements,
assuming a trace-based semantic model for observations [5,6].

Of course, the purchaser of a system may wish to specify particular con-
fidentiality requirements that the system implementation must satisfy. These
requirements may be encoded by defining a custom confidentiality property, as
we illustrate in the following example.

Example 4. Suppose that the operator of the system G0 (described in Example 1)
insists that L cannot identify the exact value of n if it guesses incorrectly. We de-
fine a confidentiality property πG = 〈H ,L,RG ,QG〉 to express this requirement,
where RG and QG are as follows:

RG � gH �= nH (8)

QG � g̃H = gH ∧ ñH �= nH ∧ t̃H = tH (9)

RG indicates the confidentiality property applies only to those system-level ob-
servations in G0 where L’s guess is incorrect. QG mandates that, for each such
observation, there exists another observation in G0 with a different value of n
but the same values for g and t . Hence, QG requires that, when RG is fulfilled,
information giving the exact value of n does not flow to L.

A confidentiality property can be strengthened by weakening R (i.e. making more
H activities confidential) or by strengthening Q (i.e. removing acceptable cover
stories). The weakest confidentiality property ⊥ is obtained when R = false (i.e.
no H activities are confidential). Likewise, the strongest confidentiality property
% arises when R = true and Q = false.

The predicate that relates H observations of S that are classed as confidential
to L observations of S is given by:

P (L ∧ H ,S ) ∧ R (10)

Let φ denote a L observation and ψ denote a confidential H observation, where
φ and ψ together satisfy Equation 10. To ensure that L cannot deduce that ψ
has occurred with certainty, Q must relate ψ to a cover story ψ̃ such that ψ̃ is
a valid H observation of S consistent with φ. Formally:

φ ∧ ψ ⇒ ∃ ũH , ũ ′
H • P

(
L ∧ H̃ ,S

)
∧ Q (11)

H̃ denotes the view H where each variable in uH and u ′
H is renamed to its

counterpart in ũH and ũ ′
H . Following Mantel [5,6], we combine Equation 10 and

Equation 11 to obtain a “schema” for confidentiality properties in the UTP,
which we present in Definition 2.

Definition 2 (Confidentiality property schema). We say a system S sat-
isfies a confidentiality property π = 〈H ,L,R,Q〉 if and only if C(π,S ) holds:

C(π,S ) �
[
P (L ∧ H ,S ) ∧ R ⇒

(
∃ ũH , ũ ′

H • P
(
L ∧ H̃ ,S

)
∧ Q

) ]
(12)
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Hence, a system satisfies a confidentiality property if and only if the system
permits only those information flows from H to L which are acceptable to the
property. It follows from Definition 2 that the weakest property ⊥ is satisfied by
all systems, but that no implementable system specification can satisfy %.

Example 5. We can determine whether G0 satisfies πG by calculating the con-
stituent predicates of C corresponding to RG and QG :

P (L ∧ H ,G0) ∧ RG =

⎛⎝ nH ∈ 0..9 ∧ gL = gH ∧ tL = tH
∧ gH �= nH ∧ (gH > nH ⇒ tL > 0)
∧ (gH < nH ⇒ tL < 0)

⎞⎠ (13)

∃ ũH , ũ ′
H •

P
(
L ∧ H̃ ,G0

)
∧ QG

=

⎛⎜⎜⎜⎜⎝
gL = gH ∧ tL = tH

∧ ∃ ñH •

⎛⎜⎜⎝
ñH ∈ 0..9 ∧ ñH �= nH

∧ (gH = ñH ⇒ tL = 0)
∧ (gH > ñH ⇒ tL > 0)
∧ (gH < ñH ⇒ tL < 0)

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠ (14)

When gL = gH = 1 ∧ nH = 0 ∧ tH = tL ∧ tH > 0, Equation 13 is satisfied
but Equation 14 is not. In this scenario, L observes (guesses) gL = 1 and learns
from tL that gL > n. Since nH ∈ 0..9, L can deduce from its observation of gL
and tL that nH = 0. (A similar situation arises when nH = 9 and gL = 8.) It
follows that Equation 13 does not imply Equation 14 in all circumstances, and
so we conclude that G0 does not satisfy πG .

The discrepancy between G0 and πG may be resolved by relaxing RG to
exclude system-level observations where nH = 0 or nH = 9. Hence, we define a
weaker confidentiality property π′

G = 〈H ,L,R′
G ,QG〉, where:

R′
G � gH �= nH ∧ nH �= 0 ∧ nH �= 9 (15)

Of course, the discrepancy could be resolved by weakening G0: for instance, by
using t to indicate only whether the guess was correct or incorrect.

This example highlights an important trade-off between functionality and se-
curity requirements in software development. While confidentiality properties
place an upper bound on information flow to L, functionality requirements may
be interpreted as placing a lower bound on information flow to L. Should these
bounds conflict (as in our example), then no system could ever satisfy both
kinds of requirements and so these requirements should be re-evaluated before
proceeding with the design of a system.

5 Confidentiality-Preserving Refinement

A system specification is refined (improved) by adding implementation details
to the specification to remove non-determinism. In the UTP, the classical notion
of refinement is characterised by implication between predicates: [4]

S  T � [T ⇒ S ] (16)
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S  T holds if and only if every system-level observation of T is a (possible)
system-level observation of S . A significant feature of the UTP is that the notion
of refinement is the same across the various UTP theories [4].

Refinement guarantees that a program satisfies all the functionality properties
in its specification. Unfortunately, the  relation is not strong enough to preserve
confidentiality properties in specifications, since it may introduce new conduits
of information flow to low-level users [8,9]. This result can be established in our
framework by appealing to the following lemma (from [7]).

Lemma 1 (P is order-preserving). If S  T holds, then every pair of L and
H observations of T must correspond to a pair of L and H observations of S :

S  T ⇒ P (L ∧ H ,S )  P (L ∧ H ,T ) (17)

Lemma 1 indicates that whenever S  T holds, then for each L observation φ of
T , the set of H observations of T consistent with φ is a subset of the H observa-
tions of S consistent with φ. Hence, L can deduce at least as much knowledge of
H’s activities by observing T as it can deduce by observing S . In turn, T may
violate confidentiality properties that S satisfies, if T does not provide all of the
cover stories that S provides. In the absence of these cover stories from T , L can
deduce extra knowledge about H’s activities that may enable it to establish that
a certain confidential H activity has taken place. Hence, S  T is not sufficient
to guarantee that T satisfies any given confidentiality property that S satisfies.

Example 6. The guessing game of Example 1 may be implemented as follows:

G1 � n ∈ 0..9 ∧ t = g − n (18)

While G0  G1 holds, it is clear that G1 is less secure than G0, since the values
of g and t allow L to deduce the exact value of n in G1. Indeed, G1 violates the
confidentiality property π′

G from Example 5, whereas G0 satisfies this property.

When a system specification incorporates confidentiality properties, it is de-
sirable for refinement steps to uphold these properties, to save the effort of
re-verifying each confidentiality property after each refinement step and the ex-
pense of carrying out refinement steps that reach insecure system designs. In
this section, we demonstrate how notions of refinement can be strengthened to
preserve confidentiality properties of the form π = 〈H ,L,R,Q〉.

A confidentiality ordering is a pre-order over the space of systems [10]. We
define a confidentiality ordering �π — parameterised by the encoding of confi-
dentiality properties presented in Section 4 — to relate predicates according to
what L can deduce about H’s confidential activities as specified by π. 2

2 The confidentiality ordering presented here is conceptually related to Jacob’s security
ordering [7,10]. However, the orderings are different in their details: the security
ordering is concerned only with what L can deduce about H’s activities and does
not discriminate between confidential and non-confidential activities.
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Definition 3 (Confidentiality ordering). Let π = 〈H ,L,R,Q〉. T provides
no more information about H-observations in R to L than does S if and only if:

S �π T � S �π T ∧ S �π T (19)

holds, where �π and �π are defined as follows:

S �π T � P (L ∧ H ,S )  P (L ∧ H ,T ) ∧ R (20)

S �π T � P
(
L ∧ H̃ ,T

)
 P (L ∧ H ,T ) ∧ R ∧ P

(
L ∧ H̃ ,S

)
∧ Q (21)

S �π T mandates that every confidential H observation ψ present in T must
also be present in S and, moreover, all L observations of T consistent with ψ
must also be present in S . S �π T requires that, for every H activity ψ in
T classed as confidential by R, all of the cover stories related to ψ by Q that
are present in S must also be present in T . When both of these conditions are
satisfied, T provides no more information flow about H’s confidential activities
to L than S ; in other words, L can deduce no more confidential information from
any observation of T than it can deduce by observing S .

(Note that T may provide more information flow from H to L than S without
violating π, so long as for each confidential H observation ψ in T , there is at
least one cover story compatible with ψ also in T .)

Lemma 2 formalises the relationship between confidentiality properties and
the confidentiality ordering.

Lemma 2 (π is closed under �π). Whenever S satisfies the confidentiality
property π and S �π T holds, then T also satisfies π.

It follows from Lemma 2 that a refinement relation that preserves π may be
constructed as the least upper bound of the  and �π orderings:

S cp
π T � S  T ∧ S �π T (22)

Since S  T implies S �π T (by Lemma 1), it is sufficient to prove that S  T
and S �π T hold in order to establish that S �π T holds. Hence, we can simplify
the definition of cp

π as follows:

S cp
π T = S  T ∧ S �π T (23)

Corollary 1 (cp preserves confidentiality properties). Lemma 2 implies
that, if S cp

π T holds and S satisfies π, then T also satisfies π.

Example 7. An alternative implementation of the guessing game is:

G2 � n ∈ 0..9 ∧ (g = n ⇒ t = 0) ∧ (g > n ⇒ t = 1) ∧ (g < n ⇒ t = −1) (24)

We have G0  G2 and G0 �π′
G

G2, so it follows that G0 cp
π′

G
G2. From

Corollary 1, we can conclude that G2 preserves π′
G .
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Lemma 3 (Ordering of �π and ). The �π and  orderings are neither
monotonic nor anti-monotonic w.r.t. each other.

Lemma 3 suggests that, during a stepwise system development that employs the
cp

π refinement relation, one may reach a system design where no useful refine-
ment steps can be made without violating the �π ordering (for instance, by
removing cover stories from the design without also removing all confidential
observations related to those cover stories). Since no progress towards a correct
implementation of the specification can be made from such a design, the system’s
designers must either weaken π, or backtrack to an earlier design in their devel-
opment and try a different series of refinement steps. This potential for costly
backtracking suggests that the cp

π refinement relation may be impractical for
developing software by stepwise refinement.

It is usually assumed that all behaviours of a system are distinguishable by its
environment; hence, no new behaviours can be added to a system design without
violating the system’s specification. However, if a system is known to operate
in an environment consisting of multiple users (each with limited observational
abilities) then we may relax the definition of refinement by allowing certain
system-level observations to be added to a system design without compromising
its functionality, so long as these observations do not induce new interface-level
observations. Given a set of interface-disjoint views W representing a group
of users, we say T is a co-operating refinement of S (w.r.t. W) [11] if, for all
sets of observations of T that can be made through the views in W, these
observations can be combined in order to reconstruct at least one system-level
observation of T that is present in S . Intuitively, co-operating refinement ensures
the users represented by W are collectively unable to detect that T possesses
any behaviour not present in S .

Co-operating refinement can be expressed in the UTP in terms of  and the
P predicate transformer, as shown in Definition 4 [7].

Definition 4 (Co-operating refinement). T is a co-operating refinement of
S w.r.t. a set of views W if and only if, for every system-level observation Φ of
T, the projections of Φ through each view in W are matched by the projections
of a system-level observation of S through each view:

S co
W T � P

(∧
W,S

)
 P

(∧
W,T

)
(25)

Corollary 2 (co
W is weaker than ). It follows from Lemma 1 that, for all

sets W of interface-disjoint views, S  T guarantees S co
W T [7,11].

While co-operating refinement is not as strong as classical refinement, it is strong
enough to preserve the inherent functionality in a system’s specification from the
perspective of the system’s groups of users. Furthermore, co-operating refinement
provides the designers of a system with extra flexibility to execute some kinds
of useful refinement steps that are not permitted by classical refinement, such
as distributing a system across independent processors [7,11]. We postulate that
this ability to add new behaviours to system designs (in a controlled manner)
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can help to overcome the difficulties encountered when developing a system to
satisfy a given confidentiality property by stepwise refinement.

When defining a co-operating refinement relation for a group of users, we
assume that users in the group can communicate with each other (but not with
users outside the group). It follows that, by exchanging their observations, a
group of low-level users may therefore be able to deduce more information about
high-level activities than they could deduce from their individual observations
alone. Hence, when reasoning about confidentiality properties in the setting of co-
operating refinement, we represent a group of low-level users LS as a single user
with observational abilities equivalent to those of all the users in LS combined.

Suppose that Z is a system that interacts with a single high-level user (with
view HZ ) and a group of communicating low-level users associated with a set
LSZ of (interface-disjoint) views. Using co-operating refinement in place of ,
we can obtain a refinement relation that preserves the confidentiality property
πZ = 〈HZ ,

∧
LSZ ,RZ ,QZ 〉 for this system:

S co/cp
πZ

T � S co
{HZ} T ∧ S co

LSZ
T ∧ S �πZ T (26)

A potential advantage of co/cp
π over cp

π is that all the terms of co/cp
π are

expressed with the P predicate transformer, which may simplify the task of
verifying that co/cp

π holds between system designs. It is also unnecessary to
redefine the R and Q components of π when dealing with multiple low-level
users, since R and Q refer exclusively to high-level observations.

Corollary 3 (co/cp preserves confidentiality properties). Whenever S
satisfies the confidentiality property π = 〈H ,

∧
LS ,R,Q〉 and S co/cp

π T holds,
then T also satisfies π.

A family of confidentiality-preserving refinement relations can be constructed
fromco/cp . If a system is required to satisfy a set of confidentiality properties Π ,
then a suitable refinement relation for that system can be constructed by taking
the least upper bound of the co/cp

π relations for each π ∈ Π . Furthermore, if
the users of a system are partitioned into a set of isolated groups — such that
high-level users are not placed in the same group as low-level users — then a
suitable refinement relation can be calculated by combining co/cp relations for
each group and each confidentiality property that the system must satisfy.

6 Related Work

Frameworks. Several semantic frameworks (including the MAKS) for expressing
a range of confidentiality properties in a uniform manner have been proposed
in the security literature [5,6,9,10,12,13,14]. The objective of these frameworks
is to consolidate the existing definitions of noninterference-like properties in the
literature, in order to evaluate and compare these properties systematically and
to enable new confidentiality properties to be defined rigorously.
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In these frameworks, a system’s semantics is taken to be a set of traces. This
emphasis on a trace semantics contrasts with the UTP approach, in which sys-
tems are represented by predicates within a UTP theory. By abstracting away
from a trace semantics, our framework avoids the need to translate a system
specification (with a UTP semantics) to a set of traces. However, our framework
does not differentiate between inputs and outputs of systems, which is a prereq-
uisite for expressing many noninterference-like properties. In order to capture
such properties, it would be necessary to extend our framework with notation
for modelling inputs and outputs separately or, alternatively, to interpret un-
dashed UTP variables as inputs and dashed variables as outputs.

In contrast to noninterference-like properties, we do not regard all H activ-
ities as (equally) confidential. We also expect that L can deduce some aspects
of H’s observations legitimately and seek only to constrain L from deducing the
occurrence of a subset of H activities. Moreover, we argue that confidentiality
properties weaker than noninterference fit more closely with software develop-
ment in practice. For example, noninterference from H to L is too strong a
requirement for the guessing game, where the functionality of the game dictates
that L’s observation of the outcome of its guess must be influenced by H.

To date, the most complete framework for expressing noninterference-like con-
fidentiality properties is Mantel’s MAKS [5,6]. The MAKS defines a collection of
“basic security predicates” (BSPs) to express a variety of transformations on the
high-level components of system traces, capturing low-level users’ uncertainty
about high-level inputs and outputs. These BSPs can be combined to express
many (but not all) of the noninterference-like confidentiality properties defined
in the literature. Since our definition of confidentiality properties is based on the
schema form of these BSPs, we may select predicates to model restrictions and
closure requirements encoding the range of BSPs within a UTP theory with a
trace semantics. This implies that existing noninterference-like properties that
are expressible in the MAKS can be re-expressed using our framework within a
UTP theory that distinguishes input events from output events.

Refinement. Most notions of confidentiality-preserving refinement in the litera-
ture are realised in two ways: by limiting the space of confidentiality properties to
those that are closed under classical refinement, or by strengthening the refine-
ment relation to ensure it preserves confidentiality properties in specifications.
To ensure that confidentiality properties are not unreasonably strong, the first
approach often necessitates a means for distinguishing between two kinds of non-
determinism — namely, under-specification (which can be removed safely) and
unpredictability (which restricts information flow from H to L and so should not
be removed) — in specifications [15]. However, many specification languages (and
UTP theories) lack facilities for modelling non-determinism intended to provide
unpredictability separately from under-specification. Thus, it is unclear how the
first approach can be applied to a UTP theory without extending the semantics
of that theory to distinguish between these kinds of non-determinism explicitly.
We have instead focused on the second approach for confidentiality-preserving
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refinement by applying the confidentiality ordering, to avoid specialising our
framework to particular UTP theories.

Seehusen and Stølen [13,14] have proposed a (MAKS-like) framework for inte-
grating confidentiality properties into stepwise software development processes.
In their framework, a system specification is formalised as a set of obligations
(trace sets); a system satisfies a specification if it contains at least one trace from
each obligation in the specification. Intuitively, the obligations ensure that a sys-
tem’s implementation provides a minimum level of unpredictability about the
system’s behaviour from a low-level perspective. Hence, obligations are closely
related to our notion of cover stories. Seehusen and Stølen use obligations to
facilitate a novel approach to confidentiality-preserving refinement, which par-
allels our own: while refinement may remove some traces from a system design,
the refined system must still fulfil each obligation in the specification.

A recent and significant development is Morgan’s shadow semantics [16,17],
which builds on the refinement calculus for sequential programs [18]. In this
semantics, L (the adversary) is assumed to be able to monitor how demonic
non-determinism is resolved at each program step. This novel device allows the
“shadow set” of possible values of a high-level variable that are consistent with
L’s observations to itself be modelled at the semantic level. A program is secure
if the shadow set never reveals the value of the high-level variable to L (even
when L monitors the control flow); and refinement is “ignorance-preserving” if it
does not decrease the shadow set associated with any confidential variable. This
notion of refinement (like our own) ensures that L can never deduce any more
information regarding confidential data from an implementation of a system as
it could from the corresponding specification.

Our approach towards confidentiality-preserving refinement also has links to
work by Alur et al. [19]. In this work, the refinement of a labelled transition
system is expected to preserveL’s inability to deduce whether system runs satisfy
a specified set of properties on secret variables. Alur et al. also describe how this
refinement relation maps to standard simulation-based proof techniques, which
(we conjecture) may be useful for discharging the proof obligations associated
with our own confidentiality-preserving refinement relations.

Compositionality. An important topic in the study of information flow security
is the compositionality of system designs, as a means of developing secure sys-
tems in a modular fashion. Given a collection of sub-systems S1, . . . ,SN which
individually satisfy a confidentiality property π, it is desirable that the system
obtained by composing S1, . . . ,SN together will also satisfy π. However, this is
not generally the case for operators such as parallel composition, because the
composite system may feature confidential activities but lack the cover stories
that are permitted by its components. Mantel has identified a collection of for-
mal conditions for which the BSPs of the MAKS are preserved under certain
compositional operators [6,20]. These conditions may provide a starting point
for identifying compositionality conditions for our UTP formulation of confiden-
tiality properties.
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A further topic for investigation is the compositionality of confidentiality-
preserving refinement relations. This topic has not been addressed in the MAKS,
but has been investigated elsewhere [21].

Limitations. Like the BSPs of the MAKS, our formulation of confidentiality
properties is qualitative w.r.t. information flow. This means that a confidentiality
property is violated if even a single bit of information relating to confidential
data is disclosed to a low-level user. Small leaks of data from high-level users to
low-level users are often acceptable (and sometimes unavoidable) in real-world
systems, provided that a low-level user cannot deduce any significant details
about confidential data from such a leak. In these circumstances, it may be
difficult to work with qualitative confidentiality properties. This difficulty can be
overcome by defining confidentiality properties in terms of how much information
can flow between users. Recent research has modelled quantitative information
flow within the framework of Shannon-style information theory [22].

Another limitation of our treatment of confidentiality properties — which is
shared by the MAKS — is that we do not address the probability distribution of
the high-level user’s activities. This shortcoming could lead to serious security
breaches, because if a low-level user has knowledge of this distribution, then it
may be able to deduce confidential data with near certainty but without violating
the confidentiality property. Some research has investigated probabilistic confi-
dentiality properties which account for the likelihood of alternative high-level
activities [23,24]. While these properties are attractive in theory, their appli-
cation in practice is not without difficulty: the probability distribution of the
high-level user’s interactions with a system may be unknown and, even with
this knowledge, it may be intractable to determine whether a non-trivial system
model satisfies a probabilistic confidentiality property [25].

A further practical issue with existing frameworks for modelling confidentiality
properties (including our own) is that, while they are suitable for reasoning
about information flow at the abstract level of system specifications, they do not
account for the (potentially confidential) information that a low-level user may
deduce by monitoring physical and temporal characteristics of its interface at the
implementation level, such as the time interval between requests and responses.
These channels may potentially be exploited to obtain confidential information
about a system’s behaviour, so it is desirable to model these channels formally
and to extend the analysis of information flow to them. We regard this as a
challenging task that is beyond the scope of this paper.

7 Conclusions

The original contributions of this work are two-fold. First, we have laid the foun-
dations for reasoning about information flow in the UTP and provided a UTP
encoding of “possibilistic” confidentiality properties. Second, we have identified
a spectrum of confidentiality-preserving refinement relations based on the confi-
dentiality ordering and co-operating refinement.
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Our UTP formulation of confidentiality properties in the predicative style is
concise and generic in the UTP theory under consideration, yet also provides ex-
pressive power equivalent to the MAKS framework for specifying confidentiality
properties. Moreover, our approach can be deployed across the various families of
specification languages and programming paradigms that have a UTP semantics,
rather than just those based on trace semantics.

A drawback of our formulation of confidentiality properties in the UTP is that
verifying UTP specifications against confidentiality properties can be cumber-
some, due to the need to translate from system-level to interface-level predicates.
Indeed, errors can be easily introduced into these calculations if they are carried
out manually, and especially when the mapping from system-level to interface-
level observations is not straightforward. This difficulty could be alleviated by
identifying a collection of laws that can be used to simplify these calculations.

In future work, we intend to integrate our formulation of confidentiality prop-
erties with the UTP semantics of Circus [26] — a specification language which
combines Z and CSP to model the state and behavioural aspects of concurrent
systems — in order to realise a unified framework for the specification and devel-
opment of secure software. Indeed, we envisage that a customer’s specification
of confidentiality properties can play an integral role in a formal stepwise devel-
opment process — from constructing an abstract system design that is verified
to satisfy the confidentiality specification, through a series of confidentiality-
preserving refinement steps — to yield a final implementation that is guaranteed
to satisfy the customer’s security requirements.
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A Proofs

Lemma 1

Proof. A proof of this lemma is provided elsewhere [7].

Lemma 2

Proof

S �π T ∧ C(π,S )
⇔ 〈 definition of � and C 〉

S �π T ∧ S �π T ∧
[

P (L ∧ H ,S ) ∧ R
⇒

(
∃ ũH , ũ ′

H • P
(
L ∧ H̃ ,S

)
∧ Q

) ]
⇒ 〈 definition of � and transitivity of implication 〉

S �π T ∧
[
P (L ∧ H ,T ) ∧ R ⇒

(
∃ ũH , ũ ′

H • P
(
L ∧ H̃ ,S

)
∧ Q

) ]
⇔ 〈 definition of � and predicate calculus 〉⎡⎣ P (L ∧ H ,T ) ∧ R ⇒

(
∃ ũH , ũ ′

H • P
(
L ∧ H̃ ,S

)
∧ Q

)
∧
(
P (L ∧ H ,T ) ∧ R ∧ P

(
L ∧ H̃ ,S

)
∧ Q

)
⇒ P

(
L ∧ H̃ ,T

) ⎤⎦
⇒ 〈 predicate calculus 〉[
P (L ∧ H ,T ) ∧ R ⇒

(
∃ ũH , ũ ′

H • P
(
L ∧ H̃ ,T

)
∧ Q

) ]
⇔ 〈 definition of C 〉
C(π,T ) ��

Lemma 3

Proof. First, the proof that �π is monotonic w.r.t.  follows from Lemma 1.
Second, we show that �π is anti-monotonic w.r.t. .

S  T
⇒ 〈 by Lemma 1 〉

P
(
L ∧ H̃ ,S

)
 P

(
L ∧ H̃ ,T

)
⇒ 〈 predicate calculus 〉

P
(
L ∧ H̃ ,S

)

(
P
(
L ∧ H̃ ,T

)
∧ R ∧ Q ∧ P (L ∧ H ,S )

)
⇔ 〈 definition of �π 〉
T �π S

These two results imply that the relation formed by combining �π and �π —
namely, �π — is neither monotonic nor anti-monotonic w.r.t. . ��



Saoith́ın: A Theorem Prover for UTP

Andrew Butterfield
∗

School of Computer Science & Statistics
Trinity College Dublin

Rep. of Ireland
Lero: the Irish Software Engineering Research Centre

Andrew.Butterfield@sccs.tcd.ie

Abstract. Saoith́ın is a theorem prover developed to support the Uni-
fying Theories of Programming (UTP) framework. Its primary design
goal was to support the higher-order logic, alphabets, equational reason-
ing and “programs as predicates” style that is prevalent in much of the
UTP literature, from the seminal work by Hoare & He [HH98] onwards.
This paper describes the key features of the theorem prover, with an
emphasis on the underlying foundations, and how these affect the design
and implementation choices. These key features include: a formalisation
of a UTP Theory; support for common proof strategies; sophisticated
goal/law matching ; and user-defined language constructs. A simple the-
ory of designs with some proof extracts is used to illustrate the above
features. The theorem prover has been used with undergraduate students
and we discuss some of those experiences. The paper then concludes with
a discussion of current limitations and planned improvements to the tool.

1 Introduction

Saoith́ın1 is an experimental proof assistant for the logic used in UTP, sup-
porting a notion of UTP theory, an intuitive prover interface that supports the
equational reasoning style that is prevalent in [HH98] and much other UTP-
related literature, with facilities for the user to define the syntax and semantics
of their own language constructs. The tool consists of a core equational prover
we have developed in concert with a closely-coupled GUI interface. At present
its focus is on supporting foundational work in developing UTP, rather than the
application of the theory to a “real-world” design problem.

1.1 Motivation

We are doing foundational work in the UTP [HH98], which requires formal
reasoning with not only predicates, but also predicate transformers: R3(P) =̂
II � wait � P and predicates over predicates: P = R3(P). We also need to
∗
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use recursion at the predicate level: P=̂ μQ • F (Q), as well as partially-defined
expressions: s � s � (tr ′ − tr) ≡ tr � tr ′. The logic being used is there-
fore semi-classical (two-valued logic, but expressions may be undefined) and of
least 2nd-order. In addition, tool support for foundational work in UTP requires
the ability to easily describe new language constructs, which can themselves
be treated just like predicates, in keeping with the “programs are predicates”
philosophy [Hoa85] of UTP.

1.2 Structure

We next discuss related work (§2) in order to better justify our decision to “grow
our own” theorem proving assistant. We then proceed to look at the logic (§3,
type-system (§4), user defined language support (§5), proof procedures (§6), and
law matching (§7, with emphasis on the underlying foundations. We then discuss
useability and experience (§8) and finally finish with future work and conclusions
(§9).

2 Related Work

There are a lot of theorem provers in existence, of which the most prominent
feature in [Wie06]. Of these, the most obvious candidates for consideration for
UTP prover support are Isabelle/HOL[NPW02], PVS[Sha96], and Coq [BC04].
They are powerful, well-supported, with decades of development experience and
large active user communities. They all support higher-order logic of some form,
with a command-line interface, typically based around tactics of some form.
All three require functions to be total, but support some kind of mechanism
for handling partial functions (e.g. dependent types in PVS). Their reasoning
frameworks are based on some form of sequent calculus, and do not support
equational reasoning in a native fashion.

There has been work done on improving the user interfaces of the above theo-
rem provers. An interesting example was “proof by pointing” [BKT94] for CoQ
which allowed the user to select a subterm, whereupon it would generate and ap-
ply a tactic based on the subterm’s top-level operator. Whilst proof-by-pointing
is not supported in more recent versions of CoQ, it has been incorporated into
“Proof General” [Asp00], a general purpose user interface for theorem provers,
built on top of Emacs. It supports Isabelle and Coq, among others, and is ba-
sically a proof-script management system. In essence it supports the command-
line tactics of the provers, allowing the user to edit proof scripts at will, whilst
maintaining prover consistency behind the scenes.

Within the UTP community, there has been considerable work using Proof-
Power-Z to build models of UTP theories in Z in order to mechanise proofs. Early
work looked at deep embedding into Z of an imperative language whose semantics
were given using UTP [NW06]. Work extending this to a mechanisation of UTP
itself was also undertaken, driven by a desire to mechanically verify the semantics
of Circus [OCW09]. Recent work has looked at re-working the mechanisation of



Saoith́ın: A Theorem Prover for UTP 139

UTP in order to better support the hierarchical nature of UTP theory building
[ZC09], where alphabetised predicates are restricted to relations, then designs,
and so on. Some support for Z-like theories from UTP (such as Circus) can be
found as extensions implemented in the Community Z Tools project [MU05].

Whilst all of good pedigree, CoQ, Isabelle/HOL, ProofPower-Z and PVS all
have in common that they work best when used in the manner for which they
were designed—in none of these cases does this manner match the way we wish
to work in UTP, as described in the introduction. Ironically, the key inspiration
for the design of Saoith́ın came not from the above provers, but instead from
the one provided as part of the RAISE Development Method [GHH+95]. That
theorem prover had mechanisms for selecting sub-expressions and identifying
applicable laws for that sub-expression, a feature very close to that required for
the proof style that Saoith́ın supports.

3 The Logic

A subset of the syntax of the predicate logic of Saoith́ın is shown below:

P ,Q ∈ Pred ::= True | False | ¬ P | P ∧ P | P ∨ P | P ⇒ P | P ≡ P
| A | ∀−→v • P | ∃−→v • P | M | P [−→e /−→v ]

e, f ∈ Expr ::= v | M | expressions using +,×, �,∪, � . . . , v ∈ Var

In addition to the usual propositions and quantifiers, we also have atomic pred-
icates (A, boolean-valued expressions), meta-variables denoting arbitrary pred-
icates or expressions (M ), and an explicit substitution notation P [−→e /−→v ]. The
predicate meta-variables allow us to write conjectures and laws true for arbi-
trary predicates, while explicit substitution is required as many definitions in
UTP use it in such an explicit manner. The axiomatisation being used is one
for equational logic [Tou01], extended to support 2nd-order features, with the
inference rules (Liebniz, etc.) effectively being implemented by the law matcher
(§7).

Predicates in Saoith́ın can participate in a number of roles, of which the most
basic are laws and conjectures. Law are either asserted to be true (axioms), or are
conjectures that have been proven, and are now theorems. A theorem is then a
conjecture coupled with a proof. Some of the axioms/inference rules of predicate
calculus have side-conditions, but given explicit meta-variables and substitu-
tions, we find we can no longer treat side-conditions as statically checkable at
law-application time, necessitating an explicit representation:

V ∈ VSet ::= PVar
sc ∈ Side ::= True | M = V | M ⊆ V | M � ∩ V | c.M |

∧
{sc1, . . . , scn}

We read c.M as asserting that M is a condition (no dashed free variables),
and M � ∩ V means the free variables of M are disjoint from V . The use of
side-condition expressions is discussed further in §7.3.
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The basic unit of work in Saoith́ın is in fact a predicate coupled with a
side-condition and from here on we use the terms conjecture and law to refer to
such pairs. So we can view a Saoith́ın theory, as a named collection of named
conjectures, theorems and laws:2

Theory
name : Name
laws : Name �→ Pred × Side
cnjs : Name �→ Pred × Side
thms : Name �→ Pred × Side × Proof

Once a conjecture has been proven it is moved from conjectures to theorems
with the same name.

At present, Saoith́ın is very much an experimental tool, intended in the first
instance to support foundational work in the UTP. As a consequence of this, the
axioms and inference rules have not, in the main, been hard-coded, but instead
the user is free to add their own axioms. This clearly is very dangerous, but does
support experimentation. For example, two axiomatisations of predicate calculus
have been developed based on [MS89] and [GS94], and initial experimentation
suggests that the axiomatisation in the latter leads to easier proofs, due to less
choice being available at each step. Versions of Saoith́ın that disallow user
addition of axioms have been implemented for use in teaching, and we envisage
future versions of the tool being able to work in different “user-experience”
modes.

The interface to the logic presented to the user is, in the main, based on an
ASCII-based concrete syntax, that imitates the mathematical syntax as far as is
practicable. This ASCII syntax is used for both input and output. For example,
the predicates

[(∃ c • D ∧ L)⇒ S ] P [True/ok ]

are written ASCII-style as:

[[ ( exists c @ D /\ L ) => S ]] P[ TRUE // ok ]

Similarly, side condition
∧
{Q ⊆ {a, b}, e � ∩ {b, c}} is written as

coverP Q a,b ; notinE e b,c

An almost complete theory (less theorems) can be input and output as a
ASCII text file, whose extension is .uttxt (UTP Text). The file is structured
as a series of sections, each flagged by a header keyword. The first collection of
sections, between SYNTAXFROM and ENDSYNTAX keywords provide infor-
mation to support the parser. The remaining sections provide semantics infor-
mation. The first line of such text files is the theory name, optionally followed by
a version number. So a simple theory defining some laws and conjectures about
conjunction and disjunction could be written as:
2 We use Z schema notation here for convenience—we are not presenting a formal Z

model of UTP theories.
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ConjDisj 0

SYNTAXFROM

Logic

ENDSYNTAX

LAWS

"/\-comm" | P /\ Q == Q /\ P .

"\/-def" | P \/ Q == ~(~P /\ ~Q)

CONJECTURES

"\/-comm" | P \/ Q == Q \/ P

END

4 Types

We have a fairly simple notion of types with booleans and integers making up
basic types, a basic type Env that denotes a program environment (Name �→
Value), type variables, and then the capacity to build up set/sequence/map/free
types on top of these:

T ∈ Type ::= B | Z | Env Base Types
| τ | ? Type variables
| PT | T ∗ | T+ | T × · · · × T Composite types
| T → T | T �→ T | T � �→ T Function types
| nm • V ‘ |′ . . . ‘ |′ V Free Types

V ∈ Variant ::= nm 〈〈T × · · · × T 〉〉 Free Type Variant
nm ∈ Name Names

The type-system supports Hindley-Milner style polymorphism, and, for simplic-
ity, treats powerset, sequence and function types as distinct3. At present the
main role played by types in the prover is to limit the search for applicable laws to
those that match the types of expression involved. To this end a type-inferencing
algorithm is used to associate types with all expressions. It uses user-supplied
information about the types of named functions to deduce the relevant types
for entire expressions. This information is stored in a table matching function
names to their types, which of course has to be an additional component of a
theory:

Theory
. . .
types : Name �→ Type

Types have an ASCII syntax as well, as exemplified by this example:

Z× P(τ∗)→ B Z x P t* -> B

We can introduce types into a UTP textfile using a TYPES section, so for
example, from a theory of arithmetic, we might have:
3 We could add axioms to a theory relating type-assertion predicates if we wished to

link these types.
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TYPES

* : (Z x Z) -> Z .

+ : (Z x Z) -> Z .

neg : Z -> Z

5 Adding Language

The main purpose of UTP is to allow the construction, comparison and con-
nection of theories about a variety of modelling, specification and programming
languages. This requires us to be able to specify two key aspects:

1. The types of observations of such systems that we wish to discuss, captured
by the notion of observation variables ;

2. A description of the language under study: both its syntax and semantics.

5.1 Alphabets

A key feature of UTP is its use of alphabetised predicates, where the alphabet is
a collection of typed observation variables. At present, the support in Saoith́ın
is limited to theories with fixed alphabets, such as the standard reactive systems
theories, or theories where all program variables are encapsulated in a single
state : Name �→ Value observation. A proposal to broaden this to cover varying
alphabets is under consideration for a future revision of the prover. At present,
we simply record the (fixed) set of observation variables and their types in a
table:

Theory
. . .
obs : Name �→ Type

The variables listed in the domain of objs are “known” to the theorem prover
and this influences the operation of the matcher. This information is also fed
into the type-inferencing system, complementing the types information. We can
specify this in the text file, as in the following example for a theory of designs:

OBSVAR

ok : B .

ok’ : B

5.2 User-Defined Language Constructs

In order to be able to describe a theory about the language, we need to be able
to describe the language, so we provide facilities to allow the specification (to
Saoith́ın) of the syntax of language constructs.

First, we note that the expression language is easily extendible as the parser
automatically converts token streams of the form nm e into the application of
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(function) nm to expression argument e. However their effective use often re-
quires the user to give them a type, entered in the types table. New infix operators
however are not automatically parsed, and need to be declared in advance, using
a simple form associating an operator name with its precedence and associativity.
This infix information is stored in a table in the theory:

Theory
. . .
precs : Name �→ Precedence

A predecence is a pair of a number and an associativity (None/Left/Right), with
higher numbers denoting tighter binding strengths4. In a theory of designs, we
want to introduce # as an infix operator so we can declare it in a PRECE-
DENCES section:

PRECEDENCES

|- 55 None

A user-defined language construct is an interleaving of existing forms (variables,
expressions, types, predicates) with new tokens, including also some list forms
with specified delimiters and separators. So a theory needs to contain a table
listing syntax specifications:

Theory
. . .
lang : Name �→ SynSpec

There is a simple ASCII syntax for defining new language constructs, basically an
interleaving of keywords V (variable), T (type), E (expression) and P (predicate),
keysymbols * (list) and # (counted-list) with arbitrary syntactical elements. The
keysymbols follow a keyword and are themselves followed by a token denoting
a separator. So E*, denotes a comma-separated list of expressions, wherease
V#, is a comma-separated list of variables, whose length must match that of
any other list present also defined using #. A theory of designs and imperative
programming might declare its syntax as follows:

LANGUAGE

"|-" | " P |- P " .

":=" | " V := E " .

"::=" | " V#, ::= E#, " .

";" | " P ; P " .

"**" | " E ** P "

(Here ::= is intended to be simultaneous assignment). All language constructs
so specified are considered as new instances of predicates, and so can them-
selves appear and be parsed as language elements, so allowing easy nesting of
such constructs. Any specifications that define an infix operator can also have a
precedence declaration.
4 Currently ∧: 80,∨: 60,⇒: 30,≡: 20.
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There are no extra facilities provided to describe the semantics of user-
constructs, as such laws are simply provided by the user as appropriate ax-
ioms in the theory. For our design theory we might give the semantics of # as
follows:

LAWS

"DEF |-" | P |- Q == ok /\ P => ok’ /\ Q

Note these axioms can be written using the full predicate calculus language
shown here, and hence cannot be considered as some form of conservative exten-
sion of pre-existing axioms. In addition, for any law regarding a user-construct to
be useable, there must be a non-empty collection of laws satisfying the following
conditions:

1. Each law has a name prefixed with “DEF�uname”, where uname is the name
in lang of the user-construct.

2. Each law has the form LHS ≡ RHS where LHS is an instance of the uname
construct.

3. Any instance of the language construct must match at least one of these
laws.

4. The RHS s must not mention the construct explicitly, nor should it be pos-
sible to construct a cycle via mutual recursion with other user-constructs.

The reason for this set of restrictions is because these laws will be used to auto-
matically expand language definitions “under the hood” in order to evaluate free
variables and side-conditions (§7.2). They do not preclude our introducing laws
with language recursion, provided their names do not start with “DEF�uname”.

Having introduced our language constructs we then will want to give their
semantic definitions as axioms, posit some conjectures, and hopefully prove them
to be laws of the language. However, the parser needs to know about language
syntax before the rest of the theory text file can be parsed, as we are introducing
new lexical elements. So every UTP text file has to have a syntax preamble,
immediately after the first line gving the theory name. The preamble has the
following format:

SYNTAXFROM
list of zero or more theory names, separated by spaces
optional LANGUAGE and PRECEDENCES sections in any order
ENDSYNTAX

The theories listed are those with syntax sections defining language constructs
used in this theory in addition to the ones it introduces itself.

6 Proofs

Given a conjecture in a theory, any attempt to prove it will take place in a general
proof context, adopting one of a number of available strategies, and making use
of a variety of builtin proof procedures. In general, we do not work with a single
theory, but rather a stack of them: the bottommost are the most fundamental
and general whilst theories higher up the stack tend to be more specific and
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higher-level. The key idea is that a proof of a conjecture can depend on its own
theory, as well as material from theories below it in the stack. The stack concept
is provided to assist in the encapsulation of theories, and for this reason circular
dependencies are not allowed.

When initially started, Saoith́ın has a proof stack with a single entry, the
ROOT theory, defining the precedences of the propositional infix connectives.

The user can then load up the desired theories, and the current state of the stack
is then displayed in the application’s main (“top”) window:

This stack state is saved into a file upon exiting the application, and restored au-
tomatically upon re-entry. Double-clicking on a theory name opens up a tabbed
window to allow theory components to be inspected:
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There are a number of strategies we can employ to prove a goal conjecture G,
based on its top-level structure:

Reduce/Deduce. We can simply attempt to take G and use proof procedures
to transform it to True (or equivalently, an existing law).

LHS-to-RHS. If goal G has the form L ≡ R, we can try to transform the LHS
L until it is equivalent to R (we could also try RHS-to-LHS).

Reduce-Both. Again, for the form L ≡ R, a way to proceed might be to try
and transform both sides into something equivalent.

Law-Reduce. Rather than starting with the conjecture, we start with an in-
stantiation of an existing law, and transform that until equivalent to our
conjecture. This strategy is the basis for inductive proofs in Saoith́ın.

Assume-then-. . . If the conjecture has the form A ⇒ C , we can assume the
LHS antecedent A as a law, adding it to the proof context, and have it
available to assist in proving the consequent C using some other appropriate
strategy.

Saoith́ın supports the above strategies, and will support more in the future.
In general, the chosen strategy may modify both the conjecture and its proof
context in some way, and will have a completion criteria that depends on that
modification. We shall now discuss some of the concepts just introduced in a
little more detail.

Double clicking on a conjecture starts a proof by opening up a proof window.
From the Setup menu a strategy can be chosen, for example Reduce:

In this case the entire goal appears, with the focus, currently the whole goal,
underlined. Given that all atomic predicates are expressions of boolean type, we
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find more useful typing information to be the notion of underlying type: the types
of the sub-expressions just below the top-level of the atomic predicate. As the
goal is an atomic predicate comparing two integers, we see that its underlying
type is Z × Z. If attention moves down into sub-expressions, then the full type
of that component is displayed, as the notion of underlying type only applies to
atomic predicates at the top-level.

6.1 Transformations

We mentioned taking a goal and transforming it in some way. As Saoith́ın
favours the use of equational reasoning, such transformations generally involve
replacing the goal, or a sub-part of it, by a logically equivalent expression. So
a proof becomes a chain of equivalences linking the initial goal to one that is
equivalent to the required final predicate, the specifics of which are of course
strategy-dependent.

The primary mechanism for effecting such transformations is a process of
selecting a sub-part of the current goal (the “focus”) and then applying the
desired rule. The rules available for application are dependent on the focus,
but always include the option to match it against the laws in all the currently
accessible theories. The details of this matching is discussed later (§7), and for
now we give a brief survey of other builtin transformers that can be used:

Tidying. Basically a collection of builtin operations to flatten and sort predi-
cates whose top-levels are disjunctions and conjunctions.

Simplify. Effectively constant-folding, doing fairly obvious propositional sim-
plifications.

Normal Forms. Converting predicates to either disjunctive or conjunctive nor-
mal form

Application. Reducing applications of abstractions to arguments (β-reduction)
or applying explicit substitutions to the underlying predicate.

Quantifiers. Specifying explicit α-substitution, or existential witnesses. If us-
ing the Law-Reduce strategy, then we can also strip out top-level universal
quantifiers, provided the focus is the whole goal.

Splitting. Given long conjunction/disjunctions, it is often useful to be able
to re-structure them into specific groups in order to allow certain laws to
become applicable.

Most of these can be invoked by a single key shortcut (see Help menu in Proof
Window)

A proof is complete when goal transformation makes it “equivalent” to an end-
point predicate as determined by the strategy in use. The notion of equivalence
we use is that of a slight generalisation of α-equivalence, that flattens nested
quantifiers of the same type, so that the following are considered equivalent:

(∀ x • ∀ y • P) (∀ x , y • P) (∀ y, x • P) (∀ y • ∀ x • P)



148 A. Butterfield

6.2 Shorthands

A useful facility in Saoith́ın is the ability to define meta-variables as short-
hands for longer, more complex predicates. Examples of this in UTP include the
definition of J in the reactive theory [HH98, Chp.8, p208]:

J =̂ (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref

These definitions can be made as part of a theory, or can be introduced on the
fly during a proof to replace a long predicate by a shorthand. During a proof
it is then possible to replace such a meta-variable by its definition, or even to
recursively expand all such shorthands in a predicate—even if the shorthands
are themselves mutually recursive. To support this facility, we must add tables
to a theory to record these shorthands, which can be introduced for type and
predicate meta-variables, as well as regular variables:

Theory
. . .
typedef : Name �→ Type
exprdef : Name �→ Expr
preddef : Name �→ Pred

All of the names in these tables are “known”, which affects how they participate
in law matching. These tables also have another use to ensure the soundness of
certain strategies, as detailed below.

6.3 Assumptions

The “Assume-” strategies are an implementation of the Deduction Theorem:

Φ # A⇒ C iff Φ,A # C

where the antecedent is elevated (temporarily) to a law for the purposes of
this proof alone. However we need to be careful here [GS94, p72], to ensure
that all meta-variables in the “assumption-now-law” can only match against
themselves—in essence any such variables in A above must be temporarily re-
stricted to only stand for themselves. We create a temporary theory on the top of
the theory-stack, and add in as new laws, the antecedent A, suitably decomposed
(e.g.):

Φ # (A1 ∧ A2 ∧ A3) ⇒ ((A4 ∧ A5 ∧ A6) ⇒ C )

	

Φ,A1,A2,A3,A4,A5,A6 # C

We then use the meta-variable tables just introduced in §6.2, adding in entries of
the form M =̂M for every “unknown” meta-variable in A, and finally renaming
all the M in these tables, Ai and C to be fresh, so as to avoid clashes with
other laws. This effectively prevents the law matching from binding these meta-
variables to anything else during the proof. Once the proof is complete, the
temporary theory is removed.
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6.4 Induction

The current support for induction is via the Law-Reduce strategy, using the
appropriate induction axiom, instantiated appropriately with the conjecture.
This is then simplified until the the goal is itself reached. For example, we may
have the following inductive axiom for natural numbers:

M [0/x ] ∧ (∀ y • M [y/x ]⇒ M [y + 1/x ])⇒ ∀ x • M

(Note that the assumption here is that x , if free in M is a natural number).
Given addition defined recursively on its left argument, we may wish to prove
that n+0 = n, for all natural n. If we invoke the Induction strategy in Saoith́ın,
and upon selecting the above induction axiom, and identifying n as our induction
variable, a goal is generated by substituting our conjecture for M , and n for x ,
to obtain:

(n+0 = n)[0/n] ∧ (∀ y • (n+0 = n)[y/n] ⇒ (n+0 = n)[y +1/n]) ⇒ ∀n • (n +0 = n)

Switching to an Assume strategy here doesn’t help as we want to manipulate
the antecedents. Successive transformations, applying substitutions and using
the definition of +, plus other axioms associated with the natural numbers,
allow us to reduce the antecedents to true, leaving

∀n • (n + 0 = n)

Because we are reducing from an instance of an axiom, this is a theorem, so we
can strip off the top-level universal quantification to get our original conjecture:

n + 0 = n

At present Saoith́ın requires us to handle induction proofs as one lump as
just illustrated, but future strategy/case-handling enhancements will make it
possible to do a more “traditional” proof, where the base and inductive cases
are effectively proven separately.

