


Lecture Notes in Computer Science 6419
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Isabelle Bloch Roberto M. Cesar, Jr. (Eds.)

Progress in
Pattern Recognition,
Image Analysis,
Computer Vision,
and Applications
15th Iberoamerican Congress
on Pattern Recognition, CIARP 2010
São Paulo, Brazil, November 8-11, 2010
Proceedings

13



Volume Editors

Isabelle Bloch
Télécom ParisTech, Département Traitement du Signal et des Images, CNRS LTCI
46 rue Barrault, 75634 Paris Cedex 13, France
E-mail: isabelle.bloch@telecom-paristech.fr

Roberto M. Cesar, Jr.
University of São Paulo - USP, Institute of Mathematics and Statistics - IME
Department of Computer Science
Rua do Matão 1010, São Paulo, SP, CEP 05508-090, Brazil
E-mail: cesar@vision.ime.usp.br

Library of Congress Control Number: 2010937233

CR Subject Classification (1998): I.5, I.4, I.2.10, I.2.7, F.2.2

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-642-16686-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16686-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

Pattern recognition is a central topic in contemporary computer sciences, with
continuously evolving topics, challenges, and methods, including machine
learning, content-based image retrieval, and model- and knowledge-based ap-
proaches, just to name a few. The Iberoamerican Congress on Pattern Recogni-
tion (CIARP) has become established as a high-quality conference, highlighting
the recent evolution of the domain.

These proceedings include all papers presented during the 15th edition of this
conference, held in Sao Paulo, Brazil, in November 2010.

As was the case for previous conferences, CIARP 2010 attracted partici-
pants from around the world with the aim of promoting and disseminating on-
going research on mathematical methods and computing techniques for pattern
recognition, computer vision, image analysis, and speech recognition, as well as
their applications in such diverse areas as robotics, health, entertainment, space
exploration, telecommunications, data mining, document analysis, and natural
language processing and recognition, to name only a few of them. Moreover, it
provided a forum for scientific research, experience exchange, sharing new knowl-
edge and increasing cooperation between research groups in pattern recognition
and related areas.

It is important to underline that these conferences have contributed signif-
icantly to the growth of national associations for pattern recognition in the
Iberoamerican region, all of them as members of the International Association
for Pattern Recognition (IAPR).

The scientific program included a tutorial day, with three topics addressed:
an introduction to kernel machines, by Stéphane Canu; multimodal human –
computer interaction for mobile computing, by Matthew Turk; and soft com-
puting, f-granulation and pattern recognition, by Sankar Pal. We warmly thank
the three speakers for having agreed to give these tutorials.

The next three days were organized in a single-track conference, with invited
talks, oral presentations, and posters. We were very pleased to welcome four
distinguished invited speakers: Alexandre Falcão on design of pattern classifiers
using optimum-path forest with applications in image analysis; Stéphane Canu
on recent advances in kernel machines; Matthew Turk on computational illumi-
nation; and Seth Hutchinson speaking on vision-based control of robot motion.
We are very grateful and would like to thank them. The oral and poster sessions
included 70 papers selected from 145 submissions. All submissions were double-
blind reviewed by at least two reviewers. We thank all reviewers, who provided
high-quality reviews in a short time.

To enhance the visibility of the best submissions and to stimulate further good
scientific papers, some authors will be invited to submit an enhanced version of
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their paper to a special issue of International Journal of Pattern Recognition
and Artificial Intelligence, to be published in 2012.

In addition, an award, consisting of a cash prize, a trophy and a certificate,
was given to the author(s) of the Best Paper registered and presented at CIARP
2010. The aim of this award is to acknowledge and encourage excellence and
originality of new models, methods and techniques with an outstanding theo-
retical contribution and practical application to the field of pattern recognition
and/or data mining. The selection of the winner was based on the wish of the
author to be considered to the prize, the evaluation and recommendations from
members of the Program Committee and the evaluation of the IAPR-CIARP
Award Committee. This committee, carefully chosen to avoid conflicts of inter-
est, evaluated each nominated paper in a second review process, which included
the quality of the oral and/or poster presentation.

The conference was organized by the University of Sao Paulo. We would like
to thank all participants of the organizing committee and auxiliary committee,
at USP and UFABC, for their tremendous work, which made the conference a
success.

Finally, we would like to thank all authors and participants, who contributed
to the high quality of the conference and scientific exchanges.

November 2010 Isabelle Bloch
Roberto M. Cesar-Jr.
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André Ricardo Backes, Danilo Medeiros Eler, Rosane Minghim, and
Odemir Martinez Bruno

Multiresolution Histogram Analysis for Color Reduction . . . . . . . . . . . . . . 22
Giuliana Ramella and Gabriella Sanniti di Baja

Graphs and Hypergraphs

Graph of Words Embedding for Molecular Structure-Activity
Relationship Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Jaume Gibert, Ernest Valveny, and Horst Bunke

A Hypergraph Reduction Algorithm for Joint Segmentation and
Classification of Satellite Image Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Dayron Rizo-Rodŕıguez, Heydi Méndez-Vázquez, and
Edel Garćıa-Reyes
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Abstract. This talk will review recent advances in the kernel meth-
ods focusing on support vector machines (SVM) for pattern recognition.
Topics discussed include the kernel design issue through the multi kernel
approach and the optimization issue with emphasis on scalability and
non convex cost functions.
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Abstract. Current image acquisition and storage technologies have pro-
vided large data sets (with millions of samples) for analysis. Samples may
be images from an image database, objects extracted from several im-
ages, or image pixels. This scenario is very challenging for traditional
machine learning and pattern recognition techniques, which need to be
more efficient and effective in large data sets. This lecture presents a re-
cent and successful methodology, which links training samples in a given
feature space and exploits optimum connectivity between them to the
design of pattern classifiers. The methodology essentially extends the Im-
age Foresting Transform, successfully used for filtering, segmentation and
shape description, from the image domain to the feature space. Several
supervised and unsupervised learning techniques may be created from
the specification of two parameters: an adjacency relation and a connec-
tivity function. The adjacency relation defines which samples form arcs
of a graph in the feature space.

The connectivity function assigns a value to any path in the graph.
The path value indicates the strength of connectedness of its terminal
node with respect to its source node. A connectivity map is maximized
by partitioning the graph into an optimum-path forest rooted at its max-
ima (i.e., representative samples of each class/group, called prototypes).
The optimum-path forest is then a pattern classifier, which assigns to
any new sample the class (or group label) of its most strongly connected
root. The methods have been successfully applied to several applications
and this lecture demonstrates two recent ones: content-based image re-
trieval (CBIR) and 3D segmentation of brain tissues in MR images. In
CBIR, user interaction is considerably reduced to a few clicks on rele-
vant/irrelevant images along 3 iterations of relevance feedback followed
by supervised learning in order to achieve satisfactory query results. The
3D segmentation of brain tissues is automatically obtained in less than
2 minutes. It exploits voxel clustering, some prior knowledge and does
not require a brain atlas for that purpose, while many other brain tis-
sue segmentation methods do. The lecture concludes by discussing some
open problems and perspectives for the optimum-path forest classifiers.
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Abstract. Visual servo control is now a mature method for controlling
robots using real-time vision feedback. It can be considered as the fusion
of computer vision, robotics and control, and it has been a distinct field
since the 1990’s, though the earliest work dates back to the 1980’s. Over
this period several major, and well understood, approaches have evolved
and have been demonstrated in many laboratories around the world.
Many visual servo schemes can be classified as either position-based or
image-based, depending on whether camera pose or image features are
used in the control law. This lecture will review both position-based
and image-based methods for visual servo control, presenting the ba-
sic derivations and concepts, and describing a few of the performance
problems faced by each. Following this, a few recent and more advanced
methods will be described. These approaches essentially partition the
control system either along spatial or temporal dimensions. The former
are commonly referred to as hybrid or partitioned control systems, while
the latter are typically referred to as switched systems.
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Abstract. Different components of soft computing (e.g., fuzzy logic, ar-
tificial neural networks, rough sets and genetic algorithms) and machine
intelligence, and their relevance to pattern recognition and data mining
are explained. Characteristic features of these tools are described con-
ceptually. Various ways of integrating these tools for application specific
merits are described. Tasks like case (prototype) generation, rule gener-
ation, knowledge encoding, classification and clustering are considered
in general. Merits of some of these integrations in terms of performance,
computation time, network size, uncertainty handling etc. are explained;
thereby making them suitable for data mining and knowledge discovery.

Granular computing through rough sets and role of fuzzy granulation
(f-granulation) is given emphasis. Different applications of rough gran-
ules and certain challenging issues in their implementations are stated.
The significance of rough-fuzzy computing, as a stronger paradigm for
uncertainty handling, and the role of granules used therein are explained
with examples. These include tasks such as class-dependent rough-fuzzy
granulation for classification, rough-fuzzy clustering, and defining gener-
alized rough entropy for image ambiguity measures and analysis. Image
ambiguity measures take into account the fuzziness in boundary regions,
as well as the rough resemblance among nearby gray levels and nearby
pixels.

Significance of rough granules and merits of some of the algorithms
are described on various real life problems including multi-spectral im-
age segmentation, determining bio-bases (c-medoids) in encoding protein
sequence for analysis, and categorizing of web document pages (using
vector space model) and web services (using tensor space model). The
talk concludes with stating the possible future uses of the methodolo-
gies, relation with computational theory of perception (CTP), and the
challenges in mining.
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Abstract. The field of computational photography includes computa-
tional imaging techniques that enhance or extend the capabilities of dig-
ital photography, a combination of computer vision, computer graphics,
and applied optics. Computational illumination is an aspect of compu-
tational photography that considers how to modify illumination in order
to facilitate useful techniques in computer vision and imaging. This talk
will present research using multiflash imaging, coded shadow photog-
raphy, and parameterized structured light, three families of techniques
in computational illumination, where the results help to produce reli-
able information in scenes that is often difficult to robustly compute
otherwise.
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Abstract. Recently, we have proposed a novel approach of texture anal-
ysis that has overcome most of the state-of-art methods. This method
considers independent walkers, with a given memory, leaving from each
pixel of an image. Each walker moves to one of its neighboring pixels
according to the difference of intensity between these pixels, avoiding re-
turning to recent visited pixels. Each generated trajectory, after a tran-
sient time, ends in a cycle of pixels (attractor) from where the walker
cannot escape. The transient time (t) and cycle period (p) form a joint
probability distribution, which contains image pixel organization charac-
teristics. Here, we have generalized the texture based on the deterministic
partially self avoiding walk to analyze and classify colored textures. The
proposed method is confronted with other methods, and we show that it
overcomes them in color texture classification.

Keywords: partially self-avoiding deterministic walks, texture analysis,
color images.

1 Introduction

Texture is one of the most important visual attribute in computer vision and image
analysis. It is a visual pattern which, in digital images, consists of sub-patterns.
The sub-patterns are related to the pixel distribution in an image region and its
characteristics, such as size, brightness and color. Although, there is no exact def-
inition for texture in the literature, it is an attribute naturally comprehended by

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 6–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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humans and responsible to improve the human vision process. Texture importance
is presented in Ref. [2] for both, natural and artificial vision. In computer vision,
there is a huge number of texture applications that are found in various areas.
These applications range from aiding diagnoses in medical images [3], analysis of
geological structures in images [4], microscope images [5] etc.

Texture has been thoroughly studied and many methods have been proposed
to solve and improve the analysis [2,6]. These methods can be grouped in: image
pixels spectral analysis (e.g., Fourier descriptors [7] and Gabor filters [8]), pixels
statistical analysis (e.g., co-occurrence matrices [9], Feature-based Interaction
Map [10]) and complexity analysis (e.g., Fractal Dimension [11,12]).

Recently, we have proposed a novel approach of texture analysis that achieved
better results than most of the state-of-art methods [1,13,14]. It considers in-
dependent walkers leaving from each pixel of an image. With a given memory,
each walker moves to one of its neighboring pixels according to the difference of
intensity between these pixels, avoiding returning to recent visited pixels. Each
generated trajectory, after a transient time t, ends in an attractor, i.e., a cy-
cle of p pixels from where the walker cannot escape. These transient times and
attractors contain characteristics of the pixel organization in that image.

For instance, consider a partially self-avoiding deterministic walk, where a
walker wishes to visit N sites randomly distributed in a map of d dimension.
The walker can move from one to another site following the rule of, at each dis-
creet time step, to go to the nearest site not visited in the previous μ steps. The
agent performs a partially self-avoiding walk, where the self-avoidance is lim-
ited to the memory window τ = μ − 1. The walker’s behavior depends strictly
on the data set configuration and on the starting site [15,16]. The walker’s
movements are entirely performed based on a neighborhood table, so that the
distances among the sites are simply a way of ranking their neighbors. This
feature leads to an invariance in scale transformations [17]. Each trajectory
has an initial transient part of length t and ends in a cycle with period p.
Both the transient time and cycle period can be combined in the joint prob-
ability distribution S

(N)
μ,d (t, p). The simplest case to deal with the deterministic

walker is to consider μ = 0, where the walker remains forever at the initial
site S

(N)
0,d (t, p) = δt,0δp,1, where δi,j is the Kronecker’s delta. Despite its trivial-

ity, this becomes interesting because it is the simplest situation of a stochastic
walk [18]. For a memoryless walker (μ = 1), the walker, at each time step,
the walker must leave the current site and go to the nearest one. After a very
short transient time, the walker becomes trapped by a couple of mutually near-
est neighbors. The transient time and period joint probability distribution, for
N � 1, is [19]: S

(∞)
1,d (t, p) = [Γ (1 + I−1

d )(t + I−1
d )/Γ (t + p + I−1

d )]δp,2, where
Γ (z) is the gamma function and Id is the normalized incomplete beta func-
tion Id = I1/4[1/2, (d + 1)/2]. In the limit d → ∞, one is able to calculate
it analytically [20]: S

(N)
2,∞(t, p) = e−[3N(t+p−2)(t+p−3)/2]/[(3 − δt,0)N ]. Analytical

calculations [21] were also performed for the stochastic walk. When greater values
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of μ are considered, the cycle distribution is no longer peaked at pmin = μ + 1,
but presents a whole spectrum of cycles with period p ≥ pmin [15,16,20].

The presentation is organized as follows. In Sec. 2, we review how this walk
can be used to analyse and classify textures in images [1] and the (t, p)-joint
distributions are used to generate a single signature vector for colored images.
In Sec. 3, experiments are described and performed on standard colored tex-
ture images. These experiment show that the presented algorithm outperform
traditional methods (Chromatic moments [22], Color differential [23] and to the
gray-scale deterministic walker previous version [1]). We address our final re-
marks in Sec. 4.

2 Walks on Color Images and Texture Signature

In Ref. [1], the partially self-avoinding deterministic walk has been proposed as
a tools to texture analysis and classification. This algorithm has been developed
to analyze gray level texture. Here, we generalize the algorithm to be capable to
deal with colored images. A colored image, of N = Mx×My pixels, is formed by
three layers, each one representing a color (red, green and blue). In each layer the
color intensity varies, in integer values, from 0 to 255. Basically, the algorithm is
exact the same of the previous version, but now one has a walker for each layer.
The partial information of each walker is then joined in a single signature. Two
pixels, (xi, yi) and (xj , yj) are considered neighbors if the Hamming distance is
d(i, j) ≤ 2.

A walker can only move according to the following rule: move to the nearest
or furthest neighbor (i.e., the one which differs in the minimum or maximum
intensity value, respectively, from the current position) and that has not been
visited in the last μ(μ ∈ [1, N ]) previous steps. This rule produces partially
self-avoiding walks[1].

For each initial condition (i.e., the starting pixel), the walker produces a dif-
ferent trajectory. Notice, however, that different initial conditions can lead to the
same attractor. Considering all pixels in the image as starting points, we com-
pute the joint probability distribution of transient time t and attractor period p,
S

(N)
μ,2 (t, p). From the study of these distributions, using statistical techniques, it is

possible to achieve a signature able to discriminate the image texture [1,13,14,17].
Previous studies have shown the S

(N)
μ,2 (t, p) potential application in the clas-

sification of gray-scale textures [1,13,14]. Any change on image context affects
the walk and, as a consequence, its joint probability distribution, achieved for
an specific memory μ and walking rule. It makes this distribution a useful tool
for texture analysis.

Many approaches can be used to extract relevant information from the joint
probability distribution. Good results have been reported by the use of the his-
togram hτ (n) on gray-scale textures analysis. This histogram represents the fre-
quency that a trajectory of length n, where n = t + p ≥ τ + 2, is performed
by the walker, using a specific memory range τ . From this histogram, a texture
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signature is easily built by selecting a total of m descriptors. In the case of color
textures, each channel is processed by the deterministic walk independently, thus
resulting in a joint probability distribution and, as a consequence, a histogram
specific for that channel.

υ(C)
τ (m) = [h(C)

τ (τ + 2), h(C)
μ (τ + 3), . . . , h(C)

μ (τ + 1 + m)], (1)

where C represent the channel explored in the texture. A texture signature which
explores all color channels (R, G and B) with memory μ is defined as:

ψτ (m) = [υ(R)
τ (m),υ(G)

τ (m),υ(B)
τ (m)]. (2)

As the joint probability distribution is modified according to the μ value, it is also
interesting to evaluate a texture pattern considering the signatures computed for
different memories μ:

ϕM (m) = [ψ0(m),ψ1(m), . . . ,ψM (m)] . (3)

3 Experiments and Results

Experiments have been performed to determine the configuration of the signa-
ture, in terms of memory and walk rule, that leads to the best color texture
classification. Signatures were evaluated in a texture classification scheme. The
VisTex [24] is a set of colored images widely used as benchmark for texture
analysis (see Figure 1). This database has been used 640 samples of 40 classes.
Each class contains 16 texture samples of 128× 128 pixels.

Fig. 1. One example of each of the 40 texture classes considered in the VisTex database

The evaluation of the signatures was performed using Linear Discriminant
Analysis (LDA), a classification method based on supervisioned learning. LDA
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aims to find a linear combination of the descriptors (independent variables) that
results in its class (dependent variable). This linear combination results in the
data projection in a linear subspace where inter-classes variance is larger than
intra-classes variance [25,26]. The leave-one-out cross-validation strategy was
also used, where each sample from the database is used for validation while
remaining samples are used for training. This is repeated until all samples were
used for validation.

Previous experiments [13] conducted over S
(N)
μ,2 (t, p) have shown that most

image information is concentrated within few elements, where 0 ≤ t ≤ 4 and
(τ + 2) ≤ p ≤ (τ + 5). From now on, we extract m = 4 descriptors from hτ (n)
to compose the feature vectors ψτ (m) (Eq. 2).

In Table 1, we show the success rate signatures (Eq. 2), evaluated accord-
ing to different τ values, for both walking rules: agents guided to minimum
and maximum intensity difference. The main difference between these walking
rules concerns the regions where the attractors are found. The walk guided to
the direction of the maximum pixel intensity difference locates attractors where
modifications in image context are more abrupt, i.e., heterogeneous regions of
the texture. Otherwise, walkers guided to the minimum intensity difference lo-
cate attractors, where the image present more homogeneous patterns. Heteroge-
neous regions are usually related to the presence of image contours or changes
in texture patterns, both important visual attributes in the characterization of
objects [27,28]. This explains the superior performance of the maximum dif-
ference in comparison to the minimum difference in the texture classification.
As these walking rules produce signatures with different characteristics of the
image, it would be interesting to evaluate the combination of these signatures
into one (described as Min ∪Max). As expected, the union of heterogeneous
and homogeneous texture information provides a more powerful tool for image
analysis. We also note that, independent of the used walking rule, the success
rate decreases as the memory increases. Each walker produces a self-avoiding
trajectory, which depends on the memory used. This memory avoids that the
walker visits some pixels of the image, so that, a better exploration of the image
is performed. As the memory increases, more the agent has to walk to find an
attractor. Higher memories endangers the local exploration of the texture by the
walker, which reflects on the decreases of the success rate.

Table 2 shows the results obtained when multiple memories τ are used to
compose the texture signature ϕM (4) (Eq. 3). Note that this signature provides

Table 1. Success rate for ψτ (4) signature (Eq. 2) using different τ values and walking
rules in the VisTex database

Memory(τ)
Texture signature 0 1 2 3 4 5

Min 56.87% 44.37% 33.91% 27.06% 20.47% 15.14%
Max 90.16% 65.78% 76.09% 59.84% 60.31% 30.16%

Min ∪ Max 94.37% 81.72% 81.41% 74.06% 70.31% 50.31%
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Table 2. Success rate for the texture signature ϕM (4) (Eq. 3) combining different τ
values in the VisTex database

Multiple Memories (M)
Texture signature 1 2 3 4 5

Min 74.21% 77.65% 78.75% 79.06% 80.94%
Max 93.90% 94.53% 94.69% 94.53% 95.00%

Min ∪ Max 96.25% 96.09% 97.03% 96.87% 96.72%

an increase in success rates in comparison to the results of Table 1, where each
memory was independently evaluated. This approach enable us to characterize a
texture using information collected from different scales, thus providing a more
efficient image classification.

Finally, we compare our algorithm to other texture analysis methods, which
are briefly described below. Chromaticity Moments: it is based on the concept
of chromaticities as defined within the CIE XYZ color space, where each image
pixel results in a pair of (x, y) chromaticity values. From the chromaticity values
distribution, moments are computed to compose a feature vector that allows
to characterize the image in terms of color and texture [22]. Color Differential:
the method uses a fractal measure on the interaction between color bands of
the image. It is based on the study of the intercolor volume enclosed between
each two color surfaces. The method also considers the CIE-chromaticity value
for material color information as an additional feature of the image [23]. This
method is originally proposed for the segmentation of digital images, but it can
be easily adapted to solve problems of texture classification.

Table 3. Comparison of the success rates for different color texture methods in the
VisTex database

Method Images correctly classified Success rate(%)

Chromaticy Moments 534 83.44
Color Differential 599 93.59

Deterministic Walk (color) 621 97.03
Deterministic Walk (gray) 597 93.28

In Table 3 we show the success rate of our method to Chromaticity Moments
and the Color Differential methods. In this comparison, the best result has been
achieved by our method (using Eq. 3 with M = 3, for minimum and maximum
walk rules). We also consider in this comparison the results of our method when
disregarding the color information of the texture, i.e., walks performed only over
the gray-scale version of the texture, where one clearly sees that a colored image
has more information than a single gray-scale image.

We note that the deterministic walker’s best result achieved better results
from compared color texture methods. In fact, the use of ψμ signature computed
for μ = 0, and both minimum and maximum directions, as described in Table 1,
provides a result better than Chromaticy Moments and Color Differential, thus
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evidencing the quality of the proposed approach in color texture analysis. Results
also show that the use of color information provides a better identification of
texture patterns, as the deterministic walker’s performance over color texture is
superior in comparison to gray-scale textures.

4 Conclusion

We have presented a generalized version of the texture feature extraction based
on partially self-avoiding deterministic walks to deal with color textures. The
proposed method uses walkers that explore the different color channels of an
image on a given scale (memory). A simple signature vector is computed and
numerical experiments have been conducted with a color texture database to
evaluate the success rates. Our method has been confronted with the previous
one and with other two state-of-art color texture algorithms. It has overcame all
of them. The result demonstrates the great potential of the proposed method,
combining color information of the texture and be capable of recognize it.
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2 Instituto de Ciências Matemáticas e de Computação (ICMC)
Universidade de São Paulo (USP)

Avenida do Trabalhador São-carlense, 400
13560-970 São Carlos SP Brazil

danilome@gmail.com, rminghim@icmc.usp.br
3 Instituto de F́ısica de São Carlos (IFSC)

Universidade de São Paulo (USP)
Avenida do Trabalhador São-carlense, 400

13560-970 São Carlos SP Brazil
bruno@ifsc.usp.br

Abstract. Developments in techniques for modeling and digitizing have
made the use of 3D models popular to a large number of new applica-
tions. With the diffusion and spreading of 3D models employment, the
demand for efficient search and retrieval methods is high. Researchers
have dedicated effort to investigate and overcome the problem of 3D
shape retrieval. In this work, we propose a new way to employ shape
complexity analysis methods, such as the fractal dimension, to perform
the 3D shape characterization for those purposes. This approach is de-
scribed and experimental results are performed on a 3D models data
set. We also compare the technique to two other known methods for 3D
model description, reported in literature, namely shape histograms and
shape distributions. The technique presented here has performed consid-
erably better than any of the others in the experiments.

Keywords: Fractal dimension, complexity, 3D shape descriptor.

1 Introduction

The use of 3D models is growing on the Internet and in specific domains (e.g.,
Biology, Medicine and Archaeology). This fact is directly related to new ac-
quisition technologies, such as 3D scanners, and to new 3D graphics rendering
technologies; these in turn are also related to the evolution of graphics hardware,
CPUs and modeling tools, that have eased the construction of 3D models [1,2].

This growth requires new efficient mechanisms to organize, search and re-
trieve these 3D models from large repositories. To solve that problem, efforts
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have been made to investigate the specific problem of 3D shape retrieval. Which
has been solved by effective description methods. Generally, 3D shape retrieval
approaches are based on feature methods, which calculate geometric and topo-
logical properties from 3D objects; graph methods, which extract a graph rep-
resenting geometric meaning from shape components; and other methods (e.g.,
based on 3D appearance, shape deformation and view similarity) [3,2,4].

In this work, we propose to use shape complexity analysis methods, such as
the fractal dimension, to perform 3D shape characterization. Fractal dimension
is described in the literature as a non-integer value related to the complexity
of a Fractal object (non-Euclidean geometry). In shape analysis, this property
enables us to quantify the shape complexity in terms of space occupation and
self-similarity [5,6,7,8]. We also compare this complexity analysis approach to
other two known shape descriptors in the literature, based on shape histograms
and shape distribution.

Thus, this paper starts describing how shape complexity analysis is performed
in 3D models using a multi-scale approach (Section 2). In Section 3, we de-
scribe the experiments performed on the 3D model data base [9] (available at
http://segeval.cs.princeton.edu) and the compared methods. Results are pre-
sented and discussed in Section 4, while Section 5 describes the conclusions
drawn from this work.

2 Fractal Dimension Based Approach

Some of the literature on object descriptors define the fractal dimension as an
interesting parameter to characterize roughness in an object [10]. Among the
many approaches developed to estimate this parameter, Bouligand-Minkowski
method [5,11,12] has emerged as the one that presents the most accurate results
and has shown to be very sensitive to structural changes of the object. This
method was originally developed for shape analysis. However, recent studies
have described its use in texture analysis, an evidence that the method can also
be effective in estimating the complexity of 3D models [6,13].

Let S = [s1, s2, . . . , sN ], be the set of vertices that compose the faces of a
3D model. Each vertex si is defined by the triple (x, y, z), where x, y and z are
the coordinates of a vertex in R3. Bouligand-Minkowski method is based on the
study of the influence volume of an object computed from its dilation. Thus, let
V (r) be the dilation of S by a sphere of radius r:

V (r) =
{
sj ∈ R3|∃si ∈ S : |si − sj | ≤ r

}
, (1)

where sj = (xj , yj, zj) is a point in R3 whose distance from si = (xi, yi, zi) is
smaller or equal to r. Figure 1 shows an example of this dilation process.

From the study of the influence volume, the fractal dimension D can be esti-
mated as

D = 3− lim
r→0

log V (r)
log (r)

, (2)

where D is a number within [0; 3] related to the roughness of the shape.
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(a) (b) (c) (d)

Fig. 1. Example of the influence volume V (r) computed for a set of points in (a); (b)-(d)
Influence volume for different radius values (r = {1, 3, 5}). As the radius increases, more
interaction among the spheres occurs, thus producing an influence volume characteristic
for the set of points.

Regardless of the large sensitiveness of the method to structural changes, there
are cases where a single non-integer value is not sufficient to describe all levels
of detail present in the influence volume V (r) for a specific object. A better
description of the 3D model, in terms of its complexity, is achieved by using
the concept of Multi-Scale Fractal Dimension [14,15,11]. Different from linear
interpolation, which is commonly used to compute the angular coefficient of the
log-log curve r×V (r), this approach exploits the infinitesimal limit of the linear
interpolation by using the derivative of the log-log curve. As a result, a function
that expresses the complexity of the object in terms of the spatial scale is yielded
(Figure 2). This function enables us to perform a more effective discrimination
of the object, and it is defined as:

D(r) = 3− d log V (r)
dr

, (3)

where D(r) represents the complexity of the object at scale r.

3 Evaluation of the Shape Descriptor

In order to evaluate the proposed approach, an experiment was performed using
a set of artificial 3D models. This set comprises 380 3D models grouped into
19 different classes with 20 samples each. Each class is composed by different
orientations as also variations (e.g., articulation) of a given shape structure.
Figure 3 shows some examples of 3D models in the data set [9] (available at
http://segeval.cs.princeton.edu).

Multi-scale fractal dimension curves were computed from each model. The
technique was set up considering a dilation radius r = 20, and the derivative was
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(a) (b)

Fig. 2. (a) Log-log curve computed from shape dilation; (b) Multi-scale Fractal
Dimension

computed using the Finite Difference method [16]. Resulting curves were evalu-
ated using Linear Discriminant Analysis (LDA), a supervised statistical classifi-
cation method [17,18] which searches for a linear combination of the descriptors
that results in its class. The main goal of the method is to find a linear combination
that maximizes the intra-class variance while minimizes the inter-class variance.
The leave-one-out cross-validation strategy was also used over the LDA.

3.1 Compared Approaches

This new formulation was implemented and compared to two known approaches,
also implemented, for 3D shape description and matching. The compared ap-
proaches are: (i) 3D shape histograms and (ii) Shape distributions. These are
statistical properties methods and they were selected as our approach resem-
bles them, since it computes the distribution of influence volume for a specific
dilatation radius. A brief description about those approaches is given below.

Fig. 3. Examples of 3D shapes used in the experiments
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Fig. 4. Space decomposition based on shells, sectors and both combined. Each partition
is a single bin in the resulting histogram, and each bin represents the amount of shape
in that partition. Adapted from [19].

3D shape histograms: Ankerst et al [19] proposed an approach to compute
discrete representations from 3D objects based on 3D shape histograms. In this
approach, the space is decomposed based on one of the three suggested tech-
niques: shell model, sector model and the combination of the previous techniques,
as shown in Figure 4. The histogram computation is performed with the cho-
sen space decomposition technique, and each bin stores the amount of vertices
positioned in each partition of the decomposed space.

To avoid translation and rotation problems, before the histogram computation
a normalization step is applied over the 3D object. Firstly, the center of mass of
the objects is placed onto the origin. Then, a 3×3 covariance matrix is computed
over the coordinates of all points from which the eigenvectors, representing the
principal axes of the original 3D object, and eigenvalues, indicate the variance
of the points in the respective eigenvector direction, are achieved. Finally, the
Principal Axes Transform [19] is performed over the 3D object.

Shape distributions: Osada et al. [20] proposed a method to describe 3D ob-
jects as a probability distribution sampled from the object as a shape function,
which reflects geometric properties of the object. The method computes his-
tograms, known as shape distributions, using a specific measure computed from
randomly selected points on the surface of the 3D object.

To achieve good classification and retrieval results, it is essential to select a
shape function whose distribution provides a good shape signature. Osada et al.
[20] presented some experiments using distinct shape functions. The best results
were achieved using the D2 shape function, which represents the shape of a 3D
model by the distribution of Euclidean distances between pairs of points on its
surface.

4 Results

Table 1 shows classification results yielded for the proposed and the compared
approaches. Multi-scale fractal dimension curves were computed from each 3D
object considered. The best results for this set of artificial 3D models were yielded
considering dilation radius r = 20. Derivative was computed using the Finite
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Table 1. Comparison of the success rates for different shape descriptors

Method Objects correctly classified Success rate(%)
3D shape histogram 165 43.42
Shape distribution 256 67.37
Shape complexity analysis
(proposed approach) 320 84.21

Difference method [16], and the 130 first points of the curve were considered as
descriptors of the 3D object.

For the 3D shape histogram, a histogram based on 10 shells and 8 sectors was
considered instead of those proposed in the original paper (20 sectors and 6 or
12 shells). This configuration was preferred as it leads to a higher success rate
(43.42%) than the one achieved for the other configurations (38.42%, for both
6 or 12 shells) for this set of artificial 3D models. For the dissimilarity of the
shape distributions, it was measured based on L1 norm of the probability den-
sity function of the D2 shape function. A normalization step was performed by
aligning the mean sample values of two compared probability density functions.

Results show that the proposed approach surpasses the effectiveness of the
compared ones, as it is more robust in the classification of the 3D models evalu-
ated. This is mostly due to the great sensitiveness and accuracy of the Bouligand-
Minkowski method to detect small changes in the surface model. Moreover, the
approach is invariant to rotation, i.e., no previous normalization step is neces-
sary during its calculus, due to the use of the Euclidean distance. The main
disadvantage of the method lies in the dilatation process, which is performed in
a discrete space using the Euclidean Distance Transform (EDT) [21,22]. Since
the original 3D model data was defined at interval [0, 1], it was necessary to
normalize it to [0, 50] before the dilatation process took place.

Note that the shape distribution approach is also invariant to rotation. As
this approach uses random sampling during calculations, it is also insensitive to
small perturbations in the object (e.g., articulation). These characteristics of the
method explain its performance.

The inefficient discrimination achieved by the 3D shape histogram is mostly
due to the presence of articulation in some 3D models. Although, this method
uses a normalization step to avoid rotation invariance and a quadratic form dis-
tance function as an adaptable similarity function, the presence of articulations
and others small variations results in the same basic structure, for two different
models, mapped in different bins of the histogram and, therefore, does not reflect
the close similarity of the models.

5 Conclusions

This paper proposes a novel approach to discriminate 3D models based on
shape’s complexity analysis methods. Multi-scale fractal dimension curves are
used to represent the 3D shape. These curves are computed based on the space
occupation and self-similarity of the 3D shape.
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The proposed approach was evaluated using a 3D model data set [9] and
reported interesting results to discriminate different 3D models, significantly
surpassing two other known methods: 3D Shape Histograms and Shape Dis-
tributions. The compared approaches are not sensible enough to make subtle
distinctions. Whereas our approach improved the effectiveness and the results
also demonstrated its robustness in dealing with different shape, rotation and
articulation of 3D models. Furthermore, the parameterization of our approach
is simpler than the compared.

In the future, we plan to perform new experiments in a larger data set (e.g.,
The Princeton Shape Benchmark [23]) and to compare our approach to other
classes of shape discriminator methods.
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Abstract. A new technique for color reduction is presented, based on the 
analysis of the histograms of an image at different resolutions. Given an input 
image, lower resolution images are generated by using a scaling down 
interpolation method. Then, peaks and pits that are present in the histograms at 
all resolutions and dominate in the histogram of the input image at full 
resolution are taken into account to simplify the structure of the histogram of 
the image at full resolution. The so modified histogram is used to define a 
reduced colormap. New colors possibly created by the process are changed into 
the original colors closer to them. 

1   Introduction 

The human visual system is able to distinguish a large number of colors. However, it 
generally groups colors with similar tonality, since even a few colors are often enough 
for image understanding. When considering a digital image, color reduction can be 
used analogously to generate a transformed image, where a smaller number of distinct 
representative colors are used, while the visual appearance of the original image and 
of the transformed image is as similar as possible. The increasing number of 
applications, e.g., [1-3], dealing with multimedia data where millions of distinct 
colors are present makes color reduction particularly useful, especially for storage and 
transmission purposes.  

Color quantization can be seen as a clustering problem in the 3D space, where the 
coordinate axes are the color components and each point represents one of the colors 
in the image. By means of a clustering technique, points are grouped into an a priori 
fixed number of clusters, each of which is associated a representative color, generally 
obtained as the average of the points in the cluster [4-6]. The most known methods to 
build a colormap with an a priori fixed number of colors are the median cut algorithm 
[1], which is based on the popularity method suggested by Boyle and Lippman in 
1978, and the octree color quantization algorithm [7]. Other quantization methods in 
the literature are based on histogram analysis [8-10], fuzzy logic [11,12], neural 
network [13,14] and multiresolution analysis [9,10,15].  

In this paper, we present a color reduction algorithm, based on color distribution 
and on the use of multiresolution image representation. The method is a substantial 
modification and improvement of a method we have recently suggested, which is also 
in the framework of multiresolution histogram analysis [10]. With respect to our 
previous method, the main differences are: 1) a different strategy to obtain the 
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multiresolution image representation, 2) the process for simplifying the structure of 
the histogram, 3) the introduction of an updating of the colormap (both when building 
lower resolution representations of the input image and when computing the reduced 
colormap), and 4) the ability of the method to originate automatically a transformed 
image with a number of colors in the range established by the user.  

One of the advantages of the suggested method is the possibility to obtain different 
transformed images, each characterized by a different number of colors. This makes 
our method useful for progressive transmission, where a transformed image quantized 
with a small/large number of colors can be initially transmitted, and versions with 
larger/smaller numbers of colors can be provided, if demanded by the receiver. 

The paper is organized as follows. Some preliminary notions are given in Section 
2; the method is described in Section 3 and experimental results are discussed in 
Section 4. Concluding remarks are finally given in Section 5. 

2   Preliminaries 

We work with RGB images and interpret colors as three-dimensional vectors, with 
each vector element having an 8-bit dynamic range.  

Given a color image I, let H be the histogram of the values in any of the color 
components of I. We consider as peaks and pits of H the values that are relative local 
maxima and relative local minima, respectively. Formally, if p-1, p and p+1 are three 
consecutive values in H, and height(p) denotes the height of the bin associated to p in 
H, i.e., the number of pixels with value p, then:  

 

• if (height(p-1)≤height(p) and height(p+1)<height(p)) or (height(p-1)<height(p) 
and height(p+1)≤height(p)), p is a peak;  

 

• if (height(p)≤ height(p-1) and height(p)<height(p+1)) or (height(p)<height(p-1) 
and height(p) ≤ height(p+1)), p is a pit.  

 

Peaks and pits of H can be seen as vertices of a polygonal approximation of H. To 
simplify the structure of the histogram by retaining only the most significant vertices, 
we associate to each vertex vi three parameters (see Fig. 1a):  

 

• the area ai of the region of the histogram dominated by vi (i.e., the area of the 
triangle formed by the three successive vertices vi-1, vi and vi+1),  

 

• the cosine ci of the angle formed by the two straight lines respectively joining vi 
with vi-1 and with vi+1,  

 

• the distance di of vi from the straight line joining vi-1 and vi+1.  

The above parameters, introduced in [16] in the framework of 2D object’s contour 
analysis to define the dominance of a vertex on the basis of criteria of perceptual 
significance, are here used in the context of multiresolution histogram analysis (see 
Section 3).  

Lower resolution representations of a color image I can be obtained in different 
manners, e.g., by means of pyramids, and can be used to simplify the structure of the 
full resolution histogram. In this paper, we compute lower resolution representations  
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a)  b) 

Fig. 1. a) The three parameters ai, ci, di associated to the vertex vi, b) An histogram before, left, 
and after the simplification process, right 

of I by means of a scaling down method based on nearest neighbor interpolation. The 
main advantage of this choice, with respect to using a Gaussian pyramid, is that any 
reduction factor f can be employed, instead of the reduction factor of 0.5 along each 
coordinate direction. Thus, lower resolution versions of I can be obtained, where 
resolution diminishes less abruptly along the levels. Another useful feature is that f 
can assume different values during the construction of the lower resolution images. In 
particular, a smaller f can be used to build the first lower resolution image, starting 
from the full resolution input image, and a larger f to build all successive lower 
resolution images, each of which is computed starting from the immediately previous 
one. The use of a larger value for f at the first scaling down step is motivated by the 
fact that even a rather strong compression does not dramatically alter the information 
contents, when done on the full resolution image. In turn, a smaller compression is 
advisable at the successive scaling down steps, i.e., when working with images that 
have already lost some information due to the resolution reduction. 

3   The Algorithm 

Our color reduction algorithm, based on the multiresolution analysis of color 
distribution in I, consists of two steps.  

Step 1 is devoted to the following tasks: 1) construction of L lower resolution 
representations Ik of the input image I; new colors, possibly created in the images Ik, 
are changed to their closest colors present in I. 2) computation, for each color 
component of I, of the histogram H of I as well as the histograms Hk for the L lower 
resolution images Ik.  

Step 2 is devoted to the multiresolution analysis of the histograms to identify 
values that can be grouped together and be replaced by a unique representative value 
in H. To this aim, the structure of H is simplified, by using information derived from 
H as well as from a subset of the L histograms Hk. The representative values found for 
the histogram H of the color components are combined, to generate the reduced 
colormap. New colors possibly created during histogram manipulation, are replaced 
by the color of the original colormap to which they result to be closer.  

If the number of colors of the transformed image I’ is in the range desired by the 
user the process terminates. Otherwise, Step 2 is repeated, after the number of lower 
resolution images taken into account is suitably increased/decreased, until the number 
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of colors of I’ is in the desired range. During Step 1, the original colormap is 
computed and is stored in a 3D array, where position (x,y,z) corresponds to the color 
with R=x, G=y, B=z. Then, standard OpenCV libraries are used to build the lower 
resolution images Ik via nearest neighbor interpolation. As pointed out in Section 2, 
different values for f can be used during scaling down. We have experimentally 
found, by analyzing images with different size and color distribution, that satisfactory 
results are obtained, in the average, by using a reduction factor f=0.5 for the first 
resolution reduction and f=0.8 for the successive ones. These values will be used as 
default values in this paper.  

In general, a number of images Ik could be built by repeatedly applying the scaling 
down process, but images Ik with too small size do not adequately preserve the 
information contents of I. Thus, we consider only the L successive images Ik whose 
size, expressed in number of pixels, includes at least 32 pixels for row and column. 
As soon as a lower resolution image Ik is created, the corresponding color map is 
built. Colors that are present in Ik, but do not exist in I, are changed to their closest 
colors in the original colormap, before building the successive lower resolution 
image. The histogram H of I and the histograms Hk of the L images Ik are computed. 
Peaks and pits are detected on all histograms. Depending on the number of histograms 
Hk, out of the L computed, that will be used for multiresolution histogram analysis, 
the transformed image I’ will be characterized by a different number of colors. A 
large number of resolution images will produce a transformed image with a small 
number of colors and vice versa.  

Step 2 starts by examining N histograms, where it is N= L/2 +1 and is aimed at 
simplifying H. We look for a simplification of H, accounting for the permanence 
along the N histograms and the dominance in H (intended as perceptual relevance) of 
a vertex vi. The permanence of vi of H is checked by verifying if the value of vi 
actually corresponds to a vertex in each Hk. The dominance of vi is evaluated with 
respect to geometrical parameters of the triangles associated to all the vertices. The 
choice of these parameters is done to take into account factors influencing human 
perception such as the size of the region “viewed” by a vertex (the area ai of the 
triangle associated to vi) and the "cornerity" (roughly related to ci) of the polygonal 
line including vi. Moreover, the distance di is related to an often used measure of 
perceptual significance in the context of polygonal approximation. The dominance of 
a vertex is evaluated in the context of the overall shape, by referring to the average 
value of all areas of the triangles associated to all the vertices. The average value is a 
term of comparison for each area and guides the process of vertex selection by giving 
more evidence to the vertices having area larger than the average. The dominance of a 
vertex is also locally evaluated by comparing the geometrical parameters associated to 
each pair of consecutive vertices.  

Let v1, v2..., vn be the vertices of H and let A be the average of the areas ai of the 
triangles associated to the vertices vi, i=1,..,n. The following process is done to 
simplify H.  

 

• Any vi of H that is not present in all the Hk and is such that ai<A is not retained 
as a vertex. The values of the three parameters (ai, ci, di) for all surviving vi of H, 
and the average area A are updated. 
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• Any pair of consecutive vertices (vi, vi+1) of H such that (ai<A and ai+1<A) and 
(ai =ai+1, or ci =ci+1, or di=di+1) is not retained as a vertex. 

 

• Any vi of H which is no longer a relative maximum or a relative minimum of H 
is not retained as a vertex. 

 

In Fig. 1b, an histogram H is shown before and after the simplification process. 
Once the structure of H has been simplified, all values from a pit to the successive pit 
are replaced by a single representative value. Three cases are possible:  

 

• If one single peak is in between two successive pits, the representative value is 
the value of the peak.  

 

• If more than one peak is in between two successive pits, the representative value 
is the value of the leftmost peak. 

 

• Otherwise, the representative value is the value of the leftmost pit.  
 

After combining the representative values of the color components the representative 
colors are obtained. These may not be included in the original colormap. To limit the 
presence of false colors, each representative color that is not found in the original 
colormap is replaced by the closest color in the original colormap. Selecting N=L/2 + 
1 histograms to identify the significant peaks and pits of H is in some cases already 
adequate to produce a transformed image I’ with colors in the range desired by the 
user. Otherwise, Step 2 is automatically repeated by analyzing either N+1 or N-1 
histograms. In fact, let C1 and C2 be the minimum and maximum number of colors 
desired by the user and let RC1 be the number of resulting representative colors, as 
obtained when Step 2 is accomplished for the first time, i.e., by analyzing L/2 + 1 
histograms. If it results C1≤RC1≤C2, the obtained image I’ is the final transformed 
image. If RC1<C1 (RC1>C2), N’=N-1 (N’=N+1) histograms are considered so 
originating a different simplification of H and, as a consequence, producing a new 
transformed image with a larger (smaller) number of colors. Step 2 is repeated as 
many times as necessary to obtain a transformed image I’ with colors in the desired 
range.  

 

            
 

      

Fig. 2. A set of test images 

4   Experimental Results 

We have applied the color reduction algorithm to a collection of images with different 
size and color distribution, taken from available databases, e.g., [17-19]. A small 
dataset including six 512×480 images, six 512×512 images, and six 768×512 images 
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is given in Fig. 2. This dataset is used to show the performance of our method in 
terms of the obtained number of representative colors, accounting for the degree of 
color compression, and the compression ratio, computed as the ratio between the size 
of the output stream and the input stream expressed in bit per pixel [20]. 

Table 1 summarizes the quantitative measures for the images in the dataset, after 
one application of Step 2, where L/2 + 1 histograms are analyzed to simplify H. The 
number of colors in I and in I’ are denoted by OC and RC1, respectively. CR1 denotes 
the compression ratio of I’. 

If the user desires a transformed image with a number of colors ranging, say, 
between C1 and C2 different colors, for some images in the dataset, the condition 
C1≤RC1≤C2 is not satisfied in one application of Step 2. These images are 
automatically processed again by using N+1 or N-1 histograms. In particular, N+1 
histograms are considered if RC1>C2, since by increasing the number of resolution 
levels taken into account the number of colors in the reduced colormap decreases. In 
turn, N-1 histograms are analyzed if RC1<C1. If the condition C1≤RC2≤C2 is still not 
satisfied after Step 2 is applied twice, multiresolution histogram analysis is repeated 
after furthermore increasing/decreasing the number of histograms. The process 
terminates as soon as with the current value N’ of histograms, for the transformed 
image it is C1≤RCF≤C2. 

Table 1 summarizes also the final results for the images in the data set, in 
correspondence with C1=256 and C2=512. The last column of the table denotes how 
many other histograms more (positive value) or how many histogram less (negative 
values) have to be used with respect to the starting L/2 + 1 histograms to satisfy the 
requirements of the user (and, hence, how many repetitions of Step 2 are necessary). 

At most three repetitions of Step 2 have been necessary in order the number of 
colors of the transformed image is in the selected range. This has been necessary, for 
example, for the images “airplane” and “kodim22”, for which the number of 
histograms leading to 263 and 265 colors respectively is diminished by 3 with respect 
to the initially selected number. The average compression ratio for the 18 images in 
the dataset is equal to 0.517, i.e., color information occupies after compression in the 
average 48,3% of its original size.  

 

       

Fig. 3. Different resulting images, obtained with a different selection of the number of histograms 

To show qualitatively the obtained results, refer to Fig. 3, where three different 
resulting images are shown for the input image “baboon”, satisfying different 
requirements of the user as far as the final range of colors is concerned. The three 
 



28 G. Ramella and G. Sanniti di Baja 

Table 1. Results after one application of Step 2 (columns 3,4) and final results for C1=256 and 
C2=512 (columns 5,6) 

 

Image OC RC1 CR1 RCF CRF N’-N 

cablecar 130416 1328 0,611 258 0,471 2 
flower 111841   573 0,546 344 0,502 1 
fruits 160476 1136 0,587 452 0,510 2 
pens 121057 1036 0,593 364 0,504 2 
soccer 139156   934 0,577 383 0,502 2 
yacht 150053   648 0,543 381 0,499 1 
lena   69904    87 0,400 304 0,513 -2 
tiffany   79228 695 0,580 359 0,522 2 
airplane   47819    65 0,387 263 0,517 -3 
baboon 171045   640 0,536 460 0,509 2 
housed 154605   148 0,418 329 0,485 -1 
lake 168459     87 0,371 271 0,466 -1 
kodim03   34871   474 0,589 474 0,589 0 
kodim05   63558   956 0,621 512 0,564 1 
kodim14  55117   487 0,567 487 0,567 0 
kodim15  44576   446 0,570 446 0,570 0 
kodim22  53351    62 0,379 265 0,513 -3 
kodim23  72079   284 0,505 284 0,505 0 

transformed images, from left to right, are characterized by 640, 460, and 224 different 
colors. The numbers of histograms that have been used to simplify H are respectively 
6, 8, and 9. 

5   Concluding Remarks 

A color reduction algorithm has been introduced that generates a transformed image 
with a smaller number of colors but still maintaining the visual aspect of the input 
image satisfactorily. The algorithm is based on the analysis of the histograms at 
different resolutions of the input image, obtained by using a scaling down method 
based on nearest neighbor interpolation. Only peaks and pits present at all resolutions 
and dominating in the full resolution histogram are considered to identify the 
representative values defining the reduced colormap. Colors of the reduced colormap 
that are not present in the original colormap are changed into the closest colors in the 
original colormap.  

The algorithm has a limited computational complexity and is not time consuming. 
It does not require pre-quantization and generates a transformed image with a number 
of colors in an a priori fixed range. It has been implemented on a Pentium 4 (3.39 
GHz, 2 GB RAM) personal computer and has been applied to a large set of images, 
producing satisfactory results in terms of compression ratio. 

Since different transformed images are obtained depending on the number of 
analyzed histograms, the method can be used for progressive transmission, where an 
image characterized by strong color reduction, i.e., quantized by using a large number 
of histograms, can be initially transmitted and better versions can be provided if 
demanded by the receiver.  
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Abstract. Structure-Activity relationship analysis aims at discovering
chemical activity of molecular compounds based on their structure. In
this article we make use of a particular graph representation of molecules
and propose a new graph embedding procedure to solve the problem
of structure-activity relationship analysis. The embedding is essentially
an arrangement of a molecule in the form of a vector by considering
frequencies of appearing atoms and frequencies of covalent bonds between
them. Results on two benchmark databases show the effectiveness of the
proposed technique in terms of recognition accuracy while avoiding high
operational costs in the transformation.

1 Introduction

Biological properties of molecules, such as chemical reactivity, mutagenicity or
anti-cancer activity, are presumed to be correlated with the inherent molecular
structure. Such assumption is what lies behind the Structure-Activity Relation-
ship (SAR) analysis, where activity is any of the biological responses molecules
might show off. Chemoinformatics has extensively dealt with this problem, usu-
ally by representing molecules in the form of labelled undirected graphs [8], de-
scribing the 2D structure of the chemical compounds. However, working with this
molecular representation leads to the usual problem one encounters when dealing
with graph-based representations, namely, the high computational complexity of
the analysis and comparison of graphs, also known as graph matching [1].

Common sub- and super-graphs between pairs of graphs may be used to define
graph similarity for the problem of graph matching [4,6]. Also graph edit dis-
tance is a powerful tool that defines similarity between graphs by the amount of
distortion that is needed to transform one graph into another [5,2]. Even though
there exist suboptimal solutions to these problems, they still suffer from high
complexity.

In the last years, two new lines of research have been opened which allow the
classical statistical machine learning methodology being applied to structural
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pattern recognition problems. Graph embedding, which associates a feature vec-
tor to each graph, and graph kernels, which define a kernel function between
instances of graphs, are emerging and promising fields that aim at exploiting
the benefits of both the representational power of graphs and the wealth of
algorithmic tools of statistical machine learning.

The new method we present in this paper aims at performing the SAR analysis
by embedding graph molecules into feature spaces. The next section sets out the
details of the proposed procedure. Then, Section 3 presents a comparison of
our methodology with different state-of-the art techniques using two different
databases. Finally, Section 4 concludes the article.

2 Embedding of Molecular Graphs

The molecules embedding procedure we propose here associates a feature vector
to each molecule, initially represented by a graph. It is originally based on a
well-known approach to document and image classification [11], which is also
called bag of words technique. The main idea behind it can be summarized as
follows. By taking a glance at a document we can just describe its layout and
the distribution of the paragraphs, but we can barely say to which class this
document belongs. However, by taking a more careful look we may notice the
existence of keywords that can give us some hints on the document topic. For
instance, if we detect that in the document the words brain, cell, disease, doctor,
etc. frequently appear, we can consider such a document as a medical one.

Technically, we need to provide a set of keywords, also known as vocabulary,
and then just count the frequency of appearance of each keyword in the docu-
ment. This results in a histogram of keywords appearing in the document that
is used as the document representation. The histograms can be used as feature
vectors to feed any machine capable to learn the document classes and perform
the categorization task.

In this paper, we aim at defining a similar procedure with molecules. The
nodes of a molecule graph are attributed with a chemical element. By letting
the set of chemical elements be our vocabulary -in the sense it has been explained
above- we can create a histogram of atoms appearing in each molecule. Yet, the
fact that atoms in the molecule are linked by covalent bonds leads to an even
richer description. To obtain such an enrichment, we need to transform the
molecule graph into a new graph we shall call the graph of words. From this
new graph, we will obtain the feature vector by taking into account node and
edge attributes. The next sections formally define the embedding of molecules
in vector spaces and two different ways of handling edge attributes.

2.1 Formal Definitions

The graph of words. Assume a set of molecules M = {g1, . . . , gn} is given.
Each molecule is represented by a graph gi = (Vi, Ei, μi, νi), where Vi is the
set of nodes, Ei ⊆ Vi × Vi the set of edges, μi is the function assigning atomic



32 J. Gibert, E. Valveny, and H. Bunke

Fig. 1. Embedding of the Sulphuric Acid molecule using the ordered vocabulary
V = {H, O, C, S}. The first transition shows the graph of words construction for the
molecule at the left. Following, the histogram of appearing atoms/words and the ad-
jacency matrix of the graph of words are shown. Finally, the vector representation is
the concatenation of both the histogram of atoms and the right upper diagonal part of
the adjacency matrix.

elements to the nodes v ∈ Vi and νi assigns to each edge (u, v) ∈ Ei the kind of
covalent bond that links the atoms.

Following the idea explained above, we define the vocabulary V by the set
of existing atomic elements in any of the molecules of M . In the histogram
representation we would just count the frequency of each node label in a graph,
but since we want to use the bond information as well we transform each molecule
g = (V, E, μ, ν) into another graph g′ = (V ′, E′, μ′, ν′) where

– V ′ = V ,
– E′ is defined by: (w, w′) ∈ E′ ⇔ there exists (u, v) ∈ E such that

μ(u) = w and μ(v) = w′,
– μ′ is the mapping μ′(w) = |{v ∈ V | μ(v) = w}|,
– and ν′ is the edge labelling function defined by

ν′(w, w′) = |{(u, v) ∈ E | μ(u) = w, μ(v) = w′}|.

In plain words, we represent a molecule graph by another graph whose nodes are
the node vocabulary V ; note that each atom appears just once. We call this new
graph the graph of words, in analogy to the bag of words representation. We label
each node of the new graph by the frequency of occurrence of the corresponding
atom. Note that this definition allows for an atom to be labelled with the zero
attribute. Edges of the graph of words are those links between nodes that also
occur in the molecule. For instance, if there is a bond between two atoms C and
H in the molecule then we link the words C and H in the new representation.
The label of such an edge will tell us how many times the corresponding edge
occurs. Note that zero attributed edges are allowed and represent the fact that
two atoms are not linked in the molecule.

By this procedure, we do not only have all information included in the his-
togram of words, but also how the words/atoms are structurally related in the
molecule. The first transition step in Figure 1 depicts an example of this repre-
sentation for a simple vocabulary of just four atoms.

Vector representation. Based on the graph of words representation it is
straightforward to assign a feature vector to every molecule in M . Since we
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want to keep both the information about the atoms and the bonds, we split the
graph of words into a histogram of atoms and the adjacency matrix (second
transition in Figure 1). Let N be the number of atoms in the vocabulary. The
histogram of atoms for all graphs in M can be formally written as a mapping
φa : M → RN , where

φa(g) = (μ′(w1), . . . , μ′(wN )). (1)

The adjacency matrix of the graph of words is an N × N symmetric matrix
A = (aij), where each entry aij describes the frequency of the relation between
the ith and jth atoms, this is, aij = ν′(wi, wj). The fact that we control the
vocabulary, makes this matrix easily sortable since, for every molecule, each
entry (feature) of the matrix is describing the same information. Also, due to
the symmetry of the matrix we can just consider the diagonal and the upper part
of it. Therefore, we arrange the graph of words adjacency matrix as φb : M → Rp,
where

φb(g) = (a11, . . . , aij , . . . , aNN), ∀ i ≤ j (2)

and where p = (N2 + N)/2. Finally, we can just concatenate both the atomic
histogram information and the structural relations of atoms in a single vector as
follows: ϕ : M → RN+p, where

ϕ(g) = (φa(g), φb(g)). (3)

The last transition of Figure 1 shows the final vector representation of the
molecule on the left.

2.2 Edge Attributes Handling

The reader may have noticed that in the construction defined above the edge at-
tributes of the molecules have been ignored. That is, there has been no attention
paid on whether the atomic bond is either single or double. This representation
is what we call R1 or all-in-one, since the edges are all stored in one adjacency
matrix. As an alternative, to consider the type of atomic bonds, we also define
the R2 or separated representation: based on the same construction, we may
consider an adjacency matrix for each type of edge label separately and then
concatenate all matrices in a single final vector.

For instance, in the example of Figure 1, the R1 representation is the one
depicted since edge attributes are neglected. For the second representation R2
we should take the matrices

As =

⎛⎜⎜⎝
0 2 0 0
2 0 0 2
0 0 0 0
0 2 0 0

⎞⎟⎟⎠ Ad =

⎛⎜⎜⎝
0 0 0 0
0 0 0 2
0 0 0 0
0 2 0 0

⎞⎟⎟⎠
where As is representing the single bonds and Ad the double bonds. With this
procedure, even though the final vector representation under R2 will be larger
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and more sparse than under R1, it will still keep information of the atomic
bonds of the original molecule. In the experiments section, we will explore the
two alternatives and discuss which one of our embedding procedures is more
suitable.

2.3 Remarks

After the formal definition of our embedding has been given, we would like to
point out its two strong points. On the one hand, the feature vector we assign
to each molecule is storing both statistical and structural information. The first
part of the vector φa is counting occurrences of atomic elements in the molecule,
while the second part φb is describing the structure of these elements in the
molecule. On the other hand, in contrast to most of the existing graph embedding
techniques and feature extraction algorithms for graphs, our approach is very
inexpensive in terms of algorithmic complexity. In fact, for a graph g with n
nodes, only O(n2) operations are required to transform g into ϕ(g). This is
in sharp contrast with other embedding procedures, for example [3], which are
exponential in n.

3 Experiments

3.1 Databases

We applied our molecular embedding based on the graph of words representa-
tion to two different benchmark datasets of molecules. The Predictive Toxicology
Challenge (PTC) database [7] is the result of a pharmaceutical experiment in
which several molecular compounds are tested in four types of animals: Male
Mouse (MM), Female Mouse (FM), Male Rat (MR) and Female Rat (FR). Each
compound is assigned to either the positive or the negative class according to its
carcinogenicity activity. This results in four two-class supervised classification
problems in which the activity of the compounds for a specific animal should be
discovered. The second set, the MUTAG database [13], is a set of molecular com-
pounds tested for mutagenicity activity on Salmonella typhimurium. Again, the
problem is a binary supervised classification task consisting of the determination
of the activity of the molecules.

In Table 1 we show some statistics for each molecular database. In particular,
we give the total number of molecules in every dataset (#TOTAL); how many
of them are positive for carcinogenicity/mutagenicity (#POSITIVE); how many
are negative (#NEGATIVE); the maximum order (number of nodes) in each
dataset (MAX |G|) and the average order (AVG |G|); the number of different
node attributes in the dataset (|Σ|v), which is the number of atoms/words in
the vocabularies we use for the proposed embedding; and the number of different
types of atomic bonds in the molecules (|Σ|e), which would be the number of
adjacency matrices to consider in the R2 representation of the graph of words
embedding.
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Table 1. PTC and MUTAG Datasets Statistics

MM FM MR FR MUTAG

#TOTAL 336 349 344 351 188
#POSITIVE 129 143 152 121 125
#NEGATIVE 207 206 192 230 63
MAX |G| 109 109 109 109 28
AVG |G| 25.0 25.2 25.6 26.1 18.0
|Σ|v 21 19 19 20 8
|Σ|e 4 4 4 4 4

3.2 Reference Systems

In order to compare our results, we have selected two articles that report about
molecular classification on the same datasets. In [9], a marginalized graph kernel
between labelled graphs is proposed and compared to the Pattern Discovery
algorithm [10]. The marginalized graph kernel is defined as the expectation of
the joint kernel between labelled paths, where such paths are defined under
a first-order Markov random model. The Pattern Discovery algorithm assigns
each molecule to a feature vector where each attribute is counting the number
of occurrences of a certain label path in the molecule. On the other hand, in
[14], the authors exploit the fact that molecules can either be represented by 1D
structures (SMILE strings), 2D structures (graphs), or 3D representations where
spatial coordinates of the atoms are taken into account. Based on these facts,
several kernels are defined for each representation. We will report here just the
best ones for each case.

Even though there exist optimal and fast computational procedures for these
approaches, they all suffer from higher complexity than ours since they are based
on searching substructures in the graphs.

3.3 Results

Leave-one-out validation consists in testing every element in the dataset with
the learnt model from the rest of existing available patterns. The accuracy rate
of the whole system is the number of correctly classified patterns out of the total
number in the dataset. In this section we detail the classification rate for the
databases using leave-one-out validation and Support Vector Machines [12] as
the learning machine.

In Figure 2 we see how the R1 representation outperforms in all cases the R2
representation, which takes into account the molecular bond types. This situation
seems to be due to the sparsity of the R2 representation. In Table 1 we can see
that there are four different types of molecular bonds in the datasets. However,
two of these four types barely appear as an edge attribute and so the proportion
between these types and the other two is really low. Such circumstance creates
adjacency matrices of the graph of words with almost all entries being zero; thus,
the resulting vector representation consists of many zero values and just a few
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Fig. 2. Comparison of the accuracy rates obtained for all databases using the two
proposed configurations R1 and R2 of the molecular embedding

Table 2. Comparison of leave-one-out results for different datasets using several meth-
ods. Accuracy rates in %. The best method on each dataset in printed bold face.

MM FM MR FR MUTAG

Pattern Discovery [9] 61.0 61.0 62.8 66.7 89.9
Walk kernel [9] 64.3 63.4 58.4 66.1 85.1
Best 1D kernel [14] 66.4 63.0 57.6 67.0 85.6
Best 2D kernel [14] 66.4 64.5 65.7 66.9 87.8
Best 3D kernel [14] 59.8 61.0 60.8 64.4 81.9

Proposed (ϕ, R1) 68.15 64.75 64.24 69.80 91.48
Proposed (ϕ, R2) 66.96 61.89 62.50 68.94 90.42

non-zero ones. This is a plausible explanation that the SVM is capable to better
learn the positive and negative classes for the R1 representation than for the R2.

In Table 2 a comparison between the reference methods and our two config-
urations of the graph of words embedding is shown for all databases. In four
out of the five considered two-class classification problems it is actually supe-
rior to the other techniques. Moreover, since the proposed embedding has a low
computational complexity, the whole system is worth considering.

4 Conclusions

In this paper, we have introduced a new embedding procedure of graph molec-
ular compounds for the problem of structure-activity relationship analysis. The
embedding is based on the idea of bag of words for document classification in
which a document is represented by a histogram of appearing keywords in the
text. Our approach takes the atomic elements appearing in the database and
proceeds similarly to the bag of words methods. In order to take profit of the
atomic bonds in molecules, we transform the molecule graph into the graph of
words representation, in which not only the node histogram information is stored
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but also how the atomic vocabulary is structurally related. As the underlying
vocabulary is uniquely given, the arrangement of the new graph representation
into a vector is a straightforward step, resulting in a feature vector for each
molecular compound.

Results with two different configurations of the embedding have been shown,
as well as a comparison with several state-of-the-art molecules classification tech-
niques. The results reveal that the proposed procedure is at the same level as
such techniques, while avoiding the computational complexity problems typically
encountered in graph-based problems.
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Abstract. In this paper, we introduce a novel hypergraph reduction
algorithm, and we evaluate it in an innovative method for joint segmen-
tation and classification of satellite image content. It operates in 3 steps.
First, we compute an Image Neighborhood Hypergraph representation
(INH). Second, we reduce the INH model and we exploit a morphism
from INH to Reduced INH (RINH) to generate superpixels. Then, we
perform a superpixels supervised classification according to their fea-
tures. Our approach is very fast and can deal with great sized images.
Its reliability has been tested on several satellite images with comparison
to single pixelwise classification.
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1 Introduction

Graph/Hypergraph based methods have played an important role in Computer
Vision and Pattern Recognition due to their ability to represent relational pat-
terns [14]. In many situations the graph representation is incomplete, as only
binary relations between nodes can be represented through graph edges. An ex-
tension is provided by hypergraphs, where each edge is a subset of the set of
nodes [4]. Hence higher-order relations between nodes can be directly modeled
in a hypergraph, by the means of hyperedges. A large body of theoretical work on
hypergraphs has been published [4]. However, not many applications in the field
of satellite image analysis and pattern recognition involving hypergraphs have
been reported. Refs. [1,6] list a number of applications of hypergraphs in low and
high levels of image processing, [2] lists a number of solutions using hypergraph
in partitioning large masses of data, in VLSI design [9], parallel scientific com-
puting, software engineering, database design, and [15] describes a 3-D object
recognition system using hypergraphs. In general, all contributions using hyper-
graph are focused on hypergraph representation and/or the use of hypergraph
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properties. The drawbacks of most of these approaches are twofold: the loss of
information and the computational complexity resulting respectively on how a
hypergraph representation is computed (due to the hypergraph-to-graph con-
version) and how the hypergraph properties are exploited (without a reduction
step). We notice in particular that not much attention has been payed to the
problem of reduction of hypergraphs. Having introduced a hypergraph theory
in comptuer vision domain, we have clearly identified a new strategy for super-
vised satellite image segmentation. In this paper, we consider the two problems
cited above, and we propose a new strategy for supervised joint segmentation
and classification of satellite image content. The basic idea of the proposed al-
gorithm can be described as follows: we first build a hypergraph representation
of a digital image. Then, we reduce this representation using a new hypergraph
reduction algorithm. Next, we exploit a morphism from the original hypergraph
to the reduced one to estimate image structure through dense region segmen-
tation, which provides superpixels. Finally, we perform supervised classification
of each superpixel according to its features. The latter step is performed by the
Support Vector Machine (SVM) learning classifier [3]. The organization of this
paper is as follows: in section 2, the new hypergraph reduction algorithm is in-
troduced. The supervised image classification framework is illustrated in section
3. The experimental results concerning a set of satellite images demonstrating
the validity of our proposed approach appear in section 4. Finally, conclusions
and perspectives are given in section 5.

2 Hypergraph Reduction and Properties

A hypergraph on a finite set V is a family (ei)i∈I , I = {1, 2, . . . , l}, (l ≥ 1) of
non-empty subsets of V called hyperedges with:

⋃
i∈I ei = V , we will denote it

by: H = (V ; (ei)i∈I). A simple hypergraph is a hypergraph H = (V ; E = (ei)i∈I)
such that: ei ⊂ ej =⇒ i = j. A hypergraph is without repeated hyperedge if
the family (ei)i∈I is a set. In the sequel, we will consider that any hypergraph
is without repeated hyperedge. Let H1 = (V1; E1) and H2 = (V2; E2) be two
hypergraphs. A map f from V1 to V2 is a morphism or homorphism if it verifies
the following properties: e1 ∈ E1 =⇒ f(e1) = {f(x), x ∈ e1} ⊂ e2 ∈ E2.

Numerous approaches have been adopted for hypergraph reduction [9,2]. How-
ever, many of these algorithms do not take advantage of the hypergraph proper-
ties. After hypergraph-to-graph conversion, they exploit only graph algorithms.
The full proposed hypergraph reduction algorithm is described in Algorithms
1,2, for a hypergraph H = (V, E) where E is ordered. The basic idea of the
proposed algorithm can be summarized as follows : we first compute the set of
intersecting hyperedges W of H . For each hyperedge ei ∈ E, we generate Wei as
the set of hyperedges intersecting with ei. W = ∪∀ei∈E{Wei} is the set of inter-
secting hyperedges. Then, from W we keep only a subset B of W that covers the
hypergraph H . From B, we generate the Reduced Hypergraph RH = (RV, RE).
All Wei of B stand for the vertices of RH . From RH and using the Wei , we
generate RE.
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Algorithm 1. Hypergraph Reduction

Data: H = (V ; E = {e1, e2, . . . , em}), E is
ordered.

Result: B.
begin

W := ∅;
The set of intersecting hyperedges;
foreach ei ∈ E do

Wei
:= ∅;

foreach ej ∈ E do

if ei ∩ ej �= ∅ then
Wei

:= Wei
∪ {ej};

end

end
W := W ∪ {Wei

};

end
B := ∅; i := 1;
The covering of the set of intersecting
hyperedges;
while E �= ∅ do

U := E \ Wei
;

if |U| < |E| then
B := B ∪ {Wei

};

end
E := E \ Wei

;
i := i + 1;

end

end

Algorithm 2. Reduced Hypergraph Generation

Data: B
Result: RH = (RV ; RE) be the reduced
hypergraph of H.
begin

The set of vertices of RH;
RV := ∅ ;
foreach Wei

∈ B do
RV := RV ∪ {wei

};

end
The set of hyperedges of RE ;
RE := ∅;
foreach Wei

∈ B do

Aei
:= ∅;

foreach Wej
∈ B do

if Wei
∩ Wej

�= ∅ then

Aei
:= Aei

∪ {wej
}

end

end
RE := RE ∪ {Aei

};

end
RH := (RV ; RE)

end

Proposition 1. The algorithms 1,2 create a neighborhood hypergraph; its com-
plexity is in O(m2), where m is the cardinality of hyperedge set of the hypergraph.

Proof. We can build a graph Γ in the following way: (1) the set of vertices is RV .
(2) Let wei , wej ∈ RV , we put an edge between wei and wej iff Wei ∩Wej �= ∅,
(excepted when i = j). So we obtain a graph Γ = (RV ; A).
Let Aei be a hyperedge of RH , Aei = {wei ; wej , such that Wei ∩ Wej �= ∅}.
Consequently Aei = {wei} ∪ Γ (wei).
Now let wei ∈ RV ; wej ∈ Γ (wei )⇐⇒Wei ∩Wej �= ∅ ⇐⇒ {wei}∪Γ (wei) = Aei .
It is easy to see that the complexity of our algorithm is in O(m2). ��

Because E is ordered B is. This order will be called Reduction Algorithm Order,
(RAO). This one is linear: ei ≤ ej ⇐⇒Wei ≤RAO Wej . So (B;≤RAO) is a poset
totally ordered. We will denote by V (Wei ) =

⋃
ej∈Wei

{x; x ∈ ej}.

Proposition 2. Let H = (V ; E) and RH = (RV ; RE) be its reduction, then
there is a morphism from H to RH.

Proof. Let h be defined by:

h : V −→ B
xi �→ minj∈{1,2,...|B|}{Wej , xi ∈ V (Wej )}

Because B is linearly ordered and H is without repeated hyperedge h is a map.
There is a bijection g from B onto RV , consequently f = g ◦ h is a map from
V to RV . Let ei ∈ E and xj ∈ ei; hence f(xj) = minl∈{1,2,...|B|}{Wek

, xj ∈
V (Wek

)} = Wet . Because xj ∈ V (Wet) we have ei ∈ Wet . Let xq ∈ ei, xj �= xq;
f(xq) = minl∈{1,2,...|B|}{Wek

, xj ∈ V (Wek
)} = Wel

. Because xq ∈ V (Wel
),

ei ∈ Wel
. Consequently Wet ∩Wel

�= ∅ and Wet , Wel
∈ Aeh

. By reasoning in the
same way for all vertices of ei we can show that f(ei) = {f(xi), xi ∈ ei} ⊂ Aeh

.
��
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3 Application: Joint Segmentation and Superpixels
Classification

In the current section we will discuss possible use of hypergraph reduction al-
gorithm in image analysis domain and more particularly in a supervised image
content classification. The proposed application can be summarized as follows:
(i) from image we compute the INH representation,(ii) we reduce the INH rep-
resentation and we obtain the RINH hypergraph, (iii) we generate a set of su-
perpixels from RINH using Proposition 2, (iv) generate a set of features for each
superpixel and classify them using a SVM framework.

– From Image to INH model. The image will be represented by I : V ⊆
Z2 −→ C ⊆ Zn. Vertices of V are called pixels, elements of C are called
colors. A distance d on V defines a grid (a connected, regular graph, without
both loop and multi-edge). Let d′ be a distance on C, we have a neighborhood
relation on a satellite image defined for each pixel v on the grid by: Γα,β(v) =
{v �= v′ ∈ V, d′(I(v), I(v′)) ≤ α and d(v, v′) ≤ β}. To each satellite image I
we associate a hypergraph called Image Neighborhood Hypergraph (INH) [13]:

Hα,β(I) = (V, Eα,β(v)), and Eα,β(v) = ({v} ∪ Γα,β(v))v∈V . (1)

– Superpixelization. Numerous approaches have been adopted for superpix-
els generation [12,7,8,10]. Our hypergraph reduction algorithm is applied to
the resulting INH. The algorithm can be further applied to the so-obtained
reduced hypergraph (RINH), and so on. The iterations are stopped when
the ratio between the size of two successive coarser hypergraphs, i.e. |H|

|RH| ,
falls under a fixed real value, that we refer as the reduction factor r.

In order to get a proper over-segmentation of the image, each pixel must
be assigned to a single superpixel. However, the vertices in RINH represents
a sets of hyperedges of the original hypergraph. So a pixel v of the original
image can be shared by multiple vertices of the RINH. Each element of RV
is a superpixel. Thanks to the morphism described in Proposition 2, we can
associate to each v a single superpixel wei ∈ RV . We can remark that the
morphism f construct in Proposition 2 is not a surjection. Hence, only a
subset S of RV is used to represent the set of superpixels.

– Supervised Classification. Given a set S = {we1 , . . . , wen} of superpixels,
we can associate to each wei a feature vector F(wei ). We consider the problem
of satellite image content classification as a machine learning problem: we
suppose that the labels of some of the superpixels of S are known, i.e. they
have been previously hand-labeled. The objective is then to predict the labels
of the remaining superpixels with the information provided by the hand-
labeled superpixels features, leading to a supervised content classification.
For this purpose, a SVM classifier [3] has been trained by the feature vectors
of the hand-labeled superpixels, and the remaining superpixels are considered
as the test set.
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Table 1. Number of iterations, number of remaining vertices, elapsed time and SED
values for proposed reduction approach, and algorithms from [9], namely First Choice
(FC), Hyperedge Coarsening (HC), Modified Hyperedge Coarsening (MHC), Edge
Coarsening (EC)

Nb iter. k Time (s) SED Nb iter. k Time (s) SED
Proposed 2.5 33562 4.34 103721 MHC 11.25 35144 14.12 115211

FC 4.5 33625 8.91 110540 EC 10.75 33754 25.12 143529
HC 12 35163 14.06 116358

4 Experimental Results

We shall present a set of experiments in order to assess the performance of our hy-
pergraph reduction algorithm and joint segmentation and pixelwise classification
approach. All of the experiments take place under a machine with the following
characteristics: Intel Xeon 2.67 GHz, 4 GB RAM, and all reported run-times
are displayed in seconds. In all of our experiments, the RAO is naturally given
by the order of the building of the hyperedges (the same as the browsing order
of the image pixels. The hypergraph reduction algorithm is compared to other
hypergraph and graph based coarsening algorithms [9] according to the total
number of iterations of the algorithms, the computation time and the Sum of
External Degrees(SED), as defined in [13]. Low values of SED indicate that the
quality of the partitioning is good for a given hypergraph, and so that in our case
the reduction algorithm has accurately maintained the properties of the original
hypergraph. The color distance d′ used in all our experiments is computed by
d′(I(v), I(v′)) = |I(v) − I(v′)| in panchromatic band, where I(v) denotes the
gray level of pixel v. The INH has been generated with four different values of
α (5, 10, 15 and 20) and with β = 1 for three Quickbird XSP satellite images1

(resolution 2.4m) of size 800×800 pixels. The table 1 presents the average values
of the resulting number k of vertices in the reduced hypergraph, the number of
iterations, the elapsed time and the SED value for each of the five considered
approaches. The number k of resulting vertices is directly controlled by the α
parameter, where lower values indicate a sparser INH representation, and then
a bigger k after some iterations. In order to obtain a comparable k over all the
reductions of a same SINH, the reduction factor r has been fixed to 1.2 for FC
and proposed approach, and 1.05 for the other algorithms. From these results,
we can see that the proposed reduction algorithm preserves well the hypergraph
structure, since it displays the lowest average SED value. In addition, our algo-
rithm is at least about 2 times faster than the other approaches, as it needs a
lower number of iterations to sufficiently reduce the hypergraph.

We now compare the reliability of the image superpixels generation derived
from our hypergraph reduction algorithm. A set of 10 images from the Berke-
ley Segmentation Database (BSDB) [11] has been used. The performance of the
superpixels approaches are evaluated according to the under-segmentation error

1 Image c©DigitalGlobe, 2003.
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Fig. 1. (a) Under-segmentation error and (b) boundary recall for proposed, EBG and
NCut frameworks as a function of the number of superpixels

and boundary recall [10] compared to ground truth segmentations available in
the BSDB. Figure 1 displays the under-segmentation error and boundary recall
as a function of the superpixels density for three considered algorithm: proposed,
efficient graph-based (EGB) algorithm [7]2, and multiscale NCut framework [5]3.
All of these algorithms have been parametrized to get comparable numbers of
superpixels. These results shows that our approach outperforms EGB algorithm
in terms of under-segmentation error (since we produce superpixels of roughly
regular size), and the NCut framework in terms of boundary recall. This last re-
sult highlights particularly the advantages of a hypergraph-based representation,
since the NCut method finds quasi-optimal solutions of a graph-based partition-
ing problem. In addition, our algorithm becomes better when the number of
superpixels increase, because lower values of α have been used in this case, and
consequently more details of the image have been captured in the hypergraph
model. In terms of computation time, our algorithm takes in general between 2
and 3 seconds to generate the superpixels (less than 2 seconds for EGB), and
outperforms the NCut framework, since the last takes between 3 and 25 minutes
(it depends of the number of superpixels) for images of size 321× 481 pixels.

Figure 2 presents the results of supervised classification using the proposed
framework. Classification objective has been set to 5 classes (see fig. 2.b where
a few pixel samples have been hand-labeled). Results from fig. 2.c have been
obtained with the SVM classification of the superpixels displayed in fig. 2.a. The
feature vector of each superpixel consists of the normalized RGB histogram com-
puted over the superpixel patch. Fig. 2.d presents the result of a simple pixelwise
SVM classification, where the feature vector of each pixel is also a normalized
RGB histogram, computed over a 5 × 5 window around the pixel. Standard
parameters of the libSVM package4 have been used in our experiments. These

2 http://people.cs.uchicago.edu/~pff/segment/
3 http://www.seas.upenn.edu/~timothee/software/ncut_multiscale/ncut_

multiscale.html
4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://people.cs.uchicago.edu/~pff/segment/
http://www.seas.upenn.edu/~timothee/software/ncut_multiscale/ncut_multiscale.html
http://www.seas.upenn.edu/~timothee/software/ncut_multiscale/ncut_multiscale.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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→ Zoom → (a)

(b*) (c) (d)

Fig. 2. (a) Superpixels map (α = 5, β = 1, r = 1.2, k = 7965) of a Quickbird XSP
satellite image from the Boumerdès database (2003-06-13). (b) Training data. Results
of classification with (c) superpixels features, (d) pixels features. *Dataset Boumerdès
c©SERTIT, 2009 ; distribution CNES.

results show that we get approximatively the same classification with a pixelwise
and a superpixelwise classification. All the pixels in a same superpixel share a
color homogeneity, so it is relevant to classify this set of pixels as a same entity.
We should observe that without superpixelization, the framework is more prone
to misclassifications (in particular with the class ”Field” for example), because
superpixels allow us to compute features over homogeneous patches, reducing
the misclassification errors. Furthermore, it drastically reduces the amount of
data to consider (from 640000 pixels to only 7965 superpixels in our example),
and then makes the SVM classificer more computationally efficient: for a classi-
fication of all the pixels, the total time is up to 110 seconds in our experiments
and depends highly on the feature vectors dimensionality. As a comparison, a
superpixels classification takes less than 0.01 seconds when a superpixel map
is available. In addition, the superpixels generation takes in general less than
5 seconds, and can be operated as a preprocessing step only once. Finally, we
should observe that some of the classes are ambiguous (particularly the class
”Buildings” for instance), due to the use of only color features.

5 Conclusions and Perspectives

In this paper, we proposed a hypergraph reduction algorithm and we evaluate
it in a supervised superpixelwise image classification. The effectiveness of the
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proposed method was demonstrated with experimental results using various
generic and satellite images. Our approach is an open system and several so-
lutions can be made to improve the proposed framework such as reducing the
hypergraph H(V, E) without imposing E to be ordered. In future work, we will
add more information in superpixels and more particularly neighborhood infor-
mation, as well as other visual features like shape or texture information.
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Abstract. Video summarization is a simplification of video content for compact-
ing the video information. The video summarization problem can be transformed
to a clustering problem, in which some frames are selected to saliently represent
the video content. In this work, we use a graph-theoretic divisive clustering algo-
rithm based on construction of a minimum spanning tree to select video frames
without segmenting the video into shots or scenes. Experimental results provides
a visually comparison between the new approach and other popular algorithms
from the literature, showing that the new algorithm is robust and efficient.

Keywords: Video summarization, Minimum spanning tree, Video analysis.

1 Introduction

The increasing number of video files has become the task of searching a specific con-
tent very expensive, because it is necessary to index the video information. Usually,
there are two approaches to cope with the index problem: (i) manual notation; and (ii)
automatic notation. The former is expensive and subjective, since it depends on the ex-
perts to perfom this notation. The second one is objective and is directly related to the
visual contents, however it depends on the features which are used to index. The cost to
find a specific content related to a video depends on the size of the index, thus instead
of considering all video content, we summarize it in order to reduce the search space.
In literature, there are many approaches to simplify the video content [8,9,11,7,1,6,3,2].
Thus, video summarization is a simplification of video content for compacting the video
information, also the feature or similarity measure used to this simplification depends
on the application. The video summarization problem can be transformed to a cluster-
ing problem, in which some frames are selected to saliently represent the video content,
as illustrated in Fig. 1. In [1] was proposed an approach to cope with the video sum-
marization problem in which the clustering is achieved by a k-means algorithm, but it
is necessary to know a priori the number of clusters. In [2] was proposed the use of
graph-theoretic FCM algorithm for video summarization, however the graph creation
is directly related to number of centers. In [6] it was used a Delaunay triangulation to
automatically identify the frame clusters, however this approach is expensive and pro-
duces very compressed summaries. VISTO [3] is based on low-level video frames color
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Fig. 1. Steps for video summarization (adapted from [6])

feature extraction and on a modification of furtherest point-first algorithm to cluster the
frames. This approach is fast but the summaries is big.

In this work, we use a graph-theoretic divisive clustering algorithm based on con-
struction of a Minimum Spanning Tree (MST) to select video frames without segment-
ing the video into shots or scenes, i.e., our approach eliminates pre-processing steps. It
is important to note that according to [4] the MST approach for clustering is hierarchi-
cal, and thanks to this property, it is easy to compute a video summary regarding the
specified number of keyframes.

The paper is organized as follows. Section 2 describes the clustering problem using
minimum spanning tree and, also, it is defined many concepts used in our work. Sec-
tion 3 describes our methodology to solve the video summarization problem. Section 4
describes the performed experiments together to a comparative analysis between our
approach and the others methods. Finally, we give some conclusions in Section 5.

2 Clustering by Minimum Spanning Tree Approach

Let A ⊂ N2, A = {0, . . . , H − 1} × {0, . . . , W − 1}, where H and W are the width
and height of each frame, respectively, and, T ⊂ N, T = {0, . . . , N − 1}, in which N
is number of frames of a video.

Definition 1 (Frame). A frame f is a function from A to Z, where for each spatial
position (x, y) in A, f(x, y) represents the color value at pixel location (x, y).

Definition 2 (Video). A video VN , in domain A × T, can be seen as a sequence of
frames f . It can be described by

VN = (f)t∈T
(1)

where N is the number of frames contained in the video.

Definition 3 (Frame similarity). Let ft1 and ft2 be two video frames at locations t1
and t2, respectively. Two frames are similar if a distance measure D(ft1 , ft2) between
them is smaller than a specified threshold (δ). The frame similarity is defined as
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FS(ft1 , ft2 , δ) =

{
1, if D(ft1 , ft2) ≤ δ

0, otherwise
(2)

There are several choices for global measures D(ft1 , ft2), i.e., the distance measure
between two frames, e.g. histogram/frame difference, histogram intersection, difference
of histograms means, and others. After selecting one, it is possible to construct a frame
similarity graph based on a video VN and a distance measure as follows.

Definition 4 (Frame similarity graph – Gδ). Let VN be a video with N frames. A
frame similarity graph Gδ = (N, Eδ) is a weighted undirected graph. Each node vt1 ∈
N represents a frame ft1 ∈ VN . There is an edge e ∈ Eδ with weight D(ft1 , ft2)
between two nodes vt1 and vt2 if frame similarity of associated frames is equal to 1:

Eδ = { (vt1 , vt2 ,D(ft1 , ft2)) | vt1 ∈ N, vt2 ∈ N,

FS(ft1 , ft2 , δ) = 1} (3)

Fig. 2(a) illustrates a frame similarity graph of a real video in which only the frames 1,
501, 1001, 1501, 2001, 2501 and 3001 are sampled. The similarity measure used is the
histogram intersection of HSV color space and is in the range [0, 100].

(a) (b)

(c) (d)

Fig. 2. Examples of video summarization. (a) frame similarity graph; (b) minimum spanning tree
of frames; (c) deleting edge with weight equals to 72; (d) deleting edge with weight equals to 49.
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In order to perform the video summarization, without considering a video partition-
ing (or segmentation) step, we propose the use of a divisive clustering algorithm. Ac-
cording to [4], the best-known graph-theoretic divisive clustering algorithm is based on
construction of the minimum spanning tree of the data [10]. In this work, we define the
minimum spanning tree of frames as a graph structure that preserves the video content
and the relationship between all video scenes.

Definition 5 (Minimum spanning tree of frames - fMSTGδ ). Let Gδ = (N, Eδ) be
a frame similarity graph. The minimum spanning tree of frames fMSTGδ = (N, Eδ

1)
is a subgraph of Gδ that minimizes the sum of weights of the edges Eδ.

According to [5], a k-clustering divides the elements into k non-empty groups, in which
the insertion of an element into a group depends on distance measure between this
element and the elements already in the group. In order to compute the video summa-
rization a k-clustering divides the video sequence into k video scenes, and consequently,
it is necessary to eliminate k − 1 edges from the MST. To follow, the ordered edge se-
quence and the value transform are defined in order to simplify the frame clustering
algorithm.

Definition 6 (Ordered edge sequence – SEδ
1 ). Let fMSTGδ be the minimum spanning

tree of frames. Let Eδ
1 = {e = (a, b, c)} be the collection of weight edges of fMSTGδ .

Let SEδ
1

i be the i-th edge ei = (ai, bi, ci) ∈ Eδ
1 between two frames ai and bi with

weight ci. The ordered edge sequence (SEδ
1) with respect to the weight is define by

SEδ
1 = (SEδ

1
i )i∈[1,N ] in which SEδ

1
i ≤ SEδ

1
i+1 if ci ≤ ci+1.

Definition 7 (Value transform – T(Δ)). Let fMSTGδ be the minimum spanning tree
of frames. Let SEδ

1 be the ordered edge sequence of the fMSTGδ . The value transform
T(Δ) is define by

T(Δ) = {||SEδ
1 || − i + 2 | w(SEδ

1
i−1) < Δ and

w(SEδ
1

i+1) ≥ Δ} (4)

in which w(SEδ
1

i ) means the weight of the edge SEδ
1

i .

If all values in the ordered edge sequence are different, T(max{SEδ
1}) is equal to 2.

Thus, to compute a 2-clustering is necessary to eliminate the edge in fMSTGδ with the
highest weight value. Finally, to identify the video scenes from minimum spanning tree
of frames is necessary to delete some edges according to a specified criterium.

The edge deletion operation, when applied to a tree, produces two connected com-
ponents. Here, each connected component is called frame cluster, as defined to follow.
The process of edge deletion must be agreed to a specified criterium. In this work, we
can use two different one: (i) deletion of largest weight edges; or (ii) deletion of edges
with weight greater than or equal to a specified threshold. The former is useful when
the number of clusters (defined before) is pre-determined. The second one can be con-
sidered when the minimum similarity measure between clusters is specified, and can be
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considered a special case of the first one when the weights are different. For example,
the deletion in Fig. 2 of all edges with weight greater than or equal to a 49 produces the
same result when we eliminate the 2 largest weight edges.

Definition 8 (Frame cluster – C∗,k). Let fMSTGδ be a minimum spanning tree of
frames. Let C∗,k denote the k connected components C∗,k

1 , C∗,k
2 , · · · , C∗,k

k formed by
deleting the k − 1 largest edges of fMSTGδ in which C∗,k

i = (Ni, Eδ
i ). C∗,k is a

k-clustering of max spacing.

The number of clusters, and consequently, the number of video scenes is directly related
to the number of edge deletion operations. Also, the process to compute the frame clus-
ter is hierarchical in the sense that the edge deletion divides a cluster into two different
groups. However, the saliency of a frame cluster component may depend on its size,
since components with a small number of frames may represent noise. For example, a
black frame or a flashlight frame are probably very dissimilar of all other frames and
consequently, the adjacent edges will be the largest weight edges of the fMSTGδ . The
frame cluster produced by edge deletion will present a very small number of frames,
and consequently, it could be ignored by our analysis.

3 Video Summarization Using Minimum Spanning Tree

In this work, we propose a new approach to video summarization in which the clustering
of video frames are based on minimum spanning tree of frames. In Fig 3 is illustrated
our method.

Fig. 3. Methodology for video summarization using minimum spanning tree

Thanks to the minimum spanning tree approach, our method eliminates the pre-
processing to compute the number of clusters, and also, eliminates the video segmen-
tation step. Thus, we compute the minimum spanning tree of frames from the frame
similarity graph that was computed from the video sequence. Afterwards, we delete
edges until stability. The concept of stability is related to two approaches: (i) number of
desired clusters; and (ii) frame similarity in a cluster. While the former can be related
to compress factor of the video summary, the second approach to stability establishes
maximum (dis)similarity into a cluster. In both cases, only a keyframe for each cluster
is selected. For now, the keyframe selection is done by the frame in the middle time of
the cluster.
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(a)

(b)

(c)

(d)

Fig. 4. Examples of video summarization applied to video ”News.mpg” composed by 5 (five)
shots: (a) T(35)-clustering; (b) 3-clustering; (c) T(34)-clustering; and (d) T(25)-clustering

Table 1. Experimental results compared to OpenVideo according to [6]

Method Total Clips Category 1 Category 2 Category 3 Category 4
(Same Keyframes) (Fewer Keyframes) (More Keyframes) (Mismatched Keyframes)

AGM1 50 18 3 29 24
AGM2 50 28 3 19 3

Visto [3] 50 14 5 31 50
DT [6] 50 30 8 12 10

VSUMM1 [1] 50 20 3 27 5

To present some examples, in Fig. 4(a), Fig. 4(c) and Fig. 4(d) are illustrated the
results of application of our method for T(35) = 2, T(34) = 4 and T(25) = 5. It
is important to notice that the values 25, 34 and 35 in Fig. 4 represent three highest
weight values in minimum spanning tree of frames, however there are 1, 2 and 1 edges
with these weights, respectively. Thus, there exist two different options for computing
a 3-clustering. The Fig. 4(b) illustrates a 3-clustering.

4 Experiments

In our experiments, we use some video extracted from the repository Open Video1. To
visually compare our approach with others, we consider the dataset used in [3] com-
posed by 50 videos in different genres (documentary, lectures, ephemeral, historical,
educational). With respect to a comparative analysis, we consider a similar approach
to [6] in which we compare the methods according to the summary size and also, the

1 www.open-video.org
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(a) Open Video (b) Visto [3]

(c) DT [6] (d) VSUMM1 [1]

(e) AGM1
(f) AGM2

Fig. 5. Examples of static video summary (Video Oceanfloor Legacy, segment 02)

(a) Open Video
(b) Visto [3]

(c) DT [6] (d) VSUMM1 [1]

(e) AGM1 (f) AGM2

Fig. 6. Examples of static video summary (Video Senses And Sensitivity, Introduct. to Lecture 2)

number of mismatched frames, both related to OpenVideo summary. It is important to
note that we consider the same approaches used in [1].

In order to illustrate the tuning of parameters for the proposed method, we consider
two different sets of values (δ for clustering, α for connected component size and ε
for sampling): (i) δ = 25, α = 10, ε = 1; and (ii) δ = 25, α = 10, ε = 10. Here,
we consider a global measure in order to compute the similarity measure, we consider
the histogram intersection from HSV color space, however for some applications, it is
necessary to choice similarity measures that saliently represent the frame content like
matching of interested points. To facilitate our description, AGM1 and AGM2 denote
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the proposed methods with the set of parameters described before, respectively. Also,
to realize a visually comparative analysis, we consider the other methods: VSUMM
[1], DT [6] and VISTO [3]. In Table 1 we divide our results in four categories (same
keyframes, fewer keyframes, more keyframes, mismatched keyframes).

As can be seen, the VSUMM [1] and our approach (AGM2) present similar results.
The Fig. 5 and Fig. 6 illustrate examples of video summaries computed by different
methods. It is important to note the summaries are compared to the OpenVideo ap-
proach. The Fig. 5 illustrated a video summary with more keyframes for both, however
the VSUMM computed a redundant frame. The Fig. 6 illustrated a video summary with
more keyframes in which the quality of the summary is the same.

5 Conclusion and Further Works

In this work, we propose a divisive and hierarchical method to compute a static video
summary without considering segmentation step. Our method is based on computation
of MST of the frames. It is well-know that the algorithm to generate the MST is effi-
cient and fast. The analysis of the video summary quality is subjective, however there
is no redundancy and only the most salient scenes are represented. From our approach,
it is possible to indicate the degree of desired compression. The proposed method try
to eliminate the redundancy and non representative scenes, however the tunning of pa-
rameters influences the quality of video summary. We expect, in future work, improve
the selection of keyframe and also, to automatically tune the parameters.
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Abstract. Semantic annotation of microscopical field of views is one of
the key problems in computer assistance of histopathological images. In
this paper a new method for extracting patch descriptors is proposed
and evaluated using a probabilistic latent semantic analysis (pLSA) clas-
sification model. The proposed approach is based on the analysis of the
different dyes used to stain the histological sample. This analysis allows
to find local regions that correspond to cells in the image, which are then
described by the SIFT descriptors of the stain components. The proposed
approach outperforms the conventional sampling and description strate-
gies, proposed in the literature.

Keywords: Semantic annotation, Histopathological Images, Color de-
composition, pLSA, SIFT descriptors.

1 Introduction

Computer-aided diagnosis (CAD) for histopathology images is an emerging re-
search field, which has become popular because of the recent advances in cap-
turing devices as well as in the increasing computational capacities that not only
have facilitated digitization, storing and distribution of microscopic samples, but
also has allowed the development of image analysis tools that support diagnosis,
teaching and research processes [1]. In particular, computer aided image analysis
can help pathologists to identify suspicious areas so that they can dedicate their
analysis time to these areas, whereby their workload can be highly reduced and
therefore the response delays of health systems.

One main challenge when developing histopathology CADs consists in building
an effective model for extracting information that allows to determine the seman-
tic meaning from the visual content of the image. This task has been twofold ap-
proached as a classification problem: either as classes assigned to the whole image,
according to global descriptors, or as classes assigned to histological structures
previously segmented [2]. In the former case, global descriptors are hardly able to
extract relevant visual features from specific cytological components, a key factor

� This work was supported by the Colombian Administrative Department of Science
and Technology (COLCIENCIAS).
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for the semantic description, while in the latter case the classification performance
is straightforwardly related to the segmentation accuracy, a very difficult job when
one considers the complexity of histopathological images.

Recently, patch-based representation schemes and probabilistic hidden mod-
els have shown excellent performance for unsupervised semantic description of
images [3]. Specifically, the probabilistic latent semantic analysis (pLSA) [4],
a generative model which tries to learn latent concepts or topics from a bag-
of-features (BOF). Main challenges in such representations are extraction of
the most discriminative patches and descriptors, which capture main statistical
properties and therefore semantic categorization approaches can be improved.
Caicedo et al. evaluated the BOF representation in histopathological images [5].
Interestingly, they found that this representation can be related to semantic con-
cepts in histopathology images, but its performance is dependent on both the
region selection and description.

In this paper a new method for extracting patch descriptors in histopathological
images is proposed and evaluated on a pLSA classification model. This approach
takes advantage of a specific image characteristic, obtained from histopathological
slides, which are stained with Hematoxylin-Eosin. Hematoxylin stains cell nuclei
in blue-purple, while Eosin stains cytoplasm and connective tissue in pink. These
colors constitute the base upon which pathologists are able to distinguish cellular
tissue components. Likewise, we used these properties for finding distinctive image
markers that correspond to cell nuclei, and generate discriminative descriptors
that amount to the stain absorbed by tissues.

2 Latent Topics Annotation Model

2.1 pLSA model

Probabilistic Latent Semantic Analysis (pLSA) is a generative model, which
probabilistically describes how words, in a document, might be generated using
latent variables [4]. This model assumes that a document d and a word w are
conditionally independent given the unobserved topic z, by which each document
di is a mixture of latent topics, a process modeled by a multinomial distribution
P (z|di), and each latent topic zl is also modeled by an additional multinomial
distribution P (w|zl). The process of generating the set of observations (w, d) can
be described by the probabilistic model defined by eq. 1.

P (di, wj) = P (di)P (wj |di), P (wj |di) =
k∑

l=1

P (wj |zl)P (zl|di) (1)

As the topic distribution is not an observed variable, the unobservable probability
distribution P (zl|di) and P (wj |zl) can be learned from the likelihood of the
observed data given by the eq. 2.