6.5 Caveat Emptor

Before moving on to look at the law matching facilities we need to point out
an important aspect of the transformations discussed in this section: they have
built-in to them certain assumptions regarding such notions as α-equivalence, the
associativity, commutativity and idempotence of conjunction and disjunction,
and implication trading, to name but a few. It is therefore important that any
axioms introduced in theories do not conflict with these internal assumptions
regarding the logic5.

5 This is in fact an argument for having a built-in logic theory that is compatible with
the above assumptions.
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7 Matching

The basic idea behind law application in Saoith́ın is that the goal focus is
matched against one or many laws. Those matches that succeed return a bind-
ing and a replacement template, and the user can then select which successful
match to apply. The focus is replaced by the template, instantiated using the
bindings. The matching we perform is basic structural matching of one test
predicate against another treated as a pattern, with success returning a bind-
ing that matches pattern variables to test sub-predicates. We are not performing
unification, either in isolation, or w.r.t. to some equational theory [BL98]. This is
in contrast to Isabelle, for example, which uses higher-order unification [Pau88].
However, we do not simply match F against all of L —if L has certain forms,
we can match against part of the law, offerring another part as a replacement:

L is P ≡ Q : If the law is an equivalence we look for matches against the LHS
and RHS separately, offering the other side as a replacement.

L is A⇒ C : Given an implication law, a partial match against either the an-
tecedent or consequent is still useful. Using equational reasoning, a match
against A can offer A ∧ C as a replacement, whilst a match against C can
be replaced by C ∨ A.

So the upshot is that we can get a number of different types of matches against
laws with a certain structure. We now proceed to discuss the process of matching.

7.1 Basic Matching

The first phase of matching is a basic structural comparison of a test predicate Q
(the goal focus) against a pattern predicate P (part of a law), which either fails,
or succeeds and returns an incomplete binding, mapping pattern meta-variables
to corresponding fragments of the test predicate. A key feature to note is that
pattern variables and meta-variables match anything of the appropriate class
(expr/type/predicate), provided they are not “known”. Remember, a name is
“known” if it appears in any of the following theory tables: obs , typedef , exprdef
or preddef . A known name can only match against either itself or its definition
as found in those tables.

None of the above gives any clue as to why basic matching returns an incom-
plete binding. The reason for this lie in three areas: our use of explicit substitu-
tions, the fact that ordering is not important in substitutions or quantifier lists,
and our desire to support a lot of flexibility in matching quantifiers. The moti-
vation for the latter stems from the fact that Saoith́ın is designed to support
foundational work in the UTP, and so we want to be able to derive very general
laws. For example, we want to have general laws like:

(∀ x , x1, . . . , xn • P) ≡ (∀ x1, . . . , xn • P), x /∈ P

where we can somehow specify that n ≥ 0 and avoid listing the xi . Also, given
the above law and the axiom

(∃ x1, . . . , xn • P) ≡ ¬ (∀ x1, . . . , xn • ¬ P)



Saoith́ın: A Theorem Prover for UTP 151

we would like to be able to prove

(∃ x , x1, . . . , xn • P) ≡ (∃ x1, . . . , xn • P), x /∈ P

To this end, the syntax of quantifiers in the logic of Saoith́ın is in fact more
complex than suggested so far. Instead we view a quantifier as being followed
by two comma-separated lists of variables, with a semicolon separating the two
lists:

∀ x1, . . . , xm ; xs1, . . . , xsn • P m s-qvars, n m-qvars
∀ x1, . . . , xm • P m s-qvars, 0 m-qvars
∀ ; xs1, . . . , xsn • P 0 s-qvars, n m-qvars

Either list may be empty. The first list is of so-called “single” quantifier variables
(s-qvars), each of which corresponds to a conventional quantifier variable, and,
when occurring in a pattern predicate, are required to match distinct s-qvars from
the test predicate. The second list is of “multiple” quantifier variables (m-qvars),
which are intended to represent many quantifier variables. A m-qvar in a pattern
can match any mixture of s-qvars and m-qvars, including none. Matching is now
complicated by the fact that the ordering of s-qvars, m-qvars is irrelevant, so in
principle we have to try every possible permutation. Basic matching will succeed
for simple cases, basically those with only one pattern qvar, but otherwise will
return a deferred match in the form of a test-qvars/pattern-qvars pair, in addition
to any bindings from the quantifier bodies. The basic matching is then followed
by two phases, one that tries to resolve the deferred matches, and then a step
to check the side-conditions. Both of these phases need to know about the free
variables of the goal.

7.2 Free Variables

Many laws have side-conditions attached, all of which are conditions regarding
the free-variables. However, the presence of explicit meta-variables and substitu-
tion complicates the calculation of the free variables of a predicate. To see this,
we first present some clauses of the definition of free variables of a predicate:

fve = all variables free in e
fv(P1 ∧ P2) = (fvP1) ∪ (fvP2)
fv(∀−→v • e) = (fve) \ −→v

fvM = fv.M
fvP [e1, . . . , en/v1, . . . , vn ] = (fvP) \ {v1, . . . , vn}

∪
⋃
{i : 1 . . .n | vi ∈ fvP • fvei}

We see that for meta-variables we need to return the fact that computation of
their free variables needs to be held until they are instantiated at some later point
in time. With substitution, we see that the resulting set is contingent upon the
freeness or otherwise in P of the substitution target variables (v1, . . . , vn). The
upshot of all this is that we need to represent the free-variables of predicates using
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a free-variable set-expression, rather than just a simple variable enumeration.
The required syntax of such expressions is as follows:

s ∈ SetExpr ::= {v1, . . . , vn} Enumeration, n ≥ 0
| fv.M Meta free-variables
| s2 \ {v1, . . . , vn} Set Difference, n ≥ 0
|
⋃

(s1, . . . , sn) Union, n ≥ 0
| m 
 s Conditional Set

m ∈ Member ::= a ∈ s Element Membership
|
∧

(m1, . . . ,mn) Conjunction, n ≥ 2

Most are self explanatory, except conditional set membership m 
 s , which
denotes set s if m is true, otherwise is empty.

A further complication arises with the user-defined language constructs. The
free variables of these can only be established by expanding out their definitions.
If we were simply to report “cannot tell” for the free variables of such constructs,
then we would be unable to match any law involving a user-construct that had
a side-condition, and would be forced to expand them out as an explicit proof
step in any case. As one of the aims of UTP is to support laws at the language
level, without always having to expand out the underlying predicate form, this
is not a viable solution.

Accordingly, the algorithm for computing free variables expands language def-
initions on-the-fly, to get to a predicate form to establish its free-variables. This is
why every language construct has to have defining laws with the name and form
described in §5. This on-the-fly activity is invisible to the user, occurring behind
the scenes. This explains why the language definition laws cannot be mutually
recursive, otherwise this procedure could not be guaranteed to terminate.

7.3 Match Completion

Once a basic match is done, we want to try to complete it by using context
information to figure out a suitable qvar matching. The context information we
use includes the bindings already obtained, some which may pre-determine how
qvars should match, as well as any information regarding the free variables of the
focus, as well as side-conditions for both the goal and the relevant law. This pro-
cess is quite complex and we omit any further details, apart form noting that in
complicated cases it may fail to find a valid matching even if one exists. However
there is a work-around by using other proof steps to re-organise quantifiers until
matching does work. For a similar reason, the checking of α-equivalence used to
terminate a proof is also incomplete and may fail to detect such an equivalence
— the same work-around can be used here as well.

Finally, we check that the law side-condition, if any, when translated in
terms of the goal using the bindings, is actually a consequence of the goal side-
condition, if any: sclaw ∧ scgoal ≡ scgoal . This is achieved by code that auto-
matically evaluates/simplifies a side-condition using free-variable set-expressions
and then establishes that the above equivalence holds. This is facilitated by the
existence of a normal-form for side-conditions.
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Fig. 1. Saoith́ın Proof Example

8 Usage

Here we show a proof (that x := e; x := f = x := f [e/x ]), using the reduce
both sides strategy (Fig.1). A number of steps have already been performed,
expanding the definitions of := and #, with the steps shown in reverse order
(first proof step last). The user has right-clicked, bringing up a possible list of
replacements. Law matching can return a large number of successful matches,
and these need to be presented to the user in a manner that makes it easy for
them to select the law they wish to apply. There are basically two ways for a
user to request law matching: one displays all the matches in a special window
for the user to peruse, whilst the other displays up to 20 of them in a popup
menu for immediate selection. In both cases we need some way to rank matches
so the most useful appear first. In essence, we need some form of heuristics that
can take a law match and compute a ranking number. There has been a limited
amount of experimentation in this area, and it is a difficult area to get right.
While at present the heuristics are hard-coded, we expect to improve matters to
give the users more control in this area in future. The performance of the law
matching is excellent at present, with a virtually instant return of results, while
the GUI performance can be a little slow when inspecting large theory tables,
so this is an obvious area for improvement.

Earlier versions of Saoith́ın have been tested on 3rd-year Computer Science
students at TCD who have taken an elective module on Formal Methods, which
presents the subject through the UTP framework. Initially they were shown
the use of the prover using a logic module with initial laws drawn from the
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axiomatization of equational logic in [GS94], material that they studied in their
first year. Then they were asked to prove conjectures arising from useful library
theories, such as Sets or Lists. Most problems reported by the students had
to do with installation or user-interface behaviour issues—most students found
the proof aspects easy to apply once these initial hurdles were overcome, and
feedback from them has been used to improve the tool. We have used the tool
to produce a wide range of proofs of UTP relevance, of which the following is
just a short representative list:

(σ � τ)− σ = τ S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3)

P # Q ≡ P # P ∧ Q x := e; y := f ≡ y := f [e/x ]; x := e, y /∈ e

R3(R3(P)) ≡ R3 R2 ◦R2 = R2

9 Conclusions and Future Work

We have given motivation for, and presented, Saoith́ın, a theorem-proving as-
sistant for UTP. The current state of the tool is still experimental, with consid-
erable scope for enhancement and improvement, but is already a useful tool for
experienced6 developers of UTP foundations.

Apart from the obvious need for comprehensive library of useful theorems
from general logic, arithmetic, set, list and map theory, there are still a few
foundational issues that need to be resolved. The current limitation to fixed
alphabets is too restrictive, but we have a plan, using special meta-variables
known to the pattern matcher, to be able to describe generic laws that cross a
number of theories: the gold standard here would be a definition of sequential
composition

P ; Q =̂ ∃OBSm • P [OBSm/OBS ′] ∧ Q [OBSm/OBS ], OBSm fresh

that works in any theory whose observations are homogenous (meta variables
OBSm , OBS ′ and OBS would need special pattern matching and binding treat-
ment). The treatment of undefinedness in a way that limits its impact on general
proving is still under exploration, and we are exploring various ideas in this area
[Art96]. Given the existing work on UTP and Circus using Proofpower-Z, we
also hope to explore the ability to take the GUI front-end of Saoith́ın, and
couple it to ProofPower-Z as a backend, given some appropriate transformation
of how proofs and theorems are presented.
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6 Not too trusting!
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feedback about, Saoith́ın. Saoith́ın is written in Haskell [JHA+99], man-
aged using the distributed source-code manager Mercurial [O’S09], and is released
open-source underGPLv2, at http://www.scss.tcd.ie/Andrew.Butterfield/
Saoithin/. The version available at the time of writing is 0.86α10.
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Abstract. Interference problems in aspect-oriented designs refer to the unde-
sired interference between aspects and base programs that can lead to the emer-
gence of unexpected behaviors, which do harm to the correctness of the entire
system. We present a rigorous approach to analyzing the interference problems
in aspect-oriented designs. Formal representations of classes and aspects are de-
fined in terms of designs in UTP, while the weaving techniques in AOP are in-
terpreted as the compositions of corresponding formal models. Conflicts between
an aspect and base programs as well as between two aspects can be detected by
calculating the weakest preconditions. Furthermore, the calculation also provides
informative guidelines on how to solve the conflicts it found. Early detecting and
removing conflicts in aspect-oriented design models can improve their qualities
and save plenty of costs.

1 Introduction

Separation of concerns has been proved as an effective strategy to handle the ever grow-
ing complexity of software. It suggests identifying and separating artifacts of a software
system relevant to every specific target, requirement or purpose from irrelevant ones,
and manipulating them one by one.

Applying this strategy, Aspect-oriented programming (AOP) [10] enables engineers
to design and implement a software’s core functionalities and crosscutting concerns, as
a base system and separate modules, namely aspects, respectively. Before execution,
AOP’s weaving mechanism can integrate those aspects into the base system on pre-
defined points, called join points. This new paradigm helps to create a more coherent
system since it avoids codes of concerns to be scattered everywhere in a system and
tangled together with unrelated codes.

Despite of the improvement in reusability and maintainability, AOP brings great dif-
ficulty in reasoning the behaviors of software obtained by weaving aspects into base
program since base programs and aspects may interfere with each other in an undesired
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manner. After weaving, unexpected results can emerge. This is the so-called interfer-
ence problem in AOP. To gain a high flexibility in the interactions between aspects
and base programs, AOP allows aspects to be woven into the base programs in many
positions, including private methods of classes. As a result, aspects may modify any
variable’s value and change the control flows in base programs arbitrarily. Since on
most occasions, base programs and aspects are designed and implemented by different
developers, interference, even conflicts between base programs and aspects are prone
to occur in large software with usages of AOP.

AOP also aims for the reuse of aspects, as the same concern might be considered in
many different systems. It is often the case that more than one aspect is integrated into
one system. Unfortunately, when multiple aspects are woven into the same base codes,
they may interfere with each other too, as developers of aspects can not anticipate what
aspects will be woven together and in which order they are woven.

These two interference problems do harm to the correctness and reliability of soft-
ware systems using AOP. The weaved software system could be incorrect even both
base codes and every aspects individually are correct. Furthermore, when woven with
more than one aspects, the weaved software system may be correct in one weaving or-
der and incorrect in another. To ensure the quality of aspect-oriented software systems,
the methods to analyze interference problems, to detect and resolve semantics conflicts,
need to be carefully studied.

In this paper, we present a formal approach to analyzing interference problems in
aspect-oriented designs, detecting and resolving conflicts problems by formal induc-
tion techniques. The formal models of base codes and aspects are defined in terms of
designs in UTP [5]. And, the weaving mechanism is treated as the composition of the
formal models. Based on these formal representations, rules for reasoning interferences
between a basic system and its aspects, as well as interferences among all its aspects are
studied which rely on calculations of weakest preconditions. In addition, when a con-
flict is detected, the calculating process on weakest preconditions can give guidelines
on how to fix it. The approach introduced in this paper can be easily integrated with
AOP’s development processes, as functional specifications of classes and aspects can
be added as annotations to design models and can be analyzed separately. The ability to
locate and resolve semantics conflicts in AOP design models in the early develop phase
helps to assure the quality of AOP software with less costs.

We begin in Sect. 2, where basic concepts of aspect-oriented programming are in-
troduced. Sect. 3 gives our formal foundations, theories of design, which are used in
Sect. 4 to formalize classes, aspects and the weaving mechanism in AOP. Sect. 5 studies
the methods for detecting conflicts between base programs and an aspect, and between
two aspects respectively. We compare our approach with related works in Sect. 6 and
conclude our paper in Sect. 7. We use the tele communication simulation system as a
case study to illustrate the approach.

2 Aspect-Oriented Programming

Basic concepts of Aspect-oriented programming are illustrated in this section. An ex-
ample, a tele communication simulation system [12] is given to help the understanding
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of these concepts. Later in the paper, it is shown that, with the help of our interference
analysis method, interference problems in this example will be found and solved.

AOP is built on top of the object-oriented programming. Base programs in AOP
are made of classes while crosscut concerns in AOP are constructed as aspects. An
aspect’s definition declares that to fulfill a specific concern, in which positions of the
base program, according to what rules, what actions need to be injected. In terms of
AOP, they are defined as join points, point cuts and advices respectively. Two widely
used join points, before the execution of methods and after the execution of methods
are considered in the paper. An advice is a piece of object-oriented codes, very similar
to a method’s definition. Three types of advices are treated in this paper. The advice
before requires to be executed before a join point and after it is executed, the control
flow returns to codes next to the join point, while the advice after needs to be executed
after a join point. Codes in an around advice can take the place of the codes in the join
point it encounters. Usually, around advices are used when some original logics in base
programs need to be overridden. The definition of a point cut gives a rule to determine
whether or not an advice can be integrated into the base program on a specific join point.
Rules defined in point cuts are matched with join points by syntactical comparisons.

To illustrate the use of aspect-oriented programming, we introduce an example, the
tele communication simulation system and show how to apply an aspect-oriented de-
sign scheme. It is a simple simulation of a telephone system where users can make
phone calls. Its base system consists of devices and connections, in which a valid phone
call is represented as a connection between two devices. There are two features in con-
sideration to extend the base system’s functionality: the call interruption and the call
divert. The feature call interruption interrupts the connection on the callee’s side when
an incoming call is required to reach him and his line is busy. The service call divert can
forward an incoming call to a busy callee to another device whose number exists in the
forwarding list. Here, both features need to intervene at the beginning of a connection
and check the status of destination in the incoming call.

In an aspect-oriented design of the system, both features are encapsulated as indi-
vidual aspects. In the base program, the method complete in the class connection is
responsible for setting up a connection between two devices, the caller and the callee.
These two aspects share the same join point, before the execution of the method com-
plete. And, both aspects use the same type of advice, before, to handle a busy line
according to their own requirements. The point cuts defined in both aspects declare that
these two advices should be applied to the method complete of the class connection.

At first glance, it seems that these two aspects are interference-free with each other
since the corresponding concerns they implement are irrelevant. However, in fact, weav-
ing the aspect call divert into the base phone service will violate an important invariant
assumed by the base program, which means the aspect call divert and the base program
are not interference-free. Furthermore, adding these aspects into the base phone service
according to the order, call divert, call interruption, will cause a conflict problem too,
since the latter aspects will disable the former’s effect. Using this example, we will
show how our specification and induction approach can detect potential conflicts arisen
from weaving aspects into base programs and give guidelines to remove them.
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3 Formal Foundations

Before giving formal specifications to base programs and aspects, we introduce our
notation for writing specifications. The most fundamental notion in our framework is
a design [5]. A design D over an input alphabet inα and an output alphabet outα is a
predicate of the form: p(inα) � R(inα, outα) and its meaning is defined by

(p � R)
def
= (ok ∧ p) ⇒ (ok′ ∧ R).

which asserts that if the execution of design D starts successfully, i.e. ok is true, from
a state in which the precondition p holds, it will terminate successfully, i.e. ok’ is true,
in a state satisfying the postcondition R. Notice that in a design, an input variable is an
unprimed identifier and an output variable is a primed one.

With the use of the auxiliary boolean variables ok and ok′, designs are closed un-
der the conventional programming operators, such as assignment “x := e”, sequential
composition “;” and conditional choice “D1 � b � D2” (if b then D1 else D2). We also
define the special designs ⊥ as the “weakest design” true and � as “strongest design”
false. An assertion (or guard) g is a predicate over the input alphabet and can also be
defined as a design, denoted by g�

g�
def
= skip � g � false

where skip is the design true � ∧x∈inαx′ = x that does not change any variable. Thus, a
guarded design g�; D behaves like D when g holds, and deadlocks otherwise.

We also define parallel composition, nondeterministic choice and sequential compo-
sition as below:

(p1 � R1) ‖ (p2 � R2) ≡ (p1 ∧ p2 � R1 ∧ R2)
(p1 � R1) 	 (p2 � R2) ≡ (p1 ∨ p2) � ((p1 ∧ R1) ∨ (p2 ∧ R2))
(p1 � R1); (p2 � R2) ≡ (p1 ∧ ¬(R1;¬p2)) � (R1; R2)

Refinement between designs is defined as logical implication, and data refinement is
handled by introducing a refinement mapping between the state spaces of the two de-
signs. All the above operations on designs are monotonic with regard to the refinement
relation. Calculus on design refinement can be found in [5].

The weakest precondition (wp) calculation has been widely used in programs anal-
ysis. The link from the design calculus to the theory of predicate transformers is given
by the following definition

wp(p � R, q)
def
= p ∧ ¬(R;¬q)

4 Modeling Base Classes and Aspects

Rather than dealing with aspect-oriented programming languages, this paper focuses on
the models used in designing aspect-oriented software. The aspect-oriented program-
ming is built on the basis of object-oriented technologies. Base programs in aspect-
oriented software are organized in classes. Class models are the most important artifacts
used to present designs of aspect-oriented software. Thus, we begin with the definition
of functionality specifications of classes.
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Definition 1. A class is a collection of fields definitions and methods definitions,
C = 〈FDef, MDef〉, where

– FDef is a set of field definitions, denoted by C.FDef. Each member of this set has the
form x : T where x and T represent the name and type of the field respectively.

– MDef is a set of method definitions, denoted by C.MDef. A method m(in inx;out outy)
defines the name m, the list of input parameters inx and the list of output parame-
ters outy. Each input or output parameter declaration is of the form u : U giving the
name u and the type U of the parameter m.

For simplicity, we use x and y to represent the list of input parameters and the list of
output parameters respectively.

Example 4.1. For the example, the tele communication simulation system illustrated in
section 2, the class Connection in its base system can be represented as follows:

FDef = {status : string, origin : Device, dest : Device}
MDef = {locate(onum : string, dnum : string), complete(), drop()}

When class models are used to describe the structure of an application, implementation
details of each method will be hidden. Instead, descriptive specifications of methods’
functions are given. Thus, when modeling a class’s function, we will not break into the
body of each method and describe its operation from scratch, but specify its function in
terms of states of its fields before and after its execution.

The functional specification of a class is defined as a class’s behavior.

Definition 2. A class C’s behavior is a quadruple Behv(C, Init, MSpec, Inv), where

– C is a class,
– Init is a predicate that defines the initial values of the fields declared in C.FDef,
– MSpec assigns each method m(x; y) belonging to C.MDef a static functionality

specification as a pair p(x, I.FDef) � R(x, I.FDef, y′, I.FDef′) of preconditions and
postconditions, where non-primed and primed variables represent the values of the
variables in the pre and post state of the execution of the method, respectively.

– Inv is a class invariant which is assumed to be hold before and after each method’s
execution.

The class invariant plays a vital role in designing a class’s behavior. It describes im-
portant properties of a class needed to be preserved during its execution by enforcing
constraints on methods’ operation. In practice, business rules and constraints of appli-
cations are often translated as invariants of its constituted classes.

Example 4.2. For the class Connection given in example 4.1, in short, its methods op-
erate according to the following specifications: Given two phone numbers, the method
locate can find the corresponding devices. The method complete is responsible for con-
necting two different devices required by an incoming call. The method drop can drop
the current connection. An important property must be ensured in this class is that
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a device can not connect to itself. A complete specification of the class Connection

represented as its behavior are given as follows:

Init
def
= true � status = disconnected ∧ origin = null ∧ dest = null

MSpec(locate)
def
= onum �= dnum �

∃de1, de2 : Device • de1.num = onum ∧ de2.num = dnum =⇒
origin′ = de1 ∧ dest′ = de2

MSpec(complete)
def
= status = disconnected ∧ origin �= null∧

dest �= null ∧ origin �= dest �
status′ = connected∧
origin.d status′ = busy ∧ origin.current′ = this∧
dest.d status′ = busy ∧ dest.current′ = this

MSpec(drop)
def
= status = connected �

status′ = disconnected∧
origin.d status′ = idle ∧ origin.current′ = null∧
dest.d status′ = idle ∧ dest.current′ = null∧
origin′ = null ∧ desti′ = null

Inv
def
= status = connected =⇒ origin.num �= dest.num

In aspect-oriented models, concerns are constructed in aspects. To achieve a high flex-
ibility in extending a base system’s function, most aspect-oriented programming lan-
guages permit to add new field variables into classes of a base system. This mechanism
is called inter-type declaration in aspects. Besides, aspects include pointcut declarations
which provide logical definitions for selecting the join points where a piece of advice
is applied. Aspects also have advice definitions where operations on join points are
defined. Inter-type declarations, pointcuts and advices compose an aspect definition.

Definition 3. An aspect consists of sets of inter-type declarations, pointcuts and ad-
vices. A = 〈ITDec, PCut, Advs〉,where

– ITDec is a set of inter-type declaration. Like fields declarations in classes, each
inter-type declaration has the form x : T , denoting a name x belonging to the type
T .

– PCut is a set of pointcut definitions. A definition of pointcut pc is of the form
pointcut pcnameC.m(x, y), where C.m(x, y) is the method m of the class C in base
programs. The declaration C.m(x, y) specifies a join point, before the call to the
method m of the class C where the advices defined in the set Advs should be ap-
plied.

– Advs is a set of advices’ definitions. An advice is defined in the form before()|
after()|around(). The advices before and after require to be invoked before or
after the join point respectively. And the around advice will replace the codes re-
siding at the join point.

AOP provides mechanisms that enable an advice to get the execution context of a join
point. When defining an advice’s specification, descriptions of contexts at the join points
must be included. To give a rigorous description to an aspect’s function, the behavior of
an aspect is introduced.
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Definition 4. An aspect’s behavior is a triple Behv(A, Init, ASpec), where

– A is an aspect,
– Init is a predicate that defines the initial values of the inter-type declarations de-

clared in A.ITDec.
– ASPec assigns each advice adv() ∈ Advs a functionality specification as a pair:

p(A.ITDec ∪ context(C.m))#R(A.ITDec ∪ context(C.m), A.ITDec’ ∪ context’(C.m)),

where context(C.m)
def
= C.FDef ∪ m.x and context′(C.m)

def
= C.FDef ∪ C.FDef ′

∪m.x ∪ m.y′ are the context of a join point C.m before and after adv’s execution.
They are the values of fields in the class C and input, output parameters of the
method m.

Example 4.3. For the two aspects call interruption and call divert shown in section 2,
the specifications of their advices, before, are given as follows:

ASpec(D.before)
def
= true # ∃(f, t) ∈ forwardList, de : Device•

c.dest′ = de ∧ c.dest.num = f ∧ de.num = t
�c.dest.d status = busy ∧ ∃(f, t) ∈ forwardList,
de : Device • c.dest.num = f ∧ de.num = t�
c.dest′ = c.dest

ASpec(I.before)
def
= true # (c.dest.d status′ = idle∧

c.dest.current.status′ = interrupted∧
interruptedC′ = interruptedC ∪ {c.dest.current})
�c.dest.d status = busy � skip

For convenience, in the rest of papers, D and I are used to denote the aspect Call Divert

and Call Interruption respectively.

When building an AOP application, an AOP compiler is responsible for weaving classes
with aspects. During the weaving operation, the types of classes, the signatures of
classes’ methods and the required signatures declared in pointcuts’ definitions are com-
pared based on their syntactical forms. To record the results of the matching process,
a set, Match(C, A) is introduced. A member (m, ad) ∈ Match(C, A) means that the
method m defined in the class C satisfies the signature requirements assumed by the
advice ad. Thus, the advice ad should be woven with the method C.m by the com-
piler. The semantics explanation of a weaving process is defined as the composition of
a class’s behavior and an aspect’s behavior.

Definition 5. Let C be a class, A be an aspect, such that some pointcuts matches meth-
ods m in class C. The woven class obtained by weaving A into C , denoted as C ⊕ A is
defined as:

(C ⊕A).FDef
def
= C.FDef ∪A.ITDec

(C ⊕A).MDef
def
= C.MDef
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(C ⊕A).Init
def
= C.Init ∧A.Init

(C ⊕A).MSpec
def
= Φ

(C ⊕A).Inv
def
= C.Inv

where the function Φ assigns each method m ∈ C.MDef with a design:

Φ(m)
def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MSpec(m), if ∀ad ∈ A.Advs • (m,ad) /∈ Match(C, A)
ASpec(ad)[∗/c.∗]; MSpec(m) if ∃ad ∈ A.Advs • (m,ad) ∈ Match(C, A)

∧isBefore(ad)
MSpec(m); ASpec(ad)[∗/c.∗] if ∃ad ∈ A.Advs • (m,ad) ∈ Match(C, A)

∧isAfter(ad)
ASpec(ad)[∗/c.∗] if ∃ad ∈ A.Advs • (m,ad) ∈ Match(C, A)

∧isAround(ad)

Here, the functions isBefore(ad), isAfter(ad) and isAround(ad) return true corre-
spondingly when the advice ad is a before advice, an after advice or an around advice.
The set Match(C, A) consists of pairs of advices and their matched join points. That is,
a member (m, ad) means an advice ad ’s pointcut definition in the aspect A matches the
method m of class C.

Example 4.4. For the example, the tele communication simulation system, the sys-
tem obtained through weaving the aspect call divert into the class connect, denoted
as C ⊕ D, is represented as follows:

(C ⊕ D).FDef
def
= {status : string, origin : Device, dest : Device}

(C ⊕ D).MDef
def
= {locate(onum : string, dnum : string), complete(), drop()}

(C ⊕ D).Init
def
= true � status′ = disconnected ∧ origin′ = null ∧ dest′ = null

MSpec(locate)
def
= C.MSpec(locate)

MSpec(drop)
def
= C.MSpec(drop)

MSpec(complete)
def
= status = disconnected ∧ origin �= null∧

(de �= origin) � dest.d status = busy∧
∃(f, t) ∈ forwardList, de : Device•
dest.num = f ∧ de.num = t � (dest �= null ∧ origin �= dest)
�
status′ = connected∧
origin.d status′ = busy ∧ origin.current′ = this∧
(dest′ = de ∧ de.d status′ = busy ∧ de.current′ = this
�dest.d status = busy ∧ ∃(f, t) ∈ forwardList, de : Device•
dest.num = f ∧ de.num = t�

dest′ = dest ∧ dest.d status′ = busy ∧ dest.current′ = this

(C ⊕D).Inv
def
= status = connected =⇒ origin �= dest
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5 Interference Checking

5.1 Interference Analysis between Base Programs and Aspects

Consider the weaving between an aspect and a base program first. For any weaving, de-
pending on the type of advices, it has to be checked either the base program satisfies the
conditions required by the aspect or vice versa. Otherwise, the weaving may lead the
execution of the woven method to an unpredictable state. In detail, since the advices,
before and around, will execute before the base program, they require that base pro-
gram must establish the preconditions of them. That is, for the base program m and its
corresponding advice ad for weaving, the condition (C.inv ∧ pre(C.MSpec(m))) =⇒
pre(A.ASpec(ad)) holds. At the runtime, the advice after follows the method m. Thus,
it requires that when the method m terminates, the precondition of after is established.
That is, the condition pre(MSpec(m)) =⇒ wp((C.MSpec(m), pre(after)) holds.

At the same time, the aspect’s impact on base programs has to be studied as well. A
tight view of the interference-free definition suggests that there is no change in the be-
haviors of base programs when an aspect is applied. However, in practice, this constraint
is too strong. As shown in the example, the tele communication system, the applying
of the aspects, Forwarding and interrupting, extends the functions of basic programs
largely. In fact, one of the main usages of aspect-oriented designs is to extend the abil-
ity of base programs without breaking into their modules. To leave the space for future
functional extension, a more flexible view of interference-free definition is preferred. In
object-oriented designs, business rules and design constraints are expressed as invari-
ants of classes which impose constraints on behaviors of their methods. Even after the
aspects are applied, those constraints should not be violated neither. Thus, rather than
considering the behavior of each method before and after weaving, our interference-
free definition requires that the invariant of the class should be kept after woven with
some aspects. Formally speaking, it requires that once the woven method (C ⊕ A).m

is invoked on the condition that the precondition of the method C.m is established, the
invariant of the class must be held on its termination. By putting all the two conditions
into considerations, the definition of interference-free between a class and an aspect is
given as follows:

Definition 6. Let C be a class, A be an aspect, such that some pointcuts in aspect A

find their matched join points in class C. The woven class C ⊕ A is interference-free if
the following conditions hold:

1. The preconditions of matched class C’s methods and aspect A’s advices are satis-
fied:

– for all (m, ad) ∈ Match(C, A), if ad is a before advice or an around advice in
the aspect A:

(C.Inv ∧ pre(C.MSpec(m))) =⇒ pre(A.ASpec(ad))
– for all (m, ad) ∈ Match(C, A), if ad is an after advice in the aspect A:

(C.Inv ∧ pre(C.MSpec(m)) =⇒ wp((C.MSpec(m),pre(A.ASpec(ad))
2. The woven methods hold the invariant of the base program

(C.Inv ∧ pre(C.MSpec(m))) =⇒ wp((C ⊕A).MSpec(m), (C ⊕A).Inv)
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Example 5.1. Consider the weaving of the class connection and the aspect Call Divert.
Whether or not they are interference-free can be checked as follows:

For the condition 1, since there is only one matched join point, connection.complete(),
we need to check that (connection.Inv ∧ pre(connection.MSpec(complete)) =⇒
pre(D.ASpec(before)). It can be easily proved from the fact pre(D.ASpec(before)) =

true.

To check the condition 2, we need to calculate wp((connection ⊕ D).MSpec(complete),

(connection ⊕ D).Inv) and pre(connection.MSpec(complete)).

wp((connection⊕D).MSpec(complete), (connection⊕D).Inv)
= status = disconnected ∧ origin �= null∧

(de �= origin) � dest.d status = busy ∧ ∃(f, t) ∈ forwardList, de : Device•
dest.num = f ∧ de.num = t � (dest �= null ∧ origin �= dest)
pre(C.MSpec(m))

= status = disconnected ∧ origin �= null ∧ dest �= null ∧ origin �= dest

Here, the condition 2 does not hold.
Thus, we conclude that the class connection and the aspect Call Divert are not

interference-free.

Once a semantics conflict between a base system and an aspect is found, the unsatisfied
conditions provide direct guidelines on how to refine the design models to remove it. As
shown in example 5.1, the condition 2 fails to be satisfied due to the fact that the aspect
Call Divert may forward a phone call to the caller himself. It prompts the designers to
enforce a special check into the aspect Call Divert’s design model which ensures the
caller is not the destination of the call divert.

5.2 Interference Analysis between Two Aspects

This section studies how to analyze the interference problems between two aspects
with respect to a class C. Consider a case: given a class C, two aspects A1, A2 are
woven into C according to the order: A1, A2. First, it is easy to see that to guaran-
tee matched advices in both aspects will not lead the entire system to divergence,
their preconditions must be satisfied. In detail, when applying the aspect A1 into the
class C, the preconditions of all matched advices in A1 must be satisfied which is
formally represented as for all the matched before advices or around advices, the con-
dition (C.inv ∧ pre(C.MSpec(m))) =⇒ pre(A1.ASpec(ad)) holds while for all the af-
ter advices, the condition (C.inv ∧ pre(C.MSpec(m)) =⇒ wp((C.MSpec(m),pre(A1.

ASpec(ad)) holds. Similarly, the system C ⊕ A1 must assure the pre conditions of all
matched advices in the aspect A2 to be satisfied. This requirement can be written in
formulas using the same pattern.

Notice that if the aspect A2 doesn’t affect the aspect A1, then the post condition set
up by the aspect A1 will be held after the aspect A2 is applied. This observation gives an
intuitive explanation of the interference-free property between two aspects. In a formal
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representation, it requires the condition pre((C⊕A1).MSpec(m))=⇒wp((C⊕A1⊕
A2 ).MSpec(m),post(A1.ASpec(ad))) to be true.

By combining all these conditions together, the definition of interference-free be-
tween two aspects with respect to a class is given as follows:

Definition 7. Let C be a class, A1, A2 be two aspects, such that the aspects are woven
into the class C in the order A1, A2. The aspect A1 does not interfere with the aspect A2

with respect to the class C, if the following three conditions hold:

1. for all (m, ad) ∈ Match(C, A1), the preconditions of matched class C’s methods
and aspect A1’s advices are satisfied:

– if ad is a before or an around advice
(C.Inv ∧ pre(C.MSpec(m))) =⇒ pre(A1.ASpec(ad))

– if ad is an after advice
(C.Inv ∧ pre (C.MSpec(m)) =⇒

wp((C.MSpec(m),pre(A1.ASpec(ad))
2. for all (m, ad) ∈ Match(C ⊕ A1, A2),

– if ad is a before or around advice
(C.Inv ∧ pre(C.MSpec(m))) =⇒ pre(A2.ASpec(ad))

– if ad is an after advice
(C.Inv ∧ pre (C.MSpec(m))) =⇒

wp((C ⊕A1).MSpec(m),pre(A2.ASpec(ad)))
3. for all (m, ad) ∈ Match(C, A1)

pre((C ⊕A1) .MSpec(m)) =⇒
wp((C ⊕A1 ⊕A2).MSpec(m),post(A1.ASpec(ad)))

As shown in the definition, when weaving more than one aspect into a class, the order
of weaving is not a trivial issue. Since the results of one aspect woven earlier may be
changed by another aspect woven later, the final systems generated by weaving the same
set of aspects with different orders may have distinct functionalities with each other.
This semantics dependency on weaving orders can be observed in many aspect-oriented
languages. Thus, when reasoning the interference problems between two aspects, the
orders of weaving should not be overlooked.

Example 5.2. Examine whether or not the aspects Call Divert and Call Interruption

are interference-free with respect to the class Connection under the weaving order: first
Call Divert, then Call Interruption.

Referring to the proof in example 5.1, the condition 1 is true.
Then, let us check the condition 2. There is only one matched join point, conncetion.

complete(), for the advice before, we need to check that

C.Inv ∧ pre(C.MSpec(complete)) =⇒ pre(I.ASpec(before)))

Due to the fact pre(I.ASpec(before)) = true, the above condition is true. That is, the
condition 2 is satisfied.
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To check the condition 3, we need to calculate pre((C ⊕ D).MSpec(m)) and
wp((C ⊕ D ⊕ I).MSpec(complete),post(D.ASpec(opComplete)).

pre((C ⊕D).MSpec(m))
= status = disconnected∧ origin �= null∧

(de �= origin) � dest.d status = busy ∧ ∃(f, t) ∈ forwardList, de : Device•
dest.num = f ∧ de.num = t � (dest �= null ∧ origin �= dest)
wp((C ⊕D ⊕ I).MSpec(complete),post(D.ASpec(opComplete)))

= pre(C ⊕D ⊕ I).MSpec(complete)∧
¬(status′ = connected ∧ origin.d status′ = busy ∧ origin.current′ = this∧
dest′ = dest ∧ dest.d status′ = busy ∧ dest.current′ = this∧
(dest.current.status′ = interrupted) � c.dest.d status = busy � skip;
¬(dest′ = de � dest.d status = busy ∧ ∃(f, t) ∈ forwardList, de : Device•
dest.num = f ∧ de.num = t � dest′ = dest))

Here, the condition 3 does not hold.
As a result, we conclude that with respect to the class connection, under the weaving

order Call Divert, Call Interruption, these two aspects are not interference-free with
each other.

Note that, calculations of the weakest preconditions give informative feedbacks on how
to get rid of the conflict. As shown in the above example, the calculation process in
judging the condition 3 tells us the aspect Call Interruption will disable the aspect
Call Divert’s function permanently by setting all busy callees’ status to idle.

6 Related Work

As the interference problem is one of the most challenging issues in AOP, a lot of work
has been done in interference detection and resolution.

Authors in [13] use labeled transitions systems to model base programs, aspects as
well as the weaving mechanism. For verification, those state-based models of classes are
converted into finite state processes, and the model checker LTSA can verify whether or
not the woven model satisfies the desired properties. Be specified with particular prop-
erties, this method can be used to check the interference between base programs and
aspects. Model checking techniques are applied to verify interference between aspects
in [7]. It aims at the reuse of aspects called superimpositions. With the help of model
checkers, it is assured that when aspects in a superimposition are woven into a basic
program that satisfies the superimposition’s assumptions, the woven program will sat-
isfy the desired results and conform to the original specification of the basic program.
A prototype tool implementing this idea is presented in [2]. It uses the Bandera tool to
generate inputs of SPIN or SMV from a Java program. When performing verification,
the above works deal with the program after woven with many aspects as a whole. Due
to the well-known state explosion problem, these works are difficult to be applied in
analyzing aspect-oriented programs in large.

To settle the scalability problem, new verification techniques are introduced. Authors
in [11] present an incremental verification approach. It verifies the invariants of the base
programs as soon as an aspect is integrated into the base programs. In this way, the
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verification needs not to be executed over the entire system. It is effective in checking
the interference between big base programs and many aspects. In [3], authors suggest
an assume-guarantee specification to support modular verification of aspects. In the
approach, an aspect is constructed as a single state machine consisting of the linear
temporal logic (LTL) description of the assumptions, a description of the join points,
and the state machine of the advice. As the assumptions provide enough abstractions
to underlying systems, the aspects’ guaranteed properties can be checked by model
checkers independently. Before an aspect’s weaving, only a check on the base state
machine with respect to its assumption is needed. The limitation of this work is that it
can not handle conflict problems between aspects.

In [1], authors propose a method to detect interference among aspects sharing the
same join points. They give a run-time semantics of an AOP language as a graph-
transformation production rule system. By simulating the execution of advices, an ex-
ecution state space is generated which is used to analyze and verify properties of the
system at the join points. They also develop means to avoid the simulation of the entire
system. The simulation approach requires many resources in computation and memory
space. Although it can be applied to aspects without considering the base programs, it
may not be suitable to be applied to big base programs with many aspects.

Authors in [12] use the formal specification language Alloy to detect the interference
problems in aspect-UML models. Aspect-oriented designs represented as aspect-UML
models are translated into Alloy structures, and then a model checker, Alloy analyzer,
can be used to verify aspect interactions of an aspect-UML model. Similar to our works,
pairs of precondition and postcondition act as the fundaments to describe functions of
methods as well as advices in aspects. When detecting a conflict, the Alloy analyzer can
give a counterexample explaining under which conditions the conflict happens. Besides
the scalability problems coming with a model checker, we believe our calculations of
the weakest preconditions can give more direct and complete guides on how to fix
conflicts in design models than a counterexample does.

Authors in [8] present a Rely-guarantee approach to reasoning aspect-oriented pro-
grams. They treat base programs and aspects as individual processes and introduce a
quadruple(pre,rely, guar, post) as the specification of a process, where the pair (rely,

guar) gives the specification of processes permitted to be injected in. They insist that
the problems of reasoning about AOP programs are very similar to those encountered in
reasoning about concurrent programs. Thus, by using their method, theories developed
for concurrent programs, such as [14], could be used in reasoning AOP programs. Since
in the paper, only a simple example is used to show the idea, its ability to interference
detection needs more evidence.

Authors in [6] study the interference problems in aspects’ library. They set up an in-
cremental proof strategy that assures the checking for each pairs of aspects are sufficient
to detect interference or establish interference freedom for weaving aspects in a library
in any order. Our works share similar ideas in defining interference problems among
aspects. However, the underlying formal foundations are different. Their work is based
on interaction models and interference problems are analyzed by model checkers, while
our work is built on a denotational semantics and theorem proving.
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Our work is different from the above methods for analyzing interference problems in
AOP. In our approach, the formal models of methods and advices in terms of designs are
specified with respect to the functionalities of classes and aspects, and deduction based
methods are applied to detect and solve semantics conflicts in AOP models, as opposed
to the use of behavior models or model checking based techniques. This approach is
easily to be integrated with AOP’s development processes since functional specifica-
tions of methods and advices can be introduced as annotations of AOP design models
and be analyzed separately. It supports to analyze interference problems between two
aspects as well as between an aspect and base programs in terms of a unified formal
model and gives direct feedback on how to solve the conflicts it found.

7 Conclusion

We have presented a rigorous approach to analyzing the interference problems in aspect-
oriented designs. Formal representations of classes and aspects are defined on the basis
of designs in UTP, while the weaving techniques in AOP are interpreted as the compo-
sitions of corresponding formal models. Methods for reasoning interference problems
between an aspect and base programs as well as between two aspects are given which
depend on the calculations of weakest preconditions.

This approach can be easily introduced into the development process of AOP. Func-
tional specifications of methods and advices can be regarded as annotations of AOP
models which help developers to record their decisions on functionality designs. In the
analysis process, these specifications are separated from AOP models and used inde-
pendently. Using our approach, the interference analysis process becomes very infor-
mative. Once an interference problem is found, it can tell us what is the cause of the
interference, and in which weaving order it happens. This information greatly facilitates
the developers to refine their design models. Early detecting and removing conflicts in
aspect-oriented design models can improve their qualities and save plenty of costs.

Our future work mainly concerns with a formal language for aspect-oriented pro-
grams. Based on the formal language for object-oriented language, rCOS [4], we are
going to develop a formal language for aspect-oriented programs which includes formal
representations for elements in typical aspect-oriented languages, such as AspectJ [9].
The refinement calculus will be studied so that aspect-oriented design models can be re-
lated to aspect-oriented programs, which helps developers to maintain the interference-
free property derived from design models in codes.
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Abstract. This paper studies the relation between execution and ver-
ification. A simple imperative language called VerExec with execution
and verification commands is introduced. A machine only executes ex-
ecution commands of a program, while the compiler only performs the
verification commands. Common commands in other languages can be
defined as a combination of execution and verification commands. Design
of verifiers then becomes program design using verification commands. It
is shown that type checking, abstract interpretation, modeling checking
and Hoare Logic are all special verification programs, so are many of
their combinations1.

1 Introduction

A program contains two kinds of information. One kind is used for code genera-
tion and machine execution and another for compiler verification. In this paper,
verification specifically refers to static verification. The information for verifi-
cation typically includes various redundant type information such as the class
structure and inter-class accessibility control. A compiler performs safety check-
ing and optimisation according to such information, but once that is done, the
information is removed and will not appear in the generated code. An example
is the access modifiers ‘private’ and ‘protected’ in C++. They instruct the
compiler to perform extra accessibility checking but do not affect the generated
code.

In the past, verification is regarded as additional preprocessing done by the
compiler (or verifier). No matter what verification methods are used, a verifier
itself is still a program. It is therefore natural to draw an analogy between verifier
design and program design.

Two-level languages [16,17] have been widely explored in functional program-
ming mainly for a unifying treatment of code generation. The focus of this paper
is to allow a source programmer to control both execution and verification di-
rectly so that different verification methods can be applied to different parts of
a program.

1 This work is partially supported by National 973 Project 45210130-0442.
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In type theory, effort is made to design expressive as well as decidable type
systems. Guaranteeing decidability is similar to ensuring the termination of a
verification program. In abstract interpretation [2], the widening operator forces
termination of fixpoint iteration. That is similar to forcing termination of loop
in a verifier. Model checking [1] iterates verification for all execution paths. In
Hoare logic, the proof obligation of a loop is to maintain loop invariant and
decrease loop variant for the loop body. It is noticeable that the ways that
various verification methods work are similar to the ways how we use basic
program commands like assignments, if-then-else conditionals and while loops
in programming.

In this paper, we introduce a language called VerExec, which extends stan-
dard imperative languages like Dijkstra’s Guarded-Command Language [7] with
four verification commands: compile-time error, type assignment, compile-time
conditional and compile-time loop. So a program in the language will contain
two sets of commands for execution and verification respectively. The machine
executes execution commands but ignores those for verification, while the com-
piler only performs verification commands but ignores those for execution. Upon
a successful compilation, verification is only performed once; while the execu-
tion commands can be executed for arbitrarily many times after verification. It
is normally desirable to conduct as much safety checking and optimisation as
possible during compilation.

A more theoretical motivation of this paper is to apply unifying theory of
programming [13] to handling traditionally syntactic aspects of programming
languages including type checking and symbolic execution. In the past, they are
regarded as being “freely available” outside denotational or algebraic semantics.
Regarding verifiers as programs means that we can apply denotation-semantic
and algebra-semantic methods to these aspects as well.

If a programmer chooses only to use execution commands, the programs are
essentially untyped (just like in languages LISP, Self [19] and Smalltalk [9]),
all well-definedness checking is conducted in execution. By adding verification
commands, a programmer controls the amount of verification to perform. Com-
mands of strongly typed languages such as C and Eiffel [14] can be defined as
combination of execution and verification commands. If a programmer chooses
only to use such combined commands, the program is essentially strongly typed
with a default scheme of verification.

Of course, extra flexibility in a programming language sometimes encourages
programmers to write unsafe codes. Allowing unrelated codes for execution and
verification will permit a compiler to check things unrelated to the dynamic
behaviour. Thus appropriate software engineering practice is need to benefit from
the extra flexibility as well as restricting undesirable designs (refer to Section 4
for more discussions).