L =
M∏
i=1

N∏
j=1

P (wi|dj)n(wi,dj) (2)
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where N is the number of documents, M is the number of words in the vo-
cabulary, n(wi, dj) is the number of occurrences of a word wi in document dj

and P (wi|dj) is given by eq. 1. Best model parameters are found using the Ex-
pectation Maximization (EM) algorithm, which iteratively estimate the posterior
probabilities for the latent variables P (zk|di, wj) (expectation step) and optimize
this estimation P (wj |zk) and P (zk|di) (maximization step) until convergence.

The latent concept probabilities, from the observed words, are estimated for
a new document dtest, using a partial version of the EM algorithm described
previously, but the conditional probability distribution P (wj |zk) is kept fixed
i.e. this is not updated at each M-step.

2.2 Representing Images as Bag of Words

The pLSA model represents documents as a set of words. From an image anal-
ysis standpoint, the image semantic may be captured when the global scene is
expressed in terms of its components. The Bag-of-Features representation aims
to follow this principle when documents amount to whole images and words cor-
respond to quantized local image descriptors named visual words [6]. The BoF
is generated by selecting a set of local image regions, which are characterized in
a feature space. Then, instances in the feature space are grouped using a con-
ventional clustering algorithm (e.g. k-means), defining a fixed number of groups
that corresponds to words in the visual vocabulary. K-clusters are finally used for
representing the image by a histogram of visual words, resulting from assigning
each local region to the nearest k-cluster center.

2.3 Image Annotation Based on the pLSA Model

Once the posterior probability distribution of concepts P (z|di) is computed,
image annotation can be twofold performed: 1)if images can be labeled with
a unique concept, the number of latent concepts is set to the number of class
labels, and the annotation process consists in finding the concept that has higher
conditional probability P (z|di). This case requires that image concepts are highly
correlated, and that there exists only a single type of background, specific for each
class label. 2)if image can not be uniquely labeled, the number of concepts can be
different of the number of class labels, and the concept probability distribution
is used as a feature vector (eq. 3) for training a discriminative classification
model. In this work the latter approach was evaluated using the k-nn rule as
classification model.

di = {P (z1|di), P (z2|di), ..., P (zk|di)} (3)

3 Local Region Description Based on the Staining
Component Analysis

Histopathological concepts are mainly characterized by cells that are visually
identified by their color, which result from the affinity of tissue components to
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particular dyes. Our aim was to find the most discriminative local regions for the
classification task. For so doing, we propose to find the cell nuclei and describe
the regions around them. The extraction of local regional descriptors consists in:
color normalization, cell based local region detection and local region description
of the staining components.

3.1 Color Normalization

The obserbed color at each pixel is proportional to the strength of a chemical
reaction between a dye and the biological substances. Many factors such as en-
vironment illumination conditions, relative dye quantity or film inhomogeneities
produced by the subsequent slide storage and handling, result in a high lumi-
nance and color variability, wich strongly affects the staining component based
analysis. This problem was solved by applying the color normalization approach
proposed by Reinhard et al. [7].

3.2 Local Region Selection

Decomposing the image in main stain factors. The main goal was to ac-
curately separating the image into the colors that corresponded to the actual
contribution of each stain (Hematoxylin-eosin). For doing so, it was assumed
that each RGB color can be described as a linear combination of the two stain
factors. Deconvolution process consisted on separating the two stain contribu-
tions as described in eq. 4, under the physical restriction that negative stain
contribution were not possible. So, D and S were found using the non-negative
matrix factorization method [8]. Images were converted to optical density (OD)
values before than deconvolution process was applied.

[
R
G
B

]
=

[
D11 D21
D12 D22
D13 D23

]
[ S1 S2 ]

where D1, D2 correspond to the two stain vectors, and S1, S2 indicate the stain
contribution. Figure 1 show results from deconvolution process of selected im-
ages. First row, corresponds to input images, second row corresponds to the first
stain component, which show the eosin dye contribution at each pixel. Finally,
the hematoxylin dye contribution is drawn in the third row.

Extracting visual patches. Once the stain contribution was determined, the
cell nuclei were detected on the Hematoxylin component using a simple Otsu
threshold, followed by a morphological grey-scale opening filter using a 2 × 2
structuring element. On the other hand, the clumped cells were split as much
as possible applying a morphological grey-scale closing filter on the segmented
regions with areas larger than 100 pixels. Finally, circular patches were extracted
around the centre of the detected nuclei, as shown in the four row of Figure 1.
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Fig. 1. Stain decomposition of selected samples from the training dataset

3.3 Local Region Description

Local patches were represented using the SIFT descriptor proposed by Lowe [9],
which describes the texture of local regions, using edge orientation histograms.
Traditionally, SIFT descriptor is computed under light intensity changes. How-
ever, color information is critical in histopathological image analysis. So, the
use of color information inside the SIFT descriptors was evaluated. Images
were decomposed in representative color spaces (rgSIFT, cSIFT and stnSIFT),
and the SIFT descriptor for each color component was computed using a com-
mon parameter configuration i.e. 4 × 4 blocks and 8 orientations, resulting in a
128−dimensional feature vector for each color component.

– rgSIFT descriptor that results from the concatenation of SIFT descriptors
computed under r and g chromaticity components of the normalized RGB
color space (eq. 4).

rn = R
R+G+B gn = G

R+G+B (4)

– cSIFT descriptor, corresponding to the concatenation of SIFT descriptors
computed under the two components of the normalized opponent color space.

C1 = C1
C3

, C2 = C2
C3

(5)

with, C1 = R−G√
2

, C2 = R+G−2B√
6, C3= R+G+B√

3

– stnSIFT descriptor, corresponding to the concatenation of SIFT descrip-
tors computed under the two stain channels obtained from the deconvolution
process.



60 G. Dı́az and E. Romero

3.4 Model Evaluation

The proposed local region detection and description methods were compared
with traditional grid based and sift point detection sampling strategies [10]. In
the former case images were split in a regular grid of 21 × 21 pixels per block.
In the latter, SIFT points were detected according to Lowe [9]. In both cases,
circular local regions defined in a radius of 10 pixels were described as explained
in the section 3.3 and processed by the pLSA model.

Images represented by the posterior probability distribution of hidden topics
P (z|di) were classified using the traditional K − nn learning model. Vocabulary
size, number of topics and k parameters of the learning model were evaluated.
Performance of the classification tasks was quantified in terms of effectiveness
measure Fβ computed as Fβ = 2∗PR∗RC

PR+RC , with PR and RC the well known
precision and recall performance measures.

4 Experiments and Results

4.1 Data Set

A total of 540 images acquired from histopathological skyn biopsies, stained with
Hematoxylin-Eosin, were used. Each was annotated by experts, with one from
nine possible class labels, resulting in 54 Pilosebaceous anexa (PA),71 Nodular,
62 basal cell carcinoma (NBC), 62 Micro-nodular basal cell carcinoma (MnBC),
51 Morpheiphorm basal cell carcinoma (MBC), 68 Epidermis (EP), 60 Sebaceous
glands (SG), 51 Eccrine glands (EG), 58 Lymphocyte infiltration (LI) and 76
Collagen (CO) images. The dataset was randomly divided into training (80%)
and test (30%) image sets. Images were cropped for containing only one of fore-
ground concepts.

4.2 Results and Discussion

The first evaluation focused on the markers detection stage. Local regions ex-
tracted with the proposed approach, with the sift point detector and with the
regular grid partition, were used for constructing a visual vocabulary that was
input to the pLSA analysis. Local regions were described using the conventional
SIFT descriptor. Although different vocabulary sizes were evaluated (50, 100,
200, 300 and 500) we report results obtained with 300 clusters, because they pro-
duced the best average performance for each parameter set (results not shown).
Figure 2-(a) shows a plot of Fβ measure reported per each sampling strategy
with k = 9, for the different number of topics. The proposed point detection
strategy reports better performance that points obtained from regular grid par-
tition and SIFT detector in about 20%. Interestingtly, in this experiment the
number of topics is not critical for performance, i.e. standar deviation reported
was 0.06.

The second evaluated factor was the effect of using color information in the
region descriptor. Figures 2-(b-d) show plots of Fβ measures reported by vary-
ing the region description in the three sampling strategies: SIFT detector in
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Fig. 2. Classification results in the test set (view text for explanation)

2-(b), regular grid partition in 2-(C) and the proposed approach in 2-(d). In
these experiments the number of clusters and k parameter were set to 300 and
9, respectively. As expected, the results show that description computed from
the illumination channel has in general poorer performance with respect to the
color based description, except when regions are located around SIFT detected
points. In that case, the color information effect is not clear, although rgSIFT
and CSIFT descriptors report better performance than the illumination chan-
nel, when the number of concepts is smaller than the number of class labels.
This bias changes when the number of topics increases, probabilly because SIFT
points were detected under the illumination channel, whereby this component’s
contribution, for describing these points, is larger. On the other hand, in both
regular grid partition and the proposed region selection, the color contribution
is remarkable. Furthermore, the description based on the tissue components, de-
fined by the staining contribution, outperforms the other color based descriptors
with a maximal Fβ measure of 0.73 for the regular grid partition and 0.69 for
the staining based detected regions. Finally, Figure 2-(e) summarizes the results,
plotting the best performance obtained for each point detection-descriptor com-
bination. The black line, the poorest performance, corresponds to the results
with regions obtained by conventional SIFT detector and descriptor. The red
line corresponds to the results obtained by the proposed approach and they are
comparable with those obtained from a regular grid partition described by the
staining composition (blue line). However, the proposed approach is more ef-
ficient in terms of extraction of features and learning of the model, because a
smaller number of regions is sampled, especially for images with a very small
number of cells.
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5 Conclusions

This paper presented a new strategy for selecting and describing local regions for
improving the classification performance of histopathological images in a proba-
bilistic latent semantic analysis framework. The proposed approach was based on
the decomposition of histological images in their main stain contributions, which
ideally allows to describe the biological tissue components. Image classification,
based on the proposed approach, outperforms the conventional methods as reg-
ular grid partition and SIFT point detector. Moreover, describing local regions
by measurement of stain components increased the classification performance
based on the regular grid partition doing that comparable with our results.
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Abstract. Magnetic Resonance Image segmentation is a fundamental
task in a wide variety of computed-based medical applications that sup-
port therapy, diagnostic and medical applications. In this work, spatial
information is included for estimating paramaters of a finite mixture
model, with gaussian distribution assumption, using a modified version
of the well-know Expectation Maximization algorithm proposed in [3].
Our approach is based on aggregating a transition step between E-step
and M-step, that includes the information of spatial dependences be-
tween neighboring pixels.

Our proposal is compared with other approaches proposed in the im-
age segmentation literature using the size and shape test, obtaining ac-
curate and robust results in the presence of noise.

Keywords: Expectation Maximization algorithm, Finite Mixture mod-
els, spatial information, Magnetic Resonance Imaging segmentation.

1 Introduction

Magnetic Resonance Imaging (MRI) has a special interest in computer-based
biomedical applications due to the inherent high definition, contrast and resolu-
tion of soft tissues. In this sense, image segmentation techniques make possible
computer-based quantitative analysis methods able to support diagnosis and de-
cission making in clinical settings, thus improving medical outcomes (see, e.g.,
[1], [6] and [8]).

This work is focussed in the segmentation of brain anatomical structures on
MRI for which a wide variety of methods have been proposed. Parametric sta-
tistical approaches are employed commonly for labeling pixels that are assigned
according to probability values determined by the intensity distribution of the
image. With a suitable assumption about the underlying distribution of the im-
age regions, statistical approaches attempt to solve the problem of estimating the
associated class label, given only the intensity of each pixel. In this sense, max-
imum a posteriori (MAP) or maximum likelihood are two widely used criteria
for estimating the class or label of a pixel.
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Finite mixture models that assume gaussian distributions for the mixture
components, are one of the commonly used models for image segmentation.
However, being this method a histogram-based approach, spatial information
is not taken into account for estimating model parameters because the pixel
intensities are considered to be independent samples drawn from a given gaussian
random variable that represents a tissue type. This approach produces unreliable
results in most MR images due to noise and to artifacts as the partial volume
effect and bias field distortion (see [10]).

In order to address this problem, spatial dependences between pixels can be
implicitly introduced by using the pixels coordinates as an extra feature. Also,
Markov Random Fields (MRF) have been employed to take into account spatial
dependences between pixels, but these approaches introduce a high computa-
tional cost for parameter estimation. Other approaches include spatial
relationships between pixels for estimation the mixture model parameters. In [2]
a modification of the well-know Expectation Maximization (EM), called Neigh-
borhood EM (NEM), is proposed. In this approach, the spatial information is
incorporated penalizing the log-likelihood function. Similar approaches are pro-
posed in [10], where prior probabilities of the image classes from a mixture model
are modeled as a random variable given by a MRF. In [5] Hybrid EM (HEM)
algorithm is introduced based on both EM and NEM algorithms. The latter is
used for fine tunning of the finite model parameters.

In order to address the segmentation of high amount of MRI images gener-
ated from patients in most medical centers, a simple method for estimating the
parameters of a gaussian finite mixture model is proposed in this work. This
method is based on the EM algorithm, and is called ETM algorithm, where spa-
tial information is considered from neighboring pixels for the MRI segmentation.
The ETM algorithm includes a transition step (T-step), between E-step and M-
step, that increases the likelihood for certain pixels based on local relationships
in a predefined neighborhood. The E-step is performed without changes and a
modified M-step is derived form the T-step.

This work is organized as follows. In section 2 the mixture-model-based ap-
proach for image segmentation and the proposed method, called ETM algorithm,
are presented. In section 3 a comparison between the proposed ETM algorithm
and other segmentation methods are presented using the sizes and shapes test
applied in [11]. The methods considered here for comparison are the classical
EM algorithm [7], Neighborhood EM (NEM) [2], Hybrid EM (HEM) [5], Fuzzy
C-Means (FCM) and Modified Fuzzy C-Means (FCMM) [9]. Finally, some dis-
cussions and conclusions are reported in section 4 and 5, respectivelly.

2 Methodology

2.1 Mixture Model-Based Image Segmentation

Let I = {xi ∈ Rp|i = 1, ..., n and p ∈ N} be the set of pixels forming an image.
Each pixel value is a realization of random variable X , which density function is
determined by the weigthed sum of K components. Each one of these components



Modified Expectation Maximization Algorithm for MRI Segmentation 65

correspond to the density functions of the K regions from which it is suspected
that the image is composed. Let Rk = {xj ∈ Rp|j = 1, ..., nk and p ∈ N} be
the set of pixels that compose the k-th region of the image; these pixels are
a realization of a random variable Xk, k = 1, ..., K, whose probability density
function is denoted by gk(Xk|θk). In this sense, the density function of random
variable X is given by:

f(xi|φ) =
K∑

k=1

pk ∗ gk(xi|θk) (1)

where φ = {p1, ..., pK , θ1, ..., θK} are the set of unknown parameters of the mix-
ture model, that are estimated in such way that the (log)likelihood function
represented by the joint probability of having a particular set of pixel values
{x1, ...,xn} is maximized, given the set of parameters φ, i.e., L(x1, ...,xn|φ) =∏

i f(xi|φ). There is no requirement that the components gk(xi|θk) should all be-
long to the same parametric family, but in most MRI segmentation approaches
the same functional form for each region but with different parameters is as-
sumed (see, e.g., [10]). In this work, a multivariate gaussian distribution with
parameters θk = (μk, Σk) for gk(xi|θk) is assumed.

The maximum likelihood estimate (MLE) of φ can be found numerically us-
ing various optimization algorithms. A very important approach widely used in
mixture modeling is the Expectation Maximization (EM). This is an iterative
method for optimizing the likelihood function when some information is missing.
In our case, the missing information is the region to which pixels belong. The
MLE of φ using EM algorithm is obtained iterating two steps until convergence.
In the first step (E-step) the posterior probability that a pixel xi belong to each
region is computed using the Bayes formula. In the second step (M-step), the
parameters of the mixture model are estimated by maximizing the likelihood
function. For instance, assuming a normal mixture the mean vector μk, the co-
variance matrix Σk and the weigth pk for the normal mixture component of the
k-th region of the image should be estimated.

2.2 ETM Algorithm

In this work a modified Expectation Maximization algorithm is proposed. This
modification is based on increasing the likelihood of the mixture model for pixels
that are homogeneous within the region with higher probability. These pixels
have a better fit to its underlying probability distributions, and therefore increase
the likelihood of the mixture model. The increment of the likelihood is achieved
by weighting free or homogeneous pixels, during a step of transition (called T-
step) that is performed between E-step and M-step. In the T-step, free pixels
have a higher weight than the pixels that are not. The steps of the proposed
ETM algorithm are explained below.

E-step (expectation): As suggested in the classical EM algorithm [7], in
this step the expected value of the likelihood is obtained. For this purpose the
following formula is used:

Pr(θk|xi) ≡ cik =
pk ∗ gk(xi|θk)∑K
l=1 pl ∗ gl(xi|θl)

(2)
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where the value cik is an element of a matrix C and represents the probability
that the pixel xi ∈ I belongs to the region k in the image.

T-step (transition): In this step the probability of assigning a pixel xi in
the class k is modified. Let PA be a matrix of size n ×K, whose elements are
given by:

paik =

cik +
∑

xj∈N8(xi)
cjk ∗ vij

1 +
∑

xj∈N8(xi)
vij

(3)

where vij takes a value α > 0 if xj ∈ N8(xi), and 0 otherwise, i.e., vij represents
the influence of the neighbor xj on xi, and paik is calculated as the weighted
average of the probabilities of membership of the 8-neighbors xj ∈ N8(xi) of xi.
It is clear that paik represents the modified probability that a pixel xi belongs to
the class k taking into acount the influence of all neighbors. After this calculation,
the elements of the probability matrix C are updated by replacing the value cik

by paik if xi is a non-free pixel. A pixel xi is considered a free pixel if the class
assigned to cik, i.e., arg maxk[cik] is the same class obtained according the matrix
paik, i.e., arg maxk[paik].

With the updated probability matrix C, the weight for each pixel of the
image is calculated in order to increase the likelihood of the mixture model for
free pixels. In this sense, a higher weight is assigned to free pixels, respect to
non-free pixels. We propose to do this using two variants, a crisp weighting (see
equation (4)) and a fuzzy weighting (see equation (5)).

phi =
{

1 if xi is a free pixel
0 otherwise (4)

phi =
max

k
[cik]

max
k

[ ∑
xj∈N8(xi)

cjk∗vij∑
xj∈N8(xi)

vij

] (5)

where the values vij have the same behavior as in equation (3). In the equation (5)
the element phi, i.e., the weight of the pixel xi, takes values greater than 1 if the
higher probability of assignment of this pixel in certain class is greater than the
weighted average of the probabilities of membership of all of their 8-neighbors in
each class. In this sense, pixels that better fit to its underlying class, have a higher
influence (i.e., higher weight) in the mixture model parameter estimation process.

M-step (maximization): In this step, the mixture model parameters are
calculated. For this purpose the likelihood function is used including the weights
for each pixel calculated in the previous step. Therefore, the set of parameters
of the mixture model is obtained using a modification formulae presented in [7],
which are shown below:

p̂k =
∑n

i=1 cik ∗ phi∑n
i=1 phi

(6) μ̂k =
∑n

i=1 cik ∗ xi ∗ phi∑n
i=1 cik ∗ phi

(7)

Σ̂k =
∑n

i=1 cik ∗ phi ∗ (xi − μ̂k)(xi − μ̂k)′∑n
i=1 cik ∗ phi

(8)
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3 Results

To make an appropriate evaluation of the segmentation algorithms, the Sizes and
Shapes Test [11] was implemented. This test consists in segmenting a group of 12
synthetic images with different intensities of background and objects, where the
first 8 images correspond to circles of different sizes (referred as Set of Sizes) and
the last 4 correspond to ellipses with different eccentricities but maintaining ap-
proximately the same area (referred as Set of Shapes). In addition, with the pur-
pose to make the images more realistic, a low-pass filter was applied and a gaussian
additive noise component was introduced to the P percents of pixels of the image.

In order to measure quantitatively the performance of the proposed ETM
algorithm, we calculate the accuracy, the RUMA index (relative ultimate mea-
surement accuracy of object area [11]), the Total Difference (TD), the Low
Segmentation (LS) or false negatives, and the Over Segmentation (OS) or false
positives. These indices are given by:

Accuracy =
Area(O ∩O)

Area(O)
∗ 100 RUMA =

|xr − xs|
xr

∗ 100

TD = LS + OS LS =
Area(O\O)
Area(O)

OS =
Area(B\B)
Area(O)

where, O and B represent the region of the object and the background in the
reference image, respectively. Analogously, O and B represent the same regions
in the segmented image. The terms xr and xs correspond to the intensity value of
the pixels in the reference image and the segmented image, respectively. Finally,
the operation R1\R2 is defined by R1\R2 = p\p ∈ R1, p /∈ R2.

The ETM algorithm was comparedwith the EM, NEM, HEM, FCM and FCMM
algorithms in 3 configurations of the sizes and shapes test and 3 experimental runs
for each of these configurations, obtaining the mean and standard deviation of each
index previously explained. The configurations used are defined by the intensity
If of the background, the intensity Io of the object, the diameter D or eccentricity
e which defines a circle or ellipse respectively, the percentage P of pixels corrupted
by gaussian noise and the standard deviation σ of this noise. The results for the 3
configurations used are presented below, in table 1.

Experiments with real T1-weighted MR images (with contrast agent gadolin-
ium) were also conducted in a set of 32 MRI images with Brain Tumor, also used
in [8]. These image data set were segmented with the ETM, EM, NEM, HEM,
FCM, FCMM, region growing (RG) [8] and Genetic Algorithms (GA) [4] with 4
regions or classes defined a priori (tissues types in the image). The comparison
of the results were performed using the Gold Standard (GS) of the image data
set, provided by Carlos Van Buren Hospital of Valparáıso-Chile. We performed
5 experimental runs for each algorithm, obtaining the median and mean of the
accuracy, the mean of the false positive (FP) and false negative (FN) errors and
the mean of the time (in seconds) needed to produce the segmented image (see
table 2). All indixes are shown with their respectives standard deviations. In
figure 1 2 instances of segmented MR images are shown as example.
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Table 1. Results obtained with synthetic images

Configuration 1 with If = 20, Io = 102, D = 128, P = 25% and σ = 40.

Algorithm LS (sd) OS (sd) TD (sd) RUMA (sd) Accuracy (sd)

ETM 0 (0) 0,0225 (0,0001) 0,0225 (0,0001) 7,2903 (0,0086) 100 (0)
EM 0,0156 (0,0004) 0,1662 (0,0013) 0,1818 (0,0015) 26,6559 (0,0155) 98,4426 (0,0385)

NEM 0,0126 (0,0002) 0,1362 (0,0021) 0,1488 (0,0019) 22,5671 (0,0035) 98,7382 (0,0229)
HEM 0,0157 (0,0004) 0,1647 (0,0012) 0,1804 (0,0015) 26,3491 (0,0154) 98,4273 (0,0385)
FCM 0,037 (0,001) 0,0744 (0,0038) 0,1114 (0,0028) 11,7085 (0,0053) 96,2988 (0,0994)

FCMM 0,0373 (0,001) 0,074 (0,0038) 0,1113 (0,0029) 11,8891 (0,0023) 96,2708 (0,1038)

Configuration 2 with If = 182, Io = 130, e = 0.7, P = 10% and σ = 80.

Algorithm LS (sd) OS (sd) TD (sd) RUMA (sd) Accuracy (sd)

ETM 0,001 (0,0003) 0,0017 (0,0001) 0,0028 (0,0003) 1,2695 (0,0001) 99,8977 (0,0251)
EM 0 (0) 0,2124 (0,0005) 0,2124 (0,0005) 3,9775 (0,0002) 100 (0)

NEM 0,028 (0,0005) 0,0543 (0,0027) 0,0823 (0,0027) 2,7221 (0,0006) 97,1974 (0,0536)
HEM 0,0312 (0,0043) 0,0583 (0,009) 0,0895 (0,0132) 2,8962 (0,0022) 96,8763 (0,4278)
FCM 0,0363 (0,0004) 0,0651 (0,0022) 0,1014 (0,0026) 2,1042 (0,0005) 96,3719 (0,0436)

FCMM 0,0364 (0,0004) 0,0648 (0,0022) 0,1012 (0,0026) 3,083 (0,0006) 96,3576 (0,043)

Configuration 3 with If = 20, Io = 223, e = 0.9, P = 10% and σ = 80.

Algorithm LS (sd) OS (sd) TD (sd) RUMA (sd) Accuracy (sd)

ETM 0 (0) 0,0359 (0,0008) 0,0359 (0,0008) 13,3558 (0,0032) 100 (0)
EM 0 (0) 0,278 (0,0018) 0,278 (0,0018) 70,0654 (0,0035) 100 (0)

NEM 0,0005 (0,0002) 0,1374 (0,0011) 0,1379 (0,0012) 41,4617 (0,0025) 99,9508 (0,0201)
HEM 0,0011 (0,0003) 0,1417 (0,0005) 0,1428 (0,0008) 42,7161 (0,0009) 99,8871 (0,0347)
FCM 0,0115 (0,0006) 0,0279 (0,0019) 0,0395 (0,0024) 13,1291 (0,0048) 98,8475 (0,0578)

FCMM 0,0115 (0,0006) 0,0281 (0,0018) 0,0396 (0,0024) 16,11 (0,0041) 98,8533 (0,0602)

Resume of the three configurations.

Algorithm LS (sd) OS (sd) TD (sd) RUMA (sd) Accuracy (sd)

ETM 0,0003 (0,0006) 0,0200 (0,0172) 0,0194 (0,0234) 7,3052 (6,0432) 99,9659 (0,0591)
EM 0,0052 (0,0090) 0,2189 (0,0562) 0,2452 (0,0464) 33,5663 (33,5815) 99,4809 (0,8992)

NEM 0,0137 (0,0138) 0,1093 (0,0476) 0,1101 (0,0393) 22,2503 (19,3717) 98,6288 (1,3800)
HEM 0,0160 (0,0151) 0,1216 (0,0560) 0,1162 (0,0377) 23,9871 (20,0148) 98,3969 (1,5056)
FCM 0,0283 (0,0145) 0,0558 (0,0246) 0,0705 (0,0438) 8,9806 (5,9973) 97,1727 (1,4509)

FCMM 0,0284 (0,0146) 0,0556 (0,0243) 0,0704 (0,0436) 10,3607 (6,6466) 97,1606 (1,4666)

Fig. 1. Examples of segmented synthetic and real MR images (original images (upper
row) and their corresponding segmented images (bottom row))
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Table 2. Results obtained with real MR images with 4 classes

Algorithm Median Mean (sd) FN (sd) FP (sd) Time (sd)

ETM 97,6031 95,1324 (10,36) 4,8676 (10,36) 9,5436 (7,89) 1,6435 (0,74)
EM 97,1843 94,3037 (10,99) 5,6963 (10,99) 6,8459 (6,62) 1,0957 (0,38)

NEM 95,3293 88,8553 (20,8) 11,1447 (20,8) 2,9788 (2,24) 2,3603 (1,15)
HEM 96,1029 93,2426 (12,29) 6,7574 (12,29) 5,358 (5,22) 1,2006 (0,53)
FCM 91,4426 86,6887 (17,33) 13,3113 (17,33) 2,8059 (4,79) 0,8612 (0,22)

FCMM 91,5879 87,6018 (14,17) 12,3982 (14,17) 2,6723 (3,33) 0,688 (0,13)
GA 94,3389 89,8554 (13,72) 10,1446 (13,72) 4,8939 (9,25) 1,1288 (0,11)
RG 97,6669 92,8924 (13,27) 7,1076 (13,27) 9,1703 (15,63) 0,6821 (0,09)

4 Discussion

As shown in Table 1 the proposed ETM algorithm succeeds in obtaining the lowest
value for the TD index (only 1,9%) respect to other algorithms, which indicates
that in most cases the ETM algorithm performs a more appropriate segmenta-
tion, with the lowest error respect to other segmentation techniques. As shown
in resume of table 1, ETM algorithm obtains an accuracy of 99,96% without an
important over segmentation (the ETM algorithm never gets more than 3.6% for
OS, compared to other EM-based methods that get more than 10%).

Moreover it is observed that generally the RUMA rate obtained by the ETM
algorithm is always one of the lowest, except in configuration 3 of Table 1, which
means that the segmentation performed by this algorithm in terms of intensity,
sometimes does not match the original image. However, since the proposed al-
gorithm was designed primarily for the purpose of segmenting MRI, we aim to
obtain a segmentation of homogeneous regions as connected as possible.

As shown in figure 1 for synthetic images, the proposed algorithm is robust to
noise, mainly because the ETM algorithm includes spatial information of pixels
when calculating the mixture model parameters, that is why we recommend
using this method on images with high noise (see Configuration 1) and low
contrast (see Configuration 2).

The ETM algorithm gets the best results for segmentation of the 32 real MR
images, obtaining 95,13% of accuracy with a standard deviation of 10,36 (see
Table 2). Moreover, with the ETM algorithm the lowest rates of false negatives
were obtained, and also the lowest standard deviation, compared to the other
approaches. Nevertheless, the false positives errors were not that good, but com-
parable with other approaches considered in this work.

With the inclusion of T-step, the ETM algorithm is more efficient compared
with other techniques including spatial information data, because this modifica-
tion does not increase the complexity significantly. ETM, EM, NEM and HEM
have the same complexity in M-step, O(nK). As for E-step complexity, ETM
and EM is O(nK), NEM is O(mn2K) (m is the number of iterations of E-step),
HEM is O(nK) in selective hard EM and O(n2K) in later NEM [5]. In T-step,
ETM have a complexity of O(8nk). The fastest is EM, closely followed by HEM
and ETM, and NEM is the worst. This is corroborated by a posteriori temporal
efficiency obtained in Table 2.
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5 Conclusion

In this work, we introduced a modified Expectation Maximization algorithm to
estimate mixture model parameters in a very simple way, taking into account
spatial relationships between pixels. The proposed method outperforms other
approaches proposed in the literature and constitute a reliable approach to seg-
ment MR images of the brain.

Further work is needed in order to provide more flexibility in the spatial
relationships dependences modelling or to incorporate the bias field estimation
to correct or compensate the intensity inhomogeneities introduced during the
acquisition process in MRI. The proposed ETM algorithm is intensity-based,
but incorporating spatial dependences between pixels, hence the segmentation
do not depend on the region size as is the case with region-based approaches, so
it could be applied to segment other brain anatomical structures, such as White
Matter or Gray Matter, without requiring additional time.
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1 Université des Sciences et de la Technologie Houari Boumedienne, LTIR, Algeria
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Abstract. This paper presents a method of generating realistic synthetic
multi-fractals surfaces, constructed with multiplicative cascades, that
follow lognormal probability density function. The conservation of the nat-
ural image gradient direction, and the variance of the difference minimiza-
tion at each scale between natural image multipliers and those of the
selected lognormal model, preserves the initial texture structure. Valida-
tion of the model is made with wavelet leader based multifractal analysis,
we also propose an application to MRI classification of trabecular bone
texture, to differentiate between healthy and osteoporotic cases.

Keywords: lognormal cascade, Discrete Wavelet Transform, wavelet
leader, multifractal analysis, Monte-Carlo sampling, Iterative Conditional
Modes (ICM), Markov Random Fields (MRF), probabilistic model and
Bayesian classification.

1 Introduction

Over the past few decades, an important number of texture classification ap-
proaches have been explored, and numerous applications relating to computer
vision and pattern recognition have been found, including industrial, remote
sensing and medical imaging. These approaches can be divided into four cate-
gories: statistical, structural methods, modelbased, and signal processing meth-
ods [1]. In this work, the classification is performed in two steps : 1. firstely,
we begin by generating the realistic multifractal surfaces from our serie of im-
age, with a fixed predominant Holder exponent, 2. secondly, we calculate the
percentage of correspondence between the original image and their multifractal
version. Therefore, in our application of MRI trabecular bone texture classifi-
cation, we begin by generating the multifractal version of the ROI (region of
interest) as explained in section two, the validation of the model is performed
by using wavelet leader based multifractal analysis in section three.To generate
several prototypes from the multifractal version of our image, Markov random
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fields are used as shown in section four. In this paper, detection of similarity
is performed by Bayesian classification and comparison of coincidence between
valley’s pixel from trabecular texture is presented in section four.

2 Generation of the Natural Multifractal Model

Kolmogorov and Obukhov [2,3] have proposed the lognormal model that reveals
multifractal behavior, afterward created from aW random multiplicative cascade
process in Yalgom’s work to generate intermittent [4,5,6]. Parallel to that, in the
turbulence analysis, since the first works of Obukhov [7], the decomposition of
signals into high and low-frequency parts did not cease to find favorable ground.
Advent of Daubechies wavelet with compact support and fast algorithm imple-
mentation, on dyadic scales has made conceivable the synthesis of multifractal
surfaces based on lognormal and log-poisson cascades in the relevant Arneodo
et al articles of 2D-WTMM multifractal analysis [8]. We start by choosing the
model, for example a Brodatz’s texture, the product of convolution between the
fm(x, y) model and the ψm

j,k,l wavelet give us the coefficients according to the m
direction, (j, k) position and the scale of analysis l :

Cm
j,k,l = 〈fm(x, y), ψm

j,k,l〉 (1)

The 2D-DWT modulus are expressed by :

dj,k,l =

√√√√ 3∑
m=1

[
Cm

j,k,l

]2
(2)

The directions of the real model fm(x, y) coefficients must be preserved, hence
the angles ϕ and θ are estimated by using the arguments :

ϕj,k,l = arg(

√√√√ 2∑
m=1

[
Cm

j,k,l

]2
+ iC2

j,k,l) (3)

θj,k,l = arg(C1
j,k,l + iC2

j,k,l) (4)

Let wl be the multipliers at scale l that follow a lognormal law, by minimizing the
variance of difference between wm multipliers and those generated randomly wi

following a lognormal probability density function, this calculation is repeated
many times until stability of the result :

dj,k,l = dj,k,l−1wm−1 (5)

var(wm − wl) = min
wi

[var(wm − wi)] (6)

Then, we proceed as in Decoster et all works [9], with the iteration from the
coarser to the finer scale :

Mj,k,l = Mj,k,l−1wl−1 (7)
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The wavelet coefficients of synthetic surface Gj,k,l are written according to the
Mj,k,l modules through :

G1
j,k,l = cos(ϕj,k,l) cos(θj,k,l)Mj,k,l

G2
j,k,l = cos(ϕj,k,l) sin(θj,k,l)Mj,k,l

G3
j,k,l = sin(θj,k,l)Mj,k,l (8)

The construction of the synthetic surface fs(x, y) is performed with the following
addition (N is the total number of scale) :

fs(x, y) =
+∞∑
j=0

+∞∑
k=0

N∑
l=0

3∑
m=1

Gm
j,k,lψ

m
j,k,l(x, y) (9)

Such in the case of our surfaces fs(x, y), a generated surface by lognormal cascade
is characterized with the multifractal spectrum :

D(h) = − (h + μ/ ln(2))
2σ2/ ln(2)

+ 2 (10)

When μ and σ2 denote respectively the mean and the variance from the wl

lognormal law.

Fig. 1. (A) Brodatz’s texture, and in (B) its multifractal version h(q = 0) = 0.38,
μ = −0.38log(2) and σ2 = 0.03log(2) lognormal cascade parameter obtained by the
first order Daubechies wavelet

3 Validation of the Model

To estimate the multifractal spectrum, the leading coefficients method of
S. Jaffard [10] is used, and we employ the same notation as B. Lashermes [11].
In the case of one dimension for example, df (j, k) indicate the discrete wavelet
transform coefficient for each dyadic interval in scale 2j, then lf (j, k)the leading
coefficient is obtained by the relation :

lf (j, k) = sup
λ′⊂3λ(j,k),j′�j

|df (λ′)| (11)
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The structure function is given by the following equation (d = 2) :

Sl
f (q, j) =

1
n(j)

∑
{ki}

1
2d − 1

∑
m

(lf (j, ki, m))q (12)

If we note, by q the moment and n(j) the number of leading coefficients at the
octave j, the scale function is specified by ζf

l (q) and satisfies the relation :

Sl
f (q, j) ∼ 2jζl

f (q) (13)

The Legendre spectrum D(h) is given by the multifractal formalism :

Dl
f (h) = min

q
(d + qh− ζl

f (q)) (14)

Fig. 2. Multfractal analysis of image (1.B) in (A) Partition functions −5 ≤ q ≤ +5
with axis (x, y) = (j, Sl

f (q, j)), (B) Scale function with axis (x, y) = (q, ζf
l (q)), and in

(C) The Legendre spectrum with multifractal behavior and axis (x, y) = (h, Dl
f (h)),

wavelet leader based multifractal analysis is performed by second order Daubechies
wavelet, in black color the theoretical and in blue the experimental spectrum

4 Application: MRI Classification

We present a method of bone texture classification based on Monte-Carlo sam-
pling, following a uniform probability distribution. A great similarity is observed
in the texture structure between the original image and the multifractal model
when we generate a multifractal model with the most frequent Holder exponent
close to the exponent of the original image. In addition, we have used Markov’s
chains for restoration. In the beginning Markov has developed his theory to an-
alyze the Pushkin’s literary text [12], then the appearance of Markov random
fields is due to statistical physics in the work of Ising, and its theoretical basis
were described by Preston and Spitzer [13].
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4.1 The Proposed Method

Trabecular structures pixels and valleys pixels are detected by Bayesian clas-
sification, this requires a learning step to define the prior probability of gray
levels (according to the mode of acquisition, one image is enough for a whole
series). Next, the estimation of coincidence between pixels of the same nature is
performed. Furthermore, we propose the combination of Markov random fields
(MRF) restoration method of second order and the iterative conditional modes
(ICM) with 6 cycles and β=1.5, this allow the production of several prototypes of
our multifractal model, and increases at lower cost (in number of operations) the
statistical population. The preliminary results are very encouraging and show-
ing 100% of good classification on 10 MRI images (Table.1), and a dramatically
reduced in computing time by using Monte Carlo sampling is observed. The
algorithm can be implemented in parallel (multi processing). To generate the
prototype, ICM and MRF are used, we proceed as follows : for any scene x∗

which represents the central pixel obtained by Monte Carlo sampling and the
second order MRF neighbors, We calculate the mean μ(x∗

i ) and the variance
σ2, and generate the yi variable from Gaussian probability distribution function
with the same mean and variance as x∗ scene. The yi variable represents the
generated gray level. The probability that the k gray level is associated with
pixel at the position i is such that [14] :

Pi(k/.) = eβui(k)/
c∑

l=1

eβui(l) (15)

The variable ui(l) indicate the number of i neighbors possessing l gray level, β
is a fixed parameter with a 1.5 value and 6 ICM cycles such as in Besag et al
article. The ICM corresponds to a succession of successful expression reduction
(improving) :

1
2σ2 {yi − μ(xi)}2 − βu∗

i (xi) (16)

With u∗
i (xi) which gives the current number of i neighbors that have the same

gray level as the pixel i. To estimate the correspondence of pixels (trabecular
structures, valleys), we use a probabilistic model and a Bayesian classification,
y indicates the gray level, T and V illustrate respectively trabecular structures
and valleys pixels. The conditional a posteriori probabilities are obtained by [15]:

P (T/y) =
P (T )P (y/T )

P (T )P (y/T ) + P (V )P (y/V )

P (V/y) =
P (V )P (y/V )

P (T )P (y/T ) + P (V )P (y/V )
(17)

The a priori probabilities P (T ), P (V ), P (y/T ) and P (y/V ) are estimated with
a learning step performed by an expert (a doctor indicates the trabecular struc-
tures and valleys regions for best results, to do this, we suggest a pathological
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ROI
Generations of gray levels

pixels of the synthetic
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real model (the ROI).
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sampling of MRI

Restoration by using
ICM and second order
Markov random fields.
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for the prior probability*

Estimate the correspondence between pixels by Bayesian classification
method (detection of trabecular structures and valleys regions)
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Fig. 3. Block diagram of the method, and the principal steps to follow. (*) this step
is needed for training to estimate the prior probabilities.

ROI (fig.4)), a trabecular structure pixel is detected if P (T/y) >αP (V/y), in
our case, we took α=1, it can be modified for example to reduce the risk of con-
sidering a valley pixel as a trabecular structure pixel, we must choose 0 < α < 1.

4.2 Results and Discussion

In our application, the method of Monte Carlo is employed with 104 samples,
and the first order Daubechies wavelets are used during the reconstruction step
with lognormal cascade multipliers, it requires a range of 8 octaves, for a ROI of
512x512 pixels. Ten MRI images are used, the choice of the most frequent expo-
nent is performed with h(q = 0) = 0.1 value that best reflects the pathological
ROI structure, indeed, the rate of coincidence of pixels in the regions of same
nature (trabecular structure or valleys) is higher than in the case of trabecular
texture of normal patient (Table.1). If we consider the totality of the ROI, using
the ICM restoration method improve the homogeneity of the texture by reducing
artifacts (due to the DWT dyadic grid)(fig.5 and fig.6). We can generate several
prototypes from the same image (the table shows the result after one operation
of restoration). We can distinguish unambiguously the two case of studies, fur-
thermore, using MRF allowed us to increase the difference between average of
the two classes. We should note, that the a priori probability is obtained after
a training step by using a pathological ROI, since in this case, it’s easier to
distinguish between the two regions trabecular structures and valleys.
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Table 1. The pathological ROI cases and its results are represented in bold characters,
we give the percentage of coincidence between trabecular structures pixels and valleys
pixels detected by Bayesian classification. MF indicates that the comparison is made
between the ROI and its multifractal version. MF ICM indicates that the comparison
is made between the ROI and its multifractal version restored by ICM method.

ROI B C E G K M O S T U

MF 19.24 45.78 45.74 26.21 44.94 42.64 26.23 28.72 22.13 43.7
MF ICM 18.6 42.55 44.1 26.49 41.19 39.01 22.26 22.39 18.23 42.32

Fig. 4. (A) Training step, in black color the trabecular structures pixels region, the
first figure from left illustrate the regions chosen by an expert (to estimate the a priori
probabilities), and (B) indicate the detected regions by Bayesian classification of the
same pathological ROI (the a posteriori probabilities)

Fig. 5. (A) pathological MRI ROI, (B) its multifractal version h(q = 0) = 0.1, μ =
−0.1log(2) and σ2 = 0.01log(2), and in (C) the same multifractal version restored with
ICM

Fig. 6. (A) healthy MRI ROI, (B) its multifractal version h(q = 0) = 0.1, μ =
−0.1log(2) and σ2 = 0.01log(2), and in (C) the same multifractal version restored
with ICM
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5 Conclusions

This paper concerns the use of multifractal surfaces generation method based on
the extraction of attributes from natural images such as cascade multipliers and
the gradients directions from the wavelet of decomposition, what makes the syn-
thetic image more realistic. An application of texture classification is derived, an
osteoporotic bone texture and a healthy one are compared with their multifrac-
tals versions resulting from lognormal cascade with a fixed predominant Holder
exponent, a greater similarity is observed between original texture and that gen-
erated with lognormal cascade when the Holder exponents are close together
(pathological case in our application). Preliminary results are very promising
and as perspective an automatic method is envisaged and it would be interest-
ing to apply to other types of textures for classification or segmentation.
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15. Pieczynski, W.: Modèles de Markov en traitements d’images. Traitement Du Sig-
nal 20, 255–278 (2003)



Content-Based Emblem Retrieval Using Zernike
Moments

Ezequiel Cura, Mariano Tepper, and Marta Mejail

Departamento de Computacion, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Argentina

Abstract. The problem of content-based image retrieval is becoming
essential in many real-world applications, mostly due to the growth in
size of modern image databases. In particular, this work addresses the
retrieval of trademark emblems, which is key for detecting trademark
infringement. A common approach that proved suitable for this task,
is to encode emblems using shape descriptors and Zernike complex mo-
ments. This work focuses on their study, proposing a two-fold contribu-
tion. First, we present some modifications to Zernike complex moments
and then we explore the use of different comparison metrics. Both have
shown to report improvements in retrieved results and in execution time.

1 Introduction

With the growth in size of modern image databases, the problem of content-based
image retrieval is becoming crucial in many real-world applications. For some
applications, determining duplicates, or look-alike images, is an essential task.
The detection of trademark infringement is one of them, with deep commercial
and monetary implications. Already registered trademark logos, or emblems,
have to be protected against hundreds of new ones that are created every day.
Fig. 1 depicts some examples of similar emblems.

The trademark infringement problem can be very simply stated: given a
database of registered emblems, does a new emblem look similar to any of them?
Unfortunately this problem cannot be solved in a fully automatic way by any
state-of-the-art method. In practice, the new emblem is used as a query which
retrieves the most similar emblems from the database. Then a human expert
performs the final recognition test by only observing these remaining emblems.

Direct image comparison methods such as correlation fail to account for the
perceptual similarity between two emblems. A successful approach is to regard
emblems as shapes. Each shape in the database is then encoded by using some
descriptor and these descriptors are ultimately used for comparison. Specifically,
a query consists on sorting the emblems from the most similar to the least similar
to the query emblem and then returning the first ones among them.

In general, when requirements impose real-time queries, only global methods
are considered at the expense of possibly missing similar emblem subparts. For
example, Shape Context [1] is commonly used for this task.
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Fig. 1. Examples of look-alike emblems. In the first example, NBC agreed to pay a
compensation fee to Nebraska ETV Network for using a similar emblem.

An alternative and popular approach is derived from the use of image mo-
ments [2]. Zernike Moments (ZMs) are an interesting choice as they provide
rotation and translation invariance, minimal redundancy and limited robustness
to noise [3,4]. Although it used to be computationally prohibitive to compute
higher order ZMs, nowadays it has become not only possible but also fast and
numerically precise [5]. Our paper builds upon these approaches, improving the
accuracy and the performance of ZMs-based image retrieval.

First, we propose a modification to ZMs base on an appropriate weighting
and on PCA. The second contribution of this paper is to show that by a simle
two-stage method for comparing ZMs, high efficiency and accuracy are achieved.
The first stage, relies on a fast pruning technique, that allow to quickly retrieve
a small set of likely candidates. The second stage performs more accurate and
time demanding comparisons but, by applying it to the small ouput of the first
stage, high speed is achieved.

This paper is organized as follows. Zernike Moments are reviewed in Section 1.1.
In Sections 2 and 3 we propose a modification to Zernike Moments and a fast
composite distance, respectively. Section 4 presents results that demonstrate the
pertinence of our approach and provides final remarks.

1.1 Previous Work on Zernike Moments

Starting from a complete set of complex polynomials defined by Zernike, Khotan-
zad and Hong [3] introduce complex Zernike Moments.

Definition 1. A Zernike polynom Vnm : R2 → C is defined as

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ) exp(imθ) (1)

where 0 ≤ n, |m| ≤ n, n− |m| is even, ρ = |x + iy|, θ = arg(x + iy) and

Rnm(ρ) =

n−|m|
2∑

s=0

(−1)s (n− s)!

s!(n+|m|
2 − s)! (n−|m|

2 − s)!
ρn−2s.

The input for computing ZMs consists of a binary image, represented by a func-
tion I : R2 → {0, 1}. Of course not every emblem is binary and it must conse-
quently be binarized. Binarization methods are outside the scope of this work
and will not be covered: it is sufficient to state that any such method is suitable.
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Definition 2. Given a binary image I, a Zernike Moment Anm is defined as

Anm =
n + 1

π

∫∫
x2+y2≤1

I(x, y)V ∗
nm(x, y) dx dy (2)

where V ∗
nm(x, y) is the complex conjugate value of Vnm(x, y).

From the above definition it can be trivially deduced that ZMs are translation
invariant. Additionally, the image can be reconstructed from its ZMs [5]. Li et
al. [4] show how to modify ZMs to obtain fully rotation invariance.

Definition 3. A rotation invariant Zernike Moment A′
nm is defined as

A′
nm = Anm exp(−imθn01), (3)

where V ∗
nm(x, y) is the complex conjugate value of Vnm(x, y) and θn01=arg(An01).

The value of n0 is global, in the sense that it must be remain the same for all
emblems in the database. Otherwise, comparisons will not be consistent.

2 Zernike Moments as Image Descriptors

In this section we present methods for using Zernike complex moments as image
descriptors. Following Def. 2, given n, m ∈ N0 we say Anm is valid if m ≤ n and
n− |m| is even.

Definition 4. Given N, M ∈ N0 such that ANM is valid, we define #dmz as

#dmz(N, M) = # {Anm is valid | 0 ≤ n ≤ N, 0 ≤ m ≤M}

=
N(N+1)

2 − �N
2 �

2
+ N + 1− N −M

2
. (4)

We also denote #dmz(N) = #dmz(N, N).

Definition 5. Given an image I and N ∈ N0, we define a Zernike Moment
Descriptor (ZMD) as a vector ZI,N ∈ C#dmz(N) where

(∀n, m ≤ N, Anm is valid) ZI,N (#dmz(n, m)) = Anm

2.1 First Modification: Higher Order Weighting

Using higher order ZMs allows to obtain a more precise description of the im-
age. In fact, the reconstruction of an image from approximately 50 ZMs is very
precise [5]. However, higher order ZMs are more sensitive to noise and prone to
numerical errors [3].

The key idea behind this modification is that higher order ZMs are useful for
encoding fine details, but, at the same time, more importance must be assigned
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Fig. 2. Values taken by Zernike polynoms of order V7m, m = 1, 3, 5, 7, on the unit
circle

to lower order ZMs, which encode coarser details. In other words ZMs must be
weighted, assigning more weight to lower order ZMs than to higher order ZMs.

Following Def. 4, valid ZMs describe a lower diagonal sparse matrix. By ob-
serving the values taken by Zernike polynoms (Def. 1) inside the unit circle in
Fig. 2, we note that (1) the number of phase cycles depends only and is equal
to m and (2) the number of weighted rings is equal to n−m

2 + 1. In fact, given
a fixed n, a larger value for m will result in a more sensitive ZMs. The direct
implication is that when weighting ZMs we must not only take into account n
but also m.

Definition 6. We define a weighted Zernike Moment Descriptor (wZMD) as a
vector Zw

I,N ∈ C#dmz(N) such that

(∀n, m ≤ N, Anm is valid) Zw
I,N (k) = Anm · exp(−k ·m · | sin(θn01)|), (5)

where k = #dmz(n, m).

2.2 Second Modification: PCA ZMs

PCA is a classical technique that transforms a number of possibly correlated
variables into a smaller number of uncorrelated variables. PCA has been also
extended to work with complex numbers [6]. A vector v ∼ N(μ, Σ), is trans-
formed into a vector ṽ ∼ N(0, I) where I is the identity matrix, by using

ṽ = (Φ Λ− 1
2 )T v (6)

where Φ and Λ are the eigenvectors and eigenvalues matrices of Σ, respectively.
The eigenvalues in Φ are sorted in decreasing order and the columns of Λ are
arranged accordingly.

This process relies in an accurate estimation of Σ from the samples in our
database. In our work, we compute Σ with the method proposed by Turk and
Pentland [7]. Given a set of samples γ0, γ2, · · · , γn, Σ is calculated as

Σ =
1
n

n∑
i=0

φi φi
T where ψ =

1
n

n∑
i=0

γi φi = γi − ψ

In our setting, the samples are simply the wZMD in the database.
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Definition 7. We define the PCA Zernike Moments Descriptors (PCA ZMD)
as a vector ZP

I,N ∈ C#dmz(N) where

ZwP
I,N = (Φ Λ− 1

2 )T Zw
I,N . (7)

We also note ZwP (n)
I,N the vector composed of the first n dimensions of ZwP

I,N .

3 Metrics for Comparing Zernike Moments

Classically, two ZMD were compared by reconstructing both images and directly
comparing them, i.e. using correlation or L2 distance. Li et al. [4] proposed the
use of a distance that takes into account phase and modulus.

Definition 8. Let us define the Dρ : CN × CN → R and Dφ : CN × CN → R

Dρ(X, Y ) =

(
N∑

i=1

(|Xi| − |Yi|)2
) 1

2

Dφ(X, Y ) =

(
N∑

i=1

(argXi − arg Yi)
2

) 1
2

The distance Dα : CN × CN → R is defined as Dα = αDρ + (α− 1)Dφ

Our tests with different values for α indicate, as suggested in Li et al. [4], that the
best results are obtained with α = 0.5. Although other distance functions have
been proposed to compare ZMs [3,8], during experimentation we found better
results using Dα and consequently we use it as our reference metric.

For the sake of computational efficiency, we define a combination of two simple
metrics. This allow us to perform real-time and accurate queries. The first metric
performs a fast pruning of the database, retrieving a small set of good look-alike
candidate images

d‖·‖(u, v) = |(‖u‖2 − ‖v‖2)|. (8)

As the norm of all ZMD in the database can be precomputed, the k nearest
ZMD can be retrieved in O(max(log(N), k)). These neighboring ZMD can then
be more carefully examined with

de(u, v) = ‖u− v‖2 (9)

In synthesis, our algorithm will first prune the database using a threshold on
d‖·‖ and then apply de on the smaller retrieved subset.

4 Results and Final Remarks

It is extremely hard to obtain real-world emblem datasets which are internally
divided into similar classes. Therefore experimentation was performed on the
following datasets:
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Fig. 3. Performance as the number of candidates K varies using wZMD of different
dimensions. Left, on the MPEG-7 CE Shape 1 dataset. Right, on the ALOI dataset.

MPEG-7 CE Shape 1: 70 conceptual classes of 20 silhouettes [9].
ALOI: 20 classes of 74 images [10]. Each class is a set of silhouettes of some

object taken from different views.
MNIST: 10 classes of 1000 binarized handwritten digits [11].

The performance is measured using the so-called “bullseye test”. Given a dataset
Sc

n, where c is the number of classes in S and n the number of images per class,
each image in Sc

n is used as a query and one counts the number of correct images
(i.e. belonging to the same class than the query) in the top 2n matches. A perfect
score is achieved when n2c positive cases are found across all the dataset.

The main parameter of our method is the number of candidates K retrieved
using d‖·‖ (Eq. 8). Defining the number of suitable look-alike image candidates
will determine the retrieval performance. Fig. 3 depicts the change in score as
K varies. The optimal value for K is tied to the characteristics of each dataset.
However, in general, small datasets will require a larger K (around 50% of the
dataset size), while K can be safely reduced to 10% on larger datasets.

Table 1 shows the performance of the methods dsicussed in this work. Follow-
ing Li et al. [4], we use Dα=0.5.

On the first part, when comparing performance using Dα=0.5 versus d‖·‖+de,
two phenomena can be observed. First, in all cases our approach outperforms
the one by Li et al. [4]. Second, increasing the number dimensions in ZMD does
not necessarily imply better results (e.g. on the MNIST dataset).

Table 1. Bulls-eye test scores. For each method best results are highlighted.

Dataset Metric ZI,10 ZI,15 ZI,25 ZI,30 Z
wP (20)
I,30 Z

wP (15)
I,30 Z

wP (10)
I,30 Z

wP (5)
I,30

MPEG-7
Dα=0.5 36.09 39.02 38.02 36.82 – – – –
d‖·‖ + de 56.96 60.43 61.21 61.71 61.19 61.35 60.12 56.89

ALOI
Dα=0.5 63.24 65.94 65.45 64.81 – – – –
d‖·‖ + de 68.16 69.98 70.67 70.34 64.91 66.32 70.46 66.35

MNIST
Dα=0.5 38.32 36.66 36.08 36.81 – – – –
d‖·‖ + de 57.2 55.26 55.6 53.56 48.54 50.87 55.06 56.36



Content-Based Emblem Retrieval Using Zernike Moments 85

The second part of the table focuses on the result of using PCA. The per-
formance of using PCA and Dα=0.5 was very poor and results are not shown.
Although dependent on the dataset, usually fixing n = 15 is sufficient. In our
experiments with ZwP (n)

I,30 , best results were obtained when n was chosen such
that the cumulated standard desviation of the first n dimensions of ZwP

I,N was
around 90%. Note also that the best results obtained using PCA are almost as
good as the best results obtained without it. However, comparing PCA ZMs is
considerably faster because distance calculations involve fewer terms.

Fig. 4. Example images from the EMBLEMS dataset

(a) using Dα=0.5and ZI,30

(b) using d‖·‖ + deand Z
wP (15)
I,30

Fig. 5. EMBLEMS dataset results. In green (light grey) the query image, in red (dark
grey) the farthest ranked “equal to the query” image.
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Additionally, we tested the proposed method on a dataset of 8 thousand bi-
nary images of real trademark (Fig. 4) . This dataset includes several slightly
distorded images for each emblem. Two query examples over the EMBLEMS dataset
are shown in Fig. 5. Li et al.’s approach [4] retrieves the farthest “equal to the
query” emblem on the 36th and 72th position in each test. All “equal to the query
emblems” are ranked first by the proposed method. Note that some of the sub-
sequent retrieved emblems are similar to the query.

To conclude, this paper introduces (1) a composite modification to Zernike
Moments Descriptors and (2) a two-stage time efficient method for comparing
ZMs. Experiments on diverse datasets show that the proposed approach signif-
icantly and consistently improves the accuracy of the content-based image re-
trieval based on ZMs. Being based on simpler distance calculations, considerable
speed is gained. Such combination allows the proposed approach to outperform
state-of-the-art content-based image retrieval methods based on ZMs.
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Abstract. It has been shown that many kernel methods can be equiva-
lently formulated as minimal enclosing ball (MEB) problems in a certain
feature space. Exploiting this reduction, efficient algorithms to scale up
Support Vector Machines (SVMs) and other kernel methods have been
introduced under the name of Core Vector Machines (CVMs). In this
paper, we study a new algorithm to train SVMs based on an instance of
the Frank-Wolfe optimization method recently proposed to approximate
the solution of the MEB problem. We show that, specialized to SVM
training, this algorithm can scale better than CVMs at the price of a
slightly lower accuracy.

1 Introduction

Support Vector Machines (SVMs) are currently a well known set of methods to
address classification and other machine learning problems with successful results
in several application fields. SVMs are usually formulated as the solution of a
convex quadratic programming problem (QP), for which a naive implementation
requires O(m2) space and O(m3) time in the number of examples m [15,18],
complexities that are prohibitively expensive for large scale problems. Major
research efforts have been hence directed towards scaling up SVM algorithms to
large datasets.

Due to the typically dense structure of the matrices involved in the QP, large
SVM problems are usually adressed using an active set method where at each it-
eration only a small number of variables are allowed to change [14,8,13]. The most
prominent example is Sequential Minimal Optimization (SMO [4,13]), where only
two variables are selected for optimization each time. The main disadvantage of
these methods is that they tend to have slow convergence when getting closer to
the solution and performance results in practice are very sensitive to the size of
the active set, the way to select the active variables and other implementation
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details like the caching strategy used to avoid the repetitive computation of the
kernel function [14]. Other attempts to scale up SVM methods consist in adapt-
ing interior point methods to some classes of the SVM QP [5]. For large-scale
problems however the resulting rank of the kernel matrix can still be too high
to be handled efficiently [18]. The reformulation of the SVM objective function
[6], sampling methods to reduce the number of variables in the problem [11,10]
and the combination of small SVMs using ensemble methods [12] have also been
explored.

A key observation exploited in [18] is that the QP underlying many SVMs is
equivalent to the QP defining a minimal enclosing ball (MEB) problem, that is,
the problem of computing the ball of smallest radius containing a set of points.
Recent advances in computational geometry have demonstrated that there are
algorithms capable to approximate a MEB with any degree of accuracy ε in
O(1/ε) iterations independently of the number of points and the dimensionality
of the space [18]. Based on these ideas, [18] obtains an algorithm to train SVMs
which exhibits linear time-complexity in the number of examples m approximat-
ing the solution with any desired accuracy. Experiments in [18] confirm that this
approach can be faster than SMO in large-scale problems [4,13].

In this paper, we study a new algorithm to exploit the reduction of SVMs to
MEBs, which can still approximate the solution with any degree of accuracy ε but
is considerably simpler than [18]. The algorithm completely avoids the resolution
of reduced QP problems at each iteration and the corresponding computation
and storage of reduced gram matrices that [18] need to by-pass using SMO and
a caching strategy. Experiments in small, medium and large-scale classification
problems show that, specialized to SVMs, this algorithm to compute MEBs is
slightly less accurate than [18] but can significatively improve the complexity
and actual running times of this algorithm.

2 MEB Problems and Support Vector Machines

As pointed out first by [18] and then generalized by [19], several SVM methods
can be equivalently formulated as MEB problems in a certain feature space, that
is, as the computation of the ball of smallest radius containing the images of the
dataset under a mapping into a dot-product space Z.

Consider a dataset S = {xi : i ∈ I} ⊂ X indexed by I = {1, 2, . . . , m} and
a mapping φ : X → Z, such that k̃(xi,xj) = φ(xi)T φ(xj) ∀i, j ∈ I for a given
kernel function k̃. The closed ball of center c ∈ Z and radius r ∈ R+ is denoted
by B(c, r). The MEB B(c∗, r∗) of φ(S) can hence be defined as the solution of
the following optimization problem

minr2,c r2 (1)
st: ‖φ(xi)− c‖2 ≤ r2 ∀i ∈ I ,

whose Lagrange dual is given by [20]
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maxα Φ(α) =
∑

i∈I αik̃(xi,xi)−
∑

i,j∈I αiαj k̃(xi,xj) (2)
st:

∑
i∈I αi = 1, αi ≥ 0 ∀i ∈ I .

If we denote by α∗ the solution of (2), the center c∗ and the squared radius
r∗2 of the MEB of φ(S) follow from strong duality:

c∗ =
∑
i∈I

α∗
i φ(xi) ; r∗2 = Φ(α∗) . (3)

Problem (2) coincides with the formulation of a number of kernel methods by
correspondingly setting the kernel function k̃. For L2-SVMs [18] for example, we
are given a set of labels {yi : i ∈ I} for the set of training inputs {xi : i ∈ I} and
we are aimed to implement a decision function to predict the class of new inputs
x ∈ X . If the problem is two-class we can suppose without loss of generality that
yi = +1 if xi belongs to the first class and yi = −1 if xi belongs to the other
class. SVMs implement a decision function of the following form [15]

h(x) = sign

(∑
i∈I

αiyik(xi,x) + b

)
, (4)

where k is a kernel function used to implement non-linear classification bound-
aries in non-linearly separable cases and the weights αi are determined by mini-
mizing a risk functional. This functional takes the form of problem (2) if we set
k̃ to

k̃(xi,xj) = yiyj (k(xi,xj) + 1) + δij/C , (5)

where C is a regularization parameter used within the SVM to handle noisy data.
Details can be found in [18]. The kernel k is required to satisfy the following
normalization condition

k(xi,xi) = Δ2 = constant , (6)

which is automatically satisfied for SVM kernels of the form k(xi,xj) = g(‖xi−
xj‖). Equivalent constructions for other kernel methods including regression and
novelty detection are presented in [18] and [19]. Refer also to [19] for studies on
kernels which do not satisfy the normalization condition.

3 Approximate MEBs and Core Vector Machines

The problem of computing the minimal enclosing ball of a set of points has
a long history in computational geometry [20]. Traditional algorithms to find
exact MEBs scale exponentially in the space dimension and hence could not be
applied to SVM problems in which the feature space induced by the kernel is
high-dimensional. Recent advances have been obtained by shifting the attention
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to approximation algorithms capable to output a ball near the MEB by a given
degree of precision.

Given ε > 0, a ball B(c, r) ⊂ Z is said to be an (1 + ε)-approximation to the
MEB B(c∗, r∗) of A ⊂ Z (or more shortly an (1 + ε)-MEB of A) if r ≤ r∗ and
A ⊂ B(c, (1 + ε)r).

In [1] and [20], algorithms to compute (1 + ε)-MEBs that scale independently
of the dimension of Z and the cardinality of A have been provided. These al-
gorithms are built on the concept of ε-core set for A, that is, a subset C ⊂ A
whose MEB is a (1 + ε)-MEB of A. In particular, the algorithm described in [1]
is able to provide an ε-core set of a set A in no more than O(1/ε) iterations. We
denote with Ck the core set approximation obtained at the k-th iteration and
its MEB as Bk = B(ck, rk). Starting from a given C0, at each iteration Ck+1 is
defined as the union of Ck and the point of A furthest from ck. The algorithm
then computes Bk+1 and stops if B(ck+1, (1 + ε)rk+1) contains A.

Exploiting these ideas, Tsang and colleagues introduced in [18] the CVM (Core
Vector Machine) for training SVMs supporting a reduction to a MEB problem.
CVM is described in Algorithm 1, where each Ck is identified by the index set
Ik ⊂ I. The expression for the radius rk follows easily from (3). Moreover, it is easy
to show [18] that step 10 exactly looks for the point xi∗ whose image φ(xi∗) is the
furthest from ck. The index i∗ is then included in the index set and the reduced
QP corresponding to the MEB of the new approximate core set is solved.

Data: S = {(xi, yi) : i ∈ I}, indexed by I = {1, 2, . . . , m}, ε, I0, α0.
For any α ∈ Rk, define R(α) =

∑
i,j∈Ik

αiαj k̃(xi,xj);1

Δ2 ←− k̃(x1,x1);2

r2
0 ←− Δ2 − R(α0);3

i∗ ←− arg max
i∈I

δ2(i,α0) = Δ2 + R(α0) − 2
∑

j∈I0
α0,j k̃(xj ,xi);4

k ←− 0;5

while δ2(i∗,αk) > (1 + ε)2r2
k do6

k ←− k + 1;7

Ik ←− Ik−1 ∪ {i∗};8

Find αk by solving the reduced QP9

min
α∈Rm

R(α) s.t.
∑

i∈Ik
αi = 1, αi ≥ 0∀i ∈ Ik;

r2
k ←− Δ2 − R(αk);10

i∗ ←− arg max
i∈I

δ2(i,αk) = Δ2 + R(αk) − 2
∑

j∈Ik
αk,j k̃(xj , xi);11

end12

Output IS = Ik, α = αk.13

Algorithm 1. Training SVMs using Approximate MEBs (MEB-SVMs)

Algorithm 1 has two main sources of computational overhead: the computa-
tion of the furthest point in step 10, which is linear in m, and the solution of
the optimization problem in step 8. Complexity of step 10 can be made constant
and independent of m by suitable sampling techniques [18]. As regards the op-
timization step 8, CVMs adopt a SMO method [4,13], where only two variables
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are selected for optimization at each iteration. It is known that the cost of each
SMO iteration is not too high, but the method can require a large number of
iterations in order to satisfy reasonable stopping criteria [13].

4 The New Algorithm for MEB-SVMs

In this section we provide a new algorithm to train SVMs based on approximate
MEBs, which avoids the resolution of the reduced QP problem at each iteration
of Algorithm 1. For this purpose we adopt a variant of the Frank-Wolfe algo-
rithm, recently studied in [3] and [20]. The Frank-Wolfe method (see Algorithm
2, where ei denotes the i-th vector of the canonical basis of Rm) solves the gen-
eral problem of maximizing a concave function g(α) on the unit simplex.

α←− ei0 with i0 = arg max
i∈I

g(ei) ;
1

for k = 0, 1, . . .until a stopping criterion is satisfied, do2

i∗ ←− arg max
i∈I

∇g(αk)i;3

λ∗ ←− arg max
λ∈[0,1]

g ((1− λ)αk + λei∗);
4

αk+1 ←− (1− λ∗)αk + λ∗ei∗ ;5

end6

Algorithm 2. The Frank-Wolfe Algorithm

Consider now the problem defined in (2). The gradient of Φ(α) is given by
∇Φ(α)i = k̃(xi,xi)−2

∑
j∈I αj k̃(xi,xj)=φ(xi)T φ(xi)−2φ(xi)T

(∑
j∈I αjφ(xj)

)
.

Furthermore, given any αk, we can define the ball Bk = B(ck, rk), where ck =∑
j∈I αjφ(xj) and r2

k = Φ(αk). In this way, step 3 of Algorithm 2 corresponds to

arg max
i∈I

(
φ(xi)T φ(xi)− 2φ(xi)T ck

)
= arg max

i∈I
‖ck − φ(xi)‖2 , (7)

that is, step 3 selects the point maximizing the distance from the center of Bk,
as does step 10 of Algorithm 1. Moreover, the updating formula for α shows that
only the i∗-th entry of α can become nonzero at each iteration. The optimization
step 4 is analytic: indeed, it can be shown [3,20] that

λ∗ =
1
2
− r2

k

2‖ck − φ(xi∗)‖2 . (8)

In [20], it has been proved that {rk} is a monotonically increasing sequence.
On the other hand, rk is bounded by the radius r∗ of the optimal MEB. There-
fore, if we stop the Frank-Wolfe procedure with the same criterion as in Algo-
rithm 1, then we have rk ≤ r∗, that is, Ik identifies a core set for φ(S) and Bk a
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(1 + ε)-MEB. In conclusion, we can preserve the main structure of Algorithm 1,
substituting step 8 with a step 8′ defined as follows:

αk+1 ←− (1− λ∗)αk + λ∗ei∗ , with λ∗ ←−
(

1
2
− r2

k

2δ2(i∗,αk)

)
.

This way, we are able to avoid the solution of reduced QP problems. The cost
of each iteration of the algorithm is now dominated only by the computation of
the furthest point from ck. The new algorithm hence offers considerably lighter
iterations, whose complexity does not depend on additional numerical routines.
Moreover, a theoretical bound in terms of ε on the total number of iterations,
exactly identical to that of CVMs, holds. Indeed, Yildirim [20] proved that the
method computes an ε-core set in O(1/ε) iterations.

Remark. From a numerical optimization point of view, the following remark
might be of interest. From Theorem 2.2 of [3], we have that Φ(α∗) − Φ(αk) ≤
4Cf/(k + 3), where Cf is a constant, bounded by the squared diameter of the
MEB of S, that is, 4Φ(α∗). Therefore, Φ(α∗) − Φ(αk) ≤ 16Φ(α∗)/(k + 3). It
follows that the relative error (Φ(α∗)− Φ(αk))/Φ(α∗) is smaller than any fixed
tolerance τ after (16/τ − 3) iterations.

5 Experiments and Conclusions

We provide experiments on 13 datasets listed in Table 1. The size of each prob-
lem is quantified by considering the number of training examples m and the num-
ber of classes K. Since we employ a one-versus-one method for multi-category
classification [9], the number of binary submodels to compute is given by sK =
K(K − 1)/2 [15]. The average number of examples for submodel is denoted by
m̄K . The datasets Kdd-full, Ijcnn and extended Usps (abbreviated as Usps-ext)
were used as in previous research to test the large-scale capabilities of CVMs [18]
and are available at [17]. The other problems are available at [7] or [2]. For prob-
lems without a predefined test-set (Iris, Wine, Glass and Kdd-10pc) a 20% of the
data was randomly selected and reserved to assess prediction accuracy.

SVMs were trained using a gaussian kernel k(x1,x2) = exp(−‖x1−x2‖2/σ2).
For datasets Kdd-full, Usps-ext and Ijcnn we used the hyper-parameter values
reported at [18,16]. For the small datasets (≤ 104 examples) hyper-parameters
were determined using 10-fold cross-validation. For the remaining datasets σ2

was set to the average squared distance among training patterns and C was
determined on a logarithmic grid [20, 212] using a validation-set (30% of the
training-set). In order to compute I0 and α0 for Algorithm 1 we adopted the
initialization procedure of [17]. We also adopted the LRR caching strategy de-
signed in [17] for CVMs to avoid the computation of recently used kernel values.

Tables 1 and 2 summarize the experimental results obtained after training
with the parameters determined by the model-selection procedure. The proposed
algorithm is denoted here as FVM (acronym of Frank-Wolfe Vector Machine).
In Table 1 we present accuracy and running times obtained on a 2.40GHz Intel
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Table 1. Dataset features (first 4 columns) and Performance of the two algorithms
(last 4 columns)

Dataset m K m̄K Accuracy (%) Time (secs)
CVM FVM CVM FVM

Glass 1.4E+02 6 2.3E+01 67.93 55.81 1.5E-01 8.0E-03
Wine 1.1E+02 3 3.8E+01 97.49 97.49 5.0E-02 3.5E-03
Iris 1.2E+02 3 4.0E+01 96.24 94.62 5.5E-03 3.0E-03
Letter 1.5E+04 26 5.8E+02 97.44 95.98 3.2E+01 1.2E+01
Usps 7.3E+03 10 7.3E+02 95.76 95.37 6.3E+00 6.0E+00
Pendigits 7.5E+03 10 7.5E+02 98.40 97.91 5.3E-01 1.1E+00
Protein 1.8E+04 3 5.9E+03 69.84 60.91 8.7E+03 3.0E+02
Mnist 6.0E+04 10 6.0E+03 98.53 97.82 4.0E+02 3.0E+02
Shuttle 4.4E+04 7 6.2E+03 99.77 98.41 2.1E+00 3.3E-01
Ijcnn 5.0E+04 2 2.5E+04 98.55 95.17 1.3E+03 1.0E+02
Kdd-10pc 4.0E+05 5 7.9E+04 99.92 98.84 1.3E+03 2.5E+00
Usps-ext 2.7E+05 2 1.3E+05 99.50 99.25 1.8E+01 6.7E+00
Kdd-full 4.9E+06 2 2.4E+06 90.88 91.66 1.4E+00 4.7E+00

Table 2. Detailed measures of complexity

Dataset Number of Kernel Evals Kernel Evals SMO-It
Support Vectors (with Cache) (without Cache)
CVM FVM CVM FVM CVM FVM CVM

Glass 1.2E+02 1.4E+02 2.8E+04 2.8E+04 1.3E+07 5.6E+05 2.8E+05
Wine 5.6E+01 6.4E+01 1.0E+04 1.0E+04 4.7E+06 4.0E+05 1.5E+05
Iris 1.4E+01 7.0E+01 5.3E+03 9.3E+03 4.7E+05 3.8E+05 1.7E+04
Letter 6.8E+03 9.4E+03 3.6E+07 6.6E+07 2.5E+09 2.1E+09 2.6E+07
Usps 1.6E+03 2.1E+03 6.6E+06 8.4E+06 1.8E+08 1.5E+08 1.7E+06
Pendigits 7.6E+02 1.7E+03 2.3E+06 8.2E+06 2.7E+07 8.7E+07 4.5E+05
Protein 1.5E+04 1.4E+04 3.2E+08 2.7E+08 7.9E+11 7.2E+09 1.5E+08
Mnist 1.0E+04 1.2E+04 1.9E+08 2.3E+08 1.5E+10 1.1E+09 3.1E+07
Shuttle 3.1E+02 7.7E+02 8.8E+05 3.0E+06 1.7E+08 5.5E+06 2.0E+06
Ijcnn 8.0E+03 7.1E+03 6.5E+08 7.2E+08 1.2E+11 2.4E+09 3.1E+07
Kdd-10pc 1.1E+04 1.4E+03 1.9E+09 1.4E+07 6.9E+10 2.7E+07 2.2E+07
Usps-ext 5.4E+02 5.6E+02 1.6E+07 9.3E+06 5.4E+08 9.7E+06 1.1E+06
Kdd-full 1.6E+01 7.0E+02 6.6E+04 1.5E+07 7.0E+06 1.5E+07 1.7E+05

Core 2 Duo with 2GB RAM running openSUSE 11.1. In Table 2 we present
platform-independent measures of complexity: the number of Support Vectors
in the resulting model, which determines model complexity, and the number
of kernel evaluations, that is, the number of times that the kernel function is
evaluated on a pair of examples, which is frequently used as the measure of algo-
rithmic complexity for kernel methods. Table 2 presents both the total number
of kernel evaluations required by the algorithm and the values effectively com-
puted after checking the cache: Kernel Evals (without Cache) and Kernel Evals
(with Cache) respectively. Finally, we report the total number of SMO-iterations
(SMO-It) carried out by the CVM algorithm.
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Experiments show that FVM exhibits a slightly lower accuracy than CVM
but a quite better algorithmic complexity, measured as the number of kernel
evaluations. Even if the caching strategy benefits significatively more to CVM
than FVM, by reducing by some orders of magnitude the number kernel evalu-
ations that CVM effectively computes, our method exhibits much better actual
running times in all the cases but two (on one of them CVM is faster at expenses
of the classification accuracy).

Note that the number of support vectors (training points taking part in the
final model) is of the same order for both algorithms. However, CVM computes
on average between 103 and 104 SMO iterations for each support vector in the
model while for FVM the inclusion of a new active point in the model involves
the evaluation of a single analytical rule (see section 4). The overall runtime dis-
advantage of the CVM algorithm can hence be explained by the additional cost
of the SMO iterations, which are completely avoided in the proposed algorithm.
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Abstract. We present a hybrid face recognition approach which relies
on a Graphics Processing Unit (GPU) Machine Learning (ML) Library
(GPUMLib). The library includes a high-performance implementation of
the Non-Negative Matrix Factorization (NMF) and the Multiple Back-
Propagation (MBP) algorithms. Both algorithms are combined in order
to obtain a reliable face recognition classifier. The proposed approach
first applies an histogram equalization to the original face images in
order to reduce the influence from the surrounding illumination. The
NMF algorithm is then applied to reduce the data dimensionality, while
preserving the information of the most relevant features. The obtained
decomposition is further used to rebuild accurate approximations of the
original data (by using additive combinations of the parts-based matrix).
Finally, the MBP algorithm is used to build a neural classifier with great
potential to construct a generalized solution. Our approach is tested in
the Yale face database, yielding an accuracy of 93.33% thus demonstrat-
ing its potential. Moreover, the speedups obtained with the GPU greatly
enhance real-time implementation face recognition systems.

Keywords: GPU computing, Non-Negative Matrix Factorization, Mul-
tiple Back-Propagation, Hybrid systems, Face Recognition.

1 Introduction

Face recognition has many potential applications in various distinct areas, such
as military, law-enforcement, anti-terrorism, commercial and human-computer
interaction [8]. Typically, solving this problem involves several phases: (i) seg-
mentation of the faces, (ii) extraction of relevant features from the face regions,
(iii) recognition and (iv) verification [10]. In this paper, we concentrate on the
last phases, leaving out the segmentation phase. Over the past decades, face
recognition has become an increasingly important area of research, attracting re-
searchers from pattern recognition, neural networks, image processing, computer
vision, Machine Learning (ML) and psychology among others [8,10]. However,
this is still a very challenging and complex problem, because the appearance of
the individuals is affected by a numerous factors (e.g. illumination conditions,
facial expressions, usage of glasses) and current systems are still no match for

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 96–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the human perception system [10]. A detailed survey on existing techniques and
methods for face recognition can be found in Zhao et al. [10].

In this paper, we propose a hybrid method for the face recognition prob-
lem, relying on a Graphics Processing Unit (GPU) Machine Learning Library
(GPUMLib) high-performance implementation of Non-Negative Matrix Factor-
ization (NMF) and Multiple Back-Propagation (MBP) algorithms.

NMF is an unsupervised technique for discovering a parts-based representa-
tion of objects [11]. Essentially, it decomposes a matrix, containing only
non-negative coefficients, into the product of two matrices (also containing non-
negative coefficients), usually with reduced ranks, thus reducing the number of
characteristics in the database, while preserving the relevant information that
allows for the reconstruction of the original data. Since negative coefficients
are not allowed, the original data is reconstructed through additive combina-
tions of the parts-based factorized matrix representation, which is consistent
with psychological and physiological evidence for parts-based representations in
the brain [2]. On the other hand, MBP is a neural networks supervised algo-
rithm, being able to offer potentially greater generalization capabilities than the
well known Back-Propagation (BP) algorithm [3]. Over time, neural networks
have proven to solve complex problems in many different domains (e.g. pattern
recognition, image processing, intelligent control and time series prediction sys-
tems) [7]. By combining both algorithms, we are able to take advantage of the
superior generalization capabilities of neural networks, while retaining the pos-
sibility of having a parts-based representation of the facial images provided by
the NMF algorithm.

The remainder of this paper is organized as follows: The next section covers
the GPUMLib implementation of the NMF and MBP algorithms. Section 3
details the proposed hybrid method for face recognition. Section 4 analyses the
results obtained with the referred method for the Yale face database. Finally, in
section 5 conclusions and future work are addressed.

2 GPU Machine Learning Library

GPUMLib is an open source ML library, aiming to provide machine learning re-
searchers and practitioners with a high-performance library by taking advantage
of the GPU enormous computational power [5]. Currently, the GPUMLib fully
implements the BP, MBP and NMF algorithms. Furthermore an implementation
of the Radial Basis Functions (RBF) neural networks is being developed and the
implementation of other ML algorithms is being planned. The library is released
under the GNU General Public License and its source code, documentation and
examples can be obtained at http://gpumlib.sourceforge.net/.

2.1 Non-Negative Matrix Factorization

Given a matrix V ∈ IRn×m
+ containing only non-negative coefficients (Vij ≥ 0)

and a pre-specified positive integer, r < min(n, m), NMF finds two matrices,

http://gpumlib.sourceforge.net/
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with non-negative coefficients, W ∈ IRn×r
+ and H ∈ IRr×m

+ whose product ap-
proximates V (as closely as possible):

V ≈WH . (1)

The value of r is generally chosen to satisfy (n+m)r < nm, so that the approx-
imation WH can be viewed as a compressed form of the original data [9].

The non-negativity constrains imposed to the elements of W and H are com-
patible with the intuitive notion of combining parts to form a whole, which is
how NMF learns a parts-based representation [11]. In our case, each column of
V represents a human face. Thus, the basis elements of W , may contain facial
features, such as eyes, noses and lips [1].

In order to measure the quality of the approximation defined in (1) the
Euclidean distance can be used:

‖V −WH‖2 =
∑
ij

(Vij − (WH)ij)2 . (2)

Minimizing (2) subject to the constrains Wij ≥ 0 and Hij ≥ 0 leads to an
optimization problem that can be solved by iteratively applying (3) and (4)
until a good approximation is found:

Haμ ← Haμ
(WT V )aμ

(WT WH)aμ
, (3)

Wia ←Wia
(V HT )ia

(WHHT )ia
. (4)

To determine the speedups granted by the GPU parallel implementation
of the NMF algorithms, the face database #1 from the MIT Center for Bi-
ological & Computational Learning, available at http://cbcl.mit.edu/cbcl/
software-datasets/FaceData2.html, was used. This database includes a total
of 2429 face images of 19× 19 = 361 pixels. Thus, matrix V is composed by 361
rows and 2429 columns. Figure 1 presents the speedups yielded by an NVIDIA
GTX 280 GPU (relatively to a Core 2 Quad Q9300 2.5 GHz CPU), consider-
ing the Euclidian distance metric and the multiplicative update rule described
earlier (according to the value of r chosen) [6].

2.2 Multiple Back-Propagation

MBP is a generalization of the BP algorithm that can be used to train Multiple
Feed-Forward (MFF) networks. Together, MFF networks and the MBP algorithm
form an architecture that is in most cases preferable to Feed-Forward (FF) net-
works trained with the BP algorithm [3]. MFF networks are obtained by integrat-
ing two FF networks: a main network and a space network. The main network
contains selective activation neurons that differ from standard ones by an impor-
tance factor. This parameter is adjusted according to the pattern presented to the

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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Fig. 1. Speedups provided by the GPU relatively to the CPU, for the NMF algorithm

network, enabling fine-tuning in a given set of patterns. In other words, it is re-
sponsible by the network response to specific stimulus while ignoring the rest. The
importance factors are determined by the space network, which receives the same
inputs as the main network. Both networks will thus function in a collaborative
manner and must be trained together [3].

The MBP algorithm implementation in GPUMLib1 has been tested with
several benchmarks and real-world applications demonstrating the impressive
speedups (up to 180×) that in some problems are responsible for reducing the
running time from weeks to hours [4].

3 Face Recognition Based on a Hybrid Classifier

The proposed method consists of four steps. In the first step the facial images
are pre-processed in order to reduce the influence of the different ambient illu-
mination conditions. In the next step the parts-based representation of the faces
dataset are obtained with the NMF algorithm. In the following step, using this
information, a classifier is trained with the MBP algorithm. Finally, its perfor-
mance is evaluated on the test data to validate the designed classifier. Eventually,
the previous steps can be repeated with different configurations, until a classifier
that meets the goals expectations is found.

3.1 Image Pre-processing

In order to reduce the influence of the surrounding illumination, an histogram
equalization can be applied to the face images. This method improves the contrast
1 The Multiple Back-Propagation software, available at http://dit.ipg.pt/MBP,

shares the same GPU implementation and has been extensively tested and widely
used by neural networks researchers and practitioners.

http://dit.ipg.pt/MBP


100 N. Lopes and B. Ribeiro

Original
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Fig. 2. Yale face database images before and after the histogram equalization

of the images by changing its gray levels [11]. Figure 2 depicts some of the Yale face
database images before and after the histogram equalization has been applied.

3.2 Parts-Based Representation of the Images Yale Data Base

Once the contrast of the images is enhanced, the NMF algorithm is then applied
to the training database. As said before, this step is used in order to reduce the
data dimensionality and to gather the main characteristics of the individuals
faces. Thus, we build the V ∈ IRn×m

+ matrix by placing one image in each column
of the matrix. Therefore the number of rows will be equal to the number of pixels
of the images. As a result we will end up with the matrix W ∈ IRn×r

+ containing
r parts-based faces representations and the matrix Htrain ∈ IRr×m

+ containing
the respective codification that must be added in order to obtain the correct
approximations of the original m images. For the test database, the process is
similar. First we must build a Vtest ∈ IRn×m′

+ matrix. Then the NMF algorithm
is applied to the new matrix. However, this time the parts-based matrix, W ,
must remain invariable. Thus, only the matrix Htest ∈ IRr×m′

+ gets updated.
Once this process is completed, matrix Htest will contain the codification of the
parts-based images that must be added in order to obtain the approximations of
the m′ images in the test database. Figure 3 shows the sequence of steps needed
to obtain the desired matrices.

training
database

NMF W

Htrain

NMF

Htest

test
database

Fig. 3. Applying the NMF algorithm to the training and test databases
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3.3 Building and Evaluating the Classifier

As soon as the matrices are computed, the Htrain matrix can be used to train
a MFF network with the MBP algorithm. The quality of the resulting neural
network can then be asserted by using Htest matrix.

Every time new data is gathered to be used by the classifier, a new H matrix
(containing the codification of the parts-based images that approximate the new
data) needs to be created by using the NMF algorithm. Although only the H
matrix needs to be computed as the parts-based matrix W remains constant,
the time consumed in the process can prevent this method from being used in
real-world applications. Thus the GPU implementation of the NMF algorithm
is crucial for this method to be used in real-world scenarios.

4 Results and Discussion

To test the proposed method we used the Yale face database, consisting of 165
gray-scale face images (with 64 × 64 pixels) of 15 individuals. Each individual
appears in 11 images, representing different facial expressions (happy, normal,
sad, sleepy, surprised, wink) or configurations (center-light, left-light, right-light,
with glasses, without glasses). In order to build the training dataset we randomly
choose eight images of each person. The remainder three images were placed on
the test dataset. Thus, the training dataset contains 120 images and the test
dataset 45. An histogram equalization was applied to all the images.

Thereafter, the NMF algorithm was applied to the training dataset in order to
determine the parts-based matrix, W , representation of the faces and the matrix
Htrain that will later be used to create (train) a classifier. The number of parts-
based images (r) was chosen to be 45, so that each individual can potentially
have three part-based images. In practice, because NMF is an unsupervised
algorithm there is no guarantee that each individual will have three parts-based
images associated or that the parts-based images will not end up being sharing
by several individuals. Figure 4 shows the first 40 images of W . Once the matrix
W was computed, we used the NMF algorithm again, this time on the test
dataset in order to obtain the Htest matrix, necessary to assert the quality of
the resulting neural network classifiers.

Finally, in order to train the neural networks, we developed a preliminary
Autonomous Training System (ATS) that actively searches for better solutions,
by adjusting the topology of the networks. The ATS makes use of the GPUM-
Lib parallel implementation of the MBP algorithm. Essentially, after training
a neural network the ATS evaluates its performance and compares it with the
best performance achieved so far. The results of the performance comparison are
then used to determine the number of hidden neurons of a new neural network
and the process is repeated until a predefined specified stopping criteria is meet.
For the problem at hand, the ATS took less than 16 hours to train a total of
100000 MFF networks. Figure 5 shows the number of networks trained by the
ATS according to number of hidden neurons. The best network (with 12 hidden
neurons) presents an accuracy of 93.33% on the test dataset and of 100% on
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Fig. 4. Parts-based faces representations (W )
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Fig. 5. Number of networks trained by the ATS, according to the number of neurons

the training dataset. Only three images (of different persons) on the test dataset
were misclassified and among those one had 46.11% probability of belonging to
the correct individual. Thus, the results obtained validate the proposed method,
demonstrating its potential. Moreover the ATS approach is very promissing,
since it was able to find high-quality solutions without any human-intervention
(aside from the initial configuration).

5 Conclusions and Future Work

A hybrid method, combining the NMF and MBP algorithms, for for face recog-
nition is proposed. The proposed approach was tested in the Yale face database,
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yielding an accuracy of 93.33%, thus demonstrating its viability and power. How-
ever a key factor for its success in real-world applications, may rely on the use of
the GPU to support for high-performance implentations of the NMF algorithm,
because when presenting new data to the classifier it is necessary to calculate the
matrix containing the codification of the parts-based images that approximate
the new data. Nevertheless, GPUMLib already presents a GPU implementation
of both the NMF and MBP algorithms, making the proposed method very at-
tractive for use in real-world scenarios. Future work will address determining
the impact of changing the number of parts-based images (r) in the quality of
the resulting solutions. Moreover, another line of work consists in comparing the
proposed method with other reported methods in the literature.
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Abstract. Off-line handwriting recognition deals with the task of au-
tomatically recognizing handwritten text from images, for example from
scanned sheets of paper. Due to the tremendous variations of writing styles
encountered between different individuals, this is a very challenging task.
Traditionally, a recognition system is trained by using a large corpus of
handwritten text that has to be transcribed manually. This, however, is
a laborious and costly process. Recent developments have proposed semi-
supervised learning, which reduces the need for manually transcribed text
by adding large amounts of handwritten text without transcription to the
training set. The current paper is the first one, to the knowledge of the
authors, where semi-supervised learning for unconstrained handwritten
text line recognition is proposed. We demonstrate the applicability of self-
training, a form of semi-supervised learning, to neural network based
handwriting recognition. Through a set of experiments we show that text
without transcription can successfully be used to significantly increase the
performance of a handwriting recognition system.

1 Introduction

Off-line handwriting recognition (HWR) is the task of recognizing a handwritten
text from a sheet of paper that was scanned, photographed or digitized otherwise.
Opposed to on-line handwriting recognition where temporal and spatial infor-
mation about each stroke is available, the off-line recognition task is performed
using only the image of the written text. Many important applications are based
on off-line handwriting recognition, e.g. postal address identification [3], Bank
check processing [15], prescreening of handwritten notes [20], or the creation
of digital libraries of historical documents [8]. After several decades of ongo-
ing research, however, off-line handwritten text recognition is still considered a
difficult problem that is only partially solved [4,17].

To create an automatic handwriting recognition system, a set of images of
handwritten text along with their correct transcription is needed for training.
As it turns out, one of the key problems encountered when building a writer
independent recognition system1 is the great variety in writing styles between
1 A writer independent system is one that recognizes text from writers that have not

contributed to the training set.
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different persons. Hence, the amount of training data needed is extremely large.
Unfortunately, the transcription of the handwritten text has to be done manually
which makes the acquisition of training data costly and time consuming. On the
other hand, collecting handwritten samples itself can be done very efficiently.
Consequently, unlabeled data can be made easily available in large amounts.
Hence the question arises whether such unlabeled data can be helpful for hand-
writing recognition systems. It has been shown that in various classification
scenarios unlabeled examples can indeed significantly improve the recognition
accuracy using semi-supervised learning [5]. Most of the existing works, however,
deal with the standard classification scenario where a single point in a feature
space has to be mapped into the label space [16,21]. In the current paper, a more
general problem is considered in the sense that a (possibly long) sequence of fea-
ture vectors has to be mapped to a (usually much shorter) sequence of labels,
or characters. Some research has been done on sequential semi-supervised learn-
ing, mostly with Hidden Markov Models, but only moderate success has been
achieved following this approach [11,12]. Only few publications exist that deal
specifically with semi-supervised learning for handwritten word recognition. In
[1,2] the authors adapt a recognition system to a single person by using unlabeled
data. This system is highly specialized after the adaptation and not suitable for
general handwriting recognition, though. The task of unconstrained writer inde-
pendent single word recognition was addressed in [6,7]. In this paper, we extend
this approach by not restricting the focus on single, manually segmented words,
but considering entire text lines.

The semi-supervised learning approach addressed in this paper is self-training.
Under this paradigm, one starts with an initial recognizer trained on the avail-
able labeled data. This recognizer then classifies all unlabeled data and sorts
them according to their recognition confidence. The most confidently recognized
samples are assumed to be correct and added to the training set. Using the aug-
mented training set, a new recognizer is created. This procedure of enlarging
the training set can be continued for several iterations. A crucial point in this
process, however, is to decide which elements should be added and which not.
If, on the one hand, the data is selected too strictly, not enough samples might
be added to change the training set substantially. On the other hand, if large
amounts of incorrectly labeled data are added, the recognition accuracy of the
created systems might decrease. For the task of text line recognition, we investi-
gate the use of different confidence thresholds and their effect on self-learning. To
the knowledge of the authors, this paper is the first to deal with semi-supervised
learning for text-line recognition.

The rest of the paper is structured as follows. In Section 2, details of the
task of handwritten word recognition are presented together with the recognizer
used in this work. Semi-supervised learning and self-training are discussed in
Section 3. The experiments are presented in Section 4 and the paper concludes
with Section 5.
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Fig. 1. A visualization of the effects of the preprocessing steps

2 Handwritten Text Line Recognition

2.1 Preprocessing

The database used in this paper consists of 1,539 pages of handwritten English
text, written by 657 writers2 [14]. All pages of the database are already seg-
mented into individual text lines. The segmented text lines are normalized prior
to recognition in order to cope with different writing styles. First, the skew angle
is determined by a regression analysis based on the bottom-most black pixel of
each pixel column. Then, the skew of the text line is removed by rotation. After-
wards the slant is corrected in order to normalize the directions of long vertical
strokes found in characters like ’t’ or ’l’. After estimating the slant angle based
on a histogram analysis, a shear transformation is applied to the image. Next, a
vertical scaling is applied to obtain three writing zones of the same height, i.e.,
lower, middle, and upper zone, separated by the lower and upper baseline. To
determine the lower baseline, the regression result from skew correction is used,
and the upper baseline is found by vertical histogram analysis. Finally the width
of the text is normalized. For this purpose, the average distance of black/white
transitions along a horizontal straight line through the middle zone is determined
and adjusted by horizontal scaling. The result of the preprocessing steps can be
seen in Fig. 1. For more details on the text line normalization operations, we
refer to [13].

2.2 The HWR System

The recognizer used in this paper is a recently developed recurrent neural network,
termed bidirectional long short-term memory (BLSTM) neural network [10]. A
hidden layer is made up of so called long short-term memory blocks instead of
simple nodes. These memory blocks are specifically designed to address the van-
ishing gradient problem which describes the exponential increase or decay of values
as they cycle through recurrent network layers. This is done by nodes that control
the information flow in and out of each memory block.

The network is made up of two separate input layers, two separate recurrent
hidden layers, and one output layer. Each input layer is connected to one hidden
layer. The hidden layers are both connected to the output layer. The network
is bidirectional, i.e. a sequence is fed into the network in both the forward and
the backward mode. The input layers consist of one node for each feature. One
2 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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input and one hidden layer deal with the forward sequence, the other input
and hidden layer with the backward sequence. At each position p of the input
sequence of length l, the output layer sums up the values coming from the hidden
layer that has processed positions 1 to p and the hidden layer that has processed
the positions l down to p. The output layer contains one node for each possible
character in the sequence plus a special ε node, to indicate “no character”. At
each position, the output activations of the nodes are normalized so that they
sum up to 1, and are treated as probabilities that the node’s corresponding
character can occur at this position.

The output of the network is therefore a matrix of probabilities for each letter
and each position. A likelihood is assigned to each path through the matrix by
multiplying all probability values along the path. The letters visited along the
optimal path, i.e. the one with maximum likelihood, give the recognized letter
sequence. Note, however, that the optimal path may not correspond to any
existing word. Given a dictionary of all recognizable words, the Connectionist
Temporal Classification (CTC) token passing algorithm returns a sequence of
words from the dictionary whose likelihood is (locally) optimal. This sequence
is the final output of the recognizer. For more details about BLSTM networks
and the CTC token passing algorithm, we refer to [9,10].

3 Self-training

3.1 Overview

The way semi-supervised learning is applied in this paper is self-training. It is
a methodology widely applicable due to its general and abstract formulation.
It states that all available labeled data should be utilized to train an initial
recognizer in a classic supervised manner. This recognizer is then used to classify
the unlabeled data. Each classification result is stored along with its recognition
confidence. The most confidently recognized elements are considered as correctly
recognized and hence added to the already existing training set which is then
used to create a new recognizer. These steps are repeated until some criterion is
met, e.g. the convergence of the recognition accuracy.

Applying this scheme, a decision has to be made at each iteration which
elements are to be added to the training set and which not. This can be done
by comparing the recognition confidence to some threshold. Using a very strict
threshold ensures that as few as possible falsely recognized elements are added to
the new training set, but also that not many elements are added at all. This may
lead to a training set that is not substantially different from the original training
set and produces recognizers that are not much different from the initially created
one. When the threshold is too loose, more data is added to the training set at
the cost of misclassified data. Therefore a trade-off has to be found between data
quality and quantity.
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dominating any more Labour the Few
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Fig. 2. A text line, the aligned outputs of 10 neural networks, and the resulting recog-
nition confidences. Note that the recognition of the best network is used as the final
transcription (given in the first line of the table).

3.2 Recognition Confidence

In order for the entire process to work, a reliable measure of the recognition
confidence is crucial since it specifies what elements are used to train a new
recognizer. A simple approach in the case of text recognition using BLSTM
neural networks would be to use the likelihood of the path though the letter
probability matrix. However, preliminary experiments have shown, this method
does not serve well as an overall realiability measure of the output.

Therefore we exploit the fact that the BLSTM neural network is initialized
with random weights and create an ensemble of several neural networks by ran-
dom initialization. Clearly, each network of this ensemble produces a different
recognition result for a given input text in general. Therefore, we count how
often a word occurs in the set of produced transcriptions, and use this count
as a confidence measure. Of course, the individual neural networks may output
word sequences of different lengths. Consequently, the word sequences of all out-
puts have to be aligned with each other. Since finding an optimal alignment is
NP-complete [19] we use an approximation algorithm that works well for the
considered application.

To create the alignment, the networks are ranked according to their perfor-
mance on the validation set first. Then, the best network’s output is fixed and
the other word sequences are sequentially aligned to it. By this procedure, an ad-
equate recognition with a reliable confidence measure for each word is efficiently
generated. An example of the procedure can be seen in Fig. 2.

In Fig. 3, a sample plot can be seen that shows the number of words being
correctly as well as incorrectly recognized as a function of the recognition confi-
dence. This function can be evaluated on the validation set and used to define
the threshold that is applied when deciding what elements are used for retrain-
ing. For an optimal increase in the recognizer’s accuracy, the threshold should
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Fig. 3. The number of correctly and incorrectly recognized words as a function of the
logarithm of the recognition confidence. Since the recognized confidence is calculated
from the numbers of networks agreeing with the transcription, the confidence takes on
only a few distinct values.

maximize the number of correct elements that are added, while at the same time
minimizing the number of wrong elements. Obviously, this is not an easy task.
In this paper, we investigate three different threshold selection methods.