A verifier itself is an imperative program (in this paper). Such a program can
change the state of some type variables. Note that a compile-time state is the state
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of the compiler not the runtime state of the machine. The newly added verification
commands mirror what the corresponding execution commands do but change
only those type variables. Type assignments can directly update the verifier’s state
and are useful for verification like abstract interpretation. Verifying conditionals
allow a verifier to make decisions according to the current states. They are simi-
lar to the use of conditional compilation in existing verifiers (e.g. C). For example,
the compile-time conditional (if′ q then skip else error′) checks the type vari-
ables for a property q and generates a compile-time error error′ if the property
is violated; otherwise, it does nothing. Verifying loops allow a verifier to conduct
more in-depth verification such as fixpoint iteration in abstract interpretation and
symbolic execution. Note that an execution loop does not necessarily require it-
erated verification. Most languages simply type-check the boolean condition and
the body, although abstract interpretation does use compile-time loop for fixpoint
approximation.

The grand challenge of verifying compiler [11] has motivated a lot of research
effort. The proposal to combine verification into compilers demands integration
of various methods of verification. The current trend in automated verification is
to combine different verification methods: combing abstract interpretation and
symbolic execution, combining abstract interpretation and type theory [3], com-
bining type theory and model checking [6], and combining Hoare Logic and type
theory [15]. This paper studies the relation between execution and verification,
and the semantical integration of different verification methods.

The semantics of the new language is a combination of execution semantics
and verification semantics. On the contrary to conventional views, verification
semantics is not a simple abstraction of execution semantics. They are orthogonal
but their relation can be established in a specific verification scheme.

A decision is made in our semantic modelling to distinguish runtime errors
and compile-time errors. Runtime errors are represented as the most chaotic
command, while compile-time errors become the most infeasible command that
generates no final state from every initial state. There has been a long-standing
discussion over the use of magic. For example, it can be used in program devel-
opment as a mechanism to unwind a computation to amend an earlier design
mistake. The subtlety is also reflected in the handling of type errors in Z where
type error was originally regarded as abort by mistake [10,18].

The rationale behind this decision is related to a view on programming. Pro-
gramming can be regarded as a game played between the developers and users.
In some sense, a compile-time error is ‘good’, as it causes no damage to the
users and it provides a chance to modify the program to pass verification later;
in comparison, runtime errors are bad. There are two kinds of nondeterminism.
Nondeterminism in development is desirable: if there are two possible designs
to choose, and one design passes the verification while another reports compile-
time error, then it is reasonable simply to take the passed design. This is why
compile-time error is regarded as magic, requiring backtracking at the presence
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of nondeterminism in compilation. Nondeterminism in execution, for example,
occurs in parallel and distributed computing where communication latency is
nondeterministic. That makes program behaviour less predictable and is hence
undesirable to end users. Runtime error of one component should become error
of the whole system and be chaotic.

2 Constants, Variables, Functions, Expressions,
Operators and Types

As various entities are handled in the same framework, symbols and notations
must be carefully chosen and organised in a logic. The design of the logic is
illustrative for typical use of verification methods and can be either extended to
be more expressive or simplified to have better decidability and lower decision
complexity.

For simplicity, we consider only natural numbers and the boolean values as
constants. Let x, y, z, x1 · · · denote program variables. A primitive type is simply
viewed as a set of constants. A program state is a mapping from variables to con-
stants. Each constant is also regarded as a singleton (primitive) type containing
the constant. The empty type is denoted as ∅ . Other primitive types include
intervals [m, n] for m �n and [n,∞) and boolean type Bool . Note that true
and false are two singleton boolean types. Functions (computable) include
usual arithmetic operations as well as boolean operations. Note that a function
may not be defined for some particular arguments. For example (1 + true) is
obviously undefined. An expression is either a constant, a program variable, a
membership condition, or a function applied to several expressions. Expressions
are used in assignment statements. Boolean expressions, in particular, are used
in if-then-else statements and while loops.

A type is a set of states. Constants are regarded as types for singleton sets.
For simplicity, we assume that types are closed under union ∪, intersection ∩,
complement (·) and some other operators �, ∂, · · · for widening of abstract inter-
pretation [5], partial extraction (see Section 3.6) etc. In a more general setting,
union and intersection are replaceable with lub and glb of a complete lattice.
A boolean expression can be regarded as a relational type containing states in
which the expression is true. For example the type x < y allows any state in
which x is less than y ; while the type 1 < true is empty as the expression is
undefined. A type update t † u evaluates the abstraction of a type after state
change. For example, if t =(x∈ [1, 7] ∧ y ∈ [6, 9]) , then

t † {x �→ (x+ y)[t], y �→ x[t]} = x∈ [7, 16] ∧ y ∈ [1, 7].

Note that the result type depends on the abstraction of the operation + and is
not necessarily the most accurate in the type system. For example, in a type sys-
tem closed under set union, we may still regard multiplication of types [1, 2] and
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[3, 4] as [3, 8] instead of [3, 4]∪ [6, 6]∪ [8, 8] (i.e. all possible results 3, 4, 6 and
8) under a certain abstraction. The semantics of union (or intersection) type is
simply set union (or intersection). It is a matter of tradeoff between represen-
tation precision and complexity. The notations are organised in the following
syntax:

C ::= n | true | false
V ::= x | y | z | x1 | · · ·
S ::= C | ∅ | [m, n] | [n,∞) | Bool
F ::= + | − | ∗ | ÷ | succ | less | eq | and | or | not | · · ·
E ::= C | V | E∈S | F(E, · · · ,E)

O ::= ∪ | ∩ | (·) | � | ∂ | · · ·
U ::= S | E
W ::= {V �→ U, · · · ,V �→ U}
T ::= E | T †W | O(T, · · · ,T).

Note that a syntactical element may have different semantics under different
views. For example, a constant can be a singleton type or a constant function
on program variables. Several semantic mappings are needed for capturing the
semantics. In the syntax, T denotes the domain of type assertions (which them-
selves are types), U denotes type expressions.

Definition 1. σS(c) =̂ {c}
σS(∅) =̂ { }

σS([m, n]) =̂ {k | m � k � n}
σS([m,∞)) =̂ {k | m � k}

σS(Bool) =̂ {true, false}

We let |t| denote the cardinality of σS(t) .

Definition 2. σE(c, a) =̂ c
σE(x, a) =̂ a(x)

σE(e∈S, a) =̂ true (σE(e, a)∈σS(S))
σE(e∈S, a) =̂ false (otherwise)

σE(f(e1, · · · , en), a) =̂ f(σE(e1, a), · · · , σE(en, a))

Definition 3. σW(w, t) =̂ &w'(t)

Definition 4. σT(e) =̂ {a | σE(e, a)= true}
σT(t † w) =̂ σW(w, σT(t))

σT(∪(t1, t2)) =̂ σT(t1) ∪ σT(t2)
σT(∩(t1, t2)) =̂ σT(t1) ∩ σT(t2)

σT(t) =̂ (V→C) \ σT(t)
· · · =̂ · · ·

The mapping σS maps primitive types to sets of constants; σE maps each
expression to a function from states to constants where a is a state (mapping
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from variables to constants; σW maps state update to a function from states to
states; and σT maps a type to a set of states where the (computable) operator
&·' represents some abstraction that converts a state function to a type function,
which is monotonic in the sense that larger input types lead to larger result type.

Let a |= t denote satisfaction a∈σT(t) . A type t is valid, written |= t , if for
any assignment a , we have a |= t . The subtyping relation t1 ⊆ t2 between two
types is defined as |= t1 ∪ t2 . There exists algorithm that determines whether a
state satisfies a type. The proof of the following theorem takes advantage of the
assumption that functions and type operators are computable.

Proposition 1. Satisfaction a |= t is decidable.

Unfortunately the general validity of types is not decidable. For example, the
validity of type not(x5 +x4− 100 =0) essentially requires finding integer solu-
tions of the equation. In this particular system (with interval and boolean types),
the fragment of types without relational types is decidable.

For dynamic verification (such as Java’s array-index-scope checking), satisfac-
tion decidability is sufficient; compilers, however, must handle types as data (or
values), and require validity decidability when, for example, checking whether a
type is a subtype of another type.

A remedy is to identify a decidable fragment of the logic T0 and an abstrac-
tion mapping (·)+ :T→T0 as an upper limit such that σT(t)⊆ σT(αt) t∈T
for any t∈T . For example, the relational type x2 + y2 � 15 can be abstracted as
x+ y � 10 relationally. A lot of research [8] has been done for such abstraction.

A lower limit can be defined as t− =̂ t
+ . The upper and lower limits provide

estimation for potentially undecidable types. This paper focuses on unification of
verification methods and will simply assume the existence of such a computable
abstract mapping.

3 An Imperative Language of Execution and Verification

3.1 Execution Semantics

Let X, Y, Z, X1, · · · denote type variables, P, Q, R, P1, · · · denote programs,
E, E1, · · · denote type expressions, and p, q, r, · · · denote type properties
(i.e. conditions on type variables). For example, X ⊆Y denotes that type X is
a subtype of Y .

The language that we consider is an extension of Dijkstra’s Guarded-
Command Language [7]. Command skip does not change the state. Sequential
composition has a standard meaning. Command error represents runtime error.
Assignment (assign x as e) modifies the program variable x with the value
of expression e . Note that an expression may be undefined in a state, generating
a runtime error. We adopt the syntax of [12] in which nondeterministic choice,
if-then-else conditional and while loop are separate commands. The conditions
in conditional and loops are boolean expressions (see Section 2).
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Four new commands are added to the standard imperative language. Com-
mand error′ represents compile-time error (e.g. type error and verification er-
ror). Type assignment assign′ X as E modifies the type variable X with the
type evaluated from the type expression E . Verifying conditional
(if′ r then P else Q) tests whether the type property r is satisfied in the
current state of the verifier and chooses to perform verification for the program
P or Q accordingly. Verifying loop (while′ r do P ) repeats verification P if
the property r is satisfied.

The execution semantics of the language follows the weakest-precondition
semantics [7]. A condition is a set of states. Thus [ P ](t) is the largest set
of states from which the program terminates into a state in t . The execution
semantics of the familiar commands are defined as follows:

[ skip ](t′) =̂ t′

[ P ; Q ](t′) =̂ [ P ]([ Q ](t′))
[ P �Q ](t′) =̂ [ P ](t′) ∩ [ Q ](t′)
[ error ](t′) =̂ ∅

[ assign x as e ](t′) =̂ {a | a † {x �→ σE(e, a)}∈ t′}
[ if t then P else Q ](t′) =̂ (t ∩ [ P ](t′)) ∪ (t ∩ [ Q ](t′))

[ while t do P ](t′) =̂ (t ∩ [ P ]([ while t do P ](t′))) ∪ (t ∩ t′)
[ error′ ](t′) =̂ [ skip ](t′)

[ assign′ X as E ](t′) =̂ [ skip ](t′)
[ if′ r then P else Q ](t′) =̂ [ P ; Q ](t′)

[ while′ r do P ](t′) =̂ [ P ](t′).

where the semantics of while loop is the least fixpoint (i.e. the smallest set). Note
that we also use multiple assignments (assign x1, · · · , xn as e1, · · · , en for
simultaneous assignment with standard meaning. If an expression e is undefined
in some initial state a (e.g. with divided-by-zero error), then the assignment
command (assign x as e) generates a runtime error and the state a does not
satisfy the weakest precondition of every postcondition.

The newly added commands error′, if′, assign′ and while′, however, have
little interesting execution semantics as they require the verification of their
branches. For example, the command error′ generates a compile-time error
without any runtime behaviour. The machine will basically ignore verification
commands, which behave like skips in execution.

3.2 Verification Semantics

Verification semantics 〈P 〉 is also defined in the style of the weakest-
precondition semantics. However, a program now is a predicate transformer map-
ping one type (post)condition to the weakest type (pre)condition where a type
condition is a condition on type variables X, Y, · · ·
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〈 skip 〉(p) =̂ p
〈P ; Q 〉(p) =̂ 〈P 〉(〈Q 〉(p))
〈P �Q 〉(p) =̂ 〈P 〉(p) ∧ 〈Q 〉(p)
〈 error 〉(p) =̂ 〈 skip 〉(p)

〈 assign x as e 〉(p) =̂ 〈 skip 〉(p)
〈 if r then P else Q 〉(p) =̂ 〈P ; Q 〉(p)

〈 while r do P 〉(p) =̂ 〈P 〉(p)
〈 error′ 〉(p) =̂ true

〈 assign′ X as E 〉(p) =̂ p[E/X ]
〈 if′ q then P else Q 〉(p) =̂ (q ∧ 〈P 〉(p)) ∨ (¬q ∧ 〈Q 〉(q))

〈 while′ q do P 〉(p) =̂ (q ∧ 〈P 〉(〈 while q do P 〉(p))) ∨ (¬q ∧ p)

The verification semantics mirrors execution semantics. The runtime com-
mands have little interesting function in verification. For example, runtime
error and assignment do not require any verification. That means assignment
(assign x as 1 +true) itself generates runtime error in stead of a type error.
So by using only the runtime commands, a programmer is essentially writing an
untyped program in which all the checking is left to execution.

This, however, does not mean that the language allows no verification. The
newly added commands can be run by the verifier to perform various verifica-
tion. Compilation error error′, having no runtime function, is the most infea-
sible computation in verification, also known as magic in program specification
and refinement. That means if one of the designs of a nondeterministic choice
has no compile-time error, the whole program can still be verified. Verification
with nondeterminism requires some mechanism of backtracking. Type assign-
ment modifies the type variable with a type expression. Verifying conditional
tests a type property in the current verifier’s state and performs different veri-
fications. Verifying loop (while′ r do P ) repeatedly performs verification P if
the type property r is satisfied.

The commands of compiled imperative languages are normally a combination
of the runtime commands and compile-time commands. For example, assignment
in most languages is type-checked so that if the expression is never well-defined
(e.g. (1 + true)), then a compile-time error is generated. However, type assign-
ment, compile-time conditional and compile-time loop have no direct links to
their runtime counterparts. In most languages, assignment does not change any
type information during compilation; both branches of a conditional must be
verified (not executed) regardless the condition; and in most languages, a loop
is only type-checked for its condition and body, and no loop is needed for ver-
ification (not the case in abstract interpretation though). On the other hand,
a program without runtime loop may be verified with a compile-time loop to
enumerate all possible execution paths.

3.3 Relating Execution and Verification

Although the language allows execution and verification to be unrelated in a
program, such programs are normally undesirable, as they do not serve the
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purpose of verifying runtime behaviours of programs in compilation. That means
good programming practice and techniques are required to ensure an appropriate
correlation between execution and verification.

Definition 5 (Permanent Dynamic Errors). A program’s verification de-
tects permanent dynamic errors, if for any sub-program P (syntactic program
fragment) that never terminates successfully [ P ](∅)= ∅ , the program results in
a compilation error: 〈P 〉(false)= true .

Note that this definition does not exclude false alarms, nor does it guarantee to
eliminate all dynamic errors (including nontermination). A program satisfying
the above property may contain fragments that sometimes terminate successfully
but sometimes generate dynamic errors. A typical counterexample is divided-by-
zero exception, which is not eliminated. The total-correctness semantics does not
distinguish nontermination and undefinedness. Exclusion of only undefinedness
requires more discriminating semantic models.

Definition 6 (Dynamic Errors). A program P ’s verification detects dynamic
errors with type variable X as the abstract state, if for any type t such that
t �⊆ [ P ](∅) , we have (X ⊇ t) ⇒ 〈P 〉(false) .

Again this property permits false alarms and does not distinguish nontermi-
nation and other dynamic errors. We assume X to be the type variable that
records the estimated (type) information about the current state. The definition
implies compositionality:

Proposition 2. If A program P ’s verification detects dynamic errors with type
variable X, t is a type such that t �⊆ [ P ](∅) , and t = t1 ∪ t2 , then either
(X ⊇ t1) ⇒ 〈P 〉(false) or (X ⊇ t2) ⇒ 〈P 〉(false) .

This proposition, a basic property of the wp semantics, reveals that the checking
of dynamic errors is compositional in the sense that to determine statically
whether a large set of program states may lead to ultimate dynamic errors, we
may decompose the set into two smaller sets and perform the checking separately.
Any dynamic error will be detected in the checking of either of them.

Definition 7 (Precision of Verification). Let P and Q be two programs
whose verification detects dynamic errors with the type variable X as the abstract
state, and they share the same execution semantics [ P ] = [ Q ] . The verification
of P is more precise than that of Q , if 〈P 〉(false) ⇒ 〈Q 〉(false) .

A verifier is more precise if it has less initial type settings that lead to a compile-
time error. A less precise verifier can still be a safe verifier but tends to generate
more false alarms.

Indeed, flexibility is a necessary evil when more expressiveness is required
for applying different verification methods to different parts of a program. On
the other hand, caution is needed as the execution and verification semantics
must be appropriately correlated. In practice, this can be achieved by system
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programmers who establish sets of pre-defined commands that incorporate both
execution and verification commands. End programmers only need to choose
from these sets in programming. A good verifier must be safe, generate less false
alarms and be efficient. The above properties provide some guidance on how
pre-defined combined commands should be designed.

3.4 Simple Type Checking

Type checking is useful in reducing runtime errors. If variables x and y are
declared to be integer and boolean value respectively (of a relational type
t =̂ x∈ [0,∞)∧ y∈ Bool ), then the assignment (assign x as (x+ y)) contains
an expression that is always undefined. Fortunately, it is possible to determine
t†{x �→ (x+ y)[t]} = ∅ in the type system. That means “always undefinedness”
is detectable as a compile-time error:

Tvar x as s =̂ if′ (X ⊆ (x∈ s))
then (assign′ X as X † {x �→ s}) else error′

Tassign x as e =̂ if′ (∅ �= X † {x �→ e[X ]}⊆X)
then (assign x as e) else error′.

The type variable X is introduced to record the declared type for all program
variables. The command Tvar declares or re-declares a type. For example
Tvar x as [0, 10] sets the type of program variable x as an interval. Re-
declaration is only allowed to a supertype. Tassign is to replace the command
assign by adding type checking against the declared type. If the result type is
not a subtype of the declared type or the expression is always undefined in all
possible states (empty type), then a compile-time error is generated. Note that
the conditions in conditional and while loop are types and always well-defined.
In this simple type system, “occasional” dynamic errors such as divided-by-zero
are tolerated by the verifier and left to execution unless the divisor has a declared
type [0, 0] .

Let TC be the language of programs containing only skip, nondeterminis-
tic choice, sequential composition, type declaration, type-checked assignment,
conditional and while loop. Type checking detects undefinedness but does not
detect nontermination:

Theorem 1. Any finite program (without loops) of TC detects permanent dy-
namic errors.

3.5 Abstract Interpretation

Abstract interpretation is a technique that simulates the execution of a program
statically on “abstract states” (corresponding to states of type variables in this
paper). It is not surprising that the verification aspect of a program has a sim-
ilar structure to the runtime program structure. An abstract state is actually
a type (e.g. interval). Such types are abstraction of concrete values and will be
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handled by the verifier. Most main-stream languages such as C and Java do
not handle these subtypes, because their type systems are designed to enable
programmers to provide information for code generation, which is not precise
enough for verification purposes.

In a type checker, the declared types of program variables are not modified
by assignment statements. Abstract interpretation also scans a program, but it
records the abstract state of the program at each point as a static estimation
of runtime state at that point. The abstract state is always a subtype of the
declared type, but it can be modified by an assignment, approximating the way
how a runtime state is modified.

We use a new type variable Y to represent the abstract state of the verifier.
Again commands with abstract interpretation are a combination of execution
and verification commands:

Avar X as t =̂ Tvar x as t ; assign′ Y as X

Aassign x as e =̂ assign′ Y as Y † {x !→ e[Y ]} ;
if′ (∅ �= Y ⊆X) then (assign x as e) else error′

Aif t then P else Q =̂ if t then (assign′ Z1, Y as Y, (Y ∩ t) ; P )
else (assign′ Z2, Y as Y, (Z1∩ t) ; Q) ;

assign′ Y as (Z2 ∪Y )

Awhile t do P on � =̂ while t do (
assign′ Z as ∅ ;
while′ Z �= (Z � Y ) do

(assign′ Z, Y as Z � Y, (Z � Y )∩ t ; P )) ;
assign′ Y as (Z ∩ t)

where Z, Z1, Z2 are fresh temporary type variables for each conditional and
loop. On every type declaration, the abstract state is set to the declared type.
Assignment changes the abstract state, which must be a subtype of the declared
type to avoid compile-time error. Just before verifying P , the conditional Aif
first records the current abstract state Y from which the verification of Q
should start. The abstract state Y is then narrowed after checking the condition
t. Before verifying Q, the abstract state Y is narrowed by t, and the result type
of P is recorded in Z2 whose union with the the result type of Q will become
the result type of the conditional.

The new loop command is verified by fixpoint iteration based on some widen-
ing operator �. Widening is a technique proposed by Cousot [4]. It is designed
to replace type union ∪ (or � of a complete lattice if type union is not closed in
the type system). The widening operator has less accuracy but can help accel-
erate fixpoint iteration. It satisfies the property that for any t1 and t2 , t1�t2
is a supertype of both types, and for every sequence ∅, t1, t2, · · · , there exists
n such that �n

0 , ti = �n+1
0 ti . The “fresh” variable Z is introduced to record

the widened union of all abstract states at the entry of the loop. The loop will
iterate until Z reaches a fixpoint (which must exist by definition of �). The
result type of the loop is the fixpoint of Z intersecting with t .

Let AL be the language of programs containing only skip, nondeterministic
choice, sequential composition and commands abstract interpretation.
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Theorem 2. Any program of AL detects dynamic errors with type variable Y .

According to Proposition 2, the static analysis is compositional. For example,
consider an expression 2 ∗x+ (3−x). In interval analysis, if x has a range of
[0, 1], the verifier will try to estimate [0, 2] + [2, 3], which gives [2, 5] instead of
[3, 4] as expected for an equal expression (x+ 3) . Precision can be improved by
breaking [0, 1] as [0, 0] ∪ [1, 1] . Then the expression yields [3, 3] for [0, 0] and
[4, 4] for [1, 1] , and their merge is [3, 4] . This suggests that precision can be
improved by partitioning an abstract state into small abstract states and apply
multiple scans in verification.

The structure of the loop with widening motivates us to improve its precision
by further narrowing the abstract state before verifying the body. According
to Theorem 2 and Proposition 2, in every iteration, we only need to verify the
loop body P for the additional part of the current abstract state not contained
by the accumulated abstract state. That leads to the following improved type
assignment before the body:

Awhilst t do P on � =̂ while t do (
assign′ Z as ∅ ;
while′ Z �= (Z � Y ) do

(assign′ Z, Y as Z � Y, (Z � Y )∩Z ∩ t ; P )) ;
assign′ Y as (Z ∩ t).

Proposition 3. Let P be a program of AL and Q be the program obtained by
replacing every Awhile command with an Awhilst command. Then the verifi-
cation of Q is more precise than that of P .

3.6 Iterative Symbolic Execution

The basic method of abstract interpretation is to start from an abstract state
(i.e. the current type for program variables) and simulate the execution of a pro-
gram’s update of the abstract state, possibly generating false alarms. Symbolic
execution essentially simulates a program from (a finite number of) all initial
states, requires scanning a program multiple times, and does not generate false
alarms.

From the last subsection, we noticed that the abstract state of abstract inter-
pretation can be partitioned for multiple runs of the analyser to obtain better
precision. This motivates us to combine the two methods for an analysis with-
out false alarm but can benefit from appropriate abstraction. The following
command first scans a program P from the initial abstract state; if the entire
resulting abstract state violates the target property t then a compile-time error
is generated; if it entirely meets t , then the abstract state becomes the remaining
type to be iterated; otherwise the result type partly meets and partly violates
the target and then must be sliced by ∂ to obtain a smaller subtype from which
the precision of the analysis can be increased:
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execute P for t by ∂ =̂
assign′ Z as Y ;
while′ Z �= ∅ do (

P ;
if′ Y ⊆ t then assign′ Y, Z as Z ∩ Y , Z ∩ Y
else if′ Y ⊆ t then error′

else if′ |Y |=1 then error′

else assign′ Y as ∂Y )
assign′ Y as t.

The underlying algorithm is a general adaptive combination of symbolic execu-
tion and abstract interpretation. It tries to validates the target properties in as
few scans as possible. When the result of analysis is ambiguous, it automati-
cally partitions the abstract state and increases precision. In the rare worst-case
scenario, it scans the program no more than twice as many times as the basic
symbolic execution, if ∂ tends to partition every (finite) abstract state evenly.
The following theorem reveals the improvement of precision:

Theorem 3. Let P be an AL program. Then [ P ] = [ execute P for t by ∂ ]
and 〈P 〉(Y ⊆ t) ⇒ 〈 execute P for t by ∂ 〉(true) .

Let us consider a simple program:

P =̂ Aassign x as (x ∗ x−x)

Then we have 〈P 〉(Y =(x∈ [80, 390]))=(x∈ [10, 20]) (as

[10, 20] ∗ [10, 20]−[10, 20] = [100, 400]−[10, 20] = [80, 390]).

This analysis by scanning the code once is rather coarse: the accurate result
should be [90, 380] instead for the initial range. The precision is improvable with
the symbolic-execution command (execute P for t by ∂) where we set the
target range t =(x∈ [85, 385]) and a factoriser ∂([a, b]) =̂ [a, (a + b)/2] . The
symbolic executer cannot validate the target range in the first scan with the
original range [10, 20] , but by partitioning it into [10, 15] and [16, 20] with ∂ ,
both subintervals can then validate the target range in two scans.

3.7 Hoare Logic

In Hoare Logic each assertion characterises the property at the point of the
assertion in a program. Alternatively, an assertion can be viewed as a relational
type for all program variables, i.e. a type containing a logical formula. It is
similar to the abstract state in abstract interpretation.

The key rule in Hoare Logic is the rule for loops. We regard a loop invariant as
a relational type that is maintained by the loop body. Loop variant is an integer-
valued expression whose value is strictly decreased by the body. The following
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command (Hwhile t do P inv t′ dec e) requires the programmer to identify
the loop invariant t′ and variant e and automates other proof obligation:

Hwhile t do P inv t′ dec e =̂
if′ (Y ⊆ t′) then skip else error′ ;
while t do (

assign′ Y as (t′ ∩ t ∩ z = e) ;
P ;
if′ (Y ⊆ (t′ ∩ 0 � e <z)) then skip else error′) ;

assign′ Y as t′ ∩ t.

3.8 Combining Widening Loop and Hoare Logic

A loop body is only scanned once in Hoare Logic. The disadvantage is that
the loop invariant must be provided by the programmer. On the other hand,
widening fixpoint iteration in abstract interpretation scans the body multiple
times and can calculate a loop invariant using the given widening operator. Thus
it is possible to combine the two approaches by employing abstract fixpoint
iteration to discover the loop invariant and using decreasing variant of Hoare
Logic to check termination:

AHwhile t do P on � dec e =̂
while t do (

assign′ Z as ∅ ;
while′ Z �= (Z � Y ) do (

assign′ Z, Y as Z � Y, (Z � Y )∩ t ∩ (z = e) ;
P ;
if′ (Y ⊆ (Z ∩ 0 � e <z)) then skip else error′)
) ;

assign′ Y as Z ∩ t)

where Z is a fresh temporary type variable, and z is a fresh program variable
not used in P .

4 Conclusions

The main contribution of this paper is conceptual. The advantage of VerExec is
that various verification methods can now be naturally integrated and allow pro-
grammers to apply different verification methods to different parts of a program.
This flexibility is not supported by existing languages.

Caution is required for such extra flexibility. Execution and verification com-
mands of a source program should be appropriately correlated. Such correlation
is captured by several desirable properties. A possible application scheme is to
expect system programmers to design sets of commands with pre-defined exe-
cution and verification functions in a library (of different verification methods).
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Such commands will possess the desirable properties, and the end programmers
may simply choose one for each piece of code to be verified.

An interesting question is whether programmers should be required to write
verification code. Both choices are supported by the language. On one hand,
if a programmer writes programs using the language directly, then the distinc-
tion between execution and verification commands is explicit responsibility of
the programmer; on the other hand, new commands combining execution and
verification can be defined in the language, and if a programmer uses only such
commands, verification becomes a pre-defined default process of the compiler.

The design of the logic for types, expressions and so on in Section 2 is illustra-
tive. Various other designs are possible to extend it with more expressive logical
operators such as quantifiers (e.g. for assertions) or simplify it to sub-logical
fragments with better decidability and lower decision complexity.

As any existing verifier is a program, and any verification program can be
extracted from some source program in the extended imperative language, the
technique of this paper is general enough to derive all existing verification meth-
ods and algorithms. A possible future extension is to add input and output com-
mands so that the verification process becomes interactive. Missing information
about verification can then be added via a Human-Computer Interface.

It is proposed that “the verifying compiler does not itself have to be verified,
though it would be desirable to do so, at least partially” [11]. A reasonable scheme
is to use a verifier to check programs automatically but apply manual reasoning
calculi to the correctness proof of the verifier itself.
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Abstract. In this paper, we present various extensions of Isabelle/HOL
by theories that are essential for several formal methods. First, we explain
how we have developed an Isabelle/HOL theory for a part of the Unifying
Theories of Programming (UTP). It contains the theories of alphabetized
relations and designs. Then we explain how we have encoded first the
theory of reactive processes and then the UTP theory for CSP. Our work
takes advantage of the rich existing logical core of HOL.

Our extension contains the proofs for most of the lemmas and theo-
rems presented in the UTP book. Our goal is to propose a framework that
will allow us to deal with formal methods that are semantically based,
partly or totally, on UTP, for instance CSP and Circus. The theories pre-
sented here will allow us to make proofs about such specifications and to
apply verified transformations on them, with the objective of assisting
refinement and test generation.

Keywords: UTP, Theorem Proving, Isabelle/HOL, CSP, Circus.

1 Introduction

The fundamental problem of the combination of programming paradigms has
raised significant interest recently; a framework to combine different languages
describing various facets and artifacts of software development in a seamless,
logically consistent way is vital for its solution. Hoare & He gave one of the most
significant approaches towards unification [10]. A relational theory between an
initial and subsequent states or observations of computer devices is used to give
meaning to specifications, designs, and programs. States are expressed as pred-
icates over observational variables. They are constrained by invariants, called
healthiness conditions, that characterize theories for imperative, communicat-
ing, or reactive processes and their designs.

The UTP framework has proved to be powerful enough for developing a the-
ory of CSP processes, and more recently for giving semantics to languages like
Circus [13] that combines CSP and Z features and enables states, concurrency
and communications to be easily expressed in the same specification.

The motivation of this paper is to provide effective deductive support of UTP
theories, in particular those related to Circus. Effective deduction is needed for
∗
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practically useful transformations on Circus specifications, and for our objective
of refinement support and automated test generation. Therefore, it is of major
importance to find a semantic representation that has a small “representational
distance” to the logic used in the implementing proof-environment: since Cir-
cus comprises typed sets, only frameworks for higher-order logics (HOL, Z, ...)
are coming into consideration.

Textbook UTP presentations reveal a particular syntactic flavor of certain
language aspects, a feature inherited from the Z tradition. The UTP framework is
centered around the concept of alphabetized predicates, relations, etc, which were
written (αP ,P) where αP is intended to produce the alphabet of the predicate
P implicitly associated to a superset of the free variables in it. In prior works
based on ProofPower [2], providing a formal semantics theory for UTP in HOL
[12], [14], [15], the authors observed the difficulty that “the name of a variable
is used to refer both to the name itself and to its value”. For instance, in the
relation

({x , x ′}, x > 0 ∧ (x ′ = x + 1 ∨ x ′ = x − 1)), (1)

the left-most x , x ′ indicates the names x resp. x ′, while the right-most x , x ′ stand
for their value. Since Oliveira et al. [12] aimed at the proof of refinement laws,
the authors saw no alternative to proving meta-theorems using a so-called deep
embedding; thus, an explicit data type for abstract syntax and an explicit seman-
tic interpretation function was defined that relates syntax and semantic domain.
However, such a representation has a number of drawbacks, both conceptually
as well as practically wrt. the goal of efficient deduction:

1. there are necessarily ad-hoc limitations of the cardinality of the semantic
domain VAL (e.g. sets are limited to be finite in order to keep the recursive
definition of the domain well-founded),

2. the alphabet uses an untyped presentation — there is no inherent link from
names and their type, which must be established by additional explicit con-
cepts adding a new layer of complexity, and

3. the reasoning over the explicit alphabet results in a large number of nasty
side-conditions (“provisos”) hampering deduction drastically. For example,
the rule for the sequential composition ;C in Circus reads as follows:

∀ a, b, c : CA | αa = αb ∧ αb = αc ∧ a;C (b;C c) = (a;C b);C c (2)

where CA abbreviates CIRCUS ACTION .

In contrast to this “deep embedding” approach we opt for a “shallow embed-
ding”. The characterizing feature for the latter is the following: if we represent
an object-language expression E of type T into the meta-language by some ex-
pression E ′ of type T ′, then the mapping is injective for both E and T (provided
that E was well-typed with T ). In contrast, conventional representations are a
surjective map from object-expressions to, say, a data type AST (abstract syn-
tax tree) and therefore not shallow. Due to injective map on types, the types
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are implicit in a shallow representation, and thus reference to them in provisos
in rules is unnecessary. It means that type-inference is used to perform a part
of the deduction task beforehand, once and for all, as part of a parsing process
prior to deduction.

At this point, we will already recklessly reveal the only essential idea of this
paper to the knowledgeable reader: we will represent equation (1) by the λ-
abstraction:

λσ • σ.x > 0 ∧ (σ.x ′ = σ.x + 1 ∨ σ.x ′ = σ.x − 1) (3)

having the record type 〈x � ZZ, x ′ � ZZ, ...〉 ⇒ bool, which is, in other words, a
set of records in HOL. The reader familiar with SML-like record-pattern-match
notation may also recognize expression (3) as equivalent to:

λ{x , x ′, ...} • x > 0 ∧ (x ′ = x + 1 ∨ x ′ = x − 1)

Note that in record notation, the order of the names is insignificant (in contrast
to, say, a representation by tuples). Further note that we use extensible records
— the dots represent the possibility of their extensions, allowing to build up the
UTP in an incremental way similar to Brucker and Wolff’s approach [6].

Represented in the form of expression (3), the rule (2) above is practically
an immediate consequence of rules of a HOL-library. The function αP becomes
a meta-function (implemented in the meta language of the target HOL system,
typically SML), and the notation (αP ,P) is a particular pretty-print of P for
sets of records.

Note that in a shallow embedding, the injective representation function must
not be a one-to-one translation of operator symbols; rather, it can introduce
coercions in E ′ on the basis of object-language types. For example, it can be
necessary to coerce isomorphically a 〈x � ZZ, x ′ � ZZ, ...〉 set-predicate to a
(〈x � ZZ, ...〉 × 〈x � ZZ, ...〉) set-relation in order to support the semantics of
the UTP dash-notation x ′ in terms of relational composition. Similar compiler
techniques are necessary to add or remove fields in extensible records, for example
when entering and leaving the scope of a local variable declaration.

Another price we are ready to pay is that there may be rules in Textbook
UTP, which must be implemented by a rule scheme in our representation. That
is, there will be specific tactic support that implements a rule scheme, e. g., by
inserting appropriate coercions in a more general rule and applying the result
in a specific context. This technique has been used for the Z schema calculus by
Brucker et al. [3].

As concrete implementation platform, we chose Isabelle/HOL [11] which is a
well established tool for formal proof development. As member of the LCF-style
prover family, it offers support for user-programmed extensions in a logically
safe way. This choice is motivated by our wish to exploit, in a future step,
the semantic Circus theory developed here with HOL-TestGen [4,5], a powerful
test-case generation system that has been built on top of the specification and
theorem proving environment Isabelle/HOL.

The paper is organized as follows: Section 2 recalls briefly some useful aspects
of various background concepts: UTP, Isabelle/HOL, some advanced aspects of
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HOL; Section 3 presents how we have expressed in HOL the part of UTP that is
relevant for the Circus semantics; Section 4 introduces the Circus language and
the theory we have developed in HOL from its denotational semantics; Section 5
gives a small example of a Circus specification defined in Isabelle/HOL; and the
last section summarizes our current contributions and sketches our future work.

2 Background

2.1 Isabelle and Higher-Order Logic

Higher-order logic (HOL) [9,1] is a classical logic based on a simple type system.
It provides the usual logical connectives like ∧ , → , ¬ as well as the
object-logical quantifiers ∀ x • P x and ∃ x • P x ; in contrast to first-order logic,
quantifiers may range over arbitrary types, including total functions f : : α⇒ β.
HOL is centered around extensional equality = : : α ⇒ α ⇒ bool. HOL is
more expressive than first-order logic, since, e. g., induction schemes can be ex-
pressed inside the logic. Being based on some polymorphically typed λ-calculus,
HOL can be viewed as a combination of a programming language like SML or
Haskell and a specification language providing powerful logical quantifiers rang-
ing over elementary and function types.

Isabelle/HOL is a logical embedding of HOL into the generic proof assistant
Isabelle. The (original) simple-type system underlying HOL has been extended
by Hindley/Milner style polymorphism with type-classes similar to Haskell.
While Isabelle/HOL is usually seen as “proof assistant”, systems like HOL-
TestGen[4,5] also use it as symbolic computation environment. Implementations
on top of Isabelle/HOL can re-use existing powerful deduction mechanisms such
as higher-order resolution, tableaux-based reasoners, rewriting procedures, Pres-
burger Arithmetic, and via various integration mechanisms, also external provers
such as Vampire and the SMT-solver Z3. Isabelle/HOL offers support for a par-
ticular methodology to extend given theories in a logically safe way: A theory-
extension is conservative if the extended theory is consistent provided that the
original theory was consistent. Conservative extensions can be constant defini-
tions, type definitions, datatype definitions, primitive recursive definitions and
well-founded recursive definitions.

For example, typed sets were built in the Isabelle libraries conservatively
on top of the kernel of HOL as functions to bool; consequently, the constant
definitions for membership is as follows:1

types α set = α ⇒ bool
definition Collect :: (α ⇒ bool) ⇒ α set −−− set comprehension
where ”Collect S ≡ S”
definition member :: α⇒ bool −−− membership test
where ”member s S ≡ S s”

1 To increase readability, we use a slightly simplified presentation.
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Isabelle’s powerful syntax engine is instructed to accept the notation {x • P}
forCollect (λ x. P) and the notation s ∈ S for member s S. As can be inferred
from the example, constant definitions are axioms that introduce a fresh constant
symbol by some closed, non-recursive expressions; this type of axiom is logically
safe since it works like an abbreviation. The syntactic side-conditions of this
axiom are mechanically checked, of course. It is straight-forward to express the
usual operations on sets like ∪ , ∩ : : α set⇒ α set⇒ α set as conservative
extensions, too, while the rules of typed set-theory were derived by proofs from
these definitions.

2.2 Advanced Concepts of the HOL-Language

Similarly, a logical compiler is invoked for the following statements introducing
the types option and list:

datatype α option = None | Some α
datatype α list = Nil | Cons a l

Here, [] or a#l are an alternative syntax for Nil or Cons a l ; moreover, [a, b, c] is
defined as alternative syntax for a#b#c#[]. These (recursive) statements were
internally represented in by internal type- and constant definitions. Besides the
constructors None, Some, there are match-operations like:

case x of None⇒ F | Some a ⇒ G a.
Finally, there is a compiler for primitive and well-founded recursive function

definitions.
Isabelle/HOL also provides a rich collection of library theories like sets, pairs,

relations, partial functions lists, multi-sets, orderings, and various arithmetic
theories which only contain rules derived from conservative definitions. Setups
for the automated proof procedures like simp, auto, and the arithmetic types
such as int have been done.

Isabelle/HOL’s support for extensible records is of particular importance for
this work. Record types are denoted, for example, by:

record T = a ::T1

b ::T2

which implicitly introduces the record constructor �a :=e1,b :=e2	 and the up-
date of record r in field a, written as r�a := x	. Extensible records are represented
internally by cartesian products with an implicit free component δ, i.e. in this
case by a triple of the type T1 ×T2 ×δ. Thus, the record T can be extended
later on using the syntax:

record ET = T +
c :: T3

The key point is that theorems can be established, once and for all, on T types,
even if future parts of the record are not yet known, and reused in the later def-
inition and proofs over ET-values. Thus, we can model the effect of defining the
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alphabet of UTP processes incrementally while maintaining a fully typed shallow
embedding with full flexibility on the types T1, T2 and T3. In other words,
extensible records give us the means to implement the dots in the representation
type of the alphabetized predicate (3):

〈x � ZZ, x ′ � ZZ, ...〉set

shown in the introduction.

3 Representing UTP in HOL

3.1 Core UTP

In this section, we present the most general features of UTP: the concept of
alphabetized predicates, and sub-concepts such as alphabetized relations. As al-
ready unveiled in the introduction, we semantically represent alphabetized pred-
icates by sets of extensible records, and the latter by sets of pairs of extensible
records; for the latter, there is already the theory Relation .thy in the Isabelle
library that provides a collection of derived rules for sequential relational com-
position o or operators for least and greatest fixpoints ( lfp , gfp).

In order to support a maximum of common UTP look-and-feel, we implement
on the SML level implementing Isabelle a function that computes for a term de-
noting an alphabetized predicate (a cterm in Isabelle terminology) the alphabet
of a theorem, be it in the format of an alphabetized predicate or an alphabetized
relation. This function is suitably integrated into the command language ISAR
of Isabelle such that we can define and query on the ISAR shell:

define pred sample ”({x :: int ,x ’:: int , ...}, x = x’ + 1) ”
alpha sample
inalpha sample
outalpha sample

The first statement will be expanded internally into definitional constructions of
an alphabetized predicate; the latter three statements make Isabelle execute the
common alphabet projection functions α sample, the input alphabet inα sample
and the output alphabet outα sample (which are {x , x ′, ...},{x , ...} and {x ′, ...},
respectively). In more detail, the alphabetized predicate mechanism expands
internally the define pred-command as follows:

record sample type = x :: int , x ’:: int
definition sample ”sample ≡{A::sample type.A.x = A.x’ + 1}”

where the latter introduces per default a constant sample with the right type
and a theorem sample def containing the constant definition for sample. Note that
leaving out the dots “...” in the define pred-declaration leads to non-extensible
records (the internal δ type-variable representing future extensions is instanti-
ated with the trivial unit-type); the query-functions will reflect this in the output
accordingly.
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Alphabetized Predicates. We introduce the abbreviation α alphabet as a
syntactic marker to highlight types that we use for alphabetized elements; on
this basis, alphabetized predicates as sets of records are defined as follows:

types α alphabet = ”α”
types α predicate = ”α alphabet ⇒bool”

The standard logical connectives on predicates are simply introduced as ab-
breviations:

abbreviation true :: ”α predicate”
where ”true = λA. True”

abbreviation false :: ”α predicate”
where ”false = λA. False”

abbreviation not :: ”α predicate ⇒ α predicate” (”¬ ”)
where ”¬ P = λA. ¬ (P A)”

abbreviation conj :: ”[α predicate , α predicate ] ⇒ α predicate” ( infix ”∧”)
where ”P ∧ Q = λA. (P A) ∧ (Q A)”

abbreviation disj :: ”[α predicate , α predicate ] ⇒ α predicate” (” ∨ ”)
where ”P ∨ Q = λA. (P A) ∨ (Q A)”

abbreviation impl :: ”[α predicate , α predicate ] ⇒ α predicate” (” −→ ”)
where ”P −→ Q = λA. (P A) −→ (Q A)”

Note that our typing requires that all arguments range over the same al-
phabet. This is a significant restriction compared to textbook UTP, where all
alphabets were merged (by the union of the underlying sets), pretty much in
the style of Z. Thus, there are implicit coercions between sub-expressions in
UTP alphabetized predicates that have to be made explicit in suitable coercion
functions. For example, if we have the additional alphabetized predicate:

define pred sample2 ”({y:: int , ...}, y = 5) ”

an expression like sample −→ sample2 is simply ill-typed since they are both
built over different alphabets. In order to make this work, it is necessary to insert
suitable coercion functions (whose definition will be shown below):

(Injαsample 	→αsample∪αsample2 sample) −→ (Injαsample2	→αsample∪αsample2 sample2)

The insertion of such coercion functions can be done automatically (based on
an SML- computation of the alphabet of each sub-expression) and in an opti-
mized form (only in cases where the alphabets are not just inclusion, only at the
“leaves”, i.e. around constants denoting alphabetized predicates). The details of
such an automated coercion inference are out of the scope of this paper; the
technique, however, has already been applied elsewhere [3].
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It remains to define universal and existential quantifications in terms of HOL
quantifications.

abbreviation ex :: ”’β ⇒ [’ β ⇒’α predicate ] ⇒ ’α predicate” (”∃ ”)
where ”∃ x P ≡λA. ∃ x. (P x) A”

abbreviation all :: ”’β ⇒ [’ β ⇒’α predicate ] ⇒ ’α predicate” (”∀ ”)
where ”∀ x P ≡λA. ∀ x. (P x) A”

Alphabetized Relations. the alphabetized relations type is defined as a HOL
relation over inαP and outαP . Some programming constructs are then defined
over relations, for example the conditional expression. The condition expression
is represented as a predicate over inαP , the symbols are kept as defined in the
UTP book.

types α relation = ”(α alphabet ×α alphabet) set”
types α condition = ”α ⇒bool”

abbreviation cond::”[α relation ,αcondition,α relation ]⇒ α relation” (” � � ”)
where ”(P � b � Q) = λ(A, A’). (b A ∧P (A, A’)) ∨

(¬ (b A) ∧Q (A, A’))”

The second definition concerns the sequential composition; we use a predefined
HOL relation operator, which is the relation composition. This operator cor-
responds exactly to the definition of sequential composition of alphabetized
relations.

abbreviation comp::”α relation ⇒ α relation ⇒ α relation ” (” ;; ”)
where ”(P ;; Q) = P o Q”

Since the alphabet is defined as an extensible record, an update function is gen-
erated automatically for every field. For example, let a be a field in some record,
then there is the function r�a := x	, or represented internally update name a
x. We use this internal representation to define by a syntactic paraphrasing the
update relation family defined as {(A,A’). A’= �a := E A	}.

The syntactic transformation of the assignment to the update function is
instrumented as follows:

syntax
” Assign” :: ”[ idt , α⇒ β] ⇒ α relation ” (” :== ”)
translations
”x :== E” => ”{(A,A’). A’ = update name x (E A)}”

A last construct is the Skip relation, which keeps all the variable values as
they were. We use an equality over inαP and outαP to represent this. By using
the record type for the alphabet, this equality is considered as values equality.

abbreviation skip r :: ”α relation ” (”Π r”)
where ”Π r = λ(A, A’). (A’ = A)”
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The notion of refinement is equivalent to the universal implication of predi-
cates, it is defined using the universal closure used in the UTP.

abbreviation closure :: ”α predicate ⇒ bool” (”[ ]”)
where ”[ P ] = ∀ A. P A”

abbreviation refinement :: ”[αpredicate ,α predicate ] ⇒ bool” (”  ”)
where ”P Q = [ Q −→P ]”

Coercions. As mentioned earlier, it is crucial for our approach to generate
coercions in order to make our overall approach work. While it is impossible to
define coercion function once and for all for an arbitrary αP inside HOL, it is
however possible for any concrete alphabet, say {x :: int , x ′ :: int , ...}, a coercion,
and compute this concrete alphabet for each UTP theory context outside the
logic in suitable parsing functions.

More concretely, we have:

1. InjA	→B P which embeds pointwise. Elements of the P -set with alphabet
αP are mapped to elements with identical field content if field a ∈ αP ,
and with arbitrary values if a ∈ A. For example we consider the case
Injαsample	→αsample∪αsample2 which is just: Inj{x ,x ′,...}	→{x ,x ′,y...}. Then we de-
fine it by:

λ P. {σ . P �x:=x σ , x’ := x’ σ , ... 	}

2. ProjA P projects pointwise. Elements of the P -set with alphabet αP are
mapped to elements with identical field content if field a ∈ αP ; the fields
were ommited otherwise.