3.3 Confidence Thresholds

The first threshold is called High Threshold and is set to 0 (See Fig. 3). It
means that a word is added to the retraining set only if all networks agree on
the output. A second, more refined threshold is the Medium Threshold. It is
set so that all elements added are more likely to be correct than wrong. This
threshold is found by choosing the lowest value returning more correctly that
incorrectly recognized samples in the validation set. (In Fig. 3, a possible value is
Medium Threshold = −1). The last threshold investigated is the Low Threshold.
It is set to −∞ so that all words, regardless of their recognition confidence, are
added to the training set.

4 Experimental Evaluation

To analyze the effects of self-training on the recognition accuracy, we performed
experiments on the IAM database [14] using the thresholds described in 3.3. The
database is split up into a working set of 6161 text lines, a validation set of 920
text lines and a writer independent test set of 929 text lines. These three sets are
writer disjoined, i.e. a person who has contributed to any of the three sets did
not contribute to any of the other sets. Therefore, we test the applicability of the
method for writer independent recognition instead of adapting to a specific style
of writing as done in [1,2]. The working set is randomly split up into a training
set consisting of 1000 labeled text lines and a set of 5161 unlabeled text lines.

Initially, we trained 10 neural networks on the training set. The networks then
transcribed the unlabeled text lines and the transcriptions were sorted accord-
ing to the networks’ performance on the validation set. In the next step, the
transcriptions were aligned and used to compute a new confidence measure for
each word. Then we applied the confidence threshold and added the appropriate
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Fig. 4. The average recognition accuracy of 10 neural network based recognition sys-
tems on the test set as a function of the self-training iterations

words to the initial training set. The initial neural networks were then retrained
on the extended training set. We repeated this process for several iterations. Due
to the high computational costs, we did not wait for the accuracy to converge
but instead fixed the number of iterations.

For recognition of text lines, the accuracy is defined by Acc = n−S−D−I
n

where n is the number of words in the ground truth, S is the number of mis-
recognized words (substitutions), D is the number of words that don’t appear
in the recognized text (deletions) and I is the number of words that appear in
the recognized text but not in the ground truth (insertions) [18].

We evaluated the word accuracy of the initial system and the system obtained
after each iteration. The results can be seen in Fig. 4. The initial system has
an average accuracy of 50.47%. During the course of the iterations, an increase
in accuracy can clearly be observed. Using the Low Threshold retraining rule,
an increase up to 53.89% on average was observed. A larger increase achieved
the High Threshold retraining rule of 58.24% on average. The largest increase,
however, was achieved using the Medium Threshold retraining rule. Using this
rule, the average accuracy of the system after three iteration was at 60.61%.
Note that each single increase in each iteration is statistically significant at the
α = 95% level. As a comparison and to evaluate how good such a system can
get, we additionally trained ten neural networks on the entire working set of
6161 labeled text lines and reached an accuracy of 71%.

The High Threshold retraining rule added mostly correct elements to the
training set, but only a few words from a text line and not even from each of
the lines of the unlabeled set was chosen. Hence, there are not many samples
that are added and the training set changes only slightly. The Low Threshold
rule ensures that each word from each text line is added. This produces enough
correct data as not to impede the recognition accuracy, but the large amount of
noise also hinders a larger increase. A good trade-off appears to be the Medium
Threshold, which picks words from each text line that are likely to be correct.
Therefore the Medium Threshold rule adds more data than the High Threshold
rule with less noise than the Low Threshold retraining rule.
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5 Conclusion

We have presented strategies for self-training in the field of handwritten text
line recognition. These strategies decrease the need of manually labeled training
data and reduce the cost of building recognition systems. Furthermore, by fo-
cusing on text line recognition as opposed to single word recognition, not even
a segmentation into distinct words is necessary. To the knowledge of the au-
thors, this is the first time that such an approach has been proposed. In a set of
experiments we demonstrated the applicability of the procedure and compared
the proposed thresholding strategies among each other. In each experiment we
evaluated the average recognition accuracy of different recognition systems after
each self-training iteration. The highest increase in recognition accuracy, from
about 50% to 60%, was observed when making a compromise between including
too much noisy data and excluding too much correctly labeled data. Although
the increase is remarkable, it still leaves room for further improvements which
will be investigated in the future. Next steps include investigations into larger
ensembles of diverse recognizers such as HMMs and single word recognizers after
an automatic segmentation of the text line into words. Co-training with different
recognizers will also be along our line of research.

While previous approaches to using semi-supervised learning in handwriting
recognition were restricted to either single writer scenarios or to single word
recognition, the system described in this paper is quite general. It can success-
fully deal with multiple writers and complete text lines. Consequently, it can
potentially be applied to many real world tasks, such as transcription of hand-
written notes or historical manuscripts.
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Abstract. Feature selection has improved the performance of text clus-
tering. In this paper, a local feature selection technique is incorporated
in the dynamic hierarchical compact clustering algorithm to speed up the
computation of similarities. We also present a quality measure to evalu-
ate hierarchical clustering that considers the cost of finding the optimal
cluster from the root. The experimental results on several benchmark
text collections show that the proposed method is faster than the origi-
nal algorithm while achieving approximately the same clustering quality.

1 Introduction

Managing, accessing, searching and browsing large repositories of text documents
require efficient organization of the information. In dynamic information envi-
ronments, such as the World Wide Web or the stream of newspaper articles, it is
usually desirable to apply adaptive methods for document organization such as
clustering. Dynamic algorithms have the ability to update the clustering when
data are added or removed from the collection. These algorithms allow us dynam-
ically tracking the ever-changing large scale information being put or removed
from the web everyday, without having to perform complete re-clustering.

Hierarchical clustering algorithms have an additional interest, because they
provide data-views at different levels of abstraction, making them ideal for people
to visualize and interactively explore large document collections. In the context
of hierarchical document clustering, the high dimensionality of the data and the
large size of collections are the major challenges facing researchers today.

In [1], a hierarchical clustering algorithm, namely dynamic hierarchical com-
pact (DHC ) was introduced. It is not only able to deal with dynamic data while
achieving a similar clustering quality than static state-of-the-art hierarchical al-
gorithms, but also has a linear computational complexity with respect to the
number of dimensions. It uses a multi-layered clustering to update the hierarchy
when new documents arrive (or are removed). The process in each layer involves
two steps: the updating of similarity-based graphs and the obtaining of the con-
nected components for these graphs. The graph updating requires to compute
the similarities between clusters, which is the most time-consuming operation.

Feature selection for text clustering is the task of disregarding irrelevant terms,
aiming to find the smallest subset of terms that reveals “natural” clusters from
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text data. Different measures such as scatter separability, entropy and document
or term frequency have been proposed [2,3]. Unsupervised feature selection can
be categorized as global or local approaches. The global feature selection chooses
the relevant features once according to a ranking criterion, and uses the same
feature subset in the whole clustering process. On the contrary, in local feature
selection a different subset of features is chosen for each cluster.

The main contribution of this paper is twofold. Firstly, we present a version
of DHC algorithm for clustering of dynamic document collections, in which a
local feature selection strategy is incorporated to reduce the cost of computing
similarities. Secondly, we present a new quality measure to evaluate hierarchi-
cal clustering solutions that considers the cost of finding the optimal cluster
from the root. The experimental results on several benchmark text collections
show that the proposed method is faster than DHC algorithm while achieving
approximately the same clustering quality.

2 Feature Selection in Dynamic Hierarchical Compact
Algorithm

DHC is an agglomerative method based on graph. It uses a multi-layered clus-
tering to produce the hierarchy. The process in each layer involves two steps:
updating of similarity-based graphs and obtaining the connected components
for these graphs. Each connected component represents a cluster.

DHC algorithm uses two graphs. The first one is the β-similarity graph, which
is an undirected graph whose vertexes are the clusters and there is an edge be-
tween vertexes i and j, if the cluster j is β-similar to i. Two clusters are β-similar
if their similarity is greater than or equal to β, where β is a user-defined parameter.
Analogously, i is a β-isolated cluster if its similarity with all clusters is less than
β. As inter-cluster similarity measure we use group-average. In the vector space
model, the cosine similarity is the most commonly used measure to compare the
documents. By using the cosine measure, we can take advantage of a number of
properties involving the composite vector of a cluster (i.e., the sum of document
vectors of the cluster) [4]. In particular, the group-average similarity between clus-
ters i and j is equal to the fraction between the scalar product of the composite
vectors of these clusters and the product of clusters’ sizes.

The second graph relies on the maximum β-similarity relationship (denoted
as max-S graph) and it is a subgraph of the first one. The vertices of this graph
coincide with vertices in the β-similarity graph, and there is an edge between
vertices i and j, if i is the most β-similar cluster to j or vice verse.

Given a cluster hierarchy previously built by the algorithm, each time a new
document arrives (or is removed), the clusters at all levels of the hierarchy must
be revised (see Figure 1). When a new document arrives (or is removed), a
singleton is created (or deleted) and the β-similarity graph at the bottom level
is updated. Then, the max-S graph is updated too, which produce (or remove)
a vertex and can also produce new edges and remove others. These changes
on the max -S graph lead to the updating of the connected components. When
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Fig. 1. Dynamic hierarchical compact algorithm

clusters are created or removed from a level of the hierarchy, the β-similarity
graph at the next level must be updated. This process is repeated until this
graph is completely disconnected (all vertices are β-isolated). It is possible that
the β-similarity graph became completely disconnected before the top level of
the hierarchy is reached. In this case, the next levels of the hierarchy must be
removed. Notice that the algorithm uses the same β value in all hierarchy levels.

Algorithm 1. DHC with Local Feature Selection
1. Arrival of a document to cluster (or to remove).
2. Put the new document in a cluster on its own (or remove the single cluster to

which the document belongs).
3. level = 0 and update the β-similarity graph at the bottom level, G0.
4. While Glevel is not completely disconnected:

(a) Update the max-S graph at level.
(b) Update the connected components for the max-S graph. Let N be the set of

the new clusters and R be the set of the removed clusters.
(c) For each new cluster c in N :

i. Calculate the composite vector −→c of the cluster c as the sum of the com-
posite vectors of its subclusters.

ii. Select the most f · dt(−→c ) relevant terms of −→c and remove the remaining
terms from it.

(d) Update the β-similarity graph at the next level, Glevel+1.
(e) level = level + 1

5. If there exist levels greater than level in the hierarchy, remove them.

The updating of the β-similarity graph in DHC is trivial. For each vertex
to add, the similarities with the remaining vertices are calculated and the cor-
responding edges are added to the graph. On the contrary, for each vertex to
remove, all its edges are removed too. Notice that DHC needs to compute the
similarities between the new document and all existing documents at the bottom
level. Also, for each level of the hierarchy the similarities between the new clus-
ters created at the previous level and the existing clusters at the corresponding
level must be calculated too. The composite vector of each cluster is used to
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compute these similarities. The computation of the composite vectors and the
similarities between them are the most time-consuming operations.

Our proposal focuses on improving the performance of the β-similarity graph
updating by applying a simple local feature selection criterion. Since DHC is an
agglomerative method, both the size of the clusters and the number of distinct
terms (features) in its composite vectors increase as we go up in the hierarchy.
Thus, a feature selection criterion is applied to choose the most relevant terms for
each cluster. The relevance of a term t in the cluster c is calculated as w(t, c) =∑

d∈c tf(t, d), where tf(t, d) is the number of occurrences of t in the document d.
Notice that w(t, c) coincides with the weigth of term t in the composite vector −→c .
The local selection is performed by using a variable number of features according
to dt(−→c ), which is the number of distinct terms in the composite vector of the
cluster c. The number of selected features in the cluster c is f · dt(−→c ), where
f ∈ [0, 1]. Notice that each cluster is represented by a different subset of features.
Since the dynamic nature of our algorithm, a global feature selection criterion
can not be applied.

The steps are shown in Algorithm 1. A detailed description of steps 4(a) and
4(b) can be seen in [1,5].

3 F1-Travel Quality Measure

Evaluation of clustering is usually done by comparing system-generated clusters
to a “gold standard” (i.e., the manually labeled topics). Several measures have
been proposed to evaluate the quality of flat clustering. However, the evaluation
of hierarchical approaches is still an open problem. The manually labeled topics
of the most standard text collections have currently a flat structure. It is due to
historical reasons and the difficulties for humans to build the topic hierarchy.

The most widely used measure is overall F1 [6], which compares the system-
generated clusters at all levels of the hierarchy with the manually labeled topics.

It is calculated as: Overall F1 =
∑ |T |

i=1|ti|F1(ti,σ(ti))∑ |T |
i=1|ti|

, where T is the set of manual

topics and σ(ti) is the “best matching” cluster with the topic ti, i.e., the cluster
that maximizes F1(ti, cj) = 2 |ti ∩ cj| /(|ti|+ |cj |).

The extended F1-BCubed measure to evaluate hierarchical clustering was re-
cently proposed in [7]. Extended F1-BCubed is the F1-measure evaluated over
extended BCubed precision and recall. It takes into account the multiplicity of
document occurrences in clusters and topics.

Let us suppose that we have a collection of 8 documents and the manual top-
ics are {1,2}, {3,4}, {5,6} and {7,8}. Figure 2 shows three possible hierarchies
obtained by clustering algorithms. As we can observe, extended F1-BCubed con-
siders the hierarchy (a) better than (b) despite it does not contain any “perfect”
cluster. It is due to that the number of document pairs that occur in the clusters
of the hierarchy (a) is more similar to that in the topics than to that in the
hierarchy (b). For example, the pair (1,2) occurs twice in (a) and four times in
(b), while occurs only once in the topics. Both extended F1-BCubed and overall
F1 measure can not distinguish the hierarchy (b) from (c).
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{1,3} {2,4} {5,7} {6,8}

{1,2,3,4} {5,6,7,8}

{1,2,3,4,5,6,7,8}

Extended F1-BCubed=0.189

Overall F1=0.667

F1-Travel=0.458

(a)

{1,2} {3,4}

{5,6}

{7,8}

{1,2,3,4}

{1,2,3,4,5,6}

{1,2,3,4,5,6,7,8}

Extended F1-BCubed=0.154

Overall F1=1.0

F1-Travel=0.656

(b)

{1,2} {3,4} {5,6} {7,8}

{1,2,3,4} {5,6,7,8}

{1,2,3,4,5,6,7,8}

Extended F1-BCubed=0.154

Overall F1=1.0

F1-Travel=0.687

(c)

Fig. 2. Example of hierarchy evaluation by using different measures

We see the hierarchy as providing paths for traveling between topics. Deep
hierarchies may not be suitable for browsing, since a user may require a high
number of navigation steps to finding the topics of her interest. However, if a
hierarchy is too flat, a parent topic may contain too many subtopics and it would
increase the time and difficulty for the user to locate her target. Therefore, we
expect that the number of explored nodes to find the “best matching” clusters
be as small as possible. In this sense, the hierarchy (c) is preferable.

In the context of Topic Detection and Tracking, Allam et al. [8] proposed the
minimal cost measure, which is defined as a linear combination of detection cost
and travel cost. The former cost is expressed in terms of missed and false alarm
rates, while the latter is defined as the search cost to find the optimal cluster
from the root. Following this idea, we propose the F1-Travel measure. It is very
similar to overall F1-measure, but differs in that we add a travel cost to the
measure. Thus, we defined overall F1-Travel as follows:

Overall F1-Travel =
∑|T |

i=1 |ti|F1-Travel(ti)∑|T |
i=1 |ti|

To evaluate each topic ti, we use a best-first search to find the optimal cluster
(see Algorithm 2). That is, F1-Travel(ti) = F1(ti, σ(ti))(1− v

2n ), where n is the
number of documents in the collection, σ(ti) is the “best-matching” cluster with
ti found by the best-first search, and v denotes the number of visited clusters
while looking σ(ti). Notice that 2n represents the worst case (i.e., all clusters of
the largest hierarchy are visited). The greater number of visited clusters required
to find the “best matching” clusters, the smaller F1-Travel is.

As we can observe in Figure 2, unlike extended F1-BCubed and overall F1,
our measure considers the hierarchy (c) better than (b), because 20 clusters are
visited to find all topics in (c), whereas 22 clusters are explored in (b).
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Algorithm 2. F1-Travel for the topic t

1. Let Q be a null queue of nodes, sorted by decreasing F1
2. v = 1, BestF1 = 0, and insert root into Q
3. while Q 	= ∅:

(a) Extract the first cluster c from Q
(b) if F1(t, c) > BestF1:

i. BestF1 = F1(t, c)
(c) v = v+ |c.childs| // |c.childs| is the number of childs of c in the hierarchy
(d) for each child c′ of c:

i. if F1(t, c′) > BestF1:
A. Insert c′ into Q

4. F1-Travel(t) = BestF1(1 − v
2n

)

4 Experimental Results

The performance of the proposed version of dynamic hierarchical compact algo-
rithm has been evaluated using six benchmark text collections, whose general
characteristics are summarized in Table 1. They are heterogeneous in terms of
document size, number of topics and document distribution. Human annotators
identified the flat topics in each collection. In our experiments, the documents
are represented using the traditional vector space model. Document terms repre-
sent the lemmas of the words appearing in the texts (stop words are disregarded)
and they are statistically weighted using TF (term frequency in the document).

The experiments were focused on comparing the proposed version against the
original DHC algorithm in terms of clustering quality and time efficiency. From
the results reported in [5], we fix the parameter β = 0.02, which produces good
hierarchies for all text collections.

To quantitatively compare the relative performance of both methods, we di-
vided the overall F1 score obtained by the proposed method by the corresponding
score obtained by DHC. We referred to this ratio as relative overall F1 score.
In the same way, we calculated relative extended F1-BCubed and relative over-
all F1-Travel scores. We also computed the speedup obtained by the proposed
method, that is, the ratio between the execution times of DHC and our method.

Table 1. Description of document collections

Collection Source Docs Terms Topics
eln TREC-4 (http://www.trec.nist.gov) 5829 83434 50

hitech San Jose Mercury (http://glaros.dtc.umn.edu) 2301 13170 6
new3 San Jose Mercury (http://glaros.dtc.umn.edu) 9559 83487 44
oshcal Ohsumed-233445 (http://glaros.dtc.umn.edu) 11162 11465 10
reu Reuters-21578 (http://kdd.ics.uci.edu) 10369 35297 119
tdt TDT2 (http://www.nist.gov/speech/test/tdt.html) 9824 55112 193
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(d) Relative overall F1-Travel

Fig. 3. Speedup and relative scores obtained by our method w.r.t. DHC

Figure 3 shows the speedups and the relative quality scores, when we vary
the fraction of relevant terms (f) from 0.1 to 0.7 for each text collection. At a
glance, we can observe in Figure 3(a) that speedups between 2 and 6 are achieved
for all collections when f ≤ 0.5. As expected, the greater reduction, the higher
speedups are obtained.

From the Figures 3(c) and 3(d), we can see that the overall F1 and overall
F1-Travel scores slightly decrease (about 5%) or even improve in all collections
while reducing the number of features per cluster in the fraction between 0.2 and
0.5. The slight decrease in the relative overall F1-Travel score w.r.t. the relative
overall F1 score demonstrates that the number of navigation steps to finding the
“best matching” clusters is not significantly increased with the feature selection.

The extended F1-BCubed measure shows a different behavior (see Figure
3(b)). In this case, our method obtains better scores than those obtained by the
original DHC algorithm for all feature reductions. The smaller the number of
selected terms per cluster, the higher extended F1-BCubed scores are achieved,
specially when few features are selected (about 10-20%). This can be explained
by the fact that both the number of hierarchy levels and clusters’ size decrease,
which causes that the number of document pairs that occur in the clusters
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diminishes. This produces an effect of boosting in the calculation of the extended
F1-BCubed values that actually hides the performance of the method.

To sum up, we can conclude that speedups greater than 2.5 can be achieved
with less than 5% loss in clustering quality when we select between 20-45% of the
original number of terms for each cluster. Thus, our method achieves both good
clustering quality and efficiency improvement w.r.t. the original DHC algorithm.

5 Conclusions

In this paper, a version of DHC algorithm has been proposed. Since the dynamic
nature of the method, a local feature selection criterion is applied to remove the
irrelevant terms that may degrade the clustering accuracy, and to reduce the cost
of computing similarities. We also present a new quality measure to evaluate
hierarchical clustering solutions that considers the cost of navigating through
the hierarchy to find the optimal clusters.

The experimental results on several benchmark text collections show that
the proposed method significantly reduces the computation times of the original
DHC algorithm while maintaining the clustering quality. Thus, we advocate its
use for tasks that require dynamic clustering of large text collections, such as
creation of document taxonomies and hierarchical topic detection.

As future work, we plan to combine the proposed method with the speedup
version presented in [9], to further improve DHC algorithm.
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Abstract. Nowadays, background model does not have any robust so-
lution and constitutes one of the main problems in surveillance systems.
Researchers are working in several approaches in order to get better
background pixel models. This is a previous step to apply the back-
ground subtraction technique and results are not as good as expected.
We concentrate our efforts on the second step for segmentation of moving
objects and we propose background division to substitute background
subtraction technique.This approach allows us to obtain clusters with
lower intraclass variability and higher inter-class variability, this dimin-
ishes confusion between background and foreground,pixels. We compared
results using our background division approach versus wallflowers algo-
rithm [1] as the baseline to compare.

1 Introduction

Surveillance systems are interested in the problem of segmenting moving ob-
jects in video sequences. Background subtraction technique is one of the most
widely used approaches. This algorithm compares the current image versus a
background image obtained by a previous processing of the pixel history. Pix-
els where the difference is greater than a threshold are marked as foreground
pixels. That is the main principle for this technique. In our opinion this kind
of algorithms may be separate in two main steps: background maintenance and
segmenting criteria.

The background maintenance is the step where the background is modeled.
Next, an expected image according to his model is predicted. In general, this is
the main feature that distinguishes methods. The current models report a lot of
errors when predicting the background. Some researchers have produced state
of the art of the existent methods in recent years [1], [2],[3] and [4].

The second step (segmenting criteria) has evolved since a simple priori thresh-
old [5] to a more complex system as [1]. Some variables are inferred from the
background maintenance phase in order to obtain an automatic threshold to seg-
ment foreground pixels. One of the most popular algorithms for moving object
detection is the Gaussian mixture model. In [6], the authors explain a detailed
version of it. At present, there are authors trying to improve this method because
it has a great number of advantages. For example, the authors of [7] propose an

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 121–127, 2010.
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approach that combines the Gaussian mixture model with a Markov random
fields smoothness. That algorithm has a great computational cost. It fixes a lot
of parameters. That turns the method into a scene-dependant method. A survey
with a great amount of approaches can be found in [8]. Most of them try to solve
the problem of robust background maintenance, but the number of situations
that can be observed in an image sequence is colossal.

In general, researchers have accepted the background subtraction technique as
the basis of all the a posteriori processing. Our point is that background division
is the most appropriate technique in order to do this work because it diminishes
confusion between background and foreground pixels. This constitutes the second
part of our work.

The main problems that affect the segmentation of moving objects are pre-
sented in [1]. We are going to focus our work on seven of them: moved object,
time of day, light switch, waving trees, camouflage, bootstrap and foreground
aperture. There are works which try to solve other problems. For example [9]
shows an algorithm to solve the shadows in the image.

This paper is divided into 5 sections. Section 1 is an overview of this work.
Section 2 describes the theoretical topics about the physical nature images. Sec-
tion 3 presents our proposal of background division and explains why we prefer
this technique. Section 4 shows the comparison of our results versus wallflowers
algorithm and SACON’s algorithm. Lastly, section 5 contains the conclusions.

2 Fresnel Reflection

The Fresnel equations describe the behavior of light when moving between medi-
ums of different refractive indexes. The reflection of light that the equations
predict is known as Fresnel reflection. When light moves from a medium of a

Fig. 1. Reflection and Refraction representation

given refractive index n1 into a second medium with refractive index n2, both
reflection and refraction of the light may occur(see Figure 1). The angles of inci-
dent, reflected and refracted rays with respect to the normal of the surface that
separate the mediums are given as Θi, Θr and Θt, respectively. Relationship
among these angles is given by the law of reflection and Snell’s law [10]. The
fraction of the incident energy that is reflected from the surface is given by the
reflectance R and the fraction that is refracted is given by the transmittance T,
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where R = R(Θi, n1, n2). In this way, the coefficient R depends on the refrac-
tion indexes of the materials and the angle between the source and the object.
We talk about Fresnel equations because it describes the theoretical behavior
of the real world. In the next section we are going to observe how background
subtraction and background division work for theoretical assumptions.

3 Background Division

As it was shown above, the coefficient R depends on the incident angle and
refractive indexes of the mediums. It means that we are going to work with
an R coefficient R(Θi, n1, n2, x, y) being (x, y) the position of the pixel in the
image. This is the physics behind the problem, but we are going to take into
consideration some topics. In general,Θi can be variable(example the sun light).
The sun is moving the entire day; but if we take into account small movement
of the sun and the algorithm update speed, we can consider this source as fixed
for small time intervals. In the case of indoor environments the light sources are
fixed. Now we can ensure, that for our purposes, the reflection coefficient does
not depend on Θi.

R also depends on the refraction indexes. In the case of n1, it is always going
to represent the air refraction index. In this way, it will be fixed in all the video.
n2 only changes if an object in the scene was moved(in this case R changes too)
and this is a situation we want to detect. Then we can characterize our scene
by its reflectance. We are going to have one point x, y with a reflectance value.
But, we only observe the light intensity reflected by image I.

I(x, y, t) = Io(x, y, t) ∗R(x, y) (1)

where t is the time and

Io(x, y, t) = Io(t) + ε(x, y, t) (2)

Where Io(t) is the proper source illumination. Here ε(x, y, t) is a natural noise
that affects the three variables. It represents a gaussian distribution. So when
we collect a big number of εk its expected value is 0:

lim
N→∞

N∑
k

εk(x, y, t) = 0 (3)

where k = x, y or t. so,

I(x, y, t) = [Io(t) + ε(x, y, t)] ∗R(x, y) (4)

Usually, the background(B) is estimated as the expected value of I(x, y, t) [1]
[4]. The are a lot of approaches to estimate the background. The most widely
used are the mean value over t, median value, gaussian mixture models(GMM)
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among others. We are going to concentrate our efforts in the mean value in order
to explain easily the problem.

B(x, y) =
N∑

t=0

I(x, y, t)
N

=
R(x, y)

N
∗ [

N∑
t=0

Io(t) +
N∑

t=0

εt] (5)

We consider N very big in order to suppress the noise. Then, according to equa-
tion 3:

N∑
t=0

εt = 0 (6)

So,
B(x, y) = R(x, y) ∗ Io (7)

where Io is the mean value of Io(t)
When a new frame is coming(I(x, y, t+1)) background subtraction technique

is applied:

S(x, y, t) = I(x, y, t +1)−B(x, y) = [Io(t + 1)+ ε(x, y, t + 1)− Io] ∗R(x, y) (8)

Usually it is accept that the expected value of S(x, y, t) is a matrix of zeros. This
is only right when Io(t + 1) = Io(An illumination change did not occur) and
under certain conditions of R(x, y). If background division technique is applied
the following expression is obtained:

D(x, y, t) =
I(x, y, t + 1)

B(x, y)
=

Io(t + 1) + ε(x, y, t + 1)
Io

∗ R(x, y)
R(x, y)

(9)

D(x, y, t) =
Io(t + 1)

Io

+
ε(x, y, t + 1)

Io

(10)

Notice that D(x, y, t) maintains the original gaussian distribution. The expected
value of D(x, y, t) is:

C(t) =
Io(t + 1)

Io

(11)

and the noise:
ε(x, y, t + 1)

Io

(12)

Computing the mean value over x and y of the matrix D(x, y, t)(this is an
observable magnitude) we obtain the value of C(t).

When we use background division technique we obtain an expected value for
the matrix D(x, y) and we can use this value as a center of a gaussian, etc. This
is the main advantage of background division. There are others, it is easy to
predict the shadow and the magnitude of illumination change, as the mean of
the divided image. But those topics are going to be discussed in future works.

As a conclusion, background subtraction is affected by the illumination change
while background division is not affected.
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In order to apply our algorithm to the wallflower’s dataset [1], for the modeling
phase, we used the approximated median filter [11]. This is a very simple method.
In this way, we have a background image.

We have a second background to model the sudden illumination changes. It
is used when the algorithm classifies more than 80 per cent of the pixels as
foreground. This background is obtained in a training phase.[12]

Now, when a new frame is coming we use the background to apply background
division technique.

D(x, y, t) =
I(x, y, t + 1)

B(x, y)
(13)

In this way we are going to obtain a matrix D(x, y, t) where certain value is
predominant. Now, we consider there is not only one predominant value, we are
going to suppose there are 5 most probably values in order to classify all pixels
in the image. We apply k-means algorithm to find this 5 values. We initialize
with the seeds (0 0.8 1 1.2 2). The value near 1 is a background value. The other
four clusters are going to be classified as foreground.

We also take into account another advantage of the method. When we have
shadows in the scene, these are poorer illuminated places than the rest of the
image. When we apply background division, we can predict this shadows as
values minor than 1 but near to it.

In our paper we classify a second cluster as background if it is close enough
to the cluster centered on 1.

The processing continues applying a connected components algorithm. We
keep the regions greater or equal than a size estimated for a person (suitable for
each scene).

We apply a segmenting criteria similar to the explained in [12]:
Let A(x, y) be the binary image at this point of processing.
We compute the distant transform(d(x, y)) of A [13]. We are going to classify

a pixel as foreground in F (x, y) only if Dt(x, y) ∗ dt(x, y) < τ .
Where F (x, y) is the final binary image that our algorithm return.

4 Results

We compare our results versus wallflower’s results [1]. Wallflower’s algorithm is
a very famous method and its dataset is one of the most widely used to compare
algorithms. We compare our results vs. [12] results too. It is an algorithm where
background subtraction technique is applied.

The visual results are shown in figure 2 and error rates are shown on Table 1.
As we can observe in Table 1, our algorithm works better than the wallflower

algorithm. It reduces to 56 % the total of errors they reported for background
subtraction and to 53 % for background division.

In light switch image, there is a great amount of false negative pixels. In our
opinion, this does not constitute an error of our algorithm because most of them
are pixels belonging to a chair, that wallflower dataset reports as an object. We
consider that the chair is background in the scene.
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Fig. 2. Visual results. The first row of pictures is hand-segmented images.

Table 1. Numeric results

Algorithm Error moved time light waving camouflage bootstrap foreground Total
Type object of day switch trees aperture Errors

Wallflower[1]
false neg. 0 961 947 877 229 2025 320

11448false pos. 0 25 345 1999 2706 365 649

Background subtraction [12]
false neg. 0 1030 1308 164 518 907 236

5906false pos. 0 3 385 333 384 565 73

Background division
false neg. 0 638 1059 108 164 1287 152

5579false pos. 0 64 417 192 379 833 286

It is possible to see that the noise in the silhouettes is lower for background
division. However, a small trend to rise the false positive rate was observed,
especially with bootstrapping problem. The advantage of background division
is that interclass variability is lower than for background subtraction, then the
confusion between background and foreground pixel is lower. This way a cluster-
ing algorithm may separate moving objects and shadows in different connected
components.

5 Conclusions

In this paper, we present a novel approach to the moving object detection prob-
lem. We use the background division approach to obtain a model suitable to
illumination changes. The global threshold used to segment the moving objects
is dependent on the current image noise level and it is automatically calculated
applying an empirical formula[12].
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We experimentally compared our approach against the wallflower algorithm
and we obtained better results, as showed visually in figure 2, and numerically in
Table 1. Our future research direction is to combine our algorithm with a more
robust tool to model the pixel history.

On the other hand, to the best of our knowledge, this is the first time ap-
proaches of background subtraction and background division for segmentation
of moving object have been compared taking into account different problems af-
fecting the segmentation. In general, for the wallflower dataset, the background
division outperforms background subtraction, especially when the light gradu-
ally changes. This was visual and numerically observed in the experiments, and
the total error rate was better than previous published results.
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Abstract. This paper presents a new algorithm for incremental concept forma-
tion based on a Bayesian framework. The algorithm, called IGMM (for Incre-
mental Gaussian Mixture Model), uses a probabilistic approach for modeling the
environment, and so, it can rely on solid arguments to handle this issue. IGMM
creates and continually adjusts a probabilistic model consistent to all sequentially
presented data without storing or revisiting previous training data. IGMM is par-
ticularly useful for incremental clustering of data streams, as encountered in the
domain of moving object trajectories and mobile robotics. It creates an incremen-
tal knowledge model of the domain consisting of primitive concepts involving all
observed variables. Experiments with simulated data streams of sonar readings
of a mobile robot shows that IGMM can efficiently segment trajectories detecting
higher order concepts like “wall at right” and “curve at left”.

Keywords: Concept Formation, Incremental Learning, Unsupervised Learning,
Bayesian Methods, EM Algorithm, Finite Mixtures, Clustering.

1 Introduction

In this paper, we focus in the so called unsupervised incremental learning [1, 2], which
considers building a model, seen as a set of concepts of the environment describing a
data flow, where each data point is just instantaneously available to the learning sys-
tem [3, 4]. In this case, the learning system needs to take into account these instanta-
neous data to update its model of the environment. An important issue in unsupervised
incremental learning is the stability-plasticity dilemma, i.e., whether a new presented
data point must be assimilated in the current model or cause a structural change in the
model to accommodate the new information that it bears, i.e., a new concept. We show
that our algorithm, the so called IGMM (standing for Incremental Gaussian Mixture
Model), uses a probabilistic approach for modeling the environment, and so, it can rely
on solid arguments to handle this issue [5, 6].

We are interested in problems like the ones encountered in autonomous robotics. To
be more specific, we consider the so called perceptual learning that allows an embodied
agent to understand the world [7]. Here an important task is the detection of concepts
such as “corners”, “walls” and “corridors” from the sequence of noisy sensor readings
of a mobile robot. The detection of these regularities in data flow allows the robot to
localize its position and to detect changes in the environment [8]. In the past, differ-
ent approaches were presented to this end, but they have scarce means to handle the
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stability-plasticity dilemma and to appropriately model the data. As a typical example
of these approaches, Nolfi and Tani [9] proposed a hierarchical architecture to extract
regularities from time series, in which higher layers are trained to predict the internal
state of lower layers when such states change significantly. In this approach, the seg-
mentation was cast as a traditional error minimization problem [10], which favors the
most frequent inputs, filtering out less frequent input patterns as being “noise”. The re-
sult is that this system recognizes slightly differing walls, that represent frequent input
patterns, as distinguish concepts, but is unable to detect corridors or corners that are
occasionally (infrequently) encountered.

Focusing in change detection, Linåker and Niklasson [11, 12] proposed an adaptive
resource allocating vector quantization (ARAVQ) network, which stores moving av-
erages of segments of the data sequence as vectors allocated to output nodes of the
network. New model vectors are incorporated to the model if a mismatch between the
moving average of the input signal and the existing model vectors is greater than a
specified threshold and a minimum stability criterion for the input signal is fulfilled.
However, like other distance based clustering algorithm, the induced model is equiv-
alent to a set of equiprobable spherical distributions sharing the same variance, what
barely fits to a data flow with temporal correlation, better described by elongated ellip-
tical distributions [5, 6].

Our approach can be seen as an incremental solution for the problem of probabil-
ity density estimation, a very important research field in statistical pattern recogni-
tion [13, 14]. As the EM algorithm [15, 16], IGMM follows the mixture distribution
modeling. However, its model can be effectively expanded with new components (i.e.
concepts) as new relevant information is identified in the data flow. Moreover, IGMM
adjusts the parameters of each distribution after the presentation of every single data
point according to recursive equations that are approximate incremental counterparts
of the batch-mode update equations used by the EM algorithm. Although in the past
several attempts have been made to create an algorithm to learn Gaussian mixture mod-
els incrementally [17, 18, 19, 20], most of these attempts require several data points to
the correct estimation of the covariance matrices and/or does not handles the stability-
plasticity dilemma. The IGMM algorithm, on the other hand, converges after the presen-
tation of few training samples and does not require a predefined number of distributions.

The promising results obtained with IGMM applied to sonar signal flows from a
robot simulator, described later on in this text, point out that it fits the requirements of
the so called Embodied Statistical Learning, a desired but still scarce set of statistical
methods compatible to the design principles of Embodied AI [7]. The rest of this paper
is organized as follows. Section 2 presents in details the proposed algorithm. Section 3
describes an experiment performed to evaluate the proposed model. Finally, Section 4
provides some final remarks and perspectives.

2 The Incremental Gaussian Mixture Model

This section describes the proposed model, called IGMM [5], which was designed to
learn Gaussian mixture models from data flows in an incremental and unsupervised
way. IGMM assumes that the probability density of the input data p(x) can be modeled
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by a linear combination of component densities p(x|j) corresponding to independent
probabilistic processes, in the form

p(x) =
M∑

j=1

p(x|j)p(j) (1)

This representation is called a mixture model and the coefficients p(j) are called the
mixing parameters, related to the prior probability of x having been generated from
component j of the mixture. The priors are adjusted to satisfy the constraints

M∑
j=1

p(j) = 1 (2)

0 ≤ p(j) ≤ 1 (3)

Similarly, the component density functions p(x|j) are normalized so that∫
p(x|j)dx = 1 (4)

The probability of observing vector x = (x1, . . . , xi, . . . , xD) belonging to the jth
mixture component, is computed by a multivariate normal Gaussian, with mean μj and
covariance matrix Cj :

p(x|j) =
1

(2π)D/2
√
|Cj |

exp
{
−1

2
(x− μj)T C−1

j (x − μj)
}

(5)

IGMM adopts an incremental mixture distribution model, having special means to con-
trol the number of mixture components that effectively represent the so far presented
data. We are interested in modeling environments whose overall dynamics can be de-
scribed by a set of persistent concepts which will be incrementally learned and rep-
resented by a set of mixture components. So, we can now rely on a novelty criterion
to overcome the problem of the model complexity selection, related to the decision
whether a new component should be added to the current model. The mixture model
starts with a single component with unity prior, centered at the first input data, with a
baseline covariance matrix specified by default, i. e., μ1 = x1, meaning the value of x
for t = 1, and (C1)1 = σ2

iniI, where σini is user-specified configuration parameter.
New components are added by demand. IGMM uses a minimum likelihood crite-

rion to recognize a vector x as belonging to a mixture component. For each incoming
data point the algorithm verifies whether it minimally fits any mixture component. A
data point x is not recognized as belonging to a mixture component j if its probability
p(x|j) is lower than a previously specified minimum likelihood- (or novelty-) threshold.
In this case, p(x|j) is interpreted as a likelihood function of the jth mixture compo-
nent. If x is rejected by all density components, meaning that it bears new information,
a new component is added to the model, appropriately adjusting its parameters. The
novelty-threshold value affects the sensibility of the learning process to new concepts,
with higher threshold values generating more concepts. It is more intuitive for the user
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to specify a minimum value for the acceptable likelihood, τnov , as a fraction of the max-
imum value of the likelihood function, making the novelty criterion independent of the
covariance matrix. Hence, a new mixture component is created when the instantaneous
data point x = (x1, . . . , xi, . . . , xD) matches the novelty criterion written as

p(x|j) <
τnov

(2π)D/2
√
|Cj |

∀j (6)

An instantaneous data point that does not match the novelty criterion needs to be assim-
ilated by the current mixture distribution, causing an update in the values of its parame-
ters due to the information it bears. IGMM follows an incremental version for the usual
iterative process to estimate the parameters of a mixture model based on two steps:
an estimation step (E) and a maximization step (M). The update process begins com-
puting the posterior probabilities of component membership for the data point, p(j|x),
the estimation step. These can be obtained through Bayes’ theorem, using the current
component-conditional densities p(x|j) and priors p(j) as follows:

p(j|x) =
p(x|j)p(j)∑M

j=1 p(x|j)p(j)
∀j (7)

The posterior probabilities can then be used to compute new estimates for the values of
the mean vector μnew

i and covariance matrix Cnew
j of each component density p(x|j),

and the priors pnew(j) in the maximization step. Next, we derive the recursive equations
used by IGMM to successively estimate these parameters.

The parameters θ = (θ1, . . . , θM )T , corresponding to the means, μj , covariances
matrices, Cj , and priors p(j) of a mixture model involving D-dimensional Gaussian
distributions p(x|j), can be estimated from a data sequence of t vectors, X = {x1, . . . ,
xn, . . . ,xt} assumed to be drawn independently from this mixture distribution. The es-
timates of the parameters are random vectors whose statistical proprieties are obtained
from their joint density function. Starting from an initial “guess”, each observation vec-
tor is used to update the estimates according to a successive estimation procedure.

IGMM follows the Robbins-Monro stochastic approximation method to derive the
recursive equation used to successively estimate the priors [21]. For this, in the maxi-
mization step the parameters of the current model are updated based on the maximiza-
tion of the likelihood of the data.

In this case, the likelihood of θ for the given X, L(θ), is the joint probability density
of the whole data stream X, given by

L(θ) ≡ p(X|θ) =
t∏

n=1

p(xn|θ) =
t∏

n=1

⎡⎣ M∑
j=1

p(xn|j)p(j)

⎤⎦ (8)

The technique of maximum likelihood sets the value of θ by maximizing L(θ).
Although the maximum likelihood technique for estimating the priors is straight-

forward, it becomes quite complex when applied to estimate the mean vector and the
covariance matrix directly from (5). Instead, we follow the natural conjugate technique
to estimate these parameters [22]. When μ and C are estimated by the sample mean
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vector and sample covariance matrix, and X is a normally distributed random vector,
the joint density function p(μ,C|x1, . . . ,xi, . . . ,xn) is known to be the reproducible
Gauss-Wishart distribution, the natural conjugate density for the model of (5) [22]. In
this case, when we estimate both the expected vector and the covariance matrix of a
single distribution, starting with a priori distribution with an expected vector μ0 and
covariance matrix C0, these parameters are transformed through n observations in the
following manner [22, 13]:

ω1 = ω0 + n v1 = v0 + n

μ1 =
ω0μ0 + n 〈X〉

ω0 + n
(9)

C1 =

(
v0C0 + ω0μ0

(
μ0

)T
)

+ n 〈X〉 〈X〉T − ω1μ1
(
μ1

)T

v0 + n
(10)

where ω0 and v0 reflect the confidence about the initial estimates of μ0 and C0 respec-
tively, corresponding to the number of samples used to compute these initial estimates.

On the other hand, when the probability density of the input data is a Gaussian Mix-
ture Model with M components, an observation xt is probabilistic assigned to a distri-
bution j by the corresponding posterior probability p(j|xt). In this case, the equivalent
number of samples used to compute the parameter estimates of the jth distribution com-
ponent corresponds to the sum of posterior probabilities that the data presented so far
were generated from component j, the so called 0th-order moment of p(j|x) over the
data, or simply the 0th-order data moment for j. IGMM stores this summation as the
variable spj which is periodically restarted to avoid an eventual saturation.

The recursive equations used by IGMM to update the model distributions are:

spj = spj + p(j|x) (11)

μj = μj +
p(j|x)
spj

(x− μj) (12)

Cj = Cj − (μj − μold
j )(μj − μold

j )T +
p(j|x)
spj

[
(x− μj)(x− μj)T −Cj

]
(13)

p(j) = spj/
∑M

q=1 spq (14)

where p(j|x) μold
j refers to the value of μj at time t − 1 (i.e., before updating). One

important property of these update equations is the fact that they continuously compute
a instantaneous approximation of the parameters that represent the mixture distribution.

The IGMM algorithm has just two configuration parameters, σini and τnov . The σini

parameter is not critical – its only requirement for σini is be large enough to avoid
singularities. In our experiments we have simply used σini = (xmax − xmin)/10.
The τnov parameter, on the other hand, is more critical and must be defined carefully. It
indicates how distant x must be from μj to be consider a non-member of j. For instance,
τnov = 0.01 indicates that p(x|j) must be lower than one percent of the Gaussian height
(probability in the center of the Gaussian) for x be considered a non-member of j. If
τnov < 0.01, few pattern units will be created and the regression will be coarse. If
τnov > 0.01, more pattern units will be created and consequently the regression will be
more precise. In the limit, if τnov = 1 one unit per training pattern will be created.
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3 Experimental Results

This section describes the experiments devised to evaluate IGMM using data obtained
from simulated mobile robot sonars. In these experiments, the data consist of a se-
quence of 4 continuous values (s1, s2, s3, s4) corresponding to the readings of a sonar
array located at the left/right side (s1, s4) and at −10◦/ +10◦ from the front (s2, s3)
of a robot, generated using the Pioneer 3-DX simulator software ARCOS (Advanced
Robot Control & Operations Software). The first experiment was accomplished in an
environment composed of six corridors (four external and two internal), and the robot
performed a complete cycle in the external corridors. Fig. 1 shows the segmentation of
the trajectory obtained by IGMM when the robot follows the corridors of this environ-
ment. IGMM created four clusters corresponding to the concepts of “corridor” (red),
“wall at right” (blue), “corridor / obstacle front” (black) and “curve at left” (cyan). The
colored filled dots in this figure correspond to the location where each cluster was cre-
ated. A square represents a robot position and has the same color of the cluster with the
largest posterior probability for the corresponding data point.

Fig. 1. Concepts created in the environment composed of six corridors

The next experiment was performed in an environment with two different sized
rooms connected by a short corridor. This more complex environment is inspired in
those used in [9] and [11,12]. Fig. 2 shows the segmentation of the trajectory of a robot
following the walls in this environment. IGMM created seven clusters corresponding
to the concepts ”wall at right” (1: red), ”corridor” (2: blue), ”wall at right / obstacle
front” (3: black), ”curve at left” (4: cyan), ”bifurcation / obstacle front” (5: magenta),
”bifurcation / curve at right” (6: green) and ”wall at left / curve at right” (7: yellow).
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Fig. 2. Concepts created in the environment with two different sized rooms

Comparing the experiments, it can be noticed that some similar concepts, like “curve
at left” (cyan) and “obstacle front” (black), were discovered in both experiments, al-
though the environments are different. This points out that concepts extracted from a
data flow corresponding to a specific sensed environment are not restricted to it, but
they form an alphabet that can be reused in other contexts. This is a useful aspect, that
can improve the learning process in complex environments.

4 Conclusion

In this paper we presented IGMM, an algorithm for modeling data flows that fulfills the
requirements of the so called Embodied Statistical Learning [7]. It is rooted in the well
established field of statistical learning, using an incremental Gaussian Mixture Model to
represent the probability density of the input data flow, and adding new density compo-
nents to the model whenever a new regularity, or concept, is identified in the incoming
data. The experimental results confirmed that IGMM was able to extract useful concepts
of the data flow from just a single iteration over the training data. This experiment have
also shown the representational power of the generated statistical model, since from
the values of the computed parameters and the corresponding plots one could readily
interpret and label each extracted concept.
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Abstract. In this paper we undertake the use of phonological features
applied to speech recognition in Spanish language. We investigate two
different ways to integrate these phonological features into an HMM
based speech recognition system. We also propose a method to inte-
grate these features using an architecture that uses independent feature
streams. In the experimental results we find that higher recognition ac-
curacies and less computational cost can be obtained.

Keywords: speech recognition, acoustic modeling, phonological features.

1 Introduction

The majority of speech recognition systems are currently based on the use of the
acoustic properties of speech to establish its characteristics. This method has to
tackle various difficulties, such as, [2], [3], [12], phonation differences due to the
diversity of speakers, coarticulation effects, spontaneous speech, problems with
pronunciation dictionaries, mainly in the English language or ambient noise and
interferences.

Other approaches have alternatively been proposed. One such approach seeks
to incorporate information relating to the way speech is produced in terms of
articulatory gestures. This approach is considered to be highly beneficial for au-
tomatic speech recognition systems, mainly due to the invariance of critical arti-
culators, those mostly involved in sound production, and the lower susceptibility
of the articulatory space to the effects of coarticulation, [1],[2]. This approach
has to deal with two main problems. On the one hand, the speaker’s utterances
need to be represented in terms of these articulatory gestures, and on the other
hand a system is needed to interpret such representation. Some studies have
attempted to solve these problems. The seemingly most successful method has
been the use of Recurrent Time Delay Neural Networks (RTDNN) [5] for articu-
latory gestures detection, and the re-scoring of lattices obtained using a system
based on HMMs defined over Mel Frequency Cepstral Coefficients (MFCC) [1].

This paper is twofold. On one hand, we want to undertake the use of phono-
logical features applied to the Castilian variety of Spanish, investigating two
methods to integrate these features into an HMM based speech recognition sys-
tem. The first method used vectors representing phonological information as
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observation vectors of HMM models and the second used acoustic vectors based
on MFCC. On the other hand, we propose a method to integrate these features
into a speech recognition system.

The structure of the article is as follows. Section 2 provides a short description
of the different methods studied to obtain articulatory information and describes
how we decided to implement this phase. Section 3 describes the architecture of
the speech recognizer used in our experiments. Section 4 contains the results of
our experiments. And the paper ends with the concluding remarks and acknowl-
edgements in Sections 5 and 5, respectively.

2 Phonological Feature Extraction

Several methods have been proposed for the extraction of the phonological fea-
tures. These methods fall into one of two approaches. On the one hand, there are
the methods based on extraction of information directly from the measurement
of the positions or the articulatory organs responsible for speech generation, such
as those presented in [6] where measures of the articulator’s positions taken with
X ray are used. On the other hand, there are the methods based on indirect mea-
surements. Examples of the indirect methods can be found in [7], where visual
information of the mouth is used, or in [8], [10], [11], where the phonological
information is taken from the surface waveform. The most common of these two
approaches seems to be the indirect one, and more specifically when information
is taken from the surface waveform. This is mainly due to the fact that direct
measurements require expensive and invasive devices, such as an electropalato-
graph. On the other hand, different methods are used to extract phonological
information from the surface waveform, such as, the use of artificial neural net-
works [8], [10], dynamic Bayesian networks [4], [9] or Hidden Markov Models
[13], among others.

We used neural networks in this study, and more specifically, RTDNN [5],
a type of neural networks that combines time-delay windows and recurrent
connections to capture the dynamic information of the speech signal.

We therefore needed to define the set of sounds (phonemes) used in our exper-
iments and how they were described in terms of articulatory features. Basing on
the theoretical classification shown in Table 1, and after a set of tests to maximize
the classification accuracy, we defined the articulatory feature sets shown in Ta-
ble 2, where we can see that it corresponds to the theoretical classification, plus
a class silence in all features except sonority, a class vowel in manner and place
of articulation, and a non-vowel class for vowel/non-vowel features, see [15] for
a more detailed description.

3 Speech Recognizer Architecture

Different systems have been developed that make use of the phonological fea-
tures. For example, a system is presented in [1], [10], that uses phonological fea-
tures to re-score the lattices generated by a MFCC based HMM phone recognizer.
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Table 1. Theoretical classification for phonemes in spanish language

Place of
articulation

Manner of articulation

P
lo

si
ve

Fr
ic

at
iv

e

A
ffr

ic
at

e

L
at

er
al

T
ri
ll

M
.
T
ri
ll

N
as

al

unvoiced voiced unvoiced voiced
Bilabial p b m
Labiodental f
Linguodental z
Alveolar t d s ch l r rr n
Palatal ll ñ
Velar k g j

Front Central Back
Close i u

Close-Mid e o
Open a

Table 2. Classification used for the phonological features

Sonority

Voiced a,e,i,o,u,b,d,g,l,ll,r,rr,m,n,ñ

Unvoiced p,t,k,f,z,s,j,ch

Vowel - Non Vowel

Front i,e Open a
Central a Mid-Close e,o
Back o,u Close i,u
Non Vowel rest Non Vowel rest
Silence SIL Silence SIL

Manner

Plosive p,t,k,b,d,g

Fricative f,z,s,j

Affricate ch

Lateral l,ll

Trill r

M. Trill rr

Nasal m,n,ñ

Vowel a,e,i,o,u

Silence SIL

Place

Bilabial p,b,m

Labiodental f

Linguodental z

Albeolar t,d,s,ch,l,r,rr,n

Palatal ll,ñ

Velar k,g,j

Vowel a,e,i,o,u

Silence SIL

In this paper, we propose a system based on a classical acoustic speech recogni-
tion system, based on HMMs, with two main differences. On one hand, we intro-
duce phonological information in the system architecture. On the other hand,
we followed an approach of integrating the feature vectors using independent
feature streams.

Let,
O = o1, o2, ..., oT (1)

be a sequence of observations where ot is the speech vector observed at time t.
When ot are elements of a continuous observation alphabet, and in case of using
Gaussian mixtures as probability distribution function, the observation symbol
probability matrix, bj(ot), for an HMM can be written as:

bj(ot) =
M∑

m=1

cjmN (ot; μjm, Σjm) (2)

where N (ot, μjm, Σjm) denotes m’th Gaussian, with μjm mean vector and Σjm

variance matrix, for state j. M is the number of Gaussians in the mixture and
cjm is the weight of the m’th component in the mixture, that compliments:
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M∑
m=1

cjm = 1 (3)

Well, now we propose to use an architecture with independent feature streams.1

Let S be the number of independent feature streams and Ost a vector defined as:

Ost = o1
st, o

2
st, . . . , o

n
st (4)

that represents an observation in stream s and time t, and with n its dimension,
which may vary for each feature stream. With this approach the observation
symbol probability matrix, bj(ot), can be rewritten as:

bj(ot) =
S∏

s=1

(
Ms∑

m=1

cjmsN (Ost; μjms, Σjms)) (5)

where Ms is the number of Gaussians in the mixture of stream s, which may be
different in each stream.

Likewise, in the case of using discrete symbol streams, the matrix, bj(ot), can
be rewritten as:

bj(ot) =
S∏

s=1

bjs(Ost) (6)

where bjs(Ost) is the observation symbol probability matrix of stream s.

4 Experimental Evaluation

This section is dedicated to a more detailed description of the implementation of
the system presented. First, we provide a short description of the corpus used.
The process for the phonological feature extraction is then described, and finally
the different configurations, and the recognition results are given.

4.1 Database Description

The speech corpus used in this paper was Albayzin [14]. This is a corpus in the
Castilian variety of Spanish recorded at 16KHz divided in three sub-corpus: a
phonetic corpus without syntactic-semantic restrictions, which was used in this
study, a second corpus including those restrictions and a third corpus designed
for noisy environments. The phonetic corpus consists of sentences of read text
and is divided in a training set of 200 sentences pronounced by 4 speakers and 25
sentences more pronounced by 160 speakers, making a total of 4800 sentences,
42144 words (712 different) and 187848 phonemes, along with a test set with 50
sentences pronounced by 40 speakers, making a total of 2000 sentences, 21052
words (1856 different) and 93696 phonemes. Table 3 contains a short description
of the phonetic corpus.
1 Most speech recognition systems use as observation vectors a concatenation of

different types of feature vectors (e.g. MFCC, energy, and it’s first and second deriva-
tives). We propose to treat the different types of feature vectors independently and
denote each independent feature as a feature stream.
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Table 3. Summary of the phonetic subcorpus of Albayzin speech corpus

Speakers Sentences Words Different Words Phonemes

Training 164 4800 42144 712 187848
Test 40 2000 21052 1856 93696

On the other hand, the representation of the corpus in terms of the phono-
logical features needed to be obtained prior to training the HMM models. This
representation was obtained by making previously trained networks, see section
4.2, act on the acoustic representation of the corpus. Finally, the corpus was
transcribed using a set of 24 phonetic units, 23 phonemes and 1 silence, and
therefore 24 HMM models were trained.

4.2 Phonological Feature Extraction

For the case of use a phonological representation space we need a way to obtain
such representation. Based on the study in [5], we used RTDNN for phonological
feature detection. Five neural networks were used to detect each of the features
presented in Table 2, that is, sonority, manner and place of articulation, vowel-
nonvowel in front-central-back axis and vowel-nonvowel in open-close-midclose
axis. These neural networks had multiple outputs and the classes to be detected
for each feature were those described in Section 2. The inputs of all the neu-
ral networks were 12 first MFCC plus energy, which were extracted in 25 ms
Hamming windowed frames with an overlapping of 10 ms. The outputs of the
neural networks were real values ranging from 0 to 1. Although these values
could be treated as the posterior probabilities of the features, we applied a more
basic implementation and used them as simple observation vectors.

4.3 Comparing Phonological and Acoustic Representation Spaces

To compare the different representation spaces used we made three different
experiments.

In the first experiment, we used an acoustic representation space in which
the observation vectors were a concatenation of MFCC, energy and it’s first
and second derivatives. To include the phonological knowledge we proceeded as
follows: we used a Gaussian function to model each of the classes presented in
Table 2. To construct each of the Gaussian functions we obtained the mean and
variance vectors of all the vectors belonging to each of the classes and used these
as mean and variance for each of the Gaussian function. We used two different
implementations. The first with a feature stream for each of the phonological
features and the second integrating all the phonological features in an unique
stream. Resulting in mixtures of 2, 5, 5, 9 and 8 Gaussians, respectively, for each
of the streams in the case of independent feature streams and a mixture of 24
Gaussians in the case of an unique stream. Finally, and to maintain the phono-
logical information in the training process we keep the values of the Gaussian
functions fixed and only reestimate it’s weights in the mixture.
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For the second experiment, we used a phonological representation space based
on using as observation vectors for the HMM states those obtained as outputs
of the phonological feature detectors, see Section 4.2. Two different implemen-
tations were used. The first used independent feature streams for each of the
phonological features with mixtures of 2, 5, 5 ,9 and 8 Gaussians respectively,
and the second used a unique feature stream resulting from the concatenation
of the vectors of each of the independent streams and which used a mixture of
128 Gaussians.

Finally, we made a last experiment combining both phonological and acoustic
information. In this case, we used the same two types of observation vectors of
the second experiment for the phonological space, and for the acoustic space
we used four independent feature streams for each of the following features: 12
first MFCC, it’s first and second derivative, and energy and it’s first and second
derivative. Mixtures of 32 Gaussians were used for each of the acoustic streams.

We also used discrete models when using phonological representation space
only and combination of phonological and acoustic spaces. To obtain the code-
books for the phonological space, in the case of an unique stream, it was gene-
rated using the LBG algorithm to the concatenation of the independent feature
vectors. For the various streams case, for each independent feature, the repre-
sentative vector for each class was obtained as the mean vector of all the vectors
belonging to that class. And were these representative vectors what we used as
the codebook’s vectors.

Finally, say that the topology of the HMM models used was the classical
left-to-right of three states with transitions from one state to itself and to the
adjacent one.

We then proceeded to train and test the models. Table 4 contains the phone
recognition accuracies (PRA) obtained, together with the PRA for the acoustic
based baseline system. The topology of this baseline system was identical to
the topology of the system presented, with four independent feature streams
corresponding to MFCC, it’s first and second derivatives, and energy and it’s
first derivative, respectively. A codebook of 1024 classes in the case of discrete
models and 32 mixture Gaussians in the case of continuous models were used
for each of the streams.

When using the phonological representation space, we can see that better
recognition accuracies was obtained in the case of discrete HMM models than
in the case of continuous models. We believe that this could be due to the fact
that the phonological space is highly discretized which favours the use of discrete
models. On the other hand, when using the acoustic representation space the
results obtained are not as good as in the previous case, and we can conclude
that is better to use the phonological representation space.

Also can see that only when combining phonological and acoustic information
we obtain recognition accuracies similar to the baseline system. On the other
hand, and comparing the systems with just phonological information and with
both phonological and acoustic information, it can be seen that the systems
combining both types of information have better recognition accuracies.
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Table 4. Phone recognition accuracies for baseline and presented systems. S is the
number of independent feature streams. When Ph.+Ac. we have S = Sph + Sac and
Sac = 4.

Ac. Space Ph. Space Ph. + Ac. Space
CHMM DHMM CHMM DHMM CHMM

S = 1 S = 5 S = 1 S = 5 S = 1 S = 5 Sph = 1 Sph = 5 Sph = 1 Sph = 5
Ac. baseline 75.15 69.40 75.15 69.40 75.15

PRA 48.92 47.67 72.93 72.46 70.35 70.23 75.83 75.72 75.06 74.24

Table 5. Normalized computation times for baseline and discrete HMM models

Sph = 1 Sph = 5
DHMM 0.13 0.03

BASELINE 1

We find that the results obtained for the discrete models are pretty good
because they have proved to be computationally faster than continuous ones. In
Table 5 we show computation times for the recognition process of the continuous
HMM models based baseline system and the different implementations used
with discrete HMM models, normalized with the value of the baseline system.
It also can be seen that when speaking of computational cost is better to use
phonological features in independent streams rather than concatenate them in
one stream.

5 Concluding Remarks

In this work we have undertaken the problem of using phonological features
for speech recognition in Castilian variety of Spanish. Also we have proposed
a method for integrate these features in a speech recognition system based on
HMM models. We have used two different representation spaces, phonological
and acoustic, to integrate phonological features in a speech recognition sys-
tem and have found that is better to use the phonological space. Also have
found that the use of phonological features could be highly beneficial above all
in the case of using discrete HMM models where we have obtained better re-
sults than the baseline system used, both in accuracy rate and in computational
cost.
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Abstract. This work compares two frequently used criterion functions
in inference of gene regulatory networks (GRN), one based on Bayesian
error and another based on conditional entropy. The network model uti-
lized was the stochastic restricted Boolean network model; the tests were
realized in the well studied yeast cell-cycle and in randomly generated
networks. The experimental results support the use of entropy in rela-
tion to the use of Bayesian error and indicate that the application of a
fast greedy feature selection algorithm combined with an entropy-based
criterion function can be used to infer accurate GRN’s, allowing to accu-
rately infer networks with thousands of genes in a feasible computational
time cost, even though some genes are influenced by many other genes.

Keywords: feature selection, gene regulatory networks inference, stochas-
tic restricted Boolean network models, entropy, Bayesian error.

1 Introduction

Gene regulatory networks (GRN) models help us to study biological phenom-
ena (e.g. cell cycle) and diseases (e.g. cancer). Therefore, the inference of such
networks is an important problem to be addressed. Unfortunately, the GRN in-
ference problem usually involves data with a large number of variables and small
number of observations, making the problem particularly hard due to error es-
timation issues. In this context, many inference algorithms have been proposed.
A survey of GRN inference methods can be found in [1].

In this context, we compare two feature selection criteria commonly used for
inference of gene regulatory networks, one based on Bayesian error (non-linear
coefficient of determination) and another based on mean conditional entropy
(uncertainty coefficient). The experiments considered the stochastic model of the
yeast cell cycle provided by Zhang et al, which is based on restricted Boolean
networks [2]. Besides the network topology of the yeast cell cycle model, other
randomly generated topologies following a similar parametrization were included
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in the experiments. Applying exhaustive search and a classical and fast feature
selection algorithm (Sequential Forward Selection - SFS) to the transition ma-
trices corresponding to such networks, it can be observed a significantly better
performance of the entropy over the Bayesian error in recovering the groundtruth
connections. Besides, the application of SFS guided by the entropy based crite-
rion leaded to surprisingly good results, which is a valid alternative to become
feasible the inference of GRNs considering thousands of genes with nice quality.
These findings are the main contribution of this work.

Next section presents a brief background on feature selection, the algorithms
and criterion functions used. In Section 3, the restricted Boolean network model
of the yeast cell-cycle is presented. Section 4 discusses the GRN inference results
obtained by the application of the considered algorithms criterion functions.
Finally, the conclusion of this work along with future perspectives are found in
Section 5.

2 Feature Selection

Feature selection techniques are composed by two main parts: a search algo-
rithm and a criterion function that guides the algorithm. In feature selection,
the only way to guarantee that the optimal solution be achieved is by exploring
all possible subsets of all dimensions (exhaustive search), although depending on
the behavior of the criterion function, it is possible to design branch-and-bound
algorithms that obtain the optimal solution without the need to investigate the
whole space of solutions [3,4]. Greedy algorithms like Best Individual Features
or Sequential Forward Selection (SFS) are very fast, although do not guarantee
the optimal solution due to the nesting effect, i.e. a phenomenon in which the
inclusion of the best features according to a given criterion may not lead to the
optimal subset [5]. Yet, this phenomenon can be explained by the intrinsically
multivariate prediction concept [6], also known as synergy [7], which states that
it is possible to obtain a very good predictor set with regard to a considered
target even that all its properly contained subsets do not offer any prediction
about the target. Due to the nesting effect, many floating search algorithms that
try to alleviate it by trying to successively add elements to and remove elements
from the current solution have been proposed.

Here the attention is given to the SFS, a genuinely greedy feature selection
algorithm [8]. It starts with the empty set and includes the best feature according
to the criterion function. In every step i, it adds the i-th feature that forms
the best set with the already included i − 1 features in the partial solution.
This process continues until reaching a stop condition, which usually either is
based on a fixed dimensionality given as input or based on the evaluation of the
improvement of the criterion function (if the improvement by adding the next
feature is smaller than a certain threshold, it stops).

With regard to the criterion functions, the focus is given on two commonly
used criteria in GRN inference. One of them is the coefficient of non-linear deter-
mination (CoD), which considers the error committed by a subset in classifying
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the target value (Bayesian error) [9, 10, 11]. The CoD of the target Y given the
knowledge of X = (X1, ..., Xn) is given by:

CoDY (X) =
ε(Y )− ε(Y |X)

ε(Y )
(1)

where ε(Y ) = 1 − maxy∈Y P (y) is the prior error, i.e. the error by predict-
ing Y in the absence of other observations, and ε(Y |X) =

∑
x∈X P (x)(1 −

maxy∈Y P (y|x)) is the average error by predicting Y based on the observation
of X.

Criterion functions based on entropy (H), such as mutual information or
mean conditional entropy, are frequently adopted for GRN inference as well
[12, 13]. The Uncertainty Coefficient (UC) is similar to CoD, but instead of
using Bayesian error, it employs entropy [14]. Its equation is given by:

UCY (X) =
H(Y )−H(Y |X)

H(Y )
(2)

where H(Y ) = −
∑

y∈Y P (y)logP (y) is the entropy of predicting Y in the ab-
sence of other observations, and H(Y |X) =

∑
x∈X P (x)H(Y |x) is the mean

conditional entropy of Y given the observation of X.

3 Yeast Cell-Cycle Stochastic Restricted Boolean Model

Following the yeast cell-cycle model with 11 genes proposed by Li et al [15] and its
stochastic version [2], a Restricted Boolean Network is defined as a graph where
each node is represented by a Boolean variable si ∈ {0, 1} and its dynamics is
given by the following transition probabilities:

P (s1(t + 1), s2(t + 1)...s11(t + 1)|s1(t), s2(t)...s11(t)) =∏
i

P (si(t + 1)|s1(t), s2(t)...s11(t)), (3)

where

P (si(t + 1) = σi|s1(t), ...s11(t)) =
exp{−β(1− 2σi)

∑
j wijsj}

exp{−β
∑

j wijsj}+ exp{β
∑

j wijsj}
, (4)

if
∑

j wijsj �= 0 or
P (si(t + 1) = si(t)|s1(t), ...s11(t)) = 1/(1 + exp{−α}) (5)

otherwise.
In the context of gene regulatory networks, si(t) represents the expression of

gene i at the moment t; wij sets the influence of gene i on gene j (wij ∈ {−1, 0, 1}
for i �= j and wij ∈ {−0.1, 0} for i = j). The parameters α and β are positive
and related to intrinsic and input noises, respectively. They work as inverse tem-
peratures, i.e. the probability of the system to follow the deterministic pathway
increases with their values. These deterministic pathways are the trajectories of
the system in the state space of the noiseless case. In the Zhang et al model,
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these pathways are the trajectories of the network state in the deterministic
yeast cell-cycle model [15].

For a network with N nodes, there are 2N distinct states. Naturally, some of
these states are not allowed in the dynamics of the deterministic model (noiseless
case). But in the presence of noise, the system eventually can be found in some
of the “forbidden” states.

The model proposed by Equations 4 and 5 comes from the assumption in
which all nodes are under the same kind of noise and that the transition function
does not change in time, which means that it is a time homogeneous Markovian
process. Besides, as can be noted, all states are accessible, i.e. the Markov chain
is ergodic and, therefore, there is a time-invariant probability distribution π =
(π0, π1, ..., π2N−1) to which the system converges:

lim
r→∞ pmn(r) = πn, 0 � m, n < 2N (6)

where pmn(r) is the element on the row m and column n of P r, with P being
the transition matrix defined by Eq. 3.

4 Experimental Results

Using the model described in Section 3, we have all state transition probabilities
of the Markov chain process given in a matrix P . As this is an ergodic matrix
(see Section 3), we have the limit probability distribution of all states given
by the vector π. With P and π, it is possible to obtain the joint probability
distribution table (JPD) for all possible subsets of variables, allowing to apply
criterion functions to evaluate any subset of genes as predictor candidates for
any gene considered as target [16].

Here we considered two feature selection algorithms: the exhaustive search
(which examines all possible subsets of all dimensions, returning the optimal
subset with the smallest dimension) and the SFS (see Section 2 for a brief de-
scription) with a stop condition that is based on the improvement of the criterion
(if the addition of the n-th gene does not improve the result obtained by the
current subset of dimension n − 1, the process returns the last one as result).
Each algorithm was applied considering two criterion functions: CoD (Bayesian
error based, see Equation 1) and UC (entropy based, see Equation 2). There-
fore, four methods were considered for comparison: exhaustive search with CoD
(ES-CoD), exhaustive search with UC (ES-UC), SFS with CoD (SFS-CoD) and
SFS with UC (SFS-UC).

In the first experiment, we set the wij ’s as the Zhang et al model [2] and
applied the four methods aforementioned to the inference of the network in
the case of small (α = 5,β = 6) and large temperature (α = 0.05,β = 0.06).
The accuracy was perfect in both cases, i.e. the network was fully recovered,
presenting neither false positives nor false negatives for all methods used (ES-
CoD, ES-UC, SFS-CoD and SFS-UC).

In order to compare the inference performance obtained by the CoD and the
UC criteria in more situations, we generate random networks with a parametriza-
tion close to that presented by the cell-cycle network of the budding yeast using
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Table 1. Tables containing the numbers of false negatives (FN) and false positives
(FP) obtained by the application of ES-CoD, ES-UC, SFS-CoD and SFS-UC to infer
each one of the 10 randomly generated topology samples considering small temperature
(α = 5, β = 6) and large temperature (α = 0.05, β = 0.06).

Sample 1 Sample 2
ES-CoD ES-UC SFS-CoD SFS-UC ES-CoD ES-UC SFS-CoD SFS-UC

α β FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP
5 6 12 0 3 0 12 0 3 0 0 0 0 0 7 0 0 1

0.05 0.06 0 0 0 0 12 0 0 0 0 0 0 0 17 0 0 0

Sample 3 Sample 4
ES-CoD ES-UC SFS-CoD SFS-UC ES-CoD ES-UC SFS-CoD SFS-UC

α β FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP
5 6 3 0 0 0 8 0 0 0 0 0 0 0 3 0 0 0

0.05 0.06 3 0 0 0 17 0 0 0 0 0 0 0 20 0 0 0

Sample 5 Sample 6
ES-CoD ES-UC SFS-CoD SFS-UC ES-CoD ES-UC SFS-CoD SFS-UC

α β FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP
5 6 0 0 0 0 8 0 0 1 1 0 0 0 12 0 0 0

0.05 0.06 0 0 0 0 18 0 0 0 0 0 0 0 18 0 0 0

Sample 7 Sample 8
ES-CoD ES-UC SFS-CoD SFS-UC ES-CoD ES-UC SFS-CoD SFS-UC

α β FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP
5 6 14 0 11 0 17 0 11 0 0 0 0 0 2 0 0 0

0.05 0.06 0 0 0 0 22 0 0 0 4 0 0 0 9 0 0 0

Sample 9 Sample 10
ES-CoD ES-UC SFS-CoD SFS-UC ES-CoD ES-UC SFS-CoD SFS-UC

α β FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP
5 6 30 0 18 0 30 0 18 0 18 0 13 0 18 0 13 0

0.05 0.06 5 0 0 0 20 0 0 0 0 0 0 0 25 0 0 0

the model given by Equation 3. For each generated network, the connection
matrix w is randomly set in the following way. Firstly, as occurs with the yeast
model, we consider N = 11 genes, fixing one of the genes (gene 1) as the source of
the network (input degree equals to zero) by making w11 = w21 = ... = wN1 = 0.
As there are 29 connections present in yeast model, 30 cells from wij , 1 ≤ i, j ≤ N
are randomly chosen. For these randomly chosen cells, each one has a probabil-
ity of 0.5 to be represented by activation (+1) or inhibition (-1), while all other
cells remain zero. Also, considering that in yeast model, 4 out of 11 genes suffer
self-degradation (approximately one third), each gene has probability 1

3 to be
self-degradated. If a gene i suffers self-degradation, then wii = −0.1.

We applied the random network generation procedure presented above to
generate 10 random network topology samples. For each network topology, the
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transition matrix P and the limit distribution π were computed considering
both large temperature (α = 5 and β = 6) and small temperature (α = 0.05
and β = 0.06). Finally, these transition matrices and limit distributions were
supplied as inputs to the four inference methods considered (ES-CoD, ES-UC,
SFS-CoD, SFS-UC). The numbers of false negatives (FN) and false positives
(FP) obtained for each method applied to each considered sample are shown in
Table 1. Table 2 summarizes these results presenting the mean and standard
deviation values.

Table 2. Averages and standard deviations of the results presented in Table 1

ES-CoD ES-UC SFS-CoD SFS-UC
FN FP FN FP FN FP FN FP

(α = 5, β = 6) averages 7.8 0 4.5 0 11.7 0 4.5 0.2
(α = 5, β = 6) std. dev. 10.4 0 6.8 0 8.3 0 6.8 0.4

(α = 0.05, β = 0.06) averages 1.2 0 0 0 17.8 0 0 0
(α = 0.05, β = 0.06) std. dev. 2.0 0 0 0 4.6 0 0 0

The first important observation that can be drawn from Tables 1 and 2 is that
the inference accuracy of the uncertainty coefficient for both exhaustive search
and SFS is significantly better than the accuracy obtained by the application of
CoD. In fact, CoD performs very poorly especially when embedded in the SFS
algorithm, since in average, the percentage of recovery is around 50% (15 out of
30) of the connections. Moreover, for the sample 9 considering α = 5 and β = 6,
CoD was incapable to identify any connection even when exhaustive search was
applied (i.e., CoD was zero for all possible subsets of all genes considered as tar-
gets). On the other hand, SFS performed nicely when guided by the uncertainty
coefficient, having a very small number of false negatives in average, although it
obtained one false positive in two cases.

These results can be explained by the fact that, in many cases, the Bayesian
error does not decrease by adding features, even that such features offer some
gain of information about the target behavior (i.e., the average entropy de-
creases). Table 3 refers to an example where the prior Bayesian error of the
target Y is not improved by including the feature X (CoDY (X) = 0), while the
prior entropy of Y is decreased by the information of X (UCY (X) = 0.065).
Figure 1 illustrates this same example in graphics with the Bayesian error and
entropy values for P (Y = 1), P (Y = 1|X = 0) and P (Y = 1|X = 1). As
P (X = 0) = P (X = 1), the mean conditional entropy of Y given X be-
comes smaller than the prior entropy, since |H(Y |X = 1) − H(Y )| is smaller
than |H(Y |X = 0) − H(Y )|, which leads to a positive UCY (X). On the other
hand, since |ε(Y |X = 1) − ε(Y )| = |ε(Y |X = 0) − ε(Y )|, the Bayesian error
of Y given X remains the same as the prior Bayesian error, which leads to
CoDY (X) = 0.
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Table 3. Example that illustrates a case where CoDY (X) = 0 and UCY (X) > 0. (a)
Probability distribution of the target Y (ε(Y ) = 0.2 and H(Y ) = 0.722); (b) Joint
probability distribution of X and Y (ε(Y |X) = 0.2 → CoD(Y |X) = 0.2−0.2

0.2
= 0 and

H(Y |X) = 0.675 → UCY (X) = 0.722−0.675
0.722

= 0.065).

X P (X, Y = 0) P (X, Y = 1)
P (Y = 0) P (Y = 1) 0 0.05 0.45

0.2 0.8 1 0.15 0.35
(a) (b)

(a) Entropy (b) Bayesian error

Fig. 1. These graphics illustrate why the mean conditional entropy of Y given X is
smaller than the prior entropy of Y and the Bayesian error of Y given X is the same
as the prior Bayesian error of Y for the joint probability distributions presented on
Table 3.

5 Conclusion

Considering an ideal setting where all state transition probabilities of a gene
regulatory network are known, experiments using stochastic restricted Boolean
networks have shown that the adoption of a feature selection criterion based on
conditional entropy (uncertainty coefficient) performed a significantly better in-
ference than that obtained by the application of a Bayesian error based criterion
(non-linear coefficient of determination). This happens because, in many situa-
tions, the prior error of the target feature is not improved by the knowledge of
other features even that there is some information provided by such features (i.e.
the prior entropy decreases). More importantly, the SFS algorithm had very nice
results when guided by the uncertainty coefficient, which could be an indicative
that this approach may be used to accurately infer a network containing thou-
sands of genes in a small time interval, even when hubs are present, i.e. genes
influenced by five or more genes.

However, real microarray experiments do not provide all state transition prob-
abilities. In fact, only a few dozens of samples are available and the error esti-
mation becomes an important issue to address. Certainly, inference of networks
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from limited number of data samples could imply a qualitative change in the
results presented here. In this sense, a future step of this research is to consider
the same comparison in small sets of temporal gene expression signals. But, in
principle, there is no reason to think that entropy-based criteria could perform
worse than Bayesian error criteria in such situations.

We also plan to extend the comparison to more general stochastic Boolean net-
works, since the restricted Boolean networks do not allow some specific Boolean
logic functions that can not be expressed by linear functions (e.g. exclusive-or
and its negated version, considering logics with two predictor features).
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Abstract. In the past few years, mesh representation of images has at-
tracted a lot of research interest due to its wide area of applications in
image processing. In the mesh framework, an image is represented by a
graph in which the nodes represent the pixels and the edges reflect the
connectivity. The definition of the most adapted mesh for a given image is
a challenge in terms of computation cost and information representation.
In this paper, a new method for content adaptive mesh representation of
gray scale images, called grid smoothing, is presented. A cost function
is defined using the spatial coordinates of the nodes and the gray levels
present in the image. The minimisation of the cost function leads to new
spatial coordinates for each node. Using an adequate cost function, the
grid is compressed in the regions with large gradient values and relaxed
in the other regions. The result is a grid which better fits the objects in
the image. The mathematical framework of the method is introduced in
the paper. An in-depth study of the convergence is presented as well as
results on real gray scale images.

Keywords: Content adaptative mesh, grid smoothing, image coding,
non-linear optimisation.

1 Introduction

Mesh representation of images has received a lot of attention in the recent years
due to its wide range of applications in the image processing domain such as
image compression and coding [1], low rate video coding[2], [3] and image pro-
cessing for medical application [4]. In the mesh representation of a gray scale
image, the information is no longer coded into a matrix of real numbers. In-
stead, a graph is defined, in which the nodes represent the pixels and the edges
reflect the connectivity between the pixels. The main challenges faced when gen-
erating the mesh representation of an image is the accuracy of the representation
of the information contained in the image, the size of the mesh and the compu-
tation time. Various methods have been proposed for content adaptative mesh
generation, the common trend between them being to select particular pixels in
the image (the one carrying the largest part of the information) and to create
a mesh based on this set of point using a Delaunay triangulation scheme. For
example, Yang [5] analysed the second order derivative of a pixel to consider it
as a significant pixel and then a node in the mesh while Ramponi [6] selected
the meaningful pixels by looking at their normalized skewness. Using a different
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methodology, Sarkis [7] generated the mesh by dividing, in a recursive manner,
an initial triangle. The decision of dividing a triangle into two is based on its
ability to represents the lying pixels in the triangle. The method presented in this
paper differs in the approach. The main idea of the grid smoothing is, starting
from a uniform grid, composed by squares or triangles depending on the con-
nectivity chosen, to reshape the grid according to the information (gray levels)
contained in the image. The grid smoothing relies on the minimisation of a cost
function leading to a compression of the grid in the regions with large gradient
values and a relaxing in the other regions. Section 2 of this paper presents the
graph-based representation of an image while section 3 exposes the mathemat-
ical framework of the grid smoothing as well as the convergence. Simulations
results and example of grid smoothing on real images may be found in Section
4. Conclusion and recommendations are underlined in section 5.

2 Graph-Based Image Representation

Our input data is a graph G = (V, E), embedded in the 3D Euclidian space.
Each edge e in E is an ordered pair (s, r) of vertices, where s (resp. r) is the
sending (resp. receiving) end vertex of e [8]. To each vertex v is associated a
triplet of real coordinates xv, yv, zv. Let Cve be the node-edge incidence matrix
of the graph G, defined as:

Cve =

⎧⎨⎩
1 if v is the sending end of edge e
−1 if v is the receiving end of edge e
0 otherwise

(1)

In the rest of the paper, the node-edge matrix Cve will also be denoted C.
Considering an image with M pixels, X , Y and Z respectively represent

[x1, ..., xM ]t, [y1, ..., yM ]t and [z1, ..., zM ]t. X and Y are at first uniformly dis-
tributed (coordinates of the pixels in the plane), while Z represents the gray
level of the pixels. Each pixel in the image is numbered according to its col-
umn and then its rows. We define L as the number of edges in the graph. C is
consequently a matrice with L rows and M columns.

3 Optimisation-Based Approach to Grid Smoothing

3.1 General Framework

A cost function is introduced to fit the object of the image with the grid. The
main idea is that the regions where the variance is small (low gradient) require
fewer points than the regions with a large variance (large gradient). The grid
smoothing techniques will move the points of the grid from small variance regions
to large variance regions. To achieve this goal, a cost function J is defined as
follows:

J = JX + JY (2)
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where

JX =
1
2

[(
X − X̂

)t

Q
(
X − X̂

)
+ θ

(
XtAX

)]
(3)

and

JY =
1
2

[(
Y − Ŷ

)t

Q
(
Y − Ŷ

)
+ θ

(
Y tAY

)]
(4)

where X̂ and Ŷ are respectively the initial values of X and Y , A being equal to
CtΩC.
The matrix Ω is defined as follows:

Ωk,k = (zi − zj)
2 (5)

where node i is the sending end of the edge k and node j the receiving end. Ω
and Q are square diagonal matrices which dimensions are respectively L×L and
M ×M .

The first term in the expression of the cost function is called the attachment
as it penalises the value of the cost function if the coordinates are too far from
the original values. It is introduced to avoid large movement in the grid [8]. θ
is a real number and is acting as weighing factor between the terms of the cost
function. As a result of the definition of Ω, the minimisation of J is leading to
the reduction of the areas of the triangle formed by two connected points and
the projection of one of the point on the Z-axis. The edges in the image act
as attractors for the points in the grid. As a consequence, the edges are better
defined in terms of location and steepness in the smoothed grid.

3.2 Convergence of the Cost Function

The following sub-sections present the proof of convergence in two scenari: min-
imisation of a cost function with attachment and a cost function with attachment
and fixed points.

Cost function with attachment. This section focuses on proving the exis-
tence of a unique solution for the minimisation problem presented above. The
solution is presented for JX only. The proof for JY can be derived in a similar
manner. The cost function of the first order with attachment may be expressed
as:

JX =
1
2

[(
X − X̂

)t

Q
(
X − X̂

)
+ θ

(
XtAX

)]
(6)

The gradient of the first order cost function JX with attachment is:

∇xJX = Q
(
X − X̂

)
+ θAX (7)

At the optimum, the gradient is equal to zero. Let Xopt be the optimal solution
for X . Xopt may be expressed as:

Xopt = (Q + θA)−1
QX̂ (8)
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The above equation shows that a unique optimal solution (it may be shown that
Q+θA is inversible) exists for the minimisation problem and that for small scale
problem, the solution may be obtained easily. For large scale problem, a gradient
descent method may be used. Let Xn+1 and Xn be respectively the values of X
at iteration n + 1 and n. Xn+1 is equal to

Xn+1 = Xn − αn∇xJX = Xn − αn

(
Q

(
X − X̂

)
+ θAX

)
(9)

αn is the step and may be chosen optimal or not. An optimal step leads to a
smaller number of iterations while increasing the processing power required for
the optimisation. The optimal step αn may be expressed by:

αn =
∇xJ t∇xJ

∇xJ t (Q + θA)∇xJ
(10)

Cost with fixed points and attachment. The cost function with attachment
results in a grid whose size might differ from the original grid size. A solution
to conserve the original size is to fix the coordinates of the outer points of the
grid. Let the X coordinates be partitioned into two parts, variable coordinates
’x’ and fixed coordinates ’a’ giving

X =
[
x
a

]
(11)

Then the first order cost function without attachment is

Jx =
1
2

([
(x− x̂)t 0

]
Q

[
(x− x̂)

0

]
+ θ

[
xt at

] [Ct
x

Ct
a

]
Ω

[
Cx Ca

] [x
a

])
(12)

Expanding the above equation gives

Jx =
1
2

[
(x− x̂)t

Qx (x− x̂) + θxtCt
xΩCxx + 2θxtCt

xΩCaa + θatC
t
aΩCaa

]
(13)

The gradient of Jx with respect to x is

∇xJx = Qx (x− x̂) + θCt
xΩCxx + θCt

xΩCaa (14)

Setting the gradient to zero gives

x = −
[
Qx + θCt

xΩCx

]−1 [
Qxx̂− θCt

xΩCaa
]

(15)

This gives the exact solution for the coordinates x.
Let xn+1 and xn be x at iteration n + 1 and n then

xn+1 = xn − αn∇xJx (16)

The gradient of Jx at the point xn+1 is equal to

∇xJxn+1 = ∇xnJx − αnQx∇xJxn − αnθCt
xΩCx∇xJxn (17)

The optimal step condition may by expressed by ∇xJ t
xn

.∇xJxn+1 = 0
It leads to:

αn =
∇J t∇J

∇J t (Qx + θCt
xΩCx)∇J

(18)
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Stopping criterion. As mentioned earlier, for large scale problem, the minimi-
sation uses a gradient descent algorithm as it is computationally expensive to
inverse very large matrices. Three gradient methods are used for the simulation,
namely the steepest descent gradient with fixed step, the steepest descent gradi-
ent with optimal step and the conjugate gradient with optimal step. The descent
gradient methods are iterative process and require a stopping criterion ε to stop
the iterations. The chosen criterion is the simulation is the norm of the gradient
∇J . The iterative process continues while ∇J t∇J ≥ ε. When it is possible, the
comparison between the exact coordinates given by the inversion of the matrix
and the result of the gradient descent algorithm is small and is of the order of ε.
For example, if ε = 10−3, the difference between the exact coordinates (matrix
inversion) and the coordinates obtained through the gradient descent is 10−3 of
the width of a pixel.

4 Simulations

The simulations were performed using a standard laptop (1.87 GHz processor,
2GB RAM and Windows Vista SP1 as operating system) and Matlab R14 Ser-
vice Pack 2. The algorithms are tested on an image coming from the Matlab
library.The computing time is obtained for 15 executions of the program and
the mean value is indicated. Tables 1 and 2 show that the conjugate gradient
with optimal step performs much better than the fixed step and optimal step
descent gradient methods. For example, for an image of 300× 300 pixels (90000
nodes), the number of iterations is limited to 76 while the computing time is
5s. The number of iterations for the optimal step gradient descent is almost ten
times this figure while the fixed step method requires 20 times more iterations.
The computation times for the fixed and optimal step methods are in the same
range. The computation of the optimal step at each iteration doubles the time of
the fixed-step iteration. The conjugate gradient descent is consequently the most
suitable method out of the three tested for the grid smoothing. Consequently,
the rest of the simulations uses the conjugate gradient descent. Table 3 shows
that the stopping criterion has little effect on the number of iterations and the
computation time. From a qualitative point of view, and ε = 10−4 looks like a
good compromise between the result and the computing time. Table 4 displays
the number of iteration and the computing time required for various values of
θ. It may be seen that θ influences deeply the convergence. Small values of θ
lead to speedy convergence whereas large values require more iteration. θ is the
weighing factor between the two terms of the cost function. With θ small, the
attachment term dominates the cost function and very little displacement of
the points is allowed (quick convergence). The opposite effect is obtained with a
large θ. From a qualitative point of view, θ = 0.05 looks like a convenient value.
This however depends on the application. Fig. 1 shows the results of the grid
smoothing on two images for various values of θ. It may be seen that the level
of compression (and noise) in the grid increases with θ. In both cases, it may be
observed that the grid fits the object present in the images.
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Table 1. Convergence in iterations for ε = 10−4 and θ = 0.005

Number of points Fixed step Optimal step Conjugate gradient
100 363 190 23
2500 543 282 37
10000 1174 593 60
90000 1440 707 76

Table 2. Convergence in seconds for ε = 10−4 and θ = 0.005

Number of points Fixed step Optimal step Conjugate gradient
100 1.9 × 10−4 2.3 × 10−4 1.8 × 10−4

2500 8.3 × 10−1 9.0 × 10−1 5.9 × 10−2

10000 6.8 7.6 3.3 × 10−1

90000 1.2 × 102 1.3 × 102 5.0

Table 3. Convergence of the conjugate gradient in iterations and seconds for θ = 0.05

ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

Iterations 240 263 287 312
Time (s) 15.1 16.4 17.9 19.7

Table 4. Convergence of the conjugate gradient in iterations and seconds for ε = 10−4

Number of points θ Iterations Time (s)
2500 5 × 10−3 37 7.4 × 10−2

5 × 10−2 126 1.6 × 10−1

5 × 10−1 432 5.1 × 10−1

5 1116 1.3
10000 5 × 10−3 60 3.3 × 10−1

5 × 10−2 206 1.3
5 × 10−1 701 3.6

5 2162 1.1 × 101

40000 5 × 10−3 66 1.8
5 × 10−2 228 5.7
5 × 10−1 784 1.9 × 101

5 2660 6.8 × 101

90000 5 × 10−3 76 5.0
5 × 10−2 263 1.6 × 101

5 × 10−1 920 6.1 × 101

5 3183 2.1 × 102
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5 Conclusions

A new framework to represent an image is presented in the paper. Based on
the graph representation of an image, the grid smoothing process modifies the
coordinates of the points in the grid to fit the objects in the image. The con-
vergence is shown and the conjugate gradient descent is recommended for the
optimisation in large scale problems. The results obtained are promising and may
be used in many applications (edge detection, compression or super-resolution).
The main challenge of the method presented is the choice of the parameter θ.
This parameter should be chosen according to the desired application, keeping
in mind the computation time implication of this choice. The computational cost
of the grid smoothing approach is high even when working with sparse matrices.
Properties af the various matrices will be analysed in detail to achieve a faster
grid smoothing. Finally, the grid smoothing approach will be combined with the
graph-based mesh smoothing method presented in [8] to detect edges in noisy
complex grayscale images.
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Abstract. Reducing image file size by means of lossy compression algorithms 
can lead to distortions inimage contentaffectingdetection of fine detail structures, 
either by human orautomated observation. In the case of microscopic images of 
blood cells, which usually occupy large amounts of disk space, the use of such 
procedures is justified within a controlled quality loss. Although JPEG 2000 
remains as the accepted standard for lossycompression, still a set of guidelines 
need to be established in order to use this codec in its lossy mode and for 
particular applications. The present paper deals with a quality analysis of 
reconstructed microscopic leukocytes images after they have beenlossy 
compressed. The quality loss is investigated near the lower compression boundby 
evaluating the performance of several segmentation algorithms together with 
objective quality metrics. The value of compression rate of142:1 is estimated 
from the experiments. 

Keywords: microscopicimages, leukocytes, segmentation, JPEG 2000, compression. 

1   Introduction 

Images produced by digital microscopy techniques are characterized by large file 
sizes due,not only to the bit depths employed, but also to the high resolution 
properties of the digital acquisition devices. The amount of such images obtained in 
daily practice, also depending on the type of studies required for every particular 
detection task, can be huge, leading to problems of storage and transmission of the 
image data through communication networks [1], [2]. 

Reducing file size of microscopic images by means of lossy compression 
algorithms, such as the JPEG 2000 codec, can lead to image distortions and therefore, 
to affect their value for diagnosis. Preservation of imagequality is essential, for 
example, the count of white blood cell(leukocyte) structures within the observed field 
of view can lead to identification and/or diagnosis of several pathologies,such as 
acquired immunodeficiency syndrome,cancers, or chronic infections. Fig. 1a) shows a 
typical image where leukocytes are indicated. The fine detail structures, which 
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identify or differentiate among the different leukocyte types, are sensitive to 
distortions, such as noise or artifacts introduced by lossy codecs. 

The JPEG 2000 codec (ISO 15444-1) uses the Wavelet Transform as the kernel 
transformation surpassing the performance of its predecessor, the JPEG codec, based 
on Discrete Cosine Transform [3], [4]. Lossy  codecshave been reported as having 
compression ratio (CR) of one order of magnitude higher thanthose obtained with 
lossless ones. 

Although JPEG2000 has been adopted by DICOM standard, there are still no 
regulations for the use of its lossymode where the higher the CRs are, the more 
distortion is introduced in the image, affecting particularly edge definition and 
therefore, jeopardizing the correct identification of the structures and the diagnosis 
made through these images [5]. Fig. 1 show Regions of Interest (ROIs) containing 
two different types of leukocytes, i.e. monocyte and lymphocyte, extracted from 
image in Fig. 1a) after compression at different CRs. 

 
 

    

    
a)  b) c) d) e) 

Fig. 1. Image in a) shows a bitmap of 1536V x 2048H pixel size, which occupies 9.00 MB of 
disk space. White squares indicate two different types of leukocytes, i.e. lymphocyte 
andmonocyte. Images in columns b) to e) show the two leukocytes extracted from image in 
column a)compressed at different CRs; b) no compression, c) CR=250:1, d) CR=500:1 and e) 
CR=1000:1. The edges, texture and contrast are severely distorted as compression rate 
increases. 

Several researches have been carried out in order to establish a CRlimit for specific 
image types where the overall perceived image quality is not perceptually affected 
when using alossycodec [6], [7], [8]. In this paper, we propose a strategy to estimate 
the maximum allowable CR where deterioration introduced in the images by the 
codec, does not affect the quality of leukocytes images. The estimation is based on the 
performance of several segmentation algorithms. 

2   Materials and Methods 

2.1   The Images 

Images were acquired using a Micrometrics 318CU CMOS digital camera, resulting in 
24-bit color pictures of 2048H x 1536V size. The camera was attached to an  
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Accu-scope 3016PL trinocular microscope with 100x oil immersion objective and 10x 
eyepieces. For the test, we selected 15 images per leukocyte class, where the classes of 
interest were: lymphocytes, monocytes, neutrophils, basophils and eosinophils.Some 
manually cropped images are shown in Fig.2.  

 

Fig. 2. Leukocytes. Left to right: lymphocyte, monocyte, neutrophil, basophil, eosinophil 

2.2   Compression with JPEG 2000 Codec 

For achieving JPEG2000 compression,theJasPersoftware [9]was employed.Images as 
in Fig. 1a) were compressed at 30 different compression factor (CF=1/CR), from 
0.001 (CR=1000:1) to 0.03(CR=33:1), with a step of 0.001. Then, ROIs were 
extracted from the uncompressed and the 30 compressed images. 

The CR was calculated as the necessary memory space (in bytes) for allocating 
uncompressed image divided by the number of bytes necessary for allocating the 
same image in its compressed format. 

2.3   The Segmentation Algorithms and Distance Measures 

Typically, leukocytes identification is based on visual inspection of individual images 
with fields of view wider than the size of individual cells and containing other 
structures as well as noise and/or artifacts. The approach of having experts dedicated 
to this task is time consuming, exhausting and prone to human error, requiring 
frequent repetitions to validate results [11]. These situations, altogether with the great 
amount of images necessary to achieve a diagnosis, encourage scientists to develop 
segmentation algorithms as an early stage for automated classification. 

Three automatic segmentation algorithms were tested over a set of leukocytes images 
each one compressed at 30 different CFs. These were theOtsu’s method [12], Active 
Contours (AC) method [13] and the Mixture of Gaussians (MoG) method [14]. For 
assessing the segmentation results, of each of the proposed methods, applied at a specific 
CF, the contour basedHausdorff distance [15] and the region based Vinet distance [16], 
between Ground Truths (GTs) and segmentation results have been estimated. 
GTsweremanually selected in each ROI at initial state, i.e. without compression. 

Given two finite point sets A = {a1,…,ap}and B = {b1,…, bq}, the Hausdorff 
distance is defined as , max , , ,  (1)

where , max min , (2)
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and .  is some underlying norm on the points of A and B (e.g., the L2 or Euclidean 
norm). Thus, it measures the maximum mismatch between two sets by measuring the 
distance of the point of A that is farthest from any point of B and vice versa. 

The Vinet distance between two images is computed as , ∑ , , (3)

for weight ωpand various resemblance functions between regions , 1 ,, , (4)

where , are regions in the left (L) and right (R) images respectively and Apis some 
attribute of a region, for example, intensity mean, intensity variance, special moment, 
etc. 

2.4   Quantitative Measures 

For our particular research the following bi-variate measures were calculated in order 
to have an estimate of image quality according to CF[1], [2], [10]: 

- The Peak Signal-to-Noise Ratio (PSNR):considering X(i,j)as the uncompressed 
image and Y(i,j)the restored one, PSNRis defined as: 10 · log  , (5)

whereMAXp=2B-1,B is the image bitdepth and MSE (mean square error) is defined as: 

· ∑ ∑ , ,  , (6)

wherem and n are the number of rows and columns in the image, respectively.  

- The spectral distance (SD):a measure of distance between uncompressed and 
reconstructed Fourier domainimages given by: 

· ∑ ∑ | , | | , | , (7)

where , and , are the imaginary parts ofFourier transforms of uncompressed 
and restored images, respectively.  

- The gain in Contrast to Noise ratio(gCNR) is defined as:  10 · log , (8)

whereCNRX and CNRY are the contrast-to-noise ratios in the uncompressed and 

reconstructed images respectively calculated as  ⁄ , with  and 

 being the mean values of intensity from two different regions in the i-thimage and 

 the standard deviation of noise in the same image. 

- The structural similarity index (MSSIM):a powerful measure proposed by Wang et 
al. [10] was also employed. It can be calculated as: 
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, ∑ , , , (9)

whereMis the number of image blocks xiand yiof uncompressed and reconstructed 
image respectively and SSIM calculated as: , , (10)

where and are the luminance values, and the contrast estimation values for 
uncompressed and reconstructed images respectively, and ∑

. The constants C1 and C2are placed to avoid instability:Ci=(KiL)2 where 
L= 255, for 8bpp images and Ki<< 1. 

All bi-variate calculations are made between the uncompressed image and every 
reconstructed image after being compressed at eachCF value in the interval studied.  

3   Results 

The normalized Hausdorffdistances for the three segmentation algorithms tested are 
shown in Fig. 3. As we can see, the three methods show a similar behavior as quality 
metrics, with Otsu’s method having lower Hausdorff distance to the GT in general. 
The Hausdorff distance for CF higher than 1/142, has a standard deviation below 5% 
of the Hausdorff distance for the maximum CR tested. 

 

Fig. 3. Normalized Hausdorff distance (HD) for the three segmentation algorithms tested. 
Dotted line at CF=0.007(CR=142:1) indicates the estimatedlower bound, at this point not 
normalizedHDAC = 10.3,HDOtsu = 4.5 and HDMoG = 8.3 Hausdorff distance units. 

Fig. 4 shows the normalized Vinet distances for the three segmentation algorithms. In 
this case, the curves are smoother; due to Vinet distance capture better perturbation in 
edge (introduced by JPEG2000 Codec) than Hausdorff distance, which is more tolerant 
to those variations, because it measures proximity rather than exact superposition.  
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Fig. 4. Normalized Vinet distance (VD) for the three segmentation algorithms tested. Dotted 
line at CF=0.007(CR=142:1) indicates the estimated lower bound, at this point not 
normalizedHDAC = 1.0, VDOtsu = 1.1 and VDMoG = 2.3 Vinet distance units. 

 

Fig. 5. The calculated objective metrics are shown in a compression interval from 1 to 15. At 
CF=0.007(CR=142:1), gCNR=13.7 dB, PSNR=78.7 dB, SSIM = 0.99 and SD=0.02. 

The nick point in the curves at CF=0.007 (CR=142:1) suggests a lower CR bound. 
For CR values bigger than this, image quality is severely distorted, as we can 
corroborate in Fig. 5 with quantitative measures.At this CR, file size is reduced from 
9 MB to approximately 65 KB. Metrics such as PSNR and gCNR show a stronger 
dependency with variation in CR while metrics such as SD and SSIM show less 
dependence with CR. 
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4   Conclusions 

The analysis with the automatic segmentation algorithms tested suggestedan interval 
of CR values from 33:1 up to 142:1 where is safe to use JPEG 2000. This initial and 
partial result is later confirmed by objective metrics,which agrees in the upper most 
CR value of 142:1.   

Both, metrics for evaluating the performance of segmentation algorithms and objective 
quality distortion, are considered representative for estimating quality degradation caused 
by the lossy codec. 

The result presented are preliminary and lack of subjective experience in 
interpreting this type of images. A more complex investigation including subjective 
evaluation should be carried out in order to precise the bounds for lossy compression. 
Nevertheless, a CR limit of 142:1 was estimated through both metric types as a limit 
for using JPEG 2000 compression in leukocytes identification tasks. 
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Abstract. Several attempts have been made to propose efficient secret
sharing schemes for 2D images. Rey M.D (Iberoamerican Congress on
Pattern Recognition, 2008) proposed a relatively fast image secret shar-
ing scheme based on simple binary matrix operations. In this work, we
show that care should be taken when choosing the matrices that corre-
sponding to the shares, in particular if the rank of these singular matrices
is not low enough then one can recover the secret image from only one
share. Experimental results are provided to demonstrate the practicality
of the recovery procedure on various 2D images.

Keywords: Secret sharing; Image processing; Cryptanalysis.

1 Introduction

The continuing advancements in computer technologies and the rapid increase
in internet users have led to the increasing usage of network-based data trans-
mission. In numerous applications, such as military documents and sensitive
business data, this information must be kept secret and safe. Recently, 2D im-
ages are considered as important as any other text sensitive information. As a
result, several 2D image-protection techniques, such as data encryption in [1,2]
and steganography in [3,4], have been proposed to insure the security of secret
images. One major disadvantage of the traditional protection techniques, such
as encryption, is their policy of centralized storage, in that an entire protected
model is usually maintained in a single information storage. If an intruder detects
security vulnerability in the information storage in which the protected images
resides, then s/he may attempt to decipher the secret model inside, or simply
damage the entire information storage. Hence, the secret sharing is a defense
mechanism to protect the secret that does not suffer from these problems. It
works by splitting the secret into n shares that are transmitted and stored sep-
arately. One can then reconstruct the original secret if at least a preset number
t (1 � t � n) of these n shares are obtained. However, knowledge of less than t
shares is insufficient for revealing the secret.

The first secret sharing scheme was introduced independently in [5] and [6].
Both schemes are based on the use of Lagrange interpolation polynomial and
the intersection of affine hyperplanes, respectively. Since after, several studies

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 169–175, 2010.
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have investigated different implementations of the (t, n)-threshold schemes and
their usage in the keys communication of the cryptosystems. The majority of
these schemes are based on different mathematical primitives, such as matrix
theory and prime numbers [7]. These protocols are specifically designed for text
and numeric data. Due to the main distinctive nature of multimedia, in the
sense that they have a large amount of data and the difference between two
neighboring values is typically very small, it is considerably difficult to apply
directly traditional secret sharing schemes to digital images. Thus, various secret
sharing protocols have been designed exclusively for digital images, some based
on vector quantization [9], Shamir-based schemes [10,11,12], sharing circle [7,8],
binary matrices [13], or cellular automata [1,2]. In this paper, we show that the
scheme proposed in [13] is not an ideal image secret sharing scheme due to the
fact that any participant is able to recover the secret image using only his share.

The rest of the paper is organized as follows. In Section 2 , we briefly review
the description of the image secret sharing scheme proposed in [13]. In Section 3,
we present the theoretical steps to recover the secret image from a single share
only. In Section 4, we provide experimental results on different images to validate
the effectiveness of the recovering process. Finally, we conclude in Section 5.

2 Description of (2, n)-Threshold Image Secret Sharing
Scheme Proposed by Rey.M.D

The proposed secret sharing scheme in [13] is based on binary operations of two
matrices A and B that satisfy the following algebraic property, let A and B
two binary matrices such that A

⊕
B = Id, then the following theorem holds,

Theorem 1. Am ⊕Bm = Id if and only if m = 2e, with e ∈ Z+

The reader can refer to [13] for the proof of theorem 1.
The steps of the image secret sharing scheme proposed in [13] are described

as follows,

The setup phase. Let the matrix J = (pi,j) be a gray-level image defined by
n × n pixels such that pi,j is the numeric value of the gray color of the (i, j)-
th pixel, where pi,j = (q1

i,j , q
2
i,j , · · · , q8

i,j) ∈ Z8
2, with 1 ≤ i, j ≤ n. Consequently,

eight binary matrices with coefficients in Z2 are extracted from J = (qk
i,j), where

1 ≤ k ≤ 8. For simplicity, we write J = J1‖J2‖ . . . ‖J8 as a concatenation of
eight binary matrices, where each of them represents a black and white subimage.
Fig. 1 and Fig. 2 correspond to Lena gray image defined by 128×128 pixels and
its eight subimages, respectively.

The sharing phase. We choose two singular binary matrices A and B sat-
isfying Theorem 1. Then, we randomly choose n/2 integer numbers e1 ≤ e2 ≤
. . . ≤ en/2 and computes mi = 2ei . The shares S1

i , S2
i , where 1 ≤ i ≤ n/2, are

computed as follows,
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S1
i = Ami · J1‖Ami · J2‖ · · · ‖Ami · J8,

S2
i = Bmi · J1‖Bmi · J2‖ · · · ‖Bmi · J8.

(1)

The recovery phase. The users P 1
i and P 2

i combine their shares, S1
i , S2

i , and
computes the original image as follows,

J = (Ami ·J1)⊕(Bmi ·J1)‖(Ami ·J2)⊕(Bmi ·J2)‖ · · · ‖(Ami ·J8)⊕(Bmi ·J8).

The drawback of this scheme is that every participant P 1
i has only one qualified

participant from the pool of participants that s/he can collude to recover the
original image. If the share of the qualified participant P 2

i is altered or modified,
the participant P 1

i will never be able to recover the original image. Obviously,
this scheme does not provide the basic property of the secret sharing idea, which
is the safe, that is, the original secret can be recovered even if more than one
share were destroyed.

Thus, the author in [13] proposed a generalization of the protocol. Such that
any participant P 1

i , 1 ≤ i ≤ n/2, can combine his share with any other par-
ticipant P 2

j , 1 ≤ j ≤ n/2 to recover the secret image. The generalization of
the protocol is exactly the same as in the basic proposal except for the sharing
phase where the data {S1

i , mi = 2ei}, {S2
i , mi = 2ei} are distributed to the par-

ticipants P 1
i , P 2

i respectively. Finally, in the recovery phase the participants P 1
i ,

P 2
j recover the secret J image as follows:

i) They compare the integer numbers mi and mj .
If mi < mj , P 1

i computes

Ami+mj−mi · J1‖ · · · ‖Ami+mj−mi · J8 = Amj · J1‖ · · · ‖Amj · J8.

otherwise, if mi > mj , P 2
j computes

Bmj+mi−mj · J1‖ · · · ‖Bmj+mi−mj · J8 = Bmi · J1‖ · · · ‖Bmi · J8.

ii) The recovery of the original image is carried as follows

J = (Amj · J1)⊕ (Bmj · J1)‖ · · · ‖(Amj · J8)⊕ (Bmj · J8)

or

J = (Ami · J1)⊕ (Bmi · J1)‖ · · · ‖(Ami · J8)⊕ (Bmi · J8)

We should highlight here that in order for the participants P 1
i and P 2

j to carry
out the recovery phase of the generalized scheme, they must know the matrices
A and B.

We should also note that the most significant bits of the 8-bit values of grey
images are the most important bits. One can distinguish the original image from
the first subimages. For instance, if we can recover J1 or J2 even partly we
can recognize the original image. Recall that in cryptography, the distinguishing
attack is an attack in which the attacker is given an encrypted secret, which is
here the secret image, and try to determine if this secret is random or it comes
from a specific cryptosystem.
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Fig. 1. 128 × 128 Lena gray image

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a) Subimage J1 (b) Subimage J2 (c) Subimage J3 (d) Subimage J4 (e)
Subimage J5 (f) Subimage J6 (g) Subimage J7 (h) Subimage J8

3 Recovering the Original Image from a Single Share

It is proven in ( [14], Ch. A.3.3) that a real-valued matrix filled with independent
and identically distributed random variables, with continuous probability distri-
bution function, will be singular with probability zero. On the contrary, in GF (2)
the probability a square random binary matrix is singular as its dimension tends
to infinity is 71.1 [15].

The scheme proposed in [13] stated that the random matrices A and B must
be singular without specifying the value of the ranks. Furthermore, generating
a singular binary matrix randomly will produce a matrix that has high rank
with high probability. Consequently, solving a set of linear equations when the
coefficient matrix has a high rank will result in decreasing the number of inde-
pendent/depended variables and increasing the number of determined variables.

The main weakness in the generalization of the image secret sharing scheme
proposed in [13] is that for the participants to reconstruct the secret image they
must knowA andB along with the integer numbers mi and mj . For instance, the
participants P 1

i and P 2
j must know (A, B, mi, mj) to perform the comparison

between mi and mj and the computation Ami+mj−mi ·J1‖ · · · ‖Ami+mj−mi ·J8

or Bmj+mi−mj · J1‖ · · · ‖Bmj+mi−mj · J8, as stated in the generalization of the
scheme.



Comments on Matrix-Based Secret Sharing Scheme for Images 173

To recover the original n× n gray image from a single share, the participant
P 1

i has his share S1
i = Ami · J1‖ · · · ‖Ami · J8 and knows A and mi. Then, he

perform the following to recover J1,
Let A = (ai,j), J1 = (Ji,j) and Ami · J1 = (si,j), calculate Ami = (âi,j),

1 ≤ i, j ≤ n and form the set of linear Boolean equations as follows,
For k = 1 to n

n⊕
i=1

âk,iJi,1 = sk,1

n⊕
i=1

âk,iJi,2 = sk,2

...
...

...
n⊕

i=1

âk,iJi,n−1 = sk,n−1

n⊕
i=1

âk,iJi,n = sk,n

(2)

We have n× n binary linear equations with n× n variables. Solving this set of
linear equations will produce determined variables (pixels) with specific values,
depended variables, and independent variables which we can assign any value to
them. Due to the nature of the image, there is no need to find the exact values
of all the pixels, with only small percentage of the correct values of the pixels we
can distinguish the original image, as we can see from the recovered J1 and J2

in Fig 3. To recover the original gray image, we perform the previous recovery
steps to all eight subimages and then concatenate them together.

4 Experimental Results

We applied the recovery technique on different 128× 128 gray images, namely,
Lena, F16 and Fishing boat. The singular binary matrixA was chosen randomly
with a rank equals 127 and the integer number mi equals 2.

It is worthy to mention that we used the BooleanPolynomial class from the
SAGE [16] package to do the fast calculations for solving the set of linear
Boolean equations depending on 128× 128 binary variables.

As an example in the case of Lena, after solving the set of linear binary
equations, the number of undetermined variables was 12928, which were set
to zeros. On the other hand, the number of determined variables for each of
J1,J2 · · · ,J8 was 3456, which is the number of bits (pixels) that were recovered
exactly. Although this number seems too small comparing to 128× 128 bits, it
is enough to recognize the original image easily as shown in Fig.3.

One can see from Fig. 4 and Fig. 5 the similarity between the recovered images
and the corresponding original images.

To see the Matlab code used in the implementation and the experimental
results, look at: http://users.encs.concordia.ca/˜e elsh/ImageSecretSharing/.
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(a) (b)

Fig. 3. The recovered subimages of Lena (a) J1 (b) J2
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Fig. 4. Original images of (a) Lena (b) F16 (c) Fishing boat (d)-(f) their histograms
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Fig. 5. Recovered images of (a) Lena (b) F16 (c) Fishing boat (d)-(f) their histograms



Comments on Matrix-Based Secret Sharing Scheme for Images 175

5 Conclusions

In this paper, we showed the proposed scheme for image secret sharing by Rey
M.D is insecure. This is because any participant in the scheme can recover the
original image without the need to combine his share with any other participant.
Specifically, the main flaw is the generalization of the protocol, where both ma-
trices A and B are known to all participants.

References

1. Cheng, H., Xiaobo, L.: Partial encryption of compressed images and videos. IEEE
Trans. Signal Process. 48(8), 2439–2451 (2000)

2. Bourbakis, N., Dollas, A.: Scan-based compression-encryption hiding for video on
demand. IEEE Multimedia Mag. 10, 79–87 (2003)

3. Marvel, L.M., Boncelet, C.G., Retter, C.T.: Spread spectrum image steganography.
IEEE Trans. Image Process. 8(8), 1075–1083 (1999)

4. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc.
IEEE, Special Issue on Protection of Multimedia Content 87(7), 1062–1078 (1999)

5. Shamir, A.: How to share a secret. ACM Comm. 22(11), 612–613 (1979)
6. Blakley, G.R.: Safeguarding cryptography keys. In: Proc. of the AFIPS 1979 Na-

tional Computer Conference, vol. 48, pp. 313–317 (1979)
7. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1997)
8. Tsai, D., Chen, T., Horng, G.: A cheating prevention scheme for binary visual

cryptography with homogeneous secret images. Pattern Recogn. 40, 2356–2366
(2007)

9. Chang, C., Hwang, R.: Sharing secret images using shadow codebooks. Inform.
Sciences 111, 335–345 (1998)

10. Wang, R.Z., Su, C.H.: Secret image sharing with smaller shadow images. Pattern
Recognition Letters 27(6), 551–555 (2006)

11. Thien, C.C., Lin, J.C.: Secret image sharing. Computers and Graphics 26(1),
765–770 (2002)

12. Wu, Y., Thien, L., Lin, J.: Sharing and hiding secret images with size constrain.
Pattern Recogn. 37, 1377–1385 (2004)

13. Rey, M.D.: A matrix-based secret sharing scheme for images. In: Ruiz-Shulcloper,
J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 635–642. Springer,
Heidelberg (2008)

14. Bard, G.: Algorithms for the solution of linear and polynomial systems of equa-
tions over finite fields, with applications to cryptanalysis. PhD thesis, Department
of Applied Mathematics and Scientific Computation, University of Maryland at
College Park (2007)

15. Studholme, C., Blake, I.F.: Random Matrices and Codes for the Erasure Channel.
Algorithmica 56(4), 605–620 (2010)

16. William, S.: Sage Mathematics Software (Version 4.4.2). The Sage Group (2010),
http://www.sagemath.org

http://www.sagemath.org


A Very Low Bit-Rate Minimalist Video Encoder
Based on Matching Pursuits

Vitor de Lima and Helio Pedrini

Institute of Computing - University of Campinas
Campinas, SP, Brazil, 13084-971

Abstract. This work proposes and implements a simple and efficient
video encoder based on the compression of consecutive frame differences
using sparse decomposition through matching pursuits. Despite its min-
imalist design, the proposed video codec has performance compatible to
H.263 video standard and, unlike other encoders based on similar tech-
niques, is capable of encoding videos in real time. Average PSNR and
image quality consistency are compared to H.263 using a set of video
sequences.

1 Introduction

Video compression at very low bit-rates is needed for applications that operate
using low bandwidth communication channels, for instance, video transmission
in mobile equipments. Some techniques that have been suggested for such appli-
cations include hybrid-DCT coding [6], wavelet-based coding [20], model-based
coding [2], and fractal coding [11].

Extreme compression rates demanded by low bit-rate video applications
require unusual video encoding techniques. One possible approach is the
matching-pursuit video coding, however, it involves a very time-consuming en-
coding process [15] due to its exhaustive image scan in order to find patterns
that can be represented efficiently.

The approach proposed in this paper is extremely simple and capable of com-
pressing video sequences in real time. The video encoder compresses only the
difference between two consecutive frames through matching pursuits. No mo-
tion compensation algorithm [9] is used in the process and the quantization is
performed by rounding the coefficients to the nearest integer. An innovation of
the proposed method is the subdivision of the frame into blocks and application
of matching pursuit to each block instead of scanning the entire image looking
for regions that have relevant characteristics that can be compressed and then
applying matching pursuits to those regions.

A dictionary generated by K-SVD algorithm [1] is used to create sparse decom-
positions of the processed frame sub-blocks, which are compressed by a context-
adaptive arithmetic encoder [18].

Compared to H.263 video codec [10], which has a motion compensation
algorithm, more sophisticated quantizers and mechanisms for rate-distortion
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optimization, the proposed method achieves compatible PSNR values, as demon-
strated in the experiments using well-known benchmark video sequences at sev-
eral average bit rates per second.

The text is organized as follows. Section 2 describes the main algorithms used
in the proposed solution, as well as reviews of some relevant encoders based on
matching pursuits found in literature. Details of the proposed methodology are
presented and discussed in Section 3. Experimental results obtained with our
video codec are shown in Section 4. Finally, conclusions of the work and future
directions are presented in Section 5.

2 Related Work

This section briefly describes some relevant concepts and techniques related to
the proposed video encoder.

2.1 Matching Pursuits

Transforms, such as DCT [5], decompose signals as a linear combination of mutu-
ally orthogonal elements belonging to a predetermined basis. This basis contains
a minimum number of elements sufficient to express any vector belonging to a
particular vector space.

A possible generalization for such type of transform involves using more than
the minimum required number of elements within the basis, thus forming an
overcomplete dictionary, In this case, a single vector has several possible decom-
positions and, for data compression purpose, the most interesting decomposi-
tions are those that have the largest possible number of linear coefficients equal
to zero.

Finding such decompositions is a NP-hard problem [7], so that matching pur-
suits [12] is a greedy heuristic for finding a very sparse decomposition of a signal
using low processing time. Given an overcomplete dictionary D = {gγ}γ∈Γ , a
signal f to be decomposed and a threshold of the decomposition error ε, Al-
gorithm 1 determines which elements of D and linear coefficients are used in a
sparse decomposition of f . Term Rk is the signal residue not yet represented by
the chosen bases until step k.

Algorithm 1. Matching pursuit algorithm.
R0f = f
n = 0
repeat

i = arg maxk∈Γ 〈Rnf, gk〉
Rn+1 = Rnf − 〈Rnf, gi〉gi

n = n + 1
until n < nmax OR |Rn+1f | < ε
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2.2 Optimized Orthogonal Matching Pursuits

A more powerful heuristic for searching for sparse signal representations using
overcomplete dictionaries was employed in the proposed video codec, known as
optimized orthogonal matching pursuit [17].

At each step of the encoding process, after choosing an element gi of the dic-
tionary by the same criterion of the conventional matching pursuit, such search
heuristic orthogonalizes the entire dictionary with respect to gi. Therefore, the
chosen element in the following step is orthogonal to all elements used previously.
The heuristic ensures more sparse representations at a higher computational
cost.

2.3 K-SVD

A well generated overcomplete dictionary ensures more sparse decompositions,
provides a higher convergence speed in matching pursuits, is capable of rep-
resenting only psychovisually significant features and ignores minor irrelevant
details. It is possible to develop such dictionaries through machine learning al-
gorithms [19], among them the K-SVD, which is a generalization of the algorithm
for solving the K-means problem.

Two alternating steps are performed during its execution. In the first step,
data from the training set is decomposed according to the initial overcomplete
dictionary to be optimized using any algorithm capable of doing it. In the second
step, each element of the dictionary is replaced by a new one, calculated to
minimize the error of each data from the training set that used it in its sparse
decomposition, as described in Algorithm 2.

Algorithm 2. K-SVD algorithm.
Input: initial set Y = {yi}N

i=1 of training signals, an initial dictionary D with nor-
malized columns, a target sparsity T and the total number of iterations k.
Output: an approximate solution to minD,X{||Y −DX||2F } subject to ∀i, ||xi||0 ≤ T
and ∀j, ||Dj ||2 = 1.
for n = 1 to k do

∀i, xi = arg minγ{||yi − Dγ||22} subject to ||γ||0 ≤ T
for each column j in D do

Dj = 0
I = {indices of the signals in Y whose decompositions use Dj}
E = YI − DXI

{d, g} = arg mind,g ||E − dgT ||2F subject to ||d||2 = 1
Dj = d
Xj,I = gT

end for
end for
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2.4 Matching Pursuit Video Coding

The absolute majority of video codecs based on matching pursuits [3,14,21,22]
have their origins in [15]. The method uses an inner-product search to decompose
motion residual signals over an overcomplete dictionary of 2D separable Gabor
functions.

Despite the high computational cost of such search, the approach avoids arti-
ficial block edges and presents both better perceptual image quality and higher
PSNR than DCT-based methods for low bit rates video coding. However, the
dictionary must be efficiently built to allow fast inner-product computation be-
tween its elements and various regions of the residue.

The proposed encoder avoids performing costly searches working similarly to
DCT-based coders, where the difference between two consecutive frames is parti-
tioned into non-overlapping blocks that are independently coded using matching
pursuits. This allows encoding parallelization of the sub-blocks, however, it does
not prevent artifact appearance at the intra-block edges.

3 Proposed Video Codec

Initially, the encoder calculates the difference between the frame to be processed
and the previous uncompressed frame. If the norm of this subtraction is greater
than a certain threshold, the entire frame is used in the next step, otherwise
only the difference between these two frames is used.

The image generated in the previous step is then subdivided into blocks of 8×8
pixels without overlapping. Each block is decomposed as a sparse linear combi-
nation of the dictionary elements through the Optimized Orthogonal Matching
Pursuit algorithm [17]. The average bit rate is controlled by manually varying
the error threshold ε used in the algorithm.

The overcomplete dictionary used in our encoding method is the same used
by Elad and Aharon [8] for image denoising. The learned dictionary contains
256 elements and was trained using K-SVD algorithm using a number of several
photographs as a training set.

In the final step, a flag is coded to indicate whether what is being transmitted
is only the difference between two consecutive frames or an entire frame.

For each block of the current frame decomposed in the previous step, its sparse
representations are transmitted through an arithmetic encoder using four dis-
tinct symbols, each one containing its proper adaptive context. The first symbol
indicates the number of elements of the dictionary used in the decomposition of
that block. For each used element, sign and magnitude of the linear coefficient
associated with that element and its index are transmitted in different symbols.

4 Experimental Results

The proposed video codec was implemented on a graphics processing unit (GPU)
with CUDA [16]. Our codec was compared to the implementation of the H.263
video standard present in the open-source libavcodec library [4].
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Several video sequences were used in the experiments [13]. Results for three
video samples are reported in this work. The videos have resolution of 176×144
pixels and 10 frames per second with subsampled chrominance (format 4:2:2).

All videos were compressed both with our codec and H.263 at different average
rates of kilobits per second. The comparison was based on peak signal-to-noise
ratio (PSNR) value, expressed by

PSNR = 10 log10

(
2552

MSE

)
(1)

where MSE is the mean squared error between the resulting image after com-
pression and uncompression steps and the original image.

Average PSNR values for all frames and three color channels of the tested
video sequences are shown in Table 1.

Table 1. Average PSNR (in decibels) obtained by using the proposed codec (MP) and
H.263

Akiyo Salesman Hall Monitor
kbps H.263 MP H.263 MP H.263 MP

15 30.70 30.71 29.41 28.74 29.54 29.07
20 31.67 31.73 30.01 29.38 30.22 30.18
30 33.60 33.38 31.21 30.55 31.60 32.11
40 35.20 34.66 32.29 31.55 32.88 33.56
50 36.54 35.77 33.18 32.30 34.06 34.80
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Fig. 1. Comparison of per-frame PSNR values between the proposed encoder and H.263
for Akiyo sequence at 50 kbps
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Fig. 2. Comparison of per-frame PSNR values between the proposed encoder and H.263
for Salesman sequence at 50 kbps
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Fig. 3. Comparison of per-frame PSNR values between the proposed encoder and H.263
for Hall monitor sequence at 50 kbps
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Despite the extreme simplicity of the proposed approach, its performance is
very similar to H.263 video standard. The lack of a motion compensation algo-
rithm prevented effective use of statistical redundancy present in the consecutive
video frames.

Another important characteristic of the presented approach is its consistency
in the video frame quality. As can be seen in Figures 1, 2 and 3, PSNR value
of each frame changed abruptly when compressed by H.263, however, it is kept
almost constant by the proposed algorithm. This is mainly due to the rate control
mechanism of H.263.

5 Conclusions and Future Work

A video encoder is proposed to compress the difference between two consecutive
frames through the matching pursuit approach using a dictionary previously
trained by K-SVD method.

Unlike other video codecs based on matching pursuits, the proposed approach
is able to encode video in real time and has performance compatible to H.263
when tested for some video sequences used in standard benchmarks.

Future directions for work include the implementation of refined motion com-
pensation methods, a filter for removing blocking artifacts, a better quantiza-
tion scheme of the sparse decomposition coefficients and other forms of prediction
residue coding using both matching pursuits and dictionaries created by K-SVD.
Such changes can significantly improve the resulting image quality.
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Abstract. This paper addresses transition detection which consists in
identifying the boundary between consecutive shots. In this work, we
propose an approach to cope with transition detection in which we define
and use a new dissimilarity measure based on the size of the maximum
cardinality matching calculated using a bipartite graph with respect to
a sliding window. The experiments have used two video datasets which
presents a variety of different video genres with 3079 transitions. Our
method achieves performance measures similar to the best results found
in the literature with a much simpler classification approach.

Keywords: Bipartite graph matching, cut, gradual transition.

1 Introduction

An hierarchical model for video analysis and segmentation is usually divided into
four levels based on its temporal resolution. At the lowest level one can find the
most basic unit, i.e., a single video frame. Several of those frames are gathered
into a shot that represents a continuous camera recording. Some shots present
a storytelling coherence and they are grouped into distinct scenes. Finally an
assembly of different scenes constitute a digital video. Amongst the problems
related to video analysis and indexing, sometimes video segmentation can be
considered as an essential first step. This paper addresses transition detection
which is part of video segmentation problem, and consists in identifying the
boundary between consecutive shots. The most common approach to cope with
transition detection is based on the use of a dissimilarity measure [1]. A review
of the most popular methods for cut (abrupt transition) detection (such as pixel-
wise comparison, histogram comparison, etc) can be found in [2, 3]. If two frames
belong to the same shot, then their dissimilarity measure should be small. Two
frames belonging to different shots generally yield a high dissimilarity measure.
In the same way, a dissimilarity measure concerning the frames of a gradual
transition is difficult to define and the quality of this measure is very important
for the whole segmentation process.
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Another approach to the video segmentation problem is to transform the video
into a 2D image [4], and apply image processing methods on this image to ex-
tract the different patterns related to each transition. Some works on gradual
transitions detection can be found in [5–7]. Zabih et al. [5] proposed a method
based on edge detection which is very costly due to the computation of edges for
each frame of the sequence. Fernando et al. [6] used a statistical approach that
considers features of the luminance signal. This approach presents high precision
on long fades. Zhang et al. [7] introduced the twin-comparison method in which
two different thresholds are considered. In [4], Ngo et al. applied Markov models
for shot transition detection which fails in the presence of low contrast between
textures of consecutive shots. Recently, Bescós et al. [8] proposed a unified frame-
work with very good results for detecting both cuts and gradual transitions. The
major drawback of this method is the large number of parameters (thresholding)
that are needed to adjust the classification algorithm. Finally, Grana et al. [9]
proposes a linear transition detector for both cuts and linear gradual transitions.
Their method searches for the transition center and transition length using dif-
ferent values of frame step. However, this algorithm assumed that the feature
information is computable, discriminating, and constant within the shots. In this
work, we propose an unified approach to cope with transition detection. In this
paper, we define and use a new dissimilarity measure based on the size of the
maximum cardinality matching calculated using a bipartite graph with respect
to a sliding window. In [10], an approach based on a bipartite graph was used
only for cut detection in which a dissimilarity measure between two consecutive
frames was calculated from maximum cardinality matching. The main contri-
bution of this work is the application of a new simple and efficient dissimilarity
measure unifiedly to solve the cut and gradual transition detection problem.

This paper is organized as follows. In Section 2 we define a new dissimilarity
measure and the transition detection problem resolution using that measure. In
Section 3 our methodology is fully presented. In Section 4 we perform an analysis
for transition detection involving our method using three different quality mea-
sures. Some conclusions and a summary of future works are given in Section 5.

2 A Dissimilarity Measure

In [10], it was defined some concepts used here, like point similarity graph and
list of frame points. Unformally, the point similarity graph Gδ,λ(t1, t2) is created
from a list of frame points, Lt1 and Lt2 , computed from a visual rhythm which is
a simplification of the frame. The graph vertex is the frame points (pixels) and
the weighted edge is the similarity value between two points.

Definition 1 (Matching – Mδ,λ). Let Gδ,λ(t1, t2) be a point similarity graph
between the frames f t1 and ft2 represented by their list of frame points Lt1 and
Lt2 [10]. A subset Mδ,λ ⊆ Eδ,λ is a matching if any two edges in Mδ,λ are not
adjacent. The size of matching Mδ,λ, |Mδ,λ|, is the number of edges in Mδ,λ.

Definition 2 (Maximum cardinality matching – Mδ,λ). Let Mδ,λ be a
matching in a point similarity graph Gδ,λ(t1, t2). So, Mδ,λ is the maximum
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cardinality matching if there is no other matching Mδ,λ in Gδ,λ(t1, t2) such that
|Mδ,λ| > |Mδ,λ|. Solving the maximum cardinality matching on a bipartite graph
could done with O(E

√
V ) operations, in which V and E represent the number of

nodes and edges, respectively. Based on the size of maximum cardinality match-
ing we can define an interframe dissimilarity measure in the following manner:

Definition 3 (Dissimilarity measure – DISδ,λ(t1, t2)). Let Mδ,λ be a maxi-
mum cardinality matching in a point similarity graph Gδ,λ(t1, t2). So, the dissimi-

laritymeasureDISδ,λ(t1, t2) can be calculated asDISδ,λ(t1, t2) = 1− |Mδ,λ|
max{|Lt1 |,|Lt2 |} .

Two consecutive frames that are similar are considered to belong to the same
shot, and consequently a high similarity score (computed using the size of the
maximum cardinality matching) should be encountered. Our search procedure
uses dissimilarity measurements calculated between frames in a sliding window
W . This sliding window is divided into two disjoint parts whose size is equal
to r frames (see Fig. 1). More specifically, for the sliding window W of size
2r, which is centered between frames fk and fk+1, we compute 2r lists of frame
points Lk−r+1, . . ., Lk, Lk+1, . . ., Lk+r . Then, we generate point similarity graphs
between lists of frame points which do not belong to the same part of the sliding
window W (see Fig. 1). Finally, for a given sliding window W with radius r,
the dissimilarity measure DISδ,λ is calculated for each those graphs and used to
compute the r-cumulative dissimilarity measure as follows.

Fig. 1. Computation of cumulative dissimilarity for a sliding window W whose size is
equal to 4 (i.e., with radius r = 2) and centered between frames fk and fk+1. The
cumulative dissimilarity for frame fk will be the summation of dissimilarity mea-
sures between frames from disjoint parts of the sliding window, i.e, 2-CDISδ,λ

k =
DISδ,λ(Lk, Lk+1) + DISδ,λ(Lk, Lk+2) + DISδ,λ(Lk−1, Lk+1) + DISδ,λ(Lk−1, Lk+2).

Definition 4 (r-Cumulative dissimilarity – r-CDISδ,λ
k ). Let fk be the frame

at location k, k ∈ [0, N−1] and Lk be the list of frame points associated with that
frame. So, for a 2r-sized sliding window centered between frames fk and fk+1,
the r-cumulative dissimilarity r-CDISδ,λ

k can be calculated as

r-CDISδ,λ
k =

k∑
i=k−r+1

k+r∑
j=k+1

DISδ,λ(Li, Lj). (1)



An Unified Transition Detection 187

Fig. 2. Workflow for transition detection

Fig. 1 illustrates the computation of r-CDISδ,λ
k . Finally, the transition detection

problem can be stated as follows.

Definition 5 (Transition detection – TD). The transition detection (TD)
problem corresponds to the identification of all content changes on a video se-
quence. Thus, transition detection at any frame fk can be defined as

TD(VN , r, λ, δ, Δ) = {k ∈ T|fk ∈ VN , r-CDISδ,λ
k ≥Δ} (2)

where r-CDISδ,λ
k is the r-cumulative dissimilarity measure for a sliding windows

W of radius r centered between frames fk and fk+1; and three specified thresholds
λ, δ and Δ. λ corresponds to the maximum distance between two point locations,
δ corresponds to the maximum dissimilarity allowed between two point values;
and Δ corresponds to the minimum cumulative dissimilarity score needed to
classify the location as transition.

One should notice that Δ may be either specified or an adaptive threshold can
be used. To specify a single value for Δ that is best suitable for a given situation
is not an easy task. Moreover, depending on parameter values, the transition
detection approach stated by Equation 2 identifies all types of transitions.

3 Our Method for Transition Detection

As described before, the main goal of transition detection problem is to identify
changes on a video sequence, such as cuts, dissolves, fades, and wipes, among
others. In the proposed workflow, as described in Fig. 2, the first step of the
process is the extraction of frame points from a visual rhythm [4] in order to
construct lists of frame points for a specified window with 2r frames.

The main idea of our method is to compute the r-cumulative dissimilarity
measure for a sliding window centered between two frames. It is important to
remark that window size, i.e. 2r frames, where r is the radius parameter, is
directly related to the gradual transition size that may be identified. For instance,
let T be the length in frames of a transition. According to [8, 9, 11], for an ideal
(gradual) transition (i.e. a linear dissolve between two almost still shots ends),
the 1-dimensional signal obtained from sequence of dissimilarity values results
in a plateau (an isosceles trapezoid) with width of 2r + T + 1 (with a minor
top base of |2r − (T + 1)| frames and two slopes of min(2r, T + 1) frames) with
maximum height for 2r = T + 1 (when it degenerates into a triangle since the
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minor base of the trapezoid becomes a point). Therefore, if radius parameter is
set to (T + 1)/2 a set of local maxima in the 1-dimensional dissimilarity signal
will be associated with the location of transitions. Unfortunately, since the size
of (gradual) transitions is not fixed our dissimilarity measure (calculated with
a fixed radius) will produce a signal with high dynamics; and, consequently, a
filtering step is needed to locate local maxima.

Once the r-cumulative dissimilarity measure r-CDISδ,λ
k is calculated for each

frame at location k, the sequence of dissimilarity values is then stored as an
1-dimensional signal (see Fig. 3). Due to the hypothesis that the computation of
the dissimilarity measure produces a local maximum with high dynamics into a
1-dimensional signal, morphological filters – (i) closing; and (ii) white top hat –
can be applied in order to find or enhance these maxima (see Fig. 3).

(a) Original signal (b) Original signal

(c) After closing (d) After closing

(e) After white top hat (f) After white top hat

(g) After thresholding (h) After thresholding

(i) First derivative (j) First derivative

(k) Second derivative (l) Second derivative

Fig. 3. Signal filtering, thresholding and classification of a transition: (left column) the
first transition of this signal is gradual since te − ts ≥ 3; and (right column) the first
transition of this signal is abrupt since te − ts ≤ 2

After the filtering step, a transition is associated with a local maximum that
is larger than a specified threshold value (Δ), in order to prevent a great number
of false positives related to effects, such as flashes and object/camera motions.
Finally, the transition center is located where the first derivative of the 1-D signal
changes sign (crosses zero) and the corresponding points have negative values
of the second derivative. After identifying the maxima of the signal, we search
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Table 1. Overall Values of F1 Score

Minimum cumulative F1 Score

dissimilarity (Δ) Min Max Avg Std Dev

05% 87.00% 91.45% 90.21% 0.94%

10% 88.09% 92.02% 90.25% 0.96%

15% 85.28% 90.94% 88.49% 1.13%

around the maximum for the start ts and end te time instant of the transition
(transition boundaries). Boundaries are detected as the points left/right of the
maximum where the second derivative crosses zero in the so called inflection
points. Since, a gradual transition has a certain duration, we consider that at
least three frames should be involved to declare a gradual transition, i.e., te−ts ≥
3 (see Fig. 3). If this condition does not hold, i.e., if te − ts ≤ 2 then an abrupt
transition (cut) is declared (see Fig. 3).

4 Experiments

In our experiments, we have used two video datasets which presents a variety of
different video genres. The first video dataset contains 20 videos – 1069 seconds
(31796 frames) of MPEG-1 testing material with 570 transitions (47 cuts and 523
graduals). The second dataset contains 10 videos from TRECVID 2006 related
to shot detection track, with 15160 seconds (467895 frames) of MPEG-1 testing
material with 2509 transitions (1770 cuts and 759 graduals). In order to evaluate
the results, we consider the precision, recall and F1 measure. According to [12],
F1 is a combination of precision and recall and is maximized at the intersection
of the two distributions. For that reason, F1 score is also called by [12] the best
overall performance measure.

Several experiments, applied to the first dataset, have been conducted for
3 (three) different values of minimum dissimilarity score (Δ), i.e., for Δ =
05%, 10%, 15%, for 3 (three) values of radius (r), i.e., r = 09, 12, 15, for 4 (four)
values of maximum point dissimilarity (δ), i.e., δ = 05, 10, 15, 20, and for 4 (four)
values of maximum point distance allowed (λ), i.e., λ = 05, 10, 15, 20. Table 1
presents overall average values of F1 score obtained for those tests, together
with minimum and maximum values and standard deviation for each value of
minimum dissimilarity score (Δ). One can easily verify that best results found
are associated with Δ = 10%, while the set of tests with Δ = 15% produces the
lowest overall average value of F1 score.

Table 2 presents a detailed view of these three quality measures (recall (R),
precision (P), and F1 score) for the proposed method for several parameter
settings (with Δ = 10%). The proposed method achieves more than 92% recall
with almost 92% precision (see Table 2 for window radius r = 12, δ = 10 and
λ = 15). Even the dataset is different for literature, our results are similar to
(and even better than) the best results presented in [8] (their results are only
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Table 2. Results for video dataset 1 and Δ = 10%

Window radius r = 12

Point Point dissimilarity (δ)

distance 5 10 15 20

(λ) R P F1 R P F1 R P F1 R P F1

5 0.891 0.904 0.897 0.905 0.900 0.903 0.893 0.902 0.897 0.894 0.902 0.898
10 0.912 0.910 0.911 0.919 0.916 0.917 0.919 0.916 0.917 0.894 0.910 0.902
15 0.921 0.911 0.916 0.924 0.916 0.920 0.921 0.914 0.918 0.894 0.909 0.902
20 0.921 0.913 0.917 0.866 0.913 0.889 0.912 0.912 0.912 0.894 0.901 0.898

(a) False positive cut (b) False positive gradual transition

Fig. 4. Examples of abrupt and gradual transitions that do not appear in groundtruth
of TRECVID 2006

better for abrupt transitions), but our method uses a much simpler classification
approach. Moreover, the number of gradual transitions in our first dataset is
almost 92% (523 gradual transitons), while in [8] only 14% from the total number
of transition are graduals (262 gradual transitions and 1571 cuts).

In our first dataset, since the transition average size is 23 frames, the best
results (i.e., higher F1 scores) are associated with radius r = 12 (= (23 + 1)/2)
– as it should be expected. In our dataset, the shot average size is only 31
frames, so for larger values of r there is a great probability that two consecutive
plateaus (i.e. transitions) merge into a single one. We consider the first dataset
to tune the parameters. The proposed method, applied to the second dataset,
achieves more than 75% recall with 68% precision and F1=71% for window
radius r = 12, δ = 15 and λ = 15). In order to understand the reasons behind
this reduction in both recall and precision rates, we have to take a closer look
into video content added to the dataset. The average size of gradual transitions
is 15.4 frames, and consequently, the window radius must be r = 8 instead of
r = 12 in order to decrease the dissimilarity measure and increase the precision
rate. Also, as one reexamines TRECVID 2006 groundtruth, he might have some
doubts about some false positives detected by our method. Fig. 4 presents a
example of 2 video sequences that were detected by our method. The first one
shows a “video-in-video” (in which there is a cut), which is a very hard problem
to cope with during transition detection. The other is an example of effects
that are very hard to classify (even for humans). One could claim that they
are again examples of “video-in-video”, but they also could be taken as gradual
transitions. Many teams of TRECVID 2006 have reported those same problems.
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Also, the quality of video sequences is poor, that is very different of our first
dataset in which there is no doubt about boundary classification. Unfortunately,
the dissimilarity measure adopted does not allow our method to identify those
effects.

5 Conclusion and Further Works

In this work, the size of the maximum cardinality matching calculated using
a bipartite graph with respect to a sliding window is used as a dissimilarity
measure in order to identify locations of abrupt and gradual transitions. The
main contribution of our work is the application of a simple and efficient distance
to solve a problem of video segmentation. According to experimental results, the
performance of our method, when applied to the first dataset (more than 92%
recall with almost 92% precision), is similar to (and even better than) the one
proposed by [8] with lower computational cost since its classifications step is
much simpler. In our experiments, we have used a “not so large” dataset – but it
presents a huge number of gradual transitions (almost one transition for each two
seconds), which makes the problem of abrupt and gradual transition detection
even harder. However, transition detection results can be highly dependent on
the testing material, which is usually scarce and not especially representative.
So, as a future work, we plan to apply our approach to a large and representative
video database in which the average shot size will be much greater than the size
of the specified window. We also intend to investigate further strategies to cope
with hard effects such as “video-in-video”.
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Abstract. Trajectory clustering has been used to very effectively in
the detection of anomalous behavior in video sequences. A key point in
trajectory clustering is how to measure the (dis)similarity between two
trajectories. This paper deals with a new dissimilarity measure for trajec-
tory clustering, giving the same importance to differences and similarities
between the trajectories. Experimental results in the task of anomalous
detection via hierarchical clustering shows the validity of the proposed
approach.

Keywords: Trajectory Clustering, Dissimilarity, Anomaly Detection.

1 Introduction

Video surveillance is a research field that has received much interest over the
last years. Parking lot surveillance, traffic monitoring, and crime prevention are
among the applications of video surveillance systems. A key task that could
help improve the effectiveness of these systems is the automatic detection of
anomalous behaviors. Trajectory clustering has been established as an effective
tool to address the task. A fundamental issue in trajectory clustering is how to
measure the (dis)similarity between the trajectories.

In this work we propose a new dissimilarity measure for trajectories, namely
Dissimilarity for Trajectories(DT). The core of DT is a non-symmetric dissimi-
larity which yields the same importance to differences and similarities between
the trajectories. All measures are tested in the task of anomaly detection via
trajectory clustering. The selected data sets contain different amounts of normal
trajectories with different amounts of abnormal trajectories.

The remainder of this paper is organized as follows. Sec. 2 describes the repre-
sentation and dissimilarity for trajectories, including the proposed dissimilarity
measure. Anomaly detection via trajectory clustering is presented alongside ex-
perimental results in Sec. 3. Finally, Sec. 4. concludes the paper.

2 (Dis)Similarity Measures for Trajectories

Trajectory Representation: Usually a trajectory is represented as a sequence
S = (s1, s2, . . . , sh), where each si, 1 ≤ i ≤ h, is a point in a multidimen-
sional space containing information about the moving object at time i. Most
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Fig. 1. Three trajectories(A, B and C), near in space, but trajectory B has a very
different directional behavior
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Fig. 2. Calculation of the direction in each point of the trajectory B. In each point
bi, the direction is represented as the angle clockwise with the right horizontal of
(xbi, ybi). To subtract two directions dbi, daj we take the minimum between |dbi − daj |
and |360 − dbi − daj |

of the research done until now for trajectory analysis, is only based on the
position(si = (xsi, ysi)) at time i[1][2]. Note that time information is used im-
plicitly, since in general, trajectories are sampled at equal time rates. Other
features one should consider are the direction and the velocity of the objects.
Obtaining both features depends on the tracker and not all tracking algorithms
records this information. The significance of using direction comes from the fact
that two trajectories can be very close in the space domain, but have a very
different directional behavior (see figure 1). The direction at time i can be es-
timated using the position at time i + 1, as the angle clockwise with the right
horizontal of (xsi, ysi) as shown in figure 2. For the case of the velocity you
also need to know the sampling rate. In this work we represent si as a point
in a 4 dimensional space si = (xsi, ysi, tsi, dsi), encoding information about the
position(xsi, ysi), time(tsi) and direction(dsi) of the moving object. In addition,
each feature is normalized dividing by its standard deviation.

Previous Work: The Euclidian dissimilarity for trajectories, the Longest Com-
mon SubSequence(LCSS) and the Dynamic Time Warping(DTW) are the three
most widely studied (dis)similarity measure for trajectories in the literature[1][4].
This section introduces these widely used (dis)similarity measures and discusses
their main features.

Euclidean(EU) Dissimilarity is defined as the sum of the distances be-
tween corresponding points: Eu(S, T ) =

∑h
i=1 D(si, ti), where h is the length

of the trajectories and D is the Euclidean distance between si and ti[3]. Note that
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this measure assumes that both trajectories have the same length. This is not
a common scenario due to speed variations and occlusions[5]. Another known
problem of the Euclidean Measure is that it cannot handle local time shifting[1].
However it is simple to implement and very fast O(h).

Longest Common Subsequence(LCSS) Similarity is a variation of the
Edit Distance on strings[3]. Let S = (s1, s2, . . . , sh) and T (t1, t2, . . . , tl) two
trajectories, δ and ε two user-defined parameters, then LCSS is defined as:

Lcss(S, T ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if |S| = 0 or |T | = 0
1 + Lcss(Rest(S),Rest(T )) if |ts1 − tt1| ≤ δ and

|xs1 − xt1| ≤ ε and |ys1 − yt1| ≤ ε

max(Lcss(Rest(S), T ), otherwise
Lcss(S, Rest(T )))

where Rest(S) = (s2, . . . , sh).
The main idea of LCSS is to allow the trajectories to stretch and to allow

some points to remain unmatched [1]. The value of Lcss(S, T ) is the length of
the longest matching subsequence of S and T as indicated by its name. This mea-
sure has proven great effectiveness in the presence of noisy points[3]. The main
drawback of Lcss(S, T ) is that it does not penalize unmatched subsequences,
given no information of how separated the unmatched subsequences are. Work
in [3] tries to solve this, but they use a fixed penalty, no matter the difference of
the subsequences. In addition, Lcss(S, T ) in its original form, doesn’t take the
direction into account, and may fail to separate two trajectories near in space
but very different directional behavior (see figure 1). Also, it should be noticed
that the user needs to define ε and δ parameters. Last, the time complexity of
Lcss(S, T ) is O(|S| + |T |) applying dynamic programming techniques and with
a small δ[1].

Dynamic Time Warping(DTW) Dissimilarity as LCSS allows warping in
time, but contrary to LCSS doesn’t allow points to remain unmatched[1]. DTW
is defined as:

Dtw(S, T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |S| = 0 and |T | = 0
∞ if |S| = 0 or |T | = 0
D(s1, t1) + min(Dtw(Rest(S),Rest(T )), otherwise
Dtw(Rest(S), T ), Dtw(S, Rest(T )))

The main idea of DTW is to duplicate some points to handle local time shifting.
The general criticism to DTW in the literature is its sensitivity to noisy points,
since all points need to be matched[3][1]. In addition, we point out that DTW
penalize long trajectories. Two very similar long trajectories may have similar
DTW value that two dissimilar but much smaller trajectories. As all of above
measures if information about the direction is not included in the trajectories
representation, DTW may fail to separate two trajectories near in space but very
different directional behavior. The time complexity of Dtw(S, T ) is O(|S||T |)
applying dynamic programming as with LCSS.
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2.1 Proposed Approach

With the purpose of solving the above mentioned problems, we developed a new
dissimilarity measure for trajectories. This measure should be able to handle tra-
jectories of different lengths. Moreover, it shouldn’t be influenced by the length
of the given trajectories, in the sense that a pair of long (dis)similar trajecto-
ries should have an analogous dissimilarity value as another pair of smaller ones.
Besides, similar subsequences should be rewarded, and dissimilar ones penalized.

Given two trajectories S and T , and a boolean user-defined parameter m, the
Dissimilarity for Trajectories(DT) is defined as:

DT (S, T, m) =

{
min(ADT (S, T )/|S|, ADT (T, S)/|T |) if m = true

max(ADT (S, T )/|S|, ADT (T, S)/|T |) if m = false

where:

ADT (S,T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nearest(s1, T ) if |S| = 1∑|S|

i=1 D(si, t1) if |T | = 1
min(D(s1, t1) + ADT (Rest(S), T ), otherwise

ADT (S,Rest(T ))

and Nearest(s, T ) = mint∈T D(s, t)
Nearest(s, T ) returns the distance of the nearest point to s in the sequence

T . The function ADT (S, T )(Asymmetric Dissimilarity for Trajectories) is a non-
symmetric dissimilarity measure that quantifies how far S is from T . This is done
by finding the subsequences of T (allowing replication of points in T as in DTW,
as well as allowing some points of T remain unmatched as in LCSS) passing
nearest to S, and summing the Euclidean distances of corresponding points (see
figures 3 and 4). If S is a subsequent of T , then ADT (S, T ) is 0. On the other
hand, DT (S, T ) normalizes the result of ADT (S, T ) and ADT (T, S) dividing
by the size of S and T respectively. Furthermore, let the user to chose what is
more relevant, the differences(max)1 or the similarities(min) among the trajec-
tories. The time complexity of DT (S, T ) is O(|S||T |) applying similar dynamic
programming techniques as with DTW and LCSS.

T • t1 ������ t2 ����� t3 ������ t4 ������ t5 ����� t6 ����� t7•
S • s1

�� s2

��
s6 �� s7 �� s8 �� s9•

s3

�����

s4 �� s5

		���������

Fig. 3. Resultant matching points in ADT (S,T ). The dissimilarity value is equiva-
lent to Eu(S, T ′), where T ′ = (t1, t2, t2, t2, t4, t5, t5, t6, t7). The points t2 and t5 were
duplicated and t3 was left unmatched.

1 For anomaly detection differences will be more relevant.
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T • t1 ������ t2 ����� t3 ������ t4 ������ t5 ����� t6 ����� t7•
S • s1

�� s2

��
s6 �� s7 �� s8 �� s9•

s3

�����

s4 �� s5

		���������

Fig. 4. Resultant matching points in ADT (T, S). The dissimilarity value is equiva-
lent to Eu(S′, T ), where S′ = (s1, s2, s5, s6, s7, s8, s9). The points t3 and t4 were left
unmatched.

To sum up briefly, the new measure is able to work with trajectories of different
sizes(contrary to EU), it is not influenced by the size of the trajectories, since the
value is normalized(contrary to DTW, LCSS), and allows the user to specify the
relevance of differences and similarities. Besides, only the less dissimilar(most
similar) subsequences are used in the computation of the dissimilarity(contrary
to EU, DTW), and Euclidian measure is used to penalize the differences(contrary
to LCSS).

3 Experimental Results in Anomaly Detection

The automatic anomaly detection task implies finding objects moving with an
unusual(abnormal, infrequent) pattern. Trajectory clustering provides a prac-
tical approach for the detection of this unusual(abnormal) motion patterns in
video sequences. The main idea is that larger groups are considered as normal
trajectories while singletons or very small groups are considered as abnormal
trajectories. In this section a trajectory clustering algorithm is selected for the
task of anomaly detection. The (dis)similarity measures presented above are
tested with a selected clustering algorithm, in a previously used data set, and
experimental results are shown.

Single-Link(SL)[6] is a well known and widely used hierarchical clustering
algorithm. Given a set of objects O, a dissimilarity measure d, and a stopping
criteria θ, the SL algorithm is defined as:

1. Represent each object of O as a singleton cluster.
2. Select the two objects with minimum d that are in different clusters.
3. Join the corresponding clusters.
4. Stop if θ is true, else go to step 2.

This algorithm has several desirables properties that make it a practical choice
for anomaly detection. First, it has a very easy implementation. Moreover, it
can discover clusters of any shape and size. Furthermore, it has a very easy
interpretation: objects separated from the rest(i.e. anomalies) are joined last, this



198 D.L. Espinosa-Isidrón and E.B. Garćıa-Reyes

Table 1. Results using EU. For each entry (rows = anomalies; columns = groups of
normal trajectories) ten runs were performed and the results averaged.

FALSE POSITIVES. The total average over 100 cases: 6.06%
Anomalies Groups of normal trajectories

1 2 3 4 5 6 7 8 9 10
1 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.50 6.80 4.20 1.65 7.35 6.45 4.40 8.35 6.25 6.95
3 9.00 2.90 14.03 7.23 6.90 3.57 2.30 5.07 1.53 3.57
4 8.70 5.43 4.83 8.25 6.65 5.78 5.83 6.35 11.20 5.05
5 7.96 2.90 10.08 6.16 7.56 5.48 10.20 7.66 3.76 3.54
6 9.38 5.32 8.22 6.87 5.25 5.93 8.43 6.67 3.33 9.90
7 5.14 7.37 11.27 8.53 6.00 8.40 6.89 7.30 9.46 5.03
8 6.85 8.46 6.68 10.01 8.53 11.08 7.04 6.53 7.94 5.74
9 7.49 4.79 5.78 7.86 7.70 4.27 6.73 6.07 8.80 7.84

10 11.34 4.92 7.00 6.39 10.10 3.95 8.26 8.48 5.91 6.51
TRUE POSITIVES. The total average over 100 cases: 96.73%

Anomalies Groups of normal trajectories
1 90.00 100.00 100.00 100.00 100.00 100.00 100.00 98.75 100.00 100.00
2 100.00 100.00 96.67 100.00 100.00 98.33 100.00 98.75 93.33 99.00
3 100.00 100.00 96.67 95.00 96.00 98.33 98.57 98.75 97.78 99.00
4 100.00 90.00 100.00 100.00 100.00 100.00 100.00 98.75 96.67 97.00
5 80.00 100.00 96.67 92.50 98.00 98.33 95.71 98.75 96.67 95.00
6 90.00 100.00 100.00 95.00 94.00 95.00 97.14 92.50 97.78 98.00
7 100.00 95.00 100.00 97.50 96.00 90.00 95.71 97.50 96.67 97.00
8 80.00 100.00 96.67 95.00 100.00 95.00 95.71 97.50 97.78 98.00
9 100.00 100.00 96.67 100.00 88.00 98.33 88.57 95.00 97.78 97.00

10 100.00 90.00 93.33 95.00 92.00 90.00 92.86 95.00 98.89 96.00

is very important since minimizes the risk of false positives. The main drawback
is that it suffers from the chaining effect, but if the clusters are well separated(the
dissimilarity measure should be able to separate the anomalies from the rest),
the algorithm performs well[6].

Experimental Results: A synthetic data set, first introduced in [2], was se-
lected to test the effectiveness of the (dis)similarity measures presented in this
work, for the task of anomaly detection. It contains “100 different experimen-
tal cases, each one with a different number of groups of 100 normal trajectories
(ranging from 1 to 10) and outliers (from 1 to 10). For each test, ten different
training/test sets were created, for a total of 2000 data sets...Note that outliers
in the test sets are drawn from the same distribution used for outliers in the
corresponding training sets, in order to ease the detection of anomalous training
patterns being included in the normality class.”[2].

The experiment was conducted in the following way: For each measure2, the
SL algorithm was applied over the test sets. Trajectories in clusters with size
greater than 2, were classified as normal and the rest was classified as anomaly.
The stopping criteria was selected by the following approach: A threshold ε was
selected using the corresponding training set, and the SL algorithm stopped
before joining the pair of objects with the minimum dissimilarity greater than ε.
To compute ε in the corresponding training set: For each normal cluster Ci: the
mean of the dissimilarities between every pair of objects in Ci was calculated,

2 LCSS was tested with several choices of ε and δ. ε = 0.45 and δ = 2 gave the best
results.
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Table 2. Results using LCSS. For each entry (rows = anomalies; columns = groups
of normal trajectories) ten runs were performed and the results averaged.

FALSE POSITIVES. The total average over 100 cases: 0.004%
Anomalies Groups of normal trajectories

1 2 3 4 5 6 7 8 9 10
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
5 0.02 0.02 0.02 0.04 0.00 0.00 0.00 0.00 0.02 0.00
6 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
TRUE POSITIVES. The total average over 100 cases: 91.35%

Anomalies Groups of normal trajectories
1 90.00 95.00 83.33 97.50 98.00 83.33 97.14 95.00 97.78 95.00
2 90.00 100.00 100.00 90.00 92.00 95.00 94.29 92.50 91.11 98.00
3 100.00 100.00 96.67 95.00 94.00 91.67 90.00 95.00 93.33 95.00
4 90.00 85.00 96.67 92.50 92.00 98.33 98.57 93.75 93.33 90.00
5 80.00 90.00 90.00 92.50 96.00 95.00 84.29 96.25 91.11 91.00
6 90.00 100.00 100.00 85.00 86.00 88.33 92.86 88.75 95.56 96.00
7 80.00 95.00 86.67 95.00 92.00 85.00 92.86 93.75 94.44 89.00
8 70.00 95.00 96.67 85.00 94.00 85.00 90.00 92.50 93.33 93.00
9 90.00 90.00 93.33 85.00 66.00 90.00 82.86 93.75 88.89 91.00

10 80.00 90.00 90.00 90.00 86.00 86.67 87.14 93.75 92.22 86.00

Table 3. Results using DTW. For each entry (rows = anomalies; columns = groups
of normal trajectories) ten runs were performed and the results averaged.

FALSE POSITIVES. The total average over 100 cases: 2.02%
Anomalies Groups of normal trajectories

1 2 3 4 5 6 7 8 9 10
1 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.35 1.45 1.35 1.10 1.40 5.35 1.85 0.95 1.25 2.85
3 3.23 0.83 3.67 2.30 2.60 0.77 0.97 1.47 0.63 0.63
4 4.13 1.73 2.68 3.15 2.63 1.58 1.88 2.25 4.43 1.60
5 2.32 0.88 3.64 1.78 3.96 1.68 5.08 1.56 0.80 1.20
6 2.57 1.62 2.20 2.08 2.32 2.03 2.80 2.47 0.60 3.23
7 2.00 3.07 3.74 2.26 1.53 2.40 3.01 2.10 2.90 1.67
8 2.05 2.19 2.46 2.98 3.14 3.75 2.11 2.19 3.06 1.58
9 2.53 2.00 1.90 3.00 2.50 1.59 1.86 2.34 3.46 2.32

10 3.87 1.48 2.03 1.76 2.96 1.13 3.10 2.54 1.34 2.18
TRUE POSITIVES. The total average over 100 cases: 96.73%

Anomalies Groups of normal trajectories
1 90.00 100.00 100.00 100.00 100.00 100.00 100.00 98.75 100.00 100.00
2 100.00 100.00 96.67 100.00 100.00 98.33 100.00 98.75 94.44 99.00
3 100.00 100.00 96.67 95.00 96.00 98.33 98.57 98.75 97.78 99.00
4 100.00 90.00 100.00 100.00 100.00 100.00 100.00 98.75 97.78 96.00
5 80.00 100.00 96.67 92.50 98.00 96.67 95.71 98.75 96.67 96.00
6 90.00 100.00 100.00 95.00 94.00 95.00 97.14 93.75 97.78 98.00
7 100.00 95.00 100.00 97.50 96.00 90.00 95.71 97.50 96.67 97.00
8 80.00 100.00 96.67 95.00 100.00 95.00 94.29 97.50 97.78 97.00
9 100.00 100.00 96.67 100.00 86.00 98.33 88.57 95.00 97.78 97.00

10 100.00 90.00 93.33 95.00 94.00 90.00 92.86 95.00 98.89 96.00
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Table 4. Results using the DT. For each entry (rows = anomalies; columns = groups
of normal trajectories) ten runs were performed and the results averaged.

FALSE POSITIVES. The total average over 100 cases: 1.27%
Anomalies Groups of normal trajectories

1 2 3 4 5 6 7 8 9 10
1 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00
2 0.30 1.10 0.90 0.80 1.25 4.05 1.00 0.90 0.60 1.60
3 1.93 0.40 1.67 1.13 1.43 0.37 0.70 0.87 0.27 0.53
4 1.95 1.15 1.60 1.73 1.65 1.15 1.13 1.58 2.78 0.90
5 1.56 0.70 2.18 1.24 2.74 1.04 2.64 0.82 0.58 0.86
6 1.62 1.40 1.28 1.67 1.43 1.18 1.58 1.77 0.48 1.80
7 1.47 1.80 2.47 1.39 1.06 1.47 2.17 1.20 2.19 1.20
8 1.48 1.30 1.64 1.70 1.66 2.33 1.30 1.20 2.03 0.84
9 1.62 1.19 1.03 1.80 1.44 0.91 1.21 1.67 2.36 1.53

10 2.38 1.07 1.28 1.16 1.86 0.77 2.04 1.72 0.92 1.59
TRUE POSITIVES. The total average over 100 cases: 96.65%

Anomalies Groups of normal trajectories
1 90.00 100.00 100.00 100.00 100.00 100.00 100.00 98.75 100.00 100.00
2 100.00 100.00 96.67 100.00 98.00 100.00 100.00 98.75 94.44 99.00
3 100.00 100.00 96.67 95.00 96.00 98.33 98.57 98.75 97.78 99.00
4 100.00 90.00 100.00 100.00 100.00 100.00 100.00 98.75 97.78 96.00
5 80.00 100.00 93.33 92.50 98.00 96.67 92.86 98.75 96.67 96.00
6 90.00 100.00 100.00 92.50 94.00 95.00 97.14 93.75 97.78 98.00
7 100.00 95.00 100.00 97.50 96.00 90.00 95.71 97.50 96.67 96.00
8 80.00 100.00 96.67 95.00 98.00 95.00 94.29 97.50 97.78 96.00
9 100.00 100.00 96.67 100.00 88.00 98.33 88.57 96.25 97.78 97.00

10 100.00 95.00 93.33 92.50 94.00 88.33 92.86 96.25 97.78 97.00

and the minimum of the calculated means was selected as ε. Tables 1 through
8 show the results in terms of false positives (FP = % of normal trajectories
misclassified as anomalies) and true positives (TP = % of abnormal trajectories
correctly classified as anomalies).

The EU shows very good results detecting TP with an overall above 96% of
effectiveness, but misclassifies many normal trajectories. This is very undesirable
in real world applications, since many false alarms could lead human operators
to a loss of confidence on the automatic system. On the contrary, LCSS has
near zero FP, but stays more than 5% behind in TP detection. This behavior
could be expected since LCSS is the only that does not penalizes the differ-
ences(section 2). DT and DTW behave very good in both aspects, but DTW
have some particular cases where it misclassifies around 5% of normal trajecto-
ries. For the above mentioned reasons, the proposed dissimilarity measure shows
better overall performance(FP,TP) than the others widely used measures.

4 Conclusions

In this paper, a new dissimilarity measure for trajectories was proposed and
compared with three (dis)similarity measures widely used in the literature. The
experiments for anomaly detection in video sequences via trajectory clustering
(Single-Link), show that the proposed measure achieves the best results in overall
performance.
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Abstract. The goal of this paper is to present a novel modelling of postures 
of human activities such us walk, run… Effectively, human action is, in gen-
eral, characterized by a sequence of specific body postures. So, from an in-
coming sequence video, we determine the postures (key-frames) which will 
represent the movement. We construct the prototypes corresponding to these 
key-frames by thinning these postures, and then we use this skeleton as a 
starting point for building the model. Some results are presented to validate 
our models. 

Keywords: Human Activities, Modelling, Shape Matching, Skeleton, thinning. 

1   Introduction 

Lot of papers present an overview of human motion estimation and recognition [1] [2] 
[3]. The video of measuring shape deformation relative to prototypes has a long his-
tory in pattern recognition and computer vision [4] [5]. The work in [6] [7] present an 
algorithm for computing correspondence between arbitrary shapes. Based on skele-
tons directly, many approaches have been developed for shape matching [8] [9] [10]. 
The benefits of applying skeleton-based methods are its natural consistency with 
human intuition and capability to describe the local geometrical features, allowing the 
performance of articulated matching [11] [15] [16]. In this paper, we present a novel 
modelling of human activities postures.  

Inspired by works of [12] [13] [14] [18], we propose to hide (superimposed) the 
skeleton (of different body poses) on models representing human activities in a prede-
fined database, to recognize the motion in the input video made by a single person.  
So, we first, construct prototypes of postures which describe a movement from an 
incoming sequence video. We determine automatically the postures which will repre-
sent the movement, we skeletal these postures then we use this skeleton as a starting 
point for building the model. 

We test the relevance of the models constructed by calculating the degree of corre-
spondence between key-frames of an unknown motion with the models in the data-
base. The originality of this modelling is that the posture of a person is represented  
by a weighting silhouette representing the pose; weights which materialize variations 
of postures (As movement is executed in a different way from a person to  
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another). The advantage of this approach is its simplicity and ease of processing and 
calculations. The selection of key positions is done automatically which is not always 
the case in other work [13]. 

2   System Overview 

Human action is, in general, characterized by a sequence of specific body postures. 
So, the problem that we proposed to solve is to determine models representing these 
poses, to take them as references in order to recognize human action of everyday life 
with a fixed camera. The system implementation consists of three parts shown in 
figure 1. After the background subtraction, we have a human silhouette, then we cen-
tre this silhouette in a frame with predefined size, and as the last phase of pre-
processing we select a set of frames (key-frames) that will represent the movement 
achieved in a video sequence. This last step, allows us to process just a fewer number 
of frames (the key-frames) instead of the entire input sequence frames. In modelling 
phase, we first calculate skeleton of silhouette in the key-frames. Then we use this 
skeleton as a starting point for building the model of the posture associated (weighting 
module). The out put of the modelling phase is a database of models representing 
movements (run, walk…). The last part of the implementation is the activity recogni-
tion module.  This module use as input, a database cited above, and an unknown 
video sequence. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Illustration of the processing stage of the system 

 Action recognition 

Silhouette Extraction 

Selected Key-Frames 

    Thinning 

     Weighting 

Pre processing  

Modeling 

Activity 
Recognition 

Input video sequence 

    Unknown video 
   sequence

  Database  



204 Dj. Medjahed Gamaz, H.E. Gueziri, and N. Haouchine 

3   Selected Key-Frames    

An action is often described as a sequence of discrete postures. For determining 
which postures are the ones which can represent the movement, we treat the frames 
(given after the background subtraction) in pairs. This step is dependent on the accu-
racy of the tracking step (tracking process is not performed in this work) and is very 
important for the next process. So, we calculate the percentage of pixels (perc) that is 
different between two successive frames. Then we compare this value to a predefined 
threshold. If perc is upper than the threshold then the frame is selected to be a key-
frame; otherwise it is not selected and we process the same treatment between the 
next frame and the last key-frame selected (See fig.2). The percentage is calculated as 
follows:  
 

Perc = Diff / Add                                                        (1) 
 

Where  Diff is the number of common pixels of two consecutives frames (given by 
the XOR operation between two frames).  

 Add is the number of all pixels in the two consecutives frames (given by the OR 
operation between two frames).  
 Perc is the percentage of pixels which is different between the two frames. This 
process allows us to quantify the difference in pixels using percentages to avoid rely-
ing on the number of image pixels (which change from one image to another). 

This step allows us to define the keys postures (keys-frames) of a given move-
ment. All these postures will therefore be selected to represent the movement. So, 
instead of processing the entire input sequence frame to recognize an unknown 
movement, we have to process just a fewer number of frames (the key-frames) (See 
figure 2.b). Note that this step can give us any number of key-frames in accordance 
with the velocity of the movement and the length sequence video. 

 

a.  

b.  

Fig. 2. Sequence of frames before and after selected key-frames. a. Input Sequence video, b. 
Selected key-frames. 
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4   Modelling  

The idea of creating weighted models of postures comes from the fact that a move-
ment is executed by several people in a similar manner. Indeed, the different postures 
representing a movement for a given person are almost the same for any other person 
with slight deformations. These deformations are represented in models through the 
weights assigned to their pixels. The weight distribution in the frame model will be 
such that the skeleton pixels will receive the highest weight and distance from this 
position the more we will assign lower weights. 

4.1   Building Models  

The key-frames given by the postures selection step, on the input sequence video, are 
processed for building the models. The building models occur on two steps: thinning 
the silhouette then weighting the obtained skeleton.  

 
Thinning. A skeleton is a geometric representation of an object in a dimension less 
than the input object. It can describe a compact way the properties of an object, espe-
cially its shape [19][20]. The algorithm we use is based on the topological thin-
ning. The image analysis is to find simple points of the object of interest. To enjoy the 
benefits of parallel methods of thinning and conservation topological skeleton of 
sequential methods, we implement a hybrid algorithm. This algorithm is thinning the 
silhouette of two sides, north-east and south-west alternating direction at each itera-
tion so as to obtain a skeleton centred in the image (See figure 3.b). We can divide the 
16 cases of simple points in two groups:  On one side the points which represent the 
north and/or east of the subject of interest. They are found in the following cases: 

 
On the other side the points representing the south and / or west of the object of  
interest: 

 
Some pixels may belong to both cases; this does not affect the course of the algo-
rithm. The pixels removed are those located in opposite of the scanning direction of 
the image. This operation is repeated until no more simple point is detected. 

The skeleton obtained is sometimes beyond the skeletal branches called "barbules". 
We call a branch; any set of pixels forming an eight-connected path whose elements 
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a.    b.     c.  

Fig. 3. Thinning a- Input silhouette, b- Skeleton, c-Skeleton after removing barbules 

have strictly two neighbours (except for the two end pixels). Several criteria exist to 
remove the barbules (branches). The most used and easiest to implement is the size 
criterion. All arcs of the skeleton whose length is less than a given threshold are con-
sidered noise (barbules) and are removed. Several iterations are sometimes necessary 
(see figure 3).  

Weighting. The weighting is a process of assigning weights, represented by symbols 
(Z, Y… in figure 4), to pixels in an image. These weights are used to specify the  
relative importance of each pixel compared to others. Weighting is used in the classi-
fication of postures, to calculate the degree of similarity (or correlation) between an 
unknown form and a model in the database. 

For building models from the skeleton we process the following steps: 

Step1: Distribution of maximum values of weighting on the skeleton.  
Let Z be the maximum weight assigned to all pixels of the skeleton (see Figure 4.b). 

Step 2: Second layer . 
Each pixel 8-neighbor related to Z is associated with weighted value Y. The weight 

of Y is smaller than that of Z. Y values represent a layer covering the skeleton (see 
Figure 4.c). 

Step3: Third layer (and more). 
We repeat the "Step 2" with lower weight values (X, W,…) to the previous layer 

until we reach a thickness desired for shape (this processing is, always, done on the 
last layer obtained by the previous step).  

The difference in values between each layer remains constant. A direct relationship 
between weight and number of layer is represented by: 

 
NbL = Val_max – Val_min / Step                            (2) 

 
Where NbL is the number of layers, Val_max is maximum weight, Val_min is 
minimum weight, Step: difference between each weight of layer (step = Z – Y = Y – 
X…).  These parameters are determined experimentally. 

This treatment gives us almost the same gait (look) as that of the input posture. But 
the pixels of the image model are weighted (see figure 5). 
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a.  b.     c.   

Fig. 4. Distribution of weights on the model a- Skeleton, b- Weights of the skeleton, c- Layer 
covering the skeleton 

a.    b.   c.  

Fig. 5. A key-frame with his corresponding model, a-Input key-frame, b- Skeleton Key-frame, 
c- Corresponding model 

4.2   Construction of Database of Models 

The models are obtained after several treatments on selected images, namely: the 
normalization of size, thinning and weighting. For overlay models and skeleton, the 
frames must have the same size; a scaling is necessary. In this first work we are lim-
ited to process images that have relatively the same size. So we did not standardiza-
tion of dimensions (scaling) on the images, but just add margins for the silhouette. We 
determine the endpoint of the object of interest for the four sides of the image. Then 
add columns and rows, on both sides of the object for getting a silhouette centred in 
an image of fixed dimensions. 

 

a.                            b.        

c.          d.    

Fig. 6. Some models of the database, a. Models of ‘kick’, b. Models of ‘run’, c. Models of 
‘Collapse Right’, d. Models of ‘hand wave’ 

From a video sequence of motion data, we select the key-frames representing the 
movement. Then, each of these key-frames undergoes treatment for scaling, thinning 
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and finally weighted. Our database has been constructed from seven input video rep-
resenting different movements such as walk, run, punch, give a kick, collapse right, 
standup right and hand waving. Each movement is represented in the database by a set 
of image models of selected key-frames (see figure 6). 
This first phase of the chain of recognition of human motion is, by analogy with other 
methods, the learning module. 

5   Shape Matching 

To validate the models we built, we propose to calculate a degree of correspondence 
between key-frames of unknown movement and the models in the database. 

Input video sequences for an unknown movement is processed as be done for the 
sequence video which be used to build the database (select key-frames, scaling and 
thinning). We call degree of correspondence (Deg_cor) the sum of the weights of 
pixels in the model that overlap with the pixels of the skeleton of the unknown pos-
ture (figure 7.d.e). We calculate the number of pixels of the skeleton, in the unknown 
posture, and we multiply it by the maximum weight (Z), we obtain a value Val_max. 
We calculate then the Rate correspondence (Rat_cor) by:  

 
Rat_cor   =   (Deg_cor   /  Val_max ) * 100                   (3) 

 
The above calculation allows for comparison between two images: a model with an 
input image. But to make the recognition of a movement, we need to match a se-
quence of an unknown motion picture with a sequence of models (representing a 
movement) in the database. 

 

a.    b.     c.  

d.                 e.  

Fig. 7. Superimpose of skeleton on models. a- Skeleton of a posture,  b- Corresponding  Model, 
c- Non Corresponding model, d- superimpose of a skeleton on the corresponding model,  e- 
superimpose of a skeleton on non corresponding model 
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6   Tests and Results 

We have performed experiments on different video sequence actions. The system was 
trained using only one person for constructing the database. For the time being, the 
total number of activities in the database is seven (07).  We give here an example of 
result obtained with an unknown input sequence. 

We present (see figure 8.b) the results of the correlation calculated on an example 
of an unknown movement sequence "walking" (Four key postures: 1, 2, 3, 4; see 
figure 8.a) with the models of movements of the database "walk", "run" and 
"Kick". The first line of the matrix (respectively second, third and fourth) represents 
the correlations between the key position 1 (respectively 2, 3 and 4) movement to 
recognize with the different postures of the models. 

 

 
a- Movement to recognize (with four key postures) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b- 
 

Fig. 8. The rats’ correlation between an unknown sequence key frames with the models (walk, 
run and kick) in the database 

Walk 
 

 
1 
2 
3 
4 

 
58.4746 % 
22.7684 % 
40.8475 % 
45.4237 % 

   
44.1702 % 
66.8085 % 
28.7660 % 
42.9574 % 

 
54.5556 % 
30.5556 % 
75 % 
23.8889 % 

  
41.5484 % 
24.9677 % 
38.7097 % 
98.8390 % 

Run   
 
 

1 
2 
3 
4 

 
29.2181 % 
53.4979 % 
21.0700 % 
30.4527 % 

 
28.0615 % 
28.5164 % 
15.1385 % 
19.0154 % 

 
18.6517 % 
55.8052 % 
10.6367 % 
23.2210 % 

   
34.4545 % 
42.6364 % 
45.1818 % 
21.4545 % 

Kick 
 
 

1 
2 
3 
4 

 
27.9661 % 
35.7628 % 
37.8814 % 
17.6271 % 

 
20.8833 % 
26.1199 % 
20.7571 % 
33.8170 % 

 
17.5084 % 
18.9226 % 
10.7071 % 
17.3064 % 

 
24.7879 % 
19.7576 % 

14 % 
16.9091 % 
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From the results obtained, we can see that the degree of correspondence, between 
an unknown movement (figure 8.a) and his corresponding model, (figure 8.b, values 
in bold) give us higher values than those given for others models. 

We used the video database given in [17] and our own sequence video. These first 
results encourage us to develop an approach for human motion recognition, which 
take, as a basis of knowledge, the models we built. 

7   Conclusion 

A novel modelling of human activities postures has been presented. The experiment, 
based on a simple compute of degree of correspondence shows encouraging results. 
For the future work, we envisage developing a recognition approach. Currently the 
implementation has some restrictions. The viewing direction is somewhat fixed and 
the background is assumed to be uniform making the segmentation of the silhouette 
easy. In addition, we assume that there is only one person in the field of view and that 
there is no occlusion. We plane to conduct more extensive tests to establish the limita-
tion of our system.    
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Abstract. In this paper a complete driver’s hands detection and tracking system 
suitable for working in real time conditions has been developed. The proposed 
system has been successfully tested in close-real world conditions in different 
scenarios on a very realistic and immersive cabin truck simulator. A database of 
24 video sequences monitoring the driving task in different circuits, illumina-
tion conditions and video resolutions has been obtained. The hands detection 
rate and the computational times needed to process each frame are presented. 
The proposed system has proven to be high accurate and fast enough to work in 
real time conditions. In the future, the selected algorithm will be included as 
part of an automotive compliance embedded system placed in a real truck cabin. 

Keywords: Image Processing, Real Time, Tracking, Automotive Application. 

1   Introduction 

Driver's distraction is involved in 30% of the car accidents and is responsible of a lot 
of fatalities every year [1]. To study driver's distractions is a very difficult problem 
due to the high number of factors involved in the distraction-related accidents [2]. 
One of the most important of these parameters is the driver behavior that could be 
study analyzing the position of his/her hands.  

There are three elements that compose an accident: vehicle, road, and driver. 
Among these three elements, human factor is the one that has received least attention 
in the past. Vehicle manufacturers have increased security measures, both active and 
passive. Roads have improved its quality: received new layers of asphalt, better sig-
naling, together with more appropriate driving design. Several approaches to super-
vise the driving task using computer vision techniques have been presented during the 
last years. A driver hand supervising system based on artificial vision techniques has 
been presented in [3]. The hands were detected by fitting a geometrical model to them 
and tracking was done based on an extended Kalman Filter. Although graphical re-
sults were shown in some videos, no numerical data were presented. In addition the 
tests were obtained with a parked car with changes in lighting. In [4], a vision system 
has been proposed for the analysis of the driver´s behavior based on 3D tracking of 
the driver´s head and hands. In this case, several cameras were used. First, basic in-
formation regarding hands position was retrieved, whether the hands were placed on 
the wheel or not, and where the driver´s gaze is set: left, right, or forward. This basic 



 Detection and Tracking of Driver’s Hands in Real Time 213 

information was put together to generate a high level response. In order to determine 
the position of the hands, a semi supervised system was used. This system removed 
the background from color images and has been completely described in [5]. A 
method for head tracking has been developed in [6]. The main idea was to combine a 
static model with a 3D estimation in real time based on a tracking system. Various 
graphic results were presented, showing that the tests were undergone outdoors. Al-
though it was indicated that the algorithm performs in real time, hand detection tests 
only reached six frames per second (fps). The objective of this the present work is to 
develop a hand driver supervision system with a low computational cost that allows 
the system to work in real time conditions, and to test it in realistic conditions. This 
supervision is done with a non-intrusive technical setup, using an infrared lighting 
system (invisible to the human eye) and a charge-coupled device (CCD) camera. The 
output of this system will be a signal indicating if the hands are placed on the steering 
wheel or in other areas of interest. Most of the alternative hands detection methods are 
based on the skin detection using color information. However, in our problem the 
color information is lost due to the special light conditions of our framework. 

The rest of the paper is organized as follows: in Section 2, we describe the techni-
cal setup and the database acquisition. Section 3 presents the proposed algorithms to 
hand detection and tracking. The results on several videos sequences obtained from a 
cabin truck simulator are described in Section 4. Finally, Section 5 summarizes the 
conclusions and future work. 

2   Technical Setup 

CABINTEC (“Intelligent cabin truck for road transport”) is an ongoing project focused 
on risk reduction for traffic safety [7]. One of the main objectives of CABINTEC is to 
identify driver’s unsuitable behavior and lacks of attention. The data base considered 
in this paper was obtained in a very realistic and immersive cabin truck simulator (see 
[8] for a complete description). The cabin is a real cabin truck placed over pneumati-
cally devices, so real movements are reproduced. The frontal and lateral views are 
covered by scene projectors synchronized with the driving activities. The rear mirrors 
are computer screens showing the rear objects. Sound simulation helps to be focused 
on driving actions, recreating a natural driving situation. The acquisition setup is 
shown in Figure 1. The whole system is very compact and is placed in the top of the 
truck cabin. Although in the experimental configuration shown all elements are visi-
ble, in the final configuration all elements were covered. The proposed system con-
sists of three infrared illuminators and a CCD camera. One of the illuminators is fo-
cused on the left hand of the driver and the other two are placed up of the steering 
wheel with the CCD camera between them. Each of these two illuminators has a 
white diffuser in front of it. Illuminators emit a continuous beam of infrared light (850 
nm wavelength), so it is not visible by the human eye. CCD camera captures only in 
its infrared-acquisition peak, using a filter that removes visible information and al-
lows only the pass of infrared wavelength. CCD camera is a five megapixels resolu-
tion complementary metal-oxide-semiconductor (CMOS) sensor and has a maximum  
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Fig. 1. Experimental setup of the camera, the illu-
minators and diffusers 

Fig. 2. Sample image taken from 
camera 

bandwidth of 14 frames per second at full resolution. Resolution of the camera can be 
selected between several standard formats, in our case 352x288, 640x480 and 
1024x768 are allowed modes.  

Figure 2 shows a sample image acquired by the camera. Camera height is 80 cm on 
the driving wheel but its field of view includes the complete steering wheel, gear 
change and hand brake levers, GPS, instrument panel and part of the copilot seat. 

2.1   Data Base Description 

In order to collect the database, an experimental design considering four factors was 
built: driving scenario, number of illuminators, number of diffusers, and resolution 
sizes. Two driving scenarios were selected in the simulator: an urban path and a road 
between two cities (interurban path). Following the indications of the professional 
driver, no gloves were considered during the experiment. Hands motion while driving 
strongly depends on the kind of scenario, so the system response was deeply analyze 
in each case. Half of the sequences come from each scenario. Four illumination condi-
tions were tested: three illuminators with two diffusers (3I2D), three illuminators with 
no diffusers (3I0D), two illuminators with two diffusers (2I2D) and two illuminators 
with no diffusers (2I0D). For each illumination condition, three resolution sizes were 
selected: 352x288, 640x480 and 1024x768. Each video sequence can be easily identi-
fied knowing the scenario (urban-interurban); illumination conditions (3I2D, 3I0D, 
2I2D, 2I0D) and image resolution (352x288 - 640x480 - 1024x768). A total of 24 
video sequences were obtained. The time length of each sequence was at least seven 
minutes. The average number of fps acquired is 25.6 for 352x288 image size, 12.4 for 
640x480 and 5.7 for 1024x768. 

To obtain the “ground truth”, that is, the real position of the driver’s hands, all im-
ages were manually labeled by two independent experts. The number of driver hands 
in each region was stored. When contradictory labels were obtain (for example, the 
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first expert determines two hands on the steering wheel area, but the second expert 
determines only one hand), the opinion of a third expert was considered. 

3   Detection and Tracking Methods  

Three algorithms to detect the driver’s hands have been developed. The first algo-
rithm, Global Threshold Detection (GDT), makes a sequential search in the regions of 
interest (ROI) previously defined. It has been considered that the most important ROI 
is the steering wheel region. The most efforts (such as fit of relevant parameters) are 
focused on this region. The main difference between GDT and the second proposed 
algorithm, Local Threshold Detection (LTD), is the information taking into account to 
binaries the steering wheel area. In the GDT method a global adaptive threshold that 
considers the whole image is done. In the LTD method the steering wheel area has 
been divided into four quadrants, and a different local threshold is considered for each 
quadrant. Finally, in the third proposed algorithm, Local Threshold Detection with 
Tracking (LTD-T), a tracking module has been added to the LTD method. 

3.1   Global Threshold Detection (GDT) 

This algorithm performs a search of the hands on the steering wheel ROI, and if no-
hands are detected, a search on other ROIs such as gear charge and hand brake levers. 
First, a binarization on the steering wheel ROI is calculated. Next, a logical “and” 
operator is applied to the mask of the steering area and the binarized image. As a 
result, the occlusions on the steering area are obtained. Notice that the number of 
these occlusions is, in general, higher than two (the desirable number). Next, for each 
occlusion, we search the associated area in the binarized image. These areas are called 
candidates. Usually, this step eliminates errors such as shine from the steering wheel. 
To calculate the final points, called endpoints, several methods of discrimination 
between candidates are used. The candidates with size lower than a threshold were 
eliminated. If the distance between adjacent candidates were lower than a threshold, 
the candidates were merged in a unique candidate. If only one candidate remains, it is 
considered an endpoint, that is, a hand has been detected. If two candidates remain, it 
is necessary to determinate whether they correspond to one or two hands. To do that, 
the centers of the ellipses containing each candidate are obtained. The ellipse which 
major axis is the distance between these centers is built. If the percentage of the area 
inside the new ellipse corresponding to candidates is higher than a threshold, it means 
that the two candidates correspond to the same hand. For instance, this is the case of a 
hand and an arm “separated” for a watch. If the percentage of the area inside the new 
ellipse corresponding to candidates is lower than the threshold, it means that the two 
candidates correspond to different hands. This is the case of two hands placed in sepa-
rated steering wheel areas. In the particular case when two hands were not detected, a 
search in other ROIs was carried out: the gear lever and the truck hand brake were the 
considered ROIs. To develop such searches we calculate the difference between the 
image in the ROI and the background image calculated when the hands were on the 
steering wheel. An illustrative example of the GDT algorithm is presented in Figure 3. 
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(a) Adaptive 

Threshold result. 
(b) Mask of the 

steering wheel area. 
(c) Occlusions on 
the steering wheel. 

(d) Endpoints. 

Fig. 3. Steps of the GDT algorithm for a sample image 

3.2    Local Threshold Detection (LTD) 

In this algorithm a new method to binarize the steering wheel area is proposed. In this 
case local thresholds are considered for each part of the wheel, making the system 
more adaptive to changing illumination. The ROI of the steering wheel is divided into 
four quadrants as shown in Figure 4(a). Different thresholds are calculated for each 
quadrant. Then, each of these quadrants is locally binarized with their local thresh-
olds. As experiments will show in Section 4, this change reduces the processing time 
of the algorithm without worsening the GDT detection results. Furthermore, the LTD 
method obtains candidates with more smooth edges than those obtained when GDT 
algorithm was used (see Figure 3(d) and Figure 4(c), as example). 
 

   
(a) ROI divided in four 

quadrants. 
(b) Initially the segmentation 

fail because the threshold 
levels are unknown. 

(c) Binarization with the 
correct threshold. 

Fig. 4. Steps of the LDT algorithm for a sample image 

3.3    Local Threshold Detection with Tracking (LTD-T) 

In order to improve the LTD algorithm, a simple and soft tracking module based on 
Camshift algorithm [9] has been integrated. As a first step of the LTD-T algorithm, 
we detect the hands with the LTD method previously described. Once we know the 
hand positions, the well known Camshift algorithm is used for the tracking step. If 
hands are lost during the tracking step, the LTD method is used to detect them again. 
In order to define the model of the object to track, the Camshift algorithm needs a 
segmented image as parameter. To obtain this image the difference between the actual 
frame and the image mode is used. To control the performance of the algorithm, the 
detection step is executed even when the hands are not missed in the tracking step. 
This control is developed each 20 frames, that is, approximately once per second. 
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Fig. 5. The tracking windows of LTD-T algorithm 

Given the robustness of the LTD algorithm, if the detection step and the tracking step 
locate the hands in different positions, only the detection step location is considered. 

4   Experiments and Results 

The performance of the three proposed algorithms was analyzed in the close-real 
world conditions of the 24 video sequences described in Section 2. The hand detec-
tion results are presented in Table 1. For each frame of the videos, the ground truth 
defined in Section 2 was compared with the detection results (number of hands in the 
ROI) of each algorithm for that frame. 
 

Table 1. Hands detection results, percentage of success, for GDT, LTD and LTD-T algorithms 
in all the proposed configurations (2I0D: 2 illuminators and 0 diffusers, 2I2D: 2 illuminators 
and 2 diffusers, 3I0D: 3 illuminators and 0 diffusers, 3I2D: 3 illuminators 2 diffusers) 

  Interurban  Urban 
  2I0D 2I2D 3I0D 3I2D  2I0D 2I2D 3I0D 3I2D 
GDT     

352 x 288  7 13 90 87  43 23 83 84 
640 x 480  75 12 98 93  69 81 86 88 

1024 x 768  92 19 93 90  71 43 90 85 
LTD           

352 x 288  88 70 91 90  70 58 83 82 
640 x 480  96 96 98 93  68 83 81 88 

1024 x 768  92 76 77 61  56 42 81 52 
LTD-T           

352 x 288  79 71 91 94  61 64 83 83 
640 x 480  96 97 94 91  75 76 84 85 

1024 x 768  89 83 88 86  76 43 89 94 

 
In general, 3 illuminators schemes outperform 2 illuminators schemes. No signifi-

cative differences were observed between 0 and 2 diffusers. In the interurban circuit 
0D configuration seems to be better, but in the urban circuit 2D configuration seems 
to outperform 0D. As expected, the results in the interurban circuit are slightly better 
than the results in the urban circuit. The driver moved his hands most frequently in 
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the urban than in the interurban scenario in order to response to the circuit design: 
curves, traffic signs, etc. Regarding image size, the best results were obtained for the 
640x480 configuration. As a global conclusion the best configuration corresponds to: 
3I0D and 640x480 image size. For the GDT method the best overall detection result 
for interurban circuit was achieved for 3I0D and 640x480 image size configuration 
(98%). For the urban circuit case, the best accuracy was achieved for 3I0D and 
1024x762 image size (90%). As in the GDT algorithm, for the LTD method the best 
detection result for interurban circuit was achieved for 3I0D and 640x480 image size 
configuration (98%). For the urban circuit case, the best result was achieved for 3I2D 
and 640x480 image size (88%). For the LTD-T method the best result for interurban 
circuit was achieved for 2I2D and 640x480 image size configuration (97%). For the 
urban circuit case, the best result was achieved for 3I2D and 1024x762 image size 
(94%). Notice that increasing the image resolution the performance is not generally 
improved. 

As a resume, the LTD-T method obtains better results than GDT method in 14 of 
24 configurations. In addition the LTD-T method is better than LTD method in 16 of 
24 sequences. If we considered as significative difference between detection percent-
ages those higher than 5%, LTD-T algorithm outperforms GDT algorithm in 9 con-
figurations. GDT outperforms LTD-T only in 1 configuration. In 14 configurations no 
significative differences were observed. Using the same definition of significative 
difference, the LTD-T method outperforms LTD method in 8 configurations. LTD 
outperforms LTD-T only in 3 configurations. In 13 configurations no significative 
differences were observed. That is, LTD-T algorithm improves GDT and LTD algo-
rithms in most of the configurations analyzed. 

The average computational times needed to process each frame in a PC (CORE 2 
DUO 3.00 GHz) are presented in Table 2. For all the image sizes, the faster algorithm 
is LTD, and the slowest algorithm is GTD. As expected, the LTD-T algorithm is 
slightly slower than the LTD algorithm. The main reason of this difference is that 
when the LTD-T algorithm misses some of the hands during the tracking step, an 
additional detection step is needed to recover the hands. That is, for the same frame, 
two procedures are performed.  

Table 2. Average time in milliseconds needed to process each frame 

 352 x 288 640 x 480 1024 x 768 
GDT 12 23 102 
LTD 3 7 18 
LTD-T 8 17 41 

5   Conclusions and Future Work 

In this paper, a complete system of driver’s hands detection and tracking is presented.  
Three different algorithms have been developed and tested in a large database ac-
quired in a high realistic truck simulator, close to real world conditions. The perform-
ance of each algorithm has been tested in different illumination conditions and image 
resolutions. The LTD-T algorithm gives the most complete information: not only 
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allows the detection of the hands on the ROIs but the position of the hands on the 
complete image is known in each frame. The algorithm can automatically detect and 
track the hands in real time. Regarding the detection task, the LTD-T improves the 
GDT and the LTD methods. With the appropriate illumination and resolution, the 
accurate of the system is higher than 90%. Most of the errors were due to hands pass-
ing over each other during heavy turns of the steering wheel. As future work, the 
LTD-T algorithm will be included as part of an automotive compliance embedded 
system to be set in a real truck cabin. An alert will be given when the LTD-T algo-
rithm detects a lack of attention regarding the hands position. In addition, the system 
will consider other signals such as head position in face images. 
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Abstract. In order to handle speech signals corrupted by noise in
speaker verification and provide robustness to systems, this paper evalu-
ates the use of missing feature (MF) approach with a novel combination
of techniques. A mask estimation based on spectral subtraction is used
to determine the reliability of spectral components in a speech signal
corrupted by noise. A cluster based reconstruction technique is used to
remake the damaged spectrum. The verification performance was eval-
uated through a speaker verification experiment with signals corrupted
by white noise under different signal to noise ratios. The results were
promising since they reflected a relevant increase of speaker verification
performance, applying MF approach with this combination of techniques.

1 Introduction

Dealing with noisy signals is a fact in real life, background noise can markedly
degrade performance of any speaker verification system. In order to handle en-
vironmental noise to improve the robustness of verification performance, many
techniques have been proposed [1]. Most of them were originally designed and
applied in speech verification application. MF method [2] is an example of that.

MF approach is a group of techniques developed to compensate for noise.
Unlike other compensation methods MF does not require to know a priori the
characteristics of noise to handle unknown noise. Because of that, it has a lot
of potential to ensure robustness in speaker verification applications which pro-
cess speech signals acquired in noisy environmental conditions with unknown
features. This situation is very frequent in real applications.

The MF approach has two steps. The first determines the level of noise cor-
ruption in each time-frequency region of speech spectrum to set up a map of
binary labels called spectrographic mask. The mask tags as unreliable (U) the
time-frequency spectral components that are so corrupted by noise that can
cause poor verification performance, and tags as reliable (R) the time-frequency
spectral components that are not very corrupted by noise. The second step is
compensation of unreliable region, it could be bypassing the spectral unreliable
locations in the verification process, known as marginalization, or reconstructing
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unreliable spectrum location and keeping the verification process with the new
reconstructed spectrum.

Until now, most of the MF development has occurred on the speech veri-
fication field, while only a few works have been done on speaker verification
[3][4][5][6]. This work presents a novel combination of MF techniques for robust
speaker verification with noisy speech. To estimate the MF mask we proposed the
use of SNR criterion. For MF compensation we proposed to use a reconstruction
method which estimates U components from R ones. This kind of reconstruction
has not been previously used for speaker verification. We evaluate the perfor-
mance impact of this MF setup through speaker verification experiment in noisy
environments.

From now on, this paper is organized as follows. Section 2 describes mask
estimation technique. Section 3 explains the MF compensation technique used.
Section 4 presents speaker verification experiments and results. Finally, section
5 a discussion of results and conclusions.

2 Mask Estimation

The success of the MF approach in providing robustness to speaker verification
system will depend on the mask accuracy [2]. To estimate the masks, the SNR
criterion is the most widely used in previous works because of SNR-based masks
are very easy to compute [7].

In this paper we proposed, as MF detector, the identification of U spectral
components based on spectral enhancement technique used frequently in speech
processing. This approach was applied to MF mask estimation in the previous
work [8]. This is an effective technique in the detection of corrupted components
that is known as Negative Energy Criterion.

This method uses a frame by frame spectral subtraction algorithm as MF
detector and is based on an estimated noise spectrum. The reliability decision
of spectral components is done following this rule:

|Y (f, s)|2 ≤ |N̂(f, s)|2 then Y (f, s)← U

|Y (f, s)|2 > |N̂(f, s)|2 then Y (f, s)← R
(1)

where, f and s are the frame (time) and subband (frequency) spectrographic rep-
resentation of the signal power spectrum, respectively. If the power spectrum in a
component is less than the estimated noise power spectrum in it, this component
is assumed as U, otherwise the component is tagged as R.

3 Cluster-Based Reconstruction

Until now, most speaker verification systems using the MF approach, to improve
performance in noisy environments, have been based on modifying the classifier
to work with the reliable components of the spectrographic representation of the
speech signal. That is the case of the works of Drygajlo et al. [8] or Padilla et al.



222 D. Ribas et al.

[3]. In these systems, the unreliable log-Mel spectral components are integrated
out of the GMM distributions to get the speaker likelihood. This technique is
known as marginalization.

Marginalization has several drawbacks. On the one hand, recognizers are con-
strained to use Mel spectral features that are known to produce worse perfor-
mance than Mel frequency cepstral coefficients (MFCC). On the other side, by
using incomplete spectrographic data we are not able to apply certain feature
processing steps that are known to improve considerably the results. These pro-
cessing steps include mean normalization, feature warping [9] or added time
derivatives .

For these reasons, in this paper we are taking an alternative approach by
trying to estimate the true values of the unreliable spectrographic components
from the reliable ones. Once we get the complete time frequency representation
of the signal, we are able to compute MFCC features, and apply whatever post-
processing step to the features. Besides, we do not need to modify the recognizer
so we can use anyone at our disposal. The algorithm we have chosen to com-
pensate for the U components is cluster-based reconstruction which has proven
to be very effective in speech verification tasks as it is reported in the work of
Raj et al. [10] [11].

3.1 The Algorithm

The Cluster-based Reconstruction (CBR) algorithm estimates the U compo-
nents of the spectral vector from the R ones of the same vector using a statistical
model that relates both of them. This method is based on the assumption that
the sequence of observations is an independent, identically distributed random
process. This assumption is used by the most successful text independent speaker
verification approaches too. Therefore, it is expected to have good results for MF
compensation in speaker verification systems.

This algorithm models the distribution of log-Mel spectral vectors for clean
signals as a mixture of Gaussian distributed clusters. The mean, covariance and
a priori probability of each cluster can be estimated from a training corpus
using maximum likelihood estimation via the expectation maximization (EM)
algorithm [12].