3. InjA	→(B×C ) P is a version of InjA	→B P that splits into pairs (useful for the
transition between predicates and relations). Example:
Injαsample	→αinsample×αoutsample or concretely:

λ P. {(σ , σ ’) . P �x:=x σ , x’ := x σ ’, ... 	}

4. ProjA×B 	→A∪B P is the inverse of the latter.
5. etc.

3.2 Designs Theory

The Designs theory is centered around a new concept which is captured by the
extra name ok. Thus, we consider alphabets that contain at least this variable.
This fits well to our representation of alphabets in extensible records: any the-
orem that we prove once and for all in the Designs theory will hold in future
theories, too.

The name ok. For short, the definition proceeds straightforwardly:

define pred alpha d ”({ok::bool, ...}, true) ”
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However, it is worthwhile to look at the internal definitions generated here:

record alpha d = ok::bool
types ’α alphabet d = ”’α alpha d scheme alphabet”
types ’α relation d = ”’α alphabet d relation ”

In this construction, we use the internal type synonym alpha d scheme which
Isabelle introduces internally for the cartesian product format where δ captures
the possible type extension.

Since the definition of alphabets and relations uses a polymorphic type, we
declare a new alphabet and relation type by instantiating this type to an exten-
sible alpha d. All the expressions defined for the first, more general type, will be
directly applicable to this new specific type.

Designs. Designs are a subclass of relations than can be expressed in the form:

(ok ∧ P) → (ok’ ∧ Q)

which means that if a program starts with its precondition P satisfied, it will
finish and satisfy its post condition Q . The definition of designs uses the previous
definitions of relations and expressions.

definition design :: ”[α relation d , α relation d ] ⇒ α relation d ” (”( # )”)
where ” (P # Q) ≡λ(A, A’). (ok A ∧P (A, A’)) −→ (ok A’ ∧ Q (A ,A’))”

As seen above, ok is an automatically generated function over the record type
alpha d, it returns the value of field ok

Once given the definition of designs, new definitions for skip are stated as
follows:

abbreviation skip d :: ”α relation d ” (”Π d”)
where ”Π d ≡(true # Π r)”

Our definitions make it possible to lead some proofs using Isabelle/HOL, as for
the true−; left zero lemma. More details about proofs are given in Sect. 3.5.

3.3 Reactive Processes

As for designs, reactive processes require more observational variables to be
defined. They are used for modeling the interaction of a process with its en-
vironment. Proceeding like we did with ok, we extend the alphabet with the
variables wait, tr and ref . The corresponding extended alphabet and the defini-
tion of reactive processes are given in our Reactive Process theory. This kind of
alphabet is called a reactive alphabet .

The names wait, tr and ref . The variable wait expresses whether a process
has terminated or is waiting for an interaction with its environment. The variable
tr records the trace of events (interactions) the process has already performed.
The ref variable is an event set, that encodes the events (interactions) that the
process may refuse to perform at this state.
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The new alphabet is an extension of the alphabet of designs, using the same
construct: extensible records. The traces are defined as polymorphic events lists,
and the refusals as polymorphic events sets.

datatype α event = ev α
types α trace = ”(α event) list ”
types α refusals = ”(α event) set”

define pred alpha rp
”(alpha d ∪ {wait :: bool, tr :: α trace , ref :: α refusals ,...}, true)”

and we add the handy type abbreviation:

types (α, δ) relation rp = ”(α, δ) alpha rp scheme relation ”

Again, the δ is used to make the record-extensions explicit.

Reactive Processes. Reactive processes are characterised by three healthiness
conditions. The first healthiness condition R1 states that a reactive process
cannot change the history of performed event.

R1 P = P ∧ (tr ≤ tr ′)

This healthiness condition is encoded as a relation, it uses a function ≤ on traces,
which is defined in our theory.

abbreviation R1::”(α, δ) relation rp ”
where ”R1 (P) ≡λ (A, A’). P (A, A’) ∧ ( tr A ≤ tr A’)”

To express the second healthiness condition R2, we use the formulation proposed
by Cavalcanti and Woodcock [7].

R2 (P(tr , tr ′)) = P(<>, tr − tr ′)

It states that a process description should not rely on what took place before its
activation, and should restrict only the new events to be recorded since the last
observation. These are the events in tr − tr ′.

abbreviation R2::”(α, δ) relation rp ”
where ”R2 (P) ≡λ (A, A’). P (A(|tr:=[]|),A’(|tr:= (tr A ’ − tr A) |))”

The last healthiness condition for reactive processes, R3, states that a process
should not start if invoked in a waiting state.

R3 (P) = Π � wait � P

A definition is given to Π (Skip process), and the healthiness condition is ex-
pressed as a conditional expression over predicates.

abbreviation R3::”(α, δ) relation rp ”
where ”R3 (P) ≡ (Π rp � (wait o fst ) � P)”
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We can now define a reactive process as a relation over a reactive alphabet that
satisfies these three healthiness conditions. This condition can be expressed as a
functional composition of the three conditions.

definition R::”(α, δ) relation rp ”
where ”R ≡R3 o R2 o R1”

3.4 CSP Processes

As for reactive processes, a theory CSP Process corresponds to the CSP processes
healthiness conditions. In UTP, a reactive process is a CSP process if it satisfies
two additional healthiness conditions CSP1 and CSP2.

definition CSP1::”(α, δ) relation rp ”
where ”CSP1 (P) ≡ λ (A, A’). (P (A, A’)) ∨ (¬ ok A ∧ tr A ≤ tr A’)”

definition J csp :: ”(α, δ) relation rp ”
where ”J csp ≡ λ (A, A’). ok A −→ok A’ ∧ tr A = tr A’ ∧ wait A = wait A’

∧ ref A = ref A’ ∧more A = more A’ ”

definition CSP2::”(α, δ) relation rp ”
where ”CSP2 (P) ≡ P ;; J csp”

CSP basic processes and operators can be encoded using their definitions as
reactive designs. Isabelle can be used to prove that these reactive designs are
CSP healthy. This could be an extension of our theory, which contains only the
definitions of the two CSP healthiness conditions above. There are three other
CSP healthiness conditions that we don’t mention here. However, they will be
considered in the Circus theory since they are required for Circus processes.

3.5 Proofs

As mentioned above, the theories contains also proofs for some theorems and
lemmas. In the relations theory, 100 lemmas are proved using 250 lines of proof,
and in the designs theory 26 lemmas are proved using 120 lines of proof. Since
our definitions are close to the library definitions of Isabelle/HOL, we can exploit
the power of the standard Isabelle proof procedures. For example, we consider
the proof of the true−; left zero lemma. There are almost the same proof steps
as those used in the textbook proof.

lemma t comp lz: ”(true ;;(P #Q)) = true”
apply (auto simp: expand fun eq design def rel comp def raw mem def)
apply ( rule tac x=”b(|ok:=False|)” in exI)
by (simp add: mem def)

In the previous proof we first apply some simplifications using the operators
definitions (eg. design def ), then we fix the ok value to false and finally some
simplifications will finish the proof.
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4 Circus

4.1 A Brief Introduction into the Circus Language

Circus is a formal specification and development approach providing a combina-
tion of process algebra and model-based abstract data types, with an integrated
notion of refinement. As a language, it combines CSP, Z and refinement.

channel out : N

process Fib =̂ begin
state FibState == [ x , y : N ]
InitFibState == [FibState ′ | x ′ = y ′ = 1 ]
InitFib =̂ out !1 → out !1 → InitFibState
OutFibState == [ ΔFibState; next ! : N | next ! = y ′ = x + y ∧ x ′ = y ]
OutFib =̂ μ X • (var next : N • OutFibState ; out !next → X )
• InitFib ; OutFib

end

Fig. 1. The Fibonacci suite in Circus

Syntactically, a Circus specification is a sequence of paragraphs, just like in Z
or Isabelle/ISAR, with the possibility to declare schemas, channels and processes.
In the example of Fig. 1, there is first a paragraph where a channel is declared,
namely out : N. Then comes the definition of the Fib process as a sequence of
(1) a state definition, which is just a couple of natural numbers, (2) an initial-
ization operation InitFibState on the state defined by a Z schema, (3) a Circus
action named InitFib defined as a CSP-like process with the specificity that the
InitFibState operation appears as an event, (4) a normal operation on the state
OutFibState, defined by a Z schema and (5) a recursive action OutFib defined by
CSP-like constructs where OutFibState operation appears as an event. Finally,
the main action of the Fib process is given by just the sequential composition of
the two actions above.

This example just shows the description of a process with an encapsulated
state, where the behavior combines CSP-like external interactions and Z-like
internal state operations. The small example gives only a flavor of Circus, which
comprises a combined semantics for features like parallelism, internal choices,
encapsulated complex data types, imperative statements, and refinements.

4.2 The Circus Theory

The denotational semantics of Circus was defined by Oliveira et al. [13], based
on UTP. Circus actions are defined as CSP healthy reactive processes. The
Circus Actions theory contains the definition of the type Action, which restricts
the relations to the subset of CSP healthy relations.
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typedef(Action)
(α,δ) action = ”{p::(α,δ) relation rp . is CSP process p}”

proof −
have ”true ∈ {p ::(α,δ) relation rp . is CSP process p}”

by(auto simp add: Collect def mem def Healthy def)
thus ? thesis by auto

qed

We assume here the predicate is CSP process capturing the known healthiness
conditions of CSP (not shown here). Isabelle methodology imposes that type
definitions should be non-empty. In the action type definition, the first part
declares the actions as subset of CSP healthy relations, and the second part is
the proof that this subset is not empty.

Every Circus operator is defined as an alphabetized predicate. the first defini-
tions concern the basic processes Stop, Skip and Chaos. Some other examples of
operators are also shown in the sequel of the paper.

Basic Processes. Stop is defined as a reactive design, with a precondition true
and a postcondition stating that the system deadlocks and the traces are not
evolving.

definition
Stop :: ”(α,δ) action”

where
”Stop ≡ Abs Action (R (true # λ (A, A’). tr A’ = tr A ∧wait A’))”

Skip is defined as a reactive design, with a precondition true and a postcondition
stating that the system terminates and all the variables of the state are not
changed.

definition
Skip :: ”(α,δ) action”

where
”Skip ≡ Abs Action (R (true # λ (A, A’). tr A’ = tr A ∧¬ wait A’

∧more A = more A’))”

The Chaos process is defined as a reactive design with false as precondition and
true as postcondition.

Communications. The prefixed actions definition is based on the definition of
a special predicate do C. In the Circus denotational semantics, different forms of
prefixing were defined, we define in our theory one general form, and the other
notations can be defined using this form.

abbreviation
do C :: ”[α event, α event set ] ⇒ (α,δ) relation rp ’’

where
”do C x S ≡ (λ (A, A’). ( tr A = tr A’) ∧ (S ∩ ( ref A’) = {}))

� wait �
(λ (A, A’). ∃ e. e ∈ S ∧ ( tr A’) = (tr A)@[e] ∧ x = e)”
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The definition of do C is different from Oliveira et al.’s definition [13], because
we want our definition to be more general. The prefixing action can then be
defined, using the same denotational semantics definition.

definition
Prefix :: ”[α event set ,α event ⇒ (α,δ) action ] ⇒ (α,δ) action”

where
”Prefix S P ≡Abs Action((∃ e. R (true # (λ (A,A’). ((do C e S)(A,A’)

∧more A’ = more A )))) ;; P e)”

Different types of communication are considered below. The channels are defined
as functions over communicated values. We distinguish three types of communi-
cations:

– Inputs: the set of communications contains all possible values.
– Outputs: the set of communications contains only one value.
– Synchronizations: the set is empty, there is just a channel name.

Below, we define these three communications forms

definition
read :: ”[α ⇒ β event,α set , α⇒ (β, δ) action ] ⇒ (β, δ) action”

”read c S P ≡ Prefix (c ‘ S) (P o (inv c))”
write :: ”[α ⇒ β event, α, (β, δ) action ] ⇒ (β, δ) action”

”write c a P ≡Prefix {c a} (λ x. P)”
write0 :: ”[β event, (β, δ) action ] ⇒ (β, δ) action”

”write0 a P ≡ Prefix {a} (λ x. P)”

and configure the Isabelle syntax-engine such that it parses the usual communi-
cation primitives:

syntax
” read” :: ”[ id , pttrn , (α,δ) action ] ⇒ (α, δ) action” (” ‘?‘ → ”)
” readS” :: ”[ id , pttrn ,β⇒bool, (α,δ)action ] ⇒ (α,δ)action”(” ‘?‘ ‘ : ‘ → ”)
” write” :: ”[ id ,β ,(α,δ)action ] ⇒ (α,δ) action” (” ‘ ! ‘ → ”)
” writeS” :: ”[α,(α,δ)action ] ⇒ (α,δ)action” (” → ”)
translations
”c ‘?‘ p → P” ≡”CONST read c CONST UNIV (λp. P)”
”c ‘?‘ p ‘ : ‘ b → P” ≡”CONST read c {p. b} (λp. P)”
”c ‘ ! ‘ p → P” ≡”CONST write c p P”
”a → P” ≡”CONST write0 a P”

Guarded Actions. A guarded action is defined with a condition and an action,
we define a special function Spec that fixes the values of wait and ok’ for a given
predicate.

abbreviation
Spec

where
”Spec b b’ P ≡λ (A,A’). P (A�wait := b’	 , A’�ok := b	)”
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definition
Guard :: ”[(α,δ) relation rp ,(α,δ)action ] ⇒ (α,δ)action” (” & ”)

where
”g & P ≡ Abs Action(R ((g → ¬ Spec False False P) #

((g∧Spec True False P) ∨
(¬ g ∧ λ (A,A’).( tr A’=trA∧ waitA’)))))”

Sequencing. Actions may be composed sequentially using the squential com-
position operator. The definition is based on the UTP relation composition.

definition
Seq :: ”[(α,δ)action ,(α,δ)action ] ⇒ (α,δ)action” (” ‘ ; ‘ ”)

where
”P ‘ ; ‘ Q ≡ Abs Action (Rep Action P ;; Rep Action Q)”

The complete Circus theory contains the definition of all actions operators,
constructs, healthiness conditions and the proofs of some theorems over them.

Circus Processes. Finally, the Circus process definition contains the alphabet
declaration, schema expressions and actions. The alphabet is defined by ex-
tending the alpha rp record with the process variables. The normalized schema
expressions are defined separately as relations over the defined alphabet. The
actions are defined as Circus actions over the alphabet.

The next section gives an example of how a Circus process is written using
the previous theories.

5 Example: Using Isabelle/Circus

To illustrate the use of the Circus theory we come back to our example in Fig. 1
of a process that calculates and outputs the Fibonacci suite. The process uses
only one channel out that communicates natural numbers. The process state
is defined by two natural variables x and y. The process contains two schema
expressions InitFibState and OutFibState, and two actions InitFib and OutFib.
InitFibState initializes the state variables to the value 1. InitFib action outputs
twice the value 1 over the channel out , then calls InitFibState. OutFibState
performs the Fibonacci suite step, and returns a value next . The OutFib action
recursively calls OutFibState and outputs the value of next . The main action
of the process performs initialization with InitFib, then generates the fibonacci
suite with OutFib.

In the following, we will encode this example in our Circus theory. Note that we
deliberately refrain from a front-end here that hides the Isabelle/Circus internals
from the user (such a front-end consisting of the existing CZT-parser and type-
checker for Circus will be integrated in the future); the purpose of this section
is to have a glance at our Circus semantics “at work”.
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5.1 Channels and Alphabet

We first define the channels, types and alphabets. The state definition corre-
sponds to the extension part of the defined alphabet.

datatype channel = out nat

record fib state = ”channel alpha rp” +
x :: nat
y :: nat

types my alpha = ”fib state alphabet”
types my pred = ”my alpha relation”

types my action = ”(channel, (|x :: nat, y :: nat|)) action”

5.2 Schema Expressions and Actions

Normalized schema expressions are defined as reactive processes. The predicate
value corresponds to the schema formula, and the input/output variables are
passed as parameters (eg. next). The actions are defined as Circus actions .

definition
InitFibState :: ”my pred”

where
” InitFibState ≡R (λ(A, A’). (x A’ = 1 ∧y A’ = 1))”

definition
InitFib :: ”my action”

where
” InitFib ≡ (out ‘ ! ‘ 1 → (out ‘ ! ‘ 1 → Abs Action InitFibState ))”

definition
OutFibState::”nat ⇒ my pred”

where
”OutFibState next ≡R (λ(A, A’). x A’ = y A

∧ y A’ = x A + y A ∧next = x A + y A)”

definition
OutFib :: ”my action”

where
”OutFib ≡μ X. Abs Action (λ A. ∃ next.

((OutFibState next) ;; (Rep Action (out ‘ ! ‘ next → X))) A)”
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5.3 Main Action

The main action is also defined as a Circus Action, by a sequential composition
of the defined actions InitFib and OutFib.

definition
Fib :: ”my action”

where
”Fib ≡ InitFib ‘ ; ‘ OutFib”

6 Conclusions and Future Work

This paper introduces the Isabelle/Circus proof environment. It is conceived as a
shallow embedding into Isabelle/HOL and aims for effective deductive support of
those UTP theories related to Circus and to Circus itself. This is work in progress:
while the foundation of the UTP is done and most textbook proofs have been
formalized, there is at present still very little automated proof support with
respect to our ultimate goal, the development of efficient deductive support for
verification and test generation for Circus.

Our choice of Isabelle as a foundation is justified by the fact that this proof
environment comes with a rich set of deduction machinery, and the powerful
binding mechanism and type inference system of HOL that we can re-use. How-
ever, our main motivation is that we plan to use the HOL-TestGen system [4,5],
that is developed on the top of Isabelle/HOL, for developing well-founded test
generation strategies from Circus specifications, on similar formal bases as those
presented by Cavalcanti and Gaudel [8] for CSP.

When developing these theories, it turned out that using HOL extensible
records for representing alphabetized predicates is extremely convenient and
allows an incremental encoding that remains very close to the original UTP
definitions.

Moreover, a significant advantage is that we do not encode the alphabet in
our key formalization of the “alphabetized predicate”: after a pre-processing, we
do everything in the semantic representation with the type (as in HOL-Z). This
means

– that P is not of type boolean (“predicate”), but of form α => bool , which
is equivalent to α set .

– for α, we uses the fact that the fields of the extensible records correspond to
the elements of the alphabet,

– the function α P becomes a meta-function in ML.

The price to pay are a number of coercions that we have currently to add by
hand (and that might be generated by a future front-end using the CZT-Parser,
in the way the “Encoder” works in HOL-Z).

From prior experiments, for instance the HOL-Z system mentioned above,
we expect this approach to lead to the deductive efficiency required to support
proofs about Circus specifications, to apply verified transformations on them,
with the objective of assisting refinement and test generation.
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Abstract. We give an algebraic semantics of non-deterministic, sequen-
tial programs which is valid for partial, total and general correctness. It
covers full recursion based on a unified approximation order. We provide
explicit solutions in terms of the refinement order. As an application,
we systematically derive a semantics of while-programs common to the
three correctness approaches.

UTP’s designs and prescriptions represent programs as pairs of termi-
nation and state transition information in total and general correctness,
respectively. We show that our unified semantics induces a pair-based
representation which is common to the correctness approaches. Opera-
tions on the pairs, including finite and infinite iteration, can be derived
systematically. We also provide the effect of full recursion on the unified,
pair-based representation.

1 Introduction

In previous works [17,18] we have identified common axioms which underly the
approaches of partial, total and general correctness [24], and we have given a
unified semantics of while-programs which is valid in all three correctness ap-
proaches. Results stated in terms of this semantics and proved by applying the
common axioms hold in partial, total and general correctness. For example, this
includes complex program transformations, such as those used to prove the nor-
mal form theorem for while-programs.

In this paper, we extend the unified semantics to cover full recursion. Fixpoints
are taken with respect to a common approximation order, which is expressed
in terms of the common refinement order and based on the Egli-Milner order
typically used in general correctness. By adding axioms specific to partial, total
and general correctness, respectively, we obtain the appropriate semantics of
recursion in each particular approach. This covers in particular the sequential,
non-deterministic fragment of UTP.

The unified recursion can be used to systematically derive a semantics of
programming constructs which is common to all three correctness approaches. As
an example, we calculate the unified semantics of while-programs. This improves
the previous method of deriving or defining the semantics independently for
partial, total and general correctness.

Theories of total and general correctness often represent a program as a
pair whose components describe termination information and possible state

S. Qin (Ed.): UTP 2010, LNCS 6445, pp. 207–225, 2010.
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transitions, respectively [5,3,30,28,19]. In UTP they emerge as designs for to-
tal correctness [22] and prescriptions for general correctness [14].

We show that our unified semantics induces such a pair-based representation,
and systematically derive the operations and programming constructs on the
pairs. Since it relies only on the common axioms, the same representation is valid
for all correctness approaches. Informally speaking, this achieves a unification of
UTP’s designs and prescriptions.

We generalise previous investigations about the solution of recursions on the
pair-based representations, which are specified by a pair of functions. This exem-
plifies that besides dealing with specific kinds of recursion, such as those necessary
for while-programs, the unified recursion is also useful for general results.

Our approach is algebraic: laws of programs are taken as the axioms of alge-
braic structures with programs as elements. Thus our results hold in any model
that satisfies the underlying axioms. In fact, this is essential for our unifica-
tion as partial, total and general correctness have quite different models. Since
the axioms are typically first-order conditional equations, another benefit is the
support by automated theorem provers and counterexample generators.

Section 2 provides the axioms and some of their consequences. Most axioms
are well investigated in the literature; the few of Section 2.3, including a new
one, are specific to our aim of unification.

In Section 3 we contribute the unified approximation order, based on which
we unify the semantics of recursion. Our main consequences are explicit repre-
sentations of the unified fixpoint and explicit conditions for its existence. The
application to while-loops is last.

The topic of Section 4 is to contribute a unified, pair-based representation of
programs. Two more axioms are required and provided at the beginning. Based
on them we map our algebraic structure to a structure of pairs. Operations on
the pairs are derived via this isomorphism. We combine these results with the
unified fixpoint representation of Section 3 to solve recursions on pairs.

To summarise, the contributions of this paper are to unify approximation, the
semantics of recursion, representations of fixpoints, and pair-based representa-
tions of programs for partial, total and general correctness.

2 Axioms for Partial, Total and General Correctness

Partial-correctness approaches such as Hoare logic [21], weakest liberal precon-
ditions [12] and Kleene algebra with tests [26] treat programs by ignoring their
non-terminating executions. In total correctness, which includes weakest precon-
ditions [12], UTP [22], demonic refinement algebra [31] and demonic algebra [6],
terminating executions are ignored in the presence of any non-terminating ones
starting from the same states. General correctness [2,5,24,3,30,14,28,17] models
terminating and non-terminating executions independently.

Although these approaches give programs different semantics, they support a
number of common laws about programs. For example, these laws are sufficient to
prove complex program transformations, which then hold in all three correctness
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approaches [18]. In this section we discuss some of the common axioms, which
are subsequently used in this paper. We also mention laws characteristic for
particular correctness approaches.

2.1 Basic Axioms

Throughout this paper we assume that programs are elements of an algebraic
structure (S, +, 0, ,%, ·, 1) such that (S, +, 0, ,%) is a bounded distributive
lattice and (S, +, 0, ·, 1) is a semiring without the right zero law. We thus have
the following axioms:

x + 0 = x x % = x
x + y = y + x x  y = y  x

x + (y + z) = (x + y) + z x  (y  z) = (x  y)  z
x  (x + y) = x x  (y + z) = (x  y) + (x  z)

1 · x = x x · (y + z) = (x · y) + (x · z)
x · 1 = x (x + y) · z = (x · z) + (y · z)

x · (y · z) = (x · y) · z 0 · x = 0

They characterise a lattice-ordered monoid [4] in which the lattice is bounded
and distributive and the left zero law 0 ·x = 0 holds. In contrast to our previous
works [17,18] we now include the  operation, which we use to represent fixpoints
in Section 3.2 and programs as pairs in Section 4.2. The operation · has highest
precedence; it is frequently omitted by writing xy instead of x · y.

By x ≤ y ⇔def x + y = y ⇔ x  y = x we obtain the partial order ≤ on S
with join +, meet , least element 0 and greatest element %. The operations +,
 and · are ≤-isotone. Further consequences of the above axioms are

x + x = x x + (x  y) = x
x  x = x x + (y  z) = (x + y)  (x + z)

In relational models such as UTP, the operation + is interpreted as set union
(non-deterministic choice),  as set intersection, and · as relational (sequential)
composition. The relation ≤ is the subset or refinement order, where x ≤ y ex-
presses that x refines y. In partial correctness, the constants 0, % and 1 are the
empty, universal and identity relation, respectively. In terms of UTP designs, 0
is (true # false), % is (false # true), and 1 is (true # �v′ = �v); prescriptions have
similar instances. Without further notice, we assume that designs and prescrip-
tions satisfy the healthiness condition H3; these are called ‘normal’ by [14].

2.2 Domain

The domain d(x) of the program x represents the initial states from which a
transition under x is possible. Its complement, the anti-domain a(x), is used in
a compact axiomatisation given in [11,10], which we adopt:

d(x) = a(a(x))
a(x)x = 0

a(xd(y)) = a(xy)
d(x) + a(x) = 1
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In our bounded setting the characterisation d(x) ≤ d(y) ⇔ x ≤ d(y)% given
by [1] follows. The domain operation is idempotent and ≤-isotone, whence the
domain elements d(S) are the fixpoints of d. They form a Boolean algebra
(d(S), +, 0, ·, 1, a) [11,10], in which the operations · and  coincide. Further con-
sequences are

d(0) = 0 d(xd(y)) = d(xy) x ≤ d(x)%
d(%) = 1 d(d(x)y) = d(x)d(y) x% ≤ d(x)%

d(x)x = x d(x + y) = d(x) + d(y) xd(y)% ≤ d(xy)%

In UTP and other relational models of total correctness, the domain operation
can be defined explicitly by d(x) = x%  1, but this is not valid in general
correctness. The domain of a design is reduced to that of its components by
d(P # Q) = (true # a(P ) ∨ d(Q)), and similarly for prescriptions.

Domain elements can be used as tests to model conditions: for example, the
sequential composition px of p ∈ d(S) with the program x ∈ S restricts the
transitions of x to those starting in a state that satisfies p.

2.3 Loop

Notably missing from our axioms for S is the right zero law x · 0 = 0, or equiv-
alently, % · 0 = 0. This law is characteristic of partial correctness, but it does
not hold in total and general correctness. In fact, % · 0 = % in total correctness,
which in UTP is a consequence of the healthiness condition H1 for designs [22,
Theorem 3.2.2]. In general correctness, the element % · 0 is neither 0 nor %: in
terms of prescriptions we obtain (false #� true) · (true #� false) = (false #� false).

The element % · 0 occurs in several contexts, such as infinite computations
and temporal logic [13,29,27]. Its role in the present work is that in all three
correctness approaches % · 0 represents the endless loop or never terminating
program; we denote it by L =def % · 0.

We assume the following, independent axioms about L:

(L1) d(x)L = xL
(L2) d(L)x ≤ xd(L)

Axiom (L1) and the more restrictive d(L) = 1 are used in our algebraic treatment
of general correctness [17,18]; the current (L2) is new.

Axiom (L1) generalises a law typical for relational models of total correctness
such as UTP, namely d(x)% = x%. The latter follows from the explicit d(x) =
x%  1 by d(x)% = (x%  1)% ≤ x%% = x% ≤ d(x)%, but it is not valid in
general correctness.

Axiom (L2) holds in partial correctness, where L = 0 and hence d(L) = 0; in
total correctness, where L = % and hence d(L) = 1; and in general correctness
where also d(L) = 1. For prescriptions, the latter is obtained by

d(L) = d(false #� false) = (true #� a(false) ∨ d(false))
= (true #� (¬false ∧ �v′ = �v) ∨ false) = (true #� �v′ = �v) = 1 .
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The endless loop L is a particular case of an element being formed by se-
quential composition with 0. Intuitively, this operation cuts out all terminating
executions, thus x0 retains only the non-terminating executions of x [27,23]. In
presence of (L2), the axiom (L1) can be replaced by its instance (L3) for such
non-terminating elements:

(L3) d(x0)L = x0
(L3’) x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + d(y0)%

Along with a few other facts, including the equivalence of (L3) and (L3’), this is
shown in the following lemma.

Lemma 1.

1. (L1) ∧ (L2)⇔ (L3) ∧ (L2).
2. (L1)⇒ x%  L = xL.
3. (L1)⇒ (x0  y0)0 = x0  y0.
4. (L2)⇒ xa(L)% ≤ x0 + a(L)%.
5. (L3)⇔ (L3’).

Proof.

1. The forward implication is clear since (L3) is an instance of (L1). The back-
ward implication follows by

d(x)L = d(x)d(L)L = d(L)d(x)L = d(d(L)x)L ≤ d(xd(L))L = d(xL)L
= d(x%0)L = x%0 = xL ≤ d(x)%L = d(x)L .

2. Since · is ≤-isotone we have xL ≤ x% and xL ≤ %L = L. Hence xL ≤
x% L = d(x%  L)(x%  L) ≤ d(x%)L = x%L = xL.

3. We use (L1) in

x0  y0 = d(x0  y0)(x0  y0) ≤ d(x0  y0)L = (x0  y0)L
= (x0  y0)%0 ≤ (x0% y0%)0 = (x0  y0)0 ≤ x0  y0 .

4. The claim is proved by separating the cases d(L) and a(L):

xa(L)% = 1xa(L)% = (d(L) + a(L))xa(L)% = d(L)xa(L)% + a(L)xa(L)%
≤ xd(L)a(L)% + a(L)% = x0 + a(L)% .

5. Assume (L3). The forward implication of (L3’) is clear since + is the join
operator. For the backward implication let x ≤ y + L and x ≤ y + d(y0)%.
We then obtain x ≤ y by separating the cases d(y0) and a(y0):

x = d(y0)x + a(y0)x ≤ d(y0)(y + L) + a(y0)(y + d(y0)%)
= d(y0)y + d(y0)L + a(y0)y + a(y0)d(y0)% ≤ y + y0 + 0 = y .

Assume (L3’). We then obtain d(x0)L ≤ x0 since d(x0)L ≤ L ≤ x0 + L and
d(x0)L ≤ d(x0)% ≤ x0+d(x0 ·0)%, thus (L3) by x0 = d(x0)x0 ≤ d(x0)L. ��
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2.4 Specific Laws

The axioms discussed so far are common to partial, total and general correctness.
Table 1 presents a sample of laws which hold in some correctness approaches only.
These, and further ones, can be imposed as axioms or derived from other axioms
when reasoning in a particular sub-theory. We do not consider them further as
our goal is a theory unifying the three correctness approaches.

Table 1. Laws of particular correctness approaches

partial total general
L = 1 − − −
L = 0 + − −
L = � − + −
d(L) ≤ L + + −
L  1 = a(L) − − +
L  1 = 0 + − +
d(L) = 1 − + +
d(L)� ≤ �d(L) + + +

3 Unified Semantics

In this section, we describe the unified semantics of partial, total and general
correctness. Sequential composition and non-deterministic choice are modelled
by the operations + and ·, respectively. Hence ≤ is the common refinement order.
Also traditional is the conditional statement given by if p then x else y =def

px + a(p)y for domain elements p. A unified semantics of finite and infinite
iteration has been presented in [18]. It arises in Section 3.3 as a special case of
the unified semantics of recursion, which we first discuss.

3.1 Approximation

In contrast to the refinement order, the approximation order is used to fix the
meaning of recursively defined programs. Both orders coincide in the case of
partial and total correctness, but not in general correctness, where approximation
is given by the Egli-Milner order [30]. For general correctness, we have expressed
the Egli-Milner order algebraically in terms of the refinement order [17,18]. Based
on that, we use the following generalisation to cover partial, total and general
correctness:

x  y ⇔def x ≤ y + L ∧ d(L)y ≤ x + d(x0)% .

Let us instantiate the approximation relation  for each correctness approach
to see why it is appropriate:

– In partial correctness we have L = 0, hence x  y ⇔ x ≤ y. Refinement and
approximation coincide.
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– In total correctness we have L = %, hence x  y ⇔ y ≤ x + d(x0)% =
x +x0 = x assuming the law d(x)% = x% valid in UTP and other relational
models. Thus approximation is the converse of refinement, which enables us
to take the same (least) fixpoints as in the other approaches.

– In general correctness we exemplify  for prescriptions. A calculation similar
to the one in [17] yields

(P1 #� Q1)  (P2 #� Q2)⇔ P1 ≤ P2 ∧Q1 ≤ Q2 ∧ P1  Q2 ≤ Q1 .

This is the Egli-Milner order given by [15].

Although we know that in these three instances the relation  is a partial order,
we still have to show this in general. This is done by the following theorem,
which also shows that the basic operators are -isotone. Our previous result for
the Egli-Milner order in [18] is similar, but due to subtle differences between the
orders we provide a new proof.

Theorem 2. The relation  is a preorder with least element L. It is a partial
order if and only if (L3) holds. The operations + and ·z are -isotone. The
operation z· is -isotone if (L2) holds.

Proof. Reflexivity is clear since x ≤ x + L and d(L)x ≤ x. The least element is
L since L ≤ y + L and d(L)y ≤ d(L)% ≤ L + d(L0)%. For transitivity let x  y
and y  z. Thus x ≤ y + L and y ≤ z + L, whence x ≤ y + L ≤ z + L. Moreover
d(L)y ≤ x + d(x0)% and d(L)z ≤ y + d(y0)%, whence

d(L)z = d(L)d(L)z ≤ d(L)(y + d(y0)%) = d(L)y + d(L)d(y0)%
= d(L)y + d(d(L)y0)% ≤ x + d(x0)% + d((x + d(x0)%)0)%
= x + d(x0)% + d(x0 + d(x0)L)% = x + d(x0)% + d(x0)d(L)%
= x + d(x0)% .

Hence x  z. By Lemma 1.5 we can use (L3’) to show that  is antisymmetric.
Let x  y and y  x, then x ≤ y + L and d(L)x ≤ y + d(y0)%. Thus

x = d(L)x + a(L)x ≤ d(L)x + a(L)y + a(L)L ≤ y + d(y0)% .

We therefore have x ≤ y by (L3’), and a symmetric argument shows y ≤ x.
On the other hand, we obtain (L3) by assuming that  is antisymmetric since
d(x0)L  x0 and x0  d(x0)L follow from

d(x0)L ≤ L = x0 + L , d(L)x0 ≤ x0 ≤ d(x0)L ≤ d(x0)L + d(d(x0)L0)% ,
x0 ≤ L = d(x0)L + L , d(L)d(x0)L ≤ d(x0)% ≤ x0 + d(x0 · 0)% .

For the isotony claims assume x  y, hence x ≤ y + L and d(L)y ≤ x + d(x0)%.
Then x+ z  y + z follows from x+ z ≤ y + z +L and d(L)(y + z) ≤ d(L)y + z ≤
x + z + d(x0)% ≤ x + z + d((x + z)0)%. Moreover xz  yz follows from xz ≤
(y + L)z = yz + L and d(L)yz ≤ (x + d(x0)%)z = xz + d(x0)%z ≤ xz + d(xz0)%.
Finally zx  zy follows from zx ≤ z(y + L) ≤ zy + L and d(L)zy ≤ zd(L)y ≤
z(x + d(x0)%) = zx + zd(x0)% ≤ zx + d(zx0)% using (L2). ��
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By developing the unified semantics algebraically in a first-order theory, we con-
siderably profit from tools such as automated theorem provers and counterex-
ample generators. For example, the converse of the last claim in Theorem 2 does
not hold as witnessed by a 12-element counterexample generated by Mace4, even
if (L1) is assumed additionally.

3.2 Recursion

With the approximation order in place, we can define the unified semantics of
recursion. Let f : S → S be the characteristic function of the recursion. The
unified semantics of the recursion is the -least fixpoint of f , denoted by κf
provided it exists. We furthermore use the ≤-least prefixpoint and the ≤-greatest
postfixpoint of f , which are denoted by μf and νf , respectively, provided they
exist. To be precise, we require that these elements satisfy the following laws:

f(κf) = κf f(x) = x ⇒ κf  x
f(μf) = μf f(x) ≤ x ⇒ μf ≤ x
f(νf) = νf x ≤ f(x) ⇒ x ≤ νf

It follows that μf and νf are the ≤-least and ≤-greatest fixpoints of f , respec-
tively. By the discussion about the unified approximation order in Section 3.1 we
immediately obtain that κf is appropriate in all three correctness approaches.
In particular, κf = μf in partial correctness, and κf = νf in total correctness.

The main result of this section gives explicit representations of κf and condi-
tions for its existence. We denote by x � y the greatest lower bound of x and y
with respect to , provided it exists.

Theorem 3. Let f : S → S be ≤- and -isotone, and assume that μf and νf
exist. Then the following are equivalent:

1. κf exists.
2. κf = μf � νf .
3. κf = (νf  L) + μf .
4. d(L)νf ≤ (νf  L) + μf + d(νf0)%.
5. (νf  L) + μf  νf .
6. μf � νf = (νf  L) + μf .
7. μf � νf ≤ νf .

Proof. Abbreviate � =def (νf  L) + μf and m =def μf � νf . Since νf0 ≤ νf and
νf0 ≤ L we have νf0 ≤ νf  L ≤ � ≤ νf + μf = νf , whence νf0 = �0. We first
show that statements (4)–(7) are equivalent:

(4) ⇒ (5): Because � ≤ νf ≤ νf + L and d(L)νf ≤ � + d(νf0)% = � + d(�0)% we
obtain �  νf .

(5) ⇒ (6): We have � ≤ μf + L and d(L)μf ≤ d(L)νf ≤ � + d(�0)%, thus �  μf .
Let x  μf and x  νf , then x ≤ μf + L ≤ � + L and d(L)� ≤ d(L)νf ≤
x + d(x0)%, whence x  �.

(6) ⇒ (7): This is immediate since � ≤ νf .
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(7) ⇒ (4): From m  μf we obtain m ≤ μf + L, whence m ≤ νf  (μf + L) =
(νf  μf) + (νf  L) = � by distributivity and the meet property of . Thus
m  νf implies d(L)νf ≤ m + d(m0)% ≤ � + d(�0)% = � + d(νf0)%.

We next add statements (1)–(3) to this cycle:

(1) ⇒ (2): Clearly κf  μf and κf  νf . Let x  μf and x  νf , then
x ≤ μf + L ≤ κf + L and d(L)κf ≤ d(L)νf ≤ x + d(x0)%, whence x  κf .

(2) ⇒ (7): This is immediate since κf ≤ νf .
(7) ⇒ (3): This step uses isotony of f . From m  μf we get f(m)  f(μf) = μf

and m ≤ μf+L = f(μf)+L ≤ f(m)+L since μf ≤ m by (6). From m  νf we
get f(m)  f(νf) = νf and d(L)f(m) ≤ d(L)f(νf) = d(L)νf ≤ m + d(m0)%
by (7). Hence m  f(m)  m, thus f(�) = � by (6) and Theorem 2.
Let f(x) = x, then μf ≤ x ≤ νf , whence � ≤ μf + L ≤ x + L and d(L)x ≤
d(L)νf ≤ � + d(νf0)% = � + d(�0)% by (4). Thus �  x.

(3) ⇒ (1): This is clear. ��

Statements (3) and (4) of this theorem describe the -least fixpoint κf and its
existence in terms of the refinement order ≤. In all representations, the ≤-least
and ≤-greatest fixpoints are separated; this is in contrast to the partitioned
fixpoint of [7] which nests one fixpoint operator inside another.

In partial and general correctness the additional representation κf = νf0+μf
holds [17,18]. The counterexample f(x) = x  1 with μf = 0 and νf = 1 shows
that in total correctness this representation cannot be added as an equivalent
condition to Theorem 3. Yet we obtain the following, sufficient conditions that
describe when κf = νf0 + μf in partial, total and general correctness.

Corollary 4. Let f : S → S be ≤- and -isotone, and assume that μf and νf
exist. Then the following are equivalent:

1. κf = νf0 + μf .
2. d(L)νf ≤ μf + d(νf0)%.
3. νf0 + μf  νf .
4. μf � νf = νf0 + μf .

They imply the statements of Theorem 3.

Proof. Abbreviate � =def (νf  L) + μf and n =def νf0 + μf . Since νf0 ≤ νf and
νf0 ≤ L we have n ≤ �. Assuming (2) we obtain n = � since Lemma 1.2 gives

νf  L = νf  L  L = d(νf  L)(νf  L)  L ≤ d(L)νf  L
≤ (μf + d(νf0)%)  L ≤ μf + (d(νf0)% L) = μf + d(νf0)L = n .

But (2) also implies Theorem 3.4 and therefore (1), (3) and (4) by setting � = n
in statements (3), (5) and (6) of Theorem 3. Conversely, (3)⇒ (2) by

d(L)νf ≤ n + d(n0)% = νf0 + μf + d(νf0)% = μf + d(νf0)% ,

and (1)⇒ (3) since κf  νf and (4)⇒ (3) since μf � νf  νf . ��
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3.3 Iteration

In partial, total and general correctness, the semantics of the loop while p do y
is obtained as the appropriate solution of the equation x = pyx + a(p), using
a domain element p. As discussed above it is given by the fixpoint operator κ.
To represent the solution of this particular recursion we use the Kleene star and
omega operations given by the following axioms [25,8,27]:

1 + y∗y ≤ y∗ z + xy ≤ x ⇒ zy∗ ≤ x
1 + yy∗ ≤ y∗ z + yx ≤ x ⇒ y∗z ≤ x

yyω = yω x ≤ yx + z ⇒ x ≤ yω + y∗z

It follows that y∗z = μ(λx.yx + z) and yω + y∗z = ν(λx.yx + z). We also have
the decomposition laws (x + y)∗ = x∗(yx∗)∗ and (x + y)ω = (x∗y)ω + (x∗y)∗xω .
Moreover yω = yω% and y∗0 ≤ yω0. The operations ∗ and ω are ≤-isotone.

The unified semantics of the while-loop is obtained by the following result.

Corollary 5. Let y ∈ S and p, q ∈ d(S) and f(x) =def pyx + q. Then κf =
(py)ω0 + (py)∗q.

Proof. We have μf = (py)∗q and νf = (py)ω+(py)∗q. The function f is≤-isotone
and by Theorem 2 also -isotone. Thus κf exists since Corollary 4.2 holds by

νf0 = ((py)ω + (py)∗q)0 = (py)ω0 + (py)∗0 = (py)ω0 = (py)ωL ,
d(L)(py)ω ≤ (py)ωd(L) ≤ d((py)ωd(L))% = d((py)ωL)% = d(νf0)% ,

d(L)νf = d(L)((py)ω + μf) ≤ d(L)(py)ω + μf ≤ d(νf0)%+ μf ,

using (L2). Hence Corollary 4.1 gives κf = νf0 + μf = (py)ω0 + (py)∗q. ��
We have thus replaced the incidental observation of [18], that (py)ω0+(py)∗a(p)
is an adequate semantics of while p do y for partial, total and general correctness,
by a systematic derivation.

This section is concluded by showing that both finite and infinite iteration
are -isotone, which generalises our previous result for finite iteration in general
correctness [18]. Hence by Theorem 2 also while p do y is -isotone in y.

Theorem 6. Let x, y ∈ S such that x  y. Then x∗  y∗ and xω  yω.

Proof. From x  y we obtain x ≤ y +L and d(L)y ≤ x+d(x0)%. For x∗  y∗ we
have x∗ ≤ (y + L)∗ = y∗(Ly∗)∗ = y∗L∗ = y∗ + y∗LL∗ = y∗ + L, whence it suffices
to show d(L)y∗ = d(L)(d(L)y)∗ ≤ z =def x∗ + d(x∗0)%. The first step imports
the test d(L) into the iteration by [18, Lemma 9] using (L2). The second step
follows by instantiating a star axiom with d(L)+zd(L)y ≤ 1+z(x+d(x0)%) ≤ z
using x∗d(x0)% ≤ d(x∗x0)% ≤ d(x∗0)%. For xω  yω we have

xω ≤ (y + L)ω = (y∗L)ω + (y∗L)∗yω = y∗L(y∗L)ω + yω + y∗L(y∗L)∗yω = yω + L

since y∗Lw = y∗L = L for any w ∈ S, and

d(L)yω = (d(L)y)ω ≤ (x + d(x0)%)ω = (x∗d(x0)%)ω + (x∗d(x0)%)∗xω

= x∗d(x0)%(x∗d(x0)%)ω + xω + x∗d(x0)%(x∗d(x0)%)∗xω

≤ xω + x∗d(x0)% ≤ xω + d(x∗0)% ≤ xω + d(xω0)%
again by importing d(L), this time into the infinite iteration. ��
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4 Representation by Pairs

In this section, we give a unified representation of programs as pairs of termina-
tion and state transition information. Describing programs this way is standard
in total correctness, exemplified by UTP’s designs, and in general correctness,
exemplified by the prescriptions of [14]. Hoare and He argue that the pair-based
representation is helpful for practical application [22, page 81].

Algebraic accounts of designs and prescriptions are given in [28,19,17,20]. In
the following we describe a representation which is suitable for total and general
correctness at the same time. Partial correctness is included as an extreme case,
too.

4.1 Havoc

In Section 2.3 we have already discussed the operation ·0 which cuts out the
terminating executions of a program, giving rise to the loop element L. This op-
eration can be used to obtain one component of the pair-based representation:
that which describes the (non-)termination information. For the other compo-
nent we need an operation that gives us the terminating executions, cutting out
the non-terminating ones. We proceed in two steps.

First, we axiomatise the greatest element which contains only terminating
executions. In general correctness, it corresponds to the command havoc of [30],
whence we denote the element by H. In UTP’s total-correctness approach, it
corresponds to the design (true # true). We use the following axioms (not to be
confused with the healthiness conditions H1–H4 of UTP):

(H1) H0 = 0
(H2) x ≤ x0 + H

Axiom (H2) and the more restrictive x ≤ y + L∧ x ≤ y + H ⇒ x ≤ y are used in
our algebraic treatment of general correctness [17]. The latter implies (H1), but
is not suitable for total correctness.

A few facts about H are shown in the following lemma. By instantiating its
first claim with y = 0, we obtain that H is indeed the greatest terminating
element. As such, it is axiomatised in [31] in a total-correctness setting, but as
a counterexample generated by Mace4 shows, those axioms do not imply (H2)
which we need for our representation as pairs in Section 4.2.

Lemma 7. Assume (H1) and (H2).

1. x0 ≤ y ⇔ x ≤ y + H.
2. 1 ≤ H = H2 = H∗.
3. L + H = %.

Proof.

1. (x+H)0 = x0+H0 = x0+0 ≤ x by (H1). With (H2) and ≤-isotony of · and
+ the claimed Galois connection follows by [9, Lemma 7.26]. Furthermore,
the Galois connection conversely implies (H1) and (H2).
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2. 1 ≤ H by part 1 since 1 · 0 = 0. Hence H = 1H ≤ H2, while H2 ≤ H by part
1 since H20 = H0 = 0. Hence 1 + H2 ≤ H, which implies H∗ ≤ H. Finally,
H = 1H ≤ H∗H ≤ H∗.

3. % ≤ L + H by part 1 since %0 = L. ��

Second, we cut out the non-terminating executions by forming the meet with H.
Intuitively, x  H retains only the terminating executions of x since H contains
all terminating executions and no non-terminating ones. It should be noted that
although L + H = %, we do not have L  H = 0, so H is not a complement of L
in S; hence they are not partitioning elements [7]. In particular, L  H = H �= 0
in total correctness, where L = %. In partial correctness H = % because L = 0.
There and in general correctness L  H = 0 holds.

4.2 Pair Programming

We represent the program x ∈ S by the pair (x0, xH). The first component x0
describes those states from where non-terminating executions are possible. The
second component x  H describes the possible state transitions for terminating
executions.

UTP’s designs remind us that the representation as pairs is not necessarily
unique. For example, the two designs (false # false) and (false # true) are equal.
This is in contrast to prescriptions, which uniquely represent programs in general
correctness. A unique representation for designs can be obtained by choosing a
canonical representative, for example, by requiring ¬P ⇒ Q for each design
(P # Q). We follow this strategy to obtain a unique common representation.

Formally, we take representatives from the set S′ =def {(x0, x  H) | x ∈ S}.
The representation and abstraction functions are given by

ρ : S → S′ π : S′ → S
ρ(x) =def (x0, x  H) π((x, y)) =def x + y

We write π(x, y) instead of π((x, y)) and similarly for other functions on pairs.
The following lemma shows that ρ and π are in fact bijections.

Lemma 8.