Let Y be the noisy spectral vector and X the reconstructed spectral vector
and let Yr, Xr and Yu, Xu be their R and U components respectively. The
first step to compensate for the U components is to determine the noisy vector
probability of belonging to each cluster. This is given by

P (k|Y ) =
wkP (Y |k)∑k
j=1 wjP (Y |j)

(2)

where wk is the a priory cluster probability.
To calculate the term P (Y |k) we have to take into account that Y has R and

U components, and that Xr = Yr and Xu ≤ Yu for additive noises. Therefore
we can evaluate the Gaussian distribution in the R components and integrate
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out the U ones. This integration supposes additive noise so, the estimated U
components need to be less than the measured components

P (Y |k) = P (Xr, Xu ≤ Yu|k) =
∫ Yu

−∞
P (Xr, Xu|k)dXu (3)

If we suppose that the covariance matrices are diagonal this can be written as

P (Y |k) = Πi|XiεXr

1√
2πσki

exp(− 1
2

(Xi−μki)2

σ2
ki

)×

Πi|XiεXu

1
2 (1 + erf(Yi−μki√

2σki
))

(4)

where erf is the Gauss error function.
We can get an estimation of the clean value of the unreliable components

from each cluster based on its distribution maximizing its likelihood given the
measured reliable and unreliable components as

X̂k
u = arg max

Xu

{P (Xu|k, Xu ≤ Yu, Xr = Yr)} (5)

Assuming diagonal covariance matrices this can be reduced to

X̂k
u = min(Yu, μkr) (6)

where μkr is the Gaussian means of the unreliable components of the associated
cluster.

Finally, we can get the overall unreliable components using the posterior mem-
bership probabilities to combine, by a weighted sum, the unreliable components
estimations given by each cluster.

X̂u =
K∑

k=1

P (k|Y )X̂k
u (7)

Once we have recovered the full Mel spectral vector, we are able to calculate
the MFCC with their time derivatives and apply any preprocessing technique
we need prior to the recognizer input.

4 Experiments and Results

In order to evaluate the behavior of the MFs techniques combination in front
of corrupted signals, a speaker verification experiment was carried out using the
1conv4w-1conv4w task of the 2006 NIST SRE [13].

4.1 Detection and Compensation of Unreliable Components

To implement the mask estimator based on spectral subtraction we used the
classical algorithm of Berouti et al. [14] and the noise estimator of Martin work
[15].
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The noisy signals were segmented with 25 msec. Hamming window overlapped
15 msec. and passed through 24 Mel filters bank. Then, noise estimator was
applied, taking decision of reliability presented in equation 1, to obtain the un-
reliable components of the noise corrupted speech.

Once the mask estimation was done, the Cluster-based Reconstruction algo-
rithm makes an estimation of the unreliable components. These reconstructed
log-Mel spectra are then used to calculate the MFCC features that will be the
input to the speaker verification system.

4.2 Speaker Verification Protocol

In this task, the enrollment and test utterances contain around 2 minutes of
speech after voice activity detection. There are a total of 810 target models with
3176 true trials and 42079 false trials. It has used clean speech to train the target
models and contaminated test signals with different levels of white noise selected
to get several mean SNR, from 5 to 20 dB.

Our acoustic features are 15 MFCC plus first and second derivatives and C0
derivatives resulting in a total of 47 features. On the one hand, we have got results
using no feature normalization at all to prove the capacity of our MF approach to
cope with noise on its own. On the other hand, we have repeated the experiments
using feature warping over 3 seconds in order to proof the benefits of being able
to use feature normalization techniques together with the MF approach.

A gender dependent Universal Background Model (UBM) of 512 Gaussians is
used. This model is trained using NIST SRE 2004 database containing 124 male
and 184 female speakers with several utterances each one of them. The means
of target models are adapted from the UBM using relevance MAP [16]. Classi-
fication is performed evaluating the log-likelihood ratio between the target and
the UBM model for the test signal. Gender dependent cluster models for CBR
are trained from the same dataset as UBM using different number of Gaussians.

4.3 Results

The first experiment we have conducted was intended to determine the optimal
number of Gaussians needed for reconstruction. For that purpose, we have got
results comparing baseline and MF cluster-based reconstruction with different
number of clusters between 64 and 1024 using test signals contaminated with
a SNR of 10 dB. The experiment has been repeated using feature warping and
no feature normalization. In Table 1, we show the equal error rate (EER) and
improvement percentage relative to the baseline of this experiment.

Figure 1 shows DET curves using no feature normalization and feature warp-
ing respectively, results with number of cluster over 256 are not plotted in order
to preserve clarity.

We have got an amazing improvement when no feature normalization is ap-
plied nearly reaching clean signal performance. When using feature warping the
challenge is bigger, but MF achieves a considerable improvement. The great ca-
pacity of feature warping of increasing robustness against channel mismatch,
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Fig. 1. DET curves to SNR=10 dB (left), with features normalization (right)

Table 1. EER and Improvements to SNR
= 10 dB

No Feat. Norm. Feat. Warp.
EER(%) Δ(%) EER(%) Δ(%)

clean 22.3 8.7
No MF 42.9 0 21 0
CBR 64 25.2 41.2 17.7 15.4
CBR 128 24.7 42.4 17.4 17.1
CBR 256 24.2 43.6 17.1 18.6
CBR 512 24.9 41.9 16.8 20
CBR 1024 24.3 43.5 17.3 17.6

Table 2. EER and Improvements to
SNR = 5-20 dB

SNR(dB) 20 15 10 5
EER(%) No MF 29.8 36.9 42.9 46.8
EER(%) MF 21.8 22.5 24.2 29.5
Δ(%) 26.8 39 43.6 36.9
Feature Norm.
EER(%) No MF 13.37 16.95 21 27.2
EER(%) MF 11.5 13.5 17.1 22.5
Δ(%) 14.5 20.3 18.6 17.28

additive noise or even headset non-linearity it is well known. As a matter of fact,
most sites participating in NIST evaluations use it in their systems. As we can
see in Table 1, feature warping on its own is able to provide better results than
MF compensation alone. That means it does a great deal of the same job as MF
does. However, the benefits of using both techniques together are not negligi-
ble producing around a 17 percent of improvement compared to using feature
warping only. This encourages us to think reconstruction of missing spectral
component is the right path to follow in order to take advantage easily of the
existing techniques to build robust speaker verification systems.

Results show there is little improvement as we increase the number of clusters
getting the best performance with 256 with no feature normalization and 512 with
feature warping. We have found there is no improvement if we use more clusters.
This could be explained by the fact that if we increase the number of clusters, they
become more similar among them. Considering that cluster membership is esti-
mated using only the reliable components of the spectrogram, it becomes more dif-
ficult to select precisely the best cluster as the number of clusters rises.
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We have repeated the experiment using signals contaminated with SNR be-
tween 5 and 20 dB. This time we have used only 256 clusters, what seems a good
choice given the previous results. In Table 2, we give a summary of the obtained
results. We have got interesting improvements for all SNR tested. Something
curious we note is that with no feature normalization and a SNR of 20 dB EER
outperforms clean signal one. We expected a more important decrease of the im-
provement with low SNR due to the fact that we have less reliable components
to make the spectral reconstruction but results are quite good.

5 Conclusions and Future Work

In this paper the proposed MF techniques combination has shown its potentiality
in providing robustness for speaker verification systems. The results obtained with
MF alone or in combination with feature normalization produced an important
increase of verification performance. It is convenient to highlight some ideas:

Improvement obtained in speaker verification results show that SNR criterion
is an effective method when trying to obtain the reliability of the corrupted
speech spectral components. However the enhancement of SNR contributes to
increase speech quality, but does not necessarily ensure the improvement of ver-
ification performance, so in the future we will focus on criteria that use repre-
sentative speaker features. We will evaluate mask estimation methods based on
spectral features classification such as Seltzer et. al work [11].

Since mask estimation is the prior step in MF approach, we do not lose sight of
the MF compensation step. In this work we have used a reconstruction technique
originally designed for speech verification. We must take into account the fact that
we have used speaker independent cluster models. This means that reconstructed
features will be made more speaker independent too. In speaker verification ap-
plications this is a great drawback. Despite that, results show improvements since
noise compensation is more important than the effect of using speaker indepen-
dent models. Nevertheless, we think we could get even better results using cluster
models adapted to the test signal. Future work will be oriented in that direction.

On the other side, we must take into account the fact that GMM distributions
with diagonal covariance matrices have limited correlation information between
features. In future work, we plan to perform MF reconstruction using more
complex distributions that should be able to perform a more precise estimation
of the U components values. Examples of these models are GMM with full
covariance matrices or graphical models [17]. Graphical models have the capacity
of modeling correlations between features or groups of features at any level of
complexity, what can be very promising for the MF approach.
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Abstract. In this paper, a fast k nearest neighbors (k-NN) classifier for
documents is presented. Documents are usually represented in a high-
dimensional feature space, where their terms are treated as features and
the weight of each term reflects its importance in the document. There
are many approaches to find the vicinity of an object, but their per-
formance drastically decreases as the number of dimensions grows. This
problem prevents its application for documents. The proposed method
is based on a graph index structure with a fast search algorithm. Its
high selectivity permits to obtain a similar classification quality than
the exhaustive classifier, with a few number of computed distances. Our
experimental results show that our method can be applied to problems
of very high dimensionality, such as Text Mining.

Keywords: nearest neighbor classifier, fast nearest neighbor search,
text documents.

1 Introduction

Text classification is the task of assigning documents to one or more predefined
classes. This task relies on the availability of an initial set of text documents
classified under these classes (known as training data). Classification falls at the
crossroads of information retrieval, pattern recognition and data mining, that
involves very large data sets. Moreover, the dimensionality of the text documents
is usually large. Therefore, it is crucial to design algorithms which scale well with
the dimension.

The k nearest neighbor (k-NN) classifier is a very simple and popular approach
used in classification [1], but it has the problem of the exhaustive computation
of distances to training objects. Several methods have been proposed in order
to avoid this problem. One approach involves improving the access methods
combining appropriate index structures, such as trees or graphs, with fast search
algorithms. But, in the most of cases, their performance drastically decrease
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as the number of dimensions grows. This problem is known as “the curse of
dimensionality” [2], and prevents its application for text documents.

Several exact methods have been proposed for objects with high dimension-
ality, such as VA-File [2], VA+-File [3], IQ-tree [4] and more recently VQ-index
[5]. The main purpose of those methods is to overcome the I/O disk bottleneck,
which is crucial in large databases. Those methods were tested on relative high
dimensional spaces, with 32, 64, 200 and 500 dimensions. However the main pur-
pose of our proposal is to work over spaces with several thousands of dimensions,
as arise in the case of text documents. In this case we can deal with more than
30.000 dimensions with a relatively small set of text documents.

On the other hand, several fast search algorithms have been proposed by Arya
et. al in [6], and others, such the optimal nearest neighbor algorithm for data
structures that are stored in main memory.

However, for very high dimensionality most of those methods have a perfor-
mance as bad as a linear scan, or even worse. Recall that a linear scan does not
scale well when the set of objects to search is large or the relationship function
(distance, similarity or dissimilarity function) is hard to compute.

Different relaxations on the precision of the result have been proposed in or-
der to obtain a computationally feasible solution in those cases. This kind of
methods perform an inexact proximity searching, as opposed to the classical
exact proximity searching. Inexact proximity searching is possible in many ap-
plications because the preprocessing of data already involves an approximation
to reality, and therefore a second approximation at search time is acceptable.
Examples of those methods can be found in [7,8].

In [9] an approximated classifier for mixed data was presented. This method
uses a tree index structure and a fast search algorithm. It obtains the information
necessary to classify while searching. Even when the accuracy of the classification
obtained for mixed data is high, it decreases when applied to documents.

In this paper, we introduce a fast k-NN classifier for text documents based
on a graph index structure with an approximate k nearest neighbors fast search
algorithm. Its high selectivity and precision permits to obtain a similar classi-
fication quality than the exhaustive classifier, with a few number of computed
relationships. Our experimental results show that it is feasible the use of the
proposed method in problems of very high dimensionality, such as Text Mining.

The rest of the paper is organized as follows: Our proposed classifier is pre-
sented in Section 2. The obtained experimental results over Reuters Corpus Ver-
sion 1 (RCV1-v2) are presented in Section 3. Finally, in Section 4, we present
some conclusions and future work.

2 Proposed Classifier

In this section, an approximate fast k-NN classifier for documents is introduced.
The classifier consists of two phases. In the first phase, the graph structure,
using training set T , is constructed. In the second phase, novel documents are
classified.



230 F.J. Artigas-Fuentes et al.

2.1 Preprocessing Phase

The main idea of this phase is to build an index structure based on a connected
graph. This graph must fulfils the following conditions:

– Each vertex corresponds to a different and unique training document (rep-
resented by it features vector).

– Each edge represents a relationship value between two vertices calculated by
a similarity, dissimilarity or distance function Ψ .

– Each vertex v has, at least, φ adjacent vertices, were φ is an integer value
preset by the user. Those vertices correspond with the φ nearest neighbors
of v.

– Vertices are connected forming triangles of minimum area.
– A small number of vertices are fixed and used as possible entry points to the

structure during the search phase.

In [10] the algorithm to build the graph index structure was introduced, whereas in
[11] some improvements in order to reduce the time cost to build it were presented.

It is important to describe how the triangles of the graph are built. For this
access method, there are two ways to perform this task.

The simple way is to connect first the most Ψ -related pair of documents in
the training set TS. This pair of documents are used to obtain the first two
vertices and the first edge of the graph. Then, the rest of documents in TS are
candidates to be connected to this pair in order to obtain the third vertex of the
first triangle. To do that we calculate the media object of this pair of vertices. It
is obtained by adding each dimension of original objects and inserted into the
set of media objects MOS. Then, the most Ψ -related pair formed by a candidate
and a member of MOS is computed, and the candidate of this pair is selected
as the next vertex. Following a similar iterative process new media objects for
the new edges are calculated and inserted into MOS, and the rest of documents
become candidates to be connected into the graph.

The second method to build the triangles reduces the number of candidates
to be considered in each iteration to obtain the new vertex to be connected
into the graph. This improvement also reduces the total time to generate the
index structure. In this case, the documents in TS are previously sorted by their
relationship with the global centroid GC. This centroid is calculated in the same
way of media objects, but using all documents in TS.

Then, the sorted set of documents is divided into a number of equal sized
subsets. As result we obtain a sequence of subsets ordered by its decreasing
relationship with GC. Next, the first subset is selected as the current one (CS).
In this way, on each iteration, we only consider as candidates to become new
vertices those belonging to CS. When all candidates have been connected, the
next subset becomes CS, and the next iteration begins. This process continues
until all documents are connected into the graph.

To guaranty the φ condition, if any vertex results with less than n of adjacent
vertices, that vertex is connected with its other φ− n nearest neighbors. The φ
nearest neighbors of all documents are calculated and kept in a previous stage.
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Finally, vertices belonging to the borders of the region defined by the graph are
selected as entry points to the structure (See [10,11] for details). Those vertices
are called as Entry Points Set (EPS). This is the main difference of this access
method: the index structure has several entry points, while methods based on
trees have only one entry point to the structure, the root.

2.2 Classification Phase

In this phase, given the index structure G previously built, the classes associated
with the documents in the training set, and a novel document d to be classified,
our classifier finds its k nearest neighbors, according with Ψ , and assigns to d its
majority class.

The classification involves three main stages:

1. The k nearest neighbors of the novel document are searched.
2. The votes of classes are counted, using a vote rule.
3. Finally, the classification is performed using a decision rule.

In the first main stage, the fast search algorithm proposed in [10] and improved
in [11] is used. It has three steps, in the first one a proper entry point EPd to G
for the current search d is selected. This choice can be different for each d and
it must be the most Ψ -related to d of the members of EPS. EPd is calculate in
an exhaustive way, and it becomes the current solution (NN).

In the second step of the search the current nearest neighbor vertex to d is
found. This task is performed by traversing the index structure following the
edges of graph. The next solution is the most Ψ -related adjacent vertex of NN
to d, if it is better than the current one. The process ends when there is no
new NN . The problem is that it is not always possible to obtain the nearest
neighbor. In a few cases an approximated one must be obtained.

In order to improve the quality of k-NN, a variation of the search algorithm
and a prune rule were introduced in [11]. The variation involves selecting the
best results of three independent searches of the k-NN, using three different entry
points to the index structure. This solution increases the number of comparisons
computed during searches. To avoid this problem the pruning rule that increases
the selectivity of the search algorithm, avoiding extra computations was used.

In the last step of the search, if k > 1, the other k − 1 neighbors of d are
obtained. This task is performed using another algorithm described in [10]. It
also traverses the edges of the graph, but using as initial point the actual (or
approximated) NN calculated in the previous step. Besides, the algorithm keeps
in each iteration a vector with the current list of k nearest neighbors.

After finding k-NN, the votes of each class are counted and the majority class
is assigned to d.

3 Experimental Results

In this section, the results of applying the proposed fast approximate k-NN
classifier are presented.
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To perform our experiments, we use the well-known benchmark collection
Reuters Corpus Version 1 (RCV1-v2) [12]. This collection has a set of documents
represented as vectors. The feature vector for each document was produced from
the concatenation of text in the <headline> and <text> XML elements. Text was
reduced to lower case characters, after which tokenization, punctuation removal
and stemming, stop word removal, term weighting, feature selection, and length
normalization was applied. The LYRL2004 partition, with 23.149 training, and
781.265 testing vectors, was used.

Classes files of both training and test sets were modified to avoid overlapping
among classes. The resulting sets belong only to four non-overlapped classes:
ECAT, CCAT, MCAT and GCAT. This modification was necessary because
the other fast approximated classifier implemented (FC) to compare with our
proposal (FGC) do not support class overlapping. A k-NN exhaustive classifier
(EC) was implemented too, and was used as base line of the comparison.

First, a 10% of training documents (692) documents were randomly chosen to
build index structures for both FC and FGC classifiers, while maintaining the
distribution of the class probabilities in the original training and test sets. The
representation space obtained has 8.731 dimensions.

FC is a k-NN classifier [9] that uses an index structure based on a tree. Each
node of the tree contains a certain number of elements selected using a grouping
algorithm. In the original paper, the authors present and use a new clustering
algorithm called CMFS, which is an extension of the C-Means algorithm [13],
but in our experiments we used both CMFS and the well-known K-Means [14].

Besides, FC requires additional parameters to build the tree. The minimal
number of objects in a node was fixed to 20, the maximum number of clusters
by level was fixed to 5, and the maximum number of iterations of the clus-
tering algorithm was fixed to 10. The authors used three stop conditions to
determine the leaf nodes. But, we use only the last two conditions based on
non-homogeneous (noHomo) and homogeneous (Homo) nodes. In the case of
our proposal, the value of φ was fixed to 50.

We select a small number of training documents due to the cost of CMFS
when applied to grouping objects with an elevate number of dimensions.

The Ψ used was a distance function based on the well-known cosine simi-
larity (Ψ(d1, d2) =

√
1− cos(d1, d2)), were d1 and d2 are the documents to be

compared, which is the most widely used to compare documents in text mining.
This measurement reaches its minimum value at 0 and maximum at 1. All the
classifiers use the same vote rule.

All the algorithms were implemented using Python 2.5 over an Intel(R)
Core(TM)2 Quad CPU, 2.50 GHz and 3GB of RAM with Linux Mandriva 2009
OS.

For the classification phase, 500 documents from the test set were randomly
selected. The classification was carried out using the three classifiers: FC, FGC
and EC. For FC, its authors offer two algorithms to search the approximates
k-NN. But, we only show the results obtained using the KMSNLocal algorithm,
because the results for the other were very similar.
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Fig. 1. A comparison of the quality of the implemented classifiers varying the number
of nearest neighbors calculated

To compare the quality of classifiers, macro F1-measure was used. It is the
average on the F1 scores of all the topics. The F1 score (F1 = 2. precision.recall

precision+recall )
can be interpreted as a weighted average of the precision and recall, where an
F1 score reaches its best value at 1 and its worst score at 0. Precision is the pro-
portion of documents classified into a class that indeed belong to it, and recall is
the proportion of documents belonging to a class that are indeed classified into
this class. When quality is computed for several categories, the results for indi-
vidual categories must be averaged in some way. Two methods may be adopted:
micro-averaging and macro-averaging. Micro-averaging gives equal weight to ev-
ery document, while macro-averaging gives equal weight to each category.

Figure 1 shows the macro-average F1 values obtained with the classifiers vary-
ing the number of nearest neighbors computed from 1 to 5. It can be seen that
our classifier was better than FC in all cases. Surprisingly, our proposal even
improves the EC classifier, although this uses an exact method to obtain the
vicinity of document queries.

In order to investigate the cause of this behavior, we implemented a fourth
classifier βFGC, based on FGC. Despite of the original, in the voting phase,
for βFGC only those nearest neighbors with a relationship value greater than a
certain threshold β are taken into account. We do the same change to EC and
obtain a new base line classifier (βEC).

Figure 2 shows the quality of results when β has the values 0.75, 0.80, 0.85 and
0.90. For β values less than 0.90 the quality of βFGC are slightly worse than those
of βEC. On the contrary, for β values greater than 0.90 it is slightly better. This
results means that the previous strange behavior was provoked by the elements of
the k-NN more distant to the queries. When all k-NN are taken into account, in
most of the approximate results, the last elements found by our search algorithm
belongs to the actual classes of queries despite of the elements found by EC.
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Fig. 2. A comparison between βEC and βFGC varying β parameter

Another aspect that we consider to evaluate our proposal, was the time re-
quired to classify documents. The best improvement obtained as consequence
to use our access method based on a graph was the dramatical reduction of
the number of distances computed to obtain the k-NN against the 100% needed
by the EC. Table 1 shows the time cost and the best quality in classification
obtained by EC, FC and our proposal FGC.

Table 1. Summary of best results for each classifier

Parameter EC FC FGC

Time (s) 60.06 1.20 14.53
Macro-average F1 0.71 0.45 0.73

As you can see, FC is very fast, but its results are not good for documents clas-
sification. On the other hand, our proposal obtains good results in a reasonable
time.

4 Conclusions

In this work, an approximated fast k-NN classifier for text documents, a problem
with a very high dimensionality, was proposed. In order to compare our method,
different variants of a fast k-NN classifier were implemented using the same
distance function to compare documents, and the same vote and decision rules
for classification. An exhaustive classifier was used as base line. Experimental
results show that our proposal obtains high quality results, better than the state-
of-the-art classifiers presented.
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Our method reduces drastically the time of the exhaustive classifier, while
obtaining very similar or even better classification quality results. This behaviour
is due to the use of an index structure based on a connected graph and a fast
search algorithm.
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Abstract. This study presents a comparative analysis of wavelets, in order to 
find a descriptor that provides a better classification of voice pathologies. Dif-
ferent types of Wavelet Packet Transform were used as a tool for feature extrac-
tion and Support Vector Machine (SVM) to classify vocal disorders. Tests were 
conducted with 23 wavelets types in two SVMs, the first using the strategy “one 
vs. all” to classify normal and pathological voices and the second, using the 
strategy “one vs. one” to classify pathologies: edema and nodules. The best re-
sults were obtained using Daubechies family, especially Daubechies 5 (db5) 
wavelet.  

Keywords: Vocal disorder, Wavelet Packet Transform, Support Vector  
Machine (SVM). 

1   Introduction 

Pathological voices have become a social concern, since the voice and speech are 
important in certain professions as teachers, speakers, singers, and quality of life in 
general. Moreover, the voice is an important tool of communication. 

There is a great range of diseases that causes modifications in the voice. They could 
appear as a modification of the excitation morphology (the distribution of mass on 
vocal fold is increased). These are classified as organic pathologies as nodules, pol-
yps, cysts and edemas. Voice disorders can also be caused by other pathologies which 
are provoked by neuro-degenerative diseases [1], [2]. 

The presence of pathologies in the vocal folds such as nodules, polyps, cysts and 
paralysis of laryngeal nerves can be corrected by: voice therapy, surgery, and in some 
cases, radiotherapy [3]. But not always vocal diseases cause necessarily changes in 
voice quality level perception of listeners. 

Digital signal processing techniques have been used by acoustic analysis, as an ef-
fective noninvasive tool for diagnosing changes in sound production caused by dis-
eases of the larynx, the voice classification of diseases and their pre-detection, aiding, 
this way, the development of the therapeutic process [4].  
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The aim of this paper is to present a comparative analysis of wavelets, used as in-
put attributes of support vector machines, which will be responsible for classification 
of pathological voices. The vocal pathologies considered in this study were edemas 
and nodules. 

Several studies on pattern recognition have used wavelet packet descriptors in the 
stage of feature extraction [5]-[7], but have not yet conducted studies on which the 
wavelets perform better in the classification of laryngeal pathologies. 

The wavelet transform has been an important tool in signal and imaging processing to 
determine not just “which” frequency, but also “where” these frequencies are located [8].  

The Wavelet Packet Transform has been used in recent years in signal processing 
allowing better classification of signs. This technique is used as a tool to extract fea-
tures of signals from one or more dimensions improving the performance of the clas-
sifiers to extract relevant features through decomposition of signals in different  
frequency bands. In this work, we decide to use the Packet Wavelet Transform, which 
is a generalization of Discrete Wavelet Transform.  

The SVM has aimed at building optimal hyperplanes which have the largest margin 
of separation between classes. The generated hyperplane is determined by a subset of 
points in classes, named support vectors. SVMs were used as a tool for classification 
of normal and pathological voices.  

The main contribution of this paper is the application of these tools in the classifi-
cation of pathological voices. 

This paper is organized as follows: Section 2 presents the signal pre-processing 
phase. Section 3 shows the speech feature extraction through Wavelet Packet Trans-
form. In Section 4, is the procedure of training and validation SVM. Section 5 shows 
the experiments and results in 10 tests with 23 types of wavelets.  

2   Signal Pre-processing 

The signal pre-processing is composed of several processes such as filtering, pre-
emphasis, normalization and windowing. The aim of this step is to eliminate noise, 
discontinuities and any effects that might affect system performance. 

The speech signals used in this work are a sustained vowel /a/. Initially, the voice 
signal is passed through a bandpass filter with a cutoff frequency of 80 Hz and 9 kHz, 
which will eliminate the signal frequencies above 9 kHz and the noise of the electric 
grid (60 Hz). After that, the speech signal is pre-emphasized to equalize the spectrum 
of the speech signal and improve the spectral analysis performance [9]. The value of 
pre-emphasis filtering in time domain is 0.97. In the normalization step, the speech 
signal is normalized by the maximum value of its amplitude.  

Finally, the speech signal is broken into time frames at intervals of 16 to 32 ms, so 
that the signal during this interval is considered stationary. Aiming to standardize and 
reduce the amount of processing and storage, the window width was set at 20 ms, 
overlapping 33 percent. According to Stephen Levison [10], overlapping 25 percent is 
mathematically optimal, but experiments in this study the superposition of 33.3% had 
a better cost benefit due to reduced numbers of windows and the consequent reduction 
of processing time without significant loss of performance. Each frame is multiplied 
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by Hamming window in order to minimize any signal discontinuities in the time do-
main, i.e to reduce abrupt transitions at the end of the signal. 

3   Wavelet Packet Transform 

The Wavelet Transform is used to analyze the non-stationary phenomena, such as 
voice. The bases of this transform are analyzed in the time domain and frequency 
domain and their algorithms process information at different scales, managed to get 
an image or a sign of a general and detailed way [11]. 

Through the wavelet can be seen that there are significant differences between 
normal voices and voices with nodules as shown in Fig. 1. 

 

        
 
 

Fig. 1. (a) Signal of normal voice and (b) Voice Signal with Nodule 

The Wavelet Transform Packet type used in this work is a generalization of the 
Discrete Wavelet Transform. Discrete Wavelet analysis on the signal is divided into 
approximation and detail coefficients, although only the approximation coefficients 
are divided again [12]. In both Wavelet Packet coefficients of approximation and the 
details are decomposed at each level as shown in Fig 2. 

 

Fig. 2. Binary tree Wavelet Packet Transform with 3 levels of decomposition 

(a) (b) 
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Fig. 3. Wavelets Mothers: (a) Haar; (b) Daubechies 5; (c) Coiflet 5 

 

Fig. 4. Symlets Wavelets Examples 

 

Fig. 5. (a) Morlet; (b) Mexican Hat; (c) Meyer 

With this transform is possible to extract relevant characteristics of the signal, im-
proving the classifiers performance by decomposing the speech signal into different 
frequency bands. 

Depending on the characteristics of the signal to be analyzed, a different mother 
wavelet can be used. In Fig 3, 4 and 5 show kinds of wavelets used in the experi-
ments. They are: Haar, Daubechies (db), Coiflets, Symlets, Morlet, Mexican Hat and 
Meyer. 

4   SVM Classifier 

Support Vector Machines (SVMs) is a technique based on statistical learning theory. 
This strategy was introduced by Vapnik in [13]. 
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The SVM finds a single hyperplane with maximum margin of separation is denoted 
by δ. This hyperplane lines located between H1 and H2, and will be great if the dis-
tance to the two lines is maximum. The H1 line defines the edge or border of objects 
of class +1, while H2 line determines the edge or border with the objects of the class -
1. Two objects Class +1 define the boundary line H1 and H2 to the border there are 
three objects of class -1. These objects are called Support Vectors (Fig. 6). 

 

Fig. 6. Formation of the separation hyperplane through the support vectors 

Basically, SVM maps the input space into a high dimensional space and from the 
calculation of an optimal separating hyperplane in this new space, the SVM learns the 
boundary between regions belonging to two classes. This separation hyperplane is 
chosen so that it maximizes the separation between the closest training samples [14]. 

Fig. 7. shows the SVMs used for pathological voices classification, where the first 
machine uses the strategy "one vs. all" (normal x all) and the second machine is used 
if the first machine has classified certain voice to "All", i.e, unable to determine the 
type of pathology. This second machine uses the strategy "one vs. one" (edema x 
nodule). 

Each of the two machines can be considered as a binary classifier, they present as a 
result only 2 hypotheses: (+1) that corresponds to the first class and (-1) correspond-
ing to the second class trained. 

If the first machine (normal against all) presents the result +1 then the unidentified 
pattern is classified as normal. On the other hand, if the answer machine is -1 then the 
unknown pattern is classified as "all" or "not normal". 

To identify pathologies is used machine 2 with strategy "one against one" that is 
"edema against nodule”. The same as machine 1, if the SVM 2 presents +1 as result, 
the pathology is classified as edema, if the result is -1, nodule is the correct classifica-
tion of the pathologies. 
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Fig. 7. SVM for three classes classification: Normal, Edema and Nodules 

5   Experiments and Results 

In this article are considered three classes: normal (normal voice, with no pathology 
in the vocal folds), edema (voices with vocal folds edema) and nodule (voices af-
fected with nodules on vocal cords). 

The database consists of 26 voices among which 10 with healthy voices, 10 pre-
senting edemas in the vocal folds and 6 with nodules. 

To form the feature vector were used coefficients obtained through the Wavelet 
Packet Transform. These data were used as input of SVMs. For each test performed, a 
new mother wavelet was tested to find that had better results. 

Table 1. Performance Evaluation of two support vector machines 
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Two machines SVM 1 and SVM 2 were created. For each of these machines were 
carried out 10 tests with 23 different wavelets and their samples were chosen ran-
domly, with 50 percent of samples for training and 50 percent for validation. This 
process is called cross-validation. 

Table 1 shows the results when comparing normal and pathological voices  
(SVM 1) and pathological voices together (edema and nodules). Column 1 shows the 
mother wavelet used features descriptors. Columns 2 and 3 show the average per-
formance of the device obtained after carrying out 10 tests. All results are expressed 
in success rate percentage (%SR). 

The best results of classification for the two machines were obtained using wavelet 
Daubechies 5 with 98.68% in the first machine and 98.75% in the second machine. 
On machine 1, were obtained good results with the Daubechies wavelets (4, 7, 6, 8, 3 
and 1) in ascending order of performance, followed by Meyer and Coiflet 5. On the 
second machine, the other Daubechies wavelets (4, 8, 1 and 2), followed by Coiflet 5 
Wavelets. 

These results show that the Daubechies families are a good descriptor of voice 
pathologies classification, especially Daubechies 5. Moreover, it can be observed that 
the Daubechies 5 is also quite effective in speech recognition as in [15]. 

6   Conclusions 

This paper analyzes different types of mother wavelets as feature descriptors in the 
classification of voice pathologies. 

The main objective of this paper was to find the mother wavelet which best classi-
fies normal and pathological voices. We performed extensive testing with voices from 
different patients with normal voice, edema and nodules. Through the mean shown in 
Table I can be seen that that the best results were obtained using Wavelet Daubechies 
Familie, especially Daubechies 5 for both machines. With other types of wavelets, we 
obtained good results with Meyer and Coiflet 5. 
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Abstract. Issue of speech interface to computer has been capturing the global 
attention because of convenience put forth by it. Although speech recognition is 
not a new phenomenon in existing developments of user-machine interface 
studies but the highlighted facts only provide promising solutions for widely 
accepted language English. This paper presents development of an experimen-
tal, speaker-dependent, real-time, isolated word recognizer for Indian regional 
language Punjabi. Research is further extended to comparison of speech recog-
nition system for small vocabulary of speaker dependent isolated spoken words 
in Indian regional language (Punjabi) using the Hidden Markov Model (HMM) 
and Dynamic Time Warp (DTW) technique. Punjabi language gives immense 
changes between consecutive phonemes. Thus, end point detection becomes 
highly difficult. The presented work emphasizes on template-based recognizer 
approach using linear predictive coding with dynamic programming computa-
tion and vector quantization with Hidden Markov Model based recognizers in 
isolated word recognition tasks, which also significantly reduces the computa-
tional costs. The parametric variation gives enhancement in the feature vector 
for recognition of 500-isolated word vocabulary on Punjabi language, as the 
Hidden Marko Model and Dynamic Time Warp technique gives 91.3% and 
94.0% accuracy respectively.  

Keywords: Dynamic programming (DP), dynamic time warp (DTW), hidden 
markov model (HMM), linear predictive coding (LPC), Punjabi language, vec-
tor quantization (VQ). 

1   Introduction 

Research in automatic speech recognition has been known for many years, various 
researchers have tried to analyze the different aspects of speech in Indian languages. 
Existing literature reveals that Punjabi (ਪੰਜਾਬੀ in Gurmukhi script) is highly phonetic 

language as compared to other national and international languages. Punjabi language 
is one of the popular and used north western India and in Pakistan. Gurmukhi script 
alphabet consists of 41 consonants and 10 vowels (laga matra), two symbols for nasal 
sounds (bindī and ṭippī), and one symbol which duplicates the sound of any conso-
nant (addak) with writing style from left to right. Three consonants are used in  
Punjabi as conjuncts. 
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Recently “British researchers have used the Punjabi language to help narrow down 
the identity of writers and develop a technique that could profile criminal authors of 
documents [1]. In consecutive phoneme that has immense variation, end point detec-
tion is highly difficult. However in time-domain equation the deviation of preempha-
sis filter enhances filtering of end point detection.  

As indicated in figure 1, the speech recognition system contains four components: 
end point detection, linear predictive coding (LPC) processor, statistical-pattern-
recognition techniques HMM /DTW and recognition process [2] [3]. The speech 
recognition has two algorithmic procedures to deal with the non-stationary speech 
signals: the temporal alignment technique and markov modeling. The time warping 
technique is combined with linear predictive coding analysis in DTW approach. In 
HMM approach, well known techniques of vector quantization and hidden markov 
modeling are combined with a linear predictive coding analysis. The DTW approach 
uses the nearest neighbor (NN) decision rule and HMM uses the maximum likelihood 
(ML) decision rule. 

 

Fig. 1. Block diagram of Speech Recognition System 

These methods display certain superficial similarities, as a result of which, it has 
occasionally been claimed that they are identical. From the simulation, it is clear that 
the methods are not identical. While their overall performances are comparable, they 
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appear to make different errors, and involve different amounts of computation and 
different complexities of training. This recognition system is implemented using Vis-
ual C++ with Multimedia API in Windows environment. The speech is recorded in 
the form of wave file using RIFF structure. The proposed system speech has to be 
sampled at 6.67 kHz, 16 kHz sampling frequency, sampling size 8 bit on mono chan-
nel and recording of a single word within limit 3000 milliseconds. Threshold energy 
10.1917 dB is used in the word detection [4] [5] [6]. 

The organization of this paper is as follows. In section II, the system model is used 
for endpoint detection and feature extraction. Further, section III elaborates working 
of HMM and DTW approaches on Punjabi language. In section IV, experimental 
performance has been conducted and compared. Finally section V provides the con-
cluding remarks. 

2   System Model 

2.1   End point Detection 

The significant effort on the implementation of speech recognition is the problem of 
extricating background silence before and after the input speech. To find, the energy 
of the speech signal Wave (s) s=48000, it is formatted into blocks of 10 ms and each 
block, we define Wave (n) is, n(1..160) to be the nth sample in the block. The log en-
ergy Es of a block of length N samples is 
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Where ∈  = 1.0 e – 007   is a small positive constant added to prevent the computing 
of log zero. Hence, log energy Es is used for end point detection [7]. 

2.1   LPC Feature Analysis 

To compute LPC feature analysis involves the following operation for each speech 
frames [2]. 

Preemphasis: The digitized speech signal is processed by a first order digital network 
in order to spectrally flatten the recorded signal Wave(s).  

)1()()( −−= sWavesWavespre α  (2) 

Where 9731.0=α  

Blocking into frames: Here N is consecutive speech samples (we use N=320 corre-
sponding to 20 ms of signal) are used as a single frame. Consecutive frames are 
spaced M sample apart (we use M = 160 corresponding to 10ms frame spacing or 
20ms frame overlap) and L is the number of frames in voiced speech word. 

)())(( nMprenX +=  (3) 
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Frame Windowing: Each frame is multiplied by an N-samples window (we use 
Hamming window) so as to minimize the adverse effect of chopping N-sample out of 
the running speech signal. 
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Where 10 −≤≤ Nn  and 10 −≤≤ L  

Autocorrelation Analysis: Each windowed set of speech samples is autocorrelated to 
a given a set of (p + 1) coefficient, where p is the order of the desired LPC analysis 
(we use p =11). 
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Where pk ≤≤0 , 10 −≤≤ Nn  and 10 −≤≤ L  

LPC/Cepstral Analysis: For each frame, a vector of LPC coefficients is computed 
from the autocorrelation vector using a Levinson-Durbin recursion method. An LPC 
derived cepstral vector is then computed up to the Qth component, where Q is the 
order of the cepstral coefficients and Q > k, Q = 11 used in this work. 

Weighted Cepstral Coefficient: After computing cepstral coefficients, weight is 
given to them by multiplying them with cepstral weight. It will enhance the portion of 
the cepstrum in vocal tract information. The computation involved at this step is:   
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Where pk ≤≤0  
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Where pk ≤≤0 and 10 −≤≤ L  

Delta Cepstrum: The time derivative of the sequence of the weighted cepstral vec-
tors is approximated by a first order orthogonal polynomial over a finite length win-
dow of (2k+1) frames centered on the current vector. The value of k = 2 i.e., 5 frame 
window is used for computing the derivative). The cepstral derivative (i.e., the delta 
cepstral vector) is computed as  
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Where G is a gain term chosen to make the variances of weighted cepstral coefficient 
and delta cepstral coefficient equal (A value of G of 0.375 was used.) [8] [9]. 

2.2   Vector Quantization 

The VQ codebook is a discrete representation of speech. We will generate the code-
book by using LBG algorithm. This algorithm has used two times, one is on training 
time and other is testing time. In training time we will generate codebook for delta 
cepstrum coefficients. In testing we will use stored codebook for getting the indices of 
codebook that give minimum distortion. The VQ will find a codebook index corre-
sponding to the vector that best represents a given spectral vector, for an input vector 
sequence V{v(1), v(2), v(3), ….., v(N)}, VQ will calculate the vector distance between 
each vector in codebook C{c(1), c(2), c(3), …, c(P)} and each vector v(n), and the 
codebook index with minimum distance will be chosen as output. After VQ, a se-
quence of codebook indexes I{i(1), i(2), i(3),…., i(N)} will be produced. The vector 
distance between an input vector v(n) and each vector in codebook are calculated as 
follows: 
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The vector quantization codebook of size p = 256 and vector length k = 11 are used. 
This size selection is based on the experimental results [8] [10].  

3   HMM and DTW for Isolated Word Recognition 

Dynamic Time Warp approach and Hidden Markov approach for isolated word rec-
ognition of small vocabulary are implemented. The time warping technique is com-
bined with linear predictive coding analysis and HMM approach used with vector 
quantization and hidden markov modeling are combined with a linear predictive cod-
ing analysis. 

3.1   Hidden Markov Model 

LPC analysis followed by the vector quantization of the unit of speech, gives a se-
quence of symbols (VQ indices). HMM is one of the ways to capture the structure in 
this sequence of symbols. In order to use HMM in speech recognition, we should 
have some means to achieve the following.  

Evaluation: Given the observation sequence O=O1, O2 ,…, OT, and the model λ =(A, 
B, π ), how we compute Pr (O| λ ), the probability of the observation sequence. The 
evaluation problem is efficient way of computing this probability using forward and 
backward algorithm. 
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Decoding: Given the observation sequence O=O1, O2 ,…, OT, how we choose a state 
sequence I=i1, i2,…, iT, which is optimal in some meaningful sense. The decoding 
helps to find the best matching state sequence given an observation sequence and 
solve using Viterbi algorithm. 

Training: How we adjust the model parameters λ =(A, B, π ) to maximize Pr 
(O| λ ). The training problem resolved by Baum-Welch algorithm [11] [12][15]. 

3.2   Dynamic Time Warping 

The DTW deals with features and distances (local and global) concept. To obtain a 
global distance between two speech patterns (represented as a sequence of vectors) a 
time alignment must be performed. Dynamic time warp alignment that simultaneously 
provides a distance score associated with the alignment. Consider a matrix with N ×  
n (N reference, n input signal) and a local distance l(i, j) which returns a distance 
associated with  i, j (where i template of reference, j of input signal). Compute the 
shortest path with minimum distance from each cell of N ×  n matrix.  This problem 
exhibits optimal substructure. The solution to the entire problem relies on solutions to 
sub problems. Let us define a function g (i, j) as  

g(i, j) = the minimum distance to reach at final (i,  j) in N ×  n 
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This is recursive process and global distance is the value at top most cell of the last 
column in matrix. On training time the database of the features LPC Coefficients of 
the training data is created. In testing time, the input pattern (features vector of the test 
token) is compared with each reference pattern. The distance scores for all the refer-
ence patterns are sent to a decision rule, which gives the word with least distance as 
recognized word. The distance measure between two feature vectors is calculated 
using Euclidean distance metric [13] [14][15]. 

4   Experimental Performance 

4.1   Performance Based on Punjabi Numerals 

The recordings were done for one male speaker. The experimental result gives incre-
mented accuracy as increases the size of the codebook, but constantly increasing the 
complexity and time of recognition increases. So the codebook size of 256 for the 
comparison between DTW and VQ/HMM techniques is used. (Tested various size of 
code book but give more accuracy/time results optimized on only size of 256). The 
train the system for Punjabi numerals is the five times. The recognition results of 
numerals are show in figure 2. 
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Fig. 2. Performance comparison of Punjabi numerals between DTW and VQ/HMM 

 
Fig. 3. Performance comparison of Punjabi words between DTW and VQ/HMM 
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4.2   Performance Based on Randomly Selected Words 

The recognition vocabulary of Punjabi words (the English word “Newspaper” is 
translated and pronounced as “ਅਖਬਾਰ” in Punjabi language). The system for each of 

the words was trained with 10 utterances of the same word. The comparison for the 
performance of the VQ/HMM recognizer with DTW recognizer, a sub set of 10 ran-
domly selected words from 500 trained words set was tested on both of the recogniz-
ers. The recognition accuracies of the VQ/HMM recognizer vs. DTW recognizer are 
as shown in figure 3. 

5   Conclusion  

Results carried out by above experiments reveal that performance of HMM recognizer 
is somewhat poorer than the DTW based recognizer because of the insufficiency of 
the HMM training data.  However with the increase in the size of the codebook, the 
accuracy of the HMM based recognizer may improve but that will increases the com-
plexity of the system. The time and space complexity of the HMM approach is less as 
compared to the DTW approach for same size of codebook because during HMM 
testing we have to compute the probability of each model to produce that observed 
sequence. In DTW testing, the distance of the input pattern from every reference pat-
tern is computed, which is computationally more expensive. In experimental result the 
system gives very impressive performance for Punjabi language numerals with DTW 
is 92.3% and with HMM is 87.5%. The experimental research reveals that DTW ap-
proach is more appropriate for Punjabi numerals and isolated spoken words. Further, 
the results have also shown that the errors made by the two recognizers are largely 
disjoint. Hence there exist the potential of DTW using some fairly standard tech-
niques for Punjabi Language as compared to HMM approach for better accuracy 
because is more phonetic as compared to other languages.  
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Abstract. In this paper we present a machine learning approach to re-
solve the pronominal anaphora in Basque language. We consider different
classifiers in order to find the system that fits best to the characteristics
of the language under examination. We apply the combination of clas-
sifiers which improves results obtained with single classifiers. The main
contribution of the paper is the use of bagging having as base classifier
a non-soft one for the anaphora resolution in Basque.

1 Introduction

Pronominal anaphora resolution is related to the task of identifying noun phrases
that refer to the same entity mentioned in a document.

According to [5], anaphora, in discourse, is a device for making an abbreviated
reference (containing fewer bits of disambiguating information, rather than being
lexically or phonetically shorter) to some entity (or entities).

Anaphora resolution is crucial in real-world natural language processing ap-
plications e.g. machine translation or information extraction. Although it has
been a wide-open research field in the area since 1970, the work presented in
this article is the first dealing with the subject for Basque, especially in the task
of determining anaphoric relationship using a machine learning approach.

Recently, an annotated corpus has been published in Basque with pronominal
anaphora tags [2] and thanks to that, this work could be managed.

Although the literature about anaphora resolution with machine learning ap-
proaches is very large, we will concentrate on those references directly linked to
the work done here. In [10] they apply a noun phrase (NP) coreference system
based on decision trees to MUC6 and MUC7 data sets. It is usually used as
a baseline in the coreference resolution literature. Combination methods have
been recently applied to coreference resolution problems. In [11] the authors use
bagging and boosting techniques in order to improve single classifiers results.

The state of the art of other languages varies considerably. In [8] they propose
a rule-based system for anaphora resolution in Czech. They use the Treebank
data, which contains more than 45,000 coreference links in almost 50,000 man-
ually annotated Czech sentences. In [12] the author uses a system based on a
loglinear statistical model to resolve noun phrase coreference in German texts.
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On the other hand, [6] and [7] present an approach to Persian pronoun resolu-
tion based on machine learning techniques. They developed a corpus with 2,006
labeled pronouns.

The paper we present describes a baseline framework for Basque pronomi-
nal anaphora resolution using a machine learning approach. In Section 2 some
general characteristics of Basque pronominal anaphora are explained. Section 3
shows the results obtained for different machine learning methods. The combi-
nation of classifiers is presented in Section 4, and finally, in Section 5, we present
some conclusions and point out future work lines.

2 Pronominal Anaphora Resolution in Basque

2.1 Main Characteristics of Pronominal Anaphora in Basque

Basque is not an Indo-European language and differs considerably in grammar
from languages spoken in other regions around. It is an agglutinative language,
in which grammatical relations between components within a clause are rep-
resented by suffixes. This is a distinguishing characteristic since morphological
information of words is richer than in the surrounding languages. Given that
Basque is a head final language at the syntactic level, the morphological infor-
mation of the phrase (number, case, etc.), which is considered to be the head, is
in the attached suffix. That is why morphosyntactic analysis is essential.

In this work we specifically focus on the pronominal anaphora; concretely,
the demonstrative determiners when they behave as pronouns. In Basque there
are not different forms for third person pronouns and demonstrative determiners
are used as third person pronominals. There are three degrees of demonstratives
that are closely related to the distance of the referent: hau (this/he/she/it), hori
(that/he/she/it), hura (that/he/she/it). As we will see in the example of Section
2.3 demostratives in Basque do not allow to infer whether the referent is a person
(he, she) or it is an impersonal one (it).

Moreover, demostrative determiners do not have any gender in Basque. Hence,
the gender is not a valid feature to detect the antecedent of a pronominal
anaphora because there is no gender distinction in the Basque morphological
system.

2.2 Determination of Feature Vectors

In order to use a machine learning method, a suitable annotated corpus is needed.
We use part of the Eus3LB Corpus1 which contains approximately 50.000 words
from journalistic texts previously parsed. It contains 349 annotated pronominal
anaphora.

In this work, we first focus on features obtainable with the linguistic process-
ing system proposed in [1]. We can not use some of the common features used by

1 Eus3LB is part of the 3LB project [9].
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most systems due to linguistic differences. For example the gender, as we previ-
ously said. Nevertheless, we use some specific features that linguistic researchers
consider important for this task.

The features used are grouped in three categories: features of the anaphoric
pronoun, features of the antecedent candidate, and features that describe the
relationship between both.

– Features of the anaphoric pronoun
f1 - dec ana: The declension case of the anaphor.
f2 - sf ana: The syntactic function of the anaphor.
f3 - phrase ana: Whether the anaphor has the phrase tag or not.
f4 - num ana: The number of the anaphor.

– Features of the antecedent candidate
f5 - word: The word of the antecedent candidate.
f6 - lemma: The lemma of the antecedent candidate.
f7 - cat np: The syntactic category of the NP.
f8 - dec np: The declension case of the NP.
f9 - num np: The number of the NP.

f10 - degree: The degree of the NP that contains a comparative.
f11 - np: Whether the noun phrase is a simple NP or a composed NP.
f12 - sf np: The syntactic function of the NP.
f13 - enti np: The type of entity (PER, LOC, ORG).

– Relational features
f14 - dist: The distance between the anaphor and the antecedent candidate

in terms of number of Noun Phrases.
f15 - same sent: If the anaphor and the antecedent candidate are in the same

sentence.
f16 - same num: Besides to singular and plural numbers, there is another one

in Basque: the indefinite. Thus, this feature has more than two possible
values.

In summary we would like to remark that we include morphosyntactic infor-
mation in our pronoun features such as the syntactic function it accomplishes,
the kind of phrase it is, and its number. We also include the pronoun declension
case. We use the same features for the antecedent candidate and we add the syn-
tactic category and the degree of the noun phrase that contains a comparative.
We also include information about name entities indicating the type (person,
location and organization). The word and lemma of the noun phrase are also
taken into account. The set of relational features includes three features: the dis-
tance between the anaphor and the antecedent candidate, a Boolean feature that
shows whether they are in the same sentence or not, and the number agreement
between them.

2.3 Generation of Training Instances

The method we use to create training instances is similar to the one explained
in [10]. Positive instances are created for each annotated anaphor and its an-
tecedent. Negative instances are created by pairing each annotated anaphor with
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each of its preceding noun phrases that are between the anaphor and the an-
tecedent. When the antecedent candidate is composed, we use the information
of the last word of the noun phrase to create the features due to the fact that
in Basque this word is the one that contains the morphosyntactic information.

In order to clarify the results of our system, we introduce the following ex-
ample: Ben Amor ere ez da Mundiala amaitu arte etorriko Irunera, honek ere
Tunisiarekin parte hartuko baitu Mundialean.

(Ben Amor is not coming to Irun before the world championship is finished,
since he will play with Tunisia in the World Championship).

The word honek (he) in bold is the anaphor and Ben Amor its antecedent. The
noun phrases between them are Mundiala and Irunera. The next table shows the
generation of training instances from the sentence of the example.

Antecedent Candidate Anaphor Positive
Ben Amor honek (he/it) 1
Mundiala honek (he/it) 0
Irunera honek (he/it) 0

Generating the training instances in that way, we obtained a corpus with 968
instances; 349 of them are positive, and the rest, 619, negatives.

3 Experimental Setup

In order to evaluate the performance of our system, we use the above mentioned
corpus. Due to the size of the corpus, a 10 fold cross-validation is performed. It
is worth to say that we are trying to increase the size of the corpus.

3.1 Learning Algorithms

We consider different machine learning paradigms from Weka toolkit [4] in order
to find the best system for the task. On one hand, we use some typical classifiers
like SVM, Multilayer Perceptron, Näıve Bayes, k-NN, and simple decision trees
like C4.5 and REPTree. On the other hand, we use classifiers not so frequently
used such as Random Forest (RF), NB-Tree and Voting Feature Intervals (VFI).

The SVM learner was evaluated by a polynomial kernel of degree 1. The k-NN
classifier, k = 1, uses the Euclidean distance as distance function in order to find
neigbours. Multilayer Perceptron is a neural network that uses backpropagation
to learn the weights among the connections, whereas NB is a simple probabilistic
classifier based on applying Bayes’ theorem, and NB-Tree generates a decision
tree with Näıve Bayes classifiers at the leaves. C4.5 and REPTree are well known
decision tree classifiers. Random Forest and VFI are traditionally less used al-
gorithms; however, they produce good results for our corpus. Random forest is
a combination of tree predictors, such that each tree depends on the values of
a random vector sampled independently and with the same distribution for all
trees in the forest. VFI constructs feature intervals for each feature. An interval
represents a set of values for a given feature, where the same subset of class
values is observed. Two neighbouring intervals contain different sets of classes.
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3.2 Results for Single Classifiers

The results obtained with these classifiers are shown in Table 1. The best result is
obtained by using the Multilayer Perceptron algorithm, an F-measure of 68.7%.

Table 1. Results for different algorithms

Precision Recall F-measure
VFI 0.653 0.673 0.663
Perceptron 0.692 0.682 0.687
RF 0.666 0.702 0.683
SVM 0.803 0.539 0.645
NB-tree 0.771 0.559 0.648
NB 0.737 0.587 0.654
k-NN 0.652 0.616 0.633
C4.5 0.736 0.438 0.549
REPTree 0.715 0.524 0.605

In general, precision obtained is higher than recall. The best precision is ob-
tained with SVM (80.3%), followed by NB-tree (77.1%). Althought C4.5 and
REPTree are traditionally used for this task, they do not report good results for
our corpus, as it can be observed in the table.

These results are not directly comparable with those obtained for other lan-
guages such as English, but we think that they are a good baseline for Basque
language. We must emphasize that only the pronominal anaphora is treated
here, so actual comparisons are difficult.

4 Experimental Results

In this section the experimental results obtained are shown. It is worth to men-
tion that one of the main contributions of this paper is concerned with the
selection of single classifiers in order to perform the combination.

4.1 Combination of Classifiers

Classifier combination is very used in the Machine Learning community. The
main idea is to combine some paradigms from the supervised classification trying
to improve the individual accuracies of the component classifiers.

According to the architecture used to combine different single classifiers, there
are three possible configurations: cascaded, parallel and hierarchical. In this pa-
per we use two parallel combinations of classifiers. One of the ways to combine
the classifiers in parallel consists of using several base classifiers, applying them
to the database, and then combining their predictions using a vote process. But
even with a unique base classifier, it is still possible to build an ensemble, ap-
plying it to different training sets in order to generate several different models.
A way to get several training sets from a given dataset is bootstrap sampling,
which is used in bagging [3].
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4.2 Results Obtained

We tried both vote and bagging combination approaches based on the results
obtained in the previous section for the single classifiers. We selected five single
classifiers, which belong to different paradigms, and which obtain good results
for our corpus: Multilayer Perceptron, Random Forest, VFI, NB and k-NN. We
performed the experiments in the following way:

– We make a votation with those five classifiers. Three different voting criteria
were used: Majority, average of probabilities and product of probabilities.

– We apply the bagging multiclassifier with those five single classifiers, using
different number of classifiers: 10, 15, 20, 30 and 40.

Results obtained by applying the vote combination schema are shown in Table
2. As it can be seen a slight increase in results is obtained with the majority
voting achieving an F-measure of 69.2%.

Table 2. Results for different voting criteria

Classifier voting criteria F-measure
Majority voting 0.692
Vote: average of probabilities 0.684
Vote: product of probabilities 0.636

The bagging multiclassifier is supposed to obtain better results when “soft”
base classifiers are used. Classification trees are a typical example of soft clas-
sifier. That is why, for comparison reasons, we applied a bagging combination
of C4.5 and REPTree trees. In Table 3 just the best results obtained from the
bagging process for each classifier are shown. Although it is not recommended,
we applied bagging to the selected classifiers, some of which are not considered
to be “soft”. As it can be seen, results obtained using classification trees are
worse than those obtained with the selected classifiers. However, they are the
single classifiers which obtain the highest benefit from the combination.

The best result is obtained by the multilayer perceptron classifier as the base
one, obtaining an F-measure of 70.3%.

Table 3. Results for the bagging multiclassifier

Single Bagging
C4.5 0.549 0.654
REPTree 0.605 0.657
VFI 0.663 0.664
Perceptron 0.687 0.703
RF 0.683 0.702
NB 0.654 0.654
k-NN 0.633 0.634
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5 Conclusions and Future Work

This paper presents a study carried out on resolution of pronominal anaphora in
Basque using a machine learning multiclassifier. The results obtained from this
work will be helpful for the development of a better anaphora resolution tool for
Basque.

We considered nine machine learning algorithms as single classifiers in order
to decide which of them select to combine in a parallel manner. Two different
classifier combination approaches were used: vote and bagging. The main con-
tribution of the paper is the use of bagging having as base classifier a non-soft
one for the anaphora resolution in Basque.

There are several interesting directions for further research and development
based on this work. The introduction of other knowledge sources to generate new
features and the use of composite features can be a way to improve the system.

We plan to expand our approach to other types of anaphoric relations with the
aim of generating a system to determine the coreference chains for a document.

Finally, the interest of a modular tool to develop coreference applications is
unquestionable. Every day more people research in the area of the NLP for
Basque and a tool of this kind can be very helpful.
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Abstract. An automatic linear text segmentation in order to detect the best topic 
boundaries is a difficult and very useful task in many text processing systems. 
Some methods have tried to solve this problem with reasonable results, but they 
present some drawbacks as well. In this work, we propose a new method, called 
ClustSeg, based on a predefined window and a clustering algorithm to decide 
the topic cohesion. We compare our proposal against the best known methods, 
with a better performance against these algorithms. 

1   Introduction 

Text segmentation is the task of splitting a document into syntactical units 
(paragraphs, sentences, words, etc.) or semantic blocks, usually based on topics. The 
difficulty of text segmentation mainly depends on the characteristics of documents 
which will be segmented (i.e. scientific texts, news, etc.) and the segmentation outputs 
(e.g. topics, paragraphs, sentences, etc.). There are different approaches to solve this 
problem; one is a linear segmentation, where the document is split into a linear 
sequence of adjacent segments. Another approach is a hierarchical segmentation; the 
outputs of these algorithms try to identify the document structure, usually chapters 
and multiple levels of sub-chapters [6]. 

There are many applications for text segmentation. Many tools for automatic text 
indexing and information retrieval can be improved by a text segmentation process. 
For example, when segmenting news of broadcast story transcriptions, a topic 
segmentation takes a crucial role, because a topic segmentation can be used for 
retrieving passages more linked to the query made by the user, instead of the full 
document [9], [11]. In tasks of summary generation, text segmentation by topics can be 
used to select blocks of texts containing the main ideas for the summary requested [9]. 

Analyzing the performance of different methods of text segmentation by topics [7], 
[8], [9], [10] we observed some difficulties as, for instance, wrong interruptions of 
segments, leaving out sentences or paragraphs which belong to the segments, and 
generating segments with incomplete information. When these situations happen, 
spurious segments are obtained. Another difficulty we observed is that those methods 
are not able to identify the true relations amongst paragraphs of each segment 
considering natural topic cohesion. 

In this work we propose an algorithm for linear text segmentation of multi-
paragraphs based on topics, called ClustSeg, defined as a solution of the aforementioned 
difficulties. This method is based on a window approach to identify boundaries of 
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topics. Each paragraph is represented using the vector space model, similar to other 
methods [6], [7], [9]. But, unlike these methods, we assumed that the paragraph 
cohesion is obtained from a clustering method, generating segments containing 
paragraphs from one topic or a mixture of them. 

We have structured the present work as follows. In Section 2 we briefly explain 
some previous works to solve the segmentation problem and their drawbacks. In 
Section 3 we describe the proposed method. In the last section we present the 
experimental results by using a textual corpus which we prepared with articles 
selected from the ICPR’2006 proceedings. 

2   Related Work 

The study of the linear text segmentation methods by topics must be initiated by the 
TextTilling algorithm. This method was proposed by Hearst and it is considered one 
of the most interesting and complete studies on the identification of structures of sub-
topics [7].  In this paper, Hearst proposed a method which tries to split texts into 
discourse units of multiple paragraphs. This algorithm uses a sliding window 
approach and for each position two blocks are built; one preceding and the second 
succeeding each position. To determine the lexical punctuation between these two 
blocks, it uses the term repetition as a lexical cohesion mechanism. These blocks are 
formed by a specified amount of pseudo-sentences which are represented by the 
vector space model and the cosine as the similarity measure. Considering the lexical 
values calculated, this method splits the text from the valleys, or points with low 
lexical scores. 

Unlike Hearst, Heinone proposed a method which uses a sliding window to 
determine, for each paragraph, which the most similar paragraph inside the window is 
[8]. The sliding window is formed by several paragraphs on both sides (above and 
below) of every processed paragraph. This segmentation method is especially useful 
when it is important to control the segment length. The author uses a dynamic 
programming technique that guarantees getting segments of minimum cost. The 
segment cost is obtained by a lexical cohesion curve among the paragraphs, a 
preferential segment size specified by the user, and a defined parametric cost function. 

Another approach of linear text segmentation by topic is TextLec, proposed in 
2007 [9]. This method, like TextTiling, uses word repetition as a lexical cohesion 
mechanism. Each paragraph is represented by the vector space model, as in Hearst’s 
and Heinonen’s work. The authors of this work assume that all the sentences which 
belong to a paragraph are about a same topic. This method also uses a sliding window 
approach but, unlike Hearst, it only uses a window of paragraphs which are below 
each position. This method consists of two stages; the first finds for each paragraph 
the farthest cohesive one within the window, using the cosine measure and a 
threshold. Finally, it searches the segment boundaries in a sequential process, in 
which a paragraph is included in a segment if it is the farthest cohesive one related to 
any other paragraph previously included in the segment. 

The last method we have considered is the C99 algorithm proposed by Choi [3]. 
This method is strongly based on the lexical cohesion principle. C99 uses a similarity 
matrix of the text sentences. First projected in a word vector space representation, 
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sentences are then compared using the cosine similarity measure. More recently, Choi 
improved C99 by using the Latent Semantic Analysis (LSA) achievements to reduce 
the size of the word vector space [4]. 

3   ClustSeg: A Method for Text Segmentation 

In our approach, we assume a linear segmentation and consider paragraphs as the 
minimum text units. But, in spite of other methods, we assume that sentences 
belonging to a paragraph, and each paragraph per se, could be on several topics. 
Paragraph representation is based on the vector space model and the topic cohesion is 
calculated using the cosine measure. Nevertheless, the segment boundaries are 
defined from the results of a clustering algorithm, as we can see below. 

The ClustSeg algorithm begins preprocessing the document. In this stage, the stop-
words (prepositions, conjunctions, articles, pronouns) are eliminated, considering that 
these words are devoid of information to decide how similar paragraphs are amongst 
them. All punctuation marks, numbers and special characters are also removed. Next, 
the terms can be transformed by their lemmas. We have used in this work the 
TreeTager, which is a system with the possibility of extracting the lemmas in various 
languages.  

After this preprocessing, the algorithm continues with three stages: the search for 
topic cohesion, the detection of topic segment boundaries, and the detection of the 
document segment boundaries. 

3.1   Searching for Topic Cohesion 

Although we consider the vector space model and the cosine measure, assuming that a 
vocabulary change could produce a topic change and also a beginning of a new 
segment, we do not take that model and measure directly to decide the segment 
boundaries, as the aforementioned methods do. 

The main drawback that all those methods present is the assumption that if two 
paragraphs or textual units have a high similarity value, then there is a high confidence 
that these paragraphs belong to a significant topic and could belong to a same segment. 
We have observed that this assumption does not identify all the spurious segments and, 
also, it can create segments with paragraphs of weak topic cohesion. 

Besides, all the methods we have analyzed assume that each paragraph or textual 
unit is about a unique topic, and the cosine similarity amongst paragraphs can link 
them, making up segments based on a topic-driven process. In this paper, we have 
considered that a paragraph could be about several topics, and the significant cohesion 
amongst them depends on the related topic and on its significance to the document. 

Taking into consideration those drawbacks and hypotheses, we weigh up a 
clustering process applied to the set of paragraphs, without taking into account their 
order, as a way to obtain clusters of high topic cohesion. Besides, because of the 
hypothesis of multi-topic paragraphs, a convenient (or maybe necessary) restriction is 
that the clustering algorithm could produce overlapped clusters. 

There are not so many clustering algorithms oriented to obtain cohesive and 
overlapped clusters. Examples of them are Star [1], Strong Compact (FCI) [14] and 



264 R. Abella Pérez and J.E. Medina Pagola 

ICSD [12]. We decided to use the static version of ICSD, considering a good 
performance (or better according to the authors) on overlapped clusters for topic 
discovery. 

The selected algorithm, called (Incremental) Clustering by Strength Decision 
(ICSD), obtains a set of dense and overlapped clusters using a graph cover heuristic. 
It is applied over a thresholded similarity graph formed by the objects (paragraphs 
represented by the vector space model) as the vertices and the similarity values (using 
the cosine measure) amongst them. The threshold (defined by the user) is used to 
determining whether two paragraphs are similar.  

So, when the static version of ICSD is applied, we can obtain a set of clusters, 
where each cluster represents a set of cohesive paragraphs belonging (presumably) to 
an independent topic. The paragraphs identified by the clustering are the only ones we 
will consider in the following stages. 

3.2   Detecting the Topic Segment Boundaries 

After obtaining the clustering from the static version of ICSD algorithm, we process 
every cluster in order to obtain all the segments which can be formed from each cluster. 

As in other methods, we use a window (W) to define if two adjacent paragraphs in 
a cluster are close. Each segment is obtained linking adjacent paragraphs according to 
the predefined window. 

The result of this stage is a set of segments defined by a set of pairs 〈I, F〉, where I 
and F represent the indexes of the initial and final paragraphs of the segment. The 
algorithm of this stage is shown in fig. 1. 

 
Algorithm: Topic Segmentation 
Input:  C - Clustering of paragraph indexes; 
        W – A predefined window; 
Output: SI – Set of 〈I, F〉 obtained from C; 
1) for each c ∈ C do begin 
2)    j = 1; 
3)    c' = {p1, …, pk} by sorting c in ascending order; 
4)    while j < k do begin 
5)       I = First pi ∈ c’ / pi+1 - pi ≤ W and i ≥ j; 
6)       if does not exist I then j = k 
7)       else begin 
8)          F = pi+1; 
9)          j = i+2; 

10)          while pj – pj-1 ≤ W do begin 
11)             F = pj; 
12)             j = j+1; 
13)          end 
14)          SI = SI ∪ {〈I, F〉}; 
15)       end 
16)    end 
17) end 

Fig. 1. Topic segment boundaries detection algorithm 
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3.3   Detecting the Document Segment Boundaries 

As a result from the previous stage, we have obtained a set of topic segment 
boundaries. As these segments were obtained from different clusters, and they are 
overlapped, these segments could be also overlapped. 

In this stage, we concatenate all the segments that have at least one common 
paragraph. Observe that, with this consideration, we obtain a linear segmentation 
satisfying the following condition: A document segment could be made up by a 
concatenation of a set of topic segments from different topics only if any topic 
segment has a non null intersection (at least one paragraph) with another one. The 
Fig. 2 shows this third stage. 

 
Algorithm: Document Segmentation
Input: SI – Set of 〈I, F〉 from Topic Segmentation; 
Output: SF – Set of 〈I, F〉 obtained from SI; 
1) for each 〈I, F〉 = MinArg {I’ / 〈I’, F’〉 ∈ SI } do begin 

                  〈I’, F’〉 

2)    〈In, Fn〉 = 〈I, F〉; 
3)    SI = SI \ {〈I, F〉}; 
4)    while exist 〈I1, F1〉 ∈ SI 

         and  I1 ≥ I and I1 ≤ Fn do begin 
5)       Fn = max(Fn, F1); 
6)       SI = SI \ {〈I1, F1〉}; 
7)    End
8)    SF = SF ∪ {〈In, Fn〉}; 
9) End 

Fig. 2. Document segment boundaries detection algorithm 

4   Evaluation 

There are two main problems related to evaluation of text segmentation algorithms. 
The first one is given by the subjective nature when detecting the right boundaries of 
topics and sub-topics into texts; it turns the selection of reference segmentation for a 
fair and objective comparison into a very difficult task [13]. In order to solve this 
problem, usually artificial documents are created, concatenating different real 
documents, on the assumption that the limits between these documents are good 
breaking points [6], [9], [13]. Another way is to compare the results against a manual 
segmentation based on human judgments, which makes a “gold standard” [18]. 

The second problem is the selection of a measure to use in the evaluation; because, 
for different applications of text segmentation, different types of mistakes become 
more or less important. For example, in information retrieval, segment boundaries 
that differ from the real ones in some few sentences can be accepted. For evaluating a 
method with this goal, measures like Precision or Recall should not be used. 
However, when segmenting news of broadcast stories transcription, the accuracy of 
the boundaries is very important. 
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In our proposal, the accuracy of the boundaries is not important, because we are 
trying to automatically discover topic segmentations. One of the best measures  
to evaluate this task is WindowDiff, a measure proposed by Pevzner and Hearst in 
2000 [13]. 

The WindowDiff measure uses a sliding window of length k to find disagreements 
between the reference and the algorithm segmentation. In this work we take k as the 
half of the average true segment size in the reference segmentation. 

The amount of boundaries inside the window of both segmentations is determined 
for each window position; it is penalized if the amount of boundaries disagrees. Later, 
all penalizations found are added. This value is normalized and the metric takes a 
value between 0 and 1. WindowDiff takes a score of 0 if all boundaries are correctly 
assigned and it takes a score of 1 if there is a complete difference between the 
automatic segmentation and the reference one. The WindowDiff formal expression 
and other details of this measure can be seen in Pevzner and Hearst [13].  

In this section we show the results of five segmentation algorithms: ClustSeg, 
TextLec, TextTiling, Heinone’s and C99. The corpus that we used in the 
experimentation is the same as Hernandez&Medina’s work [9]. This corpus was built 
joining 14 different papers taken from the ICPR’2006 proceedings. The resultant 
corpus has 305 paragraphs and an average of 22 paragraphs approximately for each 
paper.  We took the segmentation output of our algorithm and we compared it with 
the results shown in Table 1 of Hernandez&Medina’s work [9]. Besides, we included 
the C99 algorithm results. The C99 algorithm used was downloaded on May 26th 
from the following url:http://sourceforge.net/projects/textsegfault/files/c99/C99-1.2-
release.tgz/download. 

In Table 1 we can see the results of this experimentation. It was done with a 
window (W) equal to 10 and a threshold of 0.35 for deciding a significant cosine 
value between two paragraphs. We can notice a significantly better performance of 
ClustSeg. We also did other evaluations, varying the window size and the threshold, 
but these results can not be included here because of the page restrictions. 
Nevertheless, the ClustSeg algorithm achieved better results than the others for 
windows size in [9, 11] and threshold in [0.25, 0.38], with a best result of 0.11 for a 
windows of 11 and a threshold of 0.27 and 0.28. 

Table 1. WindowDiff values 

Algorithms ClustSeg TextLec TextTilling Heinone’s C99 
WindowDiff 0.12 0.21 0.33 0.26 0.21 

 
Although we did not accomplish any experimentation in terms of execution time, 

we ran our algorithm and measured the time consumption. The execution time was 
1124 ms. Besides, the execution order of this algorithm is log , 
including the clustering stage, where m is the amount of clusters and n the amount of 
paragraphs. 
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5   Conclusion 

The use of text methods of segmentation by topic would improve the results of many 
text processing tasks; for example, text summarization, information retrieval and 
others. We have proposed a new segmentation method for discovering topic 
boundaries. 

Although we use the vector space model and the cosine measure, we consider that 
the paragraph cohesion can be better obtained from a clustering method, generating 
segments containing paragraphs from one topic or a mixture of them. 

The ClustSeg algorithm was compared with four methods, obtaining more 
cohesive segments and increasing significantly its performance. 

As future work, we propose to evaluate other clustering methods and to achieve a 
better integration of both strategies. 
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Abstract. This paper addresses a license plate detection and recogni-
tion (LPR) task on still images of trucks. The main contribution of our
LPR system is the fusion of different segmentation algorithms used to
improve the license plate detection. We also compare the performance
of two kinds of classifiers for optical character recognition (OCR): one
based on the a contrario framework using the shape contexts as features
and the other based on a SVM classifier using the intensity pixel values
as features.

1 Introduction

License plate recognition (LPR) currently finds other applications than the
electronic payment systems (toll payment and parking fee payment) or traffic
surveillance. Entrepreneurs discover the usefulness of identifying their clients, for
example, by using this technology to study clients’ shopping habits in a fast food
drive-thru. The present work involves an application where the LPR solution is
installed on a truck balance to identify incoming vehicles making it possible to
record the truck’s weight automatically.

Figure 1 shows some samples of the images captured by the camera system.
The system has been installed outdoors and works during day and night. It can
be seen from the samples that the distance between the camera and the vehicle is
variable, and the license plate can be anywhere in the image. Finally, characters
in the license plate can be distorted, noisy, broken or incomplete, challenging
the simple methods used in the commercial systems.

The state of art in LPR systems is well summerized in the work of Anagnos-
topoulos [1]. They present the LPR algorithm as a three-step framework: 1) LP
location; 2) characters segmentation; and 3) character recognition. In general,
the first step should operate fast enough to fulfill the need of real time opera-
tions. For still images, which are the scope of our work, methods in the literature
include techniques that take advantage of the high contrast in the license plate:
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Fig. 1. Non deteriorated truck image samples in the first row. Second row shows three
examples of deteriorated truck images: noisy, incomplete and broken characters.

morphological operations, edge detection [10], hierarchical representations [4],
image transformations [7], etc. There are also detection algorithms based on
AdaBoost [8] and support vector machine (SVM) [9] classifiers, using Haar-like
features or the color and texture information.

The character segmentation step examines the potential LP locations to de-
termine the character bounding boxes. The final step matches the extracted
characters to a number or a letter. In this stage, different types of classifiers
have been applied such as SVM [4], artificial neural networks (ANN) [12], etc.

This paper describes a three steps framework for robust license plate detec-
tion and recognition. The main contribution of our LPR system is the fusion
of different kinds of segmentation algorithms to obtain a strong license plate
detector.

The article is organized as follows: section 2 presents the detection and recog-
nition framework, section 3 shows the results of our system, finalizing with con-
clusions and perspectives in section 4.

2 LPR Framework

In this section we introduce the three steps of the LPR framework: license plate
detection, character segmentation and character recognition.

2.1 License Plate Detection

The first task of a LPR system is the detection of the license plate inside the
image. The LP detection process starts generating several Regions of Interest
(RoIs) using morphological filters. To validate the RoIs and choose the most
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(a)

(i) top-hat+SE(1x20)
(ii) edge vertical (Sobel)
(iii) close+SE(15x15)
(iv) open+SE(10x20)
(v) close+SE(1x30)

(b)
(c)

(d)

(e)

(f) (g) (h)

(i) (j)

Fig. 2. License plate detection. (a) Original image; (b) Pseudo code of the morpho-
logical operations; (c) resulting RoIs; (d) correlation pattern; (e) correlation map; (f)
extracted RoI; (g) text segments; (h) text blocks; (i) choosen RoI and (j) characters
extraction.

probable license plate region, we perform a more exhaustive evaluation: analysis
of the presence of text and obtainment of a correlation map using the Fourier
transform. These clues, being of different nature, help the system to obtain a
strong and robust detection.

Morphological filters. A morphological top-hat filtering is applied to the input
image to enhances the contrast in regions with great difference in intensity values.
Then, the vertical contours are calculated using a Sobel operator. Successive
morphological operations are then applied to connect the edges in potential LP
regions. Fig. 2 (b) shows the pseudo-code of the morphological operations. Each
line shows the structural element employed and its size, found empirically based
on the expected license plate size. In that way, the morphological filters are a
simple and rapid way to provide several potential RoIs and, at the same time,
they have the responsibility not to miss the license plate in this step. The N
resulting RoIs are showed in Fig. 2 (c): Ri, i = 1, ..., N .
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Template matching. We calculate a correlation map of the occurrences of a
license plate in the image using a FFT. Let be I the input image and F (I)
its FFT, P the correlation pattern, Fig. 2 (d), and F (P) its FFT. Then, the
correlation map M (see Fig. 2 (e)) is given by M = F−1

(
F (I)F (P)∗

‖F (I)‖‖F (P)‖
)

where

F−1 is the inverse Fourier transform and F ∗ the complex conjugate of F . We
get then a feature vector scv = (scv1, . . . , scvN ) of confidence values, where
scvi = 1

|Ri|
∑

(x,y)∈Ri
M(x, y) and | · | is the area of Ri.

Text segments. From each region Ri, i = 1, . . . , N , we calculate the potential
text segments using Wong’s method [5]. For that, the horizontal intensity gra-
dient is calculated using a derivative mask [-1,1]. Then, at each (x, y) ∈ Ri, the
Maximum Gradient Difference (MGD) is computed. This value is the difference
between the maximum and minimum gradient values inside an horizontal seg-
ment s of width n + 1 centered at (x, y). In our application n = 40, which is
slightly longer than the average size of two characters. Usually, text segments
have large MGD values. The segments are then filtered preserving those with a
MGD value larger than a certain threshold. A value of 200 has empirically been
found to be the best choice for this parameter.

Next step gets the number of background-to-text nb−t−t(s) and text-to-back-
ground nt−t−b(s) transitions for each segment s, which should be close if s con-
tains text. Also, the mean and variance of the horizontal distances between the
background-to-text and text-to-background transitions in every segment s is
computed. We define the following two conditions: C(1)(s) = {nb−t−t +nt−t−b >
threshold} and C(2)(s)={mean and variance of horizontal distances in s are in-
side a certain range}. Then, Si = {s ∈ Ri / C(1)(s) ∧ C(2)(s) holds}, are the
validated segments for every Ri, i = 1, . . . , N . We define two features vectors:
nts = (nts1, . . . , ntsN ) and mgd = (mgd1, . . . , mgdN), where ntsi = #Si and
mgdi = 1

ntsi

∑
s∈Si

MGD(s).

Text blocks. In this step, the text segments validated previously are merged
to form text blocks. For each text segment, the mean and the variance of the
intensity values in the original image are calculated. Two continuous segments
are merged if the mean and the variance are close using a two pass strategy, top-
down and bottom-up. We define a text block feature ror = (ror1, . . . , rorN ),
where rori is the confidence value indicating the RoI occupation ratio defined
as rori = area(text blocks ∈ Ri)/area(Ri), for i = 1, . . . , N . Fig. 2 (h) presents
two text blocks covering 23% of the area region.

Clues combination and decision. We get four feature vectors, nts, mgd, ror
and scv of different nature, each of them having a confidence value for each RoI.
We need to merge their information in order to decide which of the N regions
have obtained the highest values in the vectors. To do so, we create four sorting
index vectors: ntssi, mgdsi, rorsi and scvsi. These vectors give an index to each
Ri that depends on an ascending sorting: the Ri with the lowest value in the
feature vector gets index 1, and the Ri with the highest value gets index N .
Then, we define a vector votes with length N :
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votes(i) = ntssi(i) + mgdsi(i) + rorsi(i) + scvsi(i), for i = 1, . . .N .
The region Rm, with m = arg max1≤i≤N votes(i) is retained as the license
plate. Rm will always be in the latest positions in the sorted vectors receiving
the greatest votes. See Fig. 2 (i) for the chosen region in our example.

2.2 Character Segmentation

The RoI Rm detected as the license plate is thresholded in order to obtain a
binary image, where high intensity values correspond to the foreground color.
To identify the characters, the algorithm groups the connected foreground pixels
in regions and calculates its bounding boxes. In order to filter the non-character
bounding boxes, the algorithm evaluates the width and height ratio and the spa-
tial position, being also capable to split connected characters. The final bounding
boxes will establish the validated characters (see Fig. 2 (j)).

2.3 Classification

A LP is composed of two groups of three characters. The first group of charac-
ters are letters and the second group are numbers (see Fig. 2). If the number
of segmented characters is at least four, it is possible to associate their index
position on the license plate. The bounding boxes are sent to a classifier special-
ized in letters or a classifier specialized in numbers. Two types of classifiers are
compared in this work: an edge based method and a template based method.

Edge based method
The first classification method is based on the work of Tepper et al. [13]. They
employ the shape context [2] as descriptor and the a contrario framework [3] to
perform the shape context matching.

Let T = {t1, . . . , tn} be the set of points of the contour obtained using the
Canny’s algorithm. For each ti ∈ T , we model the distribution of the positions
of n− 1 remaining points in T relative to ti. We call this distribution the Shape
Context of ti (SCti). In order to render the SCti useful, we discretize the values
in a log-polar space obtaining a coarse histogram of 180 bins. Each bin of the
histogram corresponds to a cell on the partition and their value is calculated as
the number of edge points lying inside the cell.

We use the a contrario framework, developed as part of the Computational
Gestalt project (see [3] for a complete description).

Let {SCi|1 ≤ i ≤ n} and {SC′
j |1 ≤ j ≤ m} be two sets of shape contexts

from two different shapes. We want to see if both shapes look alike. The distances
between SCi and SC′

j can be seen as observations of a random variable D that
follows some unknown random process. Formally, let F = {F k|1 ≤ k ≤ K} be
a database of K shapes. For each shape F k ∈ F we have a set T k = {tkj |1 ≤
j ≤ nk} where nk is the number of points in the shape. Let SCtk

j
be the shape

context of tkj , 1 ≤ j ≤ nk, 1 ≤ k ≤M . We assume that each shape context is

split in C independent features that we denote SC
(i)
tk
j

with 1 ≤ i ≤ C. Let Q be
a query shape and q a point of Q. We define
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dk
j = max

1≤i≤C
d

k(i)
j , where d

k(i)
j = d(SC(i)

q , SC
(i)
tk
j

)

where d(·, ·) is some appropriately chosen distance. We can state the a con-
trario hypothesis: H0: the distances dk

j are observations of identically distributed
independent random variables D that follows some stochastic process. The num-
ber of false alarms of the pair (q, tkj ) is NFA(q, tkj ) = N ·

∏C
i=1 P (D ≤ dk

j |H0),
where N =

∑K
k=1 nk, and P (D ≤ dk

j |H0) is the probability of false alarms (fur-
ther details to obtain P can be founded in [13]). If NFA(q, tkj ) ≤ ε then the pair
(q, tkj ) is called ε-meaningful match.

The classifier decides which character from the database corresponds to the
query counting the number of ε-meaningful matches between the shape query
and each shape from the database. The database shape that produces the biggest
number of matches is selected. In case that there are no ε-meaningful matches
for any database shape, a no-match decision is returned. We have only one shape
in the base for each class.

Template based method
In the template based method, the pixel intensity values of the character feed a
classifier trained with the Support Vector Machine (SVM) algorithm.

In this work, we train the SVM using the algorithm proposed for Platt: the
Sequential Minimal Optimization (SMO) [11]. SMO is a simple algorithm (the
pseudocode is available at [11]) that solves the SVM quadratic problem analyt-
ically inside an iterative process. Its advantage lies in the fact that solving the
dual maximization problem for two Lagrange multipliers can be done analyti-
cally and very quickly.

The strategy for the classification is the One Against All approach. We con-
struct N binary SVM classifiers, each of which separates one class from the rest.
The positive samples for the k-th SVM classifier correspond to those of the k-th
class. The negative samples are the samples of the other classes. In the training
phase, the training samples are resized to a pattern of 16x10 pixels and their
intensity values normalized between -1 and 1. In the testing phase, an input sam-
ple, resized and normalized, is the input of the N classifiers. It will be classified
as the class whose classifier produces the highest value.

3 Experimental Results

Dataset
The dataset is composed of 623 images captured by an infrared camera system
placed at a truck entrance gate. Captures are taken at any time of the day (there
are day and night captures). The dataset is split into two databases. The first base
is composed of 151 images and is used to extract the training samples for the SVM
training and the patterns for the shape context matching. The second base (472
images) is our test database. There are two labels for each test sample indicating
the license plate numbers and the nature of the LP: non-deteriorated or deterio-
rated. License plates that are deformed, noisy, broken or incomplete are labeled
as deteriorated. There are 356 non deteriorated samples and 116 deteriorated.
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A - Detection

Non-det Det
Detection (%) 94.6 62.0
B - Characters segmentation

Error (%) 2.2 25.5
C - Classification (%)

SCcont 82.9 68.8
SVMpol2 91.4 85.5
SVMrbf 92.4 90.1
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Fig. 3. Results of the LPR system. Table (a) shows the detection results in A, error
percentage in characters segmentation in B and classification results in C. Figure (b)
presents the quantity of characters recognized in the detected LPs.

Results
Fig. 3 (a) shows the results of the LPR system. Table A presents the detection
results with a 94.6 % in the non-deteriorated LPs images and 62 % for the
deteriorated. A detection is validated if the license plate is entirely inside the
RoI and the character segmentation found at least four characters. The average
executing time of the detection step using MATLAB running on a PC with
3.16GHz processor is 700 ms. In general, the system misses the samples when
there are strong vertical edges in the truck front, which can defeat the LP region
in the clues fusion decision. This situation often happens in the case of the
deteriorated samples, when the LPs are noisy or deteriorated.

Row B exposes the character segmentation errors. We observe the difficult
task of this step on the deteriorated images, when there are missing characters
or bounding boxes validated out of the boundaries of the LP.

Row C exhibits the classification results of the two classifiers on the well ex-
tracted characters. For the SVM classifier we use two kind of kernels: SVMpol2,
polynomial function (2nd degree) and SVMrbf, radial basis function. The latter
obtains the best score. The edge based classifier SCcont obtains the worst per-
formance. This is a natural result if we consider that there is only one shape for
each class in the database.

Finally, the last bars in Fig. 3 (b) present the number of LPs in which the
system recognizes the six characters well. LPs giving five characters means that
one character was missed or erroneously classified. Certainly we can expect the
LPR system to make some mistakes. In order to improve the system performance,
a list of LPs can be used to verify the LPR response and to validate it or change
it for the most probable LP in the base.
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4 Conclusions and Perspectives

This paper presented a LPR system for still outdoor truck images. We obtained
good results in the detection phase by using a fusion of different segmentation
algorithms. For the recognition phase, we compared an edge based method and
a template based method. The former, using the a contrario framework and the
shape context features, has the advantage that uses only one shape per class.
The latter, based on a SVM classifier and pixel values as features, obtained the
best performance.

We consider, however, that further research is necessary to tackle deteriorated
LP images on the detection and character segmentation phases. Consequently,
we plan on applying new clues to minimize erroneous detection results, especially
for deteriorated images. As far as it is possible, we expect to make use of the
number of segments inside each region extracted using the Hough transform.
More detailed research can also be done in the characters segmentation phase
in order to improve the performance of the system. Finally, classification results
using the edge based method could be improved generating shapes in a different
way that better generalize each class.
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Álvaro Pardo

Department of Electrical Engineering, Faculty of Engineering and Technologies,
Universidad Católica del Uruguay
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Abstract. In recent years several non-local image denoising methods were pro-
posed in the literature. These methods compute the denoised image as a weighted
average of pixels across the whole image (in practice across a large area around
the pixel to be denoised). The algorithm non-local means (NLM) proposed by
Buades, Morel and Coll showed excellent denoising capabilities. In this case the
weight between pixels is based on the similarity between square neighborhoods
around them. NLM was a clear breakthrough when it was proposed but then was
outperformed by algorithms such as BM3D. The improvements of these algo-
rithms are very clear with respect to NLM but the reasons for such differences
are not completely understood. One of the differences between both algorithms
is that they use adaptive regions to compute the denoised image. In this article we
will study the performance of NLM while using image adapted neighborhoods.

1 Introduction

In this work we assume that the observed image, x, is the result of adding a random
noise component n to the original noiseless image z. Therefore, the relationship at pixel
i becomes: xi = zi+ni. The problem of image denoising is to estimate z while preserv-
ing its features such as edges and texture. To preserve these features several non-linear
or locally adapted methods have been developed. Non-local methods are an example of
non-local and non-linear denoising methods. In [4] Buades, Morel and Coll presented
the Non Local Means (NLM) denoising method. The underlying idea of this method is
to estimate, zi, using a weighted average of all pixels in the image. Given the pixel to
be denoised, i, the weights wij measure the similarity between neighborhoods centered
at i and j. The trick is that corresponding neighborhoods are found all over the image
imposing a non-local nature to the method. In practice, this is not computationally ef-
ficient and similar neighborhoods are looked in a search windows around pixel i. For
more details on similar non-local methods see [1,2,6,5,3].

In this work we explore our claim that locally adaptive neighborhoods play an impor-
tant role in the performance of non-local methods. To prove this claim we will compare
the performance of NLM against a NLM with image adapted neighborhood configura-
tions. First, for synthetic images, based on the local structure of the image an optimal
neighborhood is selected. For natural images we will use Principal Component Analysis
(PCA) to extract image adapted neighborhoods.
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2 Non Local Means Denoising

The NLM algorithm [4] estimates the denoised value at pixel i, x̂i, using a weighted
average of all pixels in the search region Ri:

x̂i =

∑
j∈Ri

wijxj∑
j∈Ri

wij
(1)

The weights wij reflect the similarity between pixels i and j based on the distance
between neighborhoodsNi and Nj around them. In [4] the authors proposed to compute
the weight as:

wij = exp(−||Ni −Nj ||22/σ2). (2)

Ni, Nj are image neighborhoods of size (2K + 1)× (2K + 1) centered at pixels i and
j respectively and ||Ni −Nj ||22 is de squared distance between them. The parameter σ
controls the weights; with a small sigma only points with close neighborhoods receive
weights close to one.

In some cases the weights wij are not able to discriminate between different neigh-
borhood classes. This is critical along edges since pixels along them have less corre-
sponding neighborhoods in the image. The main difficulty is that in several cases, for
instance when i lies over a corner, it is very difficult to find similar neighborhoods in Ri.
So, even if we could segment the pixels in Ri based on its neighborhoods configuration,
it will not be enough. Therefore, in order to solve this situation we need to modify the
neighborhood configuration.

2.1 Neighborhood Selection for Synthetic Images

The idea here is to select the neighborhood configuration that best suits the local struc-
ture around each pixel i. This a classical idea that dates back to [7]. In Figure 1 we show
the nine neighborhoods considered. If i is over a smooth region the configuration (9)
should be selected. On the other hand, if i lies along a vertical edge configuration (3) or
(4) should be used. The selection is based on the distance between the mean inside and
outside the pixels in neighborhood.

When we plug the procedure described above into NLM algorithm we found that the
best MSE for traditional NLM is outperformed by the modified NLM here proposed.
For the image in Figure 2 the MSE for NLM is 4.38 and for the modified NLM here
proposed is 2.12. So, adapting the neighborhood during similarity computation seems
a promising idea. Unfortunately, when we applied the same algorithm to real images
we found that the modified NLM, for the images un Figure 3, was outperformed by the
traditional NLM. Observing the map that showed the selected neighborhood configu-
ration for each pixel we found that it was very noisy. That means that the selection of
the neighborhood was unstable. On one hand the noise present in the image makes it
very difficult to correctly select the true neighborhood configuration. On the other hand,
natural images rarely have local configurations as the ones shown in Figure 1. There-
fore, to apply the same idea to natural images we need another way to introduce the
local configurations into the neighborhoods similarity computation. The requirements



Non Local Image Denoising Using Image Adapted Neighborhoods 279

Fig. 1. Neighborhood configurations. From left to right and top to bottom the neighborhoods are
numbered from 1 to 9.

Fig. 2. Synthetic image corrupted with Gaussian noise

for this are stability against noise and the capability to extract the local configurations
present in the image. In next section we will show that traditional Principal Component
Analysis (PCA) fulfills both requirements and gives good results in terms of MSE.

3 PCA and NLM

The use of PCA in the context of non-local method was mainly used to reduce the
computational complexity via dimensionality reduction. In [9] the author reviews the
more relevant literature in this area. Also explores the use of PCA to compute what
he calls the Principal Neighborhoods (the eigenvectors computed with PCA). We will
also use PCA to compute image adapted neighborhoods. The main difference with his
approach and ours is that in our case we use this idea to justify the need of image
adapted neighborhoods. In this way we are looking the same problem from another
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Fig. 3. Test images: Barbara, Couple, Einstein, GoldHill, House, Boat, Peppers, Baboon
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point of view. Finally, the estimation of the parameters of NLM is done in a completely
different way (see Section 4).

Our claim is that using PCA we can extract the local configuration of each neighbor-
hood being processed. Using the correct neighborhood we compute the distance consid-
ering only the relevant information while being, at the same time, insensitive to noise.
Instead of selecting the relevant information in the pixel space, as we did for synthetic
images, for natural images we do it in the projected space obtained with PCA. PCA
is well known for its stability in the computation of the principal components (eigen-
vectors) in the presence of noise in the data. Furthermore, the selection of the relevant
information to compute the neighborhood similarity is image dependent (PCA is com-
puted for each image being denoised). This is another advantage of PCA; although for
every image we start with the same neighborhood configuration in the space of pixels
the similarity is image dependent via the principal components. So far we considered
that the original image z contains some structure and therefore the use of principal com-
ponents will allow us to robustly compute the similarity between neighborhoods. As we
will se in the Section 4 with textured images there is no clear benefit in using principal
components to compute the similarity.

4 NLM Using PCA Neighborhoods

In this section we discuss the implementation of NLM using PCA image adapted neigh-
borhoods.

The new algorithm has several parameters. First we have the parameters of NLM: the
size of the neighborhoods, the size of the search windows and the width of the expo-
nential kernel. In this work we fix the first two with values 3× 3 and 7× 7 respectively.
For the setting of the width we follow the idea presented in [5,3] and set the width
σ proportional to the noise variance. This can be justified using the following result.
The expected distance for two identical neighborhoods with additive and independent
gaussian noise with zero mean and variance σn results:

E

⎧⎨⎩
(2K+1)2∑

k=1

(Xk
i −Xk

j )2

⎫⎬⎭ =
(2K+1)2∑

k=1

E
{
(Nk

i −Nk
j )2

}
= 2(2K + 1)2σ2

n. (3)

Based on this, first we estimate the σn using [8] and then set σ = 3
√

2σn (for 2K+1 =
3). The last parameter is the dimension of the projection and will be discussed in the
reminder of this section.

The computation of the image adapted neighborhoods is done using PCA. Given
the set X containing the n neighborhoods for the image, PCA is applied to obtain the
principal components P and the projected information Y . Since we are using neighbor-
hoods of size 3 × 3 the size of X is n × 9, the size of P is 9 × 9 and the size of Y
is n×9. The distance between two points in X can be computed using the corresponding
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Fig. 4. MSE for test images while varying the number of components d in PCA. The red (hori-
zontal) line indicates the result of traditional NLM. Images: Barbara, Couple, Einstein, Goldhill,
House, Boat, Peppers, Baboon.
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projected samples in Y . If the coordinates in Y are sorted in descending order with
respect to the eigenvalues obtained from PCA, the distance can be approximated with
the first d coordinates. This idea was traditionally used to speed up the computational
time of NLM. Here we argue that not only this speeds the computations of NLM but
also give improvements in terms of MSE since the distance is computed in another
space where noise is reduced and the local structure of the image is introduced.

The distance between two neighborhoods Ni and Nj is computed using its corre-
sponding projections in Y : Yi and Yj . If we use only d coordinates the we have an
approximation of the distance:

||Ni −Nj ||22 ≈
d∑

k=1

(Y k
i − Y k

j )2.

As we will show the approximation at the end improves the results. This reinforces
our idea that for the computation of the distances between neighborhoods we must use
the local structure of the image. Using PCA components we do it so and also we are
immune to the effects of the noise. In Figure 4 we show the evolution of the MSE for
different values of d. The red line shows the result of NLM (using all the coordinates in
Y ). We can observe that in all cases but one, the optimal results are obtained with d < 9.
Thus, the adaptation of the neighborhoods to the image statistics improves the results of
NLM. The only case where this is not true is for baboon, an extremely textured image.
Additionally, the MSE is stable with d between 5 and 8. In these experiments artificial
Gaussian noise with σn = 10 was added to each image.

5 Discussion, Conclusions and Future Work

As we showed in Figure 4 the MSE using the image adapted neighborhoods improves
with respect to traditional NLM. So, not only we obtain a computationally improved
algorithm but also we gain in terms of MSE. Based on this data we confirm our claim
that the adaptation to the local structure of the image is important in this kind of al-
gorithms. For synthetic images the adaptation can be done using naive neighborhoods.
On the other hand, natural images need neighborhoods that reflect the statistics of the
image itself. The only image where our proposal fails is Baboon. This is an extremely
textured image where it is difficult to extract the structure. This stresses that discovering
the structure of the image neighborhoods it is important for this kind of algorithms.

We believe that with this evidence we add some light to the study of non-local de-
noising algorithms. Although PCA has been studied before, here we study the problem
from another perspective. For the future, we want to study the optimal estimation of
d and its influence on the results. It is interesting to note that consistently in all the
experiments performed the MSE is stable between d=5 and d=8. The work [9] studied
this problem and would be an starting point in our work. Also, we expect to explore the
possibility of defining binary masks in the PCA space as we did in the pixel space in
the case of synthetic images.
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Abstract. Fixed-pattern noise is a common feature in several uncali-
brated imaging systems, and it typically appears as striping and grid-
like nonuniformity artifacts in hyperspectral and infrared cameras. In
this work, we present a quantitative and comparative analysis of fixed-
pattern noise reduction, or calibrating techniques, by using several image
quality indexes. A special emphasis is made in demonstrating the corre-
spondence between the reference-free (blind) image quality indexes and
the typical reference-based metrics, specially when using online calibra-
tion procedures where reference data is not available. We evaluate the
performance of several classic scene-based calibrating algorithms applied
to: multispectral images with simulated striping noise; and infrared im-
age sequences with simulated nonuniformity. The results show that most
of the tested reference-free indexes are useful indicators for tracking some
of the real degradation of the calibrated or even uncalibrated imagery,
but they are far from perfect to match an error or similarity measure if
the clean or reference data is available.

1 Introduction

Digital imaging systems are often composed of a bundle of optical lenses and
a focal-plane array (FPA) with its associated readout electronics. A FPA can
be arranged in a one dimensional array, or linear detector, which might need to
employ a scanning acquisition mode in order to form an image. On the other
hand, a two dimensional FPA can directly form images without any moving
parts, which is the case of most of the photographic and video cameras available
on the market. However, in multi or hyperspectral cameras the two dimensional
FPA is employed as an array of linear detectors, one for each wavelength band,
so again there is a need for scanning in order to create the bidimensional images,
which is the case from consumer RGB scanners up to state-of-the-art satellite
cameras.

The fixed-pattern noise (FPN) corresponds to a degradation common to all
FPA based imaging systems, and it is due to the intrinsic and uneven response of
the individual detectors, or pixels, within the array. In the case of bidimensional
staring arrays, such as in infrared cameras, the FPN is often spatially distributed
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in a grid-like appearance, known as nonuniformity (NU) noise. On the other
hand, when dealing with a scanning device such as a hyperspectral imager, the
FPN is seen as vertical or horizontal strip lines, known as striping noise, and the
pattern is different between bands because each band is captured by a different
line of the detector array.

Fortunately most of the detectors can be modeled by a linear model repre-
sented by a gain and an offset parameter. Therefore, the proper way of calibrating
the FPA, and thus removing for the FPN, is by estimating such parameters and
correct for their disparity or nonuniformity. Even though the FPN can be re-
stored by a proper calibration of the detectors in order to estimate its intrinsic
parameters, there are still two main issues. The first is related to the change on
the environmental or operational conditions of the camera, so the parameters
may drift. The second is related to the fact that the calibration may be unfeasible
due to increased setup costs or complexity.

Nonetheless, several methods have been developed in order to calibrate the
FPA and then reduce the striping and NU noise by using scene-based data or
statistics. For the striping FPN, a moment matching (MM) method has been
proposed in [3]. In this case, the mean and variance of the readout data is
obtained and used to compensate the corrupted image. In [9] a method based
on histogram matching with weighted least-squares filter is introduce in order
to reduce the striping noise in MODIS data. The histogram matching is used
to reduce the detector-to-detector stripe and mirror stripes, and the weighted
least-squares filter is used to reduce the stripe noise. In [1] several methods
are reviewed and compared such as the ones based on: low pass filtering, gray
value substitution, and wavelet transforms. In this case, the best visual results
were obtained using a wavelet approach, but the use of a low pass filter had
a noticeable noise removal in despite of removing useful high pass information.
From this point, in [8] is proposed a combination of wavelet transform and
frequency filtering in a novel, fast and stable filter called the wavelet-FFT (WFT)
filter. For vertical striping noise, the vertical detail band contains the principal
striping artifacts. Therefore the filter operation is only selectively applied to
this band by means of a Gaussian low-pass filter, and the denoised image is
then reconstructed using the inverse wavelet transform. The results show a good
performance in visual results and radiometric range preservation. In order to
reduce the FPN in staring FPA, such as in infrared imaging system, several
methods have been proposed in the literature called nonuniformity correction
(NUC) methods. In this work, we are interested in scene-based methods, which
only make use of the images captured during the normal operation of the camera
to perform the NUC, and thus removing the NU noise. Among all NUC methods,
the following two are highlighted due to their simplicity and because they allow a
dynamic frame-by-frame operation. The constant statistics algorithm [5], which
has a reminiscence of the MM approach previously reviewed for scanning imaging
systems, and the neural-network approach [12,13] which has a extreme ability
for adapting to the drift of the parameters.
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Figures of merit for evaluating the performance of destriping or NUC
methods can be divided in: reference-based and reference-free (or blind) per-
formance metrics. Reference-based metrics require a set of reference images or
video sequences. An example of this metric, which is used for laboratory cal-
ibration, is the correctability parameter [11]. This parameter, defined as the
ratio between the magnitudes of the spatial and temporal noise, indicates when
the spatial noise has been reduced to a magnitude below the magnitude of the
temporal noise. Another kind of reference-based metrics are the image qual-
ity indexes based on measure of distance, traditionally used in image process-
ing such as the mean-squared error (MSE), the mean-absolute error (MAE),
the root-mean-square-error (RMSE), and the peak-signal-to-noise-ratio (PSNR).
The main advantage of such metrics is that they provide a radiometric perfor-
mance evaluation of the algorithms, although globally. Lately, the universal im-
age quality index (UIQI) [15], the structural similarity index measure (SSIM) [16]
and the feature based SSIM [7] have been used in order to assess the quality of
images in a perceptual framework. When the reference images are not available,
the applicability of reference-based metrics is confined to simulation scenarios
where artificial noise is added to sets of clean or previously calibrated images.
On the other hand, a reference-free metric may be able to recognize quanti-
tatively, but blindly, if a image is getting better or worst after any denoising
or restoration procedure, trying to emulate our own visual system mechanism
for deciding wether an image has a good overall quality or not. Among them,
the most suited for evaluating the removal of FPN are the roughness (ρ) in-
dex, the noise reduction (NR) ratio and the residual non-uniformity (RNU).
The ρ metric was introduced by Hayat’s group in [6], and it quantifies the ten-
tative amount of NU in an image by using first order gradient filters in the
horizontal and/or vertical directions. The ρ index is a clear indicator on the
FPN removal, but it might produce confusion, leading to good (or low results)
if real high frequency information from the original images is removed as well.
A modified and enhanced version that accounts for some of the ρ index flaws
is also proposed in [10]. The NR ratio was proposed and used in [2] in order to
specifically evaluate the noise reduction achieved by the exemplified destriping
method, and the index corresponds to the ratio between the mean frequency
power of the raw image and the denoised one. Latest, the RNU index was de-
fined in [14] to evaluate the ability of their own NUC method to reduce the
FPN.

In this paper we use several image quality indices in order to compare and
rank the performance of certain classic destriping and NUC methods using im-
age data with simulated FPN. In Section 1 we present the striping noise problem
and its reduction methods, and in Section 3 we explain the NU problem and the
correction methods herein used. Section 4 contains a description of the quanti-
tative indexes, and the results achieved by the simulations are summarized in
Section 5. Finally, in Section 6 we present a discussion and some conclusions, as
well as a outline of our future work.
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2 Striping Noise and Its Reduction

When the image is formed by the scanning of a one dimensional sensor array, the
produced FPN is known as striping noise. Formally, by assuming a linear model
between the readout signal Yj(n) and the input irradiance Xj(n) collected by
the (j)th detector at a given time n, it is common to define the following image
formation model:

Yj(n) = Aj(n) ·Xj(n) + Bj(n), (1)

where Aj(n) and Bj(n) are the gain and the offset of the jth detector. As the gain
and offset are not necessarily equal along the detector array, then any dispar-
ity presented between their responsivity and bias levels triggers the generation
of a striping noise at the scanning direction. Hopefully, as the gain and offset
are often constant in time, they can be computed by performing a calibration
procedure, and further used for compensating the acquired images. However,
it is well known that at different operation conditions, and specially at longer
wavelengths, the gain and offset parameters may drift and thus differ from the
previously calibrated ones. In addition, calibration setups can be expensive, as
well as time consuming, and they are not always available, as it is the case of
space-based applications such as in satellite imaging. Nevertheless, there are cal-
ibration methods that purely rely on the acquired data for estimating the uneven
parameters, and thus reduce the undesired FPN.

Assuming the model en Eq. 1, it is possible to obtain the temporal mean and
standard deviation of the readout data as:

μYnj = Aj · μXnj + Bj , (2)
σYnj = Aj · σXnj , (3)

In addition, it is also feasible to assume that the input irradiance is of zero mean
and unitary variance, obtaining that:

Bj = μYnj , (4)
Aj = σYnj . (5)

Thus, the image with reduced striping noise is finally given by:

X̂nj = (Ynj − μYnj)/σYnj . (6)

This destriping noise reduction methods is known as the MM [3]. Now, if we apply
the Fourier transform to the gain and offset images previously obtained we have
that FA(u, v) =

∑M−1
m=0 ame−jmvδ(u) and FB(u, v) =

∑M−1
m=0 bme−jmvδ(u), rep-

resenting that the gain and the offset is concentrated in the horizontal frequency
components when vertical striping noise is present. Using this result, a WFT
filter was proposed in [8], that applies a high pass filter to any vertical sub-band
of a wavelet decomposition. For achieving good results, the WFT method relies
on the adjustment of the two key parameters: the damping factor (of the high
pass filter) and the decomposition level of the wavelet transform. In this paper,
we use the best combination as reported in [8].
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3 Nonuniformity and Its Correction

Assuming that each infrared detector is characterized by a linear model, the
measured readout signal Yij at a given time n can be expressed as for the (ij)th

detector in the form:

Yij(n) = Aij(n) ·Xij(n) + Bij(n), (7)

where Aij(n) and Bij(n) are the gain and the offset of the ijth detector, and
Xij(n) is the real incident infrared photon flux collected by the respective de-
tector.

Harris et. al in [4] developed a recursive version of the constant statistics
NUC technique where the parameters are recursively estimated frame by frame
as follows:

Bij(n + 1) = μ̂Yij (n + 1) = (Yij(n + 1) + nμ̂Yij (n))/(n + 1)
Aij(n + 1) = σ̂Yij (n + 1) = (|Yij(n + 1)− μ̂Yij (n + 1)|+ nσ̂Yij (n))/(n + 1)

A second fundamental NUC method is the one proposed by Scribner et. al
in [12], where equation (7) is reordered as follows:

Xij(n) = wij(n) · Yij(n) + bij(n), (8)

where the new parameters wij(n) and bij(n) are related to the real gain and
offset parameters of each detector as follows:

wij(n) = g−1
ij (n) bij(n) = −oij(n)g−1

ij (n). (9)

The expression presented in equation (8) is the responsible of performing the
NUC on the readout data. Then, for each ijth detector, the NUC model (8)
can be considered as the simplest neural network structure, which consists of
a single linear neuron node, with an estimate weight (ŵij(n)) and an estimate
bias (b̂ij(n)). For this reason we denoted this method as neural network (NN).
A complete version of Scribner’s NUC method can be found in [13].

4 Quality Indexes

In this section, the quality indexes are addressed. The RMSE reference-based
index for a L−dimensional FPA is given by:

RMSE2 =
1

size(L)

∑
L

(IL − X̂L)2, (10)

where X̂ is the corrected image and I is the real image. L is the dimension of the
FPA array (1 or 2) where I denote a vector or matrix, respectively. The RMSE
is higher when the correction is poor, and it is lower when the corrected image
is closer to the real image.
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Moving to reference-free indexes, the ρ index is described as:

ρ(X̂) = (||h⊗ X̂||+ ||hT ⊗ X̂||)/||X̂||, (11)

where X̂ is an M×N pixels compensated image, ||X̂|| is the �1 norm of X̂ , ⊗ rep-
resents the discrete 2D convolution, h is a horizontal edge-detector filter, which
is defined as [−1 1], and T stands for vector transposition. Note that the rough-
ness index measures the horizontal and vertical components of the FPN. If the
stripe noise is presented in vertical direction, the ρ index only requires the hor-
izontal component. By definition, the roughness index is always a non-negative
real number, and ρ(X̂) = 0 whenever X̂ is constantly flat. Thus, according to
the roughness index, the closer to zero the better the NUC performed on the
raw image, but if it reaches a zero value, it means that the corrected image is a
constant and uninformative image.

In [10] the effective roughness (ER) index is proposed as a redefinition of the
roughness index, modifying the edge-detection filtering operation. The mathe-
matical definition of the ER index is:

ER(X̂) =
||h⊗ (g ⊗ X̂)||+ ||hT ⊗ (g ⊗ X̂)|| − 2||g ⊗ X̂||

||g ⊗ X̂||
, (12)

where g is any edge-detector filter. The rationale for the filtering operation is
twofold: diminish the low-frequency components of the image and accentuate
the (residual) noise in the image. The ER index ranks a correction with the best
performance when ER(X̂) = 0.

Another method is the ratio of NR that has been used in several works [2].
This is defined as:

NR = N0/N1, (13)

where N0 and N1 stand for the mean power spectrum of the corrupted and cor-
rected image, respectively. In order to quantify the performance of the denoising
method, NR → ∞, i.e., the ideal is to remove as much noise as possible from
the corrupted image. Finally, the RNU metric is given by:

RNU =
1
μ

(
1

nm

∑
i

∑
j

(Yij − μ))1/2 × 100%, (14)

where μ is the spatial mean of the corrected image. The RNU must be lower in
order to rank the best correction method.

Table 1. Statistical parameters to generate the simulated fixed-pattern noise test
images and image sequences for both types of fixed pattern noise

g σg o σo t σt
Test Sequence 1 1 0,025 0 5% 0 0,5%
Test Sequence 2 1 0,05 0 10% 0 0,5%
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5 Results

In order to quantify the image quality indexes behavior, we present results over
simulated FPN of both striping and NU, providing the real image and the cor-
rupted frame. We compute the RMSE, ρ, ER, NR, and RNU metrics for the
original images, and for two FPN reduction algorithms considered for both sim-
ulations. The destriping is performed using MM and WFT, and the NUC is
performed by the constant statistics (CS) and NN methods. Two levels of FPN
were chosen to generate the simulated fixed gain and offset image masks to
produce the desired FPN appearance over each kind of data, and the selected
statistics are the same for both types of noise, as displayed in Table. 1. In ad-
dition, a small temporal noise component was added to simulate the common
electronic/thermal noise.

For the stripping noise simulation we used a multispectral satellite image with
three channels (red, green and blue), using a different strip noise pattern with
the same statistics to each channel. The main reason for this is to demonstrate
how the correction affects the combined image, making easy to visualize any
radiometric problems in the denoised images. For the infrared NU noise, we used
a sequence of 4000 frames that includes camera motion and moving targets, so
helping to achieve the requirements needed for the NUC algorithms. Fig. 1 shows
graphically the FPN generated for both kinds of noise.

(a) (b) (c) (d)

Fig. 1. Image of the simulated fixed pattern noise with g = 0.025 and σg = 5%: a)
unidimensional and b) bidimensional gain; c) unidimensional and d) bidimensional
offset

Table 2. Performance comparison of the striping reduction methods in terms of the
different quality indexes

Gain σ = 0.02
Offset σ = 5% σ = 10%

Method Index Ch1 Ch2 Ch3 Mean Ch1 Ch2 Ch3 Mean
Noisy RMSE 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10

ρ 0.35 0.27 0.33 0.32 0.48 0.42 0.50 0.47
ER 0.54 0.58 0.59 0.57 0.67 0.73 0.71 0.70
NR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RNU 0.81 0.66 0.85 0.77 0.86 0.72 0.89 0.82

MM RMSE 0.06 0.06 0.07 0.06 0.06 0.07 0.08 0.07
ρ 0.27 0.20 0.28 0.25 0.29 0.22 0.29 0.27

ER 0.32 0.37 0.39 0.36 0.33 0.37 0.39 0.36
NR 0.94 0.93 0.86 0.91 0.88 0.85 0.80 0.84

RNU 0.81 0.66 0.85 0.77 0.86 0.72 0.89 0.82

WFT RMSE 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ρ 0.25 0.19 0.23 0.22 0.26 0.19 0.22 0.22

ER 0.33 0.37 0.38 0.36 0.33 0.37 0.38 0.36
NR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RNU 0.78 0.64 0.82 0.75 0.78 0.64 0.79 0.74
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Results obtained for the two destriping corrections used for each channel,
and for different levels of FPN, are summarized in Table. 2, where the mean
value obtained from the three channels is calculated to compare the methods.
The RMSE analysis shows that the WFT correction produces a more similar
image compared to the original one, and that the increase of the FPN affects in
the same amount both corrections. When comparing the reference free indexes,
ρ and ER fail to difference which correction generates a better result without
indicating any change after applying the higher FPN mask. On the other hand,
RNU presents mixed results, correctly interpreting the FPN reduction using the
WFT technique, but does not reveals the increase in the FPN applied. The
NR values cannot be correlated with the other results because it indicates that
the destriping effects of the algorithms does not produce any different output
whatsoever. It is necessary to highlight that in the test sequence 1 the MM-
correction produce a worse image than the noisy one product of the change in
the radiometric range but all the reference free indexes fail to indicate. Fig. 2
presents the noisy image and the FPNcorrected versions.

(a) (b) (c) (d)

Fig. 2. Destriping results on simulated FPN (test sec. 2) in the reconstructed color
image a) Reference Image b) Noisy Image c) MM-Correction and d) WFT-Correction

For the infrared case, the mean and standard deviation of every index calcu-
lated over 2000 frames after the algorithms have reached the stationary state are
presented in Table. 3(a), and a sample for the frame 1602 is shown in Table. (b).
The main observation for the indexes values is that they follow a similar behavior
between the results reported for the bidimensional FPN case as in the one dimen-
sional FPN case. The results in Table. 3(b) show a scenery where the indexes indi-
cate incongruous results, where Harris NUC method produces a corrected image
that is worse than the original, but the ρ and ER index indicate a minor effect
of the FPN than the original. At the same time, the NR and RNU index are not
delivering new information when the level of FPN is increased. Fig. 3 presents the
noisy corrected frame 1602 of the infrared video sequence.
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Table 3. a) Mean/standar deviation and b) Frame 1602 comparison performance of
the non-uniformity reduction methods in terms of the different quality indexes

(a)
Gain σ = 0.02
Offset σ = 5% σ = 10%

Method Index mean/std mean/std
Noisy RMSE 0.05/ 0 0.10/ 0

ρ 0.35/0.05 0.62/0.12
ER 0.82/0.07 0.94/0.37
NR 1.00/0.00 1.00/0.00

RNU 0.37/0.04 0.43/0.05
Harris RMSE 0.12/0.04 0.12/0.04

ρ 0.20/0.10 0.20/0.11
ER 0.22/0.05 0.23/0.06
NR 1.13/0.09 1.36/0.18

RNU 0.21/0.07 0.49/0.14
NN RMSE 0.01/0.002 0.02/0.004

ρ 0.13/0.02 0.14/0.02
ER 0.21/0.05 0.27/0.06
NR 1.12/0.04 1.36/0.11

RNU 0.35/0.04 0.35/0.04

(b)
Gain σ = 0.02
Offset σ = 5% σ = 10%

Method Index
Noisy RMSE 0.05 0.10

ρ 0.28 0.48
ER 0.8 0.94
NR 1.00 1.00

RNU 0.42 0.45
Harris RMSE 0.11 0.11

ρ 0.13 0.14
ER 0.28 0.31
NR 1.01 1.16

RNU 0.35 0.35
NN RMSE 0.02 0.03

ρ 0.12 0.14
ER 0.25 0.32
NR 1.12 1.29

RNU 0.40 0.39

The obtained results suggest that from all of the reference free metrics, the
one that best track the evolution of the correction or denoising process is the
ρ index, in despite of the fact that it fails when identifying low frequency noise
components or radiometric changes in the resulting image. In addition, it is the
one that better fits the tendency given by the RMSE.

(a) (b) (c) (d)

Fig. 3. NUC results on simulated FPN (test sec. 2) in the frame 1602 a) Reference
Image b) Noisy Image c) Harris Correction and d) NN-Correction

6 Conclusions

In this paper we contrast several state-of-the-art reference-free indexes which
are commonly used to evaluate the effectiveness of the FPN reduction methods.
The study was performed by simulating the FPN typically found in two differ-
ent imaging systems, such as hyperspectral and infrared cameras. The results
indicate a low level of confidence between the presented indices given the in-
consistency found when they are compared to each other. Nevertheless, the ρ
metric presents the best results as a good blind indicator when it is contrasted
to a standard reference-based index, but unfortunately it is not able to reveal
any modification to the radiometric or dynamic range of the corrected or cal-
ibrated images. Future work may include a deeper study for different types of
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indexes and FPN reduction methods, giving the foundations for the design of a
new blind index for NUC purposes.
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Abstract. Vascular disease is characterized by any condition that affects
the circulatory system. Recently, a demand for sophisticated software
tools that can characterize the integrity and functional state of vascular
networks from different vascular imaging modalities has appeared. Such
tools face significant challenges such as: large datasets, similarity in in-
tensity distributions of other organs and structures, and the presence of
complex vessel geometry and branching patterns. Towards that goal, this
paper presents a new approach to automatically track vascular networks
from CTA and MRA images. Our methodology is based on the Hough
transform to dynamically estimate the centerline and vessel diameter
along the vessel trajectory. Furthermore, the vessel architecture and ori-
entation is determined by the analysis of the Hessian matrix of the CTA
or MRA intensity distribution. Results are shown using both synthetic
vessel datasets and real human CTA and MRA images. The tracking
algorithm yielded high reproducibility rates, robustness to different noise
levels, associated with simplicity of execution, which demonstrates the
feasibility of our approach.

Keywords: lumen segmentation, vessel tracking, Hough transform, an-
giographic images, CTA, MRA.

1 Introduction

Vascular diseases have reached a significant number of people in the world.
Developed countries and more recently underdeveloped countries have shown
an increase of aneurysms, stenosis, embolisms and arteritis [1]. In this con-
text, successful detection and characterization of vessel anomalies by medical
imaging modalities as Computed Tomography Angiography (CTA) and Magne-
tic Resonance Angiography (MRA), requires efficient computational tools for
visualization and analysis. Vessel segmentation methods may provide useful
surgical planning information and may aid in diagnostics [2,3]. There are im-
portant challenges involving the characterization of vascular architectures: high-
resolution images that increases computational time and storage space; handling
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of bifurcations and successful detection of capillaries. According to [4] the ana-
lysis of vascular images can be divided into four steps : (i) feature extraction
- detect vessel points and diameters; (ii) geometric model - connect the vessel
points to form vascular trees; (iii) quantify properties of the vascular tree; and in
the case of serial imaging; and (iv) quantify differences in these properties over
time. In most cases, methods rely on the detection of local tubular structures
based on the local intensity characteristics. The feature extraction process in 3D
images can be performed by tracking the vessel centerlines [5,6] or by extracting
the vessel wall [7]. While most centerline-based methods directly estimate vessel
diameters, they may have limitations such as their inability to track more than
one branch at a time. Model-based methods, on the other hand, estimate vessel
diameter from boundary detection techniques and may suffer from discontinu-
ities because of noise. They may also require non-trivial initialization procedures.
Overviews on vessel lumen segmentation techniques are presented in [8] and [9],
according to different categories.

In order to avoid common drawbacks of model-based methods, we propose
a methodology that easily tracks vessel centerlines and estimate vessel diam-
eters, has simple initialization and avoids cumbersome multiscale extraction
techniques. The work presented in this paper focuses on the development of a
technique to extract blood vessel morphological attributes from 3D medical im-
ages using Hessian matrix information coupled with Hough Transform (HT) in
order to perform detection and tracking.

This paper proposes the use of the HT to determine vessel scale for successful
tracking without resorting to time-consuming multiscale techniques. Successive
circle detection on 2D cross-sections and prediction of vessel direction are per-
formed in order to track along a branch. In the next section, the methodology
is detailed, followed by synthetic and real datasets results. A discussion of the
methodology followed by conclusions and future research directions are provided
at the end.

2 Vessel Tracking Method

The goal of the proposed vessel tracking is to construct a vessel skeleton based
on the extracted centerlines on several slices. CTA and MRA images show vessels
as high intensity profiles, with maximum intensity near their centers. The idea
is to model this maximum intensity location as the center of a circle. When the
plane of extraction is completely orthogonal to the vessel, the vessel wall can be
modeled as a circle and this process can be repeated by following the tangent of
the vessel trajectory.

2.1 Initialization and Preprocessing

An extraction plane orthogonal to a given vessel is selected from a 3D image to
start the tracking process. Following selection, the extracted plane is smoothed
by an anisotropic diffusion filter [10,11] to reduce noise and enhance linear
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structures. Next, morphological opening and subtraction operators are applied
to highlight maximum intensities and the Canny filter finally is employed in
order to extract edges. Parameter values at each step of this pipeline is chosen
depending on the modality.

2.2 Vessel Detection by Hough Transform

Once the edge image is obtained, the HT is computed to identify circle centers
and their estimated diameters. If more than one vessel is found in the chosen
plane of extraction, the best match is chosen. At end of this step, both centerline
and vessel radius is acquired.

2.3 Vessel Tangent Estimation

Based on this centerline and on the detected radius taken as a vessel scale, eigen-
values (λ1, λ2, λ3) and eigenvectors (e1, e2, e3) are computed from a Hessian
matrix computed at the centerline location. The eigenvector corresponding to
the eigenvalue closer to 0 (λ1) indicates the vessel direction (e1).This direction
is maintained by the multiplication of e1 and the sign of the dot product of e1
and the previous tangent direction ti−1 at centerline point xi:

ti = signal(e1 · ti−1)e1 (1)

The direction ti defines the normal to the next extraction plane in the 3D image.
Image resampling according to the new direction is necessary to detect the cir-
cles in a perpendicular manner. This process finishes when it is not possible to
detect a significant difference between the eigenvalues. The proposed tracking
method consists of successive executions of the above steps to extract a vessel
trajectory. Figure 1 depicts tracking process scheme. Initially, only one vessel
will be detected for each 2D cross-section to start the tracking. The idea is de-
tect all centerlines of a unique vessel branch and then go back to each branching
point to continue the centerline detection.

According to Aylward [12] it is necessary recover from local discontinuities,
so during the tracking we adopted the following heuristics:

1) If λ2 and λ3 of the local Hessian become negative, the tangent and the
normal directions may temporarily change. We detect the next eigenvector that
best matches the previous tangent direction modifying the equation (1) to (3).

2) If |λ1 − λ2| < 0.02 the tangent vessel direction is not well defined. It is
necessary choose the eigenvector that best matches the previous tangent direc-
tion according to equation (3).

q = arg max
j∈1...3

(|ej · ti−1|) (2)

ti = signal(eq · ti−1)eq (3)
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Fig. 1. Representative scheme of proposed method. The arrows indicate extracted
planes according to the tangent direction identified by Hessian matrix.

2.4 Bifurcations

In a vessel network, a bifurcation is the branching of a vessel, which it can be
further divided into several branches. This feature constitutes a challenge for
most vessel tracking algorithm because the eigenvalues are not able to represent
each individual bifurcation. However, when the tracking trajectory approaches
a branching point, the vessel profile starts to change in shape, as well as its
curvature (Fig. 2). The vessel shape changes from a convex configuration and
becomes concave. This changing is employed to identify branching locations and
determine follow-up directions for the subsequent extraction planes.

3 Preliminary Results

The methodology was implemented using C++ language and auxiliary libraries
such as Visualization Toolkit and Insight Toolkit. Both synthetic images and a
real CTA and MRA image was used in order to assess whether the centerlines
and vessel tangent directions are correctly extracted.

3.1 Synthetic Images

Synthetic vessel images were constructed and corrupted by Gaussian noise in
order to test for method’s robustness to noise. In addition, to assess the tracking
method’s behavior on different vessel shapes, these images depict shapes with
low and high curvature. Noise quantity depended on a normal random number
and a percentage related to the maximum intensity image. In this case, images
with 5%, 10% and 15% of noise were used. Synthetic images have size 128 × 128
× 128, containing vessel of radius 2 voxels wide and cubic resolution (1mm3). For



Vessel Centerline Tracking in CTA and MRA Images 299

Fig. 2. Tracking sequence of a synthetic vessel with a branching point. From left to
right, this sequence shows each slice when the tracking is approaching the bifurcation.
A simple circle (convex curve) becomes a non trivial form (concave curve).

(a) (b)

(c) (d)

Fig. 3. Centerlines extracted from a simulated sinusoid. (a) Original image. (b) Image
with 5% of noise. (c) Image with 10% of noise. (d) Image with 15% of noise.

our set of sinusoidal synthetic images, the average distance to the ground-truth
centerlines was 1.5mm. Figures 3 and 4 show the extracted tube trajectories
from noisy images.

3.2 Real Images

The real images represent a thoracic CTA and a cerebral MRA. Authors were
blind in regard of the presence or not of possible vessel anomalies in either
dataset. The CTA image was released by Centre Hospitalier Universitaire -
Hopital de la Timone from a GE LightSpeed Pro 16 with size 512 × 512 × 256,
resolution (0.78x0.78x0.78 mm3). The MRA image was acquired by Institute
of Radiology - Hospital das Cĺınicas - University of São Paulo in a Philips 3T
with size 512 × 512 × 290 and resolution (0.39x0.39x0.50 mm3). The goal is to
extract the thoracic aorta from the CTA dataset and a segment of the internal
carotid from the MRA image.

Preprocessing steps are ilustrated by Figure 5 (a)-(e). Following preprocessing,
the HT is performed and the result is displayed by Figure 5 (f). After identifying
the vessel center, the direction of the vessel cross-section is determined by com-
puting the Hessian matrix. Figure 6 shows a sequence of resampled images
according to the vessel direction characterizing the vessel tracking approach.
Note that the aorta is at the middle of the image. As the 2D cross-section is
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(a) (b)

(c) (d)

Fig. 4. Centerlines extracted from synthetic image with bifurcation points. (a) Original
image. (b) Image with 5% of noise. (c) Image with 10% of noise. (d) Image with 15%
of noise. In this case one of branches was not identified.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Preprocessing steps of a CTA slice: (a) Input 2D cross-section (b) Anisotropic
diffusion filtering (c) Opening operator result (d) Result of top-hat operator (e) Canny
edges (f) Circle detection by Hough transform.

extracted perpendicularly to the vessel tangent, the vessel boundary resembles
a circle. Figure 7 shows the extracted vessel trajectory. For the time, estimated
diameter is not employed for visualization, although is immediately available
after HT computation. Scale tests were performed after HT determination and
vessel radius has been found to be off by +2 or -2 voxels.
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Fig. 6. From left to right, it is shown part of the sequence of 2D cross-sections extracted
during the tracking of the thoracic aorta. The red arrow indicates the aorta cross-section.

Fig. 7. (a) Thoracic aorta trajectory in CTA image track after 405 successive iterations
(b) Carotid artery trajectory in MRA image after 310 iterations. Each centerline was
extracted and represented as a cylinder. The step size between centerlines is δ=1 voxel.

4 Discussion and Conclusions

In the present study, we have proposed a semi-automated method to detect
and track vessel centerlines in CTA and MRA images. The initialization step is
currently done interactively in order to select the starting plane for extraction.
This interaction can be minimized by choosing a single point inside the vessel
or selecting the most perpendicular plane to this vessel.

The methodology has shown to work well under significant amounts of noise,
although a branch segment was not identified in the synthetic example corrupted
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with 15% Gaussian noise. A change in the tracking heuristics will be made in
order to account for detecting an inverse direction from the seed point.

The main contribution of this work is the use of HT to define the seed point for
tracking and detecting the vessel scale without resorting to multiscale analysis
techniques, and in spite of the presence of anomalies, a mean diameter can be
established. While branching in the synthetic datasets was handled according to
the Section 2, it still remains to be thoroughly validated, given the complexity
of real data bifurcations. Bifurcations were not handled in the real datasets.

Future work will focus on fine tuning the scale detection resulting from the
HT, reconstructing the diameter of the extracted vessels, automatic bifurcation
handling using analysis of curvature of the vessel profile at the cross-section
when it approaches the branching point and use of ground-truth data to allow
our method to be compared with established methods.
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Abstract. The object-based methodology is one of the most commonly used 
strategies for processing high spatial resolution images. A prerequisite to 
object-based image analysis is image segmentation, which is normally defined 
as the subdivision of an image into separated regions. This study proposes a 
new image segmentation methodology based on a self-calibrating multi-band 
region growing approach. Two multispectral aerial images were used in this 
study. The unsupervised image segmentation approach begins with a first step 
based on a bidirectional filtering, in order to eliminate noise, smooth the initial 
image and preserve edges. The results are compared with ones obtained from 
Definiens Developper software. 

Keywords: Image segmentation, Bilateral filter, Self-calibrating framework. 

1   Introduction 

Remote sensing is an effective technology to acquire information about geographic 
objects. The automatic classification of remotely sensed data is an essential action 
within the process of generating or updating Geographical Information System (GIS) 
databases. The thematic mapping is a widely adopted method to obtain land cover 
information from satellite or aerial images and many classification algorithms have 
been extensively applied to. Increasing demands on the accuracy and thematic 
resolution of land cover maps from remote sensing imagery has created a need for 
novel image analysis techniques. During classical image classification, each pixel is 
assigned to a final class of the entire object according to their statistical properties, 
instead of determining the class label for each pixel separately (pixel-based methods). 
Pixel-based image classification encountered serious problem in dealing with high 
spatial resolution images. Therefore, object-based methods represent a good 
alternative [1] because the effect of the spectral variability, critical inconvenient 
present in these images, can be minimized.  

One motivation for the object-oriented approach is the fact that, in many cases, the 
expected result of most image analysis tasks is the extraction of real world objects, 
proper in shape and proper in classification. The concept of “object” plays one of 
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central roles in image interpretation. This also has impact on the reliability of object 
recognition, which requires good whole-object segmentation. In this sense, image 
segmentation is critical for subsequent image analysis.  

Segmentation subdivides an image into its constituent regions or objects. The level 
at which the subdivision is carried out depends on the problem being solved. That is, 
the segmentation should stop when the objects of interest in an application have been 
identified. Traditionally segmentation methods can be divided into methods based on 
pixel, on edge, and region-based methods. The last kind of segmentation methods 
includes region growing, region merging, region splitting and their combinations [2]. 
A world famous example of object oriented image analysis software is Definiens 
Developper [3], in which the multi-resolution image segmentation method [4] is key 
and a patented technology. But whatever the method, in remote sensed imagery, a 
critical task is the selection of segmentation parameters. In most cases, the parameters 
are selected by trial and error. 

The primary focus of this paper is to introduce a new designed and implemented 
region-based image segmentation algorithm following self-calibrating idea proposed 
by Paglieroni [5], with an optimal initialization step based on a bidirectional filtering 
[6], which smoothes the initial image in order to reduce noise within regions while 
preserving edges between them. This method is validated by comparing the obtained 
results with ones obtained from Definiens Developper software. 

2   Methodology 

2.1   Study Scenes 

Several remote sensed images with different spatial resolutions were used in this 
study, but only the obtained results with two selected multispectral aerial images 
(Scene 1 and Scene 2) are showed in this paper. The aerial image represents 8-bit 
RGB data with a high spatial resolution of 50 cm. In this case, the selection of 
segmentation parameters will be critical because you can end up with hundreds of 
thousands of objects.  

The images cover an area of the order of 0.065 km2. As with any remote sensing 
project, it is helpful if you have an idea of what you are looking at. In these scenes 
there are extensions of natural mediterranean forest partially or fully degraded, with 
the city-planning, industrial advance and road infrastructures that degrade natural 
zones in other times. The left corner is placed at 429581.98E, 4472991.21N and 
428394.20E, 4474495.79 N (UTM geographic coordinates, h30) respectively.  

2.2   Bilateral Filtering 

This research proposes an initialization step where the image is filtered with a 
bilateral filter. Bilateral filtering is a non-linear filtering technique introduced by 
Tomasi [6], where the weight of each pixel is computed using a Gaussian in the 
spatial domain multiplied by an influence function in the intensity domain that 
decreases the weight of pixels with large intensity differences. Pixels that are very 
different in intensity from the central pixel are weighted less even though they may be 
in close proximity to the central pixel. Therefore, this is applied as two Gaussian 
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filters at a localized pixel neighborhood, one in the spatial domain, named the domain 
filter (Fig.1a) which smoothes homogeneous areas, and one in the intensity domain, 
named the range filter (Fig.1b) which controls the smoothing for preserving edges. 
Thus, the main advantage of using bilateral filter (Fig. 1c) is the growth of large and 
homogeneous regions. 

 

 
 

 

a) b) c) 

Fig. 1. Domain (a), Range (b) and Bilateral (c) filters 

2.3   Segmentation Process with Self-calibration Framework 

Paglieroni [5] developed a self-calibration framework for automatically selecting 
parameter values that produce segmentations that most closely resemble a calibration 
edge map (derived separately using a simple edge detector), but there isn´t a 
commercial available implementation of this work.  In order to implement our image 
segmentation software, it is proposed a new method based on its self-calibration 
framework for getting initial parameters but modifying some steps to try to optimize 
the quality of segmentation jointly with the computational efficiency. 

After the initialization step where the image is processed with the bilateral filter 
described above, an adaptive Canny edge detection algorithm [7] is applied to obtain 
a calibration map. The Canny edge detector is employed to identify the mixed (edge) 
pixels in the image region and offers sub-pixel interpolation for detecting edges using 
a Gaussian filter. The algorithm is based on the computation of the image gradient. It 
works in a multistage process, which is summarized below. First, the image is 
smoothed by Gaussian convolution, then two-dimensional first derivatives are 
computed, the gradient magnitude (edge strength) and gradient direction are 
calculated. Traditionally, following steps consist of the non-maxima suppression, and 
the hysteresis thresholding by two parameters, low and high thresholds. These are 
used for estimating the population minimum parameter of region growing which is 
used to avoid small regions. These processes are applied with the objective of 
obtaining 1-pixel wide contours and to remove noisy maxima without breaking the 
contours, respectively.  

In the methodology proposed, it is suggested erasing non-maxima suppression step 
because several experiments have showed that it is not critical for our goal, however 
this step would increase the execution time of the process. To obtain the region maps, 
the starting points of the segmentation, often referred to as ‘seed’ pixels, have to be 
identified. The regions are built around these pixels by joining the similar neighboring 
pixels to them. To compute the similarity the Euclidean distance is used. Once the 
regions have been obtained, a merging process is performed in order to eliminate 
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small regions. The complete procedure is summarized in the next program code 
(region-growing pseudo-code) 

 
Begin Region-growing: 

1. find seed pixel (not labeled and following a row-order) 
2. label it: 

2.1 seed_pixel = i 
2.2 region_average = intensisty (seed_pixel) 

3. explore its eight neighbors (8-connected): 
3.1 list = neighbors(seed pixel) 
3.2 while (length(list) > 0): 

remove first pixel y from L 
if (euclidean_distance(y, region_average)< 
distance): 

add y to L 
y = i 
update region average 

Begin Region-merging: 
1. find region r with number of pixels < population_minimum 
2. list N = neighbors(r) 
3. explore its neighbors regions looking for the most 
similarity r_min: 

3.1 while (length(N) > 0): 
remove first region r’ from N 
r_min = find_minimum(euclidean_distance(r, r’)) 

4. merge(r, r_min) 
End.  

 
The automatically map generated prior to segmentation, is a calibration edge map 

that can be used to obtain the optimal region maps by means a measure of disparity 
(Figure 2). This disparity measure is calculated by comparing the maps of distances 
associated with edges maps of each region maps obtained during the segmentation 
process, with the map of distances from the calibration edge map. Note that this 
measure is obtained as described Paglieroni [5]. Consider a region map R and an 
associated binary border map B in which pixels of value 1 correspond to borders 
between different regions (specifically, B(i,j) = 1 if R(i,j)≠R(i-1,j) or R(i,j-1)). Let E 
be the calibration edge map with edge pixels of value 1 on a background of zeros (R, 
B and E all have the same number of rows and columns). The disparity ΔBE between 
R and E is given by 

In equation 1, nB is the number of boundary pixels in B, nE is the number of edge 
pixels in E, nBE is the number of boundary pixels in B that are not associated with an 
edge pixels in E, and nEB is the number of edge pixels in E not associated with a 
boundary pixel in B. 

In order to evaluate this proposed segmentation methodology, the analysis of 
similarity factor (1-disparity factor) and the computation times has been carried out. 

ΔBE = 0                                 nB = nE = 0 

ΔBE = 1                                 nB  or  nE = 0 but not both 0 

ΔBE = (nBE+nEB)/nB+nE          nB , nE ≠ 0  

(1) 
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Fig. 2. Methodological scheme of self-calibration framework and segmentation 

2.4   Segmentation Process with Definiens Developper Software 

The segmentation technique used within Definiens Developer software for this 
investigation is the multi-resolution segmentation. This technique creates objects 
using an iterative algorithm, whereby objects (starting with individual pixels) are 
grouped until a threshold representing the upper object variance is reached. Critical 
parameters are used here to guide the segmentation result. The Scale parameter 
determines the maximum allowed heterogeneity for the resulting image objects. The 
Color criterion defines the weight with which the spectral values of the image layers 
contributes to image segmentation, as opposed to the weight of the Shape criterion. 
The relationship between Color and Shape criteria is: Color + Shape = 1. Maximum 
Color criterion 1.0 results in objects spectrally homogeneous; while with a value of 
less than 0.1, the created objects would not be related to the spectral information at 
all. Smoothness is used to optimize image objects with regard to smooth borders, 
and compactness allows optimizing image objects with regard to compactness [8]. 
The resulting objects also depend on the image data. For a given set of 
segmentation parameters, heterogeneous image data result in smaller image objects 
than homogeneous image data. 
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The first step in this image segmentation process has been to cluster the image and 
produce a low-level segmentation for further processing. This strategy permits to 
optimize the selection of parameters for the multi resolution segmentation (second 
step). The clustering step was carried out by means of the Iterative Self-Organizing 
Data Analysis Technique (ISODATA) [9]. Traditionally, ISODATA begins arbitrarily 
locating a given number of cluster centroids in the feature space. In this case, we have 
introduced in the process, the initial spectrally supervised centroids. Therefore, the 
algorithm classifies each pixel of an image into one of these initial clusters. The 
classification is carried out by assigning each pixel to the nearest cluster in the feature 
space. A Euclidean distance measure is applied. After the image has been processed, 
the cluster centers are recalculated as a mean vector of the observations of the cluster. 
This process continues iterating until one of the user-defined parameters; convergence 
threshold or the maximum number of iterations is reached. The convergence threshold 
is the percentage of those observations which remain in a same cluster during two 
successive iterations. 

In the second step, image segmentation (multi resolution segmentation) was 
performed using the object-based image analysis software Definiens Developper for 
Earth Sciences [3]. The segmentation approach is a bottom-up region merging process 
based on heterogeneity of image objects, and controlled by three segmentation 
parameters: shape(S)/color, compactness/smoothness, and a scale parameter [10]. 
Shape/Color and compactness(C)/smoothness were set to 0.1/0.9 and 0.5/0.5 
respectively, using as a guideline previous research with Supervised ISODATA 
Clustering (SIC) imagery in this study scenes. We segmented the images (each of the 
three layers, RGB has an equal weight) several times with different values for the 
scale parameter (SP) and choosing from 50 to 150 in increments of 50. At scales 
coarse than 150, some SIC individual class were being merged together, therefore 150 
became the cut-off of the coarsest scale.  

3   Results 

First, the goodness of the new approach can be analyzed by comparing the visual 
interpretation of segmented images (Fig. 3). This method generates more real world 
objects or segments (RGB image supervision). The results from Definiens show a 
major number of segments than the obtained by the proposed methodology and thus 
an unreasonable segmentation of natural soil land cover is carried out (see Fig. 3c). If 
the Scale parameter is changed, the number of segments can decrease, but we will not 
get the proper segmentation of vegetation land covers (trees). This confirms that the 
selection of segmentation parameters is a critical task and in most cases, it has to be 
choosing by trial and error. However in this case, a previous low-level segmentation 
(ISODATA clustering) was carried out, in order to define the guidelines of the 
segmentation parameters. 

On the other hand, the similarity factor obtained from disparity factor is shown as 
measure of images segmentation quality, in Table 1. These values indicate the 
goodness of the segmentation methodology proposed in this work.  
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a) b) 

 
c) 

 
d) e) 

 
f) 

Fig. 3. Comparison of segmented images. a) and d) RGB images. b) and e) Segmented images 
by means the proposed methology. c) and f) Segmented images by multi resolution 
segmentation from Definiens Developper Software (SP = 50, S = 0.1 and C = 0.5). 

Table 1. Evaluation parameters with a 2.1 GHz processor and 640 MB of RAM 

 This work (Execution time / 
Similarity factor) 

Definiens 
Developper 
(Execution time) 

Scene 1  1.265 s / 88 % 5 s 
Scene 2  1.297 s / 93 % 6 s 

4   Conclusions 

It was designed and implemented our image segmentation methodology for 
information extraction from remotely sensed imagery. We propose in this paper an 
unsupervised image segmentation approach with an optimal initialization step based 
on applying a bidirectional filter as a pre-processing step to eliminate noise, smooth 
the initial image and preserving edges.  

Our segmentation method is validated with several experiments and the results 
show similar segmentation quality with ones obtained from Definiens Developper 
software, however in the self-calibration framework, the parameter values are 
automatically select, and this is a great advantage. Likewise the execution times for 
our segmentation algorithm are better than the obtained from multiresolution 
segmentation performed by Definiens Developper software.  
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In the future work, the possibility of adding new features such as color and texture 
as well as parallelization of the self-calibration process and the bilateral filter will be 
studied for optimizing the quality of segmentation and execution time on very large 
images. 
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Abstract. We provide and evaluate a fusion algorithm of remotely
sensed images, i.e. the fusion of a panchromatic (PAN) image with a
multi-spectral (MS) image using bilateral filtering, applied to images of
three different sensors: SPOT 5, Landsat ETM+ and Quickbird. To as-
sess the fusion process, we use six quality indexes, that confirm, along
with visual analysis, good overall results for the three sensors.

Keywords: Bilateral filter, Image fusion, Pansharpening.

1 Introduction

The term “image fusion” usually implies the integration of images acquired by
multiple sensors with the intention of providing a better perspective of a scene
that contains more content. In remote sensing there are many sensors that have a
set of multispectral bands and a co-registered higher spatial resolution panchro-
matic band. Examples of this sensors are SPOT, Landsat ETM+, QuickBird,
or IKONOS. With appropriate algorithms it is possible to combine these data
and produce multispectral imagery with higher spatial resolution. This concept
is known as multispectral or multisensor merging, fusion or sharpening (of the
lower-resolution image) [1].

In remote sensing, the fusion schemes can be grouped into three classes: (1)
color related techniques, (2) statistical/numerical methods and (3) combined
approaches [2]. The first covers the color composition of three image channels
in the RGB color space as well as more sophisticated color transformations,
e.g., HSV (hue-saturation-value), IHS (intensity-hue-saturation) [3]. The sec-
ond group includes methods that use different mathematical tools, like channel
statistics including correlation and filters. High pass filtering (HPF) [1], principal
component analysis (PCA) [3] and multiresolution analysis (MRA) [4] belong to
this category. The combined approaches include methods that are not limited to
follow one approach.

In particular, fusion methods based on injection of high-frequency components
into resampled versions of the MS bands have shown better spectral results,
attracting the interest of researchers in recent years [5]. Within these methods
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can highlight the different variants of MRA (e.g. wavelets), or a less complex
scheme, the high pass filtering, so we propose a new fusion scheme that makes
use of bilateral filter as principal element for the extraction of features.

The next section describes a non-linear technique appropriate for image pro-
cessing, known as bilateral filter (BF) which has been used for some image pro-
cessing applications like denoising, texture editing or optical flow estimation [6];
also BF has been used for merging video (Visible (RGB) + IR) [7] and de-
tail enhancement in multi-light image collections [8]. BF is an effective way to
smooth an image while preserving its discontinuities and also to separate image
structures of different scales, hence we propose its use in pansharpening.

2 Bilateral Filter

A bilateral filter is an edge-preserving smoothing filter. BF operates both in the
domain and range of the image (i.e. pixel values). In the image domain, the
core component of many filters is the kernel convolution. At each pixel position
the filter estimates the local average of intensities, which corresponds to low-
pass filtering. For instance, the Gaussian filtering (GF) is a weighted average of
the intensity of the adjacent pixels where the weights decrease with the spatial
distance to the center position; GF is a simple approach to smooth images, but
with blurred edges, because pixels across discontinuities are averaged together.

Bilateral filter was proposed based on the definition of Gaussian convolution,
taking into account both the image domain as the range image. BF is also
defined as a weighted average of nearby pixels, the difference with GF is that
BF takes into account the difference in value with the neighbors to preserve
edges while smoothing. The key idea of the bilateral filter is that for a pixel
influences another pixel, it should not only occupy a nearby location but also
have a similar value [6]. The bilateral filter is simple: each pixel is replaced by
a weighted average of its neighbors; BF depends only on two parameters that
indicate the size and contrast of the features to preserve; furthermore, BF can
be used in a non-iterative manner. Mathematically BF is given by [6]:

BF [I]p =
1

Wp

∑
q∈S

Gσs (‖p− q‖)Gσr (|Ip − Iq|) Iq (1)

Wp =
∑
q∈S

Gσs (‖p− q‖)Gσr (|Ip − Iq|) (2)

Where normalization factor Wp ensures pixel weights sum to 1.0.∑
q∈S

denotes a sum over all image pixels indexed. |.| is used for the absolute

value and ‖.‖ for the L2 norm. Gσ denotes a 2D Gaussian Kernel.
Gσr is a range Gaussian function that decreases the influence of pixels q

when their intensity values differ from Ip, therefore as the range parameter σr

increases, the bilateral filter gradually approximates Gaussian convolution. Gσs

is a spatial Gaussian weighting function that decreases the influence of distant
pixels, therefore increasing the spatial parameter σs smooths larger features.
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3 Image Fusion with Bilateral Filter

The potential benefit of a fused image is that the single resulting image both has
a high spatial resolution and contains the spectral information, hence, the result
of image fusion is a new image which is more suitable for human and machine
perception or further image-processing tasks such a classification, segmentation,
feature extraction or object recognition. For image fusion with BF, we first
resample the MS image so that its bands have the same pixel size as the PAN
image. These bands, along with PAN image are decomposed by means of BF.

The BF can split an image into two parts: (1) a filtered image, equivalent to
low frequency component and in particular to spectral information, which holds
only the large-scale features, as the bilateral filter smooths away local variations
without affecting strong edges and (2) a “residual” image, made by subtracting
the filtered image from the original, which holds only the image portions that the
filter removed, i.e. detail or small-scale components that can represent texture
or structures within image.

Therefore, the idea of applying the bilateral filter is to extract the details of the
PAN image and the approximation (large-scale component) of the MS bands. A
key factor when extracting these components is filter-parameters determination.
Experimentally we obtained the best results with a σs = R/2, for both the PAN
and MS images filter, where R is the scale ratio between PAN and MS images.
In the case of σr, best results were obtained with σr = 0.1(2nbits − 1) for MS
image and σr = 0.4(2nbits−1) for the PAN image, where nbits is the radiometric
resolution of each image.

To combine these two components it is necessary to define an injection model
to establish how high frequency information will be merged with the MS bands.
Such a model can be global over the whole image or can depend on the spectral
or spatial context [5]. In our case it was only necessary to apply a weight factor to
the high frequency component, adding it to the low frequency component, thus
minimizing spectral distortions. For the injection of these details the gain factor
is defined by the ratio of standard deviation of each MS band approximation to
the standard deviation of the PAN. The fusion process is showed in the Fig. 1.

Multispectral
Bands

MS Bands
Resampled

BF
MSR

MS
MSR

High Resolution Image
BF PAN

PAN

Std. Dev.

Std Dev. 

High Resolution 
Multispectral bands

BF: Bilateral filter - Parameters 
BF MSR: s = R/2 ; r = 0.1(2nbits-1)
BF PAN: s = R/2 ; r = 0.4(2nbits-1)

nbits: radiometric resolution

Fig. 1. Block diagram of bilateral filter-based image fusion approach (scale ratio 1:R)
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4 Data and Methodology

4.1 Study Area

The proposed approach was applied to images from sensors of medium and high
resolution: SPOT 5, Landsat ETM+ and Quickbird. The cases presented in this
paper are:

1. Spot5: PAN 2048 x 2048 px (2,5 m), MS 512x512x4 (10 m). Madrid (Spain),
461990 E, 4480340 N (WGS84 UTM Zone 30)

2. Landsat ETM+: PAN 768 x 768 px (15 m), MS 384x384x6 (30 m) (Bands
1-5 & 7). Madrid (Spain), 409012,5 E, 4419247,5 N (WGS84 UTM Zone 30)

3. Quickbird: PAN 2048 x 2048 px (0,7 m), MS 512x512x4 (2,8 m). Madrid
(Spain), 434753,2 E, 4479221,6 N (WGS84 UTM Zone 30)

4.2 Quality Determination - Comparison with Other Techniques

For comparison we employed four different image-fusion algorithms: two stan-
dard fusion techniques implemented in commercial software (ENVI), these were
Gram-Schmidt spectral sharpening [9] and principal component (PC) fusion [10].
The third algorithm was a multiresolution analysis-based method, proposed re-
cently [11,12]. The fourth method, bilateral filter-based fusion, is proposed in
this work. All images were visually and statistically evaluated.

For quality evaluation, the first step was a visual analysis of the fused images.
Therefor it was necessary take into account the color preservation of the fused
image with respect to the original MS image. In the same way the quality eval-
uation took into account the spatial improvement of fused image compared to
the original PAN image. Although the visual analysis is subjective and depends
on the interpreter, it usually gives a first idea of spatial and spectral distortions.

To evaluate the quality of the merged image, it is usually compared against
a reference image. In practice a true reference image does not exist, therefore,
it is necessary to create it from the original PAN (with resolution h) and MS
(with resolution l) images. Therefor, the PAN image is degraded to the low
resolution l and the MS image is degraded to the resolution l2/h. The fusion
process is applied to new degraded images and the quality can be assessed using
the original MS image as a reference image [13].

To assess the fusion process we use the following metrics [4,13]: (a) Rela-
tive Dimensionless Global Error (ERGAS), used to estimate the overall spectral
quality of fused images. (b) Spectral Angle Mapper (SAM), which determines
the degree of spectral similarity of an image against a known or reference im-
age, expressed in terms of the average angle between the two spectra. (c) Mean
bias (MB), which measures the difference in central tendency of two images.
(d) Variance Difference (VD) for estimating the change in variance during the
enhancement of the spatial resolution. (e) Standard deviation difference (SDD),
which provides a global indication of the level of error at any pixel. (f) Correla-
tion Coefficient (CC), which shows the similarity in small size structures between
the original and synthetic images.
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5 Results

Tables 1,2,3 show the quality measures for the whole image of three cases stud-
ied. Figures 2,3,4 show only a sub-scene of the corresponding merged images.
The visual analysis shows a perceptible improvement in spatial quality for fused
images compared with the original MS image. Although slight variations occur,
all methods clearly sharpen the original image and improving the spatial quality.

By comparing the resulting images, one can also see that the fused images
retain a high degree of spectral information. For color preservation, 432 and 321

Table 1. Test Case No. 1, SPOT5. Quality metrics. aAverage for all four bands.

Type ERGAS SAM (rad) MBa VDa SDDa CCa

Ideal 0 0 0 0 0 1
Bilateral filter 1,3316 0,0260 -6,38E-04 0,0375 0,0523 0,9736
Gram-Schmidt 1,9021 0,0329 1,64E-04 0,1164 0,0756 0,9476
PCA 1,7581 0,0317 -2,96E-04 0,1405 0,0698 0,9549
DT-CWT 1,6392 0,0273 2,59E-05 0,0050 0,0642 0,9607

(a) MS Original (b) PAN Image (c) PCA

(d) BF (e) DT-CWT (f) Gram-Schmidt

Fig. 2. Test Case No. 1, SPOT5. A fragment of the original MS (10 m), PAN (2,5 m)
and fused images (2,5 m). (200x200 pixels false color (NIR-Red-Green) composition).
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Table 2. Test Case No. 2, Landsat ETM+. Quality metrics. aAverage for all six bands.

Type ERGAS SAM (rad) MBa VDa SDDa CCa

Ideal 0 0 0 0 0 1
Bilateral filter 2,1755 0,0243 -1,02E-05 0,0691 0,0427 0,9800
Gram-Schmidt 4,0632 0,0352 4,34E-04 0,0722 0,0794 0,9329
PCA 4,5065 0,0368 -2,76E-04 0,0577 0,0878 0,9185
DT-CWT 2,3891 0,0294 -9,01E-06 0,0532 0,0473 0,9749

(a) MS Original (b) PAN Image (c) PCA

(d) BF (e) DT-CWT (f) Gram-Schmidt

Fig. 3. Test Case No. 2, Landsat ETM+. A fragment of the original MS (30 m), PAN
(15 m) and fused images (15 m). (200x200 pixels false color 432 composition).

band RGB combinations are showed for spectral analysis. The spectral distor-
tion of the PCA and Gram-Schmidt methods is most visible in the red color
of vegetation (false color). The BF and DT-CWT methods produce an image
whose colors better match the original image.

Regarding the quality indexes, (Tables 1,2,3) the values obtained for ERGAS,
combined with the angles obtained by the SAM metric, were acceptable, so the
spectral information is largely preserved, particularly according to BF and DT-
CWT for SPOT and Landsat images. As for the mean bias, results close to
ideal were obtained since the injection of spatial information resulted in a near-
zero mean. The difference in variance suggests an advantage for the BF and
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Table 3. Test Case No. 3, Quickbird. Quality metrics. aAverage for all four bands.

Type ERGAS SAM (rad) MBa VDa SDDa CCa

Ideal 0 0 0 0 0 1
Bilateral filter 3,8319 0,0908 -6,30E-04 0.1907 0.1476 0.9288
Gram-Schmidt 4,4896 0.1067 4,54E-04 0,3162 0.1726 0.9069
PCA 4,5392 0.1015 8,36E-04 0.2458 0.1745 0.9032
DT-CWT 3,8623 0.0868 -7,40E-05 0.1378 0.1486 0.9290

(a) MS Original (b) PAN Image (c) PCA

(d) BF (e) DT-CWT (f) Gram-Schmidt

Fig. 4. Test Case No. 3, Quickbird. A fragment of the original MS (2,8 m), PAN
(0,7 m) and fused images (0,7 m). (200x200 pixels true color (RGB) composition).

DT-CWT, which preserve slightly more information. The overall estimate of
error in a pixel (SDD) shows again better results for the BF and DT-CWT.
Although visually the results are very similar in spatial quality, correlation co-
efficient shows slightly higher results for the BF in two of three cases.

6 Conclusion

The proposed fusion scheme showed good results applied to three different types
of sensors. It was compared against traditional methods and showed that BF is
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an appropriate alternative for image fusion, presenting the best results for SPOT
and Landsat images and results similar to a wavelet approach. In the Quickbird
case it is necessary to study alternatives to the merger scheme adapted to the
pixel size to preserve the spectral information more accurately. However, it is
important to consider the influence of image degradation when implementing
quality indices. A future work will consider alternatives such as multiscale ap-
proach and fast approximations of the bilateral filter.
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Abstract. An interactive, semiautomatic image segmentation method is pre-
sented which, unlike most of the existing methods in the published literature, 
processes the color information of each pixel as a unit, thus avoiding color in-
formation scattering. The process has two steps: 1) The manual selection of few 
sample pixels of the color to be segmented, 2) The automatic generation of the 
so called Color Similarity Image (CSI), which is a gray level image with all the 
tonalities of the selected color. The color information of every pixel is integrated 
by a similarity function for direct color comparisons. The color integrating tech-
nique is direct, simple, and computationally inexpensive. It is shown that the im-
provement in quality of our proposed segmentation technique and its quick result 
is significant with respect to other solutions found in the literature. 

Keywords: Color image segmentation; Adaptive color similarity function; HSI 
parameter distances; Morphology in color images. 

1   Introduction 

Image segmentation consists of partitioning an entire image into different regions, 
which are similar in some predefined manner. Segmentation is an important feature of 
human visual perception, which manifests itself spontaneously and naturally. It is also 
one of the most important and difficult tasks in image analysis and processing 
[2] [6] [8] [9] [10]. All subsequent steps, such as feature extraction and objects recog-
nition depend on the quality of segmentation. Without a good segmentation algorithm, 
objects of interest in a complex image are difficult (often impossible) to recognize 
using automated techniques [1] [2] [7] [8] [10]. At present, several segmentation 
techniques are available for color images, but most of them are just monochromatic 
methods applied on the individual planes in different color spaces where the results 
are combined later in different ways [5]. Their common problem is that when the 
color components of a particular pixel are processed separately the color information 
is so scattered in its components that most of the color information is lost [2] [5] [9].  

In this work, an interactive, semiautomatic image segmentation method is pre-
sented which, in contrast with most of previously published algorithms, uses the color 
                                                           
* Corresponding author.  
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information for each pixel as a whole, thus avoiding color information scattering. In 
our method, the three color components (RGB) of every pixel transformed to the HSI 
color model are integrated in two steps: in the definitions of distances in hue, satura-
tion and intensity planes ],,[ ish ΔΔΔ  and in the construction of an adaptive color 

similarity function that combines these three distances assuming normal probability 
distributions. 

To obtain a consistent color model for direct color comparisons, some simple but 
important modifications to the classical HSI color space were necessary. These modi-
fications eliminated the discontinuities occurring in the red hue (in 0 and 360 degrees) 
and all the problems associated with them.  

The segmentation method proposed basically relies on the calculation of a color 
similarity function for every pixel in a RGB 24-bit true color image, its automatic 
thresholding and finally the possible application of some simple morphological filters 
to introduce geometric characteristics in some cases where it is needed. 

2   Previous Works  

There has been a considerable amount of research dedicated to the problem of color 
image segmentation due to its importance and potential, and because color is an effec-
tive and robust visual cue for differentiating between objects in an image. The current 
available techniques and approaches vary widely from extensions of classical mono-
chromatic techniques to mathematical morphology [2], clustering schemes [4] [12], 
wavelets [3] and quaternions [11], among others. Until recently, the majority of pub-
lished approaches were based on monochromatic techniques applied to each color 
component image in different color spaces, and in different ways to produce a color 
composite [5]. 

Some color similarity measures and distances are presented in [10]. All these 
measures compare color pixels as units. They are all based in three dimensional vec-
tor representations of color in which each vector component corresponds to the RGB 
color channels components. 

A technique that combines geometrical and color features for segmentation extend-
ing concepts of mathematical morphology (for gray images) is developed in [2] to 
process color images. The final segmentation is obtained by fusing a hierarchical 
partition image and a text/graphic finely detailed image. 

In [15] the authors present a mathematic and physic solid framework for the local 
measure of texture in color images. They present a physic based color model using as 
a starting point three dimensional energy density functions E(x, y, λ). From these 
energy density functions they derive color texture measures in the wavelength – Fou-
rier domain using Gaussian derivative apertures integrating in this way texture and 
color information. In their implementation they start with RGB images transforming 
them to an opponent Gaussian color space (E, Eλ, Eλλ) by a linear transform where 
they process with each channel separately with a set of Gabor filters and integrate 
later the results. 
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3   Description of the Method  

The segmentation method proposed in this paper basically relies on the calculation of 
a color similarity function for every pixel in a RGB 24-bit true color image to form 
what we call a Color Similarity Image (CSI), which is a gray level image. A true color 
image usually contains millions of colors and many thousands of them represent the 
same perceived color of a single object due to the presence of additive noise, lack of 
definition between color borders and regions, shadows in the scene, etc., [1] [8] [10]. 
The color similarity function proposed allows the clustering of the many thousands 
colors representing the same perceived color in a single gray output image. This CSI 
image is then automatically thresholded and the output can be used as segmentation 
layer, or it can be used with morphological operators to introduce geometric en-
hancements if they are needed. 

Firstly, we compute the color centroid and color standard deviation of a small sam-
ple consisting of few pixels. The computed centroid represents the desired color to be 
segmented using the technique we designed for that purpose.  

Then, our color similarity function uses the color standard deviation calculated 
from the pixel sample to adapt the level of color scattering in the comparisons. The 
result of a particular similarity function calculation for every pixel and the color cen-
troid (meaning the similarity measure between the pixel and the color representative 
value) generates the CSI. The generation of this image is the basis of our method and 
preserves the information of the color selected from the original color image. This 
CSI is a digital representation of a normalized function [0 - 1] extended to the range 
of [0 - 255]. 

The CSI can be thresholded with any automatic method like Otsu’s [13] which was 
our selection for the results presented in this work. In those cases where color is a 
discriminating characteristic of objects of interest in a source image, only threshold-
ing the CSI could be necessary to complete the segmentation. 

To generate a CSI we need: 1. A color image in RGB 24-bit true color format; and 
2. A small set of arbitrarily located pixels forming a sample of the color desired to be 
segmented. From this sample of pixels we calculate the statistical indicators according 
to our HSI modified color model (see Section 3.1). This information is necessary to 
adapt the color similarity function in order to obtain good results. To obtain the CSI 
we calculate for every pixel ( )ji,  in the image the following color similarity  

function S : 
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where hΔ is the hue Euclidean distance between ( )jihue ,  and the hueaverage _ ; sΔ  

is the saturation Euclidean distance between ( )jisaturation ,  and the 

saturationaverage_ ; iΔ  is the intensity Euclidean distance between ( )jintensityi ,  

and the ntensityiaverage_ ; hσ  is the hue standard deviation of the sample; sσ  is 

the Saturation standard deviation of the sample; iσ  is the Intensity standard deviation 

of the sample. In Eq. (1) the color information is integrated giving high importance to  
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perceptual small changes in hue, as well as giving wide or narrow tolerance to the 
intensity and saturation values depending on the initial sample, which is representa-
tive to the desired color to be segmented.  

The common disadvantages attributed to the cylindrical color spaces such as the ir-
removable singularities of hue in very low saturations or the periodical nature of hue 
[5] (which is lost in its standard representation as an [ ]°°∈ 360,0angle  are overcome 

in our technique using vector representation in 2ℜ  in the separation of chromatic and 
achromatic regions, and in the definition of the sh ΔΔ , and iΔ  distances. 

Two modifications on standard HSI color space were necessary in order to create a 
consistent model to represent colors and color centroids:  

1. Representation of hue. Instead of standard representation of hue as an angle in 

the range [0°-360°], hue is represented here as a normalized vector in 2ℜ  (with mag-
nitude 1 or 0). This representation has at least three advantages compared to an angle 
in the range [0°-360°] a) the existing discontinuity in 360 and 0 degrees is eliminated; 
b) the average hue of a group of pixels can be understood as the resulting angle of a 
vector addition of the color pixels in the chromatic region of the sample, giving a 
simple manner to calculate the average hue; c) setting magnitude to 0 or 1 works as a 
flag intended for distinction between chromatic or achromatic regions. 

2. Separation of chromatic and achromatic regions. We use a separation of the  
region as described in [10] in order to calculate the average hue and hΔ . Once calcu-

lated hΔ , sΔ and iΔ  this distinction is no longer necessary because in the formula-

tion of jiS ,  (Eq. 1) all the cases of color comparison between zones are accounted for 

and it is a simple matter to maintain consistency. The use of Gaussians in the defini-
tion of jiS ,  (Eq. 1) reflects our belief that the color model modifications proposed in 

this paper allows normal distributions of the color characteristics in this modified HSI 
space according to the visual experience of color similarity. 

The pixel sample is a representation of the desired color(s) to be segmented from a 
color image. From this pixel sample we obtain two necessary values to feed our seg-
mentation algorithm: the color centroid and a measure of the dispersion from this 
centroid, in our case the standard deviation. These two values are represented accord-
ingly to our modified HSI model.  

The achromatic zone G  is the region in the HSI color space where no hue is per-
ceived by humans. This means that color is perceived only as a gray level because the 
color saturation is very low or intensity is either too low (near to black) or too high 
(near to white). 

Given the three-dimensional HSI color space, we define the achromatic zone G  as 
the union of the points inside the cylinder defined by %10<Saturation  of MAX and 

the two cones %10<Intensity  of MAX and %90>Intensity  of MAX, were MAX is 

the maximum possible value as presented in [10]. Pixels inside this region are per-
ceived as gray levels. 
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3.1   Calculation of Average Hue 

In order to obtain the average of the hue ( mH ) of several pixels from a sample, we 

take advantage of the vector representation in 2ℜ . Vectors that represent the hue 
values of individual pixels are combined using vector addition. From the resulting 
vector we obtain the average hue corresponding to the angle of this vector respected 
to the red axis. Thus mH  is calculated in the following manner: 

1. For every pixel ( )yxP ,  in the sample the following 3ℜ  to 2ℜ  transformation 
is applied: 
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where ( )PV  is the normalized projection of the RGB coordinates of the pixel P  to 

the perpendicular plane to the Intensity axis of the RGB cube when the x  axis is 
collinear to the Red axis of the chromatic circle. On the other hand G  (see Section 3) 
represents the achromatic zone in the HSI space and [RGB]t is a vector with the color 
components of the pixel in the RGB color space. 

To carry out this, the following code is executed:  

 Vector.x = 0; 
 Vector.y = 0;    // initialize vectors 

 For (i = 1; i < = n; i++)  // for every pixel in 
the sample do 

  {Vector.x = Vector.x + V(i).x;   // x-component of the 
accumulated vector 

  Vector.y = Vector.y + V(i).y;}  // y-component of the 
accumulated vector 

 Vs = [Vector.x Vector.y];  // Accumulated vector  

In this code we have a vector in 2ℜ , which accumulates the vector additions as in-

dex i  increments. Each of the vectors being added corresponds to the previous 3ℜ - 

to- 2ℜ  transformation for every pixel in the sample made in step 1. 
2. The angle of the accumulated vector ( sV ) with respect to the X-axis is the aver-

age hue: 

( )0,sm VangleH =  

where 0 represents the Red axis. 
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 Using the vector representation of Hue obtained by the 3ℜ -to- 2ℜ  transformation 
of RGB space points expressed in Eq. (2), we can calculate the hue distance hΔ  be-

tween two colors pixels or color centroids 1C  and 2C , as follows: 

2121 ),( VVCCh −=Δ  If 1C  and GC ∉2  

 0=  If 1C  or GC ∈2  

where G  is the achromatic region; 1V  and 2V  are the vectors in 2ℜ  calculated with 

the transformation on 1C  and 2C  given in Eq. (2). 

 Using the standard conversions for saturation and intensity from RGB space [10], 
normalized in the range [0, 1]: 
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we define saturation distance sΔ  and intensity distance iΔ  between two pixels or 

color centroids as:  
  ( ) ( )[ ]21 CsaturationCsaturationabss −=Δ , and 

  ( ) ( )[ ]21 CntensityiCntensityiabsi −=Δ , 

where 1C  and 2C  are color pixels or color centroids, respectively, in RGB space. 

 In Eq. (3) we defined the saturation equal zero in case of the black color. 
The statistical values needed in Eq. (1) are calculated as follows [14]:  
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where n  is the number of pixels in the sample; hΔ  is the hue distance between 

),( jihue  and averagehue _ ; sΔ  is the saturation distance between ),( jisaturation  

and averagesaturation _ ; iΔ  is the intensity distance between ),( jintensityi  and 

averagentensityi _ .  

4   Results and Discussion  

In this section we present the results of our segmentation method applied to two clas-
sical color images in RGB 24-bit true color format that are representative of many 
image processing and analysis applications. These experiments consisted of the seg-
mentation of color regions according to the following three steps: 

1) Selection of the pixel sample. In order to have a helping direction for this task 
the following considerations may be useful to select the number of pixels of the sam-
ple: If the color of the desired area to segment is solid (without additive noise) it is 
only necessary to have one pixel sample from the desired area. However, if we want 
to take in account the color lack of definition happening in the borders, we have to 
take a sample of the new colors that appear in that area due to the above condition. 
The pixels of the samples from the original images can be selected arbitrarily, that is, 
in any order, in any number and physically adjacent or not. 

2) CSI calculation. This step is automatic; its output is a gray level image show-
ing the similarity of each pixel of the RGB true color image to the color centroid 
formed with the chosen pixel sample taken from of the region of interest to be seg-
mented, being white for 100% of similarity and black for 0%. 

3) Thresholding and application of mathematic morphology. The user can thresh-
old now the CSI and could be arranged as an automatic step by using, for example, the 
non-supervised Otsu’s thresholding method [13]. After this step we can apply option-
ally any desired morphological tool if the thresholding results are not solid enough or 
geometric characteristics are needed to correctly separate the objects of interest.  

Figure 1 shows a RGB color image (sized 200 x 200 pixels and with 33753 different 
colors) of the popular image of the baboon. In this image we can see four main hues 
of colors despite the many thousands of actual RGB values to represent them: The red 
part of the baboon’s nose, the blue part of the nose, the orange eyes and the yellow-
orange part of the fur. 

Different pixel tonalities in the image depend on their particular saturation and on 
the unavoidable presence of additive noise. The proposed segmentation method is  
 

 

Fig. 1. Baboon 
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practically immune to these conditions, although obviously there are some solutions 
to improve the quality of the segmented regions, as for example, preprocessing the 
image for smoothing noises of different types, applying some morphological operator 
to reduce objects with given characteristics, and so on.  

In this experiment we took pixel samples for the blue color belonging to the edge 
of the perceived blue color. They are selected from an enlarged 21 x 21 pixels region 
as shown in Fig. 2. From this sample we calculated the color centroid and the standard 
deviation in our modified HSI space; with these two values we use the Eq. 1 to calcu-
late for every pixel the pixel values of the CSI shown in Fig. 3. After applying Otsu’s 
thresholding method and an area closing with a box of 3x3 to eliminate small holes, 
we obtain the final segmentation shown in Fig. 4. 

For the blue part of the nose we repeated part of the process. Figure 5 shows the 
pixels sample, its corresponding CSI is shown in Fig. 6 and after applying Otsu’s 
thresholding, an opening with a box of 3x3, a closing with the same box and eliminat-
ing remaining small areas, the final segmentation is shown in Fig. 7. 

In Fig. 8 we show the pixel sample and in Fig. 9 the CSI for the orange color of the 
eyes. After thresholding the CSI, applying an opening with a disk 5x5 and eliminating 
the big area of the fur we obtain the final segmentation of the eyes shown in Fig. 10. 
The yellow-orange part of the fur shown in Fig. 11 was obtained as residue from the 
thresholding of the CSI and shown together in the composite of the segmentations of 
Fig. 4, 7 and 10. 

  

Fig. 2. Sample composed by 5 pixels located in two zones with red color 

     

  Fig. 3. The Color Similarity Image (CSI) of red  Fig. 4. Final segmentation of the red nose 

      

            Fig. 5. Pixel sample for the blue nose      Fig. 6. CSI Fig. 7. Final segmentation 
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              Fig. 8. Pixel sample for the eyes       Fig. 9. CSI    Fig. 10. Final segmentation 

 

     

Fig. 11. Original image and a composite image achieved from the four previously segmented 
regions 

5   Conclusions  

The results in the previous section, demonstrate that the color segmentation method 
presented in this paper offers a useful and efficient alternative for the segmentation of 
objects with different colors in relatively complex color images with good perform-
ance in the presence of the unavoidable additive noise. The steps required to obtain a 
good segmentation of regions with different colors by using the proposed methodol-
ogy are usually straightforward, simple and repetitive. If color is a discriminative 
characteristic in the layer of interest, only the selection of a given threshold to the 
color similarity function CSI is needed to obtain a good segmentation result. From 
many experiments we have observed that a good percentage of colors were obtained 
in a straightforward way only by thresholding the so called Color Similarity Image. In 
our method, the three RGB color components of every pixel transformed to the HSI 
color model are integrated in two steps: in the definitions of the Euclidean distances 
[ ish ΔΔΔ ,, ] in hue, saturation and intensity planes and in the construction of an adap-

tive color similarity function that combines these three distances assuming normal 
probability distributions. Thus the complexity is linear ( [ ]nO ) with respect to the 

number of pixels n  of the source image. The method discriminates whichever type of 
different color objects independently on their shapes and tonalities in a very straight-
forward way. 
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Abstract. The graph cuts in image segmentation have been widely used
in recent years because it regards the problem of image partitioning as
a graph partitioning issue, a well-known problem in graph theory. The
normalized cut approach uses spectral graph properties of the image rep-
resentative graph to bipartite it into two or more balanced subgraphs,
achieving in some cases good results when applying this approach to im-
age segmentation. In this work, we discuss the normalized cut approach
and propose a Quadtree based similarity graph as the input graph in
order to segment images. This representation allow us to reduce the car-
dinality of the similarity graph. Comparisons to the results obtained by
other graph similarity representation were also done in sampled images.

Keywords: image segmentation; quadtree; graph partitioning; spectral
graph.

1 Introduction

The image segmentation issue has been studied by many authors as a way to
distinguish different objects from a scene. Regarding this process as a graph
partitioning problem, a graph cut, is a promissing area and there are a lot of
recent studies on this field. Graph cut is a measure that divides a graph into
two disjoints sets. Therefore, an initial challenge consists to carry out the image-
graph conversion adequately.

The Spectral Graph Theory (SGT) [3] studies the graph’s matrix eigenvalues
and eigenvectors, their relation with the graph’s features and the use of eigenvec-
tors for graph bipartition. There are several applications on this field [7, 14, 16].
The concepts of SGT originated lots of graph partition techniques, such as the
Normalized Cut [12] and the Average Cut [13].

The Normalized Cut (NCut) image segmentation technique [12] segments an
image by minimizing the cut cost of a weighted graph. This cost is calculated as
a fraction of the total edge connections of each partition. One problem in this
technique is to defeat the high computational cost demanded as the graph size
increases. In order to avoid this problem, there are several ways of generating
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the input graph for the segmentation, with different results and applications
[12, 10, 2, 5].

In this work, we propose an alternative graph representation as input for
the NCut, instead of the commonly used pixel affinity graph. This graph, the
Quadtree-based similarity graph, is generated from the quadtree leaves. It uses as
decomposition criterion an edge detection operation. We show that this approach
reduces the graph size and, consequently, the computational cost. The results are
similar to the obtained by the other similarity graphs, using the same technique,
the NCut.

This paper is organized as follows. Section 2 introduces the NCut technique
and presents some related works. Some kinds of graphs that can be used as
input for this technique, including our Quadtree based similarity graph are de-
scribed in section 3. An overview of the proposed approach is given in section 4.
Experiments in sampled images are done in section 5 and further comments of
the experiments, conclusions, as well as suggestions of future work are done in
section 6.

2 Related Works

The Normalized Cut technique [12] is a theoretic method for graph partitioning.
Its goal is to find a balanced cut in a graph, in order to generate two or more sub-
graphs. Applying this method for image segmentation is possible with a proper
image-graph representation. The subgraphs obtained from graph partitioning
represents the image regions.

The Normalized Cut in a graph G is calculated by (1), as follows:

NCut(A, B) =
cut(A, B)

SumCon(A, G)
+

cut(A, B)
SumCon(B, G)

, (1)

where A and B are subgraphs, subject to A∪B = G and A∩B = 0; cut(A, B) is
defined as the total weight of the edges removed from the graph, SumCon(A, G)
is the total weight of the edges connecting nodes from a subgraph A to all nodes
in the original graph G; and SumCon(B, G) is similarly defined to a subgraph
B. The optimal NCut is the one that minimizes (1), but minimizing it is a
NP-Complete complexity problem [12]. However, by expanding (1), the authors
noticed that it can be minimized using spectral graph properties of the graph’s
Laplacian Matrix described by Fiedler [6].

There is a wide range of recent work in image segmentation using the NCut
technique. In [12], the similarity graph is built by taking each pixel as a node.
Then, the node pairs within a given radius r are conected by an edge. Mon-
teiro and Campilho [10] proposed the Watersheded Normalized Cut, which uses
the regions from the Watershed image segmentation as nodes for the similarity
graph. The Watershed region similarity graph is either used in [2] for comparison
with the primitive pixel affinity graph in yeast cells images segmentation.

The primitive NCut enhancement was also studied and applied by many re-
searchers. Cour et al [5] proposes a NCut adaptive technique that focus on the
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computational problem created by long range graphs. The authors suggested the
use of multi-scale segmentations, decomposing a long range graph into indepen-
dent subgraphs. The main contribution of this technique is that larger images
can be better segmented with a linear complexity. Sun and He [15] purposed
the use of the multiscale graph decomposition, partitioning the image graph
representation at the finest scale level and weighting the graph nodes using the
texture features.

3 Graph Representation

A graph representation of the image is needed to perform the NCut segmentation
approach. Basically, this representation is done by an undirected weighted graph
G = (V, E, W ), where: (i) V is the nodes set, where each node corresponds to
a region or a pixel of the image; (ii) E is the edges set, where each edge links
two nodes, and consequently, make a relationship between two regions or pixels
of the image; (iii) and W is the weights set, where each weight is related to
an edge and corresponds to a measure of similarity between the regions on the
relationship. This structure is called the Similarity Graph.

There are several techniques to construct the similarity graph of a image.
Some of these techniques, used by us in this work, are described in the following
subsections.

3.1 Pixel Affinity Graph

Each pixel is taken as a graph node, and two pixels in a r distance are connected
by an edge. The edges weights should reflect the similarity between the pixels
connected by them. The grouping cue used in the similarity function will reflect
the overall quality of the segmentation. Some of them are the intensity, position,
and contours [12, 5, 8].

The intensity and position grouping cue assumes that close-by pixels with
similar intensity are most probably to belong to the same object. The measure
of similarity regarding this grouping cue is given by (2) [12, 5]:

WIP(i, j) =

⎧⎪⎨⎪⎩e
−
(α2

dp

)
−
(β2

di

)
, if α2 < r

0, Otherwise

, (2)

where α =
∣∣|Pi − Pj |

∣∣ and β =
∣∣|Ii − Ij |

∣∣ are respectively the distance and
the difference of intensity between pixels i and j; r is a given distance (also
called graph connection radius); and dp and di could be set with the variance
of the image pixels positions and intensity. This grouping cue used separately
often gives bad segmentations because some natural images are affected by the
texture clutter.
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The measure of similarity regarding the intervening contours grouping cue is
given by (3) [5]:

WC(i, j) =

⎧⎪⎨⎪⎩ e
−
(max(x ∈ line(i,j)) ε2

dc

)
, if α2 < r

0, Otherwise

, (3)

where line(i, j) is a straight line joining pixels i and j and ε =
∣∣|Edge(x)|

∣∣ is the
image edge strength at location x.

These two grouping cues can be combined as shown by (4) [5]:

WIPC(i, j) =
√

WIP(i, j)WC(i, j) + WC(i, j). (4)

Multiscale Graph Decomposition. The Multiscale Graph Decomposition
algorithm [5] works on multiple scale of the image to capture coarse and fine level
details. The construction of the image segmentation graph is given according to
W = W1+W2+. . .+Ws, where W represents the graph weights w(i, j) and s, the
scale, i.e., each Ws is an independent subgraph. Two pixels i,j are connected only
if the distance between them is lower than Gr. As Gr value is a tradeoff between
the computation cost and the segmentation result. Ws can be compressed using
recursive sub-sampling of the image pixels. This compression is not perfect, but
he has the advantage of the computational efficiency.

3.2 Quadtree-Based Similarity Graph

The term Quadtree is used to describe a class of hierarchical data structures
whose common property is that they are based on recursive decomposition of
space. They can be classified on the following bases [11]: (i) the type of data that
they are used to represent, i. e., points, regions, volumes, etc; (ii) the principle
guiding the decomposition, that can be fixed or based on the input data; (iii)
the resolution, that can be variable or not.

In order to represent an image through a Quadtree, its regions should be
recursively decomposed into exact four new disjoint regions, when they satisfy
a defined criterion. The initial region corresponds to the whole image and is
associated to the tree root node [4, 11].

Defining the criterion to decompose the regions of the Quadtree is not a
trivial task. There are different criteria that can be used, as standard deviation
or entropy of image gray levels [4]. We found that using the image edges for
guiding the regions decomposition was very adequated, because: (i) the edge
detection operation drastically reduce the size of data to be processed, while
at the same time preserves the structural information about object boundaries
[1]; (ii) the edge detection results in a binary matrix. Then, became trivial to
define that a region should be decomposed when it is not formed entirely by 1’s
or 0’s [11].Figure 1 shows one grayscale image with 256 x 256 pixels, its edge
detection by Canny filter and a reconstruction based on regions associated with



Image Segmentation Using Quadtree and Normalized Cut 333

(a) (b) (c)

Fig. 1. (a) Original image with 65536 pixels (256 x 256) (b) edge detection resulting
from applying Canny filter to 1a (c) image reconstruction with 14749 regions

the Quadtree leaves. Can be observed that the image reconstruction, showed in
Fig. 1c, is very similar to the original one.

The main goal of using a Quadtree image representation is to reduce the
similarity graph size, used as input to the NCut segmentation technique. For this
purpose, the input graph will be generated with basis on the regions associated
to the Quadtree leaves. Each region will be associated to a graph node. For
instance, for the image showed in Fig. 1a, the resulting similarity graph using
the Quadtree-based approach has 14749 nodes, about 22,5% of the total nodes
obtained by using the Pixel Affinity approach (65536 nodes).

The number of regions obtained by the proposed technique will vary in func-
tion of the image data. Also, the parameters of the edge detection filter can be
manually specified, in order to change its sensibility. It means that the number
of nodes on the similarity graph can be influenced by the choice of the edge
detector parameters.

4 Algorithm Overview

The segmentation based on NCut technique can be applied by two distinct meth-
ods: recursive 2-way NCut and k-way NCut. The first one uses the second small-
est eigenvector of the graph Laplacian’s matrix L, where L = D −W with W
being the weight matrix and D a diagonal degree matrix, to recursively bipar-
tite the similarity graph [12]. The k-way NCut uses the K first eigenvectors
of the graph Laplacian’s matrix L to directly generate a number K of desired
partitions [12].

The image segmentation process using k-way NCut is described in the follow-
ing steps:
1. Given an input image, compute the Similarity Graph G = (V, E, W ) using

one of the techniques described in section 3.
2. Build the weight matrix W and the degree matrix D from the Similarity

Graph.
3. Solve (D −W )x = λDx
4. Discretize the K first eigenvectors into X , where X = [X1, X2, .., XK ] and

XN [i] = 1 iff node i belongs to the partition N .
5. Use X for the distribution of the graph nodes into the K partitions.
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5 Experiments

We used in our experiments a set of 15 randomly chosen images from the Berkeley
Image Database [9] and more 10 images from a particular database. In order to
make a regular decomposition, the quadtree implementation requires squared
images with size 2n, where n is a positive integer. The images of the Berkeley
Database needed to be cropped to 256 x 256 pixels due to this restriction.

The experiments were executed according to the steps described in section
4. For the Pixel Affinity Graphs and the Quadtree-based Similarity Graphs, the
similarity between node’s relations was calculated by (3), while for the Multiscale
Decomposition Graphs it was calculated by (4). The connection radius was,
respectively, r = 10, r = 20 and r = {2, 3, 7}. Note that for the Multiscale
method was generated three scales, and there are one correspondent radius for
each scale. Given the irregularity of the region’s size, the connection radius
between them on the Quadtree representation is given by (5)

Radius =
max (RSa, RSb)

2
+ r, (5)

where RSa and RSb are the sizes of the two regions being connected and r is
the radius given by the user. The k-way NCut was used with K = 30, yelding
to 30 regions for each images segmentation. Fig. 2 shows five selected results.

We use the original implementations of the Pixel Affinity and Multiscale seg-
mentation provided by the authors [12, 5].

As observed on experiments, the NCut with Quadtree-based Similarity Graph
presented results as good as with the Pixel Affinity. There are minor differences
on the resulting segmentations with these two techniques. However, our tech-
nique has a lower computational cost due to the reduced number of nodes on
the similarity graph. For the 25 images used in the experiments, the average
number of nodes on the similarity graph was 18755, about 28.62% of the total
number of pixel on the images. Table 1 shows statistics about the nodes quantity
for our particular database and from the Berkeley Database.

Table 1. Number of nodes for Quad-Tree Based Similarity Graph

Mean Higher Lower
Particular Database 16177,6 24478 9040
Berkeley Database 20473,4 30751 9700

When comparing our technique with the Multiscale method, the differences
on the results are more expressive for some images, see Fig. 2c and Fig. 2d,
once, in this work, these technique uses different similarity functions. Neverthe-
less, these two techniques proposes a way to reduce the computational cost of
NCut segmentation. The main advantage of our technique is that the similarity
graph size can be controlled. However, this control is limited by impacts on the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w)

Fig. 2. Ncut image segmentation results obtained by different graph representations.
(a-e) Original images, respectively: Yeast Cells and Coreto from particular database and
19021, 37073, 42049 from Berkeley Database. (f-j) Results from Pixel Affinity Graph.
(k-o) Results from Multiscale Graph Decomposition. (p-t) Results from Quadtree-based
Similarity Graph. (u-w) Ground Truth segmentations for the Berkeley images.

segmentation quality. It is important to note that the overall quality of the
proposed technique rely on the edge detection filter efficience. The edge detection
uses Canny filter.
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6 Conclusion

In this paper we proposed a novel input similarity graph in order to segment
images by NCut approach. We showed that the utilization of the Quadtree-based
Similarity Graph provides similar results when compared to the two classical
similarity graph representations. Experiments on real images (particular and
Berkeley databases) show that the new representation had the advantage of
significantly reducing the number of graph nodes.

Using regions instead of pixels seems to be a better strategy to segment ima-
ges by NCut approach. We would like to explore the Quadtree-based Similar-
ity Graph and compare its results with other obtained from regions similarity
graphs.

Acknowledgments. This work is supported by CAPES Brazilian Agency and
FAPESP (2009/10266-2).
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Abstract. Information fusion systems are complex systems with many
parameters that must be adjusted to obtain interesting results. Generally
applied in specialized domains such as military, medical and industrial
areas, these systems must work in collaboration with the experts of the
domains. As these end-users are not specialists in information fusion,
the parameters adjustment becomes a difficult task. In addition, to find
a good set of those parameters is a hard and time consuming process as
the search space is very large. In order to overcome this issue a genetic
algorithm is applied to automatically search the best parameter set. The
results show that the proposed approach produces accurate levels of the
global performance of the fusion system.

1 Introduction

Cooperative fusion systems devoted to image interpretation are more and more
complex [1]. These systems help experts in the difficult task of image interpre-
tation which generally consists in detecting typical regions within the images.
Fusion systems are composed of several steps. The first step concerns the extrac-
tion of a piece of pertinent information from the original image. Several image
processing techniques could be used to characterize the different sought-after re-
gions. Then the extracted information must be represented into a common and
commensurable space in order to be aggregated in the following step. Finally,
the output is expressed in an understandable space for the end-user. This step
is achieved by the representation step.

Such systems generally imply in high computational cost. They also have
many parameters that are not easy to use and to adjust by the end-users. The
parameter setting and attributes selection are strongly necessary to obtain rel-
evant results. Unfortunately, the end-users of this kind of fusion system are not
specialists in computer sciences and they need help to interact with the system.
This is reinforced by the fact that an optimized adjustment obtained for a given
data is not compulsory the best one for other data.

The work presented in this paper is based on a local evaluation of the mission
of the fusion system extraction step. The local evaluation turns possible to have
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a better identification of which extractor need to be adjusted. In a context of
image interpretation, the extractors are based on image processing algorithms.
They have technical parameters (filter coefficient, windows size, normalization,
. . . ) that are not accessible to the end-user. However, the parameters must be
adjusted and adapted to the input image and to the sought-after regions. The
high computation time makes a manual setting very difficult even for experi-
mented users in image processing techniques. In order to solve this problem, this
paper employs a local evaluation combined to the use of genetic algorithms. In
the literature, GA has already shown their interests for image processing. The
obtained results show that it is an interesting way to automatically optimize
parameters that should have some impact on the fused result.

2 Fusion System for 3D Image Interpretation

2.1 The Studied Fusion System

The cooperative fusion system concerned in this paper, was designed for 3D
gray level image interpretation. This application concerns the analysis of electro-
technical parts manufactured by Schneider Electric Company. The studied parts
are mainly composed of glass fibers mixed with an organic matrix. The quality
of the parts is directly correlated to the fiber organization. Experts (geophysics,
part designers, . . . ) try to understand the inside part organization to find the best
fabrication process (fiber length, injection point, baking time, . . . ). The method
chosen by Schneider Electric to analyze the parts is based on X-ray computed
tomography (CT). It is a reliable non-destructive evaluation technique. The CT
results are 3D gray-scale images which provide data about the organization of
the internal morphology. The sought-after regions are presented on figure 1. The
first one is the oriented region (noted R1) which has a regular and organized
texture with a single preferential orientation of the glass fibers. They are made
up of long white fibers giving the impression of a flow. The Disordered regions
(noted R2) do not appear organized on the images, locally “chaotic”, i.e. for
which there is not a clearly defined principal orientation. The regions called Lack

Fig. 1. The sought-after regions
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of reinforcement (noted R3) only contain resin (or paste) and no glass fibers.
They appear in clear and homogeneous gray level on the images. These three
regions need different measurements to be detected simultaneously (orientation,
texture, morphology, . . . ). An information fusion system has been developed to
aggregate the heterogeneous measurements.

In the concerned application, the experts introduce their knowledge by point-
ing references of the regions directly on the input image. To help them in the
interpretation of the images (i.e. to detect the sought-after regions in all the im-
ages based on the pointing reference), the synoptic of the designed fusion system
is presented on figure 2. The extraction steps involve three image processing mea-
surements: local organisations based on principal component analysis of voxel
intensity, texture measurements based on coocurrence matrix and morphological
measurements based on morphology mathematics. The extracted information is
then transformed into similarity map using possibility theory. Then, Choquet
integral aggregates the similarity maps into a global one. The final decision on
the belonging region of each voxel is obtained by a thresholding operation. The
voxels that do not have enough similarity to any of the sought-after regions are
labelled to a rejected class. More details on the system can be found in [2].

Extraction Representation Aggregation Interpretation

Choquet integral

Choquet integral

Choquet integral

Decision

Similarity maps

Similarity maps

Similarity maps

E
3D images

S
Cartographies

organizations

measurements

Morphological
measurements

texture

local

for region R2

for region Rn

for region R1for region R1

for region R2

for region Rn

Fig. 2. Fusion system designed for 3D image analysis

In this application, the global evaluation of the system consists in verifying the
correct decision of the voxels contained into the reference regions by computing a
confusion matrix. Detection rate for each region (and a global one) are extracted
from the matrix and serve to comment the global performance of the system.
The global evaluation of the fused image does not provide enough explanation
on the efficiency of each step. It is also difficult to explain the influence and the
dependency of a parameter directly on the global result. Therefore there is a need
for a local measure to adjust the parameters. A local evaluation of the extraction
step was proposed in [4]. It is based on a mission achievement evaluation: an
extracted information must bring a better separability between the sought-after
regions. Separability indexes was proposed to detect weak informative attributes.
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2.2 Importance of the Extraction Step

In the studied fusion system devoted to image interpretation, the extraction step
have a great impact on the rest of the system. Indeed, most parameters are con-
centrated on this step. These parameters are difficult to adjust by a end-user not
specialist in image processing. A first fusion of two attributes is proposed to il-
lustrate the complexity of the system. The first attribute noted A1 belongs to
the local organisations family. It measures the main orientation of the fiber in
the part. Its computation need the following parameter: α the Derich filter coef-
ficient, Wx, Wy , Wz the window size of the principal component analysis, Wg the
window size of the gradient calculation, N a normalisation coefficient. The second
attribute noted A2 belongs to the texture measurement family. The homogeneity
index is computed on the coocurrence matrix evaluated on a windows Wx, Wy, Wz

and for a direction vector (dx, dy, dz). A1 and A2 were initially computed with the
default parameters presented in table 1 with their separability indexes for each
attribute. The separability indexes are all weak which mean that those attributes
were not able to discriminate the regions. Only A2 reached a better separability
for region R3. The detection rates are also weak even for the third region which is
the best one detected. Therefore, the global detection rate is clearly insufficient.

Figure 3 presents the output cartography. White voxels correspond to region
R3, clear gray level voxels correspond to region R2, dark grey level voxels cor-
respond to region R1. Black voxel are voxel belong to the rejected class because
they have a weak similarity to the sought-after regions. The contour of the refer-
ence regions are also plot on the image and the hole in the part are hatched. This
result clearly shows the weakness of the detection. Region are too fragmented
and don’t correspond to the result expected by the end-users.

To improve the detection, parameters of attribute A1 are adjusted manually:
the windows size used in the principal component analysis is increased and the
α coefficient is decreased (growth of the smoothing effect). The new attribute is
noted A′

1 and the new separability indexes and detection rate are also presented
on the table 1. Separability indexes have a small increase but not significantly.
At the end, we even notice a slight improvement of the global rate, however, not
considerable. The obtained cartography have also the same weakness. Manually
it is extremely difficult and time-consuming to find interesting parameter accord-
ing to the sought-after regions. The search space of the fusion system parameters
is very large which describes a complex combinatorial optimization problem.

Table 1. Initial fusion

Attribute parameters
α Wx Wy Wz Wg N

A1 0.5 9 9 9 15 10.0
A′

1 0.4 11 11 11 15 10.0
Wx Wy Wz dx dy dz

A2 8 8 8 2 2 2

Separability indexes and detection rates
R1 R2 R3 TGlobal

SA1 0,32 0,35 0,66
SA′

1
0,35 0,37 0,67

SA2 0,22 0,30 0,74

Fusion(A1, A2) 0,45 0,69 0,74 0,52
Fusion(A′

1, A2) 0,51 0,53 0,77 0,54
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Fig. 3. Classification obtained with attributes A1 and A2

3 Genetic Algorithms

Evolutionary Algorithms (EA) have been considered as powerful search and
optimization methods that prevail over the drawbacks of classical mathematical
optimization methods. They are based in probabilistic searching, and do not
need gradient information; therefore, they are more robust in locating global
optima in multi-modal search space [5]. EAs have been widely applied in the
last few years in computationally expensive applications and proved to be a
strong optimization method in many types of combinatorial problems. Those
successful applications of EAs involve scheduling [6], knowledge discovery [7],
information fusion [8], etc.

3.1 Principle of Genetic Algorithm

Genetic Algorithms (GA) belong to the class of EA, it is a population-based
model that uses various operators to evolve, such as selection, crossover and mu-
tation. These operations correspond, respectively, to the principles of survival of
the fittest; recombination of genetic material, and mutation observed in nature,
following the mechanisms of natural selection [9].

In GAs, each optimization variable or parameter (xn) is encoded by a gene us-
ing an appropriate representation, such as a real number or a string of bits. The
corresponding genes for all parameters x1, x2, . . . , xn form a chromosome, capable
of describing an individual design solution. A set of chromosomes representing sev-
eral individual solutions comprises a population, where the fittest individuals are
selected to mate and reproduce. Mating is performed using crossover to combine
genes from different parents to produce children (offspring). The children inherit
features from both parents, and may be submitted to mutation, which confers
some truly innovative features as well. The offspring are made to compete with
each other, and possibly with their parents. Individuals are evaluated via the ob-
jective function that defines the problem. As a result of the evaluation, they are
assigned a certain cost that dissociate them. This value, named fitness value, rep-
resents the quality of the solution. By the end of a generation, only the fittest indi-
viduals are selected to continue in the population, and the other ones are rejected.



A Genetic-Algorithm-Based Fusion System Optimization 343

Improvement in the population arises as a consequence of the repeated selection
of the best parents, which are in turn more likely to produce good offspring, and
the consequent elimination of low-performers. In the present work, the classical
Genetic Algorithm is used, with binary codification, single point crossover, indi-
vidual elitism and roulette-wheel selection with Genesis package1.

3.2 Application to Image Processing Parameter Adjustments

In this work, GA was applied to optimize extraction step corresponding to at-
tribute A1 which has the weak separability for regions R1. Genes must be de-
clared and configured to well represent the image processing parameters. Six
genes were used, one for each of the six parameters. Chromosomes xi of the
population are binary strings composed by the 6 genes. The gene declaration is
presented in table 2. Chromosomes xi are composed of 26 binary elements. For
the window sizes, values can only be odd. The min and max value and the number
of binary elements was selected in consequence. The attribute is thus obtained
by a function of the chromosomes xi: A1 = g(xi) The objective function f is the
separability index presented in section 2 for a given region. f : (A1, Ri) → SRi .
This function is directly dependent to the xi chromosomes. In this work, the
main objective is to find the best set of parameters in the extraction step of
image interpretation that maximizes the separability of the regions.