1. x = x0 + (x  H), hence π ◦ ρ = idS and ρ ◦ π = idS′ .
2. S′ = {(x0, y  H) | x, y ∈ S ∧ x0  H ≤ y}.

Proof.

1. x = x  (x0 + H) = (x  x0) + (x  H) = x0 + (x  H) by (H2). This shows
π ◦ ρ = idS or ρ is injective. But ρ is surjective by definition.

2. The inclusion (⊆) is immediate from x0H ≤ x0 ≤ x. For the inclusion (⊇)
let x, y ∈ S with x0  H ≤ y and consider z =def x0 + (y  H). Then

z0 = (x0 + (y  H))0 = (x0)0 + (y  H)0 = x0 + 0 = x0 ,
z  H = (x0 + (y  H))  H = (x0  H) + (y  H) = y  H ,

by using (H1) in the first calculation. Hence (x0, y  H) = ρ(z) ∈ S′. ��
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Part 2 of the preceding lemma shows the necessary restriction to obtain the
dependence between the two components of a pair, and hence the unique repre-
sentation. In partial and general correctness x0  H = 0, whence the restriction
is vacuous; it is only needed for total correctness.

Part 1 gives a decomposition of programs into their terminating and non-
terminating executions. Similar decompositions of elements are admitted by
separated IL-semirings [27] and quemirings [16]. We cannot use these structures
since their axioms include x0  H = 0, which is not valid in the unified setting.

In the extreme case of partial correctness, we have ρ(x) = (x0, xH) = (0, x),
hence S′ is just a copy of S with 0 attached in the first component of each
pair. Nevertheless this correctly represents that there are no non-terminating
executions in this approach.

4.3 Induced Operations on Pairs

Operations on the pairs S′ can now be derived from operations on S by using
the bijections ρ and π as an isomorphism. From the unary operation f : S → S
we derive the operation f ′ : S′ → S′ defined by f ′ =def ρ◦f ◦π, and similarly for
binary operations; for the constant c ∈ S we obtain c′ =def ρ(c) ∈ S′. We denote
an operation and its derived counterpart by the same symbol, relying on the
context for disambiguation. The following theorem gives the derived operations.

Theorem 9. Let (t, x) ∈ S′ and (u, y) ∈ S′. Then,

(t, x) + (u, y) = (t + u, x + y) 0′ = (0, 0)
(t, x) · (u, y) = (t + xu, (t + xu + xy)  H) 1′ = (0, 1)

(t, x)  (u, y) = (t  u, x  y) %′ = (L, H)
d(t, x) = (0, d(t + x)) L′ = (L, L  H)
(t, x)∗ = (x∗t, (x∗t + x∗)  H) H′ = (0, H)
(t, x)ω = (xω0 + x∗t, (xω + x∗t)  H)

Proof. Observe that t0 = t and x  H = x and t  H ≤ x by Lemma 8.2 and
x0 = (x  H)0 ≤ H0 = 0 by (H1). Similar properties hold for u and y. Hence

(t, x) + (u, y) = ρ(π(t, x) + π(u, y)) = ρ(t + x + u + y)
= ((t + x + u + y)0, (t + x + u + y)  H)
= (t0 + x0 + u0 + y0, (t  H) + (x  H) + (u  H) + (y  H))
= (t + u, x + y) .

Moreover xy0 = x0 = 0 and tz = t0z = t0 = t for any z ∈ S, whence

(t, x) · (u, y) = ρ(π(t, x) · π(u, y)) = ρ((t + x)(u + y)) = ρ(t(u + y) + x(u + y))
= ρ(t + xu + xy) = (t0 + xu0 + xy0, (t + xu + xy)  H)
= (t + xu, (t + xu + xy)  H) .

This equals (t + xu, ((t + xu)  H) + xy) since xy ≤ HH = H by Lemma 7.2.
A simplification to (t + xu, (t  H) + xy) would require the additional axiom
(wH)zH = (wH)(zH) that is valid in partial, total and general correctness.
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Next, t  y = t  y  H ≤ x  y and symmetrically u  x ≤ x  y, whence

(t, x)  (u, y) = ρ(π(t, x)  π(u, y)) = ρ((t + x)  (u + y))
= ρ((t  u) + (t  y) + (x  u) + (x  y)) = ρ((t  u) + (x  y))
= ((t  u)0 + (x  y)0, (t  u  H) + (x  y  H))
= ((t  u)0, x  y  H) = (t  u, x  y) ,

using Lemma 1.3 in the last step. Since d(z) ≤ 1 ≤ H by Lemma 7.2, we obtain
the domain operation as

d(t, x) = ρ(d(π(t, x))) = ρ(d(t + x)) = (d(t + x)0, d(t + x)  H) = (0, d(t + x)) .

For the Kleene star we use x∗0 ≤ H∗0 = H0 = 0 by Lemma 7.2 to calculate

(t, x)∗ = ρ((π(t, x))∗) = ρ((t + x)∗) = ρ(x∗(tx∗)∗) = ρ(x∗t∗) = ρ(x∗ + x∗tt∗)
= ρ(x∗ + x∗t) = (x∗0 + x∗t0, (x∗ + x∗t)  H) = (x∗t, (x∗t + x∗)  H) .

This equals (x∗t, (x∗tH)+x∗) since x∗ ≤ H. With the additional axiom above
this could be further simplified to (x∗t, x∗). For the omega operation we calculate

(t, x)ω = ρ((π(t, x))ω) = ρ((t + x)ω) = ρ((x∗t)ω + (x∗t)∗xω)
= ρ(x∗t(x∗t)ω + xω + x∗t(x∗t)∗xω) = ρ(x∗t + xω)
= (xω0 + x∗t, (xω + x∗t)  H) .

The derived constants are obtained by

0′ = ρ(0) = (0 · 0, 0  H) = (0, 0)
1′ = ρ(1) = (1 · 0, 1  H) = (0, 1)
%′ = ρ(%) = (%0,% H) = (L, H)
L′ = ρ(L) = (L0, L  H) = (L, L  H)
H′ = ρ(H) = (H0, H  H) = (0, H)

using Lemma 7.2 and (H1). ��

Let us remark that the domain elements of S′ are d(S′) = {(0, p) | p ∈ d(S)}
with complements taken in the second component of each pair.

From the choice operation, we immediately obtain the refinement order on
pairs (t, x) ≤ (u, y) ⇔ t ≤ u ∧ x ≤ y, which is the same as the induced order
π(t, x) ≤ π(u, y). Another calculation shows that the approximation order on
pairs induced by (t, x)  (u, y)⇔def π(t, x)  π(u, y) can be explicitly expressed,
too, by x ≤ y + L ∧ u ≤ t ∧ d(L)y ≤ x + d(t)%.

Note that both ρ and π preserve both ≤ and  by definition. Hence a function
f ′ : S′ → S′ is ≤- or -isotone if and only if f = π ◦ f ′ ◦ ρ is so. In particular,
we obtain

ϕf ′ = ϕ(ρ ◦ π ◦ f ′) = ρ(ϕ(π ◦ f ′ ◦ ρ)) = ρ(ϕf)

for any fixpoint operator ϕ ∈ {κ, μ, ν} by rolling [9, Rule 8.29]. For ϕ = κ this
requires that f ′ is -isotone, and otherwise that f ′ is ≤-isotone.

We thus obtain one method to calculate fixpoints of functions on S′. Another
way, which works directly on the pairs, is discussed next.
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4.4 Recursion

A function h on the pair-based representation may be specified by two functions
f, g applied separately to the pairs as in

h(t, x) =def (f(t, x), g(t, x)) .

For total correctness, this is investigated in UTP, where [22, Theorem 3.1.6]
shows how to obtain the ≤-greatest fixpoint of h by a ‘mutually recursive for-
mula’. In an algebraic context, this is generalised to ≤-least fixpoints in [20] and
to general correctness in [17].

In the following we show how to obtain the -least, ≤-least and ≤-greatest
fixpoints of h for our unified representation, and hence for partial, total, and
general correctness at the same time.

Consider the function h : S′ → S′ as defined above. Hence the types of f
and g are f : S′ → S0 and g : S′ → SH where S0 =def {x0 | x ∈ S} and
SH =def {x  H | x ∈ S}. As subsets of S, both S0 and SH are partially ordered
by ≤. By Lemma 8.2 we also have f(t, x)  H ≤ g(t, x) for each (t, x) ∈ S′.

We assume that h is ≤-isotone, whence both f and g preserve ≤ in both
arguments as shown by

t ≤ u ∧ x ≤ y ⇔ (t, x) ≤ (u, y)
⇒ (f(t, x), g(t, x)) = h(t, x) ≤ h(u, y) = (f(u, y), g(u, y))
⇔ f(t, x) ≤ f(u, y) ∧ g(t, x) ≤ g(u, y) .

Motivated by [22] we define for ϕ ∈ {μ, ν} the auxiliary functions

Pϕ : SH → S0 Pϕ(x) =def ϕ(λt.f(t, (t  H) + x))
Rϕ : SH → SH Rϕ(x) =def (Pϕ(x)  H) + g(Pϕ(x), (Pϕ(x)  H) + x)
Qϕ : SH Qϕ =def ϕRϕ

We assume that the fixpoints taken in Pϕ and Qϕ exist. Being composed from
≤-preserving operations, including the fixpoint operators by [9, Rule 8.28], both
Pϕ and Rϕ preserve ≤.

Theorem 10. μh = (Pμ(Qμ), Qμ) and νh = (Pν(Qν), Qν).

Proof. Let ϕ ∈ {μ, ν}. We first show that (Pϕ(Qϕ), Qϕ) is a fixpoint of h:

Pϕ(Qϕ)  H ≤ Rϕ(Qϕ) = Qϕ ,

Pϕ(Qϕ) = f(Pϕ(Qϕ), (Pϕ(Qϕ)  H) + Qϕ) = f(Pϕ(Qϕ), Qϕ) ,

Rϕ(Qϕ) = (Pϕ(Qϕ)  H) + g(Pϕ(Qϕ), (Pϕ(Qϕ)  H) + Qϕ)
= (Pϕ(Qϕ)  H) + g(Pϕ(Qϕ), Qϕ) ,

h(Pϕ(Qϕ), Qϕ) = (f(Pϕ(Qϕ), Qϕ), g(Pϕ(Qϕ), Qϕ))
= (f(Pϕ(Qϕ), Qϕ), (f(Pϕ(Qϕ), Qϕ)  H) + g(Pϕ(Qϕ), Qϕ))
= (Pϕ(Qϕ), (Pϕ(Qϕ)  H) + g(Pϕ(Qϕ), Qϕ))
= (Pϕ(Qϕ), Rϕ(Qϕ)) = (Pϕ(Qϕ), Qϕ) .



222 W. Guttmann

Now let (f(t, x), g(t, x)) = h(t, x) ≤ (t, x), whence t  H ≤ x by Lemma 8.2 and
f(t, (t  H) + x) = f(t, x) ≤ t and g(t, x) ≤ x. Then

Pμ(x) ≤ t ,
Pμ(x)  H ≤ t  H ≤ x ,

g(Pμ(x), (Pμ(x)  H) + x) = g(Pμ(x), x) ≤ g(t, x) ≤ x ,
Rμ(x) ≤ x ,

Qμ ≤ x ,
Pμ(Qμ) ≤ Pμ(x) ≤ t .

Hence (Pμ(Qμ), Qμ) ≤ (t, x), and thus μh = (Pμ(Qμ), Qμ).
The proof for νh is a bit different. Let (t, x) ≤ h(t, x) = (f(t, x), g(t, x)),

whence t  H ≤ x by Lemma 8.2 and t ≤ f(t, x) = f(t, (t  H) + x) and
x ≤ g(t, x). Then

t ≤ Pν(x) ,
x ≤ g(t, x) ≤ g(Pν(x), (Pν (x)  H) + x) ≤ Rν(x) ,
x ≤ Qν ,
t ≤ Pν(x) ≤ Pν(Qν) .

Hence (t, x) ≤ (Pν(Qν), Qν), and thus νh = (Pν(Qν), Qν). ��

We thus obtain the ≤-least and ≤-greatest fixpoints on pairs. But now we can
apply the unified fixpoint representation of Section 3.2 to obtain the -least
fixpoint as well. To this end, assume additionally that h is -isotone, and observe
that Pμ ≤ Pν and Rμ ≤ Rν and Qμ ≤ Qν.

Corollary 11. The following are equivalent:

1. κh exists.
2. κh = (Pν(Qν), (Qν  L) + Qμ).
3. d(L)Qν ≤ (Qν  L) + Qμ + d(Pν(Qν))%.

Proof. Let P =def Pν(Qν) and Q =def (Qν  L) + Qμ. By Theorems 9 and 10,

(νh  L′) + μh = ((P, Qν)  (L, L  H)) + μh = (P  L, Qν  L  H) + μh
= (P, Qν  L) + (Pμ(Qμ), Qμ) = (P + Pμ(Qμ), Q) = (P, Q)

using Pμ(Qμ) ≤ P ≤ L and Qν ≤ H, and

d(L′)νh = d(L, L  H)νh = (0, d(L))(P, Qν ) = (d(L)P, d(L)(P + Qν)  H) ,

and

d(νh0′)%′ = d((P, Qν )(0, 0))%′ = d(P + Qν0, (P + Qν0)  H)%′

= d(P, P  H)%′ = (0, d(P ))(L, H) = (d(P )L, d(P )(L + H)  H)
= (P, d(P )%  H)

using (H1), (L3) and Lemma 7.3.
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Hence we obtain

d(L′)νh ≤ (νh  L′) + μh + d(νh0′)%′

⇔ (d(L)P, d(L)(P + Qν)  H) ≤ (P, Q + (d(P )%  H))
⇔ d(L)(P + Qν)  H ≤ Q + (d(P )%  H)
⇔ d(L)Qν  H ≤ Q + (d(P )%  H)
⇔ d(L)Qν  H ≤ Q + d(P )%
⇔ d(L)Qν ≤ Q + d(P )%

using d(L) ≤ 1 and P ≤ d(P )%. The claim follows by the isomorphism of Section
4.3 and Theorem 3. ��

5 Conclusion

This paper shows how to extend the unification of partial, total and general
correctness all the way to full recursion. We obtain a common semantics of
programs and common laws to reason about programs. It is possible to derive a
unified semantics of recursively specified operations.

All of this applies as well to programs specified on pairs of termination in-
formation and state transitions. For this pair-based representation the lessons
learned from UTP’s designs were very helpful. We also observe that reasoning
in an axiomatic style fits well into UTP.

Future work will unify pre-post specifications and refinement laws, based on
their algebraic treatments in total and general correctness [31,17,15], and pro-
gram transformations between different kinds of recursions, based on their de-
velopment in total correctness [20].
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Abstract. In UTP’06 [4], Hehner claims that the traditional proof of
the incomputability of the Halting Function is rather a proof of the
inconsistency of its specification. We identify where his argument fails.

Hehner claims that assuming a well-defined Halting Function for spec-
ifications leads to a contradiction by a very similar argument as assuming
a computable Halting Function for programs does. In the case of pro-
grams, this argument leads to concluding that the Halting Function is not
computable, porting the proof to the case of specifications, it is claimed
to allow concluding that the Halting Function is ill-defined. He reasons
that if the Halting Function for specifications is ill-defined, then the con-
cept of the Halting Function in general is inconsistent, including the one
for programs. We do not challenge this generalization, but rather point
out a flaw in his argument for the specification case. We formalize his
argument in UTP-style. This enables us to show that there is a subtle
tacit assumption being made about the recursive definition that is used
to arrive at the contradiction, namely that the defining equation has a
solution. We also explain why this does not affect the proof for the pro-
gram case. Furthermore, we analyze whether recursion in the language
Hehner uses is essential for his argument and our refutation. Porting the
arguments to a language without recursion shows that the issue of the
existence of the contradicting specification remains. We conclude that
this line of argument does not challenge the healthiness of the concept
of the Halting Function, including its extension to specifications.

1 Introduction

Hehner has conducted a long standing, in fact ongoing, stimulating investigation
into the relationship between the foundations of programming and of mathemat-
ics. We have followed the development of his thoughts on this from the unpub-
lished [1], the published [2–4], through to recent (2010), momentarily unavailable,
contributions on his web site, e.g., [5]. The investigations are wide-ranging, from
general, almost philosophical issues like the validity of Cantor’s onto function
approach as a comparison of set sizes, to more UTP-specific issues like whether
specified termination should include a time bound and what is acceptable as a
bound.

S. Qin (Ed.): UTP 2010, LNCS 6445, pp. 226–233, 2010.
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In this paper we address a concrete, published claim made in this context, as
described in section “The Problem with Halting” in his contribution “Retrospec-
tive and Prospective for Unifying Theories of Programming” for UTP’06, [4].

Informally, the answer to the Halting Problem states that there cannot exist
a computable Halting Function that decides for every program whether or not it
will terminate. Hehner argues that the traditional interpretation of the proof is
mistaken and rather proves the inconsistency of the specification of the Halting
Function. He gives his argument in the intuitive setting of a simple programming
and specification language with recursion.

The argument is quite concrete and touches on many of the aspects of Hehner’s
general investigations: the proof of the Halting Theorem that he challenges is
a fundamental one and the framework in which he carries out the argument
has various aspects that are of relevance to UTP. We analyze and refute the
argument. Furthermore, we go beyond just refuting the argument, in that we
clarify that the setting of a simple programming language with recursion plays
a significant role.

In section 2 we briefly introduce some UTP-style formalization to present the
arguments. In section 3 we summarize Hehner’s argument. Section 4 contains our
refutation. In section 5 we step back to take a fresh look at the whole issue to
see what happens if recursion is avoided. Conclusions are provided in section 6.

2 Preliminaries

We, very concisely, sketch what essentially we use from UTP. In particular, we
use the notions of specification, implementation and satisfaction as common in
UTP, provided, for example, in Hehner’s [3] and in Hoare and He Jifeng’s [6].

A state is a value assignment to a set of state variables – the domains of the
values of the variables are given. A computation has an initial and a final state.

Syntactically, a specification is a first order predicate containing as free vari-
ables just unprimed state variables for the initial values and primed state vari-
ables for the final ones, i.e., relating these. There are two extra Boolean variables
ok and ok′, denoting start and termination of a program, respectively. Further-
more, there are recursive equations (containing variables that range over the
predicates). The semantics of specifications is based on first order logic, together
with a fixed-point as the solution of equations. The semantics of a specification
thus is a relation between initial and final states.

The syntax of programs is that of sequential programs, with recursion, as
in the specification case, through equations. The semantics is, again as in the
specification case, a relation between initial and final states. A program gives
for any initial state one final state, obtained by a computation performed by the
program.

Although syntactically different, specifications and programs are both defining
a relation between initial and final states. A program is, in that sense, a special
case of a specification: it has special features like being deterministic and being
implementable (in the UTP sense: for each initial state providing a final one).
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A program P satisfies a specification S if P ⇒ S.
With respect to ⇐, specifications (including programs) form a complete lat-

tice, with top element false and bottom element true. Note that in this ordering
ok ⇒ true and ok′ ⇒ true, but not vice versa for either case.

There are various subtleties about the existence, uniqueness or selection of
fixed points for the equations in the formalism. For our argumentation it is only
relevant to observe that the following theorem holds (again, see [3, 6] for details).

Theorem 1

1. If the operator corresponding to the recursive equation is monotonic and the
lattice is complete, then fixed- point solutions, in particular the weakest and
strongest, exist (Tarski).

2. Under appropriate restrictions, as presented in [6], this can be strengthened
to the existence of a particular unique fixed point.

For a programming language as described above, monotonicity and the further
restrictions hold, thereby providing every syntactically correct program with a
semantics. Note that this does not hold for specifications, e.g., X = ¬X does
not have a solution: not even true or false.

3 Hehner’s Argument

We summarize Hehner’s exposition of the Halting Theorem (the theorem that
the Halting Problem is not algorithmically solvable) and the proof, and his ar-
guments against that proof.

Hehner uses a sequential, deterministic, imperative programming language
that is universal and has the following properties. Programs are represented as
text. No input commands are present; initialization is incorporated in the pro-
gram. A program may return a value. A program may have parameters. Program
text may contain identifiers. For each such identifier X there is a corresponding
program text text in a dictionary, the dictionary entry then being X = "text".
This entry defines the program that the identifier represents. An identifier can
both be used for a procedure call and for inspection of the text.

In a standard manner, this can be turned into a precise notion of syntactically
correct program. It is also standard to show that the language satisfies the re-
quirements as stated in Theorem 1, i.e., that every syntactically correct program
has a semantics in the UTP-style. We assume that all this has been done.

The proof of the Halting Theorem then is that one assumes that the Halting
Function H is computable: H returns true for texts that represent a program
that terminates and false for texts that represent a program that does not
terminate.

Then P = “ (true ∗ Π) � H(P ) � Π ” defines a program. This leads to a
contradiction: if P represents a program that terminates, then H(P ) must return
true, hence P represents an infinite loop, i.e., a program that does not terminate,
and vice versa. The conclusion is that the assumption of computability is wrong.
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We remind the reader that in P = “ (true ∗Π) � H(P ) � Π ” the application
of H to P must mean that the text that P identifies is analyzed. This might
involve, for example, that this text is looked up in the library, likewise for further
identifiers that may occur in the text, and so on. It cannot mean that the P is
recursively replaced by the text in the library, as this would cause an infinite
regress. There will always remain occurrences of P and some kind of library is
needed to know what these identifiers mean. Again, all this can be formalized in
the UTP-style.

Next, Hehner considers the case where texts represent specifications that in-
corporate requirements about (non)termination. Since specifications need not be
implementable, he drops the requirement that H is computable. H is now defined
as the function that delivers true for a specification that requires termination
(ok ′) and false for a specification that does not (¬ok′).

He then defines
S = “ ¬ok ′ � H(S) � ok ′ ” (1)

Again, a contradiction is derived and Hehner concludes that function H is not
properly defined: ‘. . . we cannot consistently say the sentence “H tells us, for all
specification texts S, whether S specifies terminating behavior.” ’ ([4], p. 12).

From the similarity of the statements and the reasoning between the case of
programs and specifications, Hehner concludes that H will have similar defi-
nitional problems in the case of programs as well. We do not further consider
whether or not the similarity warrants suspicion of the definition of H in the
program case, but directly refute the conclusion that in the specification case H
would not be well-defined.

4 Refutation

Our objection to the conclusion in section 3 is that there is a tacit assumption,
underlying the proof, that should be withdrawn instead of doubting the well-
definedness of H . This is the assumption that a semantic object S exists. Hehner
defines S as specification text, but the contradiction is derived from semantic
properties of S. In observation 1 we show this.

Observation 1. Specification S is defined as text, but the contradiction is de-
rived from a semantic object (a specification relation). In particular, ‘If S spec-
ifies terminating behavior. . . ’, which is a semantic property of S. Furthermore,
‘. . . then H(S) is false, and so S specifies terminating behavior.’ ([4], p. 12).
The conclusion relies on the semantics of the right-hand side of (1), where the
conditional is replaced by the then-part, because H(S) is true. Finally, the con-
tradiction is concluded because the result of this replacement, ¬ok ′, is compared
to the left-hand side of formula (1) and both sides are not equal, semantically,
since H(S) is true (by assumption) and H(“¬ok ′”) is false (by definition of
H).

From this analysis of the argument we see that equation (1) is used semantically
(without quotes) to define the semantics of S.
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Observation 2. The semantic object S is defined by the equation

S = ¬ok ′ � H(S) � ok ′ (2)

Now the question arises whether this semantic object S (a relation between
initial and final states) exists. So the question is whether (2) has a solution,
or in other words, whether the function F (S) = ¬ok ′ � H(S) � ok ′ has a fixed
point. In the setting of UTP, existence of a fixed point is guaranteed when the
corresponding function is monotonic. The function F is not monotonic, however.
Take for instance the elements true and ok ′. Then F (true) = ok ′ and F (ok ′) =
¬ok ′, which are incomparable, whereas true⇐ ok ′.

The fact that F is not monotonic alone does not imply that there is no speci-
fication S with the desired properties. It does, however, justify that its existence
should be an explicit assumption and since a contradiction is derived based on
this assumption, the assumption should be withdrawn. The contradiction does
not give reason to doubt whether H is properly specified.

Why is this not a problem in the program case? We have a definition that
looks very similar. Although we didn’t use directly that P is a fixed point to
derive the contradiction, the semantics of P can indeed be considered as a fixed
point. The answer is that the restricted syntax of programs guarantees that all
functions defining fixed points (called constructors in [3]) are monotonic. For
specifications, this is not the case. This language is much more liberal. We see
this in particular in the case of the Halting Function. To define the program P ,
we need the assumption that H is computable and infer that some, probably very
complex, UTP program exists that examines program texts (without executing
them!). The resulting semantic function is monotonic by construction. To define
the text of the specification S, however, we only need that the specification of
H(S) can be expressed, which is, for example, S ⇒ ok ′. This is a much simpler
expression, but it doesn’t guarantee monotonicity.

When we try to prove that the operator in the program case is monotonic
using the meaning of H (not the syntax, which we don’t have), we will
see that it isn’t. This is not disturbing, however, because the assumption
of computability is not valid and no UTP-program can be constructed
to implement it. In fact, the proof that the operator is not monotonic is
tantamount to deriving the contradiction.

Remark. There are formal settings where equations like (2) do have a fixed
point, e.g., the cpo of partial functions. A solution would then be the function
⊥ that is everywhere undefined and in this setting it is required that H(⊥) =⊥
(or undefined) and ¬ok ′� ⊥ �ok ′ =⊥. This will give us a semantic object S, but
there is no contradiction anymore, since the righthand side of (2) will not always
yield ¬ok ′ or ok ′, but can also result in ⊥.

5 Approach without Recursive Definitions

Although the formulation with recursive definitions is concise, it caused troubles.
The usual formulation of the proof of the Halting Theorem (cf. [7]) does not use
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recursive definitions. Therefore, it is interesting to see what happens when we
do not use them. The necessary self-reference is achieved by diagonalizing with
a second argument. We give a short presentation of this proof, staying close to
Hehner’s notation.

Proof of Halting Theorem without recursion.
Let T be the set of texts and B the boolean domain. We extend the notion of
programs and specifications with a text parameter, usually considered as input.
P (I) stands for executing program P with input I, S(I) specifies behavior of a
program with input I. Then define function H : T×T→ B with H(P, I) = true
if and only if execution of program with text P on input I will terminate.

Now assume, aiming for a contradiction, that H is computable. Then define
program P (I) by (true ∗Π) � H(I, I) � Π , where I is the input of P . Since H is
computable, it can be written as a program in our programming language and
hence this is the definition of a legal program, and it has a program text. What
is now the termination behavior of program P (P ), i.e., P with the text of P
itself as input? If this execution terminates, then H(P, P ) is true and execution
of P will take the left branch, resulting in an infinite loop. If the execution does
not terminate, then H(P, P ) is false and execution will take the right branch
and terminate.

Both cases will lead to a contradiction and we will have to withdraw our
assumption that H is computable. Note that this assumption is essential for the
derivation of the contradiction, since it implies that execution of H(P, P ) will
always terminate, also in the case that H(P, P ) is false, since it is a proper
implementation of a computable function.

The next step is to generalize this theorem to specifications. So T will include
specification texts and we define H(S, I) as true if and only if specification S
requires termination on input I.

We try to give the proof for this situation. Define specification S(I) by ¬ok ′ �
H(I, I) � ok ′, where I is the input. What does S specify about termination on
input S (the text of S)? If S requires termination on S, then H(S, S) is true and
S is ¬ok ′, hence does not require termination. If S does not require termination,
then H(S, S) is false and S is ok ′, hence does require termination. Again we
have a contradiction.

The question is, however, whether S(S), used to derive the contradiction, ex-
ists. One approach to guarantee existence is to assume that H is expressible in
the specification language. Then S(S) is defined as well and we find a contra-
diction. So we have to withdraw the assumption and conclude that H is not
expressible in the specification language. This does not, however, give reason to
doubt the well-definedness of H .

Another approach is to drop the assumption that H is expressible in the
specification language.

This has as a consequence that we cannot define S by giving text. Instead we
define S, with the same intended semantics, by

S(I) =
{
¬ok ′ if H(I, I) = true
ok ′ otherwise (3)
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Since H is not given by text, neither can be S and since we want to apply S to
S, the parameter I can not be text either. Consequently, we have to define S as
a function from S to S, where S is the set of all specifications.

First assume that S is defined on the domain S of all specification. If (3) is
a valid definition of a specification for every I ∈ S, we can define more specifi-
cations like this and get a contradiction. Note that H is a function from the
set S of specifications to the boolean domain B. Now let a set R ⊆ S be
given. Define HR : S → B by HR(I) = true if and only if I ∈ R. Then
SR(I) = ¬ok ′ �HR(I) � ok ′ defines a specification for every set R. Now for every
two sets R0 and R1 that are different, SR0 and SR1 are different, because there
must be an s ∈ R0 and s �∈ R1 (or the other way around), so SR0(s) = ¬ok ′ and
SR1(s) = ok . Consequently, the set of specifications SR, which is a subset of S,
has the same cardinality as the set of subsets of S. This is not possible, since
the powerset always has greater a cardinality than its base set. Note that this
contradiction does not depend on the Halting Function. So the assumption that
the domain of S is S has to be withdrawn and we have to define S as a function
from S′ → S for some subset S′ of S.

Now the question is: is S ∈ S′? First assume it is. Then S(S) is a legitimate
specification and we have the contradiction shown above. So we have to withdraw
this assumption and conclude that S �∈ S′, which implies that the problematic
specification can not be constructed.

Remark. In the program case, we have a similar situation. A program
can be considered as a function from programs to programs. The car-
dinality problem does not occur here, however, since the domain is re-
stricted to program texts, which is possible because of the assumption
that H is computable and hence expressible as program text. Similarly,
for the case of specifications that are expressible.

Again, we see that the counter example from the program case cannot be ported
to the specification case. Whether we assume a syntax for specifications or we
do not, the counter example cannot be defined.

6 Conclusions

Self-reference is at the root of the contradictions in the Halting Theorem proof.
The approach by Hehner, using recursive definitions, makes this explicit. It is
interesting to see that the approach with only programs without input as pa-
rameters for the Halting Function is easy and intuitive but requires great care in
handling the recursive definitions that result from this approach. In particular,
we show that in the specification case the counterexample that Hehner proposes
is not well-defined.

This subtle difference between the program and specification case carries over
to the two-parameter approach without recursion, where programs have input
and both program text and input are input for the halting function: here the
self-reference is indirect and, again, the counterexample for the specification case
cannot be constructed.
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UTP provides the framework to carry out these investigations with its intu-
itive yet formal style. Especially, the equal footing of programs and specifications
is important in analyzing the Halting Theorem. However, our investigations show
that the subtle difference that programs have to be computable whereas speci-
fications need not be gives rise to different conclusions from the contradictions
that are derived in the two domains, even though their construction is very
similar.
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Abstract. There can be multitudinous models specifying aspects of the same
system. Each model has a bias towards one aspect. These models often override
in specific aspects though they have different expressions. A specification writ-
ten in one model can be refined by introducing additional information from other
models. The paper proposes a concept of promoting models which is a method-
ology to obtain refinements with support from cooperating models. It refines a
primary model by integrating the information from a secondary model. The pro-
motion principle is not merely an academic point, but also a reliable and robust
engineering technique which can be used to develop software and hardware sys-
tems. It can also check the consistency between two specifications from different
models. A case of modeling a simple online shopping system with the coopera-
tion of the guarded design model and CSP model illustrates the practicability of
the promotion principle.

1 Introduction

There are many modeling techniques can be used to model our diversified views of soft-
ware systems. The Model Driven Architecture (MDA) [1] [15] is a promising direction
which is capable to generate implementation codes from abstract models. The analysis
on the model level is more convenient than on the implementation level.

The Unified Modeling Language (UML) [7] [6] is a popular modeling technique
supporting the model-driven development. It provides many standard models to specify
corresponding aspects of the whole system. It makes a design criterion to divide a sys-
tem into many design aspects such that each aspect is precisely specified by one model.
In UML standards, designing an object-oriented system mainly needs to consider three
aspects corresponding to the following three models: class model, state model and in-
teraction model. The class model shows the static structure of classes and objects in the
system. The state model specifies the dynamic behavior of each object in its life cycle.
The interaction model describes the interactions between objects. UML uses diagram
syntax which is intuitive and easy to understand. It is helpful to establish a consistent
view among the system designers and programmers. Therefore, UML receives increas-
ingly concerning by software engineers and is widely used in software engineering
though its formal semantics is still obscure.
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Formal methods also provide many formal models such as CSP, Z and B to specify
the behavior of the software system according to different aspects. CSP is a typical
event-based model which aims to specify the communication sequences of processes
[13] [21]. It regulates whether an action can be performed after a certain sequence.
Z notation is a mature state-based formalism which specifies the behavior of every
operation in the system with pre-condition, post-condition and invariant [24] [28]. It can
be used by designers to specify the abstract structure of the system and the functionality
of every operation. B method is a variant of Z which specify the behavior of a program
with a state machine [3] [22]. As a formal method, it has been applied by software
engineers to analyze some industrial scale projects.

People have abandoned the idea of adopting a universal model to include every infor-
mation of a system because it increases the complexity of the model to an unacceptable
degree. Also, It is an unaffordable process in translating the existing models to this
universal one. However, the independency of the existing formal models makes the
model-driven methodology difficult to apply.

In most scenes, one model is not sufficient to provide us the whole behavioral view
of a system. One kind of modeling techniques often has the capability to deeply reveal
one kind of properties of the system but contains little information in other aspects even
though it has such expressivity. The key issue is synthesizing the information from
different models without violating their own advantages in specifying certain aspects of
the system.

This paper proposes a promotion calculus towards drawing information from coop-
eration models to gain a refinement. Given a model specifying an aspect of a whole
system, if there exists another model having information which can be used to con-
cretize the former model, a refined model can be obtained by applying the promoting
operation to these two models. It provides a method to enrich a model with other mod-
els either in different domains or have different appearances. The promoting operation
can also be used to check the consistency of two models since the inconsistency will
lead to the promoted model being an unachievable miracle. With support from the pro-
moting operation, the analyzers can make a model more concrete and deterministic by
introducing additional constraints from other cooperation models. It obtains an imple-
mentation compatible to the constraints acquired by other models, which realizes the
model-driven development more feasibly. It can further help the analyzers to determine
which model is more compatible to an existing standard specification without concern-
ing the model integration issues. A case of modeling an online shopping system is
discussed in this paper. We model the system with two formalisms, guarded design and
CSP, and then promote each model with another and obtain more concrete versions of
the two models.

The reminder of the paper is organized as follows. Section 2 proposes a general
definition to concepts related to the promoting operation. Section 3 demonstrates an
application of the promoting approach in the pair of CSP and Guarded Design domains.
Section 4 adopts the results of section 3 on an online shopping system case. Section 5
states some researches related to our work. Section 6 finally concludes the paper and
mentions some future works.
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2 Model Promotion

In the section, we propose a general definition of model promotion which is a method-
ology to obtain refinements involving two models for the same system. The algebraic
laws are explored to provide precise and adequate comprehension of model promotion.
Furthermore, the concept of compatibility and consistency are defined in terms of the
promoting calculi.

Definition 1 (Translation)

Given two model domainsD1,D2 with their own refinement relation�D1 ,�D2 , a func-
tion ψ : D2 → D1 is called a translation from D2 to D1 if it is order-preserved.

(Order-Preservation) ∀B, B′ ∈ D2, ψ(B) �D1 ψ(B′) if B �D2 B′.

The translation maps each element in domainD2 to a unique element in domainD1. The
requirement for order-preserved property is nature since a more concrete cooperation
model always provides more benefits in the promoting process.

The information quantum depends on the selection of the translation. A model may
lose part of its information during the translation process. Thus constructing reasonable
translations is essential when we extract information from a model. In general, the al-
gebraic structure of the domain and codomain can affect the form of the translation.
Furthermore, we should also take into account the variety and granularity of the model
and the perspective from which we abstract the information. In this paper, we assume
that the codomain should be a complete lattice where we can define two binary oper-
ations � and � which obtain the least up-bound and the greatest low-bound of their
participants respectively.

Definition 2 (Promoting)

Assume thatD1 be a complete lattice, ψ is a translation fromD2 toD1, and let A ∈ D1,
B ∈ D2.

A prtψ B =df A �D1 ψ(B)

where the calculi �D1 gets the least up-bound of the two sides in domain D1. We say
A prtψ B promotes A by ψ(B) or A can be promoted with B through ψ.

In this case, we call A as primary model, B as secondary model and the result of
the promoting operation A prtψ B as promoted model. The translation ψ interprets the
information of model B in terms of ψ(B) in the domain D1 while the promoting cal-
culi integrates the information to model A. As a result, the promoted model ‘promotes’
(refines) model A in virtue of model B. Therefore, the promoting calculi supports the
model driven development by developing a system through synthesizing existing mod-
els which specify the system from different aspects at the beginning of the project.
Furthermore, it enhance the robustness and reliability of the system since the promoted
model reflects the consistency and correctness among the existing models. Figure 1
illustrates the framework of the model promotion process.
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Fig. 1. Framework of Model Promotion

The promoting calculi has the following algebraic laws.

Theorem 1 (Promoting Laws)

Let A, A′ ∈ D1, B, B′ ∈ D2, ψ is a translation from D2 to D1.

(1.1) A prtψ B �D1 A

(1.2) (A prtψ B) prtψ B = A prtψ B

(1.3) If A �D1 A′, then A prtψ B �D1 A′ prtψ B

(1.4) If B �D2 B′, then A prtψ B �D1 A prtψ B′

(1.5) A �D1 ψ(B) iff A prtψ B = A

(1.6) (A �D1 A′) prtψ B = (A prtψ B) �D1 (A′ prtψ B)

(1.7) (A �D1 A′) prtψ B = (A prtψ B) �D1 (A′ prtψ B)

The theorem reflects the following facts.

(1.1) The promoted model is the refinement of primary model. The primary model gets
concretized according to the information from secondary model.

(1.2) The promoting calculi is idempotent. Promoting a primary model twice with the
same secondary model through the same translation cannot gain more benefits.

(1.3) The promoting calculi is monotonic with respect to the domain D1. Promoting
a better primary model can always obtain a better promoted model when it is
promoted with the same model through the same translation.

(1.4) The promoting calculi is monotonic with respect to the domain D2. A better sec-
ondary model can provide more information so that it can obtain a better promoted
model.

(1.5) The promoting calculi has no effect if the secondary model cannot provide any
useful information through the translation.

(1.6) The promoting calculi is �-distributable in the domain D1. This law implies that
the componentwise promotion is feasible.
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(1.7) The promoting calculi is �-distributable in the domain D1. This law implies that
the promotion of a primary model can be applied on each of its nondeterministic
component.

Proof

(1.1) A prtψ B = A �D1 ψ(B) �D1 A.

(1.2) (A prtψ B) prtψ B = (A �D1 ψ(B)) �D1 ψ(B) = A �D1 ψ(B) = A prtψ B.

(1.3) A prtψ B = A �D1 ψ(B) �D1 A′ �D1 ψ(B) = A′ prtψ B

(1.4) Since the translation ψ is order-preserved, we have ψ(B) �D1 ψ(B′). Therefore

A prtψ B = A �D1 ψ(B) �D1 A �D1 ψ(B′) = A prtψ B′.

(1.5) A �D1 ψ(B) iff A �D1 ψ(B) = A iff A prtψ B = A

(1.6) (A �D1 A′) prtψ B = (A �D1 A′) �D1 ψ(B)

= (A �D1 ψ(B)) �D1 (A′ �D1 ψ(B))

= (A prtψ B) �D1 (A′ prtψ B)

(1.7) (A �D1 A′) prtψ B = (A �D1 A′) �D1 ψ(B)

= (A �D1 ψ(B)) �D1 (A′ �D1 ψ(B))

= (A prtψ B) �D1 (A′ prtψ B)

Sometimes two models may have opposite constraints for the same physical object
in the system. We consider it as a conflict blocking the way of consistent system de-
velopment. With the support of the model promotion operation, conflicts between co-
operation models can be easily exposed. In most modeling domains, the top element is
never implementable which we call a miracle. We use it as the mark of the confliction.
In other words, if the promotion ends up as a miracle, the promotion fails and there
exists conflicts between the primary model and secondary model.

Definition 3 (Compatibility)

Assume D1 is a complete lattice and let A ∈ D1, B ∈ D2, ψ is a translation from D2

to D1. If A prtψ B ��D1 %D1 where %D1 is the top element of D1, we say model B is
compatible to model A with respect to function ψ, denoted as A �ψ B.

Promoting one model is not sufficient when developing a software or hardware system
using the model promotion technique. The information extracted from model B may
compatible with the current primary model A, but inconsistency may still occur when
interpreting A’s information to B. The consistency properties need to guarantee that
both models are compatible with each other. The compatibility relation is asymmetrical
while the consistency relation which is symmetrical can be defined by conjuncting the
compatibility relation in both directions.

Definition 4 (Consistency)

Assume D1 and D2 are complete lattices and let A ∈ D1, B ∈ D2, φ is a translation
from D1 to D2, ψ is a translation from D2 to D1. If A �ψ B and B �φ A, then we say A
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and B are consistent with respect to translations φ, ψ, denoted as A φ �ψ B. Otherwise,
there exists a conflict between model A and model B with respect to φ, ψ.

The consistency of various models is increasingly concerned in both model analysis
and model driven development. The promoting operation provides a formal theory to
determine whether two models are consistent with each other. In practice, designers
usually concerns the consistency issue involving several aspects of the system only.
The model promotion approach can reflect the designers’ concerns with the selection
of the translations. In this case, a translation maps the secondary model to its projection
according to the designers’ concerning points.

The model promotion calculi can have more elegant property if the two model do-
mains and the two translations forms a Galois Connection.

The Galois theory tells us certain problems in the concrete domain can be solved
equivalently in the abstract domain if there exists a Galois connection between the two
domains [4] [10] [14]. The information may lose when we adopt the function to trans-
form the concrete model to an abstract domain. Actually, the information loss could not
be fatal. Firstly, the stepwise refinement is an applicable and effective formal method in
developing systematic softwares. Analyses and verifications in the abstract model may
be easy to operate. The refinement preserves the validated properties and implement
to the concrete model step by step. Secondly, the loss information in transforming the
program into other model may be out of our concerns and we focus on the remained
information.

Definition 5 (Galois Domains)

If the two translations φ, ψ consist Galois connection which satisfies that for any A ∈
D1 and B ∈ D2, φ(A) �D2 B iff A �D1 ψ(B), we say the two domains are Galois
domains.

We call two models A, B as a Galois pair with respect to the Galois connection φ, ψ if
φ(A) �D2 B iff A �D1 ψ(B). Models in a Galois pair has no promoting effect to each
other though their information is not equal.

The special properties of the promoted calculi involving the Galois domains are ex-
hibited below.

Theorem 2 (Promoting Laws in Galois Domains)

Let A ∈ D1, B ∈ D2 with two translations φ, ψ consisting Galois connection. Let
C1 = A prtψ B, C2 = B prtφ A. Then we have

(2.1) φ(C1) �D2 C2 iff C1 �D1 ψ(C2)

(2.2) C1 prtψ C2 = C1 and C2 prtφ C1 = C2

(2.3) A prtψ B = A prtψ C2

(2.4) B prtφ A = B prtφ C1

The above laws can be explained as

(2.1) The promoted models C1 and C2 form a Galois pair with respect to φ, ψ.
(2.2) A promoted model cannot be promoted using its partner in a Galois pair.



240 Q. Li et al.

(2.3) The promotion A prtψ C2 cannot get a better model than A prtψ B since the addi-
tional information in C2 compared to B is totally extracted from A itself.

(2.4) The inverse version of (2.3).

Example 1

Consider modeling a temperature control system. Model A from domainD1 is a design
with the alphabet αD1 = {ok, ok′, st, st′, mod, mod′} where the variable st represents
the temperature level in the room and mod stands for the running mode of the control
system. We set three temperature levels for the system: low, medium and high. Model B
from domain D2 is a design with the alphabet αD2 = {ok, ok′, t, t′, mod, mod′} where
the variable t is an integer showing the current temperature of the room. Obviously
model A is an abstract model while model B is a concrete model. We define two trans-
lations

φ(A) =df var t; A; t := L(st); end st

ψ(B) =df var st; B; st := R(t); end t

where

R(t) =df

⎧⎪⎨⎪⎩
low t < 14
medium 14 ≤ t < 16
high t ≥ 16

L(st) =df

⎧⎪⎨⎪⎩
{t | t < 14} st = low

{t | 14 ≤ t < 16} st = medium

{t | t ≥ 16} st = high

We can figure out that ψ(B) �D1 A iff B �D2 φ(A). Hence φ, ψ forms a Galois
connection and D1,D2 are Galois domains.
Let

A = true #

⎛⎝ st = low ∧ mod′ = on ∧ st′ ∈ {low, medium}
∨ st = medium ∧mod′ ∈ {on, off} ∧ st′ = medium
∨ st = high ∧ mod′ = off ∧ st′ ∈ {high, medium}

⎞⎠
B = true #

(
t < 15 ∧ mod′ = on ∧ t′ = t + 1

∨ t ≥ 15 ∧ mod′ = off ∧ t′ = t − 1

)
Then we can see from B that if the pre-temperature is near 15 centigrade, the post-
temperature of the room is stable around it. This information is not represented in model
A. According to the model promotion approach, we can integrate this information into
A to concretize it.

A prtψ B = ψ(B) = true #

⎛⎝ st = low ∧mod′ = on ∧ st′ ∈ {low, medium}
∨ st = medium ∧ mod′ ∈ {on, off} ∧ st′ = medium
∨ st = high ∧ mod′ = off ∧ st′ ∈ {high, medium}

⎞⎠
φ(A) = true #

⎛⎝ t < 10 ∧mod′ = on ∧ t′ < 16
∨ 14 ≤ t < 16 ∧ mod′ ∈ {on, off} ∧ 14 ≤ t′ < 16
∨ t ≥ 16 ∧mod′ = off ∧ t′ ≥ 14

⎞⎠
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B prtφ A = B = true #
(

t < 15 ∧ mod′ = on ∧ t′ = t + 1
∨ t ≥ 15 ∧ mod′ = off ∧ t′ = t − 1

)
With the fact that B �D2 φ(ψ(B)), we can easily obtain that A prtψ B =D1 ψ(B prtφ A)
and B prtφ A �D2 φ(A prtψ B). Furthermore, we can say A and B are consistent with
respect to translations φ, ψ, denoted as A φ �ψ B.

If we modify model B slightly, an incompatibility occurs when we select a proper
translation. For instance, let

B′ = true #
(

t < 15 ∧ mod′ = on ∧ t′ = t + 2
∨ t ≥ 15 ∧ mod′ = off ∧ t′ = t − 2

)
We select the following translation

φ′ = ANDt=15 ◦ φ

where ANDt=15(A) =df A ∧ t = 15

Then we have

φ′(A) = t = 15 ∧ mod′ ∈ {on, off} ∧ 14 ≤ t′ < 16

Unfortunately, model B′ specifies that t = 15 ∧ mod′ = off ∧ t′ = 13, so the result of
the promotion B′ prtφ′ A = False. We say A is not compatible to B′ with respect to φ′,
denoted as B′ ��φ′ A.

The promoting calculi has more special properties when the domains have special re-
lations. For example, if the two domains are isomorphic, the promoted models A prtψ B
and B prtψ−1 A should be equivalent and the promoting calculi is distributable with re-
spect to �,�. Furthermore, the promoting calculi will collapse to � calculi if the two
domains are identical.

3 Promoting Models of CSP and Guarded Design System

As an application case study, we use the model promotion approach to the pair of mod-
els: guarded design system and CSP model.