Table 2. Genes definition for attribute A1

parameters α Wx Wy Wz Wg N

genes 1 2 3 4 5 6
binary string size 5 4 4 4 4 5
parameter values [0, 1.0] {3..33} {3..33} {3..33} {3..33} [0, 200.0]
number of possible values 32 16 16 16 16 32

3.3 Illustration on 3D Tomography Image Interpretation

The optimization is applied on attribute A1 to improve the separability of this
attribute to region R1 which has the lowest detection rate. The population size
of the GA is 20 individuals, the crossover Rate is set to 0.8 and the mutation
Rate equal 0.01. Stopping criteria is maximum number of evaluations. The initial
population is set randomly.

In this population, several individuals makes a complete separability of the
region R1 possible. Moreover, the final population also brought interesting infor-
mation on the behavior of the parameters according to the sought-after regions.
It shows that the Derich filter must be weak (a strong smoothing is necessary)
and the gradient window size must also be weak (a windows size of 3 is enough).

1 Genesis package can be found:
http://www.cs.cmu.edu/afs/cs/project/airepository/ai/areas/genetic/ga/

systems/genesis/0.html

http://www.cs.cmu.edu/afs/cs/project/airepository/ai/areas/genetic/ga/systems/genesis/0.html
http://www.cs.cmu.edu/afs/cs/project/airepository/ai/areas/genetic/ga/systems/genesis/0.html
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Table 3. Classification obtained after optimization

α Wx Wy Wz Wg N SR1

0.03 19 31 11 3 10.00 1.0000

R1 R2 R3 TGlobal

SA′′
1

1,0 0,91 0,77
FusionA′′

1 , A2 0,93 0,94 0,81 0,92

Concerning the window sizes principal component analyse, a large one ([31, 33])
is required for Wy, and finally more classical sizes have been encountered for Wz

and Wx.Values for these two parameters are also established on a larger interval.
It also means that these two parameters have less influence on the result.

The parameters for the optimized attribute (noted A′′
1 in the following), its

separabilities and the obtained cartography are given in figure 3. The fusion
of the optimized attribute A′′

1 with A2 gives now good detection rates. The
classification better presents a good correspondence to the sought-after regions
and the detected regions are less fragmented. Many voxels remain classified into
the rejected class (black voxel). It is an effect to the strong learning realized on
the reference regions. It could have a perverse effect on the generalization of the
classification (i.e. classification of the voxel for which we have no reference).

4 Conclusions

Cooperative fusion system for image interpretation are now complex systems.
The complexity concerns both the system conception (choice of the inputs, choice
of the aggregation function, . . . ), the performance evaluation and the parameter
adjustment. Based on an existing fusion system, this paper has proposed a way
to locally adjust some parameters which could have a strong impact on the fused
results. To help the end-users in the difficult task of the parameter adjustment,
an optimization algorithm was proposed. Based on Genetic Algorithms, a set of
best parameters can be found in a large search space. This algorithm appears
interesting to find a stable local optimum that corresponds to a maximization
of the objective function. Even though a set of possible interesting solution
corresponding to different optima certainly exists, the main objective remains
to find, at least, one situation that can improve the attribute. GA are specially
interesting in this situation.

The proposed approach was applied on an attribute devoted to organisation
measurement in the 3D images. The obtained parameters make it possible to
have the maximum separability for a given sought-after region. Thanks to the
new attributes, the global detection on the output of the fusion system can
immediately considerably increase. The final parameter population brought in-
formation on the parameters (difference between the 3D dimension, variability
of several one, unique value for other ones, . . . ). They also would have been
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difficult to find manually. However, the success of such an optimization depends
on two important factors: the objective function and the reference regions. The
objective function must be pertinent for the application because it corresponds
to the criteria to optimize. Work is under progress to improve the actual objec-
tive function to try and attempt to optimize attribute parameters according to
the 3 sought-after regions (or only one without saying which one). The reference
regions are also very important. They must be representative to the sought-after
regions to keep interesting results in generalization.
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Abstract. Atomic Functions are widely used in different applications in
image processing, pattern recognition, computational physics and also in
the digital interpretation of signal measurements. The main contribution
of this work is to develop a Quaternionic Atomic Function Wavelet as a
new quaternionic image wavelet transform. This filter have a real part
and three imaginary parts (i, j, k) of the Quaternion Atomic Function,
as a result we can extract more information from the image by the three
phases (φ, θ, ϕ) of the quaternion representation. The experimental part
shows clearly that the phase information of the image is not afected by
illumination changes.

Keywords: Quaternion Algebra, Atomic functions, Image Processing,
2D Phase Information.

1 Introduction

One of the main fields of Atomic functions AFs application is pattern recogni-
tion and image processing [1]. This work presents the theory and some results
of the Quaternion Atomic Function QAF , as a new quaternionic wavelet. We
use the AF because, it is novel and versatile, easy to derivate (only a shift), it is
compact in space domain, and it has the possibility of representing any polyno-
mial by means of its translations. We develop the AF in a hypercomplex algebra
(quaternion algebra H), this framework permits to extract the phase informa-
tion of the image. The combination of this function AF with this framework H
makes a new useful image filter.

We apply the QAF or qup on a test image (squares) in 3 ways as follows:
firstly, convolution of each part (real, i, j, k) of QAF is applied on the test im-
age, secondly, we calculate the three phases of the filtered image, thirdly and we
uses a wavelet for multiscale image processing. We structure this work as follows,
the first section is devoted to present the AF and the main characteristics, the
subject of the second section is the quaternion algebra, the next section intro-
duces the QAF , in the section four we present the Quaternion Atomic Wavelet
Function, in the section five we present the results and finally the conclusions.

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 346–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Atomic Functions

By definition, AF are compactly supported infinitely differentiable solutions of
differential equations with a shifted argument [1] i.e.

Lf(x) = λ

M∑
k=1

c(k)f(ax− b(k)), |a| > 1, (1)

where L = dn

dxn + a1
dn−1

dxn−1 + ... + an is a linear differential operator with con-
stant coefficients. In the AF class, the function up(x) is the simplest and at the
same time, the most useful primitive function to generate other kinds of atomic
functions [1]. It satisfies the equation

f(x)′ = 2 (f(2x + 1)− f(2x− 1)) , (2)

Function up(x) is infinitely differentiable but non-analytical; up(0) = 1,
up(−x) = up(x). Other types of AF satisfying equation (1): fupn(x), Ξn(x),
ha(x) [6]. In this work we only use up(x). In general the Atomic Function up(x)
is generated by infinite convolutions of rectangular impulses. The function up(x)
has the following representation in terms of the Fourier transform:

up(x) =
1
2π

∫ ∞

∞
eiux

∞∏
k=1

sin(u2−k)
u2−k

du. (3)

Figure 1 shows the up(x) and the Fourier Transform of F (up). Atomic windows
were compared with classic ones [1,6] by means of the system of parameters such
as: the equivalent noise bandwidth, the 50% overlapping region correlation, the
parasitic modulation amplitude, the maximum conversion losses (in decibels),
the maximum side lobe level (in decibels), the asymptotic decay rate of the
side lobes (in decibels per octave), the window width at the six-decibel level, the
coherent gain. All atomic windows exceed classic ones in terms of the asymptotic
decay rate [1,6].
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Fig. 1. Atomic function up(x) and the Fourier Transform of up(x)

Figure 2 illustrate the first derivate, dup see equation (2) in convolution with
the image, this function can be used as a oriented line detector with a simple
rotation. We show three orientations 0o, 45o, 135o.
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a b c d

Fig. 2. Convolution of dup(x, y) with the test image. a) Test Image, b)Result of the
convolution of the image with dup(x, y, 0o), c)Result of the convolution of the image
with dup(x, y, 45o), d)Result of the convolution of the image with dup(x, y, 135o).

3 Quaternion Algebra

The quaternion algebra is a framework we need to define the QAF . Quaternion
algebra was invented by Hamilton in 1843. It is an associative non-commutative
four-dimensional algebra [2,3].

q = a + bi + cj + dk a, b, c, d ε & (4)

The units i, j obey the relations

i2 = j2 = −1, ij = −k, (5)

the norm of a quaternion is defined |q| =
√

qq̄ where q̄ is a conjujate of q.
Similarly to the complex numbers. In 2D the phase component carries the main
part of image information [4,5].

Since the quaternions constitute a 4D algebra we can represent q in a polar
representation of the form equation (4) i.e. (|q|, φ, θ, ψ), where |q| is the magnitude
and the angles (φ, θ, ψ) represent a novel kind of phase vector. By definition [3]:

q = |q|eiφekψejθ (6)

the phase range are delimited (φ,θ,ψ),[ −π, π ]×[ −π/2, π/2 ]×[ −π/4, π/4 ].

4 Quaternion Atomic Function

The up(x) function is easily extendable to two dimensions. Since a 2D signal can
be split into an even (e) and odd (o) parts [3]

f(x, y) = fee(x, y) + foe(x, y) + feo(x, y) + foo(x, y), (7)
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one can then separate the four components of equation (3) and represent it as a
quaternion as follows:

QAF (x, y) = up(x, y)[cos(wx) cos(wy) + i(sin(wx) cos(wy)) + (8)
+ j(cos(wx) sin(wy)) + k(sin(wx) sin(wy))]
= QAFee + iQAFoe + jQAFeo + kQAFoo (9)

Figure 3 shows a Quaternion Atomic Function QAF or qup in the space domain
with its four components: real part QAFee is observed in a , and the imaginary
parts QAFeo, QAFoe, QAFoo are illustrated in b, c, d respectively. We can see
clearly the differences in each part of our filter.

a b c d

Fig. 3. Quaternion Atomic function up(x). a) QAFee, b) QAFoe, c) QAFeo and d)
QAFoo.

5 Quaternion Atomic Wavelet Function

In the Fourier Transform of a 2D signal, the phase component carries the main
part of image information. We use this phase information in the quaternionic
wavelet multiresolution analysis. This technique can be easily formulated in
terms of the quaternion AF mother wavelet, for a more detail explanation see
[2]. For the 2D image function f(x, y), a quaternionic wavelet can be written as

f(x, y) = Aq
nf +

n∑
j=1

[Dq
j,1f + Dq

j,2f + Dq
j,3f ]. (10)

The upper index q indicates a quaternion 2D signal. We can characterize each
approximation function Aq

jf(x, y) and the difference components Dq
j,pf(x, y) for

p = 1, 2, 3 via a 2D scaling function Φq(x, y) and its associated wavelet functions
Ψq

p(x, y) as follows:

Aq
jf(x, y) =

+∞∑
k=−∞

+∞∑
l=−∞

aj,k,lΦ
q
j,k,l(x, y), (11)

Dq
j,pf(x, y) =

+∞∑
k=−∞

+∞∑
l=−∞

dj,p,k,lΨ
q
j,p,k,l(x, y),



350 E.U. Moya-Sánchez and E. Bayro-Corrochano

where

Φq
j,k,l(x, y) =

1
2j

Φq

(
x− k

2j
,
y − l

2j

)
, (j, k, l) ∈ Z3,

Ψq
j,p,k,l(x, y) =

1
2j

Ψq
p

(
x− k

2j
,
y − l

2j

)
(12)

and

aj,k,l(x, y) =< f(x, y),Φq
j,k,l(x, y) >, (13)

dj,p,k,l =< f(x, y),Ψq
j,p,k,l(x, y) > .

In order to carry out a separable quaternionic multiresolution analysis, we de-
compose the scaling function Φq(x, y)j and the wavelet functions Ψq

p(x, y)j for
each level j as follows:

Φq(x, y)j = φi (x)jφ
j (y)j ,

Ψq
1(x, y)j = φi (x)jψ

j (y)j ,

Ψq
2(x, y)j = ψi (x)jφ

j (y)j ,

Ψq
3(x, y)j = ψi (x)jψ

j (y)j , (14)

where φi (x)j and ψ(x)ij are 1D complex filters applied along the rows and
columns respectively. Note that in φ and ψ, we use the imaginary number i , j
of quaternions that satisfies j i = k .

By using these formulas, we can build quaternionic wavelet pyramids. Figure
4 shows the two primary levels of the pyramid (fine to coarse). According to
equation (14), the approximation after the first level Aq

1f(x, y) is the output of
Φq(x, y)1, and the differences Dq

1,1f, Dq
1,2f, Dq

1,3f are the outputs of Ψq
1,1(x, y),

Ψq
1,2(x, y) and Ψq

1,3(x, y). The procedure continues through the j levels deci-
mating the image at the outputs of the levels (indicated in figure 4 within the
circle).

The quaternionic wavelet analysis from level j − 1 to level j corresponds to
the transformation of one quaternionic approximation to a new quaternionic
approximation and three quaternionic differences, i.e.,

{Aq
j−1} → {Aq

j , Dq
j,p, p = 1, 2, 3}. (15)

Note that we do not use the idea of a mirror tree [2]. As a result, the quaternionic
wavelet tree is a compact and economic processing structure which can be used
for the case of n-dimensional multi-resolution analysis.

6 Results

Figure 5 shows the original image and four resulting images after convolution
with components of the filter. The real part is observed in a , and i, j, k, imaginary
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Fig. 4. Abstraction of two levels of the quaternionic wavelet pyramid

b c d ea

Fig. 5. Convolution of the test image with the qup. a) Original image. b) real-part c)
i-part, d) j-part and e) k-part.

e

a

f g h

b c d

Fig. 6. The amplitude of the filtered Image a) and the three phases (φ, θ, ϕ), b), c), d)
respectively. The second row shows the original image f) and the subtraction of the
original image and the three phases (φ, θ, ϕ) of the filtered image.

parts can be appreciate in b, c, d respectively. This figure illustrates how the
QAF or qup filter works in different directions such as vertical, horizontal and
combination of both. The direct convolution with the image is sensitive to the
contrast of the image. Figure 6 shows the amplitude (a) (real part) and the
three phases (φ, θ, ϕ) of quaternionic phase of the filtered image. The phase
information is immune to changes of the contrast. In the second row of the
Figure 6 we can see a subtraction of the original image and the three phases,
it shows how the phase information can be used to localize and extract more
information independently of the contrast of the image.
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Scale=1

Scale=2

Fig. 7. (upper row) Thresholded quaternionic phases (φ, θ, ϕ) at first scale. (second
row) Thresholded quaternionic phases (φ, θ, ϕ) at a second scale.

The QAF qup kernel was used as the mother wavelet in the multi-resolution
pyramid. Figure 7 presents the three quaternionic phases at two scale levels of the
pyramid. The lower row shows the phases after thresholding to enhance the phase
structure. You can see how vertical lines and crossing points are highlighted.

7 Conclusion

This work introduces the theory and some applications of the quaternion Atomic
Function Wavelet in image processing. This work indicates that the QAF (qup)
can be more useful than simply up because it exploits the quaternion phase
concept. The information of the three phases is independent of illumination
changes. We present the use of this AF quaternionic mother wavelet for multi-
resolution analysis which can be applied for optical flow, texture segmentation
and image matching. The QAF wavelet filter disentangles structure symmetries
of the image through the levels of an multi-resolution pyramid. A future work
will include multi-resolution analysis for optical flow using real images.
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Abstract. In this paper, we propose a novel texture analysis method
using the complex network theory. It was investigated how a texture im-
age can be effectively represented, characterized and analyzed in terms of
a complex network. The propose uses degree measurements in a dynamic
evolution network to compose a set of feasible shape descriptors. Results
show that the method is very robust and it presents a very excellent
texture discrimination for all considered classes.

1 Introduction

Texture analysis is a basic issue in image processing and computer vision. It
is a key problem in many application areas, such as object recognition, remote
sensing, content-based image retrieval and so on. Even though there is no ex-
act definition for the term texture, this is an attribute easily comprehended by
humans and it is a wealthy source of visual informations (when considered the
tri-dimensional nature of physical objects) [15].

Generally speaking, textures are complex visual patterns composed by enti-
ties, or sub-patterns, which present characteristics such bright, color, deepness,
size, etc. So, texture can be considered as a group of similarities on a image [15].
Due this characteristic, the definition of a texture class must take into account
not just the isolated primitives, but the relation among pixels and its neighbors
[12]. Consequently, texture characterization and identification requires a method-
ology capable to express the context surrounding each pixel, joining local and
global texture characteristics.

Numerous methods have been proposed in the literature and, several of them
use implicitly the approach of joining local and global texture characteristics.
These methods, in general, are based the spectral analysis of the pixels of the
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image (e.g., Fourier desciptors [2] and Gabor Filters [14]), statistical analysis of
the pixels (e.g., co-ocorrence matrices [11]) and complexity analysis (e.g., Fractal
Dimension [13]).

This paper proposes a novel approach to represent and characterize the rela-
tion among these structural elements using the Complex Networks Theory. To
accomplish this task, is necessary to represent texture as a complex network,
incorporating to the vertices and edges the information about image pixels and
their neighbors, followed by an analysis of the topological features of the com-
puted network. These features may be used to discriminate different classes of
images. In the fact, every discrete structure such as lists, trees, networks, texts
[1] and images [9] can be suitably represented as graphs. Taking this into ac-
count, various studies include investigations of the problem representation as a
Complex Network, followed by an analysis of its topological characteristics and
its features extraction [6,4,3,7,8].

In [4,3] the shape analysis is performed using the complex network theory.
After the modeling of the shape as an complex network, simple measurements are
extracted. Thoses measurements are used to classify shapes in differents classes.
In [6,7] and [8], the problem of texture characterization is presented in terms of
complex networks: image pixels are represented as nodes and similarities between
such pixels are mapped as links between the network nodes. It is verified that
several types of textures present distinct node degree distributions, suggesting
complex organization of those textures. Traditional measurements of the network
connectivity are then applied in order to obtain feature vectors from which the
textures can be characterized and classified.

The idea of this work is similar of the cited works above, model the texture
as a complex network and the posterior feature extraction. The main difference
are in the manner as complex network is modeled, and in what measurements
used. The works of [6,7] and [8] uses an hierarchical representation as model.
We propose use direct pixels relations to model the texture and use a set of
thresholds values to characterize the network. The work of [6,7] and [8] uses the
degree and clustering coeficient to characterize the network. We will use only
degree, due the high computational time of the clustering coeficient. In this time
we can say that the idea proposed here is more similar with [4,3], but applied in
texture analysis context.

2 Texture as a Pixel Network

A graph representation of the texture is built as G = (P, E), where each pixel
corresponds to a vertex in the graph G. In this graph, two pixels p = (i, j) ∈ P
and p′ = (i′, j′) ∈ P are connected when the Euclidean distance between them
is no longer than a r value:

E =
{

((i, j), (i′, j′)) ∈ P × P |
√

(i− i′)2 + (j − j′)2 ≤ r
}

(1)
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For each non-directed edge e ∈ E is associated a weight, which is defined by
the square of the Euclidean distance between two connected vertexes, when
considered the pixels intensity vi,j and vi′,j′ :

d(e) = (i− i′)2 + (j − j′)2 + (vi,j − vi′,j′)2 ∀e = {(i, j), (i′, j′)} ∈ E (2)

This approach allows to include context information about pixel surrounding,
which refers to a local texture analysis.

Once the connection between pixels depends on the parameter r, which is
associated to the covering radius of an pixel in the image, the weight function
d(e) may assume a very large range of values. It makes necessary to normalize
this weight into the interval [0, 1], which is performed using the largest value
possible in a connection. This value corresponds to the maximum difference of
intensity between two pixels that are to a distance of r:

w(e) =
d(e)

2552 + r2 (3)

Initially, each network vertex presents a similar number of connections, so the
computed network presents a regular behavior. However, a regular network is not
considered a complex network, and it does not present any relevant property. It
is necessary to transform this network in a complex network that owns relevant
properties. More explanation about this can be read in [4].

An interesting approach for achieving additional information about structure
and dynamic of complex networks is to apply a transformation over the original
network and then to compute the properties of the resulting network [10]. Figure
1 shows an example of a transformation δ applied over a network, so a set of
features are computed.

There are several possibilities to perform this transformation. A straight and
simple way is applying a threshold t over the original set of edges E, so as to

Fig. 1. Difference Δf between feature vectors f and fTi after applying a Ti transfor-
mation over the original network. This difference can be used as additional information
about the proprieties of the network. Adapted from [10].
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select a subset E∗, E∗ ⊆ E, where each edge of E∗ has a weight equal or smaller
than t. This transformation δT , henceforth represented as

E∗ = δt(E) = {e ∈ E|w(e) ≤ t} . (4)

In this case, the δt transformation can be interpreted as a intermediate step on
network dynamics. So, a richer set of measurements that describes the network
dynamics involves to take into account several instances along its degradation.
A feature is computed at each time instant t. Figure 2 shows four instances
of an evolving network. In such a way, the evolution of a network can now be
investigated in terms of a trajectory in dynamical evolution of δ transformation.

In other words, the network characterization is performed using various δ
transformations, where the threshold Ti is incremented in a regular interval Tinc.
Also can be interpreted as acquisition of several samplings of complex network
throughout it life (between it creation and extinction).

2.1 Network Characterization

Several measurements can be computed through analysis of the network. One
measurement particularly relevant for texture characterization is the average
degree of G, Av(G):

Av(G) =
∑
p∈P

deg(p)
|P | (5)

where deg(p) is the degree (or connectivity) of a node p, i.e., the number of
neighbors of p and |P | denotes the cardinality (number of nodes).

Note that such measurements are particularly relevant for texture characteri-
zation because they provides a good compromise between local (i.e. the measure-
ments are centered at each image point) and global (i.e. the measurement take
into account the immediate context of the image properties around the reference
point) information.

Considering f(x, y) the texture under analysis and G the network built using
Equations 1,2 and 3, the feature vector consists of the average degree in several
δt transformations. This process is better understood through Figure 2. There,
a texture is modeled as a complex network and different δTi transformations
are applied over the resulting network. For each threshold Ti a numeric value
representing the average degree (Av(δTiG)) of the network is computed and used
as a feasible texture signature. Figure 3 shows two complex networks computed
from different textures using the same threshold value.

3 Evaluation

In order to evaluate the proposed method, signatures have been calculated for
different configurations and they have been used in a texture analysis context.
For this, an image database have been prepared selecting a set of 111 natural
textures obtained from Brodatz texture album [5]. This database is broadly used
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Fig. 2. Complex network characterization through dynamical evolution investigations

Fig. 3. Example of resulting complex network for two different texture samples

in computer vision and image processing literature as benchmark for texture
analysis. Each texture image is of size 640×640 with 256 gray levels. A database
constituted of 1110 image regions of 111 texture classes was constructed by
subdivided each image into 10 sub-images of 200× 200 size.

In addition, to corroborate properties such rotation invariance, an additional
database was built by rotating of the original textures in 15 ◦, 30 ◦, 45 ◦, 60 ◦,
75 ◦, 90 ◦, 105 ◦, 120 ◦, 135 ◦ and 150 ◦ degrees.

The analysis has been carried out by applying the Linear Discriminant Anal-
ysis (LDA) in a leave-one-out cross-validation scheme.

3.1 Experiments

Experiments have been idealized to show the high potential of the method to
analyze and characterize texture images, and its results have been compared
with others descriptors found in the literature:

Fourier descriptors[2] : composed by the 99 coeficients of Fourier Transform,
were each one corresponds to the sum of the spectrum absolute values placed to
a radial distance from the center of the bi-dimensional transformation.

Co-occurrence matrices[11] : distances of 1 and 2 pixels with angles of −45 ◦,
0 ◦, 45 ◦, 90 ◦ were used. Energy and entropy were computed from resulting
matrices, totalizing a set of 16 descriptors. A non-symmetric version has been
adopted.
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Gabor filters[14] : we use a family of 16 filters (4 rotation and 4 scale), with
frequency lower than 0.01 and superior than 0.3. Definition of the individual
parameters of each filter follows mathematical model presented in [14].

4 Results and Discussion

A important characteristic in the proposed method is that it has only two param-
eters to be configured when it is applied in the texture recognition task: the ra-
dius r and the number of evolutions periods T . Several tests have been performed
in order to evaluate the method behavior for different values of r and different
T periods. Table 1 summarizes the results for 9 vectors (F1, F2, . . . , F9).

Table 1. Result for the proposed method under different parameter values. Tini and
TQ are, respectively, the initial and final threshold defined by user, while Tinc is the
increment used to go from Tini to TQ.

Set Parameters N◦ of descriptors Images correctly
classified

Success
rate(%)

Maximum error
rate (%) per class

r Tini Tinc TQ

F1 2 0.005 0.005 0.333 66 1066 96.03 60.00
F2 3 0.005 0.005 0.333 66 1067 96.12 60.00
F3 4 0.005 0.005 0.333 66 1071 96.48 50.00
F4 5 0.005 0.005 0.333 66 1071 96.48 40.00
F5 5 0.005 0.005 0.166 33 1058 95.31 60.00
F6 5 0.166 0.005 0.333 33 1017 91.62 70.00
F7 5 0.333 0.005 0.500 34 927 83.51 100.00
F8 5 0.005 0.010 0.333 33 1054 94.95 60.00
F9 5 0.005 0.015 0.333 22 1033 93.06 80.00

We observed no significant improvement in performance for F1, F2, F3 and
F4 sets, although they are using different r values. Even though a higher r value
be able to model a more dense network, this does not affect straight the results.

We see that the chosen sequence of T values should have a small influence over
the final results. This affirmation is corroborated by F4, F8 and F9 parameters
set, where we notice a satisfactory classification rate, even when it is used differ-
ent sampling (T values with intervals of 0.005, 0.010 e 0.015 respectively). We
see too that most part of information lies on the beginning of the dynamic evolu-
tion process. This is validated by F5, F6 and F7 parameters set. F5, whose set
yielded the best result among these three (95.31%), uses only the beginning of
dynamic evolution process to compose its feature vector (T ≤ 0.166). Otherwise,
the F7 set, which uses only the final stages (0.333 ≤ T ≤ 0.500), yielded the
worst result (83.51%). As expected, the F6 set, which uses intermediate stages
(0.166 ≤ T ≤ 0.333), yielded an average result (91.62%).

For comparison, the proposed method have been compared with traditional
texture analysis methods described in Section 3.1. Table 2 shows the yielded
results presented by each method. The our method presents a superior success
rate. Even though the number of descriptors is higher than in other methods,
this presents a discrimination ability also higher when it uses only the initial
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Table 2. Comparison of the proposed method with traditional texture analysis methods

Method N◦ of descriptors Images correctly
classified

Success
rate (%)

Maximum error
rate (%) per class

Gabor Filters 16 992 89.37 100.00
Fourier 99 888 80.00 90.00

Co-occurrence 16 968 87.21 80.00
Complex Network 66 1071 96.48 40.00

Table 3. Result for the proposed method over rotated textures database

Method N◦ of descriptors Images correctly
classified

Success
rate (%)

Maximum error
rate (%) per class

Gabor Filters 16 885 79.73 100.00
Fourier 99 966 87.02 50.00

Co-occurrence 16 751 67.66 90.00
Complex Network 66 1106 99.64 10.00

stages of dynamic evolution. This is corroborated by result archived with only
16 descriptors (e.g. T = (0.005 ≤ 0.005 ≤ 0.08), the same number os descriptors
used for Gabor filters and Haralick methods), with a success rate of 92.97%.

Due the texture model used here, using Euclidean distance, a small error is
added to the distance between a pairs of rotated pixels. Considering the intensity
of the pixel too, and the fact that this does not change during image rotation
we have method invariant to the rotation. Table 3 shows the result from when
the method is applied over rotated textures database.

5 Conclusion

In this paper, we have proposed a novel method of texture analysis using the
complex network theory. It was investigated how a texture image can be effec-
tively represented, characterized and analyzed in terms of complex network.

Although the method uses two configuration parameters, they do not have a
great influence in the final results. Investigations about the influence of the radius
r and the set of thresholds T in texture discrimination show that most of texture
information lays in the beginning of the dynamic evolution process. However,
using a large sampling of thresholds and/or higher values for r parameter also
yield a excellent success rate in spite of a superior computational cost.

Results show that the method is very robust, because it presents a very excel-
lent texture discrimination for all considered classes, it has a great capacity to
work with both micro and macro texture, overcoming traditional texture meth-
ods, and is invariant a rotataion. So, it have been shown that, besides the com-
promise between local and global proprieties, the interplay between structural
and dynamical aspects can provide precious informations about the structure
under analysis. Concerning of Complex Networks theory, the sucess on discrim-
ination of Brodats textures demonstrates the potential of the application of this
approach in computer vision problems and digital imaging processing.
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Abstract. Texture plays an important role on image analysis and com-
puter vision. Local spatial variations of intensity and color indicate sig-
nificant differences among several types of surfaces. One of the most
widely adopted algorithms for texture analysis is the Gabor wavelets.
This technique provides a multi-scale and multi-orientation representa-
tion of an image which is capable of characterizing different patterns of
texture effectively. However, the texture descriptors used does not take
full advantage of the richness of detail from the Gabor images generated
in this process. In this paper, we propose a new method for extracting
features of the Gabor wavelets space using volumetric fractal dimension.
The results obtained in experimentation demonstrate that this method
outperforms earlier proposed methods for Gabor space feature extraction
and creates a more accurate and reliable method for texture analysis and
classification.

Keywords: Volumetric fractal dimension; Texture analysis; Gabor
Wavelets; Feature extraction.

1 Introduction

Texture reflects the variations of optical properties on object surfaces. Different
surfaces produce distinctive texture patterns. This makes texture an important
source of discriminating information for image classification [1]. Recently Gabor
filters have become a widely used technique for texture analysis. These filters
have desirable characteristics of localization on spatial and frequency domains
being the best method to represent a signal jointly in both domains. Using this
filter we can create multi-scale and multi-orientation representations of an image
each with unique characteristics. The process consists on the convolution of an
image with a series of filters constructed by varying its scales and orientations.
Energy is then used as the descriptor of each convoluted image to form the final
feature vector. However, a single measure such as energy has a limited power
in seizing the richness of detail of the generated images. Recent work done on
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the field attempts to generate methods to extract more useful information of the
Gabor space: First and second order statistic descriptors. Invariant moments
that achieve resistance to rotation, translation and scaling [8] [9], [4], [11]. And
more recently, the local binary pattern (LBP) operator offering the best results
found in the literature [12],[13],[14].

In this paper, we introduce the use of fractal descriptors on the Gabor space as
an alternative to improve the feature extraction process. This proposed method
improves the results obtained by the Gabor wavelets process. This new method
consists in calculating the fractal signature of each convoluted image and gener-
ating a feature vector that concatenates these signatures into a final vector.The
article starts by making a quick review of Gabor filters and feature extraction
from Gabor space. Next, the proposed method is presented. Finally experiments
are performed with the Brodatz texture database where the method is compared
with the most important feature extraction methods of the Gabor space found
on the literature: first and second order statistics and local binary patterns. The
article ends with the final discussions and conclusions.

2 Gabor Wavelets

In recent years the Gabor filter has become popular in image processing and anal-
ysis, particularly in texture feature extraction [3]. Besides the classical approach
in texture, the filter has been used in other applications such as biometrics [23],
image segmentation [8], pattern recognition and OCR [24].

The two-dimensional Gabor transform is a complex sine wave with frequency
W modulated by a Gaussian function. Its form in space g(x, y) and frequency
domains G(u, v), is given by Eqs.1 and 2:

g (x, y) =
(

1
2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
(1)

G (u, v) = exp

{
−1

2

[
(u−W )2

σ2
u

+
v2

σ2
v

]}
(2)

Although the Gabor transforms is older than wavelets, due to its multi-scale
nature it can be used as mother wavelet. For the process is employed a filter
bank constructed by varying the scale and orientations of each filter. In [3] the
authors describe how to compose the bank of Gabor filters to make the Gabor
wavelet with a set of parameters that assures maximum spectrum coverage with
lowest redundancy. We use this approach to design the Gabor wavelet.

The Most common approach to analyze and characterize textures with Gabor
is to adopt a set of filters with different scales and orientations. This characterizes
the Gabor wavelets process [3], then each filter is convoluted with the image as
shown in Figure 1. For each of the spaces obtained a feature is extracted. A
simple way of extracting this feature is using energy as the general descriptor.
The energy of each space is concatenated into a feature vector according to:
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f = [E11, E12, ..., E21, E22, ..., EMN ]; (3)

Where M and N are the number of scales and orientations respectively.

Fig. 1. General process used to obtain the Gabor signatures

3 Feature Extraction on the Gabor Space

Most of the methods found in the literature makes use of statistical descriptors.
Being fairly simple to compute, they have the advantage of generating feature
vectors of low dimensionality. The descriptors that obtain the best results are
based on first and second order statistics: Variance, energy and percentiles [5].
Other approaches use descriptors based on the local binary pattern (LBP) op-
erator. The LBP operator analyzes the image using a nxn window generating
a binary code for each region. Then a histogram with the values obtained for
each window is generated and this represents the feature vector of the image.
The LBP operator has proven to be one of the most suitable texture descrip-
tors found on the literature, and it has been successfully applied in the Gabor
wavelets process [12] (LBP1),[13] (LBP2).

4 Volumetric Fractal Dimension

The fractal concept was first used by Mandelbrot in his book [18]. This concept
suggests that natural objects are not formed by Euclidean geometry objects; in-
stead, they form sub-patterns that are repeated to form more complex objects.
In recent years this concept has been widely used in the field of image analysis
[19], [20]. Many natural forms have fractal patterns (structures of plants, coast-
lines, plants). The fractal dimension of the image is taken as a measure of the
irregularity of the objects. However, in order to calculate the fractal dimension
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(FD) of non-fractal objects we need a method to estimate the FD in discrete fi-
nite images. One of the most accurate methods to calculate the fractal dimension
of a non-fractal object is the Bouligand-Minkowski method [19]. To calculate the
volumetric fractal dimension (VFD) using the Minkowski-Bouligand method on
a grayscale image we must first readapt the image. For this we use the approach
taken in [20]. The 3-D projection of the image is generated from a grayscale
image to meet the conditions to apply the Euclidean distance transform. Each
pixel of the image is transformed into a point p = (y, x, z) ε S, where Y and X
correspond to the coordinates of the pixel in the image and z = f(x, y) is the
intensity. Then the Minkowski-Bouligand fractal dimension of the surface S can
be estimated by:

FD = 3− lim
r−>0

log(V (r))
log(r)

(4)

V (r) = {p′ ε R3 | ∃ p ε S : |p− p′| ≤ r} (5)

This method calculates the variation of a volume V (r) given by the application
of exact dilations of the image f(x, y) with a sphere of radius r. Small changes
on the structure of the image can produce significant changes in the calculated
FD. The FD and V (r) are given by:

E = 1,
√

2,
√

3, ..., rmax (6)

ψ(rmax) = [log V (1), log V (
√

2), log V (
√

3), ..., log V (rmax)] (7)

5 Experimentation and Evaluation

Image database. In experiments we used the Brodatz texture database [22].
This album has been widely used to test and compare techniques used to extract
texture features. The album is composed of 111 images of artificial textures.
From this album we derive an image database formed by selecting 10 random
non-overlapping windows of 200 x 200 pixels size from each image in the original
album. These images are coded in 8-bit depth and saved in a lossless format.
The final database generated is composed of 1110 images with 111 classes and
10 images per class. Some samples are shown in Figure 2.

The classification of the samples was made using a Bayesian probability
method. Specifically, the Näıve Bayes method. The 1110 samples are divided
in training and testing set in a proportion of 8 to 2. This means 80% of the
samples were used for training and 20% for testing with a random selection of
each set ensuring that each class is represented with a consistent number of
samples. This scenario is repeated 10 times in order to obtain an accurate and
robust estimation of the predictions for each class. Moreover, to determinate
the best combination of the Gabor parameters and the feature extractor we use
a wide range of scales and orientations for all the experiments. The near ideal
parameters for the Gabor filters are extracted from [3].
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Fig. 2. Sample images from the Brodatz texture database used in experimentation

Table 1. Results for experimentation using the feature extractors explained

No of
Descriptors

Average
No. Of

Correctly
Classified
Images

Average
Success

Rate (%)

Standard
Deviation

Root
Relative
Squared
error(%)

Reliability

1 185.26 83.45 2.78 63.08 78.92
3 191.12 86.09 1.8 52.67 86.33
7 192.67 86.79 2.09 50.48 87.24
11 200.67 90.39 2.59 40.51 90.42
16 201.11 90.59 1.99 39.38 91.79
20 201.44 90.74 2.12 41.82 92.71
22 204 91.89 1.65 38.8 93.62
30 200.55 90.34 1.91 44.59 91.5
38 196 88.29 2.31 48.32 89.06
46 194.67 87.69 3.03 50.28 86.33

The use of Eq. 7 generates a signature ψ composed of N descriptors where
N is the number of exact dilatations possible for a radius rmax. In order to
reduce dimensionality we used a technique to extract the most important features
of the signature called Fourier descriptors. Using this technique we obtain the
approximate number of descriptors necessary to obtain the best results while
keeping the dimensionality of the feature vector as low as possible.

The average success rate, standard deviation (of the success rate), the root
relative squared error and reliability (average a posteriori probability for samples
correctly classified) are presented in the Table 1. These values are used to asses
the results and accuracy of the data modeled using the proposed technique. The
maximum radius of expansion used for Eq. 7 was 9 and 16. According to [20]
these values obtain the best results in classification. We only present the table
corresponding to the results using a radius of 16 because it was proven on [20]
that these value achieves better performance and more reliable results.
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Table 2. Results for experimentation with the feature extractors applied to the Gabor
space

Scales x Orientations

Gabor + 2 x 6 3 x 4 3 x 5 4 x 4 4 x 6 5 x 5 6 x 3 6 x 6

VFD 89.06 90.64 90.32 90.84 91.89 91.02 89.46 88.22
Energy 60.81 80.43 79.13 79.83 81.93 81.78 76.83 81.83

Variance 64.76 82.13 83.73 79.98 82.68 81.03 77.28 82.38
Percentil25 61.36 76.88 75.07 79.48 81.18 82.73 77.93 80.58
Percentil75 62.71 80.98 80.78 83.03 83.08 82.93 79.23 82.23

LBP1 86.58 87.02 88.14 88.99 85.54 83.03 87.39 76.53
LBP2 87.04 85.79 88.29 87.29 86.54 84.63 86.29 84.63

Table 1 shows that the best result is obtained with 22 descriptors of the
fractal signature obtaining a mean average success of 91.89% using a radius of
16 for Eq. 7 for the proposed technique. The results obtained can be compared
with the other feature extractors in Table 2 using several parameters for the
Gabor Wavelets. In experimentation we determinate that the alteration of other
parameters on the Gabor process produces similar variations on all the methods
without any significantly improve or deprecation on the results; therefore, we
only used Ul = 0.05, Uh = 0.3 as fix parameters for the Gabor Wavelets.

In our experiments energy feature achieves 81.93% of images correctly clas-
sified on 4 scales and 6 orientations in concordance with the model and results
presented on [3]. For the other feature extractors results are increasingly better
accordingly to the technique used obtaining close results with the LBP methods
but with higher dimensionality. From the results observed it can be shown that
the proposed method offers the best performance and presents a great alternative
for improving the Gabor wavelets process.

6 Conclusions

This paper presents a new approach for feature extraction by applying volu-
metric fractal dimension instead of energy in the Gabor wavelets process. The
proposed method obtains significantly better results than other methods studied
on the literature. Both the accuracy and reliability of the model show its robust-
ness and reliability. The proposed method achieved 91.89% of images correctly
classified with 93.62% reliability while maintaining an acceptable dimensionality.
Therefore, considering the promising results in texture analysis and classification
we can determine that the volumetric fractal dimension is a suitable technique
to exploit the richness of detail of the images resulting from the convolution on
the Gabor wavelets process. The method can be applied in many classification
tasks due to the power of effectively representing and differentiating micro and
macro texture.
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14. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation
Invariant Texture Classification with Local Binary Patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

15. Casanova, D., de Mesquita Sá Jr., J.J., Bruno, O.M.: Plant leaf identification using
Gabor wavelets. Intl. J. of Imaging Systems and Technology 19(3), 236–243 (2009)

16. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classi-
fication. IEEE Trans. Sys. Man Cybern. 3, 610–621 (1973)

17. Qaiser, N., Hussain, M.: Optimum Window-size Computation for Moment Based
Texture Segmentation. In: Proc. IEEE INMIC, pp. 25–29 (2003)



Enhancing Gabor Wavelets Using Volumetric Fractal Dimension 369

18. Mandelbrot, B.B.: The Fractal Geometry of Nature, W.H. (1982)
19. Backes, A.R., Bruno, O.M.: Fractal and Multi-Scale Fractal Dimension analysis:

a comparative study of Bouligand-Minkowski method. INFOCOMP (UFLA) 7,
74–83 (2008)

20. Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volu-
metric fractal dimension. IEEE PAMI 23, 1145–1160 (2009)

21. Fabbri, R., Da Costa, F.L., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance trans-
form algorithms: A comparative survey. ACM Computing Surveys (CSUR) 40(1),
1–44 (2008)

22. Brodatz, P.: Textures; a photographic album for artists and designers (1996)
23. Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Sys-

tems for Video Technology 14, 21–30 (2004)
24. Daugman, J.: Gabor wavelets and statistical pattern recognition. In: The Hand-

book of Brain Theory and N.N., 2nd edn., pp. 457–463. MIT, Cambridge (2002)



Comparison of Shape Descriptors for Mice
Behavior Recognition

Jonathan de Andrade Silva1, Wesley Nunes Gonçalves1,
Bruno Brandoli Machado1, Hemerson Pistori2,

Albert Schiaveto de Souza3, and Kleber Padovani de Souza2

1 Computer Science Department
University of São Paulo (USP) at São Carlos, Brazil

{jandrade,brandoli}@icmc.usp.br, wnunes@ursa.ifsc.usp.br
2 Research Group in Engineering and Computing

Dom Bosco Catholic University, Brazil
pistori@ucdb.br, kriowloo@gmail.com

http://www.gpec.ucdb.br
3 Department of Morphophysiology

Federal University of Mato Grosso do Sul, Brazil
albertss@hotmail.com

Abstract. Shape representation provides fundamental features for many
applications in computer vision and it is known to be important cues for
human vision. This paper presents an experimental study on recognition
of mice behavior. We investigate the performance of the four shape recog-
nition methods, namely Chain-Code, Curvature, Fourier descriptors and
Zernike moments. These methods are applied to a real database that con-
sists of four mice behaviors. Our experiments show that Zernike moments
and Fourier descriptors provide the best results. To evaluate the noise tol-
erance, we corrupt each contour with different levels of noise. In this sce-
nario, Fourier descriptor shows invariance to high levels of noise.

Keywords: Computer Vision, Shape Descriptors, Mice Behavior.

1 Introduction

Shape analysis is an important field of investigation that has been a subject of
intense research for decades, further reinforced in recent years by applications in
content-based information retrieval, human gait recognition, and medicine. Psy-
chological studies have suggested that shape provides fundamental information
for brain processing and are known to be important cues for human vision system
[1]. In images, shape is considered one of the most important visual attributes
to characterize objects. Large variations in shape, as well as varying scale, rota-
tion and noise make the representation of shape particularly challenging from a
computer vision perspective.

Several methods have been proposed in the literature and most of them can be
classified into two categories: contour-based methods and region-based methods.
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Contour-based methods explore boundary shape information. In this category,
the most common methods are chain code [2], curvature [3], Fourier descriptors
[4], and simple descriptors [1]. Though chain code and curvature methods de-
mand low computational cost, they are easily influenced by noise. Otherwise,
Fourier descriptor has low sensitivity to noise when low frequency Fourier coeffi-
cients are used [4]. However, Fourier descriptor does not provide local information
as chain code and curvature methods.

Unlike the contour-based methods, region-based methods extract features
from the whole shape region. Different moments, such as Zernike moments [5,6]
and Legendre moments [7] have been demonstrated to achieve excellent perfor-
mance. Zernike moments has been suggested for shape description due to its
superiority over other moments functions regarding to the robustness to defor-
mations and noise [5].

This paper provides an experimental study of shape descriptor methods ap-
plied to mice behavior recognition, an important real-world application. This
application aims at helping experts to determine the drug effect used for the
medicine development and answering basic ethological questions [8]. Currently,
behavioral analysis is carried out by means of visual inspection, which is consid-
ered a laborious and time consuming task. In order to enhance this procedure, we
study automatic procedures through applying four shape methods (chain code,
curvature, Fourier, and Zernike moments) on real database of mice behaviors.
This database consists of four behaviors with similar contour characteristics,
presenting an interesting challenge for the recognition task. According to the
experimental results, Zernike moments and Fourier descriptors achieve the best
recognition performances for mice behavior recognition. Further, results show
that 20 descriptors seem to be sufficient to characterize the behaviors. More-
over, results from noised images show that Fourier Descriptor provides more
invariance for high levels of noise.

This paper is organized as follows. Section 2 describes the fundamentals of
the shape descriptor methods. In Section 3 experimental results and discussion
have been provided. Finally, Section 4 concludes the paper.

2 Shape Descriptors

In this section we give a brief overview of the methods employed in this work.
Before describing the methods, it is important considering that a parametric
curve c(t) = (x(t), y(t)) consists of points belong to the contour of binary objects.

2.1 Fourier Descriptors

Fourier is one of the most popular descriptors for shape characterization. The
basic idea of this method consists in applying the Fourier transform in a para-
metric curve. Initially, the complex signal u(t) = x(t) + j y(t) is obtained from
the parametric curve. Then the complex signal is expanded by a complex Fourier
series defined as
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U(s) =
1
L

∫ L

0
u(t)e−j2πst/Ldt (1)

where L is the curve perimeter.
The FD(s) corresponds to the Fourier descriptors defined as FD(s) = U(s)

U(0) .
Some properties from these descriptors can be discussed. For example, the 0-th
component of U is associated with the centroid of the original shape. Moreover,
the descriptors are also invariance to geometric transformations as a consequence
of the properties of the Fourier series.

A useful property exhibited by this method is that the most of the contour
information is concentrated along the first coefficients, since they contain most
of the energy. Following this property, a feature vector with n features obtained
from the Fourier descriptor consists of the n descriptors from FD(s).

2.2 Curvature

Curvature has been identified as an important clue explored by the human visual
system. Since visual information is highly redundant, curvature plays an impor-
tant role in compressing information, such as straight line where the curvature
is null.

The curvature k(t) of a parametric curve c(t) = (x(t), y(t)) is defined accord-
ing to Equation 2.

k(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ(t)2ẏ(t)2)
3
2

(2)

where ẋ(t) and ẍ(t) are the first and second derivative of x(t).
To extract useful information from k(t), a strategy based on Fourier is used.

Fourier series is applied on k(t) and then a feature vector of dimension n is built
with the n first coefficients. Since Fourier contain most of the signal’s energy
concentrated in the first descriptors, the strategy discussed above is useful to
remove redundancy.

2.3 Zernike Moments

The Zernike moments from a binary image can be calculated in three steps:
computation of radial polynomials, computation of Zernike basis functions, and
projection of the image on to the basis functions. The computation of radial
polynomials is defined according to Equation 3. Usually, the indexes n and m
are called order and repetition.

Rnm(p) =
(n−|m|)/2∑

s=0

c(n, m, s)pn−2s (3)

where
c(n, m, s) = (−1)s (n− s)!

s!((n + |m|)/2− s)!((n− |m|)/2− s)!
(4)
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Using the radial polynomials, Zernike basis functions are described in Equa-
tion 5. These basis functions are defined within a unit circle and since they are
orthogonal, there is no redundancy information between moments.

Vnm(p, θ) = Rnm(p)exp(jmθ), |p| ≤ 1 (5)

Finally, the Zernike moments of order n and repetition m over an image f(x, y)
with size N × N is defined in Equation 6. The coordinates of the image must
be normalized into [0, 1]. Thus, the magnitudes of the Zernike moments can be
used as shape descriptors.

Znm = n+1
λN

∑N−1
x=0

∑N−1
y=0 f(x, y)V ∗

nm(x, y)

= n+1
λN

∑N−1
x=0

∑N−1
y=0 f(x, y)Rnm(pxy)exp(−jmθxy)

(6)

where λN is a normalization factor related to the number of pixels in the unit

circle, pxy =
√

(2x−N+1)2+(N−1−2y)2

N , and θxy = tan−1(N−1−2y
2x−N+1 ).

2.4 Chain Code

The Freeman chain code is a compact way to represent the contour of an object.
The method assigns an integer i, 0 ≤ i ≤ 7 for each point of the contour accord-
ing to its direction to a successor point. This representation is based on the con-
nectivity definition of neighboring pixels, usually 8-connectivity. The direction
of each movement is given by a vector vi ∈ {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),
(−1,−1), (0,−1), (1,−1)}. For example, consider an starting point s0(3, 3) and
a successor point s1(3, 4). The path from s0 to s1 is represented by the code 3
(s0 + v3 → s1).

In the chain code method, the contour of a binary object is represented by
a vector of codes. However, this strategy has two drawbacks: it depends on the
starting point and it is not rotation invariant. These drawbacks can be overcome,
for example, using Fourier transform. For this, the Fourier transform is applied
in the vector of codes and then, the n descriptors for the chain code method is
composed by the n first Fourier coefficients.

3 Experimental Results

This section presents two experiments that were conducted to evaluate shape
recognition. The first experiment is devised to compare the performance of shape
descriptor methods described in Section 2. In the second experiment, we analyze
the influence of noise on the classification task.

In order to assess the performance of the methods using real data, experiments
were performed using a database composed by images of mice. This database
consists of 4 types of behavior, namely curved horizontal, self-cleaning, verti-
cal and horizontal exploratory behaviors, each containing 50 images captured
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(a) Curved hori-
zontal

(b) Self-cleaning (c) Vertical ex-
ploratory

(d) Horizontal ex-
ploratory

Fig. 1. Examples of the classes in the mice behavior database and its respectively
segmented images

in an environment with artificial light. Each image was segmented using back-
ground subtraction technique [9,10]. The types of behavior have similar contour
characteristics thus presenting an interesting challenge for classification tasks.
Examples of the database can be seen in Fig. 1.

The training and the test routines were done using a 10-fold cross-validation
approach. For comparisons, we selected 4 classifiers that are popular in the data
mining community were used: Decision Tree - DT , K-Nearest Neighbor - KNN,
Support Vector Machine - SVM, and Radial Basis Function Network - RBF. We
considered the classifiers from WEKA 1 with default parameter settings.

3.1 Comparison of Methods

Fig. 2 provides a comparison of the shape descriptor methods for each classifier.
The horizontal axis is the number of descriptors and the vertical axis is the Av-
erage Correct Classification Rate (ACCR). From the figures, two observations
can be made: First, the ACCR did not significantly improve with more than
20 descriptors approximately, which indicates that most of the shape informa-
tion concentrates on the first descriptors. Second, Zernike moments and Fourier
descriptors achieved the best performance in the most of cases. Using KNN clas-
sifier, Zernike moments and Fourier descriptors achieved 89.90%(± 6.24%) and
85.93%(± 5.78%), respectively. With regard to the classifiers, KNN classifier
seems to provide the highest ACCRs, followed by the decision tree classifier. On
average (see Fig. 5(a)), the best result of 80.82%(± 6.98%) has been obtained
by the Zernike moments with 10 descriptors.

In order to evaluate the influence of noise, each contour of the database has
been corrupted with different levels of noise. Since we are interested in evaluating
shape descriptors and do not evaluate algorithms for contour extract, we decided
to insert noise only into the contour instead of inserting it into the image. For
all the points of contour, a Gaussian noise with mean 0 and standard deviation
1 Weka data mining software: http://www.cs.waikato.ac.nz/ml/weka/
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(d) RBF Network

Fig. 2. Experimental results for each shape descriptor method using four classifiers

σ ranging from 0.1 to 5.0 is added to the original point, according to Equation
7. To illustrate, Fig. 3 shows examples of levels of noise.

xσ = x + N(0, σ)
yσ = y + N(0, σ) (7)

where (xσ , yσ) is the noised point, (x, y) is the original point and N(0, σ) is
a random number generated from the normal distribution with mean 0 and
standard deviation σ.

The results for the database with noised contour are shown in Fig. 4. The hor-
izontal axis is the level of noise σ and the vertical axis is the ACCR. As expected,
the ACCR decreases as the level of noise increases. Again, Zernike moments and

(a) Original (b) σ = 1.1 (c) σ = 3.7 (d) σ = 5.0

Fig. 3. Examples of level of noise
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Fig. 4. Results for the employed classifiers on the noised contours

 40

 50

 60

 70

 80

 90

 100
 0  10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
C

C
R

 (
%

)

Number of Descriptors

Curvature
Fourier
Zernike

Chain Code

(a) Average values over four classifiers -
original contours.
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(b) Average values over four classifiers -
noised contours.

Fig. 5. Average values for each shape descriptor method using four classifiers for orig-
inal (a) and noised contours (b)

Fourier descriptors provided the best results. From the Fig. 5(b) which plots the
average from the classifiers, Fourier descriptors’ ACCR decreases from 75.04%(±
6.63%) to 70.85%(± 6.34%). On the other hand, Zernike moments’ ACCR de-
creases from 82.10%(± 6.75%) to 66.51%(± 2.31%). These results suggest that



Comparison of Shape Descriptors for Mice Behavior Recognition 377

Fourier descriptor method is more invariant to high levels of noise. Further, it is
found that the KNN classifier provided the highest ACCR.

4 Conclusion and Future Works

In this paper we have presented a comparative study of shape descriptors meth-
ods. Promising results have been obtained on mice behavior images of relatively
high complexity. Experimental results on this database indicate that Zernike
moments and Fourier descriptors provided better performance than curvature
and chain code methods. We also demonstrated how the noise levels affect shape
recognition. Results for this problem suggest that Fourier descriptor method is
more invariant to high levels of noise.

Regarding future work, it is proposed the analysis of other region-based meth-
ods. Moreover, further research could be focused on investigating multiscale ver-
sion of the methods and the study of model selection criteria.

Acknowledgments. The authors acknowledge the Brazilian Research Agencies
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Abstract. A ridge linking algorithm and its application to plant root
images is presented. The idea is an improvement of an edge linking algo-
rithm where we explore local directional information. The experimental
results show that we obtain good connections between ridge segments
which tends to maintain the connectivity of structures like plant roots.

Keywords: Ridge linking, edge linking, ridge detection, image
segmentation.

1 Introduction

Ridge detection, as well as edge detection, is a fundamental problem in image
processing and computer vision. The detection must have a good quality in
order to extract useful information. Ridge or edge detectors often provide non-
contiguous ridges/edges, i.e., maps with many discontinuities and, therefore,
without desired connected contours. In order to deal with this problem and to
form connected ridges/edges, a linking step must be done.

Edge linking has been studied for many years being very close to ridge linking.
A known algorithm is SEL (Sequential Edge Linking), proposed in 1985 by Eichel
and Delp [3,4]. It is a sequential search algorithm for edge detection and linking
that uses a random field and a random Markov chain to model the problem.
It has been improved later by using basically the same model but adding a
multiresolution idea [2]. Because of the model used, many parameters must be
set to obtain acceptable results.

In [8], a two-steps algorithm was proposed. It uses distance, direction and
magnitude information of edge segments to build a weighting system to link the
edges. Other algorithms are based on direction, local information around ending

� Thanks to FAPESP, CNPq and CAPES for funding.
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points and function cost minimization [6,7,13]. The algorithm proposed in [13]
makes some improvements to these methods related to the measurement of the
edge direction and the distance used in the cost function for edge linking. The
measurement of the edge direction is more precise, incorporating all possible di-
rections between 0o and 360o degrees. The geodesic distance is used to measure
the proximity between two ending points, in order to use the intensity infor-
mation. We propose other improvements in this algorithm related to the edge
direction and the mask used during the process. We show that the quality of
the linked edges can be improved using an adaptive mask related to the local
main direction around an ending point. This adaptive mask avoids unnecessary
connections between ending points. Besides, it also avoids connections that are
out of the global and local directional contexts of the image.

In the literature, other edge linking methods can be found using concepts
of mathematical morphology and connectionist models [11,1], combining local
and global measures for edge point linking [9,10]. Finally, associated with the
edge linking issue, edge grouping methods can also be found [12]. However, edge
grouping aims to detect salient structures and boundaries, rather than improving
the edge detection by connecting short edges.

The remainder of this paper is organized as follows. In Section 2, we describe
the concepts and techniques used in the proposed method. In Section 3, we show
some experimental results. The conclusions in Section 4 synthesize the results of
the paper and depict possible future works.

2 Methodology

The linking process of the proposed method is based on the following general
steps: (1) find the ending points of the ridge/edge map, (2) select the appropriate
candidate linking points for each ending point using an adaptive directional mask
and (3) select the linking point using information of ridge direction and geodesic
distance.

In our approach the ridges of the images are calculated combining the Canny
edge detector applied directly to the original image (we do not use the gradient
image) and a surround suppression proposed by [5].

This section describes the adaptive directional mask approach (the main mod-
ification over the existing methods) used by the proposed algorithm along with
a review of the concepts used from the existing edge linking algorithms.

2.1 Adaptive Directional Mask

Among the existing linking approaches that use neighborhood information, the
common used masks have fixed shapes and sizes given by the user. The direc-
tional local information is used only when deciding which candidate linking point
should be connected with an ending point. We propose an additional strategy to
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explore this information to suppress some of the candidates. We use an orienta-
tion histogram to adapt a rectangular or a conical mask (shape and size chosen
by the user) with the local directional context of the image.

Figure 1 illustrates this process. One particular ending point is being analyzed
(red one) during the process. In Figure 1(a) a rectangular mask is represented
in gray and the candidate linking points in black. Figure 1(b) presents the ridge
map for the analyzed window. In order to find the local main direction, a ridge
orientation histogram is calculated for this window. The orientation with the
highest frequency is chosen to be the orientation of the mask. In this particular
case, the diagonal orientation was chosen. Figure 1(c) presents the rotated mask
and Figure 1(d) the final candidate linking points.

(a) Linking can-
didates.

(b) Edges win-
dow.

(c) Rotated
mask.

(d) Final linking
candidates.

Fig. 1. Example of the mask rotation depending on local directional histogram

In a particular case that, for instance, two orientations have (almost) the
same frequency in the histogram, the mask is rotated in both directions and all
the candidate linking points in both cases are chosen. The orientations taken
into account in the histogram depend on the edge detector used. The same
orientations given by the detector will be used for the histogram.

In the following, we explain how to choose the point among the candidates to
be connected to the ending point.

2.2 Ridge Direction and Geodesic Distance

After the suppression step, the remaining candidates are analyzed using the
ridge/edge direction approach and geodesic distance proposed in [13].

Figure 2 illustrates the ridge/edge direction calculation. There is a portion
of ridge/edge (ones), the ridge’s/edge’s end point Pe (gray square) and some
candidates to the continuation of the ridge/edge (two isolated points at the
border). For the ending point Pe all the ridge/edge points connected to it are
used to fit a line l. The vector

−→
d c represents the direction from the centroid

of these points Pc (gray circle) to Pe. Between the two possible directions of
l, the one closest to

−→
d c is chosen as the ridge/edge direction of Pe, i.e.,

−→
d 1.
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1
1
1
1

1

11

l

−→
d c

−→
d 1

Pe

Pc

Fig. 2. Edge direction calculation by [13]

This approach has the advantage that all the orientations from 0o to 360o are
possible, rather than a discrete number of orientations.

The geodesic distance also proposed by [13] is used by our algorithm. The dis-
tance, Dg(pi, pj), between two pixels pi and pj of an image I is defined as the min-
imum path between these two pixels. Let us consider a path P = {p1, p2, . . . , pn},
where pi and pi+1 are connected neighbors and i ∈ {1, 2, . . . , n− 1}. The length
of P is

l(P ) =
n−1∑
i=1

dN (pi, pi+1). (1)

Thus, particular geodesic distances can be derived depending on the neighbors
connection and the distance between neighbors. In this work, pixels are eight
connected and dN (pi, pi+1) = |I(pi) − I(pi+1)|. Using the geodesic distance, we
are able to consider the information of the intensities of the pixels, rather than
just their coordinates as when using the Euclidean distance.

For the evaluation of the candidate linking points, the following cost function
is used:

H(Pe, Pc) =
1

Dg(Pe, Pc) · Θ(Pe, Pc)
, (2)

where Dg(Pe, Pc) is the geodesic distance between Pe and Pc and Θ(Pe, Pc) is
the angle between

−→
d 1 and the actual direction if we link directly Pe and Pc.

Figure 3 illustrates the Θ(Pe, Pc) term.

Pc

Θ(Pe, Pc)

Θ(Pe, Pc)

−→
d 1

Pe

−→
d 2

Fig. 3. Θ(Pe, Pc) term of Equation 2
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The Pseudocode 1.1 resumes the proposed algorithm.

Pseudocode 1. Proposed ridge linking algorithm.
� �

1 Find a l l the ending po in t s in the r i dge map
2 For each ending po int do
3 Find the cand idate l i n k i n g po in t s i n s i d e the window (

r e c tangu l a r or c on i c a l with the s i z e chosen by the use r )
4 Calcu late the o r i e n t a t i o n histogram o f the window and f i nd the

o r i e n t a t i o n with the h i ghe s t f requency
5 Rotate the mask accord ing to the o r i en t a t i o n in the prev ious

step
6 Suppress the cand idate l i nk i n g po in t s ou t s i d e the mask a f t e r

r o ta t i on
7 Calcu late H(Pe, Pc) for each cand idate po int
8 I f the re are any ending po in t s
9 Find the one with the l a r g e s t H(Pe, Pc) and l i nk Pe with t h i s

ending po int
10 End
11 End

� �

Fig. 4. From left to right and top to bottom: first row shows an original plant root
image and the final linked ridge map superposed to it; second and third rows show,
each one, a selected area from ridge map, linking result by [13] and linking result by
our method.
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3 Experiments

In this section we show some experiments using the proposed algorithm in plant
root images. The original edge linking algorithm proposed by [13] was also ap-
plied to these images. However, we use the ridges instead of the edges.

First of all, in order to show the improvement related to the rotation of the
mask and the directional context of the image, we present, in Figures 4 and 5,
the application of our method on real images of plant roots. The first row shows
the original image and the final linked ridge map superposed to it respectively.
The second and third rows are organized, from left to right, as: selected area
from the ridge map, linking result by [13] and linking result by our method.
This kind of structure is well characterized by its directions and we can notice
that our results are more connected, smoother and retain more the directional
context of the structures in the image. Figure 6 presents one more example.

Besides, in order to confirm the improvements of the new algorithm, we ap-
plied it to 10 real plant root images, which are ground-truthed by an expert,
and we calculated the True Positive Rate (TPR) and the False Positive Rate
(FPR) in each case and for the original ridge map. The mean values are shown

Fig. 5. From left to right and top to bottom: first row shows an original plant root
image and the final linked ridge map superposed to it; second and third rows show,
each one, a selected area from ridge map, linking result by [13] and linking result by
our method
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Fig. 6. From left to right and top to bottom: first row shows an original plant root
image and the final linked ridge map superposed to it; second row show the ridge map
and the linking result by the proposed method

Table 1. Mean values of TPR and FPR after the application of both algorithms to 10
real plant root images

Measures
Classification rates Ridge map Original algorithm Proposed algorithm

TPR 0.67 0.71 0.77

FPR 0.072 0.086 0.09

in Table 1. One can see that our algorithm has a good improvement of TPR with
an acceptable low increasing of the FPR. The average number of false positives
is high because of the kind of image we are using. Some improvements must be
done to the ridge detector to decrease the false alarms.

4 Conclusions

We presented a new ridge linking algorithm derived from methods of edge link-
ing already existing in the literature. Our approach aims to make a more precise
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decision to connect ridge segments using an adaptive directional mask. Results
showed that our algorithm leads to good connections which tends to maintain the
good continuation of structures like plant roots. To the best of our knowledge,
there is no linking method in the literature with this characteristic. Specific ap-
plications, mainly those that deal with structures characterized by its directions,
can take advantages of our technique. This approach can help in the segmenta-
tion of thin and ramified structures. We also applied this technique in common
images using the edges and we obtained good results.
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Abstract. This paper presents an analysis of four ridge detectors in
images with thin structures: plant root images and retinal images. Two
proposed detectors and two detectors from the literature are used. We es-
timate the optimal parameters for each detector for the two applications
using a ROC curve similar approach. Simulated images of plant roots
and retinal images are used. The optimal parameters are estimated and
then used in real images. We conclude that the proposed detector based
on mathematical morphology and the one based on the steerable filter
are the best for both set of images.

Keywords: Ridge detection, parameter estimation.

1 Introduction

The segmentation of complex images is one of the hardest tasks in image pro-
cessing. We consider complex images that have one or more of the following char-
acteristics: (1) thin and elongated structures (relative to the image dimensions)
eventually with ramified body, (2) subpixel structures, (3) missing borders (lack
of information to fully segment the image). The objective of the study presented
here is to analyze some ridge detectors and to find optimal parameters for them
using a ROC curve similar approach. We used simulated images of soil profiles
with plant roots generated by an existent software [15] and retinal images from
the public database DRIVE (Digital retinal images for vessel extraction [17]).

We want to develop algorithms sensible to this kind of structures. Efficient
solutions may be used in many applications: segmentation of river and road
networks in SAR images [18], segmentation of trees, blood vessels [16], neurons [4]
and plant roots (important application in agriculture research). We are not aware
of any work in the literature which tackles the problem of segmenting plant roots,
except of a procedure described in [14] (in Portuguese).
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The problem of detecting ridges is well studied but we did not find any study
on using information of thin structures to solve it. In [8], two methods for iden-
tification and analysis of the multiresolution behavior of ridges are described.
In [10], two techniques of orientation analysis are explored for the detection
of oriented structures like ridges. A new framework for automatic local control
of scale levels for ridge detection is presented in [12]. In [13], the authors re-
view some characterizations to formalize the notion of ridges and propose a new
method. The detection of ridges was also used in [17] for the development of
an automatic segmentation technique of vessels in retinal images. A very recent
work in the literature explores methods for ridge detection [1].

This paper makes the analysis of ridge detection in images with thin struc-
tures, specifically retinal and plant root images. Four techniques are explored: a
modified Canny detector, a morphological approach, the Frangi filter (see [7,6])
and a steerable filter [11]. ROC curves are used to analyze these techniques and
to find their optimal parameters. In Section 2, we describe two simple proposed
ridge detectors and we briefly describe the two other detectors used from the
literature. In Section 3, we explain the methodology used to estimate optimal
parameters for the detectors. In Section 4, the experimental results are presented.
The conclusions in Section 5 synthesize the results of the paper.

2 Ridge Detection

2.1 Proposed Detectors

The following techniques for identifying thin structures are based on the fact
that: (i) the detectors are applied directly to the image, avoiding the loss of
detailed information (i.e., only filters that preserve borders and ridges can be
applied before the method that extracts ridges/edges); (ii) The aim is to detect
the highest quantity of ridges as possible that correspond to plant roots (or
vessels). The problem of false detection is not tackled in this stage of the project.

Canny Ridge Detector. The Canny edge detector [3] is one of the most known
and used in image processing and computer vision because its performance is
superior to other detectors in many situations, despite of being more complex [9].
This detector has four steps: (i) smooth the input image to reduce the noise; (ii)
compute the gradient and the gradient angles of the image; (iii) apply non-
maxima suppression to the gradient of the image; (iv) use double thresholding
and connective analysis to detect and to link edges.

Canny defined an edge detector but not a ridge detector. Taking into account
the two considerations made in the beginning of this section, it was necessary
to modify the Canny algorithm in order to make the method detect the ridges.
The first change is to remove step i), i.e., the original image is not smoothed.
Another change is to use the original image instead of the gradient of the image
(because ridges are the main objective) in steps ii) and iii).

Considering the image as a surface, the points of local maxima of curvature are
localized in the center of the thin structures and the result of step 4 is equivalent
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(not equal) to a grayscale skeleton [5]. Using this variation of the algorithm, the
information of the location of the ridges is not lost (Section 4).

Detection Using Mathematical Morphology. Another technique used to
detect ridges from the original image is based on a composition of morphological
operators. This is also a variation of top-hat algorithms found in the literature.

The mathematical morphology concepts used by the method are not presented
here because the lack of space, however they can be found in [5].

Three steps are used to detect the ridges of an input image:

1. Application of the opening by reconstruction top-hat; (mmopenrecth)
2. Thresholding of the image resulting from the first step; (mmthreshad)
3. Homotopic skeleton by thinning to obtain the final result. (mmthin)

One important variable parameter for this detector is the threshold. It controls
the level of precision when detecting the peaks in the image. The higher the
threshold, the lower the number of peaks detected.

The Python script below makes the ridge detection of the an image.

from morph import ∗

def detect lines(image,threshold):
# Top−hat of the openning by reconstruction
th = mmopenrecth(image,mmsedisk(10))
# Thresholding of the image
bin = mmthreshad(th,threshold)
# Thinning of the image
m1 = mmthin(bin)
return m1

2.2 The Frangi Filter

The Frangi filter is actually a Hessian-based vessel enhancement method pro-
posed by [7]. In the literature it is assumed that the intensity profile of a vessel in
the cross section can be modeled by a Gaussian function and that the intensity
does not change much along vessels. In order to distinguish vessels from other
structures, second order derivative features such as curvatures in Hessian-based
enhancement filters are used. Vessels have small curvature along their center
lines and large curvature in the sectional direction. The two principal curvatures
can be acquired from the Hessian matrix (eigenvalues), λ1 and λ2. Frangi com-
putes the scores RB = |λ1|/|λ2| and S =

√
λ2

1 + λ2
2 and define the response of

his filter for 2D vessel as:

Vo(s) =

{
0 if λ2 > 0,

exp(−R2
B

2β2 )(1 − exp(− S2

2c2 )) , otherwise

where parameters β and c are constants. The result of this filter is a probability
map of the pixels being vessels. In order to find the medial axis of the vessels we
apply a threshold followed by a thinning operator to this probability map.



Parameter Estimation for Ridge Detection in Images with Thin Structures 389

2.3 Steerable Filter

The steerable filters [11] are 2D feature detectors, i.e., a class of steerable func-
tions based on the optimization of a Canny-like model. These filters have closed-
form expressions and lead to operators that have a better orientation selectivity
than classical Hessian-based detectors. In order to obtain a ridge detector, high
order derivates of the Gaussian are used. In the present case the 4th order is
adopted. A threshold has to be applied to the final result of the image to obtain
a binary image with the ridges and non-ridges map. The detailed explanation of
these filters are out of the scope of this work. An implementation of these filters
is available as a plugin for the famous ImageJ software.

3 Parameter Estimation

We can use various methods of ridge detection and typically these methods have
some parameters that can be changed, like the ones presented in the previous
section. A precision analysis using a similar idea to the ROC curves allows us to
adjust the parameters associated with the methods, choosing optimal values for
them. In order to make the analysis, it is necessary to have the ground-truths of
the images the detector was applied to. Therefore, we used retinal images from
the DRIVE database (with ground-truths made by specialists) and simulated
plant root images. The ground-truths of the images are for segmentation pur-
poses, thus we apply a thinning operator to them in order to obtain the optimal
ridge maps.

For each set of images we executed a simplified version of the process described
by [2]. Therefore, we were able to find the best parameters for each ridge detector.
The process consists of the following steps:

1. First, the minimum and maximum values for each parameter of the detectors
are chosen. The range of the parameters were found empirically, as we can
find the values of the extreme cases (totally white/black images).

2. At the beginning, the intervals of each parameter are uniformly divided to
generate four values for each one.

3. From the intervals with four parameters, it is possible to make some refine-
ments:
– For two successive values in the interval, it is generated a new value

that is the half of the subinterval between these two values. So, let an
initial interval for a detector be 4 × 4 × 4, i.e., four values for each
parameter. After the application of the refinement for the first parameter,
for instance, we would have the interval 7 × 4 × 4.

The intervals are refined until the improvement of the curve is minimum.
4. Now we obtain a curve that is similar to a ROC curve. The detectors are ap-

plied for each possible parameter set obtained from the refinements resulted
from the above step.

5. Finally, the median of the curves of all the images is calculated (ten images
in this case).
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In the end of the process, a curve for each detector is obtained. From these
curves it is possible to find the optimal parameters for each one. The chosen
parameters are those that lead to the highest True Positive Rate (TPR) value
with acceptable values of false positives. It is important to notice that the pro-
posed ridge detectors do not achieve totally white images (the case that all pixels
would be classified as roots/vessels). However, as the Frangi filter and the steer-
able filter results are based on thresholding a probability map, it is clear that,
in some cases the results will tend to totally white images. In such cases, we
choose as the best parameter those that lead to the highest TPR with the value
of False Positive Rate (FPR) related to the TPR values obtained for the other
two detectors.

4 Experimental Results

The process above was applied to ten simulated root images and to ten retinal
images. The median ROC curves for each set of images and for each detector
are presented in Figure 1.
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Fig. 1. Median ROC curves for each application and each detector

After the previous analysis, the optimal parameters are obtained for the sim-
ulated root images and for the retinal images which are presented in Table 1.

Figures 2 and 3 present the results of the detectors for a simulated root image
and a retinal image, respectively, using the optimal parameters.

The optimal parameters obtained for the simulated root images were also used
experimentally for the real root images. We did not have the ground-truths of
the real images of plant roots and that is why we used the parameters of the
synthetic images. Figure 4 presents the results for one of the images.

Table 2 shows the summary results for each ridge detector analyzed in this
paper. The set of images from where the TPR and the FPR were obtained is
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Table 1. Optimal parameters for both applications and each filter

Detectors Plant root Images Retinal Images

Canny TL = 0.33 TH = 1 σ = 1.2292 TL = 0.1666 TH = 1 σ = 9.375

Morphology Ts = 26.3541 Ts = 1.0436

Frangi β = 11 T = 1 × 10−5 β = 3 T = 1 × 10−6

Steerable T = 51 T = 14

(a) Original image (b) Ground-truth (c) Canny

(d) Morphplogy (e) Frangi (f) Steerable

Fig. 2. Results applied to a simulated plant root image using optimal parameters

(a) Original image (b) Ground-truth (c) Canny

(d) Morphology (e) Frangi (f) Steerable

Fig. 3. Detectors results applied to a retinal image using optimal parameters
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(a) Original image (b) Canny (c) Morphology

(d) Frangi (e) Steerable

Fig. 4. Detectors results applied to a real root image

Table 2. Values for TPR and FPR for all detectors

Plant root images Retinal images
Detectors TPR FPR TPR FPR

Canny 0.58 0.24 0.44 0.19

Morphology 0.74 0.049 0.51 0.16

Frangi filter 0.47 0.025 0.46 0.09

Steerable filter 0.76 0.052 0.58 0.14

different from the one used to obtain the optimal parameters. We can conclude
that the best detectors for both set of images are the one based on mathematical
morphology and the one based on the steerable filter. Despite of the simplicity
of the morphology detector proposed, it obtained very comparable results with
the steerable detector. These results can be also visually noticed in the images
shown in Figure 2.

5 Conclusions

This work presented a study of ridge detectors in plant root images and retinal
images using ROC curves aiming to obtain optimal parameters for each detector
and for each application. The optimal parameters are estimated and applied to
real images. The comparison among the detectors, using visual and quantitative
results, shows that the best ridge detectors are the one based on mathematical
morphology and the steerable filter. This study is part of a larger project where
ridge detectors are being used as a basic representation for the development of
segmenation techniques applied to images with thin structures.
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Abstract. The selection of a good feature extraction technique is very important 
in any classification problem. Moments, especially orthogonal moments, seem 
to be a powerful option in the case of digital image compression, description 
and recognition. Nowadays, there is a considerable amount of orthogonal mo-
ments reported in the literature, each one with some advantages and drawbacks. 
In this paper, we carry out an experimental comparison of several orthogonal 
moments for the character recognition problem. Firstly, we compare orthogonal 
moments with other kinds of feature extraction methods and after that, we com-
pare the different orthogonal moments taking into account different evaluation 
parameters. Experiments were made by using printed and handwritten digit da-
tasets and the well-known measures: precision, recall and accuracy were used to 
validate the results. This experimental study corroborates the good performance 
of orthogonal moments. Besides, more specific results obtained in different 
kinds of experimentations allow coming to conclusions that could be very use-
ful for the community of image recognition practitioners. 

Keywords: Orthogonal moments, Feature extraction, Character recognition. 

1   Introduction 

Classifier effectiveness depends, in a great way, on the feature collection used to 
describe the involved objects. This way, the selection of a suitable feature extraction 
method is very important for any particular classification problem. In the case of 
digital images, feature extraction methods are responsible for describing the images 
by extracting their main attributes for a classification process. It is desirable that fea-
tures extracted from images be:  

• Robust: They should be low sensitive to noise, bad illumination and other ad-
verse factors that may be present in the original image. 

• Discriminative: They should have the ability to distinguish images of different 
classes.  

• Invariant: They should be invariant to some properties like translation, rotation 
and scale.  

A large number of feature extraction methods are reported in the literature. They can 
be divided in two categories. The first one, called geometric features, includes  
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moments, histograms, and direction features, while the second one, called structural 
features, includes Fourier descriptors, line element and topological features [1]. Some 
of the most popular feature extraction methods reported in the literature are the stan-
dard and elliptic Fourier descriptors [1]. They, together with curvature approximation 
[2], are used to describe figure shapes. 

In this paper, we center our attention on the study of moments, particularly the  
orthogonal moments. Moments have been used as pattern features in numerous appli-
cations for 2D image recognition. It is well known their ability to extract global cha-
racteristics from the images like: shape area, center of mass, moment of inertia, and so 
on. Recently, new orthogonal moments such as Krawtchouk [3], dual Hahn [4] and 
Racah [5] have been introduced. Nowadays, there is a considerable amount of ortho-
gonal moments reported in the literature. Each one of them presents some intrinsic 
properties that could be desirable or not for a particular problem. In this paper, we 
make an experimental comparison of the existing orthogonal moments for the charac-
ter recognition problem. Firstly, we compare orthogonal moments with other kinds of 
feature extraction methods. After that, we carry out a comparative study of the state-
of-the-art orthogonal moments taking into account different comparison parameters.  

The rest of this paper is organized as follow: A group of most used orthogonal 
moments are described in Section 2. Experimental results are showed and discussed in 
Section 3. Finally the conclusions of the research are reported in Section 4.  

2   Orthogonal Moments 

Moments can be defined as scalar quantities used to characterize a function and to 
capture its significant features. We can define a moment in a general way as , ,  (1)

where ,  are non-negative integers and  is called the moment order. ,  is 
the image intensity function, and , , , , … , ,  are polynomial 
basis functions defined on . 

Depending on the used polynomial basis function various systems of moments can 
be formed. By far, the most popular type of moments is the geometric, which uses as 
polynomial basis the standard power basis . Based on geometric moments, Hu 
[6] introduced a group of seven moment invariants that have also been used as fea-
tures because of their rotation, scaling and translation invariance.  

However, the basis set employed in geometric moments is not orthogonal. There-
fore, they are not optimal with respect to the information redundancy and it is very 
difficult to recover an image from them [1]. In order to overcome this problem, Tea-
gue [7] suggested the use of orthogonal moments that are defined in terms of conti-
nuous orthogonal polynomials. This is the case of Legendre [1] and Zernike [8]. 
Another advantage of orthogonal moments is that they commonly have a low compu-
tational complexity because, we can evaluate them by using recurrent relations [9]. 
Hence, if the polynomial basis is orthogonal and satisfies the following condition of 
orthogonality: 
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, , 0Ω  (2)

 

for any indexes  and , we can say that we are in the presence of ortho-
gonal moments where Ω is the orthogonality area.  

Two important cases of orthogonal polynomial bases that can be used for con-
structing moments are the following. The first one consists in taking the direct prod-
uct of two systems of orthogonal polynomials in one variable. Let  and 

 be the orthogonal polynomial bases defined on the sets  and   respec-
tively, with       . Then, ,   (3)

is the orthogonal polynomial of degree    defined on . The second case, also 
called radial orthogonal functions, uses a unit disc, , : 1 , as orthogo-
nality area. Its general form is the following: ,  (4)

where      ,   / , and  is a polynomial in ρ. One 
advantage of this form is that it is invariant with respect to rotation of axes. An exam-
ple of radial orthogonal functions used for moments construction are Zernike [8], 
pseudo-Zernike [9] and Generalized pseudo-Zernike [10]. 

Besides, continuous and discrete functions can be used as polynomial bases. The 
use of continuous functions like Legendre [1], Gegenbauer [9], and the Zernike fami-
ly, requires the transformation of the image coordinates space and an approximation 
of the integrals, causing some numerical errors. This problem can be avoided by using 
discrete orthogonal polynomials as basis functions, which eliminates the need for 
numerical approximation. They also exactly satisfy the orthogonal property in the 
discrete domain of image coordinate space [5]. Example of discrete moments are 
Tchebichef [11], Krawtchouk [3], Hahn [12], dual Hahn [4] and Racah [5].  

3   Experimental Results 

In this study, we made three kinds of experiments. Each one involves the training of a 
Support Vector Machine (SVM) [13] with a group of digit images. The SVM was 
configured to employ a lineal kernel and the parameters were optimally selected by 
using cross-validation. A second group of digit images were used to predict their 
labels using SVM, once it was trained. 

Two data sets of digit images were used. The first one is composed by 3700 printed 
digit images taken from Cuban license plates images. And the second one is com-
posed by 3200 handwritten digit images scanned from envelopes by the U.S. Postal 
Service [14]. Each data set was divided in two groups, one for training and the other 
for testing. In both data sets the image size is 30 30 pixels. In the case of handwrit-
ten data set, different handwritten styles were taken into consideration influencing the 
character figure form, size, thickness and orientation. While the printed data set was  
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(a) 

                   
(b)  

Fig. 1. Sample set of handwritten (a) and printed (b) digits images used in the experiments 
 

 
constituted by images with different complexity degree, caused by segmentation and 
binarization errors. In addition, the used font makes different classes like {5, 6, 8, 9} 
share some common strokes, making more difficult their classification. 

The criteria used for measuring the results are the classification precision (P), recall 
(R) and accuracy (A). 

                                 (5)

were tp stands for true positive, fp false positive, tn true negative and fn false  
negative. 

In the next three sections, we present the experiment that we made in this study. 

3.1   Comparison of Feature Extraction Methods  

In this experiment we compare a group of nine orthogonal moments against other 
feature extraction methods such as geometric moments, Hu invariants, curvature ap-
proximation (CA), standard (SFD) and elliptic (EFD) Fourier descriptors. 

As it can be seen from Figs. 2 and 3, that orthogonal moment perform better for 
classification tasks that other feature extraction method like Fourier descriptors, cur-
vature approximation and geometric moments. Most of them perceive precision re-
sults over the 0.90 in the case of handwritten digit recognition, and 0.95 for printed 
digit recognition. Notice that in this case, all discrete orthogonal moments show very 
good results, except Hahn moments. In the case of continuous moments, Zernike and 
pseudo Zernike do not bring good results. 

 

Fig. 2. Comparative analysis of feature extraction methods for handwritten digits classification 
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Fig. 3. Comparative analysis of feature extraction methods for printed digits classification 

3.2   Discriminating Capability of Orthogonal Moments  

This experiment measures the discriminating ability of orthogonal moments. They 
were used as feature extraction methods to solve 5 classification problems, each one 
with different number of classes. Digits that can be easily misclassified were grouped 
in the problems with fewer classes. Finally, the class groupings are: {2,7}, {5,6,8,9}, 
{2,5,6,7,8,9}, {0,3,2,5,6,7,8,9}, {0,1,2,3,4,5,6,7,8,9}. The maximum moment order 
used was 10. 

In Table 1 and Table 2 the results of the experiments are summarized. It can be 
seen that in the case of handwritten digits classification, Gegenbauer moments per-
form better in problems with more than 5 classes, while Racah, dual Hahn and Tche-
bichef moments, do it in the problems with no more than 5 classes. 

On the other hand, in the case of printed digits classification, dual Hahn moments 
obtained the best result for all the problems. However, it is worth mentioning the  
 

 

Table 1. Comparison of the discriminating ability for handwritten character recognition 
 

Orthogonal 
Moment 

2 Classes 4 Classes 6 Classes 8 Classes 10 Classes 

P R A P R A P R A P R A P R A 

C
on

ti
nu

es
 Zernike 0.72 0.72 0.72 0.65 0.60 0.80 0.53 0.53 0.84 0.54 0.54 0.89 0.51 0.54 0.91 

P. Zernike 0.73 0.73 0.72 0.59 0.59 0.80 0.44 0.45 0.81 0.46 0.45 0.86 0.43 0.46 0.89 

Legendre 0.98 0.98 0.98 0.94 0.94 0.97 0.93 0.93 0.98 0.92 0.92 0.98 0.92 0.92 0.98 

Gegenbauer 0.98 0.98 0.98 0.97 0.97 0.99 0.95 0.95 0.98 0.94 0.94 0.98 0.93 0.94 0.99 

D
is

cr
et

e 

Tchebichef 0.98 0.98 0.98 0.95 0.94 0.97 0.93 0.93 0.98 0.92 0.92 0.98 0.91 0.91 0.98 

Krawtchouk 0.98 0.98 0.98 0.94 0.94 0.97 0.93 0.93 0.98 0.91 0.91 0.98 0.91 0.91 0.98 

Hahn 0.94 0.93 0.94 0.60 0.48 0.74 0.56 0.52 0.84 0.45 0.41 0.86 0.49 0.50 0.90 

Dual Hahn 0.98 0.98 0.98 0.95 0.95 0.98 0.90 0.90 0.97 0.87 0.87 0.97 0.86 0.86 0.97 

Racah 0.99 0.99 0.99 0.94 0.94 0.97 0.87 0.87 0.96 0.72 0.73 0.93 0.81 0.80 0.96 
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Table 2. Comparison of

Orthogonal 
Moment 

2 Classes 

P R A

C
on

ti
nu

es
 Zernike 0.92 0.91 0.9

P. Zernike 0.94 0.94 0.9

Legendre 0.98 0.98 0.9

Gegenbauer 0.98 0.98 0.9

D
is

cr
et

e 

Tchebichef 0.96 0.96 0.9

Krawtchouk 0.99 0.99 0.9

Hahn 0.97 0.96 0.9

Dual Hahn 0.99 0.98 0.9

Racah 0.96 0.95 0.9
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Department of Computer Science
IT - Instituto de Telecomunicações

SOCIA - Soft Computing and Image Analysis Group
University of Beira Interior, 6200-Covilhã, Portugal
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Abstract. The aim of this paper is to present a method for the auto-
matic segmentation of face images captured in Long Wavelength Infrared
(LWIR), allowing for a large range of face rotations and expressions.
The motivation behind this effort is to enable better performance of face
recognition methods in the thermal Infrared (IR) images. The proposed
method consists on the modelling of background and face pixels by two
normal distributions each, followed by a post-processing step of face di-
lation for closing holes and delimitation based on vertical and horizontal
images signatures. Our experiments were performed on images of the
University of Notre Dame (UND) and Florida State University (FSU)
databases. The obtained results improve on previous existing methods
from 2.8% to more than 25% depending on the method and database.

Keywords: Face Segmentation, Human Skin Segmentation, Image
segmentation, Infrared Thermal.

1 Introduction

A large amount of research has been conducted in the field of face recognition,
mainly in the visible spectrum. These systems have problems dealing with light
variations [6]. Some of the proposed solutions use 3D facial recognition [1] and
combine face recognition in both visible and IR spectrum [7].

The growing interest in robust methods (for example, for security applica-
tions) has driven the development of facial recognition exclusively in the infrared.
Recognition in the LWIR is not affected by light variations.

A crucial step in the process of face recognition is the face segmentation. This
is more demanding than simple face detection since it pinpoints not only the
face’s locations, but also must describe its shape. A robust segmentation system
can improve recognition rates regardless of the recognition method.

In contrast with the visible wavelength, where numerous methods have been
proposed to accomplish this task (based on color, geometry, etc.), in the LWIR
there is a lack of proposals to improve the current status.

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 402–409, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In the next sections we present a short description of two available face seg-
mentation methods (section 2) and present our face segmentation method (sec-
tion 3). In Section 4, we present the datasets used and experimental results,
including a small discussion. We end the paper in section 5 with the conclusions.

2 Overview of Face Segmentation in Thermal Infrared
ImagES

Face segmentation, given that it is a preprocessing step for all recognition meth-
ods, will lead to their failure if it is not correctly performed. This is not a subject
much discussed by the authors of recognition methods in the infrared. Some of
the proposed approaches are based only on the creation of an elliptical mask
that will be put over the image of the face [5], but these approaches will work
only on frontal and centered faces.

Siu-Yeung Cho et al. in [3] present a method for face segmentation in IR im-
ages based on the Sobel Edge detector and morphological operations. After the
Sobel Edge detector, the largest contour is considered to be the one best describ-
ing the face. They apply the morphological operations to the area contained in
this outline to connect open contours and remove small areas. Figures 2(e) and
2(f) show the segmented images in figures 2(a) and 2(b) using this method.

I. Pavlidis et al. in [8] describe a method for face segmentation using a
Bayesian Approach. This method is based on the combination of two Normal
Distributions per class, which are estimated using the Expectation-Maximization
(EM) algorithm. This algorithm uses pixels from the skin (s) and background
(b) for training. These are obtained from the training set images by selecting
subregions that contain only pixels from each of these types. With this, the EM
returns 4 means (μ), 4 variances (σ2) and 4 weights (ω).

In the segmentation stage, for each pixel they have a prior distribution (π(t)(θ)
where t is the iteration) to whether that pixel is skin (π(t)(s)) or background
(π(t)(b) = 1 − π(t)(s)). θ is the parameter of interest, which takes two possible
values (s and b) with some initial (prior) probability (π(1)(s) = 1

2 = π(1)(b)).
The input pixel value xt has a conditional distribution f(xt|θ) and if the

particular pixel is skin we have:

f(xt|s) =
2∑

i=1

ωsiN (μsi , σ
2
si

) (1)

where N (μsi , σ
2
si

) is the Normal Distribution with mean μsi and variance σ2
si

.
The prior distribution (π(t)(θ)) combined with the likelihood (f(xt|θ)) pro-

vides (via the Bayes theorem) the posterior distribution (p(t)(θ|xt)), where, for
the skin pixels, according to the Bayes theorem, we have:

p(t)(s|xt) =
π(t)(s)f(xt|s)

π(t)(s)f(xt|s) + π(t)(b)f(xt|b)
(2)
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The posterior distribution is also used to obtain the prior distribution for the
next iteration:

π(t+1)(θ) =
{

π(t+1)(s) = p(t)(s|xt), when θ = s
π(t+1)(b) = 1 − π(t+1)(s), when θ = b

(3)

Figures 2(g) and 2(h) show the segmented images in figures 2(a) and 2(b) using
this method.

3 Proposed Method

We evaluated the methods of [3] and [8] and realized that it was possible to
improve their results. Our proposal is based on the method of [8]: after analyzing
the results of this method (shown in figure 1(b)) we concluded that its main
problem is the removal clothing because since the body warms it, clothes have
temperatures similar to the skin.

To remove the effect of the clothing, we examined the vertical and horizontal
pixel signatures (see figure 1(d) and 1(g)). The vertical and horizontal signatures
are the sum of the pixels values along the columns, for the vertical signature,
and columns, for the horizontal signature. After this we fill small areas (shown
in figure 1(c)) using a dilation with a 4 × 4 filter. This enables the removal of
incorrectly classified pixels using a proportion of the maximum values in the two
signatures (see figure 1(e)). This proportion is 20%, i.e., all signatures that have
values below 20% of the maximum value are considered as background. This
value was obtained searching for the best performance in the training sets of the
databases.

After this, we calculate the possible location of the center of the face with
new signatures (horizontal in figure 1(f) and vertical in 1(h)) in figure 1(e). The
center point is given by the maximum values of the signatures (when more than
one maximum value exist in the horizontal or vertical signatures the average
of these maximums is used). This possible center location of the face (marked
with a cross in figure 1(e)) will be used for the search for the largest contour
(see figure 1(j)). Before we look for the largest contour, we apply an erosion
followed by dilation with a filter of 3 × 3 and 2 × 2, respectively. This is used
to remove some links between areas. For contour extraction we use the Canny
edge detector. To enhance the contours extracted by the Canny method used a
dilation with a 3×3 filter (see figure 1(i)). Only boundaries that have the center
point inside are accepted, producing the end result of figure 1(k).

A possible drawback of this method occurs when the calculated center position
of the face is not correct. This may cause the largest contour to be only partially
over the actual face.

Figures 2(i) and 2(j) show the segmented images in figures 2(a) and 2(b) using
our method.
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Fig. 1. Thermal face segmentation process. Figure 1(a) is the original image, from the
training set of the UND database. Figure 1(b) is the original image (figure 1(a)) seg-
mented by the method [8]. Figure 1(c) is the image (figure 1(b)) after filling small areas.
Figure 1(d) is the horizontal signature of figure 1(c). Figure 1(e) is the result of the
analysis of horizontal and vertical signatures of figure 1(c). Figure 1(f) is the horizontal
signature of figure 1(e). Figure 1(g) is the vertical signature of figure 1(c). Figure 1(h)
is the vertical signature of figure 1(e). Figure 1(i) is the result of enhancement (using a
dilation with a 3×3 filter) of the contours extracted from the figure 1(e) by the Canny
edge detector. Figure 1(j) is the largest contour of the figure 1(i). Figure 1(k) is the
result of the face segmentation in the original image (figure 1(a)) using our method,
after filling the area inside the contour of the figure 1(j).
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4 Experimental Results

4.1 Datasets

The UND database is presented in [4,2]. The “Collection C” of the UND database
contains 2293 LWIR frontal face IR images from 81 different subjects. The train-
ing set contains 159 images and the test set 163.

The FSU database contains 234 frontal IR images of 10 different subjects,
which were obtained at varying angles and facial expressions [9]. The train set
contains 40 IR images (four per subject) and the test set 194. The images from
this database have color representation. The color channels (Red (R), Green
(G) and Blue (B)) and grayscale conversion were processed separately, ie., the
algorithm process R, G, B and grayscale independently.

All test set images from both databases were segmented manually to create
the ground truth for test sets. Method [3] does not need a training set and
method [8] and ours use pixels from manually segmented regions of the training
set images avoiding the need for accurate segmentation of the training set.

4.2 Experimental Results and Discussion

The requested task is quite simple: for each input image (see figure 2(a) and
2(b)) a corresponding binary output (shown in figure 2(c) and 2(d)) should
be built, where the pixels that belong to the face and are noise-free should
appear as white, while the remaining pixels are represented in black. The test
set of the databases were used to measure pixel-by-pixel agreement between the
binary maps produced by each of the algorithm O = O1, ..., On (images in figures
2(e), 2(f), 2(g), 2(h), 2(i) and 2(j)) presented earlier and the ground-truth data
C = C1, ..., Cn, manually built apriori (shown in figure 2(c) and 2(d)).

The classification error rate (E1) of the algorithm is given by the proportion
of correspondent disagreeing pixels (through the logical exclusive-or operator,
see equation 4) over all the image, where O(c′, r′) and C(c′, r′) are, respectively,
pixels of the output and true class images.

E1 =
1

c × r

∑
c′

∑
r′

O(c′, r′) ⊗ C(c′, r′) (4)

The second error measure aims to compensate the disproportion between the
apriori probabilities of “face” and “non-face” pixels in the images. The type-I
and type-II error rate (E2) of the images is given by the average between the
False Positive Rate (FPR) and False Negative Rate (FNR).

E2 = 0.5 × FNR + 0.5 × FPR (5)

The results of segmentation for the described methods are presented in table
1. For the UND database, we can observe that error rates obtained with our
method improved upon the results of the other two methods. The same was
not the case for the FSU database. In this, the FPR increased, but the final
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(a) Images from the UND database. (b) Images in grayscale from the FSU
database.

(c) Manually segmented images of figure
2(a).

(d) Manually segmented images of figure
2(b).

(e) Images of figure 2(a) segmented by
the method [3].

(f) Images of figure 2(b) segmented by
the method [3].

(g) Images of figure 2(a) segmented by
the method [8].

(h) Images of figure 2(b) segmented by
the method [8].

(i) Images of figure 2(a) segmented by our
method.

(j) Images of figure 2(b) segmented by
our method.

Fig. 2. Input images for the two databases, manually segmented images and the seg-
mented images by the three methods

two errors (E1 and E2) decreased due to the FNR decrease significant. In this
database the FPR’s increased because when the subject wears glasses and we
dilate the images from the method described in [8] we include part of the glasses
as face pixels and they do not belong to the face. For the FSU images (shown in
figure 2(b)), most of the noise comes from the hair since that the face fills almost
entirely the image unlike what happens in the UND database, where there is a
large area not covered by the face (see figure 2(a)).
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Table 1. Segmentation methods results in the test sets from the UND and FSU
databases. The FSU Fusion1 is the fusion between the results of segmentation for
the R, G and B channels using the majority vote between them. The FSU Fusion2 is
the fusion of the results of grayscale and the R, G and B channels using a weight of
0.3 for the grayscale channel and 0.7

3
for the other.

Siu-Yeung Cho et al.[3] I. Pavlidis et al.[8] Ours
FNR FPR E1 E2 FNR FPR E1 E2 FNR FPR E1 E2

UND 0.369 0.354 0.356 0.362 0.166 0.080 0.093 0.123 0.145 0.050 0.065 0.097
FSU Gray 0.502 0.048 0.308 0.275 0.200 0.174 0.189 0.187 0.044 0.206 0.114 0.125
FSU R 0.533 0.046 0.325 0.290 0.206 0.169 0.190 0.187 0.058 0.186 0.112 0.122
FSU G 0.502 0.047 0.307 0.275 0.171 0.184 0.171 0.178 0.044 0.206 0.114 0.125
FSU B 0.366 0.085 0.246 0.226 0.170 0.186 0.177 0.178 0.033 0.242 0.123 0.138
FSU Fusion1 0.494 0.048 0.303 0.271 0.171 0.184 0.177 0.178 0.045 0.206 0.114 0.125
FSU Fusion2 0.482 0.049 0.296 0.265 0.171 0.184 0.177 0.178 0.045 0.206 0.114 0.125

The database FSU was analyzed for each channel independently and two
fusions (Fusion1 and Fusion2) were made to verify what would be the best
approach for the segmentation.

The FSU Fusion1 is the fusion between the results of segmentation for the
R, G and B channels using the majority vote between them. The FSU Fusion2

is the fusion of the results of grayscale and the R, G and B channels using a
weight of 0.3 for the grayscale channel and 0.7

3 for the other.
For the method [3] the best result was obtained with the blue channel (FSU B)

for both errors E1 and E2. For the method [8] the smallest error E1 is obtained
with the green (FSU G) and the smallest error E2 appears in the green (FSU
G) and blue (FSU B) channels and for the FSU Fusion1 and FSU Fusion2.

Our method has the best result in the red channel (FSU R) for both errors E1

and E2. With this, we can say the best result of each method in this database
depends on the type of images and that fusions does not always improve the
results.

The improvements brought by our approach in relation to method [8] are
the removal of clothing and the inclusion of larger number of pixels of the face.
Removal of clothing is quite visible in the difference between the images result-
ing from [8] (figure 2(g)) and our method (figure 2(i)). In these examples it is
possible to see that almost all the clothes were removed in the images of the
UND database. The inclusion of the pixels of the face is most visible in the FSU
database as can be seen in the images of figures 2(h) and 2(j), the first being the
result of [8] and ours is the second. With this we minimize the FNRs, causing
us to obtain more pixels for face recognition tasks.

5 Conclusion

In this paper we proposed a face segmentation method for LWIR images. The
method creates two Gaussian distributions for each type of pixel (face and back-
ground) and post-processes the obtained images by closing small holes using
morphological operators (decreasing FNRs) and removing the effect of clothes
through the analysis of vertical and horizontal image signatures.
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The experimental results show that our proposal improves accuracy from 2.8%
to over 25% depending on the dataset and the method against which we are
comparing.