The guarded design model is proposed by He to specify the behavior of web ser-
vices [12]. It models a program as a predicate Guard&(Pre # Post) which includes
three components: precondition Pre, postcondition Post and guard condition Guard.
The precondition specified whether the program terminates. The postcondition repre-
sents the changes between the initial and final data states. Finally the guard condition
reflects when the program can be invoked. If the precondition is violated, the program
diverges. If the guard condition is violated, the program stays await. In our case study,
we consider a model called guarded design system which can be represented by a tuple
(α, A, ��) where α is the alphabet of the system which contains all data variables; A is a
set of action names which represent computations and communications; �� : A → GD
is a function mapping every action to a guarded design specification, eg. �a� denotes
the guarded design semantics for action a ∈ A. And the refinement relation defined in
this domain is as follows.
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Definition 6

Let G1 = (α, A1, ��1), G2 = (α, A2, ��2) be guarded design systems with the same
alphabet. G1 �G G2 iff A1 ⊇ A2 and ∀ s ∈ A+

2 • �s�1 �GD �s�2.

where �s� =df �a1�;�a2�; ...;�an� if s = 〈a1, a2, ..., an〉.
And we define G1 �G G2 =df (α, A1 ∪ A2, � �12) where

�a�12 =df

⎧⎪⎨⎪⎩
�a�1 a ∈ A1\A2

�a�2 a ∈ A2\A1

�a�1 �GD �a�2 a ∈ A1 ∩ A2

CSP notation is convenient for designers to specify the relations of interactions between
objects in a concurrent system [13]. The failure-divergence semantics of CSP specifies
which event sequences lead to divergences and which events will be rejected after cer-
tain event sequences. Although it seldom involves data state explicitly, its synchronous
communication mechanism implies the dependency between the interactions. In this
case, we represent a CSP model as a tuple (α, A, Fal, Div) where α contains all data
variables, A is a set of action names, Fal and Div are the set of failures and divergences
respectively. The refinement relation defined on CSP domain is as follows.

Definition 7

Let S1 = (α, A, Fal1, Div1), S2 = (α, A, Fal2, Div2) be CSP models with the same
alphabet and action set. S1 �S S2 iff Div1 ⊆ Div2 and Fal1 ⊆ Fal2. And we define
S1 �S S2 =df (α, A, Fal1 ∩ Fal2, Div1 ∩ Div2).

Obviously these two formalisms can share information. A designer who makes a
guarded design specification for a system can combine the communication sequence
constraints from the CSP model. The CSP designer also need the state based decisions
made by the guarded design model to reduce the nondeterminism. The cooperation
of the two designers can improve their specifications or find some conflicts between
the two modeling. The model promotion provides a feasible approach for designers to
achieve this purpose.

In order to promote the two models, we need to define two translations between the
CSP domain and the guarded design domain. Let G be a guarded design system and S
be a CSP model. For simplicity, we assume the two models has the same reference to
data variables G.α = S.α and the same reference to actions G.A = S.A so that every
action occur in the CSP model has a guarded design specification.

Then we can define a translation ψ from the CSP model to Guarded design system.
It maps the CSP model S to a guarded design system

ψ(S) = (S.α, S.A, � �′)

where ��′ can be obtained as the follows.

For any action a ∈ S.A, we define

�a�′ =df a.GUARD & (a.PRE # a.POST)
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where

a.GUARD(x) =df (∀ s∀ v • s ∈ reftr(a) ⇒ ¬(Init;�s�[true/ok′, false/wait′]))[x/v′]

where x is the vector of the data variables in α, Init is a special guarded design which
initialize the local data variables,

reftr(a) =df {s | a ∈ X ∧ (s, X) ∈ Fal ∧ s /∈ Div}
a.PRE(x) =df (∀ s∀ v • s · 〈a〉 ∈ Div ⇒ ¬(Init;�s�[true/ok′, false/wait′]))[x/v′]

a.POST(x, x′) =df
∨

b∈next(a) b.Guard[x′/x]

where next(a) =df {b | ∃ s • s · 〈a, b〉 ∈ Tr}
Tr =df {s | ∃X • (s, X) ∈ Fal ∧ s /∈ Div}

Note that this translation from CSP model to guarded design system needs the refer-
ence of the original specification of each action �� in the guarded design system. It uses
the action sequence restricted in the CSP model to reason the guard condition of each
action. The divergence set implies the preconditions of the actions after which the pro-
cess diverges. From the translation we can see an action’s final data state should enable
at least one of its following actions according to the CSP traces.

We define a translation φ which derives the failure-divergence semantics for CSP
from the guarded design model.

φ(G) = (G.α, G.A, Fal′, Div′)

where

Div′ =df {〈a1.(x1), a2.(x2), ..., ak.(xk)〉 · s | ∃ v, v′, wait, wait′ •
(Init; �a1�[x1/x]; �a2�[x2/x]; ...; �ak�[xk/x])[true/ok, false/ok′]}

Fal′ =df {(s, X) | s ∈ Div ∧ X ⊆ G.A}∪
{(〈a1.(x1), ..., ak.(xk)〉, X) | ∃ v′ •
(Init;�a1�[x1/x]; ...;�ak�[xk/x])[true/ok, false/wait, true/ok′, false/wait′]

∧∀ a.(x) ∈ X • ¬a.GUARD[v′/x]}∪
{(〈a1.(x1), ..., ak.(xk)〉, X) | ∃ v′ •
(Init;�a1�[x1/x]; ...;�ak�[xk/x])[true/ok, false/wait, true/ok′, true/wait′]}

Theorem 3

Translation φ and ψ establish a Galois connection between CSP and guarded design
system.

It can be proved with the fact φ(ψ(S)) �S S and G �G ψ(φ(G)). Therefore each of the
two models can be promoted by taking another as the secondary model.

It is only one instance of the model promotion over Galois domains. In UTP method,
many pairs of domains have been proved to be Galois domains. Hence, the model
promotion approach can be used to these domains to improve specifications in these
models.
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4 Practical Design Cases

In this section we discuss the scenario of modeling an online shopping system to demon-
strate the practical application of the model promotion approach. We select modeling
techniques of CSP and guarded design system to model the online shopping system in-
dependently so that the conclusion of the last section can be adopted in the promotion
process.

Consider a simple online shopping system. It contains three kinds of participants:
customers, web broker and warehouse. The web broker lists the products to the cus-
tomers for the warehouse. A customer can login/logout to the system, add/remove
goods to/from cart and place an order for them. A customer has an individual ses-
sion and only a logged customer can submit a order with a nonempty cart. A good with
insufficient quantity cannot be placed to cart. The system provides these functionalities
as services responding customers’ requests and finally return the order number when
a order is successfully accepted. Figure 2 shows the structure of the online shopping
system.

Fig. 2. Structure of a online shopping system

Assume we already have a guarded design model specifying state changes
caused by operations and a CSP model restricting the interaction sequences for a valid
transaction.

The online shopping system we consider includes four main objects: customers,
goods, carts, orders. In detail, a customer has name, password and a IP address to ac-
cess the network. A good has its identifier, price and the quantity in stock. Cart keeps
a list of requested goods and the order records the purchase information involving the
customers and their purchased goods. In general, we give some types to the data states
of these basic objects. NAME is the set of all names used to distinguish the users. KEY
is a collection of users passwords for login. GID and OID stand for the identifiers of
goods and orders respectively. IP is the set of IP addresses of users. The declaration for
the data states is shown as follows.
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System
CONSTANTS

register : NAME �→ KEY
price : GID → R+

VARIABLES
log : IP �→ NAME
stock : GID → [0..100]
cart : IP �→ (GID �→ [1..100])
order : OID �→ (GID �→ [1..100])
buyer : OID �→ NAME

INVARIANT
ran log ⊆ dom register
dom order = dom buyer
ran buyer ⊆ dom register

INITIALIZATION
log, stock, cart, order, buyer := ∅, ∅, ∅, ∅, ∅

The system schema describes the construct of the online shopping system as well as the
guarded design system

G = (αG, AG, ��)

The data variable set αG = {log, stock, cart, order, buyer}. The register contains in-
formation of all registered users of the system. Each user owns a corresponding key
for security. The price describes the price of good which are identified by GID. Each
available good has a corresponding price. In the model, we assume that the register and
price is the constant of the system that cannot be changed by any operations.

log is a link between IP address and user name used to record the login users. The
login user must be a registered one which is specified by the invariant of the system.
The stock reflects the number of the good in the warehouse. We assume the maximum
quantity of each good is 100. The cart is a temporary shopping status of each IP ad-
dress. When applied to a certain IP address, the cart lists the goods which have been
chosen with associated quantity. The order contains the order identifier oid and the
corresponding information about purchased goods. The buyer gives who submitted the
order.

The schema also specifies the initial state of the system. We can written it as the
following guarded design.

Init =df true&(true # −→V ′ = −→∅ ∧ ¬wait′)

where the notation
−→
∅ means a vector of empty-domain functions.

The action set AG = {Login, Logout, AddtoCart, RemovefromCart, SubmitOrder}.
The guarded design semantics �a� for any action a ∈ AG is shown as a Z-like schema
where a label GUARD is introduced to represent the guard condition g, label PRE leads
the precondition b and POST corresponds to the postcondition R.
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Login
Δlog
name? : NAME
key? : KEY
ip? : IP

GUARD
ip? /∈ dom log
register(name?) = key?

POST
log′ = log ∪ {ip? �→ name?}

Logout
Δlog
name? : NAME

GUARD
name? ∈ dom log

POST
log′ = log−� {name?}

Operation Login changes the logging state of customers. After the correct input of
name and key, the state changes from logout to login by adding the name to the domain
of function log. In contrast, operation Logout removes the customer’s name from log.

AddtoCart
Δcart
ip? : IP
gid? : GID
n? : [1..100]

POST
IF stock(gid?) ≥ n? THEN

cart′ = cart⊕ {ip? �→ (gid? �→ n?)}
ELSE

cart′ = cart
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RemovefromCart
Δcart
ip? : IP
gid? : GID

GUARD
ip? ∈ dom cart
gid? ∈ dom cart(ip?)

POST
IF dom cart(ip?) = {gid?} THEN

cart′ = cart−� {ip?}
ElSE

cart′(ip?) = cart(ip?)−� {gid?}

Operation AddtoCart allows the user to change the quantity of the present good or
add new goods with associated quantity. Operation RemovefromCart is used to delete
the appointed good and corresponding quantity from the cart.

SubmitOrder
Δorder, Δstock, Δcart, Δbuyer
ip? : IP
oid! : OID

GUARD
ip? ∈ dom log
dom cart(ip?) �= ∅

POST
oid! /∈ dom order
order′ = order ) {oid! �→ cart(ip?))}
buyer′ = buyer ) {oid! �→ log(ip?)}
cart′ = cart−� {ip?}
∀ gid ∈ dom cart(ip?) • stock′(gid) = stock(gid)− cart(ip?)(gid)
∀ gid /∈ dom cart(ip?) • stock′(gid) = stock(gid)

Operation SubmitOrder generates a new order for a login user. When a login user
submits his order, the information about his trade will be add to the new generated
order and be removed from the cart at the same time. The quantity of good in stock also
will be change according to the newest order.

The CSP model specifies the sequence of communications between processes. The
online shopping system can be modeled by a CSP model

S = (αS, AS, Fal, Div)

where αS = αG and AS = {c.x | c ∈ Channel}. Channel is a set of channel names.

Channel = {Login(ip), Logout(ip), AddtoCart(ip), RemovefromCart(ip),
SubmitOrder(ip) | ip ∈ IP}
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Each observable communication action in AS corresponds to an operation in the ac-
tion set AG from guarded design system. In this case, the action sets of the two models
are slightly different. But there exists an action transformation rule. For example the
nonresponse action AddtoCart(ip?, gid?, n?) in the guarded design system corresponds
to the receiving communication action AddtoCart(ip)?(g, n) in CSP model where we
consider the computation is done when the receiving is complete. The response ac-
tion SubmitOrder(ip?, oid!) corresponds to a pair of sequential communication actions
SubmitOrder(ip)? and SubmitOrder(ip)!oid in the same channel where the computation
is considered to be finished at the end of the sending action. The computation of this
operation is considered to be executed after the communication.

The CSP formulas are listed as follows. Its failure-divergence semantics is straight
forward so it is omitted here.

System =df |||ip∈IP (Log(ip) || Cart(ip, C) || Order(ip))

\{submit(ip), log order(ip), cart order(ip)}
Cart(ip, ∅) =df AddtoCart(ip)?(g, n)→ (Cart(ip, {g �→ n}) � Cart(ip, ∅))

Cart(ip, C) =df submit(ip)→ cart order(ip)!C → skip [C �= ∅]

�AddtoCart(ip)?(g, n)→ (Cart(ip, C ⊕ {g �→ n}) � Cart(ip, C))

�RemovefromCart(ip)?g → Cart(ip, C −� {g})

Log(ip) =df Login(ip)?(name �→ key) : register →
(submit(ip)→ log order(ip)!name→ skip

�Logout(ip)?name→ Log(ip))

Order(ip) =df SubmitOrder(ip)?→
submit(ip)→ log order(ip)?name → cart order(ip)?C →
SubmitOrder(ip)!oid → skip

The system consists of three parallel components with channels for communications.
The components synchronize on the actions which have the same name. A customer can
login to the system, add goods to his cart, remove goods from the cart and submit his
order. The cart process reflects the goods information selected by the user with IP ad-
dress ip. The parameter C is a function corresponding to the function cart(ip) defined
in guarded design model. It changes the status of the process when the user adds or re-
moves goods. Note that the Cart process is nondeterministic since sometimes the action
AddtoCart may have no effect. When the user submits his order, the goods information
will be send to process Order through an internal communication cart order. If there
is no good in user’s cart, the user cannot submit his order. The login process records
the login state of customers. It ensures that a customer cannot login or logout continu-
ously. If the user performs login, his name will be record with his IP address. Then the
process is waiting for the user to submit the order or logouts. When the user submits
his order, the login process send the name of user to process Order through an internal
communication log order. The Order process generates the order using both the cus-
tomer’s information and his purchase information. Note that the channels cart order
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and log order are concealed in the system so that they do not appear in the semantical
level. In other words, communications in these channels are not collected in the action
set. There are two restriction shown by the CSP formula: a customer can only submit
order after login and a order should contain at least one good.

According to the translation φ in section 3, the AddtoCart operation has no effect
only when the request quantity of the good exceeds its stock. It converts the nondeter-
ministic choice to a deterministic choice. In other words, we can modify the cart process
as follows.

Cart(ip, ∅) =df addtocart(ip)?(g, n)→
(Cart(ip, {g �→ n} � n ≥ stock(g) � Cart(ip, ∅))

Cart(ip, C) =df submit(ip)→ cart order(ip)!C → skip [C �= ∅]

�addtocart(ip)?(g, n)→
(Cart(ip, C ⊕ {g �→ n}) � n ≥ stock(g) � Cart(ip, C))

�removefromcart(ip)?g → Cart(ip, C −� {g})

We can see that the guarded design system can promote the CSP model by com-
plementing the information about when the action AddtoCart has no effect. Note that
the CSP model actually has no contribution to the guarded design system in this case
study. It is also an evidence that the two models are consistent since the guard condi-
tions specified in guarded design system are not violated by the CSP restriction to the
action sequence. Actually, we can figure out G φ �ψ S, because neither G′ nor S′ is a
top element of their domain.

5 Related Work

Model Driven Architecture pictures a promising blue map for an alternative way of
software development. The perspective is software can be produced automatically if we
have elegant models which precisely reflect its requirements, are consistent with each
other and decidable and implementable for code generation. The Object Management
Group (OMG) proposes the concept of model transformation [2] to expose the relations
between models. Models can be transformed to other models in order to fit the needs of
certain scenarios. The general approach of model transformation defines a set of trans-
formation rules which describe the process of the transformation [9] [18]. The source
model and target model are often interpreted in a metamodel. Our model promotion
approach uncovers the relations between models with the translations which give inter-
pretations for constraints in other models and apply them to the primary model. It can
be somehow considered as a vertical transformation method since it achieves program
refinement which transform an abstract model to a concrete model. But the support of
a metamodel is not necessary in model promotion.

The combination of formal models such as CSP-OZ [11], Circus [25] and CSP||B [8]
propose a new model which consists of the characters of the component models. They
all have their own syntax and develop new semantics to interpret the features caused
by the combination. The combination of CSP and Z is introduced since 1989 by Ben-
jamin [5]. A unified theory of CSP and Z is also applied to specify the classical case of
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steam boiler by Woodcock [26]. The theory leads to a new concurrent language called
circus which combines CSP and Z as well as refinement calculus [25]. Its semantics
has been deeply studied [27] [20] and a systematic method has been discussed for de-
veloping an industrial system using circus [19]. At last, with the industrial application
of the B method, developers eager to compose the B machine with the CSP process.
The new framework is denoted as CSP||B by Schneider et al. [23]. It has been applied
to model and analyze particular software and hardware systems [16] [17]. Our model
promotion approach does not combine two models together to form a new model. It
simply interpret elements from other models in the primary model in order to comple-
ment the specification. The result will keep the form of the primary model so that the
analysis and verification techniques can be also applied on the result model. And it is
more concrete and consistent with other cooperating models because the promoting is
based on the information provided by them.

6 Conclusion and Future Work

This paper proposes a promoting calculi which is a refinement approach combining in-
formation from other models to concretize the primary model. This approach avoids the
cost of transforming models to a unified domain which is too complicated for analysis
and implementation. The promoted model has the following promising properties.

– The promoted model lies in the same domain of primary model. Every analyzing
method applied to the primary model can be also used to the promoted model.

– The promoted model satisfies every specification satisfied by the primary model.
– The promoted model is subject to every additional restriction specified by sec-

ondary models. The consistency of models can be guaranteed if the promoting
process does not end in antinomy.

The above advantages make the model promotion approach become a promising engi-
neering technique. Software designers can use the approach to improve their models by
sharing specific information of each model. It helps to reduce the gap between design-
ers and makes the models more convincing and the system consisting of these models
more clear. Its modeling power is listed as following.

– This approach can be applied to arbitrary models only requiring they have lattice-
semantics.

– This approach is flexible because the designers can combine information according
to their own concern without introducing abundant ones.

– This approach does not modify the existing models when combining their informa-
tion so that it can take advantage of the existing properties and verification tech-
niques for these models directly.

– This approach can complement the primary model with the information from more
than one secondary model. Conversional combination methodologies cannot easily
realize this kind of improvement.

– This approach can be used to compare two models according to their contributions
to the same primary model. A model-level ordering based on this aspect can be
easily defined to assistant designing and analyzing models.
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– This approach can take advantage of the existing relations between models and
use them to promote models. As we know, the UTP method has researched links
between many formalisms and concluded that there exists a Galois connection be-
tween their domains. Our approach can use these conclusions directly and make
these models cooperate with each other to obtain their refinements.

In the next step, we want to further reduce the restriction of applying this approach. The
model promotion may not need the lattice restriction to the domains if we are not con-
cern the refinement issues. A model can be improved in many other aspects according
to orderings concerned by designers. For example, we expect it can compose two mod-
els which is totaly independent with each other but are both interacted with a common
environment. In this foundation, we will consider how to generate translations in special
modeling domains such as UML diagrams. Then we can concretize an existing UML
model and make the model driven methodology applied to it more feasible. Besides, the
promoting process can be stepwise with the composition of different translations. The
properties generated by the stepwise promotion need to be discussed in detail.
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Abstract. We consider an addition of probabilistic choice to Abrial’s
Generalised Substitution Language (GSL) in a form that accommodates
the backtracking interpretation of non-deterministic choice. Our formu-
lation is introduced as an extension of the Prospective Values formalism
we have developed to describe the results from a backtracking search.
Significant features are that probabilistic choice is governed by feasibil-
ity, and non-termination is strict. The former property allows us to use
probabilistic choice to generate search heuristics. In this paper we are
particularly interested in iteration. By demonstrating sub-conjunctivity
and monotonicity properties of expectations we give the basis for a fixed
point semantics of iterative constructs, and we consider the practical
proof treatment of probabilistic loops. We discuss loop invariants, loops
with probabilistic behaviour, and probabilistic termination in the con-
text of a formalism in which a small probability of non-termination can
dominate our calculations, proposing a method of limits to avoid this
problem. The formal programming constructs described have been im-
plemented in a reversible virtual machine (RVM).

Keywords: prospective values, probabilistic choice, expectations,
reversibility, iteration.

1 Introduction

Probabilistic algorithms exist for many applications, with some well known ex-
amples being primality testing (Rabin’s algorithm), Quicksort with random pivot
selection (which has optimum expected performance against a hostile oracle),
Buffon’s algorithm for the evaluation of π, Quantum algorithms such as Shor’s
algorithm, and randomised back-off algorithms for resolving symmetric choice
[11]. This has motivated researchers to add probabilistic choice to formalisms
which underpin formal software development, such as GCL, GSL, and Hoare-He
Designs,

Tractable formulations for doing this have not been easy to find. A major dif-
ficulty has been in the interaction between non-deterministic and probabilistic
forms of choice, and this is seen in all approaches. The semantics of probabilistic
programs was first formulated using measure theoretic approaches by Kozen[9].
A more immediately practical approach based on pGCL (the Guarded Command
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Language extended with probabilistic choice) has been developed by He, Morgan,
McIver, Sanders and others[13,14,3]. A discursive exposition of this approach is
available in the monograph of McIver and Morgan[10]. Hurd[6,7] has developed
an approach based on a shallow embedding of probabilistic programming con-
cepts in HOL, in which random events are modelled by popping elements from
an assumed infinite series of coin flips, and has worked with Morgan and McIver
on the mechanisation, in HOL, of probabilistic guarded commands. Meinicke and
Hayes [12] have given an extensive account of algebraic properties of probabilis-
tic action systems. The combination of reversibility and probability is addressed
by He Jifeng and J Sanders in [8].

In previous work, we have explored the use of non-deterministic choice within
search procedures, both in the B Formalism and in terms of Hoare and He’s
unifying theories [18]. We propose the formalism S * E to represent all the
values E might take after executing the program S . We add probabilistic choice
to our language and formulate the expectation of expression E following the
execution of program S . We exploit reversibility to support backtracking, and in
our approach both probabilistic and non-deterministic choice are “governed by
feasibility”. By this we mean that if a choice subsequently leads to an infeasible
continuation, execution will backtrack to the point of choice and try a different
alternative.

Abrial’s Generalised Substitution Language provides a suitable vehicle for rep-
resenting computations based on UTP Designs minus Healthiness Condition H4,
which expresses the “Law of the Excluded Miracle”. In particular GSL includes
naked guarded commands, able to express miraculous behaviour. Our particular
interest is reversible computation, and in this context an infeasible operation will
simply cause execution to engage reverse gear, recommencing forward execution
when it encounters an unexplored choice.

Central to our project is the provision of an execution platform for the con-
structs we investigate, in the form of the “Reversible Virtual Machine”.[19] We
propose a programming language in which we can use terms of the form S * E .
This yields the value (or bunch of values) E would take after executing S , but
does not change the system state. Operationally it represents the execution of
S , the recording of the value of E , and the restoration of the previous system
state by a stepwise reversal of the computation of S . This method of organising
a computation, and in particular stepwise reversibility, has a thermodynamic
significance: the requirements for power consumption in a computation arise
from the damping required to reconcile previously incompatible system states,
a requirement that is not present if computations are organised in a stepwise
reversible manner. Our reversible execution platform in a virtual machine imple-
mented on non-reversible technology, and therefore offers none of the advantages
of reversibility in terms of power consumption. However, reversibility has other
advantages which we can exploit, for example in terms of garbage collection, and
in providing a number of new programming structures [19,17].

The theory of probabilistic programming given here is more fully described in
our paper “A Unification of Probabilistic Choice within a Design-based Model



Probabilistic Choice, Reversibility, Loops, and Miracles 255

of Reversible Computation”[15] and in an associated technical report[16]. The
original contributions of the current paper are the re-expression of our theory
in GSL, the establishment of a semantic foundation for probabilistic iterations
in our formalism based on fixed point theory, the practical proof treatment
of loops with probabilistic loop bodies, and consideration of probabilistic loop
termination within a formalism which has a strict approach to probabilistic
termination. Aspects of our approach which are covered in our previous report
[15] include: the ability to derive a relational model from a probabilistic program
text, the expression of blind non-determinism within the same model as demonic
non-determinism, the characterisation of probabilistic refinement as containment
of convex closures in distribution space, and the linking of probabilistic and non-
probabilistic models via a Galois connection.

The paper is organised as follows. In Section 2 we review our Prospective
Values formalism; in Section 3 we introduce probabilistic choice and review our
previous work on expectations; In section 4 we consider some algebraic properties
of expectations, establishing sub-conjunctivity and monotonicity; in section 5 we
establish the basis for a fixed point semantics of iterative constructs; in section
6 we discuss practical proof treatment of loops and probabilistic termination; in
section 7 we draw our conclusions and discuss future work.

2 Backtracking and Prospective Values

In [20] we introduce S * E , to represent the bunch[4,5] of values that could be
taken by expression E after executing the program S . The binding power of * is
below that of program connectives ( [] , =⇒ etc ).

We remind the reader that, in Hehner’s Bunch Theory, a bunch is “the con-
tents of a set”; thus 1, 2 is the bunch of elements which are in the set {1, 2}, and
the comma is now an operator, signifying bunch union. The type of a bunch is
the same as that of its elements, and there is no difference between an element
and the bunch consisting of just that element. The empty bunch is written as
null. We write E : F to express bunch containment, for example 1, 2 : 1, 2, 3.
Some simple but important properties are E : E , E ,F = F ,E , E : E ,F and
null : E .

Operators applied to bunches are lifted. For example if A = 1, 2 and B = 4, 5,
then A + B = 1 + 4, 1 + 5, 2 + 4, 2 + 5.

The guarded bunch g −→ S has the value of S where g holds, and is otherwise
null .

In our approachwe add an improper bunch⊥, (more strictly an improper bunch
for each type) to represent the value of an expression after a non-terminating com-
putation. For any other bunch E of the same type we have E : ⊥ and ¬ ⊥ : E .
The improper bunch has a number of absorptive properties, e.g. E ,⊥ = ⊥,
E + ⊥ = ⊥, E ∗ ⊥ = ⊥. Full details of our use of Bunch theory are given in
[15]1.

1 Available from http://tees.openrepository.com

http://tees.openrepository.com
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We use a large equals = with the same meaning but lower precedence than
=. It is particularly useful because * has a lower precedence than =. We use
[P ] to assert that P is true everywhere.

Returning now to the construct S * E , in [20] and [18] we prove that it has
the properties:

Name Rule Side Cond
Precondition P | S * E = P ||| S * E
Skip skip * E = E
Assignment x := F * E = E [F/x ]
Guard g =⇒ S * E = g −→ S * E
Choice S []T * E = S * E ,T * E
Choice from set x :∈ A * E = § a • a ∈ A −→ E [a/x ] a \ E
Seq Comp S ; T * E = S * T * E
Local Variable var z .S . end * E = § z • S * E z \ E

This characterisation of prospective values has two uses. It can serve as a se-
mantic description of our reversible language, within a total correctness frame-
work. It can also serve as a description of values terms of the form S * E take
when they occur as executable constructs in our programming language. The
RVM executes such terms by following each non-deterministic choice within S
and collecting the results. The resulting value ????

3 Probabilistic Choice and Expectations

In [15,16] we add probabilistic choice. In common with pGSL, pGCL and other
formalisms we use S p⊕ T for the operation that will choose S with probability
p and T with probability 1−p. Thus the following program represents an exper-
iment in which a coin is tossed two times and the number of heads is recorded
in the variable X .

Experiment =̂ X := 0;
X := X + 1 0.5⊕ skip;
X := X + 1 0.5⊕ skip

The expression X has its value assigned according to a random process; it com-
plies with our intuitive understanding of a “random variable”.2 We reason about
expressions that can take random values following some operation in terms of
expectations. After each run of Experiment , X will be set at random to one of
the values 0,1 or 2. If enough runs are performed to iron out random fluctua-
tions, we wool,expect its long term average value to approach 1. It will be set to
0 approximately 25.

2 Though it is not a random variable as formulated in classical probability theory,
where a random variables is a real valued function on a sample space, and its random
properties are implied from a probability measure over this space.
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We write the expected value of a numeric expression or numeric vector E
after performing a computation S as E(S * E ). This is a non compositional
notation, in the sense that the value of E(S * E ) is not evaluated by applying
the expectation operator E to S *E . Rather, the expectation is calculated from
S and E , and the diamond just serves as a syntactic separator between them.
A compositional alternative would be to write this as S *E E , but this is less
easy to write in a notebook or email discussion.

We will often be interested in the expectations of ”numerotized predicates”.
For any predicate Q we define | Q |=̂ Q −→ 1,¬ Q −→ 0, so that the value of
| Q | will be 1 if Q is true and 0 if Q is false.

Before giving the rules for calculating expectations, we note that the expec-
tations associated with the operation Experiment noted above are

E(Experiment * X ) = 1
E(Experiment * | X = 0 |= 0.25
etc

In the following table the effect of probabilistic choice is captured through a
weighted addition of expectations. The tricky part is to decide the meaning of a
probabilistic choice between a feasible operation (i.e. one that is able to run) and
an infeasible one (i.e. one which will place execution in reverse gear if invoked).

Name Rule Side Cond
Precondition E(P | S * E ) = P ||| E(S * E )
Skip E(skip * E ) = E
Assignment E(x := F * E ) = E [F/x ]
Guard E(g =⇒ S * E ) = g −→ E(S * E )
Choice E(S []T * E ) = E(S * E ),E(T * E )
Choice from set E(x :∈ A * E ) = § a • a ∈ A −→ E [a/x ] a \ E
Seq Comp E(S ; T * E ) = E(S *E(T * E ))
Local Variable E(var z .S .end * E ) = § z •E(S * E ) z \ E
Prob Choice E(S p⊕ T ) * E = E(S * E ) p+ E(T * E ) 0 < p < 1
Prob Choice E(S 0⊕ T ) * E = E(T * E )
Prob Choice E(S 1⊕ T ) * E = E(S * E )

To model probabilistic choice we use the weighted bunch addition p+ . We
define E1 p+ E2 where E1 and E2 are bunches and p is an element with 0 ≤ p ≤ 1
by

E1 p+ E2 =̂ E1 = null −→ E2 , E2 = null −→ E1 , p ∗ E1 + (1− p) ∗ E2

The body of this key definition consists of the bunch union of three terms.
The definition covers nine cases, these being that each of E1 and E2 could be a
proper non-empty bunch, or null, or ⊥. Where E1 and E2 are non-empty the
first two terms equate to null and thus do not contribute to the result, which
is given by the third term. If either E1 or E2 is null, then, by the absorptive
properties of null, the third term will be null and the result will be given by
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the first two terms, at most one of which will be non-null. If either E1 or E2 is
⊥, the third term of will be ⊥ (by the absorptive power of ⊥), and the whole
expression will equate to ⊥.

As an (unsatisfactory) alternative we might have used the rule: E(S p⊕ T ) *
E = p∗E(S *E )+(1−p)∗E(T *E ) which would be correct in the case of feasible
S and T , but would have the unwanted effect of making our formalism strict
with respect to feasibility, i.e. a possibly infeasible operation would certainly
be infeasible. That is the case in pGSL, but we must reject it as a possible
formulation because its implementation in a programming environment which
includes possibly infeasible commands would require all branches to be tested for
feasibility. We prefer the view that execution will resolve possible infeasibility by
use of a backtracking mechanism, and the rule we adopt makes magic p⊕ skip =
skip. Thus magic is a zero element with respect to our probabilistic choice, just as
it is with respect to non-deterministic choice: probabilistic choice, like demonic
choice, is governed by feasibility.

A property of our probabilistic choice is that it is strict with respect to non-
termination. We define trm(S ) as E(S * null) : null . The idea here is that the
only way the expected value of the null bunch after running S can be larger than
the null bunch is if we cannot guarantee termination of S . As an example of how
this works consider abort =̂ false | skip and let S be the program abort 0.5⊕ skip
Then we have:
E(S * null) = E(abort 0.5⊕ skip * null)
= E(abort * null) 0.5+ E(skip * null)
= E(false | skip * null) 0.5+ null
= E(false | skip * null) = false ||| null
= ⊥

hence
trm(S ) = ⊥ : null = false Using the lenient approach to termination of
pGSL or pGCL, the above program would terminate with probability 0.5.

A possible advantage of a strict treatment of non-termination is that use of
an operation outside of its pre-condition would be easier to detect during the
discharge of proof obligations. The disadvantage is that vanishingly small prob-
abilities of non-termination will dominate our expectations, and require special
treatment; we discuss a case later. He and Sanders[8] have engineered a version
of pGCL which is strict with respect to non-termination. To do this they intro-
duce angelic choice and view an operation S as an angelic choice over a set of
“fibres”. The fibre at x0 behaves like S for x = x0 and like abort elsewhere.[8].
We achieve strictness from the properties of the improper bunch.

The effect of non-determinism is that we may have more than one expected
value for an expression, with different values corresponding to different combi-
nations of non-deterministic choices. We capture this property, in our rule for
E(S []T * E ), by using bunch union. We could have used a set of expectations at
this point, but the advantage of using bunches is that we obtain a smooth trans-
formation from the deterministic (but probabilistic) case to the non-deterministic
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case. We are able to apply our rule for weighted addition equally well to indi-
vidual expectations or bunches of expectations. Use of set theory to express our
theory would require us to use sets even for the deterministic case, and to define
our already complex weighted addition operator to work on sets of expectations
rather than on expectations themselves.

If A is a predicate on the state space we write Prob(S ,A) for the probability
that A is true after executing S , defined as Prob(S ,A) = E(S* | A |). Where S is
nondeterministic the result may be a non-elemental bunch, and we will typically
be interested in the minimum probability of obtaining some desired result A.

Whereas S * E terms are part of our programming language, expectations
are not, and are used only for semantic analysis of programs. We also note that
we have not defined the meaning of S * E terms where S includes probabilistic
choice.

4 Algebraic Properties of Our Expectation Calculus

Predicate transformers in B-GSL and UTP designs are conjunctive. i.e. wp(S ,Q1

∧ Q2) = wp(S ,Q1) ∧ wp(S ,Q2). I.e. S will establish post condition Q1 ∧ Q2

exactly when it will establish Q1 and will also establish Q2.
The equivalent property in PV semantics is S * E ,F = (S * E ), (S * F ).
This correspondence can be illustrated by the use of the conjunctivity prop-

erty in establishing that sequential composition distributes through choice, i.e.
S ; T []U = (S ; T ) [] (S ; U ). In wp semantics we establish the equality of
program expressions S and T by showing wp(S ,Q) = wp(T ,Q) for arbitrary
Q , Thus to establish the given distributivity rule we proceed as follows:

wp(S ; T []U ,Q) =“wp rule for sequential composition”
wp(S ,wp(T []U ,Q)) =“wp rule for choice”
wp(S ,wp(T ,Q) ∧ wp(U ,Q)) =“wp conjunctivity”
wp(S ,wp(T ,Q)) ∧ wp(S ,wp(U ,Q)) =“wp rule for sequential composition”
wp(S ; T ,Q) ∧ wp(S ; U ,Q) =“wp rule for choice”
wp((S ; T ) [] (S ; U ),Q)

and hence S ; T []U = (S ; T ) [] (S ; U )

Using PV semantics we establish the equality of S and T by showing the equiv-
alence of their prospective value effect, i.e. that for an arbitrary expression E
defined on the current state, that (S * E ) = (T * E ). To establish the given
distributivity rule in PV semantics we proceed as follows:

S ; T []U *Q = “pv rule for sequential composition”
S * (T []U *Q) = “pv rule for choice”
S * (T *Q , U *Q) = “pv conjunctivity”
(S * T *Q) , (S *U *Q) = “pv rule for sequential composition”
(S ; T *Q), (S ; U *Q) = “pv rule for choice”
(S ; T ) [] (S ; U ) *Q
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and again we establish our result. We notice that the appeal to the respective
conjunctivity properties is made at the same point in both these proofs.

One important property of conjunctivity is that it implies monotonicity, which
is a pre-requisite for establishing a fixed point semantics of loops. We would
formulate the conjunctivity property for expectations as:

E(S * (A,B)) = E(S *A),E(S * B)

Our expectation calculus, however is not conjunctive, or more exactly is only
conjunctive for operations that do not include probabilistic choice. We see we
do not in general have conjunctivity from the following counter example.

Let S =̂ x := 0 0.5+ x := 1 then applying the rules for probabilistic choice to
E(S * x , x + 1) we have

E(S * (x , x + 1)) = 0.5, 1, 1.5

but

E(S * x ),E(S * x + 1) = 0.5, 1.5

We can however show “sub-conjunctivity”. We follow Hehner in defining a
bunch refinement A  B =̂ B : A.

Theorem 1. sub-conjunctivity of expectations

E(S * (A,B))  E(S *A),E(S * B)

Proof
The proof is by structural induction with base cases for skip and assignment
and proofs for each program connective, these making appeals to the inductive
case. Here we give just the base case for assignment and the inductive proof for
probabilistic choice.

For assignment we have:

E(x := E * (A,B)) = “expectation rule for assignment”
(A,B)[E/x ] = “distributivity of substitution through bunch union”
A[E/x ],B [E/x ] = “expectation rule for assignment”
E(x := E *A),E(x := E * B)  “property of bunch refinement”
E(x := E *A),E(x := E * B)

For probabilistic choice with 0 < p < 1 we have:

E(Sp ⊕ T * (A,B)) = “rule for prob choice”
E(S * (A,B)) p+ E(T * (A,B))  “inductive case and property of p+ ”
E(S * A),E(S * B) p+ E(T * A),E(T * B)) =
“lifted application of p+ ”
E(S * A) p+ E(T * A),E(S * A) p+ E(T * B),
E(S * B) p+ E(T * A),E(S * B) p+ E(T * B) 
“defn of bunch refinement”
E(S * A) p+ E(T * A),E(S * B) p+ E(T * B) =
“rule for prob choice”
E(Sp ⊕ T * A),E(Sp ⊕ T * B)
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Other cases follow in an obvious way. �
We now return to the subject of monotonicity, which fortunately is implied by
sub-conjunctivity. Our proof of this will use the following obvious lemma:

Lemma 1. Bunch refinement lemma

[A  B ] ⇒ A = A,B

Theorem 2. Monotonicity of expectations

A  B ]⇒ E(S * A)  E(S * B)

Proof. We must prove E(S * A)  E(S * B) under the assumption [A  B ]

E(S * A) = “assumption, lemma, and referential transparency”
E(S * (A,B))  “sub-conjunctivity of expectations”
E(S * A),E(S * B)  “defn of bunch refinement”
E(S * B)

�
The monotonicity of expectations will be of use in the next section, when it
allows us to infer the monotonicity of a function used in a fixed point equation
to characterise the transitive opening of an operation, and which we subsequently
use to define the meaning of a while loop in terms of expectation calculus.

5 Expectations and Iterative Commands

In this section we are concerned with asking whether it makes any mathematical
sense to talk about an expectation of some expression following an iterative
command, and how such commands may be defined in terms of the basic table of
commands for which expectation rules have been given in Section 3. We construct
an argument based on fixed point theory, following the approach Abrial takes
in [1] to justify iterative constructs in a predicate transformer context. We first
define the “transitive opening” of an operation, and examine its expectation
properties. We then use transitive opening as the basis for defining a while loop.

5.1 Expectations and Transitive Opening

We make use of Abrial’s definition of the transitive opening S∧ of a command
S , defined as:

S∧ =̂ μX .(X ; S ) [] skip

In this definition of S∧ in terms of a fixed point equation, the associated cpo
is the lattice of operations, with top element magic and bottom element abort,
and the ordering is reverse refinement. We choose the weakest fixed point to
include infinite behaviour. The corresponding strongest fixed point would give
us S ∗, the transitive closure of S .
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We first prove the following

Lemma 2. The expectation effect of transitive opening

E(S∧ * E ) = μY .E(S * Y ),E

Proof. From the definition of S∧ we have that S∧ is the least (least refined)
operation that satisfies

S∧ = (S ; S∧) [] skip

Taking expectations (and by referential transparency)

E(S∧ * E ) = E((S ; S∧) [] skip * E ) =
“expectation rule for choice”
E(S ; S∧ * E ),E(skip * E ) =
”expectation rules for sequential composition and skip”
E(S * E(S∧ * E )),E

Thus we obtain the following fixed point equation for E(S∧ * E )

E(S∧ * E ) = E(S * E(S∧ * E )),E

We have thus transformed a fixed point equation on operations to a fixed
point equation on expectations. Our cpo is now the lattice of bunches of values
that can be taken by expectations , and our order is reverse bunch refinement,
with top element null and bottom element the improper bunch ⊥. Once again,
to include infinite behaviour we take the least solution, giving

E(S∧ * E ) = μY .E(S * Y ),E

We may assure ourselves that such a fixed point indeed exists by appeal to
Tarski’s fixed point theorem. This states that an equation of the form X = f (X )
will have solutions if the domain of f is a cpo and f is monotonic. in our case
the function f is given by f (Y ) = E(S * Y ),Y the domain of f is a lattice
(and therefore a cpo) and the monotonicity of f is assured by the monotonicity
property of expectations, proved in the previous section. �

5.2 WHILE Loops

We now take Abrial’s definition of a while loop and again we will investigate it’s
effect on expectations, showing that the usual “unwinding” interpretation of a
while loop is valid within our expectation semantics.

We define:

while G do S end =̂ (G =⇒ S )∧ ; ¬ G =⇒ skip

And the following theorem describes the effect of a while loop within the
expectation calculus.
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Theorem 3

E( while G do S end * E = μY . if G then E(S * Y ) else E end

Proof. We consider the expectation effect of a while loop on an arbitrary ex-
pression.

E( while G do S end * E ) = “defn of while loop”
E((G =⇒ S )∧ ; ¬ G =⇒ skip * E ) =
“expectation rule for sequential composition”
E((G =⇒ S )∧ * E(¬ G =⇒ skip * E )) =
“expectation rules for guard and skip”
E((G =⇒ S )∧ * ¬ G −→ E ) = “Lemma 2”
μY .E(G =⇒ S * Y ),¬ G −→ E = “expectation rule for guard”
μY .G −→ E(S * Y ),¬ g −→ E =
“rewriting as a conditional expression”
μY . if G then E(S * Y ) else E end

�
We terminate this section with a note on our choice of the weakest fixed point
in our interpretation of loop expectation semantics. This seems intuitively cor-
rect, for the same reason that the weakest fixed point is chosen to describe the
predicate transformer effect of loop semantics, i.e. to include the infinite case.
We now check this intuition for a particular extreme case.

Writing while G do S end as W , theorem 3 tells us that E(W * E ) is
characterised by the equation

E(W * E ) = if G then E(S * E(W * E )) else E end

which is the classical unwinding interpretation of a loop, expressed in terms of
expectations. If we set G to true, and thus make a non-terminating loop, and
(for simplicity) set S to skip, the equation reduces to

E(W * E ) = E(skip * E(W * E ))

which by the rule for skip reduces to

E(W * E ) = E(W * E )

an equation which conveys no information and thus admits any solution. How-
ever, since we are taking the weakest fixed point as our solution we obtain the
improper bunch ⊥ as the expected value of an expression following the termina-
tion of this non-terminating loop, and this is what we expect.

6 Practical Proof Treatment of Loops and Termination

The preceding section demonstrates that our expectation calculus gives an in-
terpretation of loops which is able to give a mathematic interpretation to the
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meaning of the expectation of some expression after executing a loop. As with
other formalisms, however, practical proof treatment of loops is not based di-
rectly on such a treatment, but rather uses a technique in which loop behaviour
is characterised in terms of loop variants and invariants, which capture the pro-
grammers intuition about what the loop is intended to achieve and why it is
sure to terminate.

Treatment of loops and heuristics for finding probabilistic loop invariants
follow the approach described by McIver and Morgan in [10] with the excep-
tion that, due to our strict interpretation of non-determinism, possibly non-
terminating loops become definitively non-terminating. We consider first an
example in which termination is deterministic but the result achieved is proba-
bilistic and illustrate the loop invariant method for this case. We then consider
two contrasting loops with different forms of probabilistic termination. The first
has an arbitrarily small probability of not terminating, which will nevertheless
dominate our expectations unless we calculate them in the form of limits. The
second can easily be shown to terminate with probability one, but is better
regarded as non-terminating for practical purposes.

For our first example we have a sequence of Bernoulli trails and we are in-
terested in the probability distribution of number of successes obtained, i.e. the
classical binomial distribution. We define a program prog to be used in subse-
quent discussion.
prog =̂ r := 0; i := n; / ∗ init ∗ /
while i �= 0 do

r := r + 1 p⊕ skip; i := i − 1 / ∗ body ∗ /
variant i
invariant c(i , k − r) ∗ pk−r ∗ (1 − p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i |

end
We want to show that prog * r follows a binomial b(n, p) distribution, i.e. that
for any k with k ∈ 0..n we have Prob(prog, r = k) = c(n, k) ∗ pk ∗ (1 − p)n−k .
Here c is the binomial coefficient function defined by c(n, k) = n!/((n−k)!∗ k !).

The probabilistic loop invariant, found by one of the heuristics proposed in
[10], has the form p∗ | pred |. We consider the computation from some general
point at which r successes have been achieved and i trials remain. At that point
pred is the necessary condition it is still possible to finish with k successes, and
p is the probability that this will occur assuming pred . If the loop invariant can
be preserved the value of Prob(prog, r = k) is given by E(init * I ) where I is the
loop invariant. i.e.
E(r := 0; i := n * c(i , k − r) ∗ pk−r ∗ (1 − p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i |)
= c(n, k) ∗ pk ∗ (1 − p)i−k∗ | 0 ≤ k ∧ k ≤ i |

The loop preservation rule in our style of presentation is:
| g | ∗ I ≡> E(body * I )
where we use ≡> for “everywhere less than or equal to” (the equivalent to
“everywhere implies” when working with numerotized predicates). We also use
<≡ with an obvious similar meaning.
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To show the invariant property we reason from the left hand side:
E(body * I ) =
E(r := r +1 p⊕ skip; i := i −1 * c(i , k − r)∗pk−r ∗ (1−p)i−k+r∗ | 0 ≤ k − r ∧
k − r ≤ i |)
= “seq comp and assignment”

E(r := r + 1 p⊕ skip * c(i − 1, k − r) ∗ pk−r ∗ (1 − p)i−1−k+r∗ | 0 ≤ k − r ∧
k − r ≤ i − 1 |)
= “prob choice and assignment”

p ∗ c(i − 1, k − r − 1) ∗ pk−r−1 ∗ (1 − p)i−k+r | 0 ≤ k − r − 1 ∧ k − r ≤ i |
E(x := E *A),E(x := E * B) +

(1− p) ∗ c(i − 1, k − r) ∗ pk−r ∗ (1− p)i−1−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i − 1 |)
= “collecting terms”

c(i − 1, k − r − 1) ∗ pk−r ∗ (1 − p)i−k+r | 0 ≤ k − r − 1 ∧ k − r ≤ i |
+

c(i − 1, k − r) ∗ pk−r ∗ (1 − p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i − 1 |)
<≡ “comparing numerotized predicates”
(c(i−1, k−r−1)+c(i−1, k−r))∗pk−r ∗(1−p)i−k+r∗ | 0 ≤ k−r ∧ k−r ≤ i |)
= “Pascal’s Triangle property of binomial coefficients”

c(i , k − r) ∗ pk−r ∗ (1 − p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i |)
<≡ “ since | i �= 0 |≤ 1
| i �= 0 | ∗c(i , k − r) ∗ pk−r ∗ (1 − p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i |)
= | g | ∗I �

In the next two examples we consider loops with probabilistic termination.
These illustrate potential problems both with our strict approach to non-
termination and with the concept of “termination with probability one”. First we
consider a loop for which termination is always possible, where the probability of
termination in the first iterations may be arbitrarily close to one, and only moves
slowly away from this value in each subsequent iteration. Nevertheless we will be
able to show that there is a non-zero probability of non-termination of this loop.
On termination the loop will leave a variable i set to the number of iterations per-
formed. We will not be able to derive a numeric value for the expected value of i by
considering the expected value of i following the loop, because even an arbitrarily
small probability of non-termination will dominate our calculations. However, we
will be able to obtain the result we require by taking limits. In the second example
we will have a very different situation: a loop that can easily be shown to termi-
nate with probability one but for which, in practice, it would be very imprudent
to assume that termination would occur in any human time scale.

The first example makes use of the binomial trials described above, which we
now assume are packaged in an operation Bin with output r .
r ← Pterm1(p) =̂ 0 < p ∧ p < 1 |

k := 1; i := 0;
while k �= i do

i := i + 1; k ← Bin(i , p)
end
r := i ;
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At the ith iteration the program performs i Bernoulli trials and terminates if
all are successful. The probability of termination on the 1st iteration is p. Termi-
nation on the second iteration occurs only if we have non-termination on the first
iteration followed by termination on the second. It has probability (1 − p) ∗ p2.
Probability of termination on the third iteration is (1− p) ∗ (1− p2) ∗ p3 and so
on. It seems we should be able to show, within our formalism, that the expected
number of iterations required for termination is:

E(r ← Pterm1(p) * r) = p + 2 ∗ (1− p) ∗ p2 + 3 ∗ (1− p) ∗ (1− p2)p3 + ..

The reason we cannot do so is that termination is not guaranteed. The proba-
bility of non-termination is given by the infinite product whose ith term is the
probability that termination does not occur at the ith iteration, i.e. P(p) =
(1− p) ∗ (1− p2) ∗ (1− p3).... For p = 1/2 the value of this product has a known
analytic form and its value is given in [2] as approximately 0.288788. As we in-
crease p from 1/2 and approach 1 we can make the probability of termination
on the first iteration as close to 1 as we like. We therefor wonder if there is some
value p0 for p with p0 < 1 but P(p0) = 0. In fact this cannot be the case, and
we will always have a finite probability of non-termination for our loop. As a
first step in showing why this must be so assume some p0 exists with P(p0) = 1
and let it also be the smallest such value. Then consider p2

0 . We have p2
0 < p0,

so if we can show P(p2
0 ) = 0 we will have contradicted our assumption that p0 is

the smallest value with this property and thus have shown that no such smallest
value exists. We have:

P(p2
0 ) = (1− p2

0 ) ∗ (1− p4
0 ) ∗ (1− p6

0)... = “since (1− x 2) = (1− x ) ∗ (1 + x )”
(1−p0)∗ (1−p2

0)∗ (1−p3
0)...(1+p0)∗ (1+p2

0)∗ (1+p3
0)... = “since P(p0) = 0”

0 ∗ (1 + p0) ∗ (1 + p2
0 ) ∗ (1 + p3

0)...

This will be zero so long as (1 + p0) ∗ (1 + p2
0) ∗ (1 + p3

0 )... has a finite value,
and this will be the case so long as log((1 + p0)(1 + p2

0 )(1 + p3
0 )...) has a finite

value. Recalling that log(1 + x ) = x − x 2/2 + x 3/3.. and noting that therefore
0 < x < 1 ⇒ log(1 + x ) < x we have

log((1 + p0) ∗ (1 + p2
0 ) ∗ (1 + p3

0 )..) = log(1 + p0) + log(1 + p2
0 ) + log(1 + p3

0 )... <
p0 + p2

0 + p3
0 + ... = “standard geometric progression”

p0/(1− p0) which has a finite value for p0 ∈ openinterval(0, 1)

Thus we conclude there is no smallest p such that P(p) > 0. That is not yet
enough to prove that we cannot have p ∈ openinterval(0, 1) ∧ P(p) = 0, but
since P(p) is continuous and monotonic decreasing, the only remaining possi-
bility is that the region for which P(p) > 0 runs up to and includes some p1 ∈
openinterval(0, 1). Then we would have P(p1) > 0 but p ∈ openinterval(p1, 1)⇒
P(p) = 0. However, we can also dispose of this possibility: if such a p1 exists let
p2 = p1 + ε, and we can show in an obvious way that we can choose ε such that
p2
2 < p1.
Having concluded that the operation Pterm1 will always have some finite

probability of non-termination, given by P(p), we return to our expression of
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the expected value for the number of loop iterations in Pterm1 but we now in-
clude this term and calculate its effect:

E(r ← (Pterm1(p) * r) = p+2∗(1−p)∗p2+3∗(1−p)∗(1−p2)p3+ ..+P(p)∗⊥
= “since e ∗ ⊥ = ⊥ for any term e

E(r ← (Pterm1(p) * r) = p + 2 ∗ (1− p) ∗ p2 + 3 ∗ (1− p) ∗ (1− p2)p3 + .. +⊥
= “since e +⊥ = ⊥ for any term e” ⊥

Not surprisingly the absorptive effect of the improper bunch dominates the cal-
culation, however small the term multiplying it might be.

Looking for an alternative approach that would allow us to calculate the
termination probability of a loop that may be non-terminating, and to calcu-
late the probability of some the loop terminating and establishing some post
condition, we recall that in Theorem 3 we proved that the “unwinding” inter-
pretation of a loop remains valid in the context of expectations. For the loop
L =̂ while G do S end we have by repeated application of the unwinding result
that:

E(L * E ) = E(( if G then S end )n ; L * E ))

The probability of termination within the first n iterations of L can be calcu-
lated as

E(( if G then S end )n * | ¬ G |)

and the probability of termination and establishing some post condition Q
can be calculated as

limn→∞E(( if G then S end )n * | ¬ G ∧ Q |)

We now consider the second of our two examples. This time we take a loop
whose termination is readily provable by the zero one law, but, with suitably
chosen parameters, is effectively non-terminating on any practical time scale.
r ← Pterm2(p, b) =̂ 0.5 < p ∧ p < 1 ∧ b > 0 |

i := 1 p⊕ i := 1;
while i �= 0 do

i := i + 1 p⊕ i := i − 1;
if i > b then i := b end
if i < −b then i := −b end

end
r := i ;

The program represents a random walk, biased to move in a upward directions
and with barriers at −b and b. To apply the zero-one law to show termination
with probability 1 we need to show the loop always has some probability of
termination bounded away from zero. Here, such a bound is given by (1 − p)b ,
which is the probability of terminating in b steps when we are at the upper
barrier. Every other position gives a better probability of terminating within
the next b steps, and obviously all such probabilities are less that the overall
probability of termination from any current position.
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We have a trivial application of the zero one law for proving the termination of
this loop with probability one and the impossibility of proving termination occurs
with probability one in the previous case, but we also have the following: given
any integer N > 0, however large and some ε ∈ openinterval(0, 1), however small,
we can choose p and b such that the probability of the first loop terminating
within N iterations is greater than 1 − ε (i.e arbitrarily close to 1) and the
probability of the second terminating within N iterations is less that ε (i.e.
arbitrarily close to 0). We conclude from this that we need to supplement a
proof of termination with probability 1 with a proof that termination is highly
likely to occur in some sensible number of iterations given by the contact of the
application. Also we need to be aware that loops which look extremely likely
to terminate may not, in fact, terminate with probability one, and may need
to have termination imposed after some suitable number of iterations, since the
slightest possibility of non-termination of a loop will dominate our calculations.

7 Conclusions and Future Work

In this paper we consider the fixed point semantics and proof treatment of iter-
ative constructs within an expectation calculus designed to describe reversible
computations. To arrive at this calculus from UTP Designs, we remove healthi-
ness condition H4, the law of the excluded miracle, and we consider perspective
value terms of the form S * E which represent the value expression E would
take if S were to be executed. This has a semantic role, but is also a term in
our extended language of expressions, which is implemented by executing S ,
evaluating E , and reversing execution of E to uncompute its effects. Where S is
non-deterministic, this is captured by S * E yielding a bunch of possible values
and the corresponding execution of S * E executing all possible branches of the
corresponding search tree.

A prospective value calculus allows us to make a smooth transition to an
expectation calculus, but we must treat probabilistic choice in a manner that
suits the execution behaviour of a reversible machine. This requires magic to be
a unit of probabilistic choice, as it is of demonic choice.

Our previous work on expectation gives a relation model and links our prospec-
tive value calculus and our expectation calculus by means of a Galois Connection.

In this paper we consider the expectation effects of iterative constructs. We
provide a fixed point theory by interpreting Abrial’s definitions for recursive con-
structs in terms of our expectation calculus. To do this we first had to establish
a monotonicity property for our calculus, which we derived by first proving that
expectations are sub-conjunctive.

We also consider the practical proof treatment of probabilistic iterations, using
the technique of loop variants and invariants, and we show how to look for an ap-
propriate loop invariant. We consider at some length the problem of probabilistic
termination, giving an example to show that even a loop that seems intuitively
certain to terminate may retain a residual possibility of non-termination. Since
our approach to termination is strict, we must be on the look our for such possi-
bilities, as they will swamp any terminating behaviour. In such cases however, a
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alternative approach to evaluating the probabilities of terminating in some post
condition can be taken by calculating the probability of establishing termina-
tion and the required post condition after n iterations of the loop, and taking
the limit of this value as n tends to infinity. We also argue that termination
with probability one is not a strong enough property to provide practical assur-
ance of loop termination, and should be supplemented by calculating how likely
termination is after a sensible number of iterations.

We conclude with a short note on plans for future work. In our present ap-
proach, non-deterministic choice plays two roles. It can represent provisional
choice, subject to revision by backtracking, or implementors choice, which may
be removed during the refinement process. For some problems it may be more
appropriate to replace non-deterministic choice used as provisional choice by a
preferential choice, and make this distinct from implementors choice. We have
described a calculus which does this in [17]; this also describes in a more concrete
way the execution behaviour of provisional choice strutters implemented on the
RVM. At present this calculus of preferences does not incorporate probabilistic
choice, and part of our future work will be to perform this additional unification.
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Abstract. In this paper we present a pomset semantics for a shared-
variable parallel language which is an extension of the one studied by
Brookes in [5]. The pomset semantics lifts the transition trace seman-
tics to the non-interleaving setting, where parallel events in a pomset
transition trace are labeled by conditionally independent actions. Most
of the important laws from the interleaving setting also hold in the non-
interleaving setting. Similarities and differences with other related works
are discussed.

1 Introduction

In comparison to the more established interleaving models of concurrency, non-
interleaving (a.k.a. partial-order or truly concurrent) models of concurrency is
less developed in theoretical foundations as well as in practical applications.
While the interleaving models are largely unified in using semantic structures like
sequences and state transition systems ; there is little consensus on what are the
‘canonical structures’ underpinning in non-interleaving models, denotationally
or operationally. Added to this confusion is the fact that interleaving models
are generally simpler and less ‘plastic’, than its non-interleaving counterparts, in
the formulation of definitions and that they are adequate for the most purposes
of functional correctness. So it seems there is little justification to study an
alternative, more complicated, model of concurrency.

However, the other side of the coin is that, in contrast to interleaving approach
which reduces concurrency to nondeterminism and sequential composition, non-
interleaving approach models concurrency explicitly and partial orders give a
more realistic treatment of parallel executions. This is very important because
the price non-interleaving pays in complication will be more than compensated
by its gains in efficiency and expressiveness.

– Superfluous interleaving of independent actions induces combinatorial explo-
sion in model representation, which can be avoided in non-interleaving mod-
els. The more efficient and succinct representation by partial orders greatly
ameliorates the state-explosion problem in algorithmic verification.
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– With the rise of multicore processors, hardware and software have increasingly
shifted its dependency for performance improvements onto better exploitation
of parallelism. Modeling parallelism explicitly saves later work of intra-thread
and inter-thread commutativity analysis for code parallelisation.

– Interleaving assumes sequential consistency on memory models, which is no
longer valid on modern multicore processors. For weak memory models, par-
allelism is irreducible to other semantic elements; they need be explicitly ex-
pressed in order to construct a correct semantics for multicore programming.

– It is widely known in the theoretical community that interleaving framework
cannot properly express the important (but under-developed) notion of ac-
tion/atomicity refinement: action refinement on processes is not preserved
by most interleaving equivalences.

In this paper we are going to present a non-interleaving semantics for a shared-
variable parallel language. Previously, Brookes has presented a fully abstract in-
terleaving semantics for a similar shared-variable parallel language [6]. Brookes
has also developed non-interleaving semantics [8] for communicating processes,
where the interprocess communication is accomplished by synchronous or asyn-
chronous message-passing rather than by writing and reading shared variables.
His semantics is based on pomsets [3] but no full abstraction results are given.
Similarly our work will present a pomset semantics with no full abstraction re-
sult. But our pomsets differ from his pomsets [8] in that Brookes’ is a lifting of
action traces while ours is a lifting of (global) transition traces1.

There are also other related works on non-interleaving denotational semantics
for synchronous communicating processes. A resource-trace based semantics is
given to a deterministic subset of CSP-like language by Gastin and Mislove [12].
Resource traces are an extension of Mazurkiewicz traces [13], so a limitation is
that independence is a static relation over actions: the dynamic independence
relations abundant in concurrent programs can only be coarsely approximated.

Using pomsets independence can be expressed as relations over instances of ac-
tion occurrences (a.k.a. events) so that the same action in different contexts can
be related differently to other actions. Actions are denoted very differently in com-
municating processes, i.e., as primitive symbols, than in shared-variable programs,
i.e., as transition functions over states. Given a context the action independence in
communicating processes can be derived from the conflict and synchronization re-
lations, whereas in shared-variable threads the action independence is calculated
using the semantic criteria of function commutativity. It is what is called condi-
tional independence by Peled [14], which forms the basis for later work on dynamic
partial order reduction by Flanagan [15], Wang [16], etc.

The rest of this paper is organised as follows. In section 2 we present our
shared-variable parallel language which is an extension of Brookes’ language by
introducing thread-local variable which is different from localised shared vari-
able. Section 3 introduces and then formally defines actions for shared-variable
programs. Section 4 uses the defined actions and pomsets to lift transition traces
1 In addition to global transition traces, a new variant of transition traces that is

defined on footprints is called local transition traces.
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to the non-interleaving settings. The resulted pomset transition traces are used
to give a denotational semantics to our language. In section 5, we use the pomset
semantics to prove some algebraic laws of parallel programs. Section 6 discusses
the related works and section 7 concludes the paper.

2 The Language

We slightly extend a standard shared-variable parallel language as in [5]. Our
language expands assignment command into three types, i.e., read, write and
local operation. The thread-local variable is introduced to distinguish from lo-
calised shared variable dealt with by Brookes [6].

P, Q ::= Skip | Stop | x := E | I := E | I := x | P ; Q |
P ‖ Q | If B then P else Q| While B do P |
〈b → SP 〉 | Let I := E in P

In the syntax above the metavariables x, y, z, · · · range over the set SV of
shared variables. I, J, K, · · · range over the set LV of thread-local variables. All
the variables are assumed to be of integer type (Z). Commands Let I := E in P
is the localisation/scoping construction for the thread-local variables.

Similar distinction is also imposed on expressions in our syntax. LExp and
LBExp (for the arithmetic expressions ranged over by E, E′ and boolean types
ranged over B, B′ respectively) define the sets of local expressions, i.e., only
thread-local variables are employed in such expressions. BExp (ranged over by
b, b′) defines the set of usual boolean expressions on both shared variables and
thread-local ones.

The thread-local variable in our language is highly different from localised
shared variable [6]. The latter is implemented as a single copy in the store which
is shared by multiple threads. For instance, the variable x is a localised shared
variables in Let x := 0 in (x := 1‖x := x + 2) and the computations of the
two assignments on x can interfere with each other. On the other hand, the
former, thread-local variable, is implemented as many copies on the stacks of
the threads. Each thread owns a private copy in its local stack. When a thread
forks, its thread-local variables are generated into multiple copies, one for each
offspring thread; whereas when multiple threads join the different copies of
the same thread-local variable are merged back into one copy, with its value
non-deterministically inherited from one of the ancestors. Thus in the context
Let I := 0 in (I := 1 ‖ I := I + 2), the two assignments on thread-local variable
I do not interfere.

The set of command Com is ranged over by P , Q. Note that Stop is not
essential in our language as it is semantically equivalent to 〈false→ SP 〉. Com-
mand 〈b → SP 〉 is the so-called conditional atomic action (CAA), where SP is
a loop-free sequential program defined as below:

SP, SQ ::= Skip | Stop | x := E | I := E | I := x| SP ; SQ
Let I := E in SP | If B then SP else SQ
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Now we give more detailed explanation for all commands.

(1) CAA uses b to monitor the state (including shared and local state) and the
evaluation of b is done in one atomic step even though b may use a number of
shared or thread-local variables. The command 〈b → SP 〉 is blocked if b does
not hold at the current state. Otherwise, SP is converted to execute in one
indivisible step. The restriction of CAAs to sequential loop-free program is
not strictly necessary. It can be extended to loop as well as parallel programs
if one prefers to treat CAAs more as locks rather than atomic transactions.
Furthermore, 〈True→ SP 〉 can be abbreviated to 〈SP 〉.

(2) Assignment command in our language is allowed to make at most one access
to a shared variable in its execution. Thus, according to the nature of the
accesses there are three types of assignment: local operation I := E, write
x := E, and read I := x. Local operation I := E makes no access to shared
variables; it only reads and writes thread-local variables and thus does not
interfere with other commands in parallel. The write operation x := E writes
to shared variable x after reading from the thread-local variables contained
in E. It might interfere with other parallel commands which are writing into
x. The operation I := x reads from shared variable x and writes into thread-
local variable I. It might interfere with other parallel commands that access
to x.

(3) Command Skip, Stop, P ; Q, P‖P , If B then P else Q and While B do P
are idle operation, deadlock, sequential, parallel, conditional and loop re-
spectively. The informal interpretations about these commands are just like
in traditional parallel languages. Note that the boolean expressions in con-
ditional and loop are restricted to use thread-local variable only2.

(4) Command Let I := E in P declares a thread-local variable I for the scope
P . Assignment initialises I to E.

3 Semantics of Actions

Like a large class of related works on concurrent program semantics, the seman-
tics of our language will also be based on traces. A trace describes a trail of
interactions on shared state between agents in a concurrent system. Each inter-
action takes the form of an (atomic) action which represents an uninterrupted
state transitions made by one agent in the concurrent system. The trace can
be modeled as an ordered set of (atomic) actions (either a partial order or a
total order). Atomicity guarantees that the intermediate states of an action will
not be observable to other agents, or even to other actions of the same agent.
Thus only the initial and final states are recorded in the semantics of actions. It
is somehow in agreement with classical transformational approach to sequential
program semantics.

In this paper there are three types of atomic actions, i.e., the stutter action
Skip, the write action x := E(l) and CAA action 〈b → SP 〉l, where the latter two
2 Actually, the restriction is not critical; the conditional If x > E then P else Q can

be reformulated as Let I = 0 in (I := x; If I > E then P else Q).
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actions perform from the thread-local state l. The read, local and idle operations
are all regarded as the stutter actions since they don’t modify the shared states.
It is close to programmers’ intuition on realistic language like Java and the fine-
grained semantics of Brookes. Giving semantics to the stutter and write action is
straightforward, whereas the semantics of CAAs depends on the transformational
semantics for SP . Thus we first investigate the transformational semantics for
the sequential programs.

Formally the set of thread-local states is L = LV →Z, which is ranged over
by l, l′; whereas the set of shared states is S = SV → Z, which is ranged over
by s, s′. In transformational semantics the effect of a program’s execution is re-
flected in the change of state (i.e., from initial states to terminating states). A
state, (s, l), records the values of all the variables, either thread-local one (l) or
shared one (s). A sequential program can be viewed as a set of state pairs, i.e.,
[[SP ]] = {(s, l, s′, l′) | s ∈ S, l ∈ L}.

[[Skip]] =df {(s, l, s, l) | s ∈ S, l ∈ L}
[[Stop]] =df ∅
[[x := E]] =df {(s, l, s′, l) | s′ = [s|x = E(l)], s ∈ S, l ∈ L}
[[I := x]] =df {(s, l, s, l′) | l′ = [l|I = s(x)], s ∈ S, l ∈ L}
[[I := E]] =df {(s, l, s, l′) | l′ = [l|I = E(l)], s ∈ S, l ∈ L}

where, E : L → Z is an integer expression over thread-local states, [s|x = E(l)]
denotes a shared state that is identical to s except that the value of shared
variable x is replaced by the evaluated value of expression E over l. Similar
definitions are given for the thread-local states [l|I = s(x)] and [l|I = E(l)].

The command Skip produces a stuttering step (s, l, s, l) on both shared and
thread-local states. The command Stop is identified with deadlock and has an
empty set of state pairs. The write operation computes the value of local expres-
sions and then updates the shared state while the read operation accesses to the
shared variable and updates the thread-local state. The local operation works
entirely on local variables.

[[Let I := E in SP ]] =df {(s, l, s′, [l′|I = l(I)])|(s, [l|I = E], s′, l′) ∈ [[SP ]]}

The command Let I := E in SP introduces the new variable with name I
(initialized to the evaluated value of E) for the scope SP . In the exit point of
the scope, the variable I would reinstate the original value of the entrance point.

[[SP ; SQ]] =df [[SP ]]; [[SQ]]

where, [[SP ]]; [[SQ]] =df {(s, l, s′, l′)|∃s0, l0 : (s, l, s0, l0) ∈ [[SP ]] ∧
(s0, l0, s

′, l′) ∈ [[SQ]]}

[[If B then SP else SQ]] =df {(s, l, s′, l′) | (s, l, s′, l′) ∈ [[SP ]] ∧
b(s, l) = true ∨ (s, l, s′, l′) ∈ [[SQ]] ∧ b(s, l) = false}
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The semantics of sequential composition and conditional is the same as in
other sequential languages.

Now we can give semantics to actions. Note that the basic actions involved in
evaluating B and E are ignored as the action effect shall be observably the same
as that of Skip. All the actions in this paper are deterministic and therefore an ac-
tion denotes a set of state pairs (initial and final state) which gives rise to a partial
function. Thus the semantics of an action would be a partial function over S, i.e.,
A[[al]] : S ⇀ S for an action al, where the subscript l means the action performs
under thread-local state l. The semantics of three types of actions is listed below:

A[[Skip]] =df {(s, s) | s ∈ S}

A[[x := E(l)]] =df {(s, s′) | s′ = [s|x = E(l)], s ∈ S}

A[[〈b → SP 〉l]] =df {(s, s′) | ∃l′ ∈ L · (s, l, s, l′) ∈ [[SP ]]}
After we achieves the semantics of action, we apply ourself to the definition

of action independence/conflicts. There are many possible definitions of conflict
in the literature based on either semantic or syntactic criteria. One of the most
general semantic definition is conditional conflict, which basically says that at
the current state two actions running in parallel are in conflict iff the terminating
state will differ if their executions are interleaved differently. Conversely we say
two actions are conditional independent if the different interleavings give the
same terminating state.

Action conflict is inherently related to the phenomenon of data race, i.e., two
actions accessing a data variable simultaneously and at least one of them is a
write operation. Some people, such as Dijkstra, Hoare, Reynolds and Brookes,
tend to believe that accesses to shared variables should occur mutual exclusively,
either through the use of locks or through ownership transfer, and data races
indicate errors in program and should be completely banned. Brookes’ work
[6] largely concentrates on giving a race-banning semantics (or race-detecting
called by Brookes) to concurrent programs. One of the nice property of race-free
programs is that the atomicity will be grainless.

However, race-freedom also rules out some parallel independent actions. For
instance, two write operations to x will not be conflict if they are both x := 1.
Similarly many people also impose interleaving on CAA actions even though
they may be semantically independent, e.g. 〈true → (I := x; x := I + 1)〉 and
〈true → (I := x; x := I + 1)〉. This is not the case in our semantics, where
CAAs are treated exactly as basic actions.

Formally we define action independence as below:

Definition 3.1. Action al and a′
l′ are independent on state s iff

1) A[[al]](s′′) = A[[a′
l′ ]](s

′)

2) L([[a]](s′′, l)) = L([[a]](s, l)) and L([[a′]](s′, l′)) = L([[a′]](s, l′)).

Where s′ = A[[al]](s), s′′ = A[[a′
l′ ]](s), and L((s, l)) =def l.
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Note that the two actions work on different copies of local states and that the
independence is relative to a shared state s. Hence the independence is condi-
tional on s and it is quite different from unconditional or static independence in
semantic models like Mazurkiewicz traces.

Independence is a symmetric relation derivable from an asymmetric relation:

Definition 3.2. Action al does not interfere with action a′
l′ on state s iff

1) A[[al]](s′′) = A[[a′
l′ ]](s

′)

2) L([[a′]](s′, l′)) = L([[a′]](s, l′)).

Where s′ = A[[al]](s), s′′ = A[[a′
l′ ]](s).

Theorem 3.3. Action a and b are independent on state s iff neither interfere
with the other on s.

4 Pomset Semantics of Parallel Program

Syntactically the parallel languages are a small upgrade of the sequential lan-
guages by the addition of parallel composition. Semantically, however, an over-
haul of mathematic tools is required to deal properly with parallel composition.

In Brookes’ interleaving semantics a parallel program denotes a set of transi-
tion traces. A transition trace is a finite sequence of pairs of states recording a
possible interaction of the command with its environment. Formally, a transition
trace of command P is defined as (s0, s

′
0)(s1, s

′
1) . . . (sk, s′k) such that it is possi-

ble for P to perform a computation from s0 to s′k if the execution is interrupted
k time, where the ith interruption changes the state from s′i to si+1 (0 ≤ i < k)
[6]. The transition from the environment is implicit in the transition trace. Thus
the system and environment alternate in making transitions.

We will lift interleaving transition traces into pomset transition traces (non-
interleaving setting) and the resulted pomset are used to give a denotational
semantics to our parallel language. However, some attentions are needed on
potential technical complications in lifting:

– In non-interleaving setting, two actions are ordered in a trace either because
they are ordered in program order (i.e., sequential composition) or because
they are in conflict and have to be interleaving or sequentialized. Thus in a
trace any pairs of actions in parallel (i.e., not ordered) must be independent
(i.e., not in conflict).

– In pomset semantics the alternation between the system and environment
may not exist since independent actions are executed in parallel in non-
interleaving setting. Moreover, the transition from the environment should
appear in the pomset trace explicitly.

– In the transition trace, an action is enabled only on one state. So a degener-
ated partial function, i.e., a state pair, suffices for action. In a partial order,
due to the existence of parallel actions, an action can be enabled on many
states and thus requires the full power of partial functions.
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– Due to parallel actions, the large numbers of different execution paths may
exist when we induce the transition trace from the pomset trace. All exe-
cutions should lead to the same terminating state. Otherwise some action
conflicts occur in the pomset trace, i.e., some parallel actions don’t meet the
independent condition.

In the next subsections, we will develop our non-interleaving semantics.

4.1 Labeled Partial Order

In our semantic model we draw a distinction between events and actions. An
event is an instance of action occurrence. A finite execution of a program is a
partially ordered set of events. Different events in the set can be labeled by the
same or different actions.

Formally, a labeled partial order (LPO) is a 4-tuple m = (V, VS ,≤, α), con-
sisting of

(1) a finite set V of events including system events and environment ones.
(2) a set of system events VS ⊆ V . Obviously, V \VS is the set of the environment

events VE .
(3) a reflexive partial order (PO) ≤ over V (< is the corresponding irreflexive

partial order). We say e precedes f (or f succeeds e) if e ≤ f , and we say e
and f are incomparable if neither e ≤ f nor f ≤ e.

(4) a labeling function α : V → (S ⇀ S) assigning actions to events.

Label-Isomorphism: The LPO m = (V, VS ,≤, α) and m′ = (V ′, V ′
S ,≤′, α′) are

label-isomorphic iff there exists a bijection Ψ : V ↔ V ′ satisfies the properties
below:

(1) Ψ �VS is a bijection from VS to V ′
S .

(2) ∀e1, e2 ∈ V · ((e1, e2) ∈≤ ⇒ (Ψ(e1), Ψ(e2)) ∈≤′).
(3) ∀e ∈ V · α(e) = α′(Ψ(e)).

A pomset denoted [V, VS ,≤, α] is the labeled-isomorphism class of the LPO
(VS , VE ,≤, α). By taking LPOs up to labeled-isomorphism, we concentrate on
the actions and internal structure of the LPO other than the events.

Some events in partial order (PO) V ≤ may have no strict predecessors, while
some may have no strict successors. We denote the set of the formers as Min(V ≤)
while the set of the latters as Max(V ≤).

A linearization ll of PO V ≤ is a total order over V that is an extension of ≤.
The set of linearizations of V ≤ is denoted Lin(V ≤). Each ll ∈ Lin(V ≤) can be
alternatively represented as a sequence (over V ) and lli, for 1 ≤ i ≤ |V |, is used
to denote the i-th event in the sequence.

A subset Δ of V ≤ is a prefix of V ≤ iff it is downwards-closed w.r.t. ≤. The
projection of m = (V, VS ,≤, α) onto a subset Δ of V gives rise to another LPO
m �Δ= (Δ ∩ V, Δ ∩ VS ,≤ ∩(Δ ×Δ), α � Δ) where α � Δ stands for the domain
restriction of the function α onto Δ.
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4.2 Pomset Transition Traces

The purpose of this subsection is to define the counterpart of transition traces
in non-interleaving settings.

In our semantic model LPOs denote complete executions of a program. An
execution is complete if it starts from the initialisation state 0S ∈ S and ends in
(successful) termination. Note that our semantics is geared towards partial cor-
rectness. Infinite executions, i.e., non-termination, should be discarded similarly
as deadlock executions.

An LPO m = (V, VS ,≤, α) is executable, or is an eLPO, iff for all ll ∈ Lin(V ≤),
ll is executable. A linearization ll of m is executable iff there exists a (unique)
sequential execution trace3, s0

a1−→ s1
a2−→ s2 ... s|V |−1

a|V |−−−→ s|V | such that s0 =
0S, ai = α(lli) and (si−1, si) ∈ ai for 1 ≤ i ≤ |V |. The state s|V | is called the
terminating state of ll.

Given any e ∈ V , •ell is used to denote the pre-state of e in ll, i.e., •ell = si−1

for e = lli and e•ll used to denote the post-state of e in ll, i.e., e•ll = si for e = lli.
If sl = ll �VS , then we say tt(sl) = (•esl1 , e

•
sl1

)(•esl2 , e
•
sl2

)...(•esln , e•sln
), is the

transition trace and ltt(sl) = (•esl1 , esl1 , e
•
sl1

)(•esl2 , esl2 , e
•
sl2

)...(•esln , esln , e•sln
),

is the labeled transition trace induced by ll respectively, where n = |VS |.
Thus the set of transition traces induced by an eLPO m is, TT (m) = {tt(sl)|sl

= ll �VS ∧ll ∈ Lin(V ≤)}. Similarly the set of labeled transition traces induced
by an eLPO m is, LTT (m) = {ltt(sl)|sl = ll �VS ∧ll ∈ Lin(V ≤)}.

Given an eLPO (V, VS ,≤, α), the pre-state set of e ∈ V is defined to be
•e = {•ell|ll ∈ Lin(V ≤)} and the post-state set is e• = {e•ll|ll ∈ Lin(V ≤)}.

Definition 4.1. An eLPO (V, VS ,≤, α) is well-connected iff for all e ∈ V , we
have dom(α(e)) = •e.

Definition 4.2. An eLPO (V, VS ,≤, α) is consistent iff for all prefix V ≤
0 of V ≤,

all the linearisations of V ≤
0 terminate in the same state.

Finally, we say an eLPO m is well-formed iff m is consistent and well-connected.
All the above definition can be lifted onto pomsets.

Pomset transition trace: A pomset [V, VS ,≤, α] is a pomset transition trace,
or simply a pomset trace, iff (V, VS ,≤, α) is a consistent and well-connected
eLPO with VS �= {}.

4.3 Semantics of Parallel Programs

In our semantics program P is identified with a set of extended traces. An
extended trace is a pomset trace augmented with a pair of local state, i.e., (l, t, l′).
It is a combination of trace and state-transition semantics: t is the pomset trace
part on the shared states while (l, l′) is the state-transformation part on the
thread-local states.
3 Execution traces are called behaviours in [1].
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Thus the semantics of program P is a set of extended traces: P [[P ]]={(l, [V, VS ,
≤, α], l′) | ...}. The equivalence of two programs is the equality of their extended
trace sets. We define a refinement relation on concurrent programs. Program P
refines program Q if the extended trace set of P is a subset of Q’s, i.e., Q  P
iff P [[P ]] ⊆ P [[Q]].

Given a trace (l, [V, VS ,≤, α], l′) of program P , it denotes a possible execution
of P with the cooperation of a suitable environment E. The set of system events
VS arising from the execution of commands in P depends crucially on that E
supplies a suitable VE (= V − VS) supporting VS .

Given VS there are an infinite number of VEs that provide the same type of
support. The semantics of P quantifies over all such environments. VS is com-
bined with each of the possible VEs to form a pomset trace. The resultant subset
of traces denotes an abstract trace (AT) of P , characterising one type of VS with
one type of ordering constraint and assuming one type of support from E. The
formal definition of abstract traces is based on AT-refinement.

AT-Refinement: Given a pair of pomset traces t = [em] and t′ = [em′], where
em = (V, VS ,≤, α) and em′ = (V ′, VS ,≤′, α′), we say t′ is an AT-refinement of
t, or t′ � t iff LTT (em′) ⊆ LTT (em).

The extended trace set of programs in our semantics satisfies the two properties:

AT-Refinement Closure: The extended trace set of a program P is closed
under AT-refinement: (l, t, l′) ∈ P [[P ]] ∧ t′ � t =⇒ (l, t′, l′) ∈ P [[P ]].

S-Stutter Addition (SSA) Closure: The extended trace set of a program P
is closed under system stutter addition. That is, given any pomset trace t = [m]
with m = (V, VS ,≤, α) and Δ ⊂ VS such that ∀e ∈ Δ ·α(e) ⊆ A[[Skip]], we have
(l, [m �V \Δ], l′) ∈ P [[P ]] =⇒ (l, t, l′) ∈ P [[P ]].

The AT-refinement closure property can be established by the structural in-
duction on the Com. Given an extended trace set T , T ‡ denotes the SSA closure
of T . We say a set of extended pomsets is closed if the set is closed under AT-
refinement and SSA. Let P denote the set of the closed set of the extended
pomsets, ordered by inclusion. Obviously (P,⊆) forms a partially ordered space
with least element the empty set.

P [[Skip]] =df {(l, [V, {e},≤, α], l) | α(e) ⊆ A[[Skip]]}‡

P [[Stop]] =df ∅

Program Skip generates and situates a system event e inside an environment
VE . e is a stutter restricted to a sub-domain, dom(α(e)). The sub-domain defines
the set of states on which e can be enabled within VE . Program Stop generates
only deadlock executions. So its semantics is an empty set of traces.

P [[x := E]] =df {(l, [V, {e},≤, α], l) | α(e) ⊆ A[[x := E(l)]]}‡



Towards a Pomset Semantics for a Shared-Variable Parallel Language 281

P [[I := E]] =df {(l, [V, {e},≤, α], l′) | α(e) ⊆ A[[Skip]] ∧ l′ = [l|I = E(l)]}‡

P [[I := x]] =df {(l, [V, {e},≤, α], l′) | α(e) ⊆ A[[Skip]] ∧
{s(x)|s ∈ •e} = {v} ∧ l′ = [l|I = v]}‡

Program x := E and I := E are assignments to shared and thread-local
variables respectively while program I := x reads from a shared variable. The
event e generated by I := x is a stutter. Still e may potentially be involved in
conflict with other actions that modify x. To remove the potential conflicts, the
domain of α(e) is restricted to a set of states across which x holds a consistent
value.

P [[Let I := E in P ]] =df {(l, t, l′) | (l, t, l′′) ∈ P [[I := E; P ]] ∧
l′ = [l′′|I = l(I)]}

Variable localisation first creates a new copy of the variable, then initialises
and feeds it to the fragment of program (i.e. P ) which is its scope, and finally
(upon the exit from P ) reinstates the original copy of the variable.

P [[If B then P else Q]] =df {(l, t, l′) | B(l) ∧ (l, t, l′) ∈ P [[P ]] ∨
¬B(l) ∧ (l, t, l′) ∈ P [[Q]]}

Program 〈b → P 〉 is executed in one big indivisible step, giving rise to the
system event e. e can transform a global state (l, s) to another one (l′, s′) iff (l, s)
satisfies b and P can be collapsed into a single action transforming (l, s) to (l′, s′).

P [[〈b → SP 〉]] =df {(l, [V, {e},≤, α], l′)|α(e) ⊆ A[[〈b → SP 〉l]] ∧
l′ ∈ {l′|∀(s, s′) ∈ α(e), (s, l, s′, l′) ∈ [[SP ]]} ∧ ∀s ∈ •e · b(s, l)}‡

There are two composition operators in our language: sequential and parallel
compositions. In our semantics composition is interpreted as conjunction (after
throwing out the system/enviroment event distinction in traces): (l, t, l′) is a
trace of a composition iff it is a trace of each of its components.

P [[P ||Q]] =df P [[P ]]‖P [[Q]]

Where T1‖T2 =df {(l, [V, VS ,≤, α], l′) | (l, [V, V 1
S ,≤, α], l1) ∈ T1 ∧

(l, [V, V 2
S ,≤, α], l2) ∈ T2 ∧ VS = V 1

S ) V 2
S ∧ l′ ∈ {l1, l2}}.

T1‖T2 picks a pair of otherwise identical traces, one each from T1 and T2, with
disjoint sets of system events, combines the sets of system events (by union), and
produces a new trace in T1‖T2.

T1; T2 is a more constrained version of T1‖T2, in which the picked pairs of
traces need to satisfy in addition the condition that one set of system events
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(for the trace from T1) should be placed behind the other set of system events
(for the trace from T2) in the partial order.

P [[P ; Q]] =df P [[P ]];P [[Q]]

Where T1; T2 =df {(l, [V, VS ,≤, α], l′) | (l, [V, V 1
S ,≤, α], l0) ∈ T1 ∧

(l0, [V, V 2
S ,≤, α], l′) ∈ T2 ∧ VS = V 1

S ) V 2
S ∧ (V 1

S × V 2
S ) ⊆≤}.

It is straightforward to verify that all operators in our language are monotonic
and continuous. Thus iteration can be as given a fixed-point semantics.

P [[While B do P ]] =df μT.({(l, t, l′) ∈ P [[P ]] | B(l)}; T ∪
{(l, t, l′) ∈ P [[Skip]] | ¬B(l)})

The semantics of While B do P is the least fixed-point ordered by subset-
hood of trace sets, or the greatest fixpoint ordered by program refinement. An
alternative definition of iteration is:

P [[While B do P ]] =
⋃

n{(l, t, l′) ∈ P [[P ]]|B(l)}n; {(l, t, l′) ∈ P [[Skip]] | ¬B(l)}

Where, [[P ]]n =df [[P ]]; [[P ]]n−1. An operator F is monotonic if F (P ) � F (Q)
such that P � Q. And an operator F is continuous if F (�n Pn) = �n F (Pn)
and F (�n Pn) = �n F (Pn), where �n Pn = ∪n [[Pn]] and �n Pn = ∩n [[Pn]]. The
Kleene theorem ensures that the two definitions are equivalent.

Now, we instantiate the extended pomset semantics for Q = 〈P 〉‖〈P 〉 where
P = (I := x; x := I + 1). The action semantics A[[〈P 〉]] is {(s, s′)|s′ = [s|x =
s(x) + 1]}.

The pomset semantics of 〈P 〉 would be {(l, [V, {e},≤, α], l′) | α(e) ⊆ {(s, s′)|
s′ = [s|x = s(x) + 1]} ∧ l′ = [l|I = s(x)]}‡. We therefore construct the semantics
of program Q, i.e.,
P [[Q]] = {(l, [V, {e1, e2},≤, α], l′) | (l, [V, {e1},≤, α], l1), (l, [V, {e2},≤, α], l2) ∈
P [[〈P 〉]] ∧ l′ ∈ {l1, l2}}‡.

Obviously, both α(e1) and α(e2) would be labeled by {(s, s′) | s′ = [s|x =
s(x) + 1]}. No conflicts occur between events e1 and e2. It indicates the events
e1 and e2 are independent.

5 Laws of Parallel Programs

We can utilize the extended pomset semantics to prove equations and inequa-
tions between concurrent programs. All programs about sequential operator con-
stitute a monoid. The commands Skip and Stop are the corresponding unit and
zero respectively. Moreover, All programs form a commutative monoid about
concurrency. The unit and zero is the same as those in the sequential operator.

(P1; P2); P3 = P1; (P2; P3) (;−associativity)

Skip; P = P = P ; Skip (;−unit)
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Stop; P = Stop = P ; Stop (;−zero)

P1‖P2 = P2‖P1 (‖ − community)

(P1‖P2)‖P3 = P1‖(P2‖P3) (‖ − associativity)

Skip‖P = P = P‖Skip (‖ − unit)

Stop‖P = Stop = P‖Stop (‖ − zero)

Judging from the refinement relation, the statement Stop would be the great-
est element, i.e., Stop � P . Deadlock (Stop or 〈False → SP 〉) is regarded the
same with divergence (While T rue do Skip) since both of the semantics are an
empty set.

Here, We only prove the soundness of ‖-associativity.

Proof: We define T1, T2, T3 as the semantics for the program P1, P2, P3 respec-
tively. Assume that (l, [V, VS ,≤, α], l′) is an extended trace in (T1‖T2)‖T3.

There exists (l, [V, V 12
S ,≤, α], l12) ∈ T1‖T2, (l, [V, V 3

S ,≤, α], l3) ∈ T3, VS =
V 12

S ) V 3
S and l′ ∈ {l12, l3}.

As for (l, [V, V 12
S ,≤, α], l12), there exists (l, [V, V 1

S ,≤, α], l1) ∈ T1,
(l, [V, V 2

S ,≤, α], l1) ∈ T2, V 12
S = V 1

S ) V 2
S and l12 ∈ {l1, l2} based the same

reason with above.
Obviously, the extended trace (l, [V, V 23

S ,≤, α], l23) with V 23
S = V 2

S ) V 3
S and

l23 ∈ {l2, l3} would be the element of T2‖T3. Moreover, we can conclude that
(l, [V, VS ,≤, α], l′) is an extended trace in T1‖(T2‖T3) since VS = V 12

S ) V 3
S =

V 1
S ) V 2

S ) V 3
S = V 1

S ) V 23
S and l′ ∈ {l1, l2, l3}. Thus (T1‖T2)‖T3 is the sub set of

T1‖(T2‖T3). The reverse T1‖(T2‖T3) ⊆ (T1‖T2)‖T3 is proved similarly. At last,
we finish the proof (P1‖P2)‖P3 = P1‖(P2‖P3). �

Other laws can also be easily validated. According to the definition of parallel
compostition, the law ‖ − community holds trivially. Taking advantage of the
property S − Stutter Addition Closure, all involving Skip could be established
naturally. The laws ;−zero and ‖ − zero holds obviously since the semantics of
Stop is an empty set of traces.

6 Discussion

Brookes presented the so-called transition trace semantics for a shared-variable
parallel language in [6]. The semantic model is adaptive for different levels of
granularity or atomicity. The coarse granularity model involving shared variables
only assumes that all evaluations of expressions are atomic while the finer granu-
larity model permits the evaluation of the expression step by step in virtue of the
implicit thread-local variables and the expression evaluation is no longer atomic.
Actually, the finer granularity model also deals with shared variables but the
unfinished evaluated result should be stored in thread-local variables since the
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evaluation strategies are proceeding step by step. Brookes has not mentioned the
thread-local variables but here we introduce thread-local variables explicitly to
make evaluation atomic again. Accordingly, the expressiveness of our language
is at least as powerful as the parallel language in [5]. The assignment command
x := e (the expression e involves shared variables) can be expressed in our lan-
guage. The strategy is that we first read each of the shared variable in expression
e and assign it to the thread-local variables respectively, then we compute the
value of the expression (utilizing the fresh thread-local variables) and assign it to
the shared variable x. For instance, the assignment command x := x+y adopted
by Brookes can be reformulated into the form I := x; J = y; x := I + J .

In this paper, we do not permit the action collapsing, i.e., a set of indivis-
ible actions belonging to the same agent can collapse (or compose) into a big
atomic action. It makes our semantic model more concrete than the version with
action collapse. The similar concept mumbling was investigated by Brookes in
[5], where the trace can be mumbling if its environment is interference-free. The
conditions of action collapsing are more complicated in non-interleaving setting
since our semantics model is based on pomsets. In partial order, a natural lifting
of ‘contiguity’ is not adequate to guarantee the localness of an action collapsing:
it is possible that a pair of previously incomparable actions become comparable
after the action collapsing. Furthermore, in a sequence an action is enabled only
on one state. So a degenerated partial function, a state pair, suffice for action. In
a partial order, due to the existence of parallel actions, an action can be enabled
on many states and thus requires the full power of partial functions. The action
collapsing make the situation more complicated and gaining the semantics of the
fresh action is difficult. Thus the version with action collapsing of our pomset
model will be investigated in our next work.

7 Conclusion

We have developed Brookes’ shared-variables parallel language and presented
extended pomset semantics for our language. Not only shared variables but also
thread-local variables are allowed in our framework. The introduction of thread-
local variables does enhance the expressiveness of our langauge and make it more
feasible.

This paper explored the true concurrent model for our shared variable parallel
language. The semantics of actions are defined and the condition of independent
actions is researched in our framework. The pomsets lift transition traces to the
non-interleaving settings and the extended pomset semantics of parallel program
is given. Furthermore, the extended pomset fulfill the AT-Refinement closure
and S-Stutter Addition closure property. Almost all the classic laws of parallel
language suffice but the mumbling property is not included.

In the future, we will allow that some system events collapse into a big action
if the environment is interference-free. We also plan to apply this framework
to characterize the various memory model [4,7] for multi-core computer. To
reason about shared-variable parallel programs, future work includes adjusting
separation logic [9,10,11] to our semantics model.
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Abstract. As a system-level modelling language, SystemC possesses
several novel features such as delayed notifications, notification can-
celling, notification overriding and delta-cycle. We have explored the
denotational semantics [15] for SystemC using Unifying Theories of Pro-
gramming (abbreviated as UTP) [6], where algebraic laws can be achieved
based on the denotational model.

In this paper, we consider the inverse work; i.e., generating the deno-
tational semantics from algebraic semantics for SystemC. A complete set
of algebraic laws is explored.The concept of head normal from is applied
in supporting the calculation. We also explore the simulation of algebraic
laws and head normal form. Based on this, the mechanical derivation of
denotational semantics from algebraic semantics is also studied.

1 Introduction

SystemC is a system-level modelling language, which can be used to model a
system at different abstract levels. Modelling and simulation in SystemC gives
the designers early insights about the potential design problems that could arise.
Compared with traditional hardware description languages, SystemC possesses
several new and interesting features, including delayed notifications, notification
cancelling, notification overriding and delta-cycle.

In SystemC, processes can trigger events actively while in Verilog [7] events
are generated based on the changes of states. In SystemC, events represent some
general condition during the execution of the program. An event can be noti-
fied on many separate occasions. There are three kinds of event notifications:
immediate event notifications, delta-cycle delayed notifications and timed notifi-
cations. Delayed notifications can be cancelled via cancel statements before they
are triggered. Delayed notifications on the same event override each other and
only one delayed notification survives.

Although SystemC comes with a user manual ([9,10]), a formal semantics
of SystemC is mandatory for various applications in simulation, synthesis, and
formal verification. Müller et al presented an ASM-based SystemC simulation

S. Qin (Ed.): UTP 2010, LNCS 6445, pp. 286–308, 2010.
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semantics [13]. That semantics covers method, thread, and clocked thread be-
haviour as well as their interactions with the simulation kernel process. Gawan-
meh et al extended the work in [13] to deal with more complex components of
SystemC [3]. Habibi and Tahar presented a semantics of the main part of Sys-
temC in terms of fixed points [4]. We have also provided an operational semantics
for SystemC [12], where a set of algebraic laws has been explored via the concept
of bisimulation [8]. Meanwhile, we have also studied the denotational semantics
for SystemC using Unifying Theories of Programming (abbreviated as UTP) [6].
Algebraic laws [5] can also be achieved based on the denotational model.

This paper considers the inverse work; i.e., generating the denotational seman-
tics from algebraic semantics for SystemC. With the introduction of the concept
of guarded choice, a complete set of parallel expansion laws is studied. In order
to index an instantaneous action to which exact component of a parallel pro-
cess, the concept of location status (i.e., locality) is introduced. For the aim of
supporting the calculation of denotation semantics, we introduce the concept of
head normal form for each program. The simulation of algebraic laws and head
normal form is studied, which can mechanically support the calculation of head
normal form of programs. We provide the definition for deriving denotational se-
mantics from algebraic semantics. The derived denotational semantics gives us
a way to reason about program properties easily. Based on the derivation strat-
egy and the simulation of head normal form, the simulation of the derivation is
explored, which can mechanically calculate the derived denotation semantics.

The rest of this paper is organized as follows. In section 2 we select a ker-
nel subset of SystemC and present an introduction for the language. We give
the concept of guarded choice with locality in this section. We also investigate
a complete set of parallel expansion laws and its simulation. Section 3 provides
the definition of head normal form for each statement. We also explore the simu-
lation of head normal form. Section 4 focusses on the derivation of denotational
semantics from algebraic semantics. Our approach is based on the concept of
head normal form. We provide the derivation strategy for deriving denotational
semantics. The denotational semantics for programs can be calculated via strict
proof. The simulation of the derivation is explored as well. The simulation ap-
proached are proceeded in logic programming language Prolog [2]. Meanwhile,
we also investigate the derivation of denotational semantics for infinite programs
via approximation approach. Section 5 concludes the paper and presents some
possible future work.

2 Algebraic Laws for SystemC

2.1 The Syntax of SystemC

In this paper we select a kernel subset of SystemC for exploring its semantics. Al-
though it is a subset of SystemC, it still covers the interesting and main features,
such as delay notifications, notification cancelling, notification overriding, chan-
nel, concurrent processes and delta-cycle. In this section, we present the syntax
of the selected subset and give a brief introduction of its interesting features.
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For simplicity, we omit the syntactic elements for representing the architecture
of a SystemC program. The subset language adopts a C-like syntax:

PP ::= P | PP ‖ PP

P ::= Skip |v := exp | chan stmt | event stmt | wait stmt

| P ;P | if b then P else P | while b do P

chan stmt ::= ch??v | ch!!exp

event stmt ::= notify(eΔ0) | notify(eΔ1) | notify(e�T ) | cancel(e)

wait stmt ::= wait(Δ1) | wait(�T ) | wait(e list)

e list ::= single e |ori∈I{single ei}
single e ::= e | pe(ch) | ne(ch)

For statements such as Skip, assignment statement (v := exp), sequential
composition (P ; Q), conditional statement (if b then P else Q) and iteration
statement (while b do P ), their meanings are similar to the conventional pro-
gramming language.

Channel output statement ch!!exp is executed in evaluation phase, which gen-
erates a request to update the channel. These update requests will be carried
out in the following update phase. Channel input statement ch??v assigns the
current value of channel ch to variable v.

An event is notified by statement notify. An event can be notified immediately
(i.e., notify(eΔ0)) or after a period of time (i.e., notify(eΔ1)) or notify(e�T )).
Statement cancel(e) cancels the delayed notifications on event e.

A process may wait for the arriving or firing of an event. These events can be
classified into two types; i.e., single events or complex events. Single events can
have three forms; i.e., e, pe(ch) and ne(ch), where event e can be generated by
event notifications. wait(pe(ch)) is fired only when the current value of channel
ch is greater than its previous value, whereas wait(ne(ch)) stands for the op-
posite firing case. Complex events can be of the form ori∈I{single ei}. For the
waiting of complex events, if anyone is fired or becomes active, the whole waiting
behaviour becomes fired or active.

Different from traditional hardware description language, time delay has two
types; i.e., micro time advance and macro time advance. wait(Δ1) stands for
one unit micro time advancing, whereas wait(#T ) stands for T units macro
time advancing.

P ‖ Q means P runs in parallel with Q. Their communication is through
channels and variables. Further, their synchronization is based on events.

If there exist branch processes of a parallel process ready to run, one branch
will be selected to be executed. The selection is nondeterministic. Channels will
be updated when a waiting command is encountered during the current execu-
tion. If all branch processes are still waiting, then time will be advanced. Micro
time (Delta-cycle) will be advanced first. If that does not activate any processes,
then macro time will be advanced. The execution is proceeded by the following
steps.
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(1) Evaluation Phase. Select a ready process to execute. The order of the se-
lection is nondeterministic. The selected process does its execution until a
waiting command is encountered. This sequence of instantaneous commands
form an atomic action, which is uninterrupted.
The execution of a process may cause immediate event notifications to occur.
It may also generate pending requests to update channels in the following
update phase.

(2) Update Phase. Carry out all pending channel update requests generated in
last evaluation phase, which may generate some events pe(ch) or ne(ch).
Then go to step (1).

(3) Micro Time (Delta-cycle) Advancing Phase. If there are no processes ready to
run and no pending channel update requests, but there exist pending delta-
cycle notifications or delta-cycle timeouts, advance the delta-cycle. Then
determine which processes are ready to run and go to step (1).

(4) Macro Time Advancing Phase. If there are no processes ready to run, no
pending channel update requests, no pending delta-cycle notifications and no
delta-cycle timeouts, advance the current macro time by one time unit. And
determine which processes become ready to run due to events or timeouts
that are triggered at the current time. If there exist processes ready to run,
then go to step 1, otherwise advance the current macro time by one time
unit again.

2.2 Location Status and Types of Guarded Choice

Example 2.1. Let P = I ‖ J , I = A1 ‖ A2, J = A3 ‖ A4, where
Ai = notify(eiΔ0) ; notify(fiΔ0) ; ui := ui + 1 ; vi := vi + 2 (i = 1, 2, 3, 4).
Below is the graph that illustrates the structure of P .

P

A1 A2 A3 A4

I J

1 2

1 2 1 2

The behaviour of Ai forms an atomic action. If notify(eiΔ0) in A1 is sched-
uled, Ai (i = 2, 3, 4) cannot be scheduled until the completion of the execution of
the statements in A1. In order to support the parallel expansion laws, we intro-
duce the concept of locality (i.e., location status). For example, if notify(eiΔ0) is
scheduled, we want the expansion laws to correctly indicate the next behaviour
should be notify(f1Δ0), i.e., all notify(eiΔ0) (i = 2, 3, 4) cannot be scheuled at
this moment.
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In order to solve this, now we assign a label for each edge. If it is the left edge,
the label is 1, otherwise the label is 2. For every point, its thread sequence is the
label sequence from the root of the tree to the considered point. This sequence
can index the exact component an instantaneous is due to. For example, if the
instantaneous action is due to process A1, the thread sequence is 〈1〉̂〈1〉. Further,
if the instantaneous action is due to process A2, the thread sequence is 〈1〉̂〈2〉. �

Now we introduce the concept of location status for a program, which is one of
the following two forms:

(1) index, which can be 〈〉 or a non-empty thread sequence.
(2) null, which indicates a process is at the state, where the atomic action

completes its execution. Further, the environment can get the chance to
perform its instantaneous action.

For the aim of linking the various semantics of SystemC, we introduce the con-
cept of guarded choice. A guarded choice is composed of a set of guarded com-
ponents. The introduction of guarded choice is to support the parallel expansion
laws. Guarded choice can be formalized with location status (i.e, tag), which is
defined as below.

Definition 2.2
(1) h (P, tag) is a guarded component if it can be one of the forms below. Here,
b is a Boolean condition and index can be 〈〉 or a non-empty thread sequence.

V (P, index), wait(e) (P, null), #1 (P, null), Δ1 (P, null)
where, V can be one of the following forms:

b&(x := e), ch!!exp, ch??v,
notify(eΔ0), notify(eΔ1), notify(eΔ−1), notify(e#T )

(2) []{h1 (P1, tag1), . . . , hn (Pn, tagn)} is a guarded choice if every element
hi (Pi, tagi) is a guarded component. �

In the above definition, guarded component V (P, index) indicates that the in-
stantaneous action V will be executed. After the execution, the subsequent pro-
gram P will be at the location status index. For event waiting component (i.e.,
wait(e) (P, null)) and delay guarded component (#1 (P, null), Δ1 (P, null)),
after the firing of event guard or time elapsing, the subsequent behaviour should
be the location status null.

Guarded choice can be divided into five types, which can be described as be-
low.

(type-1) []i∈I{bi&(xi := ei) (Pi, indexi)}[][]j∈J{chj !! expj (Qj , indexj)}
[][]k∈K{chk ?? vk (Rk, indexk)}[][]l∈L{notify(elx ) (Tl, indexl)}

(type-2) []i∈I{wait(ei) (Pi, null)}

(type-3) (1) []{Δ1 (P, null)}
(2) []{#1 (P, null)}
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(type-4) []i∈I{bi&(xi := ei) (Pi, indexi)}[][]j∈J{chj !! expj (Qj , indexj)}
[][]k∈K{chk ?? vk (Rk, indexk)}[][]l∈L{notify(elx ) (Tl, indexl)}
[][]m∈M{wait(em)(Sm, null)}

(type-5) (1) []i∈I{wait(ei) (Pi, null)}[][]{Δ1 (Q, null)}
(2) []i∈I{wait(ei) (Pi, null)}[][]{#1 (Q,null)}

The first type of guarded choice is composed of some instantaneous actions
including assignment, channel output, channel input, and event notifications.
The selection between them is nondeterministic. The second type is only com-
posed of a set of event guard components. Assume that all the guard events are
different from each other. It can be fired when the corresponding event happens.
The third type has one delta-cycle time delay or one macro time delay compo-
nent. The fourth type is composed of a set of instantaneous action components
and a set of event guard components. The whole process waits for any of the
event guards to be triggered and any of the instantaneous actions can also have
chances to be scheduled. The fifth type of guarded choice is composed of a set of
event guard components and a time delay component. The process waits for any
of the event guards to be fired at the current time point. Time will elapse one
delta-cycle time delay or one macro time delay when there are no more event
guards to be triggered.

2.3 Algebraic Semantics

In this section we explore the algebraic laws for SystemC. We mainly focus on
the parallel expansion laws. Our algebraic laws below are expressed in the form
(P, tag) = (Q, tag), indicating that program P and Q behave the same at the
location status tag. For simplicity, (P, tag) = (Q, tag) is also written P =tag Q.

Firstly we define two functions par(P, Q) and par1(P, Q, i, index), which can
reduce the number of parallel expansion laws by covering several cases at the
same time.

par(P, Q) =df

{
(ε, null) if P = ε and Q = ε
(P ‖ Q, null) otherwise

par1(P, Q, i, index) =df

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ε, null) if P = ε and Q = ε
(ε ‖ Q, null) if P = ε and Q �= ε and i = 1
(P ‖ ε, null) if P �= ε and Q = ε and i = 2
(P ‖ Q, 〈1〉̂index) if P �= ε and i = 1
(P ‖ Q, 〈2〉̂index) if Q �= ε and i = 2

In the following algebraic laws, Ui and Vj stand for the instantaneous actions.
The notation (par-i-j) stands for the parallel expansion laws whose two parallel
components are of type i and type j. The first five laws stand for the case that
the first component of a parallel process is of type one.

(par-1-1) Let P =null []i∈I{Ui (Pi, indexi)} and Q =null []j∈J{Vj (Qi, indexj)}
Then P ‖ Q

=null []i∈I{Ui par1(Pi, Q, 1, indexi)} [] []j∈J{Vj par1(P, Qj , 2, indexj)}
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(par-1-2) Let P =null []i∈I{Ui (Pi, indexi)} and Q =null []j∈J{wait(ej) (Qj , null)}
Then P ‖ Q

=null []i∈I{Ui par1(Pi, Q, 1, indexi)}[][]j∈J{wait(ej) par(P, Qj)}

(par-1-3) Let P =null []i∈I{Ui (Pi, indexi)} and Q =null []{t (R, null)}
Then P ‖ Q =null []i∈I{Ui par1(Pi, Q, 1, indexi)}

(par-1-4) Let P =null []i∈I{Ui (Pi, indexi)} and

Q =null []j∈J{Vj (Qj , indexj)}[][]k∈K{wait(ek) (Rk, null)}
Then P ‖ Q

=null []i∈I{Ui par1(Pi, Q, 1, indexi)}[][]j∈J{Vj par1(P, Qj , 2, indexj)}
[][]k∈K{wait(ek) par(P, Rk)}

(par-1-5) Let P =null []i∈I{Ui (Pi, indexi)} and

Q =null []j∈J{wait(ej) (Qj , null)}[][]{t (R, null)}
Then P ‖ Q

=null []i∈I{Ui par1(Pi, Q, 1, indexi)}[][]j∈J{wait(ej) par(P, Qj)}

The next four laws stand for the case that the first component of a parallel pro-
cess is of type two.

(par-2-2) Let P =null []i∈I{wait(ei) (Pi, null)} and Q =null []j∈J{wait(fj) (Qj , null)}
Let E = {ei|i ∈ I}, F = {fj |j ∈ J}, I ′ = {i | ei ∈ E ∧ ei �∈ F},

J ′ = {j | fj ∈ F ∧fj �∈ E}, IJ = {(i, j) | i ∈ I ∧ j ∈ J ∧ei ∈ E∧fj ∈ F ∧ei = fj}
Then P ‖ Q

=null []i∈I′{wait(ei) par(Pi, Q)}[][]j∈J′{wait(fj) par(P, Qj)}
[][](i,j)∈IJ{wait(ei) par(Pi, Qj)}

(par-2-3) Let P =null []i∈I{wait(ei) (Pi, null)} and Q =null []{t (R, null)}
Then P ‖ Q =null []i∈I{wait(ei) par(Pi, Q)}[][]{t par(P, R)}

(par-2-4) Let P =null []i∈I{wait(ei) (Pi, null)} and

Q =null []j∈J{Vj (Qj , indexj)}[][]k∈K{wait(fk) (Rk, null)}
Then P ‖ Q

=null []j∈J{Vj par1(P, Qj , 2, indexj)}[][]i∈I′{wait(ei) par(Pi, Q)}
[][]k∈K′{wait(fk) par(P, Rk)}[][](i,k)∈IK{wait(ei) par(Pi, Rk)}

(par-2-5) Let P =null []i∈I{wait(ei) (Pi, null)} and

Q =null []j∈J{wait(fj) (Qj , null)}[][]{t (R,null)}
Then P ‖ Q

=null []i∈I′{wait(ei) par(Pi, Q)}[][]j∈J′{wait(fj) par(P, Qj)}
[][](i,j)∈IJ{wait(ei) par(Pi, Qj)}[][]{t par(P, R)}
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The next five laws stands for the case that one component of a parallel process
is time delay. The first three laws represents the parallel composition of various
time forms.

(par-3-3-1) Let P =null []{Δ1 (R, null)} and Q =null []{Δ1 (S, null)}
Then P ‖ Q =null []{Δ1 par(R,S)}

(par-3-3-2) Let P =null []{Δ1 (R, null)} and Q =null []{#1 (S, null)}
Then P ‖ Q =null []{Δ1 par(R, Q)}

(par-3-3-3) Let P =null []{#1 (R, null)} and Q =null []{#1 (S, null)}
Then P ‖ Q =null []{#1 par(R, S)}

(par-3-4) Let P =null []{t (R, null)} and

Q =null []i∈I{Vi (Qi, indexi)}[][]j∈J{wait(ej) (Rj , null)}
Then P ‖ Q

=null []i∈I{Vi par1 (P, Qi, 2, indexi)}[]{[]j∈J {wait(ej) par (P, Rj)}

(par-3-5) Let P =null []{t (R, null)} and

Q =null []j∈J{wait(ej) (Qj , null)}[][]{tS (S, null)}
Then P ‖ Q =null []j∈J{wait(ej) par (P, Qj)}[]par2(P, Q2)

In the above laws, P2 and Q2 stand for the second guarded choice of P and
Q respectively. Function par2(P2, Q2) can be defined as below.

Let P2 =null []{t1 (P ′, null)} and Q2 =null []{t2 (Q′, null)}
Then

par2(P2, Q2) =df

⎧⎪⎨⎪⎩
[]{t1 par(P ′, Q′)} if t1 = t2 = Δ1 ∨ t1 = t2 = #1

[]{t1 par(P ′, Q)} if t1 = Δ1 ∧ t2 = #1

[]{t2 par(P, Q′)} if t1 = #1 ∧ t2 = Δ1

The next two laws stand for the case that one component of a parallel process
belongs to the form of type four.

(par-4-4) Let P =null []i∈I{Ui (Pi, indexi)}[][]j∈J{wait(ej) (Rj , null)}
Q =null []k∈K{Vk (Qk, indexk)}[][]l∈L{wait(fl) (Rl, null)}

Then P ‖ Q

=null []i∈I{Ui par1 (Pi, Q, 1, indexi)}[][]j∈J′{wait(ej) par (Rj , Q)}
[][]k∈K{Vj par1 (R, Qk, 2, indexk)}[][]l∈L′{wait(el) par (P, Rl)}
[][](j,l)∈JL{wait(ej) par (Pj , Rl)}

(par-4-5) Let P =null []i∈I{Ui (Pi, indexi)}[][]j∈J{wait(ej) (Rj , null)}
Q =null []k∈K{wait(fk) (Qk, null)}[][]{t (S, null)}
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Then P ‖ Q

=null []i∈I{Ui par1 (Pi, Q, 1, indexi)}[][]k∈K′{wait(fk) par (P, Qk)}
[][]j∈J′{wait(ej) par (Rj , Q)}[][](j,k)∈JK{wait(ej) par (Rj , Qk)}

The law below stands for the case that both of the two components of a
parallel process belong to the form of type five.

(par-5-5) Let P =null []i∈I{wait(ei) (Pi, null)}[][]{tR (R, null)}
Q =null []j∈J{wait(fj) (Qj , null)}[][]{tS (S, null)}

Then P ‖ Q

=null []i∈I{wait(ei) par (Pi, Q)}[][]j∈J{wait(ej) par (P, Qj)}
[][](i,j)∈IJ{wait(ei) par (Pi, Qj)}[]par2(P2, Q2)

Further, if one parallel part is at the state of the execution of an instantaneous
action and another parallel part is of any form. Then the whole process continues
the execute of the instantaneous action. The case is expressed in law (par-II).

(par-II) Let P =index []{U (P ′, index)}
Then P ‖ Q =(1) ̂ index []{U par1(P ′, Q, 1, index)}

Q ‖ P =(2) ̂ index []{U par1(Q, P ′, 2, index)}

The following five laws stand for the case that one component of a process is
empty. Another component can be of any forms.

(par-III-1) Let P =null []i∈I{Ui (Pi, indexi)}
Then P ‖ ε =null []i∈I{Ui par1(Pi, ε, 1, indexi)}

ε ‖ P =null []i∈I{Ui par1(ε, Pi, 2, indexi)}

(par-III-2) Let P =null []i∈I{wait(ei) (Pi, null)}
Then P ‖ ε =null []i∈I{wait(ei) par(Pi, ε)}

ε ‖ P =null []i∈I{wait(ei) par(ε, Pi)}

(par-III-3) Let P =null []{t (P ′, null)}
Then P ‖ ε =null []{t par(P ′, ε)}

ε ‖ P =null []{t par(ε, P ′)}

(par-III-4) Let P =null []i∈I{Ui (Pi, indexi)}[][]j∈J{wait(ei) (Qj , null)}
Then P ‖ ε =null []i∈I{Ui par1(Pi, ε, 1, indexi)}

[][]j∈J{wait(ej) par(Qj , ε)}

ε ‖ P =null []i∈I{Ui par1(ε, Pi, 2, indexi)}
[][]j∈J{wait(ej) par(ε, Qj)}

(par-III-5) Let P =null []i∈I{wait(ei) (Pi, null)} [] {t (Q, null)}
Then P ‖ ε =null []i∈I{wait(ei) par(Pi, ε)} [] {t par(Q, ε)}

ε ‖ P =null []i∈I{wait(ei) par(ε, Pi)} [] {t par(ε, Q)}
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2.4 Animation of Algebraic Laws

As mentioned before, the two functions par(P, Q) and par1(P, Q, i, index) are
used to reduce the number of parallel expansion laws. In the animation program
these two functions are defined as par(P, Q, R) and par1(P, Q, i, Index, R),
where P and Q denote the two parallel programs while R denotes the result of
the function. All the programs P , Q and R are represented as a list in Prolog.
The ε program is represented as [ ]. Index is defined as a list composed by 1
and 2, or it is just null. Our animation is proceeded using Prolog.

par([ ], [ ], [[ ], null]).

par(P, Q, [P ‖ Q, null]).

par1([ ], [ ], I, Index, [[ ], null]) :− idItem[I ], indexs(Index).

par1([ ], Q, 1, Index, [[ ] ‖ Q, null]) :−Q∼=[ ], hn(Q), indexs(Index).

par1(P, [ ], 2, Index, [P ‖ [ ], null]) :−P∼=[ ], hn(P ), indexs(Index).

par1(P, Q, 1, Index, [P ‖ Q, [1|Index]]) :−P∼=[ ], hn(Q), indexs(Index).

par1(P, Q, 2, Index, [P ‖ Q, [2|Index]]) :−Q∼=[ ], hn(P ), indexs(Index).

Here, hn defines the form of guarded choice. hn1 denotes the first type of guarded
choice we defined in section 2. Similarly, hn2 and hn3 represents the second and
third type of guarded choice respectively. The fourth and fifth type is composed
by the first three forms, so we use the operator or to denote the composition
relationship.

hn1([[V $ [P, Index]|Q], T ag]) :− inst(V ), prog(P ), hn1(Q),

indexs(Index), tag(Tag).

hn2([[wait E $ [P, null]|Q], T ag]) :− singleE(E), prog(P ), hn2(Q), tag(Tag).

hn3([[delta 1 $ [P, null]], T ag]) :− prog(P ), tag(Tag).

hn3([[#1 $ [P, null]], T ag]) :− prog(P ), tag(Tag).

hn(P ) :−hn1(P ).

hn(P ) :−hn2(P ).

hn(P ) :−hn3(P ).

hn(P or Q) :−hn1(P ), hn2(Q).

hn(P or Q) :−hn2(P ), hn3(Q).

hn(P or Q) :−hn2(P ), hn1(Q).

hn(P or Q) :−hn3(P ), hn2(Q).

inst defines five forms of the instantaneous actions.

inst(B & (V = E)) :− bool(B), variable(V ), expr(E).

inst(Ch !! V ) :− variable(Ch), expr(V ).

inst(Ch ?? V ) :− variable(Ch), variable(V ).

inst(notify Event $ [delta T ]) :− variable(Event), deltaT (T ).

inst(notify Event $ [# T ]) :− variable(Event), integer(T ), T > 0.
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Now we are ready to consider the animation of parallel expansion laws. We
will introduce the animation of par-1-1, par-2-2, par-3-3-2 and par-4-5. First, we
consider the case that both of the two components of a parallel process are of
type one (i.e., par1-1). Its animation can be described as below:

parallel(P,Q, R) :−hn1(P ), hn1(Q), par1 L(P, Q, 1, R1),

par1 R(P,Q, 2, R2), append(R1,R2, R).

par1 L denotes the performance of the program when P (i.e., the parallel com-
ponent on the left side) is performed. Similarly, par1 R denotes the case when
the right one is performed.

par1 L([V $ [P1, Index1]|P ], Q, I,R) :− par1(P1,Q, I, Index1, X),

par1 L(P, Q, I,R1), append([V $ X], R1, R).

Here, the parallel law par1 is applied recursively. append(P, Q, R) concatenates
list P and Q into list R.

Next we consider the animation of the case that both of the two components of a
parallel process are in the form of type two, then its animation can be described
as below:

parallel(P, Q, R) :−hn2(P ), hn2(Q), par2 R(P, Q, R1), par2 L(P, Q, R2),

par2 2(P, Q, R3), append(R1, R2, R3, R).

par2 2(P, Q, R) is used to generate the program components when the events
belonging to the intersection of both of the two parallel components are fired.
par2 R(P, Q, R) generates the program components when the events only in
the right branch are fired. The analysis of par2 L(P, Q, R) is similar.
For the case that one of the parallel components is Δ1 and the other is #1, its
animation is as below.

parallel([delta 1 $ [P, null]], [#1 $ [Q, null]], [delta 1 $ R]) :− par(P, Q, R).

If one of the parallel component is of type four which is the compound of type
one and type two and the other is of type five which is the compound of type
two and type three, its animation can be described as follows.

parallel(P1 or P2, Q1 or Q2, R)

:−hn1(P1), hn2(P2), hn2(Q1), hn3(Q2), par1 L(P1, Q1 or Q2, 1, R1),

par2 2(P1 or P2, Q1 or Q2, R2), append(R1, R2, R).

If one of the parallel component is the empty process ε , which is represented by
[ ], and the other is in the form of type two, then the parallel rule is as follows:

parallel([wait E $ [P, null]|Q], [ ], R)

:−hn2([wait E $ [P, null]|Q]), par(P, [ ], R1),

parallel(Q, [ ], R2), append([wait E $ R1], R2, R).

parallel([ ], [wait E $ [P, null]|Q], R)

:−hn2([wait E $ [P, null]|Q]), par([ ], P, R1),

parallel([ ], Q, R2), append([wait E $ R1], R2, R).

For the animation of other parallel expansion laws, their explorations are similar.
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3 Head Normal Form and Its Animation

3.1 Head Normal Form

Now we assign every program P a head normal form at location status tag,
expressed in the form HF ((P, tag)). Our consideration for deriving denotational
semantics from algebraic semantics is based on the concept of head normal form.

(1) HF ((v := e, tag)) =df ( []{true&(v := e) (ε, 〈〉)}, tag )

HF ((Skip, tag)) =df ( []{true&(x := x) (ε, 〈〉)} , tag )

where, tag = null or 〈〉.
(2) HF ((X, tag)) =df ( []{X (ε, 〈〉)} , tag )

where, tag = null or 〈〉.
X can be ch??v, ch!!exp, notify(eΔ0), notify(eΔ1, notify(e#T ).

HF ((cancel(e), tag)) =df ( []{notify(eΔ−1) (ε, 〈〉)}, tag )

(3) HF ((P � b � Q, tag)) =df ( []{b&x := x (P, 〈〉), ¬b&x := x (Q, 〈〉)}, tag )

HF ((b ∗ P, tag)) =df ( []{b&x := x (P ; b ∗ P, 〈〉)}, ¬b&x := x (ε, 〈〉)}, tag )

(4) Assume HF ((P, tag)) = ( []i∈I{Xi (Pi, tagi)}, tag )

Then HF ((P ;Q, tag)) =df ( []i∈I{Xi (seq(Pi, Q), tagi)}, tag )

where, seq(X, Y ) =df

{
Y if X = ε

X; Y otherwise

(5) HF ((Δ1, tag)) =df ( []{Δ1 (ε, null)}, tag )

HF ((#1, tag)) =df ( []{#1 (ε, null)}, tag )

HF ((#T, tag)) =df ( []{#1 (#(T − 1), null)}, tag ), where T > 1.

HF ((wait(e), tag)) =df ( []{wait(e) (ε, null)}, tag )

(6) HF ((P ‖ Q, null)) =df (T, null)
where, T is the result by applying the above parallel expansion laws of
HF ((P, null)) and HF ((Q, null)) at the location status null.

HF ((P ‖ Q, index)) =df (T, index)
where, T is the result by applying the above parallel expansion laws at the
location status index.

Further, for some cases, HF ((P ‖ Q, index)) cannot be calculated by us-
ing the above laws, we say it is undefined; i.e., HF ((P ‖ Q, index)) =df

undefined.
The above head normal forms can be used in deriving the operational semantics
from algebraic semantics for SystemC.

Example 3.1. Let P1 = v1 := 1 ; ; notify(e2Δ1); notify(e3#3),
P2 = v2 := 2 ; notify(f2Δ1); notify(f3#3),
Q1 = wait(e2); wait(e3), Q2 = wait(f2); wait(f3)

Consider the head normal form for program P , where (P1 ‖ P2) ‖ (Q1 ‖ Q2).
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For program P , its head normal form can be described as:

HF ((P, null))
= ( []{ v1 := 1 ((P11 ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉),

v2 := 2 ((P1 ‖ P21) ‖ (Q1 ‖ Q2), 〈1〉̂〈2〉),
wait(e2) ((P1 ‖ P2) ‖ (wait(e3) ‖ Q2), null),
wait(f2) ((P1 ‖ P2) ‖ (Q1 ‖ wait(f3)), null) }

, null )
where, P11 = notify(e2Δ1); notify(e3#3), P21 = notify(f2Δ1); notify(f3#3)
Further,

HF (((P11 ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉))
= ( []{notify(e2Δ1) ((notify(e3#3) ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉)}, 〈1〉̂〈1〉 )

HF (((notify(e3#3) ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉))
= ( []{notify(e3#3), ((ε ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉)}, 〈1〉̂〈1〉 )

The analysis of the head normal forms for other programs above are similar. �

3.2 Animation of Head Normal Form

Now we start to explore how to generate the head normal form for programs;
i.e., the mechanical consideration of head normal form in Prolog. For program
P , we use the rule below to generate its head normal form.

hf((P, Tag), (T, Tag))

where, (T, Tag) stands for the head normal form of program P at the location
status Tag.

For assignment x := e at location status Tag, the generation of its head normal
form can be described as below:

hf([V = E, Tag], [[true & V = E $ [[ ], [ ]]], T ag])

:−hn1([[true & V = E $ [[ ], [ ]]], T ag]).

The whole clause means that the head normal form of (v := e, Tag) is [[true & V =
E $ [[ ], [ ]]], T ag], which is a list containing two elements, (i.e., the program
and its location status Tag). Also, we make sure that its head normal form is in
the form of type one.
Conditional can also be expressed as the first type guarded choice composed of
two assignment-guarded subcomponents. Iteration has similar structure.

hf([if EB & P else Q, Tag], [[EB & V = V $ [P, [ ]], EB & V = V $ [Q, [ ]]], T ag])

:−hn1([[EB & V = V $ [P, [ ]], [ EB & V = V $ [Q, [ ]]], T ag]).

hf([while EB & P, Tag], [[EB & V = V $ [P ; whileEB & P, [ ]],

[ EB & V = V $ [[ ], [ ]]]], T ag])

:−hn1([[EB & V = V $ [P ; while EB & P, [ ]],

[ EB & V = V $ [[ ], [ ]]]], T ag]).
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Now we start to consider the calculation of the head normal form for sequential
composition. For P ; Q, we first translate program P to its head normal form
and then distribute ; to each component of it. The distribution behaviour can
be done by a function seqs.

hf([P ; Q, Tag], R) :−hf(P, [[X $ [P1, Index]|L], T ag]),

seqs([[X $ [P1, Index]|L], T ag], Q, R).

For the parallel program, we first calculate the head normal form of each parallel
component and then the parallel expansion laws we defined before are used to
generate the head normal form of the whole parallel process P ‖ Q.

hf([P ‖ Q, null], [R, null]) :−hf([P, null], R1), hf([Q, null], R2),

parallel(R1, R2, R).

hf([P ‖ Q, Index], [R, Index]) :−hf([P, Index], R1), hf([Q, Index], R2),

parallel(R1, R2, R).

4 Deriving Denotational Semantics from Algebraic
Semantics

4.1 Denotational Model for SystemC

For dealing with the feature of shared-variable concurrency, we introduce a se-
quence type variable tr1 for recording the behaviour of state change of a program.
Moreover, SystemC has two types of time delay; i.e., micro time delay and macro
time delay. Therefore, the structure of tr1 can be depicted as Figure 1.
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Fig. 1.

At the relative macro time “i” point, time may also advance in Δ time step,
standing for the micro-time advancing. Therefore, a sequence of behaviours may
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be recorded at each Δ time point. These behaviours can be classified into two
types; i.e., contributed by the process itself or its environment. In Figure 1, the
symbol “⊕” and “◦” stand for the contribution by the process itself and its
environment respectively.

In order to record these behaviours, the concept of snapshot is introduced,
expressed as (t1, t2, σ, f), where σ stands for the contribution of the behaviour
and f stands for the flag. “f = 1” indicates that the behaviour is contributed
by the process itself and “f = 0” indicates that the behaviour is contributed by
its environment. Here, t1 stands for the macro time and t2 stands for the micro
time. This indicates that the contribution σ is taken at the point with macro
time t1 and micro time t2. Below is the formal structure of trace tr1.

Element1 = {(t1, t2, σ, f)|t1, t2 ∈ N ∧ σ ∈ State ∧ f ∈ {0, 1}},
tr1 ∈ seq(Element1)

Here, seq(T ) stands for a sequence type, where each sequence is composed of
elements from type T . We select the components of a snapshot using projections;
i.e., πi(sn) stands for the i-th element of snapshot sn.

In SystemC, waiting guards can be triggered by events, which can be gener-
ated by the process itself or its environment. We use the trace variable tr2 to
record all the events generated by the process or its environment. tr2 has the
same time structure, as shown in the above Figure 1. It can be defined as below.

Element2 = {(t1, t2, e, f)|t1, t2 ∈ N ∧ e ∈ Event ∧ f ∈ {0, 1}}
tr2 ∈ seq(Element2)

In our semantic model, we introduce two variables T ime1 and T ime2 to rep-
resent the macro time and micro time respectively. More specifically, T ime1
and T ime1′ stand for the start point and the end point of a macro time interval.
Further, (T ime1, T ime2) stands for the starting two dimensional time point and
(T ime1′, T ime2′) stands for the ending two dimensional time point. We define
δ1 =df T ime1′−T ime1. If T ime1′ = T ime1, we define δ2 =df T ime2′−T ime2.

The execution of an atomic action is represented by a single snapshot. In order
to describe the behaviour of individual shared variable assignment, we introduce
a variable ttr to model the accumulated change made by the statements of
the atomic action. An assignment is simply formulated as storing the result
in variable ttr. Meanwhile, the current value of channel ch is also stored in
variable ttr. On the completion of an atomic action, the corresponding snapshot
is attached to the end of the trace to record its behaviour.

The event generated by channel receiving will not be immediately attached
to the end of the trace variable tr2. After all the behaviours in an atomic action
complete, the process enters into the update phase. Hence we use a trace variable
RQ to record new channel states due to the channel receiving.

Three kinds of event notifications are introduced in SystemC for generating
events. notify(eΔ0) is used to generate event e, which will be active immediately.
For notify(eΔ1), it can generate event e that will be active in one micro time
unit. Moreover, notify(e#T ) also generates event e. However, it can only be
active in T macro time units. For recording the events contributed by the above
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last two notification commands, we introduce two set type variables, EN2 and
EN3. Here, EN2 records the generated events, which will be active in one micro
time unit. EN3 contains the pairs (e, T ), which indicates that event e will be
active in T macro time units.

Definition 4.1. Formula P is healthy iff there exists a design D = (Q #
(W � wait′ � T )) such that P = H(D),

where:
(1) H(Y ) =df (II � wait � (Y ∧ Inv(tr1, tr2))

(2) Q # R =df ¬ok ∧ Inv(tr1, tr2) ∨ ¬Q ∨ (ok ∧R)

(3) Q � b � R =df b ∧Q ∨ ¬b ∧R

(4) Inv(tr1, tr2) =df tr1 � tr1′ ∧ tr2 � tr2′ �

In the subsequent sections we will use healthy formula

H(¬Q # W � wait′ � T )

to explore the semantics of programs. Here, Q, W and T stand for the divergent
behaviour, waiting behaviour and termination behaviour respectively.

4.2 Semantic Analysis for Fundamental Components

Firstly we consider the behaviour of program variable assignment. Variable as-
signment can be classified into two cases; i.e., shared-variable assignment and
local variable assignment.

Shared-variable assignment under a Boolean condition can be expressed as:

D(b&(v := e)) =df b ∧
(
InstEnv � ttr = null � II ; sassign(v, e)

)
Similarly, local variable assignment can be expressed as:

D(b&(x := f)) =df b ∧
(
InstEnv � ttr = null � II ; lassign(x, f)

)
where:

InstEnv =df H

⎛⎜⎜⎜⎝true �

⎛⎜⎜⎜⎝
δ1 = 0 ∧ δ2 = 0 ∧ ¬wait′∧∧

t∈{tr1,tr2} π4(t
′ − t) ∈ 0∗

∧ ttr′ = π1(last(last(last(tr1′))))

same({X,RQ, EN2, EN3})

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

sassign(v, e) =df H

(
true �

(¬wait′ ∧ ttr′ = ttr[e/v] ∧ δ1 = 0 ∧ δ2 = 0

same({tr1, tr2, X, RQ,EN2, EN3})

))

lassign(x, f) =df H

⎛⎜⎝true �

⎛⎜⎝ ¬wait′ ∧ x′ = f ∧ δ1 = 0 ∧ δ2 = 0

same({tr1, tr2, ttr,X\{x},
RQ,EN2, EN3})

⎞⎟⎠
⎞⎟⎠

Now we consider the semantics for the triggering for wait(et). There are two
event triggering cases. The first case is the self-triggering case; i.e., the event is
triggered by the process itself, which indicates that the event is generated by the
most recent completed atomic actions.
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selftrig(et)

=df InstEnv2 � ttr = null � II ;

update(RQ) ; (ttr �= null) ∧ attach ; selfjudge(et)

where:
InstEnv2

=df H

⎛⎜⎝true �

⎛⎜⎝¬wait′ ∧ δ1 = 0 ∧ δ2 = 0

∧ttr′ = π1(last(tr1))

∧ same(tr1, tr2, X, RQ,EN2, EN3)

⎞⎟⎠
⎞⎟⎠

and
selfjudge(et)

=df H

⎛⎜⎝true �

⎛⎜⎝¬wait′ ∧ δ1 = 0 ∧ δ2 = 0

∧last(tr2) = (T ime1, T ime2, et, 1)

∧ same(tr1, ttr,X, RQ, EN2, EN3)

⎞⎟⎠
⎞⎟⎠

Here update(RQ) and attach are similar to those in [15] except the introduction
of two time variables T ime1 and T ime2.

The second case is the environment triggering case; i.e., an event is generated
by the environment and this event triggers the waiting behaviour.

await(et)

=df InstEnv2 � ttr = null � II ; update(RQ) ;

(ttr = null ∨ last(tr2) �= (T ime1, T ime2, et, 1)) ∧ attach ; aawait(et)

and

aawait(et) =df H

⎛⎜⎝true �

⎛⎜⎝ et /∈ π3(tr2
′ − tr2) ∧ δ1 = 0 ∧ δ2 = 0∧∧

x∈{tr1,tr2} Env(x′ − x)∧
same(RQ,X, ttr,EN2, EN3)

⎞⎟⎠
⎞⎟⎠

trig(et) =df H

⎛⎜⎝true �

⎛⎜⎝ δ1 = 0 ∧ δ2 = 0∧
last(tr2′ − tr2) = 〈(T ime1, T ime2, et, 0)〉∧

same(tr1, ttr, RQ,EN2, EN3)

⎞⎟⎠
⎞⎟⎠

Therefore, we can have:

D(wait(et)) =df selftrig(et) ∨ (await(et) ; trig(et))

We can also consider the semantics for other fundamental components.

4.3 Deriving Denotational Semantics from Algebraic Semantics

In this section we explore the derivation of denotational semantics from algebraic
semantics for SystemC. The derivation strategy is explored. Our approach is
based on the head normal form of each process, i.e., we have five types of guarded
choices.
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Let

C(tag) =df

{
ttr = null if tag = null

ttr �= null if tag = index

If the head normal form of a process belongs to the first type, its denotational
semantics can be described as the semantics of the instantaneous action followed
by the denotational semantics of the corresponding subsequent process at the
new location state. This construction is proceeded by going through all the above
instantaneous action.

(1) If HF ((P, tag)) = ( []i∈I{bi&(xi := ei) (Pi, indexi)}
[][]j∈J{chj !! expj (Qj , indexj)}
[][]k∈K{chk ?? vk (Rk, indexk)}
[][]l∈L{notify(elx) (Tl, indexl)},

tag )

then

A((P, tag))

=df C(tag) ∧

⎛⎜⎜⎜⎜⎝
∨

i∈I( D(bi&xi := ei) ; A((Pi, indexi)) )

∨
∨

j∈J ( D(chj !!expj) ; A((Qj, indexj)) )

∨
∨

k∈K( D(chk??vk) ; A((Rk, indexk)) )

∨
∨

l∈L( D(notify(elx )) ; A((Tl, indexl)) )

⎞⎟⎟⎟⎟⎠
If the head normal form of a process belongs to the second type, its behaviour

can be divided into two cases. The first case indicates that one of the events can
be self-fired. The second case indicates that none of the events can be self-fired.
Then the process will wait for any of the events to be fired. During the waiting
periods, all the events cannot be fired. After that, one of the events will get fired.
For the above two cases, if one event gets fired, the subsequent behaviour will
be the corresponding process at the location status null.

(2) If HF ((P, tag)) = ( []i∈I{wait(ei) (Pi, null)}, tag )

then

A((P, tag)) =df C(tag)∧

⎛⎜⎝
∨

i∈I(selftrig(ei) ; A((P, null)))

∨
(await(e) ;

∨
i∈I(trig(ei) ; A((Pi, null)) ) )

⎞⎟⎠
where, e =df ori∈I{ei}

Now we consider the case that the head normal form of a process belongs to
the third type. The time delay can be divided into two cases; i.e., micro-time
and macro-time. The process first behaves the same as the corresponding one
unit time delay. After that, the behaviour can be expressed as the subsequent
behaviour of the process at the location status null.



304 H. Zhu, F. Yang, and J. He

(3) If HF ((P, tag)) = []{Δ1 (P, null)},
then A((P, tag)) =df C(tag) ∧ (D(Δ1) ; A((P,null)))

If HF ((P, tag)) =df []{#1 (P, null)}
then HF ((P, tag)) =df C(tag)∧ (D(#1) ; A((P, null)))

If the head normal form of a process belongs to the fourth type. The analysis
can be divided into two cases. The first case indicates that one of the events can
be fired. The second case indicates that none of the elements can be self-fired.
The process waits for any events to be fired and all the events will not be fired
during the waiting period. The waiting period will not let macro and micro time
advance. Finally, either any instantaneous action will be scheduled or one events
will get fired.

(4) If HF ((P, tag)) = ( []i∈I{Ui (Pi, indexi)}
[][]j∈J{wait(ej)(Qj , null)},

tag )

then

A((P, tag))

=df C(tag) ∧

⎛⎜⎜⎜⎜⎝
∨

j∈J(selftrig(ej) ; A((Qj, null))

∨

await(e) ∧ holdΔ(0) ;

(∨
i∈I(D(Ui) ; A((Pi, indexi))) ∨∨
j∈J (trig(ei) ; A((Qj, null)))

)
⎞⎟⎟⎟⎟⎠

where,

e =df orj∈J{ej}

holdΔ(0) =df H

⎛⎜⎝true �

⎛⎜⎝
∧

x∈{tr1,tr2} Instenv(x′ − x)∧
δ1 = 0 ∧ δ2 = 0∧
same(ttr,X, RQ,EN2, EN3)

⎞⎟⎠
⎞⎟⎠

If the head normal form of a process belongs to the fifth type. The analysis
can be proceeded according to the time delay type. If the time delay is micro
time, the analysis can be divided into three cases. The first case indicates that
one of the events gets self-fired. The second and third case indicate that none
of the events are self-fired. The process will wait for any events to be fired.
During the waiting period all these events will not get fired and the waiting
period is one micro time unit long. The second case indicates that one event will
get fired without micro time advancing. For the third case, one micro time will
advance.

(5) If HF ((P, tag)) = ( []i∈I{wait(ei) (Pi, null)}[][]{Δ1 (Q,null)},
tag )
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then

A((P, tag))

=df C(tag) ∧

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∨
i∈I(selftrig(ei) ; A((P, null)))

∨
(await(e) ∧ holdΔ(0) ;

∨
i∈I(trig(ei) ; A((Pi, null))))

∨
(await(e) ∧ holdΔ(0) ; phaseΔ ; A((Q,null)))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where,

e =df ori∈I{ei}

phaseΔ =df H

(
true �

(
same(tr1, tr2, ttr,X, RQ, EN2, EN3)∧
δ1 = 0 ∧ (δ2 = 0 � wait′ � δ2 = 1)

))

Further, we explore the type that the time delay is macro. The analysis can
also be divided into three cases, which are similar to micro time. For the second
and third case, the holding behaviour will change from holdΔ(0) into hold#(0).
For the third type, time advancing will change from micro time into macro
time.

If HF ((P, tag)) = ( []i∈I{wait(ei) (Pi, null)}[][]{#1 (Q, null)},
tag )

then

A((P, tag))

=df C(tag) ∧

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∨
i∈I(selftrig(ei) ; A((Pi, null)))

∨
(await(e)hold#(0) ;

∨
i∈I(trig(ei) ; A((Pi, null))))

∨
(await(e) ∧ hold#(0) ; phase# ; A((Q, null)))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where,

e =df ori∈I{ei}

phase# =df H

(
true �

(
same(tr1, tr2, ttr,X, RQ,EN2, EN3)∧
(δ1 = 0 ∧ δ2 = 0) � wait′ � (δ1 = 1 ∧ T ime2′ = 0)

))

Remark: If HF ((P, index)) = undefined,
then A((P, index)) =df attach; A((P, null))

Based on the above definitions, we can have a way to calculate the denotational
semantics from algebraic semantics for SystemC.
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Definition 4.2. (Calculating Denotational Semantics from Algebraic Semantics)

A(P ) =df A((P, null)) ∨ A((P, 〈 〉)) �

The calculation can be divided into two categories according to the location sta-
tus of a program. The detailed calculation is based on the denotational semantics
for each type of guarded choice.

4.4 Animation of Deriving Denotational Semantics

Now we consider the mechanical derivation strategy for deriving denotational
semantics from algebraic semantics. For program P , we use the function below
to generate the denotational semantics of P .

a((P, tag), D)

where, D stands for denotaional semantics of program P at location status tag.

If the head normal form of P is of type one which is denoted as [[V $[P, Index]|Q],
T ag], then the denotational semantics is generated as follows

a([P, Tag], R) :−hf([P, Tag], [[V $[P, Index]|Q], T ag]), c(Tag, R1),

denotation([V $ [P, Index]|Q], R2), conjunct(R1, R2, R).

Here, function denotation(P, Q) is used to generate the semantics of fundamen-
tal components P and is stored in Q. conjunct(P, Q, R) is defined to gengerate
the conjuctioin of component P and Q, the result is then stored in R.

Now we consider the case when the head normal form of a program is of type
two.

a([P, Tag], R) :−hf([P, Tag], [[wait E $ [P, null]|Q], T ag]),

selftrigs([wait E $ [P, null]|Q], R1),

trigs([wait E $ [P, null]|Q], R2),

conjunct(R1, await([wait E $ [P, null]|Q]); R2, R).

We first calculate the head normal form of program P . Then function selftrigs
is used to record the behaviour of the program when one of the events can be
self-fired. The analysis of function trig is similar.

If the head normal form of a process belongs to the third type, its behaviour is
denoted as follows.

a([P, Tag], R1; R2) :−hf([P, Tag], [[#1 $ [Q, null]], T ag]),

denotation([# 1], R1), a([Q, Tag],R2).

a([P, Tag], R1; R2) :−hf([P, Tag], [[delta 1 $ [Q, null]], T ag]),

denotation([delta 1], R1), a([Q, Tag],R2).

Similar consideration can be applied to a program when its head normal form
is of type four or five.
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4.5 Exploration of Deriving Denotational Semantics for Iteration

In the previous subsections, we have explored the derivation of denotational
semantics for finite programs. Now we start to investigate the derivation of
denotational semantics for iteration, i.e., including infinite programs.

Let

F 0(b, P ) =df Chaos

Fn+1(b, P ) =df if b then (P ; Fn(b, P )) else Skip

Now we consider the derivation strategy for iteration.

A(while b do P ) =df �i A(F i(b, P )).

where:

(1) A(Q) stands for the derived denotational semantics from algebraic seman-
tics for program Q. This implies that A(F i(b, P )) stands for the derived
denotational semantics for finite program F i(b, P )

(2) The denotational semantics for Chaos can be described as follows.
A((Chaos, tag)) =df C(tag) ∧H(true), A(Chaos) =df H(true)

(3) We need to add additional algebraic laws for Chaos

Chaos ‖ P =tag Chaos, where tag = null, 〈1〉, 〈2〉

5 Conclusion

Compared with traditional programming language, SystemC possesses several
novel features, including delayed notifications, notification cancelling, notifica-
tion overriding and delta-cycle. In this paper we studied the calculation (i.e.,
derivation) of denotational semantics from algebraic semantics for SystemC. We
systematically explored the algebraic laws for SystemC and introduced the con-
cept of head normal form. Meanwhile, we also investigated the simulation (i.e.,
animation) of algebraic laws and head normal form, which aims to support the
mechanical derivation of denotational semantics. Based on the concept of head
normal form, we provided the strategy for deriving denotational semantics from
algebraic semantics. Two pairs of variables (i.e., T ime1, T ime1′, T ime2 and
T ime2′) are introduced to model the timed behaviour. We also studied the me-
chanical derivation of denotation semantics. The derivation of denotational se-
mantics for infinite programs has also been explored using the approximation
approach.

For the future, we are continuing to work on the unifying theories [1,6,14] for
SystemC. We plan to embed the achievements in this paper in the framework of
PVS [11] to support automatic verification based on the UTP approach.
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