We are currently searching for new features that may improve segmentation
performance.
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Abstract. Face recognition under varying lighting conditions remains
an unsolved problem. In this work, a new photometric normalisation
method based on local Discrete Cosine Transform in the logarithmic do-
main is proposed. The method is experimentally evaluated and compared
with other algorithms, achieving a very good performance with a total
error rate very similar to that produced by the preprocessing sequence,
which is the best performing state of the art photometric normalisation
algorithm. An in-depth analysis of both methods revealed notable differ-
ences in their behaviour. This diversity is exploited in a multiple classifier
fusion framework to achieve further performance improvement.

1 Introduction

In different face recognition studies it has been shown that variation in light-
ing is one of the major limiting factors of face recognition system performance
[1]. To cope with the problem of face recognition under illumination variation,
several methods have been proposed [2]. Among them, preprocessing methods,
better known as photometric normalisation, are very popular since they are very
efficient and generally do not require a complex training process [3].

Most of the existing preprocessing methods have been compared with each
other, and the main conclusion that can be drawn is that the better they deal
with the illumination problem, the less stable behaviour they exhibit on im-
ages obtained in normal lighting conditions [3,4,5]. Better approaches are still
needed in order to best balance the advantages of preprocessing for illumination
degraded images and the loss of performance on normally illuminated images.

Under the Lambertian model for representing face images, i.e. I(x, y) =
R(x, y)L(x, y), a number of preprocessing methods make the assumption that the
luminance, L, changes slowly over the scene and is therefore a low frequency phe-
nomenon, whereas reflectance R, which characterises skin texture, contributes

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 410–417, 2010.
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a higher frequency content. The luminance is a byproduct of the incident light
and the surface orientation, which will be a low frequency function for a surface
with slowly varying surface normal. However the face contains morphological
features such as eyes, nose and mouth, which inject high frequency components
to the luminance function and contribute information which should be preserved
to aid face discrimination. Similarly, the reflectance term contains low and high
frequency information. Although in the locality of facial features, the albedo
changes rapidly, introducing high frequency signal to the reflectance function,
the skin texture is basically homogeneous, changing very slowly over the face
surface, so the dominant skin characteristic is of low frequency. This analysis
suggests that both the luminance and reflectance components of a face image
contain low and high frequencies. It is then difficult to separate the luminance
effect from reflectance purely on the basis of frequency content. However, in gen-
eral, high frequency components are associated with discriminatory information
while illumination variations lie in the low frequency part of the spectrum. Vari-
ations in illumination can be compensated by estimating and removing the low
frequency information, but the filter and the cut-off frequency have to be chosen
carefully, so that the discriminatory information content is not compromised.

In this work, a new photometric normalisation method based on the local Dis-
crete Cosine Transform (DCT), is presented. A photometrically normalised face
image is obtained by subtracting a compensation term from the original image
in the logarithmic domain. The compensation term is estimated by smoothing
the image constructed using low-frequency coefficients extracted from the local
DCT of the original image in the logarithmic domain. The proposed method is
tested on the XM2VTS face database and compared with state of the art pho-
tometric normalisation methods. Our method and the preprocessing sequence
(PS) [5] exhibit a similar performance as measured in terms of total error rates,
and both are superior to other photometric normalisation methods. An in-depth
analysis of the two methods revealed differences in their performance on indi-
vidual images, suggesting that the methods provide complementary information.
Drawing on their diversity, we propose to use them jointly to improve the re-
sults for face recognition under varying lighting conditions, while at the same
time ensuring that good results are obtained for normally illuminated images.
Significant improvements in performance are experimentally demonstrated.

This paper is organized as follows. In Section 2 the proposed (LDCT) prepro-
cessing method is presented. In Section 3 the method is evaluated and compared
with some of the state of the art photometric normalisation methods. Section
4 presents a novel face verification scheme which combines the outputs of face
verification experts employing the LDCT and the PS preprocessing methods,
and reports on the experimental results. Finally, Section 5 concludes the paper.

2 Illumination Compensation Using DCT in Log Domain

The use of DCT to compensate for illumination variations was first presented
in [6]. The authors used low-frequency DCT coefficients of an image in the log-
arithm domain as an approximation of the illumination compensation term,
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setting them to zero and reconstructing a normalised image in that way. This
method outperformed many of the existing methods dealing with illumination
variations when comparing on the Yale B face database. Recently, two exten-
sions of that method were presented in [7] and [8], aiming at more computational
efficiency. None of them improve the results obtained by [6] on the Yale B face
database.

In [9] a method using DCT in a local way was presented, based on the idea
that local approaches are better to deal with illumination problems than the
global ones [10]. Dividing the face image into rectangular regions and setting to
zero low-frequency DCT coefficients of each region, a better performance was
achieved. Uniform Local Binary Pattern (LBP) histograms [11] are computed
for each region and used for classification. Note that the same region division
is used for the preprocessing with the DCT and for the classification step using
the LBP, so in this case, the photometric normalisation is tightly coupled with
the image structure used for feature extraction and classification.

Unfortunately, the number of methods where the congruency between prepro-
cessing and feature extraction exists naturally is severely limited. Thus, the ob-
jective of our work is to develop a new photometric normalisation method based
on local DCT, retaining the local sensitivity without introducing any blocky
artefact. Such a method can be used with any feature descriptor or classifier
regardless of image partitioning.

2.1 The New Photometric Normalisation Method

The proposed method, as the previous techniques, aims at subtracting a com-
pensation term from the original image in the logarithm domain in order to
suppress illumination variations. Here, the low-frequencies DCT coefficients of
the image blocks in the logarithm domain are used to estimate the compensation
term instead of setting them to zero, avoiding the blockiness effect.

Once the face image is transformed to log intensity domain, it is divided
into rectangular blocks and the DCT is computed over them. Using only the
low-frequency coefficients of each block, a low pass version of the log image
can be reconstructed by applying the inverse DCT, which can be used as an
approximation of the compensation term.

In a DCT block, the top left coefficients, selected in a zig-zag scan manner
correspond to the low frequency information. However, the C(0, 0) coefficient,
usually called DC coefficient, conveys the mean intensity value of the block, as
can be seen in eq. (1), where M × N is the size of the block and i(x, y) the
intensity value of each pixel:

C(0, 0) =
1√

M
√

N
·

M−1∑
x=0

N−1∑
y=0

i(x, y), (1)

The DC values of the different blocks of an image not only track to the incident
illumination but also contain information relating to the surface normals in the
vicinity of the structural facial features and they can not be just removed. It is
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        (a)          (b)          (c)      (d)      (e)

Fig. 1. Effect of each one of the steps of the proposed preprocessing method: (a) original
image, (b) logarithm transformation, (c) illumination compensation image with block
effect, (d) smoothed compensation image and (e) resulting image after subtraction.

necessary to modify the DC coefficients that will be used for each block in the
reconstruction, in a way that they represent only the changes in the incident
illumination. Accordingly, a constant value, representing a “good” DC value, is
subtracted from each DC coefficient, obtaining as result a representation of the
information injected by the variation in the lighting.

The reconstructed low pass image still exhibits a block effect produced by the
image subdivision. In order to reduce this effect, we apply a low pass smoothing
filter to the reconstructed image before subtracting it from the original image in
the logarithmic domain.

The proposed procedure can be summarized in the following steps: 1) to apply
the logarithmic transformation to the original face image, 2) to reconstruct the
low pass version of the log image using the low-frequency DCT coefficients and
replacing the local DC one by its original computed value minus a constant
reference value, 3) to smooth the resulting image and 4) to subtract the smoothed
compensation term from the original image in the logarithmic domain. The effect
of each step is evident in Figure 1, showing at the end the photometrically
normalised image obtained with the proposed method.

3 Experimental Evaluation

The XM2VTS database with the Lausanne protocol [12] was used to evaluate
the performance of the proposed method. The database contains 2360 images
of 295 subjects under controlled illumination conditions, divided into a Training
set composed of images of 200 subjects as clients, an Evaluation set (Eval) with
images of the same subjects as clients and of 25 additional subjects as imposters,
and a Test set with 70 subjects as imposters. There is an additional “Dark” set
which contains images from every subject under non frontal lighting. The Equal
Error Rate (EER), which is the point where the False Rejection Rate (FRR) is
equal to the False Acceptance Rate (FAR), is obtained for the images in the Eval
set and the value obtained by the classification method at this point is used as
a threshold for the decision of acceptance or rejection in the Test and Dark sets.
The Total Error Rate (TER), the sum of FRR and FAR, is used to evaluate the
performance of the verification systems on the database.
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Table 1. Comparison of different photometric normalisation methods on the XM2VTS
database using MLBP+LDA in terms of TER (%)

OI HE HF TVQI AS PS LDCT

Eval 1.90 2.10 2.35 2.65 2.08 2.00 2.00
Test 1.16 1.17 1.35 1.98 1.50 1.56 1.32
Dark 13.7 13.5 12.7 6.98 6.15 3.72 4.55

The recent extension of the popular LBP method, which is based on a multi-
scale representation with linear discriminant analysis (MLBP+LDA) [13] was
used to represent and classify the face images preprocessed with the proposed
LDCT method. Table 1 shows the TER obtained for each subset of the database
and compares it with the results obtained with the original images (OI) using
the same database and classification method. It is compared also with state of
the art photometric normalisation methods including the well known histogram
equalization (HE), homomorphic filtering (HF) [4] and anisotropic smoothing
(AS) [14], and newer approaches like the total variation quotient image (TVQI)
[15] and the processing sequence (PS) [5]1.

It can be appreciated that the proposed method achieved a very good per-
formance for the Dark set, the one containing images affected by illumination
variations. The performance is very close to that obtained with the PS method,
which shows the best results. On the other hand on the Test set, where the
images do not present large illumination variations, PS shows a slightly worse
performance than LDCT. Comparing PS and the proposed method, the most im-
portant difference between them is in the frequency information that is retained
and suppressed in the main step of each algorithm. Both methods work differ-
ently but the total error rates achieved by them on the XM2VTS database are
very similar. It is then pertinent to check whether the specific misclassifications
committed by each method were correlated.

In [16], a statistical test, known as z statistics, to determine whether of two
classifiers deliver different outputs is described. The z statistics is defined as:

z =
|n01 − n10| − 1√

n10 + n01
(2)

where n01 represents the number of samples misclassified using PS but not using
LDCT and n10 the number misclassified by LDCT but not by PS.

If |z| > 1.96 it can be said that the two methods do not have the same error
(with a 0.05 probability of incorrect decision).

In Table 2, we show the z statistic value computed for the sets of the XM2VTS
database. In all cases the statistical test is higher than 1.96, which means that
the two methods misclassify images in a different way. A deeper analysis of the
coincidences in misclassification, reported in Table 3, shows that less than one
half of the incorrectly classified images are jointly misclassified by both methods.
1 The method in [9] was not tested here because of its incongruence with the block

structure of the multi-scale approach, however using the original LBP as it is
proposed, a TER of 58% is obtained for the Dark set.
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Table 2. The z statistics
computed in each set of
the XM2VTS

Eval Test Dark

|z| 8.19 15.26 8.15

Table 3. Proportion of coincident
misclassification for PS and LDCT
methods

Eval Test Dark

PS 35.80% 36.28% 35.55%
LDCT 45.39% 46.92% 26.72%

These results show clearly that the methodological differences between the
two methods inject diversity into the outputs generated by the face recognition
method. This diversity can be exploited to improve the recognition performance
by multiple expert fusion, as discussed in the next section.

4 Classifier Fusion

It is well known that multiple classifier fusion is an effective method to im-
prove the performance of pattern recognition systems. Classifier diversity can be
achieved in many different ways. In our approach the face recognition system,
including its method of representation and matching, is the same for all (the
two) component systems. The diversity is achieved by using different face image
preprocessing techniques to perform photometric normalisation.

We opted for a simple fusion by a fixed rule, sum. The sum fusion rule is
known to be effective and also robust to noise [17]. The use of a simple fusion
rule avoids the problems of generalisation to data sets affected by drift caused
by various phenomena, such as illumination changes.

Thus, let us denote the score delivered by the face system for an input image,
photometrically normalised by LDCT, as SLDCT and that delivered for the same
input with the PS preprocessing as SPS . The fused score is then given as

S = SLDCT + SPS (3)

The merit of this simple fusion method can be gleaned from Table 4. Using the
proposed photometric normalisation and classifier fusion scheme, a significant
improvement in performance was achieved for all data sets, regardless of whether
the images were affected by illumination variations or not.

Table 5 compares our proposal with the reported results of some state-of-
art systems tested in the XM2VTS database. The performance of 2.87% TER
on the Dark set is very close to the best ever error rate reported on the Dark
set, in the ICB 2006 competition [19]. However the winning performance in the
ICB 2006 competition was achieved by training the face recognition system on

Table 4. Fusion results

Eval Test Dark

PS 2.00 1.56 3.72
LDCT 2.00 1.32 4.55
PS+LDCT 1.79 1.17 2.87
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Table 5. TER (%) of face recognition methods in the XM2VTS database

Eval Test Dark

LBP LDA [18] - 9.12 18.22
LBP HMM [18] - 2.74 19.22
AS LDA [19] 6.50 9.76 25.24
AS HMM [19] 10.50 8.38 24.00
ICB06-Best2 [19] 1.63 0.96 -
ICB06-Best3 [19] 2.35 - 2.02
PS+LDCT 1.79 1.17 2.87

poorly illuminated face images, that causes a drop in the performance on well
illuminated images (Eval). In our approach the improvement is achieved entirely
through photometric normalisation. This is of practical significance as in real
scenarios it would be impossible to collect representative data for all illumination
conditions and a solution that involves no training is preferable.

5 Conclusions

In this work, a new face image photometric normalisation method based on
the local DCT in the logarithmic domain has been proposed. The photometric
normalisation process proposed in conjunction with the MLBP+LDA classifica-
tion method was tested on the XM2VTS face database, achieving a very good
performance when compared to other preprocessing algorithms. The total error
rate obtained was very similar to that produced by the PS method, the winning
algorithm, on the subset of images affected by illumination variations in the
database. Despite the similarities in the average error rates of PS and LDCT, an
in-depth analysis of the two preprocessing methods revealed notable differences
in their behaviour. This diversity motivated a new recognition framework based
on score level fusion, which achieved a very good performance on all data sets
of the XM2VTS database, regardless of whether the images were affected by
illumination variations or not. The proposal was compared with the state of the
art systems tested on the XM2VTS database, and found to be comparable with
the best ever method reported on the Dark set of the database, which requires
training on poorly illuminated images and degrades on good quality images. The
practical advantage of our approach which is applicable without the need for any
data collection and training is extremely valuable.
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Abstract. The aim of this paper is to present a dissimilarity measure strategy
by which a new philosophy for pattern classification pertaining to dissimilarity-
based classifications (DBCs) can be efficiently implemented. In DBCs, classifiers
are not based on the feature measurements of individual patterns, but rather on a
suitable dissimilarity measure among the patterns. In image classification tasks,
such as face recognition, one of the most intractable problems is the distortion
and lack of information caused by the differences in illumination and insuffi-
cient data. To overcome the above problem, in this paper, we study a new way of
measuring the dissimilarity distance between two images of an object using a sta-
tistical similarity metric, which is measured based on intra-class statistics of data
and does not suffer from the insufficient number of the data. Our experimental re-
sults, obtained with well-known benchmark databases, demonstrate that when the
dimensionality of the dissimilarity representation has been appropriately chosen,
DBCs can be improved in terms of classification accuracies.

1 Introduction

Dissimilarity-based classifications (DBCs) [11] are a way of defining classifiers among
the classes; and the process is not based on the feature measurements of individual pat-
terns, but rather on a suitable dissimilarity measure among the individual patterns. The
characteristic of the dissimilarity approach is that it offers a different way to include
expert knowledge on the objects. The three major questions we encountered when de-
signing DBCs are summarized as follows: (1) How can prototype subsets be selected
(or created) from the training samples? (2) How can the dissimilarities between samples
be measured? (3) How can a classifier in the dissimilarity space be designed?

Several strategies have been used to explore these questions. First, various methods
have been proposed in the literature [11], [12] as a means of selecting a representation
subset of data that is both compact and capable of representing the entire data set. In
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these methods, however, it is difficult to find the optimal number of prototypes and, fur-
thermore, selecting prototype stage may potentially lose some useful information for
discrimination. To avoid these problems, Bunke and his colleagues [12] and Kim and
Gao [8] prefer not to directly select the representative prototypes from the training sam-
ples; rather, they use a dimension reduction scheme after computing the dissimilarity
matrix with the entire training samples.

With regard to the second question, investigations have focused on measuring the
appropriate dissimilarity by using various Lp norms, modified Hausdorff norms [7],
and traditional measures, such as those used in template matching and correlation-based
analysis [1], [11]. On the final question, the learning paradigms, Pekalska and Duin
[11] reported the use of many traditional decision classifiers, including the k -NN rule
and the linear/quadratic normal-density-based classifiers. Recently, in [4], they tried to
refine the dissimilarity matrix by employing a pseudo-Euclidean embedding algorithm
[3]. In addition, optimizing DBCs through combining dissimilarity matrices generated
with different measures has been investigated in the literature [9], [15].

On the other hand, when designing a specific classification system, sometimes we
suffer from the difficulty of collecting sufficient data for each object. In face recog-
nition, for example, there are many kinds of variations based on such factors as pose
(direction), expression, and illumination [1], [6]. However, as mentioned above, collect-
ing sufficient facial data is difficult. To solve this problem, Lee and Park [10] proposed a
measuring scheme to extract more robust and essential information of data distributions
in biometric problems and applied it to developing a similarity measure. The informa-
tion obtained with the scheme does not depend on the distribution of each class for each
object, but depends on all the data. From this point of view, they claimed to get a more
reliable similarity measure.

The major task of this study is to deal with how the dissimilarity measure can be
effectively computed. However, when a limited number of object samples are available
or the representational capability is insufficient to cover the possible variations of data,
it is difficult to improve the performance of DBCs in the dissimilarity space. To over-
come this limitation and thereby improve the classification performance of DBCs, in
this paper, we study a new way of enriching the representational capability of dissimi-
larity measures. In particular, this goal can be achieved by using a statistical similarity
measure based on intra-class statistics of data [10].

The main contribution of this paper is to demonstrate that the classification perfor-
mance of DBCs can be improved by employing a similarity measure based on the intra-
class statistics of all the training samples. Here, the measuring system has been used to
accommodate some useful information for discrimination and to avoid the difficulty of
collecting sufficient training data. The remainder of the paper is organized as follows:
In Section 2, after providing a brief introduction to DBCs, we present an explanation
of the statistical similarity measure and an improved DBC. In Section 3, we present
the experimental results obtained with real-life benchmark data sets. In Section 4, we
present our concluding remarks.
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2 Related Work

Dissimilarity Representation: A dissimilarity representation of a set of samples, T =
{xi}n

i=1 ∈ Rn×d, is based on pair-wise comparisons, and is expressed, for example,
as an n × m dissimilarity matrix, DT,Y [·, ·], where Y =

{
yj

}m

j=1
∈ Rm×d, a pro-

totype set, is extracted from T , and the subscripts of D represent the set of elements,
on which the dissimilarities are evaluated. Thus, each entry, DT,Y [i, j], corresponds to
the dissimilarity between the pairs of objects, 〈xi,yj〉, where xi ∈ T and yj ∈ Y .
Consequently, an object, xi, is represented as a column vector as follows:

[d(xi,y1), d(xi,y2), · · · , d(xi,ym)]T , 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix, DT,Y [·, ·], is defined as a dissimilarity space, on which
the d-dimensional object, x, given in the feature space, is represented as an m-
dimensional vector, δ(x, Y ), where if x = xi, δ(xi, Y ) is the i-th row of DT,Y [·, ·]. In
this paper, the column vector, δ(x, Y ), is simply denoted by δY (x), where the latter is
an m-dimensional vector, while x is d-dimensional.

On the basis of what we have briefly discussed, we assert that the state-of-the-art
strategy for DBCs involves the following steps:

1. Select the representation subset, Y , from the training set, T , by using one of the
selection methods described in the literature.

2. Using Eq. (1), compute the dissimilarity matrix, DT,Y [·, ·], in which each dissim-
ilarity is computed on the basis of the measures described in the literature.

3. For a testing sample, x, compute a dissimilarity column vector, δY (x), by using
the same measure used in Step 2.

4. Achieve the classification by invoking a classifier built in the dissimilarity space
and operating it on the dissimilarity vector δY (x).

Here, we can see that the performance of DBCs relies heavily on how well the dis-
similarity space, which is determined by the dissimilarity matrix, is constructed. To
improve the performance, we need to ensure that the matrix is well designed.

A Statistical Similarity Measure [10]: To define a new similarity measure based
on the statistics of data, let us represent the data as a random variable, xi =
(xi1, xi2, · · · , xid)T . The data set, T , can be decomposed into subsets, Tk, as follows:
T =

⋃c
k=1 Tk, Ti = {x1, · · · ,xni}, with n =

∑c
i=1 ni, Ti ∩ Tj = φ, ∀i �= j.

First, we introduce a random variable, zi, which is defined by using a pair of data,
〈xk,xl〉, where xk,xl ∈ Ti, from the same class ωi. We then try to estimate a multi-
variate Gaussian distribution, pi(z), instead of pi(x), i = 1, · · · , c, and use it to define
the similarity measure. Let us define the random variable, zi, as follows:

zi = xk − xl, ∀xk,xl ∈ Ti, (k �= l). (2)

This is given under the assumption that the difference between each pair of samples
from the same class originates from some additive Gaussian noises [10].

To define a distance measuring system, we first construct a representation set,
S = {zi}m

i=1, from the training set, T = {xj}n
j=1, as follows: (1) For every class
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ωi, compute Si = {zi}mi

i=1 ∈ Rmi×d, mi = ni(ni − 1), using Eq. (2). (2) Return
S = S1 ∪ S2 ∪ · · · ∪ Sc ∈ Rm×d, where m =

∑c
i=1 mi, as the final representation set.

After obtaining the representation set S, we estimate intra-class statistics of the set,
such as mean values and standard deviations, as follows:

μi =
1
m

m∑
j=1

zji, (1 ≤ i ≤ d), (3)

σi =

⎛⎝ 1
m

m∑
j=1

(zji − μi)
2

⎞⎠1/2

, (1 ≤ i ≤ d). (4)

Using these statistics, we define a similarity measure between two points, xi and yj , as
follows:

s(xi,yj) =
d∑

k=1

(
xik − yjk − μk

σk

)2

, ∀xi,yj ∈ T. (5)

Here, since the cardinality of S, mi, is much larger than that of each Ti, ni, the intra-
class statistics computed are more accurate and more robust against some additive Gaus-
sian noises. Consequently, the similarity measure obtained with these statistics is also
robust against the noises and works well with the insufficient data.

Optimized Dissimilarity-Based Classification: As mentioned earlier, there are a few
ways by which the classification efficiency of DBCs can be improved. To overcome the
limitation caused by the variations in illumination and the insufficient number of data,
in this paper, we used the similarity function of Eq. (5). The proposed approach, which
is referred to as an optimized DBC (ODBC), is summarized in the following:

1. Select the whole training set, T , as the representation subset Y .
2. After constructing S from T , compute the intra-class statistics, μ and σ, of S

using Eqs. (3) and (4), respectively.
3. Using Eq. (1), compute the dissimilarity matrix DT,Y [·, ·], in which each individ-

ual dissimilarity is computed using the similarity function of Eq. (5), rather than using
one of the Euclidean measures.

4. This step is the same as Step 3 in the conventional DBC.
5. This step is the same as Step 4 in the conventional DBC.
The time complexities of the above algorithm, ODBC, can be analyzed as follows:

As in the case of DBC, almost all the processing CPU-time of ODBC is consumed
in computing the dissimilarity matrices. So, the difference in magnitude between the
computational complexities of DBC and ODBC depends on the computational costs
associated with the dissimilarity matrix. More specifically, in DBC, Step 2 of computing
the n×n dissimilarity matrix requires O(dn2) time. On the other hand, the computation
of that of ODBC needs O(dn2 + cn2) time1 in executing Steps 2 and 3. Here, n, d, and
c are the numbers of total samples, dimensions, and classes, respectively.

1 For large data sets, to reduce the CPU-time of ODBC, a sample reduction technique can be
considered.
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3 Experimental Results

Experimental Data: The proposed method has been tested and compared with the
conventional ones. This was done by performing experiments on well-known face
databases, namely, AT&T [13], Yale [6], and CMU-PIE [14], and other multivariate
data sets cited from UCI Machine Learning Repository [2].

AT&T database consists of ten different images of 40 distinct objects, for a total of
400 images. The size of each image is 112 × 92 pixels, for a total dimensionality of
10304 pixels. Yale database contains 165 gray scale images of 15 individuals. The size
of each image is 178× 236 pixels, for a total dimensionality of 42008 pixels. To obtain
a different data set, a partial image, which is 64 × 78 pixels in size and contains only
facial components without background, was extracted from each of the Yale images.
This database is referred to as “Yale2” in the following sections. CMU-PIE database
involves 41368 images of 68 people. To reduce the computational complexity of this
experiment and, furthermore, to investigate the run-time characteristics of the method,
a number of subsets, such as 175 (= 25 people × 7 pictures), 350 (=25 people × 14
pictures), and 525 (=25 people × 21 pictures) images, were selected from the database
and down-sampled into 92 × 80 pixels, for a total dimensionality of 7360 pixels.

Experimental Method: In this experiment, first, data sets are randomly split into train-
ing sets and test sets in the ratio of 75 : 25. Then, the training and testing procedures are
repeated 15 times and the results obtained are averaged. To evaluate the classification
accuracies of DBCs and ODBCs, different classifiers, such as k-nearest neighbor clas-
sifiers and support vector machines [5], are employed and implemented with PRTools2,
and will be denoted as knnc and libsvm, respectively, in subsequent sections.

Experimental Results: First, the experimental results obtained with knnc and libsvm
trained in DBCs and ODBCs for the face databases, namely, AT&T, Yale (Yale2), and
CMU-PIE, were probed into. Here, we first reduced the dimensionality of the image
vectors by performing a principal component analysis (PCA). Then, we constructed
the dissimilarity matrix, D, with respect to all the training samples. Fig. 1 shows a
comparison of the error rates of knnc and libsvm trained in DBCs and ODBCs for the
four databases, where x and y axes are those of the reduced dimensions (which are
obtained with a PCA) and the estimated error rates, respectively.

The observations obtained from the figure are the followings: First, it should be
pointed out that the difference in the estimated error rates between DBCs and ODBCs
increases as the dimension of the subspaces increases. This is clearly shown in the error
rates represented with two lines marked with  and ×, or ◦ and +, respectively, in the
pictures. This comparison shows that the classification accuracy of ODBCs is higher
than that of DBCs when the dimensionality of the subspace is appropriately chosen
(refer to Fig. 1 (b), (c), and (d)). Next, for the experiment of CMU-PIE, the two error
rates of ODBCs, obtained with the two subsets of 175 (= 25 × 7) and 350 (= 25 × 14)
images, respectively, are almost the same, while those of DBCs are different; the error
rates of the latter subset are lower than that of the former. However, for the experiment
of AT&T, in which all of the facial images have a uniform background, the classification

2 PRTools is a Matlab toolbox for pattern recognition(refer to http://prtools.org/).
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Fig. 1. A comparison of the estimated error rates of DBCs and ODBCs: (a) top left, (b) top right,
(c) bottom left, and (d) bottom right; (a) - (d) are obtained with AT&T, Yale, Yale2, and CMU-
PIE 175 (25 people × 7 pictures) databases, respectively. Here, the error rates are evaluated with
knnc and libsvm trained in the subspaces of different dimensions. (The error rates of CMU-PIE
350(25 × 14) and 525(25 × 21) subsets are omitted here in the interest of compactness.)

accuracies have not increased with the proposed method (refer to Fig. 1 (a)). From these
considerations, the reader should observe that DBCs can be improved by employing the
statistical similarity measure and the resultant DBCs, i.e., ODBCs, do not suffer from
the insufficient number of data.

In addition, the scaling of the features by σk may work in two directions. It works
well for features that contribute to class differences by their separateness, but that have
a small variability and that thereby have a too small contribution to the dissimilarities
if there is no scaling. In case of bad features with a small variability, however, the noise
of these features is emphasized. This happens for the peaking points in Fig. 1 (a) and
(d) as the smallest eigenvectors are most emphasized.

To further investigate the advantage of using the proposed method, and, especially,
to find out which kinds of significant data set are more suitable for the scheme, we
repeated the experiment with the UCI benchmark databases. Table 1 shows a numerical
comparison of the averaged error rates and their standard deviations for the benchmark
databases. Here, the estimated error rates that increase and/or decrease more than the
sum of the standard deviations are underlined.
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Table 1. A numerical comparison of the estimated error rates for the benchmark databases. Here,
the numbers in brackets in each row represent the standard deviations. Also, the estimated error
rates that increase and/or decrease more than the sum of the standard deviations are underlined.

data parameters knnc libsvm
sets (c, d, n) DBCs ODBCs DBCs ODBCs

apect 2, 44, 80 0.3400 (0.0761) 0.3367 (0.0876) 0.1900 (0.0660) 0.2067 (0.0842)
chromo 24, 30, 1143 0.4285 (0.0215) 0.4662 (0.0254) 0.3860 (0.0341) 0.4754 (0.0244)

cmc 3, 9, 1473 0.5241 (0.0225) 0.5755 (0.0256) 0.4816 (0.0173) 0.4652 (0.0148)
dermatology 6, 34, 366 0.2418 (0.0381) 0.0681 (0.0228) 0.0520 (0.0240) 0.0476 (0.0237)

diabetes 2, 8, 768 0.2161 (0.0413) 0.0542 (0.0201) 0.0623 (0.0293) 0.0505 (0.0238)
ecoli 3, 7, 272 0.0756 (0.0279) 0.0796 (0.0274) 0.0527 (0.0202) 0.0925 (0.0556)
glass 4, 9, 214 0.3167 (0.0645) 0.3033 (0.0421) 0.2967 (0.0647) 0.3450 (0.0649)
heart 2, 13, 297 0.4396 (0.0402) 0.2360 (0.0442) 0.3270 (0.0567) 0.1793 (0.0308)

lung-cancer 3, 56, 32 0.5429 (0.1724) 0.4571 (0.1344) 0.5238 (0.1034) 0.5238 (0.1285)
malaysia 20, 8, 291 0.4757 (0.0606) 0.2531 (0.0402) 0.7141 (0.0466) 0.2802 (0.0543)

sonar 2, 60, 208 0.1961 (0.0385) 0.1882 (0.0479) 0.1725 (0.0414) 0.2575 (0.0662)
wine 3, 13, 178 0.2837 (0.0458) 0.0202 (0.0149) 0.2558 (0.0596) 0.0186 (0.0219)

We observed the same characteristics in Table 1 as in Fig. 1 (see the underlined num-
bers). This improvement can be seen by observing how the estimated error rates (%)
change. For example, for the last data set, wine, the error rates of knnc (and libsvm) de-
signed with DBC and ODBC significantly decrease from 28.37% to 2.02% (and 25.58%
to 1.86%), respectively. The same characteristics could also be observed in the under-
lined data sets. However, for the other data sets, the error rates of the both of DBCs and
ODBCs are almost the same; the increase and/or decrease of the error rates is not signif-
icant. Additionally, what can be observed in the table for the feature based data sets can
for a large deal be explained by scaling differences between the features. Malaysia and
diabetes are typically data sets with entirely different features that are not scaled properly.
The sonar data set consists of spectra. By scaling the tails of the spectra are emphasized.

4 Conclusions

In our efforts to improve the classification performance of DBCs, we used a statistical
measuring technique based on intra-class statistics of data. To achieve this improvement
of DBCs, we first computed the intra-class statistics, such as the mean and the standard
deviation, of the training data set. Using these statistics, we then constructed the dis-
similarity matrices, where the dissimilarity was measured with the similarity function.
This measuring technique has been employed to solve the problems caused by the dif-
ferences in illumination and the insufficient number of data. The proposed method was
tested on four face databases and some UCI data sets, and the results were compared
with those of a Euclidean method. Our experimental results demonstrate that the classi-
fication accuracies of DBCs were improved significantly when the dimensionality of the
dissimilarity representation has been appropriately chosen. Although we have shown
that DBCs can be improved by employing the statistical measuring scheme, many tasks
remain open. One of them is to improve the classification efficiency by combining the



On Improving DBCs Using a Statistical Similarity Measure 425

optimized DBCs in the dissimilarity space. Also, it is not yet clear that which kinds of
significant data sets are more suitable for the scheme. Therefore, the problem of theo-
retically investigating the measuring method developed for the proposed DBCs remains
to be done. Future research will address these concerns.
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Abstract. Face recognition is an important field that has received a lot
of attention from computer vision community, with diverse set of ap-
plications in industry and science. This paper introduces a novel graph
based method for face recognition which is rotation invariant. The main
idea of the approach is to model the face image into a graph and use
complex network methodology to extract a feature vector. We present
the novel methodology and the experiments comparing it with four im-
portant and state of art algorithms. The results demonstrated that the
proposed method has more positive results than the previous ones.
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1 Introduction

Face recognition is a field of investigation that has been become popular in the
science and also in the industry. It has gained increasing attention in the commu-
nity due to the successful applications in various areas, specially in the security
industry. Although face recognition is not the most accurate biometric method,
it is the most non invasive technology. This characteristic makes it suitable for
many special secure applications, such as crowd supervision in airports.

In the literature, there are two main approaches to facial feature extraction:
analytic and holistic approaches. The former extracts information based on struc-
tural face regions (e.g. eyes, mouth and nose), which contain important informa-
tion for human identification. The latter considers the whole face image in the
identification process. Holistic approach has some advantages to the analytic ap-
proach, such as: (i) it uses information of texture and shape which contribute to
face recognition and (ii) it does not require pre-segmentation methods. For both
approaches, most of the methods are not rotation invariant. This causes inaccu-
racy in real applications as it is very common for people to incline their head. In
this work, we considered the second approach and propose a novel methodology
based on complex network which are rotation invariant.

Complex network is a relatively recent field of research that combines graph
analysis and statistical physics. Complex network research is close to graph re-
search. In fact, the distinction between them is the approach. On one hand,
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graphs are quite traditional in computer science and mathematics. On the other
hand, complex networks emerge from physics and use a statistical approach to
perform the analysis. Complex networks have been popularized with works of
Watts and Strogatz [1] and Barabasi [2], and have been applied in different
fields of science, such as physics, biology, economy among others. Despite the
successful applications, there are few applications in computer vision and pat-
tern recognition. Some applications, such as texture classification [3] and pixel
clustering [4], can be found in the literature.

This paper introduces a novel method for face recognition which is based on
the complex network theory. Using the holistic approach, a face image is trans-
formed into multi-scale graphs and then, they are analyzed using the complex
network theory. In the analysis, measurements are extracted in order to compose
a feature vector that characterizes the face image. To assess the quality of the
proposed method, we conducted two experiments. The first experiment was per-
formed using face images from a public database, while the second experiment
test the proposed method by classifying rotate face images. For comparisons, we
selected four popular face recognition methods belonging to holistic approach.

The paper is organized as follows. Section 2 and 3 briefly review the com-
plex networks and their measurements, respectively. In Section 4, the proposed
method is described in detail for face recognition applications. The experiments
performed and the results are presented in Section 5. Finally, the conclusions
and improvement of the method are discussed in Section 6.

2 Complex Networks

Complex network is a recent area which joins graph theory and statistical physics
analysis. The complex networks are represented by graphs consisting of a set of
vertices connected by edges. The graph is described by G(V, E), where V =
{v1, v2, ..., vn} is the set of vertices and E = {e1, e2, ..., eM} is the set of edges.

The complex networks were classified according to their properties into three
main models: random networks, small-world and scale-free. Random networks,
proposed by Erdós e Rényi [5], are considered the simplest model. In this model,
the edges are added at random. Watts and Strogatz, who studied random net-
works in applications, concluded that networks have highly connected vertices
with closed paths of length three. Therefore, a complex network that has no
edges added completely at random, called small-world network, was proposed
[1]. Barabási and Albert proposed a scale invariant network namely scale-free
network [2]. In this model, the distribution of connectivity of vertices follows a
scale-free distribution given by P (k) ∼ k−γ , with γ = 3 and n → ∞ [2].

2.1 Measures

Once a system is modeled by a complex network, measures can be extracted
in order to analysis and characterize the network topology. A survey where the
reader can find a good discussion about different measurements is available in
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[6]. In this work, a network is used to model a face image and then, measures are
extracted for the pattern recognition proposal. The sections below describe mea-
sures related to connectivity and hierarchy, both presenting a good performance
in the topology characterization [7,6].

Connectivity. Complex networks present as main characteristic a set of vertices
and edges that forms particular topographic properties. These properties can
be measured by the number of connections among vertices [7]. For weighted
networks, the vertex degree kwi is obtained by kwi =

∑N
j=1 wij , where wij is

the weight of the connection between vertex i and j. Although simple, the vertex
grade performs well in characterizing the networks, as it provides information
about the topology and distribution of the connectivity throughout the network.

Hierarchical Degree. Hierarchy performs an important role in the complex
network approach. The hierarchical level can be defined as a graph dilatation
δ(g), resulting in a sub graph containing the vertices from g and the vertices
directly connected to g. The graph dilation can be iterative. The d-dilatation
process, which means that, a graph g is dilated d times, is shown below:

δd(g) = δ(δ(...(g)...))︸ ︷︷ ︸
d

(1)

The d-ring of a subgraph g is defined as Rd(g) and it is composed by the
vertices and edges according to:

Rd(g) = V (δd(g)) − V (δd−1(g)) (2)

where V (.) is the set of vertices and − is the subtraction operation between sets.
The hierarchical degree kd

i can be defined by the number of edges that connect
the rings Rd(i) and Rd−1(i) to the vertex i. The weighed hierarchical degree kwd

i

is calculated similarly by summing the weights.

3 Face Recognition Using Complex Networks

The proposed method can be split into two stages: network modeling and feature
extraction. To model an image as a network G = (V, E), each pixel is mapped
to a vertex of the set V . Two vertices i and j, related to the pixels pi and pj , are
connected if the distance between the pixels is less than a given radius r. The
connection weight is defined by the pixel intensity difference (see Equation 3).

wij =
{
|I(pi) − I(pj))|, if dist(pi, pj) ≤ r
0, otherwise (3)

where wij is the edge weight, I(x) is the pixel intensity of the pixel x, dist is the
Euclidean distance and r is the radius of neighborhood.

The next step is to transform the graph into a complex network, with a rich
structure and topology. In this work, the authors demonstrated that a simple
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regular graph similar to the one obtained until now can be transformed into
a small world complex network. The transform, defined as ψ(t, G), consists of
the selection of edges according to their weights and a threshold t, which can
vary from 0 ≤ t ≤ max(W ) (see Equation 4). Figure 1 illustrates the transform
ψ(t, G).

wij =
{

wij , if wij ≤ t
0, otherwise (4)

Fig. 1. Transformation ψ in a complex network

The transform ψ(t, G) can be considered as a multi-scale network analysis.
For each value of t the original network is transformed into a t scaled network.
Thus, the t scaled network presents different properties and reveals the structure
and topology related to its scale. For small values of t, the network provides
information of image details, presenting better small sets of pixels or regions
and as t increases, it presents better global information. For high values of t, the
network can provide the image edges. The proposal of our method is to combine
measures from some values of t achieving a multi-scale analysis.

3.1 Feature Vector Extraction

The face characterization is performed by extracting measures from networks
Gt = ψ(t, G) varying the thresholding t. The values are between the interval
t0 ≤ t ≤ tf and incremented by a constant tinc. The metrics discussed in Section
2.1 are calculated for each vertex of Gt. Then, a vector f t is carried out by
calculating the mean, variance and kurtosis from each metric. If n metrics are
used, the feature vector ft for a given scale t is a 3n vector (mean variance and
kurtosis for each metric). Equation 5 shows how to calculate f t, where i is related
to each metric. The final feature vector f for a given face is the concatenation
of the individual feature vectors ft at different scales, according to Equation 6.

mi = [mean(Gt) variance(Gt) kurtosis(Gt)]
f t = [m0 . . . mi . . . mn] (5)
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f = [ft0 f(t0+tinc) . . . ftf
] (6)

4 Face Recognition Experiments

In order to validate the proposed method, a set of experiments was carried out
using a well-known public face database - ORL database [8]. This database has 10
images of 40 subjects, with changes in illumination, facial details and expressions.
Two experiments were conducted: parameter analysis and comparison with other
methods. For both experiments, 10-folds cross-validation was carried out using
K-neighbor nearest [9], with k = 1. A simple statistical classifier was chosen in
order to show evidence of the feature role in pattern recognition.

4.1 Analysis of the Method Parameters

This subsection presents a study of the proposed method parameters and its
consequences on the pattern recognition performance. The parameters consid-
ered are: (i) the radius influence for the transformation which converts the image
to the network, (ii) the thresholds used for the multi-scale transform, (iii) the
measures considered to compose the feature vector. The objective of this analysis
is to present the method behavior and determine the best set of parameters.

The main parameters of the method are the neighbor radius r and the initial
threshold t0. Both parameters are related to the network structure and changes
in them can directly influence the face recognition performance. The param-
eter analysis starts choosing a range for r and t0 where the method achieves
its optimum performance. For this, we evaluated various combinations of these
parameters and the method achieved the best performance for r ≈

√
73 and

t0 ≈ 10. These values can be combined with the other parameters to find the
optimal parameter set of the method.

Figure 2 presents an analysis of all the parameters. In Figure 2(a) the plot
ratio r versus classification rates is shown. Notice that the classification rate
achieves its maximum 98% for r =

√
73. Figure 2(b) shows a plot of t0 versus

classification rates. The maximum classification rate is achieved for t0 = 10. For
low values of t0, such as those less than 5, the network can be highly disturbed
by noise. On the other hand, for high values of t0, the network cannot present the
face details and lose important face information. Figures 2(c) and 2(d) present
respectively tinc versus classification rates and tf versus classification rates. To
compute the plots tf = t0 + x ∗ tinc was used, where x is the number of times of
tinc. This function makes tinc and tf correlated values. In the first analysis, x = 7
(see Figure 2(d)) was used. The plot shows that the best results are achieved
for high values of tinc. It is expected as, for high values of tinc the method can
explore a better range of scales for the multi-scale analysis. In Figure 2(d), the
plot shows the classification rates versus the number of thresholds, given by x
which determines tf . Notice that the curve achieves its maximum when x = 7
and it maintains stabilized. Using these four plots, we can determine the best
chosen parameters, which are r =

√
73, t0 = 10, tinc = 10 and tf = t0 + 7 ∗ tinc.
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Fig. 2. (a) Comparison results for different radius, (b) Threshold t0 X Correct percent,
(c) Threshold tinc X Correct percent and (d) Threshold tf X Correct percent

The feature vector consists of metrics extracted from the transformed net-
works. Three measurements were evaluated: the degree, two level hierarchical
degree and three level hierarchical degree. Table 1 compares performance of the
three combined feature vector (Full) to each individual metric in terms of clas-
sification rate, the false acceptance rate (FAR) and false rejection rate (FRR).
The best individual metric was the degree which achieved a correct percentage of
94.75%. The combined feature vector (full) has the best correct percentage and
the smallest FRR and FAR, which suggests that the individual metric extracts
different information from the networks.

Table 1. Comparison results for measures and the three combined feature vector (Full)

Correct Percentage FAR FRR
Full 98.5% 0.00045 0.015

Degree 94.75% 0.00145 0.053
Hier. D. 2 93.75% 0.00178 0.063
Hier. D. 3 91.5% 0.00233 0.085

4.2 Comparing with Other Methods

The results of the proposed method are compared to the results of the eigenfaces
[10], fisherfaces [11], laplacianfaces [12] and neighborhood preserving embedding
- NPE [13] in Table 2. It is important to notice that various combinations of
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parameters and numbers of descriptors were carried out for all methods. Only
the best result achieved was considered in the comparison. The proposed method
proved to be better than the others in the classification rates and also in the
FAR and FRR.

Table 2. Results of the proposed method and state of the art methods

Correct Percentage FAR FRR
Proposed Method 98.5% 0.0005 0.015

FisherFaces 95.73% 0.0011 0.042
NPE 94.75% 0.0014 0.053

EigenFaces 94.55% 0.0014 0.0545
LaplacianFaces 94.25% 0.0014 0.0575

The performance of most face recognition algorithms are influenced by the
position of the face in the image. Usually, the faces must be carefully aligned to
extract the features relative to a fixed coordinate system. In order to evaluate the
rotation invariance of the proposed method, each image from the ORL database
was rotated in four directions (−60◦,−30◦, 30◦, 60◦), totaling 2000 images.

The proposed method results in the increased database are compared with
other methods in Table 3. In this experiment, the cross-validation strategy with
2-folds was performed to increase the amount of images in the test step (50%
of the images are used to test the model in the 2-folds cross-validation). The
proposed method had more positive results than the others in the classification
rates and also in the FAR and FRR. The method achieved a correct percentage
of 93.65% compared to only 58.45% achieved by the Fisherfaces.

Table 3. Results of the methods in the increased ORL database

Correct Percentage FAR FRR
Proposed Method 93.65% 0.0019 0.064

FisherFaces 58.45% 0.0168 0.415
LaplacianFaces 54.45% 0.0202 0.456

EigenFaces 42.75% 0.0197 0.573
NPE 41.8% 0.0171 0.582

5 Conclusion

This paper presented a novel approach to face recognition based on the complex
network theory. In the proposed method, the face image is mapped onto a regular
graph and then it is transformed into a small-world network. Using the complex
network theory, various features are extracted, providing a feature vector that
can identify faces.
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The method was compared with popular and the state-of-art methods. The
proposed method proved to be better than the others in the classification rates
and also in the FAR and FRR measures. Moreover, according to the nature of
the graphs, the proposed method is rotation invariant, which differs from most
of the holistic face recognition methods. As part of the future work, we plan to
focus on evaluating the proposed method in large scale face image data sets.
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Abstract. Variations in illumination is a well-known affecting factor
of face recognition system performance. Feature extraction is one of the
principal steps on a face recognition framework, where it is possible to al-
leviate the illumination effects on face images. The aim of this work is to
study the illumination invariant properties of a hypercomplex image rep-
resentation. A quaternion description from the image is built using sec-
ond order derivatives decomposition. This representation is transformed
to quaternion frequency domain in order to analyze its illumination in-
variant and discriminative properties, which are compared against the
ones of the complex frequency domain representation obtained by using
first order derivative decomposition. The hypercomplex quaternion rep-
resentation was found to be more discriminative than the complex one,
when comparing on face recognition with images under varying lighting
conditions.

1 Introduction

Illumination invariant features are desirable in face recognition systems due to
the degradation of the performance when face images are affected by lighting
variations. Despite the work of Chen et al. [1], which states that no discrimi-
native illumination invariant exists, different illumination invariant face image
descriptors have been proposed. Their demonstration is based on the construc-
tion of an arbitrary object, which is able to generate the two images at hand
under two different lighting sources, in a way that there is no guarantee that
such images correspond to the same object or to different objects (the real and
the generated one). However, when working on face image domain, faces are
always detected first, which guarantees that the object which invalidates the
discriminative invariant function, will no belong to the specific domain.

Some of the illumination invariant descriptors proposed for face recognition
are based on statistical tools such as Principal Component Analysis and Linear
Discriminant Analysis [2]. Others, transform the image to frequency domain,
where illumination variations are supposed to be mainly in the low frequency
spectrum, and aim at removing this frequency components while emphasizing
high frequencies using them for comparison in that domain [3–5]. Another group
of methods obtains features derived from face surface, like borders and texture
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descriptors [6, 7], taking into account morphological characteristics of the face.
Among these groups of methods, the ones which work on frequency domain have
shown better performance when dealing with illumination problems [8].

An image representation in the frequency domain can be described using
complex components. In [9], an initial complex description g(x, y) is obtained
using as components the gradient of the image I in x and y directions, i.e.:

g(x, y) = �xI(x, y) + �yI(x, y)j (1)

The aim of the authors is to transform the initial representation in Eq.1 to fre-
quency domain applying Discrete Fourier Transform (DFT) and, working from
cartesian and polar coordinates representation, to explore the illumination invari-
ant properties of these four descriptions individually. The real part of cartesian
coordinates yielded the best performance among them.

Hypercomplex numbers algebra has been recently used to solve pattern recog-
nition problems. An attempt to include the quaternion representation on face
recognition approaches is proposed in [10]. The authors used a two-level wavelet
decomposition to obtain the image description and designed a quaternion cor-
relation filter. They achieved very good results on CMU-PIE Database [11], but
there is not any justification about quaternion usage and it seems a little empiri-
cal. Precisely, the motivation of our work is to understand and explain the reason
for the inclusion of these hypercomplex numbers on face recognition frameworks.

Since it is possible to encapsulate until four bands of information in the quater-
nion representation, in this paper we proposed the construction of a quaternion
representation using second order derivatives of the image decomposition. The
proposed image representation is based on the idea in [9] but trying to obtain a
more illumination invariant representation, presuming that with a wider decom-
position of the image information, the lighting effects might be less perceptible.
The obtained image descriptor is transformed to quaternion frequency domain
and its representation in both cartesian and polar coordinates are used to com-
pare their illumination invariant and discriminative properties among them and
against those presented in [9]. Results on face image verification and identifica-
tion experiments on XM2VTS and Extended Yale B databases, show that the
quaternion outperforms the complex representation.

The paper is organized as follows. In Section 2, the quaternion theory and
its uses in image domain is reviewed. In Section 3, face image decomposition
using second order derivatives to construct the quaternion frequency domain
representation is presented. The experimental results are drawn in Section 4.
Finally, Section 5 gives the conclusions of the paper.

2 Quaternion Theory

Quaternion algebra was originally introduced by Hamilton in 1843 [12]. A quater-
nion is composed by a real part and an imaginary part consisting of three or-
thogonal components.
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The cartesian representation of quaternion numbers would be as follows.

q = a + bi + cj + dk (2)

where a, b, c, d are real and i, j, k are imaginary operators.
Any quaternion may be represented in the classic polar form [13]:

q = |q|eμθ (3)

where θ is a real angle, as the generalization of the complex exponential eiθ =
cosθ + isinθ by replacing i by any unit pure quaternion μ.

In [13] it is shown that every quaternion admits the following polar form:

q = AeBj (4)

where A = a+bi and B = c+di are complex, and is remarked its analogy to the
Cayley-Dickson form of a quaternion q = (w +xi)+ (y + zi)j = w +xi+ yj+ zk,
also based on two complex numbers.

2.1 Image Applications

Quaternions have been used in color image processing, aiming at taking into
account the true nature of vector signals [14]. According to [15], the opportunity
to encode the image color information using algebraical representations provides
the theoretical tools of the algebra to work with less dimensional data.

In [15], quaternion space is used to define frequency filters in color images.
The author also reported the use of the frequency information of the quaternion
spectrum on color image watermarking and to compute color image correlation.
Color image edge detection was developed applying quaternion algebra in [16].

On the other hand, Bayro in [17] shows the improvement of two-level im-
ages when representation and processing are carried out in geometric algebra.
The author states that quaternions are useful to reveal the properties of an n-
dimensional representation of 2D signals and that they allow to disentangle the
symmetries of 2D signals. A quaternion Gabor filter is designed based on this
idea. The important conclusion that quaternions constitute a wide open area
for the design and implementation of filters and estimators for the analysis of
signals in the quaternion frequency domain, is presented.

3 Image Quaternion Representation in the Frequency
Domain

To obtain image quaternion representation in the frequency domain, the first
step is to decompose the image in four bands of information in order to use
them for constructing the initial quaternion description.

We will use the second order derivatives of the face image to form the initial
quaternion number, in the following way:

q(x, y) = �2
xxI(x, y) + �2

xyI(x, y)i + �2
yxI(x, y)j + �2

yyI(x, y)k (5)
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where �2
xx, �2

xy, �2
yx and �2

yy are second order derivatives of the image. In
Figure 1 a) this decomposition from a face image is depicted. This represen-
tation allows us to encode more information about image in order to find an
image description in the frequency domain with better illumination invariant
attributes.

Once we have the initial quaternion description, Quaternion Discrete Fourier
Transform (QDFT) [14], is used to transform it to the frequency domain. The
QDFT is defined as:

Q(p, s) =
M−1∑
m=0

N−1∑
n=0

e−μ2π((pm/M)+(sn/M))q(m, n) (6)

where μ is any unit pure quaternion and q is the initial quaternion number
obtained in Eq. (5).

After obtaining a quaternion frequency domain representation of a face image
using Eq. (6), it is possible to express it in polar coordinates by Eq. (4). We have
then 8 descriptions of the image in order to analyze their illumination invariant
properties and to determine the one less affected by illumination variations.

In Figure 1 (b) both cartesian and polar quaternion frequency domain com-
ponents are shown. They are obtained using an initial quaternion description
with the second order derivatives of the face image shown in (a).

(a)

(b)

Fig. 1. Representation of (a) a face image with its second order derivatives, and (b)
the quaternion frequency domain components obtained using them

4 Experimental Evaluation

Each quaternion frequency component is analyzed in order to determine the
most illumination invariant one when used as face features and is compared with
the ones obtained using the complex representation in [9]. The most invariant
components that were selected, are used as face image descriptor for verification
and identification experiments. Since we are less concerned with the classification
step and more with the feature extraction, a simple normalized correlation is used
as a similarity measure in all cases with a nearest neighbourhood classifier in
the case of identification.

To analyze the different quaternion components the experimental setup de-
scribed in [9] is used. The intra-class variations are analyzed comparing images
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in XM2VTS [18] database. Images corresponding to the same subject with dif-
ferent illumination conditions are compared among them in two experiments: in
the first one (1), frontal illuminated images are compared, while in the second
one (2), non frontal illuminated images are used. Table 1 shows the mean cor-
relations obtained when comparing face images using the different components
for both, the quaternion and the complex representations.

Table 1. Mean correlations obtained with quaternion and complex components

Complex [9] Quaternion

Real Im Mg Ph Real Im1 Im2 Im3 Polar1 Polar2 Polar3 Polar4

1) 0.83 0.57 0.69 0.12 0.50 0.44 0.46 0.58 0.85 0.19 0.25 0.25
2) 0.90 0.75 0.72 0.13 0.56 0.50 0.51 0.61 0.86 0.29 0.34 0.40

It can be appreciated that Polar1 exhibits the best illumination invariant
properties among quaternion components, although when comparing with the
complex representation, the Real component shows a little better performance.
However, this is not enough for a face recognition task, it is necessary to eval-
uate the discriminative properties of both descriptions in face verification and
identification experiments.

4.1 Verification Experiment

The XM2VTS database with the Lausanne protocol [18], specifically the Config-
uration I, is used to verify the performance of the proposed quaternion represen-
tation in face verification setup. The XM2VTS database contains 2360 images
of 295 subjects, captured in 4 different sessions. The database is divided into a
Training, an evaluation (Eval) and a Test sets, each of them composed of face
images under controlled illumination conditions used as clients and others as
imposters. There is an additional set (Dark) which contains non frontal illumi-
nated images from the same subjects which are also used as client and impostor
comparisons.

The Equal Error Rate (EER) is the point at which the False Rejection Rate
(FRR) is equal to the False Acceptance Rate (FAR). The value obtained by the
classification method at this point in the Eval set is used as a threshold for the
decision of acceptance or rejection in the Test and Dark sets. On the other hand,
the Total Error Rate (TER) is the sum of FRR and FAR and is used to measure
the performance of the verification system.

The TER obtained in each set of the database using the proposed quaternion
and the complex representations is shown in Table 2. The Table also shows the
results when the original face images are compared.

It can be concluded from the table, that quaternion discriminative proper-
ties are very similar to the ones of original images when they are not affected by
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Table 2. Obtained Results (TER) in Verification Experiment

Eval Test Dark

Original 0.2324 0.1982 0.9022
Complex 1.0034 1.0007 1.0470

Quaternion 0.3367 0.2924 0.5148

illumination variations (Eval and Test sets). However, the Polar1 component of
quaternion is the most discriminative feature when they are affected by illumina-
tion variations (Dark set). As can be appreciated, although the Real component
of complex representation seemed to be more illumination invariant, the quater-
nion description is significantly more discriminative for face verification.

4.2 Identification Experiment

The Extended Yale B [19] database was used for face identification experiments.
It contains images of 28 subjects seen under 64 different illumination conditions,
in which the angle between the light source direction and the camera axis was
changed each time, in a way that the larger the angle, the more unfavorable
the lighting conditions are. Images with frontal angles were used as gallery and
the others, were divided into 5 subsets according to the angle in the following
way: S1 contains 225 images with angles between 0 - 120, S2 is composed by 456
images with 130 - 250 angles, S3 have 525 images with angles between 260 - 500,
456 images with angles between 510 - 700 are in S4 and S5 contains 562 images
with angles between 710 - 1300.

Table 3. Recognition Rates (%) obtained in Identification Experiment

S1 S2 S3 S4 S5

Original 100.0 96.93 46.10 11.40 3.91
Complex 100.0 95.39 37.14 11.40 3.02

Quaternion 100.0 100.0 93.14 38.60 6.05

The recognition rates obtained using the three different representations in
each subset are presented in Table 3. Also in Figure 2 the cumulative match
score vs. rank curve illustrates the performance of the three representations in
S5, the most difficult one.

It can be appreciated from the Table 3 and Figure 2 that the quaternion
representation outperforms both, the original and the complex representations in
all subsets of the database, being more significant in those cases where the images
have greater angles of variations in illumination. This also confirms the more
discriminative properties of Polar1 component of quaternion representation.
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Fig. 2. S5 Cumulative Score vs. Rank Curve

5 Conclusions and Future Works

In this work, a quaternion representation starting from second order derivatives
of face images is proposed. This representation is based on quaternion algebra
properties, which encodes image information in a vectorial way. Using this rep-
resentation eight quaternion components were obtained. Among them, Polar1
component proved to be the most illumination invariant one.

Although Polar1 component probed to be a feature with enough illumination
invariant properties, these were a bit lower than the Real component of complex
representation. Discriminative properties of both descriptions were analyzed on
face recognition tasks. Results on face images verification and identification ex-
periments confirmed that this quaternion representation is better than original
images and complex representations, when dealing with images under varying
lighting conditions. This shows the importance of the combination of illumina-
tion invariant and discriminative properties on face recognition frameworks.

Analyzing our work, it is possible to consider the quaternion representation
as a wide area of research to develop new approaches in quaternion frequency
domain. Taking into account that in complex frequency domain many face recog-
nition methods with good performances have been developed, it can be presumed
that turning to a higher dimension space as quaternions, the performance will
increase. This higher dimension representation does not imply a dimensionality
problem due to its algebraical properties.

As future work, it is necessary to evaluate the proposed quaternion represen-
tation with a more sophisticated similarity measure, instead of using the simple
normalized correlation, which should improve the obtained results.
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Abstract. The pattern of the human iris contains rich information
which provides one of the most accurate methods for recognition of in-
dividuals. Identification through iris recognition is achieved by matching
a biometric template generated from the texture of the iris against an
existing database of templates. This relies on the assumption that the
probability of two different iris generating similar templates is very low.
This assumption opens a question: how can one be sure that two iris
templates are similar because they were generated from the same iris
and not because of some other random factor?

In this paper we introduce a novel technique for iris matching based
on the a contrario framework, where two iris templates are decided to
belong to the same iris according to the unlikelyness of the similarity
between them. This method provides an intuitive detection thresholding
technique, based on the probability of occurence of the distance between
two templates. We perform tests on different iris databases captured in
heterogeneous environments and we show that the proposed identifica-
tion method is more robust than the standard method based on the
Hamming distance.

1 Introduction

The human iris is regarded as one of the richest biometric features. It is an
external and visible part of the eye and contains enough information for the
identification of a person with very low error rates. This fact allows to build an
automatic system for identification of individuals via iris recognition.

The fundamentals of iris recognition were proposed by Daugman [4]. Starting
from a picture of the human eye with enough quality, the picture is segmented to
locate the iris and isolate it from the rest of the image. Once the iris is isolated, a
biometric template is generated from its texture and the recognition takes place
by comparing this template against a set of templates previously stored in a
database.

The identification itself is done by global thresholding on the distance be-
tween two iris templates, for an appropriate distance function (usually the Ham-
ming distance). Both templates are assumed to be generated by the same iris
if and only if the distance between them is lower than a given threshold. This
distance-based identification step provides good results, but three issues remain
open:
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1. Which value for the decision threshold provides an acceptable level of iden-
tification errors while not producing many rejections?

2. Once this threshold is defined, how can we be certain that two templates
that are considered similar were obtained from the same iris and not by
chance (for example, if both templates were generated from two low-quality
images of different iris)?

3. Does a change in the database affect the identification results? For example,
after a new iris template is added to the database or if the capture conditions
change, is the same threshold still suitable?

One of the central problems in any automated recognition system is to have
a tool to make a sound judgement about the accuracy of its output, however,
the vast majority of related works concentrate on other parts of the recognition
process. For example, for iris recognition, most works focus on segmentation
or template generation algorithms, while template matching is often overlooked
and is done by simple template distance thresholding [2].

In this work we analyse and improve iris template matching. For this, we
propose a novel method based on an a contrario [3] detection of meaningful
matches between templates (sections 2 and 3) and we analyse its performance
(section 4).

2 The A Contrario Framework

The a contrario framework [3] provides a way to address the aforementioned
issues. The framework is based on the Helmholtz principle that, in this case,
states that a match between two iris templates is meaningful when it is not
likely to occur in a context where noise overwhelms the information. In other
words, we detect by modeling what we do not want to detect.

Formally, assume we have one query iris template Q and an iris template
database T = {Ti : 1 ≤ i ≤ N} composed of N templates. Given an appropriate
distance function, the distances between Q and each Ti, d(Q, Ti) can be seen as
observations of a random variable D that follows some unknown random process.

Under these assumptions, we can perform an hypothesis test for each pair
(Q, Ti), where we have two hypothesis:

– H0 (null hypothesis): d(Q, Ti) is observed by chance, i.e. because the database
is large.

– H1 (alternate hypothesis): d(Q, Ti) is observed because of some causality, i.e.
because both templates were generated from the same iris.

On one hand, P (D | H0) (the probability distribution of the distances between
iris templates) can be modeled with relative ease, even if the model is not
perfectly realistic. On the other hand, it is not possible to model P (D | H1)
(the probability distribution of the distance when two templates belong to the
same iris) because we assume no other information than the observed templates.
Hence, the full hypothesis test cannot be done: we cannot control false negatives.
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However, controlling false positives, or false alarms, under H0 is enough to de-
cide whether a given iris template matches another template in the database.
In other words, two templates are considered as belonging to the same iris a
contrario if the distance between them has a very low probability of occurring
by chance.

We formally state the a contrario hypothesis as:

H0: d(Q, Ti) are observations of the random variable D that follows some
stochastic process.

3 Iris Template Matching

Now, given a pair of iris templates (Q, Ti) and the distance between them δi =
d(Q, Ti) we want to know what is the probability of occurence of their distance
under H0, i. e. the probability of false alarms pi = P (D ≤ δi | H0). If it is small
enough, we can claim that Q and Ti are not similar just by chance [3].

Since we do not make any assumptions on the distribution of D, the proba-
bility pi cannot be calculated directly. However, pi can be estimated empirically
over the database as the cumulative histogram of the distances between Q and
each Tj, 1 ≤ j ≤ N .

The expected number of false alarms (NFA) between Q and Ti under H0 on
a database of size N is defined as:

NFA(Q, Ti) = N · P (D ≤ δi | H0) (1)

If NFA(Q, Ti) ≤ ε for a given ε, then the pair (Q, Ti) is said to be an ε-meaningful
match.

We claim that Q and Ti are not similar just by chance if the match (Q, Ti) is ε-
meaningful, i. e. they must be generated by the same iris. This provides a simple
rule to decide whether a single pair of templates (Q, Ti) belongs to the same
individual or not. Moreover, the expected number of ε-meaningful matches in a
set of random matches can be proven to be smaller than ε [3]. Thus the threshold
ε has a clear and intuitive meaning: it represents a bound on expected number
of false matches (or false alarms) we’re willing to accept when a template is
compared against another template stored in a database if those two templates
are considered to be generated by the same iris.

Basing the decision on the NFA we obtain a robust method, since the thresh-
old ε is taken on the probability of false alarms instead of the distances them-
selves. Also, the same threshold ε is suitable for different database configurations
because the probabilities are computed with respect to the entire database.

This provides us with a straightforward way of comparing the query template
Q against a template Ti in the database: if NFA(Q, Ti) ≤ ε, that is, if (Q, Ti)
is an ε-meaningful match, it is assumed that Q and Ti are not similar just by
chance, and it is assumed that they were generated by the same iris.
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3.1 Partitioning the Iris Template

Estimating P (D ≤ δi | H0) using the cumulative histogram of the distancies
between Q and every Tj poses a problem: since any bin of the histogram is
at least 1/N (one occurence over the database), this necessarily means that
P (D ≤ δi|H0) ≥ 1/N . Then:

NFA(Q, Ti) = N · P (D ≤ δi | H0) ≥ N · 1
N

= 1 (2)

That is, we would never be able to achieve a NFA lower than 1. Since having in
average more than one false alarm for every query is not desirable, this is not
an acceptable bound.

Following [9], we solve this problem by partitioning the iris template into C
independent and non-overlapping parts, not necessarily of the same size. We
refer to the k-th partition of the template T using the notation T (k), where
1 ≤ k ≤ C.

Under these assumptions, given the query template Q and a template Ti in
the database, we redefine

δi = max
1≤k≤C

δ
(k)
i , where δ

(k)
i = d(Q(k), T

(k)
i ) (3)

and d(·, ·) is a properly chosen distance.
As before, we formulate the a contrario hypothesis:

H0: δi and δ
(k)
i are observations of identically distributed variables D

and D(k), respectively, that follow some stochastic process.

Then, the probability of false alarms is:

P (D ≤ δi|H0) = P

(
max

1≤k≤C
D(k) ≤ δi

∣∣∣ H0

)
=

C∏
k=1

P
(
D(k) ≤ δi

∣∣ H0

) (4)

and the NFA is:

NFA(Q, Ti) = N ·
C∏

k=1

P
(
D(k) ≤ δi

∣∣ H0

)
(5)

Now, since we have C different histograms to compute the NFA, it turns out
that NFA(Q, Ti) ≥ N ·

( 1
N

)C = 1
NC−1 That is, we can achieve lower values for

the NFA by partitioning the iris template into C > 1 independent parts.
It is important to note that, while most bits in the iris template present local

spatial correlation [6], it is expected that this correlation will only be observable
in one of the parts and it will not spread through all the parts, thus we can still
claim that all the parts are independent between themselves.
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3.2 Other Considerations

In addition to partitioning the template, two other issues need to be addressed
when matching the templates: the noise mask and rotation invariance.

The noise mask marks, for each template, which bits should not be matched.
This can happen for example when those bits were calculated in regions obscured
by eyelids or eyelayes, or affected by external illumination. When performing the
a contrario matching, the masks will also need to be partitioned the same way
as the templates. Since the distances between the parts are usually normalized
by the number of available bits, equation 5 still holds.

Regarding rotation invariance, the most common solution is shifting the iris
template on its x axis in both directions and keeping the lowest distance. The
same method is used to calculate the distance between parts: one of the templates
is rotated, partitioned, and the minimum distance is selected for each part.

4 Performance Evaluation

We tested the proposed matching method using the publicly available Bath
iris database [1] composed of 1000 images of 25 persons, with 40 iris images per
person (20 for each eye). Iris templates are generated using Daugman’s algorithm
introduced in [4]: first, the iris images are segmented using an algorithm based
on flexible contours [8]. Then, the iris texture is isolated from the image and
normalized using the ruber sheet model. The texture is then filtered using a
set of 2D Gabor filters, and resulting texture is then quantized to create a 2D
binary iris template of 256×8 bits. Additionally, a noise mask is also associated
to the template. This mask marks the bits of the template that were influenced
by noise (eyelashes, eyelids and light reflections) and should not be considered
on the matching stage.

As mentioned in section 3.1, the iris template must be partitioned to achieve a
lower number of false alarms. The best results were achieved when the template
is partitioned in four equal parts in the angular direction, exploiting the fact
that the iris texture presents more variation in the angular direction than on the
radial direction [5]. Thus, an iris template T is partitioned in four parts T (k),
k = 1 . . . 4.

Recognition is performed as follows: given a query template Q and an iris
template database T = {Ti : 1 ≤ i ≤ N}, the distance δ

(k)
i between the k-th

partition of Q and the k-th partition of Ti is calculated using the normalized
Hamming distance. As mentioned before, one of the templates is shifted in the
radial direction to compensate for rotations in the eye, and the minimum distance
for each independent partition is used.

Then, a histogram of the values of δ
(k)
i is computed for each partition k, giving

a total of four different histograms, as seen in Fig. 1. Once the histograms are
obtained, the NFA betwen Q and each Ti is computed using Eq. 5.
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(a) (b)

Fig. 1. Partioning the templates. (a) The iris template is splitted into four partitions.
(b) Four histograms obtained while comparing each partition of a given iris template
against an entire database of partitioned templates (one for each partition).

4.1 Results

Following this approach we calculate the NFA between every pair of templates
stored in the database using a leave-one-out cross-validation approach.We calcu-
late the False Match Rate (FMR) for different values of ε and the corresponding
False Nonmatch Rate (FNMR), where a pair of templates (Q, Ti) is considered
a match if NFA(Q, Ti) ≤ ε.

The Table 1 shows the FMR and FNMR for different values of ε. It can be
observed that the FMR is bounded by ε. This was expected for the reasons
mentioned in section 3, and it implies that by setting the value of ε beforehand
we can effectively control the number of false matches of the system.

Table 1. FMR and FNMR for different values of ε

ε FMR FNMR

10−4 0 9.07 × 10−2

10−3 1.34 × 10−6 2.34 × 10−2

10−2 5.49 × 10−5 5.55 × 10−3

10−1 2.24 × 10−3 1.49 × 10−3

Additionally, the performance of the system is analysed and compared in
Table 2 by using the Equal Error Rate (EER) and the decidability d′, which is a
dimentionless measure of the distance between the distributions of the inter-class
and intra-class comparisons. It is also compared against recent results obtained
by Hollingsworth et al [7].
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Table 2. Performance results using different methods

Method EER d′

Hamming distance 9.7 × 10−3 3.49
Hollingsworth et al [7] 6.99 × 10−3 6.06
NFA matching 1.5 × 10−3 7.72

It can be observed that the EER has decreased and at the same time the
decidability has been more than doubled with respect to using the Hamming
distance alone. This means that the separation of the distribution between intra-
class and inter-class comparisons is greatly increased using the NFA rather than
the Hamming distance, as can be seen on Fig. 2.

It should be noted that the a contrario method only allows us to set a limit
on the number of false matches, and it has no control over the false nonmatches.
However, the results indicate that this method has considerably better perfor-
mance than using the Hamming distance alone.

(a) (b)

Fig. 2. Comparison of inter-class and intra-class distances (a) using the Hamming
distance and (b) using the NFA (the NFA is plotted in logarithmic scale for visualization
purposes). A greater separation between classes can be seen using the NFA.

5 Conclusions

The novel contribution in this work is to apply the a contrario detection frame-
work for template based iris recognition. The a contrario matching has the im-
portant advantage of not requiring to compute by hand an “optimum” threshold.
It is possible to directly define the acceptable number of false matches for the
system with no a priori information on the database.
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The proposed method proved to give results consistent with the theory pre-
sented in section 2. The number of false matches observed in the tests were
consistent with the expected number of false alarms defined beforehand with
the parameter ε.

Since the a contrario method does not make assumptions about the method
used for encoding the iris texture or for measuring the distance between tem-
plates, it can be adapted for different scenarios. This is an important feature,
since most works deal with increasing the separation between the classes by
improving the segmentation or codification algorithms. We show that it is pos-
sible to achieve this just by changing the matching algorithm, which is often
overlooked in the bibliography.

Also, since the NFA is calculated against all the templates in the database,
it is a robust measure that is not affected by changes in the capture conditions.
For example, if the database is composed by templates generated from blurry or
low quality images, then a query template generated in similar conditions will
be more likely to be rejected by our method.

References

1. Smart sensors iris database, http://www.irisbase.com/
2. Bowyer, K., Hollingsworth, H., Flynn, P.: Image understanding for iris biometrics:

A survey. Computer Vision and Image Understanding 110, 281–307 (2007)
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Abstract. In this paper a new nonparametric functional method is in-
troduced for predicting a scalar random variable Y from a functional
random variable X. The resulting prediction has the form of a weighted
average of the training data set, where the weights are determined by
the conditional probability density of X given Y , which is assumed to be
Gaussian. In this way such a conditional probability density is incorpo-
rated as a key information into the estimator. Contrary to some previous
approaches, no assumption about the dimensionality of E(X|Y = y) is
required. The new proposal is computationally simple and easy to imple-
ment. Its performance is shown through its application to both simulated
and real data.

1 Introduction

The fast development of instrumental analysis equipment and modern measure-
ment devices provides huge amounts of data as high-resolution digitized func-
tions. As a consequence, Functional Data Analysis (FDA) has become a growing
research field. In the FDA setting, each individual is treated as a single entity de-
scribed by a continuous real-valued function rather than by a finite-dimensional
vector: functional data (FD) are then supposed to have values in an infinite
dimensional space, often particularized as a Hilbert space.

An extensive review of the methods developed for FD can be found in the
monograph of Ramsay and Silverman [1]. In the case of functional regression,
where one intends to estimate a random scalar variable Y from a functional
variable X taking values in a functional space X , earlier works were focused on
linear methods such as the functional linear model with scalar response [2–8] or
the functional Partial Least Squares [9]. More recently, the problem has also been
addressed nonparametrically with smoothing kernel estimates [10], multilayer
perceptrons [11], and support vector regression [12, 13]. Another point of view
between these two approaches is to use a semi-parametric approach, such as the
SIR (Sliced Inverse Regression [14]) that has been extended to functional data
(FIR) in [15–17]. In this approach, the functional regression problem is addressed
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through the opposite regression problem i.e., the estimation of E(X |Y = y), by
assuming that this quantity belongs to a finite dimensional subspace of X .

In this paper, a new functional regression method to estimate γ(X) = E(Y |X)
is introduced that also relies on regarding the inverse regression model X =
F (Y ) + e. Its main practical motivation arises from calibration problems in
Chemometrics, specifically in spectroscopy, where some chemical variable Y
(e.g., concentration) needs to be predicted from a digitized function X (e.g.,
an spectrum). In this setting, said ‘’inverse” model represents the physical data
generation process in which the output spectrum X is determined by the input
chemical concentration Y , and e is a functional random perturbation mainly due
to the measurement procedure. The specific form of the conditional density of X
given Y , which is assumed to be Gaussian, is incorporated as a key information
into the estimator. This regression estimate, will be refereed to as functional
Density-Based Nonparametric Regression (DBNR). Unlike the FIR approach,
few assumptions are required: in particular, γ does not need to be a function of
a finite number of projections nor X has to follow an elliptical distribution (or
any other given distribution). DBNR is computationally very easy to use.

This paper is organized as follows. Section 2 presents the functional Density-
Based Nonparametric Regression method. Sections 3 and 4 illustrate the use of
this approach in simulated and real data. Conclusions are given in Section 5.

2 Functional Density-Based Nonparametric Regression

2.1 Definition of DBNR in a General Setting

Let (X, Y ) be a pair of random variables taking values in X ×R where (X , 〈., .〉)
is a Hilbert space. Suppose also that n i.i.d. realizations of (X, Y ) are given,
denoted by (xi, yi)i=1,...,n. The goal is to build, from (xi, yi)i, a way to predict
a new value for Y from a given (observed) value of X . This problem is usually
addressed by the estimation of the regression function γ(x) = E(Y |X = x).

The functional density-based nonparametric regression implicitly supposes
that the inverse model makes sense; this inverse model is:

X = F (Y ) + ε (1)

where ε is a random process (perturbation or noise) with zero mean, independent
of Y , and y → F (y) is a function from R into X . As was stated in Section 1,
this is a common background for calibration problems, amongs others.

Additionally, the following assumptions are made: first, it exists a probability
measure P0 on X (not depending on y) such that the conditional probability mea-
sure of X given Y = y, say P (·�y), has a density f (·�y) with respect to P0:

P (A�y) =
∫

A

f (x�y)P0 (dx)

for any measurable set A in X . Furthermore, it is assumed that Y is a continuous
random variable, i.e., that its distribution has a density fY (y) (with respect to
the Lebesgue measure on R).
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Under these assumptions, the regression function is:

γ (x) =

∫
R

f (x�y) fY (y) ydy

fX (x)
, where fX (x) =

∫
R

f (x�y) fY (y)dy.

Hence, given an estimate f̂ (x�y) of f (x�y), the following estimate of γ (x) can
be constructed from the previous equation:

γ̂ (x) =
∑n

i=1 f̂ (x�yi) yi

f̂X (x)
, where f̂X (x) =

n∑
i=1

f̂ (x�yi) . (2)

2.2 Specification in the Gaussian Case

The general estimation scheme given in Equation (2) will be here specified for
the case in which P (·�y) is a Gaussian measure on X = L2[0, 1] for each y ∈ R.
P (·�y) is then supposed to have a mean function μ (·�y) ∈ X (which is then
equal to F (y)(·) according to Equation (1)) and a covariance operator r (not
depending on y), which is a Hilbert-Schmidt operator on the space X . Then,
there exists an eigenvalue decomposition of r, (ϕj , λj)j≥1 such that (λj)j is
a decreasing series of positive real numbers, (ϕj)j take values in X and r =∑

j λjϕj ⊗ ϕj where ϕj ⊗ ϕj(h) = 〈ϕj , h〉ϕj for any h ∈ X .
Denote by P0 the Gaussian measure on X with zero mean and covariance

operator r. Assume the following usual regularity condition holds: for each y ∈ R,
∞∑

j=1

μ2
j (y)
λj

< ∞, with μj (y) = 〈μ (·�y) , ϕj〉 .

Then, P (·�y) and P0 are equivalent Gaussian measures, and the density f (·�y)
has the explicit form:

f (x�y) = exp

⎧⎨⎩
∞∑

j=1

μj (y)
λj

(
xj −

μj (y)
2

)⎫⎬⎭ ,

where xj = 〈x, ϕj〉 for all j ≥ 1. This leads to the following estimation scheme
for f (x�y):
1. Obtain an estimate μ̂ (·�y) of t → μ (t�y) for all y ∈ R. This may be carried

out trough any standard nonparametric regression from R to R, based on
the learning set (yi, xi (t))i=1,...,n; e.g., a smoothing kernel method.

2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j

of the covariance r on the basis of the empirical covariance of the residuals
xi − μ̂ (·�yi), i = 1,...,n. Only the first p eigenvalues and eigenfunctions are
estimated, where p = p(n) is a given integer, smaller than n.

3. Estimate f (x�y) by

f̂ (x�y) = exp

⎧⎨⎩
p∑

j=1

μ̂j (y)

λ̂j

(
x̂j −

μ̂j (y)
2

)⎫⎬⎭ (3)

where μ̂j (y) = 〈μ̂ (·�y) , ϕ̂j〉 and x̂j = 〈x, ϕ̂j〉.
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Finally, substituting (3) into (2) leads to an estimate γ̂ (x) of γ (x). Under
some technical assumptions the consistency of the DBNR method can be proved:
limn→∞ γ̂(x) =P γ(x).

3 A Simulation Study

The feasibility and the performance of the introduced nonparametric functional
regression method are first explored through a simulation study. For comparison,
results obtained by the functional Nadaraya-Watson kernel (NWK) estimator
[10] are also shown.

3.1 Data Generation

The data were simulated in the following way: values for the real random variable,
Y , were drawn from a uniform distribution in the interval [0, 10]. Then, X was
generated by 4 different models or settings:

M1 X = Y e1 + 2Y e2 + 3Y e5 + 4Y e10 + ε
M2 X = (exp(Y )/ exp(10))e1 + (Y 2/100)e2 + (Y 3/1000)e5 + log(Y + 1)e10 + ε
M3 X = sin(Y )e1 + log(Y + 1)e5 + ε
M4 X = α exp

(
Y
10e1

)
+ ε

where (ei)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e., e2k−1 =√
2 cos(2πkt), and e2k =

√
2 sin(2πkt)), and ε a Gaussian process independent of

Y with zero mean and covariance operator Γe =
∑

j≥1
1
j ej ⊗ ej . More precisely,

ε was simulated by using a truncation of Γe, Γe(s, t) �
∑q

j=1
1
j ej(t)ej(s) with

q = 500.
A sample of size nL = 300 was simulated for training and a sample of size

nT = 200 for testing. Figure 1 gives examples of X obtained for model M3 for
three different values of y and of the underlying (non noisy) function, F (y)(·). In
this example, the simulated data have a high level of noise so that the regression
estimation is a rather hard statistical task.

3.2 Simulation Results

To apply the DBNR method, the discretized functions X were approximated by
a continuous function using a functional basis expansion. Specifically, the data
were approximated using 128 B-spline basis functions of order 4, as it is shown
in Figure 1. The conditional mean μ(·/y) was estimated by a kernel smoothing
in which the bandwidth parameter h was selected by 10-fold cross-validation
minimizing the mean squared error (MSE) criterion. A similar procedure was
used to select the parameter p (number of eigenvalues and eigenfunctions used
in (3)).

Finally, DBNR performance was compared with those obtained by the func-
tional NWK estimate with two kinds of metrics for the kernel: the usual L2-norm
and the PCA based semi-metric norm (see [10] for further details about these
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Fig. 1. True function, F (y)(·) (smooth continuous line), simulated data, X, (gray rough
line) and approximation of X using B-splines (rough black line) in M3 for three dif-
ferent values of y

Table 1. RMSE for all the methods and all generating models

Model DBNR NWK (PCA) NWK (L2)

M1 0.08 0.10 0.09
M2 1.47 1.60 1.77
M3 1.79 1.79 2.00
M4 0.94 2.16 1.91

methods). The resulting root mean squared errors (RMSE) are presented in Ta-
ble 1. The results show that DBNR is a good alternative to common NWK
methods. Indeed, DBNR outperforms NWK methods in all the the cases con-
sidered in this simulation study that includes both linear (M1) and nonlinear
(M2− M4) models.

Figures 2 and 3 show how the method performs for each step of the estimation
scheme (described in Section 2.2) for the model M3. In particular, Figure 2 gives
the result of the first step by displaying the true value and the estimate of F (y)(·)
for various values of y (top) and the true value and the estimate of F (·)(t) for
various values of t (bottom). The results are very satisfactory given the fact that
the data have a high level of noise (which is stressed on in the bottom of the
figure): a minor estimation problem appears at the boundaries of F (·)(t), which
is a known drawback of the kernel smoothing method. Also, those estimates are
smoother than the estimates of F (y)(·): this can be explained by the fact that
the kernel estimator is used regarding y and not regarding t, but this aspect can
be improved in the future.

Figure 3 shows the results of the steps 2-3 of the estimation scheme: the
estimated eigendecomposition of r is compared to the true one and finally, the
predicted value for Y are compared to the true ones, both on training and test
sets. The estimation of the eigendecomposition is, once again very satisfactory
given the high level of noise, and the comparison between training and test sets
show that the method does not overfit the data.
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Fig. 2. True value (discontinuous lines) and estimate (continuous lines) of F (y)(·) for
various values of y (top) and true value and estimate of F (·)(t) for various values of t
(bottom) in model M3. The dots (bottom) are the simulated data, X(t).
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Fig. 3. Model M3: (a-c)True (dashed line) and estimated eigenfunctions (continuous
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training and test sets.
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4 A Study of Tecator Dataset

DBNR was also tested on a benchmark data set for functional data: the Teca-
tor dataset1. It consists of spectrometric data from the food industry. Each of
the 215 observations is the near infrared absorbance spectrum of a meat sam-
ple recorded on a Tecator Infratec Food and Feed Analyzer. Each spectrum is
sampled at 100 wavelengths uniformly spaced in the range 850–1050 nm. The
composition of each meat sample is determined by analytic chemistry, so per-
centages of moisture, fat and protein are associated in this way to each spec-
trum. This problem is more challenging than the one presented in Section 3
where the data were generated to fulfill exactly the conditions of the DBNR
model.

The whole data set was randomly split 100 times into training and test sets of
almost the same size. The splits were randomly built such that also the training
and test set were equally represented over the whole range of fat content.

Table 2 reports the mean of the MSE (and its standard deviation) over the
100 divisions both for DBNR and NWK methods.

Table 2. Prediction results on Tecator dataset

Model DBNR NWK (PCA) NWK (L2)

MSE 1.91 (0.41) 9.1 (2.1) 8.9 (2.1)

Results obtained on Tecator by DBNR are the best in the sense of minimum
MSE among all the methods. In [10] results based on the use of a semi-metric
involving the second order derivatives (which is known to be useful for this data
set) were also reported. A MSE of 3.5 was also obtained, which is still larger
than the use of DBNR without derivative information.

5 Conclusions

A new functional nonparametric regression approach has been introduced mo-
tivated by the calibration problems in chemometrics. The new method, named
functional density-based nonparametric regression (DBNR) was fully described
under a Gaussian assumption for the distribution of X given Y but it could be
extended to other kinds of distributions. The simulation study and the applica-
tion of DBNR to a real data set have shown that DBNR performs well and out-
performs functional NWK regression methods. Thus, DBNR can be considered
a promising alternative to existing functional regression methods, particularly
appealing for calibration problems.

1 Data are available on statlib at
http://lib.stat.cmu.edu/datasets/tecator; see [18].

http://lib.stat.cmu.edu/datasets/tecator
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Abstract. In this work, the applicability of the circular statistics to
feature extraction on seismic signals is presented. The seismic signals are
captured from Llaima Volcano, located in Southern Andes Volcanic Zone
at 38◦40’S 71◦40’W. Typically, the seismic signals can be divided in long-
period, tremor, and volcano-tectonic earthquakes. The seismic signals are
time-segmented using a rectangular window of 1 minute of duration. In
each segment, the instantaneous phase is calculated using the Hilbert
Transform, and then, one feature is obtained. Thus, the principal hy-
pothesis of this work is that the instantaneous phase can be assumed
as a circular random variable in [0, 2π) interval. A second feature is ob-
tained using the wavelet transform due to the fact that seismic signals
present high energy located in low frequency. Then, in the range 1.55
and 3.11 Hz the wavelet coefficients were obtained and their mean en-
ergy is calculated as the second feature. Real seismic data represented
using this two features are classified using a linear discriminant with a
92.5% of correct recognition rate.

Keywords: seismic classifications, feature extraction, circular statistic,
wavelet transform.

1 Introduction

An adequate study of the activity of an active volcano requires the use of indirect
methods for evaluating information related to the dynamics of magma [1]. The
scientific literature has shown that volcanic activity can generate a wide range of
seismic signals [2]. The study of the waveforms of these signals differentiate the
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various types of source mechanisms of earthquakes [3]. Until the late twentieth
century, most studies were restricted to the spectral analysis and its variation
over time. Today, new processing techniques are being incorporated into the
analysis, in an attempt to automate the identification of the most important
patterns of seismic signals. The main structure used to classify them considers
a preprocessing stage and a classification stage.

The first one depurates the signals and performs its spectrum, amplitude (en-
ergy) and waveform feature extraction [4]. [5] proposed a linear predictive coding
to extract spectral features and a parameterizations of the signal to extract infor-
mation about the waveform. In [6] autocorrelation functions obtained by the FFT
represent the spectral content and the short-term average to long-term average
ratio (LTA/STA) relationship is used to distinguish between peaks and signals
of long duration, often with similar spectral content. Some studies incorporate
many frequency, amplitude and waveform features and use genetic algorithms to
search a representative feature subset that improves the classifier performance
[7,4]. Other methods are the wavelet transform [8,9], cross correlation methods
[10] and hidden Markov models [11].

As seismic signals are inherently nonlinear and nonstationary [12] techniques
such as artificial neural networks (ANN) [13] are being incorporated to perform
classification. In many works, ANNs have outperformed traditional methods of
analysis. ANN were used to predict the evolution of the seismicity of the Vesu-
vius, Campi Flegrei, Etna and Hawaii volcanoes [14] or to discriminate between
local earthquakes and other Mt Vesuvius volcanic signals [5] and also for classify-
ing transient signals representative of the Montserrat Volcano [6]. Some studies
show that support vector machines (SVM) [15] have performed better than ANN
[16]. [17] used spectral characteristics of four types of tremor of the Etna vol-
cano and conducted a comparative study in which the SVM outperformed the
ANN. [18] obtained the same result to classify three different seismic events of
the Stromboli volcano.

It should be noted in the previous studies that the methods of analysis are
difficult to generalize and every work is specialized in a certain type of patterns
related to specific volcanoes. In this paper, we consider the Llaima Volcano, lo-
cated in Southern Andes Volcanic Zone at 38◦40’S 71◦40’W, at Chile. In partic-
ular, the applicability of circular statistics as feature extraction is studied. This
kind of signal processing technique has received little attention in the literature
maybe due to the representability of the original signal by the instantaneous
phase, estimated by the use of Hilbert transform. Here, a feature vectors based
on circular summary statistics taken from the instantaneous phase of the seismic
signals, and the mean energy of the wavelet coefficients are used to distinguish
among different seismic event. In this work, we address discrimination among
long period events (LP) and volcano tectonic (VT) earthquakes from three com-
ponents of Llaima volcano.

This paper has been organized as follow. In section 2 the Llaima volcano de-
scription is introduced. In section 3, mathematical concepts and their application
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Fig. 1. Llaima volcano located in the South of Chile

to seismic signal are presented. In section 4, feature extraction proposed method
applied to real data is shown. Finally, the conclusion and future work are pre-
sented in section 5.

2 Volcano Monitoring

Llaima volcano is located in Southern Andes Volcanic Zone at 38◦40’S 71◦40’W.
It is located 82 km northeast of Temuco and 663 km southeast of Santiago
de Chile. Llaima volcano is one of the largest and more active volcanoes in
Southamerica. Llaima volcano is a stratovolcano, a steep sloped cone composed
of alternating layer of solidified ash, hardened lava and rocks ejected by previous
eruptions. It has frequent eruptions but fortunately moderate explosive eruptions
with occasional lava flows. One of the most recent eruption occurred in January
1, 2008, producing a column of smoke skyward, released a plume of sulfur dioxide
and forcing the evacuation of dozens of tourists from volcano’s base. On July 1,
2008, another eruption forced the evacuation of hundreds of people from nearby
villages. An eruption occurred on April 5, 2009, with pyroclastic flows, ash and
lava seen on the slopes.

The goal of volcano monitoring is allowing to know what is happening in the
volcano. This implies the study of the past activity and keep a close watch on
any current eruptions. The data are obtained from stations near the volcano that
register seismic information, deformation and other events in real time. The data
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are collected and sent to the Southern Andes Volcano Observatory (OVDAS) lo-
cated in Temuco, where the specialists analyze the information. OVDAS depends
on the Servicio Nacional de Geoloǵıa y Mineŕıa (SERNAGEOMIN), the public
statement in charge to carry out the actions based on the results of volcano
information analysis.

2.1 Seismic Signals

Volcanic activity generates seismic events whose name and nature are common
to all of them. However each volcano has its own seismic activity, that is, the
characteristics of the events are particular. In this paper, we address discrimi-
nation among long period events (LP) and volcano tectonic (VT) earthquakes
from three components of Llaima volcano. The data used have been collected us-
ing a three-component wide-band seismic sensor located in south-western of the
Llaima volcano (Lave station), around 7.4 km from the vent. The seismometric
used is the Oyogeospace SEIS-Monitor. The Lave station operates in continuous
registration mode with 16 bit at 50 sample per second. All the events have been
classified by an expert of OVDAS.

VT event is an earthquake originated in the center of a volcano. The VT event
is associated to the fracture of solid of the volcano or the conduits of fluid ascent.
The temporal signal present high amplitude with exponential decay with a lower
time duration than LP event. In frequency domain, the VT signals presents a
component higher that 8 Hz initially, but the most important range corresponds
to the 6 - 8 Hz. In Llaima volcano they are very important because they are
present in volcanic eruptions principally. Due to this, the amount of VT events
is lower than LP, and in our database we have only 85 samples of VT events. The
principal disadvantage in VT detection is the low possibility of being identified
due to the presence of other events or noise.

LP events are very important to be detected because the type of LP allows
identifying particular families of seismic signals which allow to know more pre-
cisely what is happening inside the volcano structure. The principal characteris-
tic of an LP event is the high energy located in low frequency, typically below 3
Hz. From this characteristic intuitively it is possible to obtain this feature using
a bandpass filter in order to estimate the energy in this frequency range.

In order to identify LP and VT events we built a pattern with two features
based on circular statistic and wavelet transform applied to the seismic signal.
In the next section we show in detail the procedure to obtain each feature.

3 Mathematical Background

In this section we briefly review the statistics moments of circularly distributed
signals, wavelet transform and their applications to real seismic data.

3.1 The Analytic Signal

In order to obtain the analytic signal from sampled real data, the Hilbert
transform [19] is used. The analytic signal represent all real-valuated signals
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as complex signals, which turn out to have especially attractive properties for
signal processing. Let x(t) be a signal in the time domain t. The analytic signal
xa(t) is given by:

xa(t) = x(t) + jH{x}(t), (1)

where H{x}(t) is the Hilbert transform of x(t) given by [20]:

H{x}(t) = p.v.
∫ ∞

−∞

x(τ)
t − τ

dτ, (2)

where H is the Hilbert transform operator. Because of the pole at t = τ , the
Cauchy principal value p.v. of the integral is used. The analytic signal of (1) can
be expressed in the form:

xa(t) = ψ(t) exp(jθ(t)), (3)

where ψ(t) = |xa(t)| is the amplitude envelope and θ(t) = arg(xa(t)), the instan-
taneous phase of the signal x(t), with θ(t) ∈ [0, 2π). Thus, from this analytic
signal, it is possible to define in a unique way the concepts of instantaneous
amplitude and instantaneous phase.

3.2 Circular Statistics

The key assumption of this work is representing the seismic signals by features
extracted from their random circular variables.

Circular statistics is similar to linear statistics [21], but in this case, sample
trigonometric moments of a random circular variable are estimated from a well-
known probability density function. Let Θ = {θn} be a set of instantaneous phase
values, where n = 1, ..., N , then the pth-order sample trigonometric moment is
given by:

μp =
1
N

N∑
n=1

exp(jpθn). (4)

As with linear statistics, measures of spread and symmetry, i.e., variance and
skewness, can be defined in terms of sample trigonometric moments. Then, the
sample circular variance of the data set Θ is defined as:

σ2 = 1 − |μ1| , (5)

The sample circular skewness is defined as:

γ =
|μ2| sin(arg(μ2) − 2 arg(μ1))

(σ2)
3
2

, (6)

where arg(μp) denotes the angle of the (complex valued) pth-order sample trigono-
metric moment (p = 1, 2),and σ2 is as defined in (5). Circular kurtosis, a measure
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of peakedness in the circular density, can also be defined with sample trigono-
metric moments as folows:

κ =
|μ2| cos(arg(μ2) − 2 arg(μ1)) − |μ1|4

(σ2)2
. (7)

A comprehensive description of trigonometric moments and other statistics for
circular data can be found in [22].

3.3 Wavelet Transform

Briefly, the discrete WT can reconstruct any signal x(t) by the formula:

x(t) =
∑
m

∑
n

< x, ψm,n > ψm,n(t), (8)

where ψm,n(t) = a−m/2ψ(a−mt − nb) is the wavelet function and a and b are
the scale and shift parameters respectively. The wavelet coefficients are given by
< x, ψm,n > and the multi resolution decomposition is obtained when a = 2 and
b = 1. In this case we have an orthogonal decomposition. Two sequences exist
that satisfies:

hn =< φ0,0, φ−1,n >, φ(t) = 21/2
∑

n

hnφ(2t − n), (9)

gn =< ψ0,0, φ−1,n >, φ(t) = 21/2
∑

n

gnφ(2t − n) (10)

where hn and gn are the low and high pass filters with 0.25 cutoff frequency when
1 is the sampling rate. Then, the approximation an detail wavelet coefficients
for the level k with sampling rate of 2−k are respectively:

A
[x(t)]
k (t) =

∑
n

2−k < x(t), ψ(2−kt − n) > ψ(2−kt − n), (11)

D
[x(t)]
k (t) =

∑
n

2−k < x(t), ψ(2−kt − n) > φ(2−kt − n), (12)

that can be calculated using (9) and (10). In our case, the wavelet filter used
corresponds to the Daubechies with 10 taps, the sampling rate is 50 samples per
second, and the detail for k = 4 corresponds to the frequency range of interest,
i.e., between 1.55 and 3.11 Hz. Calculating the power of this coefficient, the mean
energy in this band is obtained in the form:

E =
∫

(D[x(t)]
4 (t))2dt. (13)

By the use of multi resolution analysis [23] is possible to obtain a band pass
component and then, obtain the energy over the wavelet coefficient in the cor-
responding level.
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4 Results

Real seismic data was captured from Llaima volcano between May 2009 and
June 2009 and used to test the performance of the proposed method. A database
with 2509 samples has been built, containing 404 samples of LP events, 85 of
VT events in one component and 404 no-event signals. A sample corresponds
to data interval of 1 minute of registered data non-continuous between intervals
captured from the vertical, north-south, and east-west components denoted as Z,
N-S, and E-W, respectively. The data has been labeled by expert from OVDAS.
In this database, only LP and VT events are presented.

For each segment a pattern x is built using equation (4) and (13) forming
the pattern x = (u1, E). Then, the database contains the 404 values x1, ...,x404
for LP, 404 for no-events and 85 for VT events. In this case, only the Z com-
ponent is considered. In Fig. 2 we illustrate the scatter plot for all data set
for LP, VT and no-event patterns. Clearly, the VT events present a separation
from LP events and no-events signals considering only the first circular mo-
ment. As a preliminary approach to the classification problem and based on
the distribution of the classes shown in Fig. 2, a linear classifier was designed.
Its performance reached 100% for VT identification and more than 90% for LP
identification. More sophisticated classifiers will be evaluated during the research
ongoing.

The discrimination between LP and no-events is given only by wavelet energy.
But it is possible to include the first circular moment in order to improve the
performance of the classifier. Table 1 presents the results using only wavelet
energy and the incorporation of the first circular moment in three components.

Fig. 2. Scatter plot for LP, VT and no-events patterns using wavelet energy and circular
statistic
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Table 1. The correct classification rate for LP and no-events identification

Component % CC with x = E % CC with x = (u1, E)
Z 87.95 94.05

N-S 94.14 93.56
E-W 78.79 90.01

5 Conclusions and Future Work

In this paper we applied the circular statistic as a feature extraction technique
to the seismic signal of the Llaima volcano. This implies that the instantaneous
phase of seismic signal can be considered as circular random variable in the [0, 2π)
range. The first circular moment allows discriminating clearly the VT events
from others with a high performance. For the case of LP events, a combination
between energy located between 1.55 and 3.11 Hz is improved when the first
circular moment is added. In fact, the correct identification increase from 86.96%
to 92.54%. Future work include more extensive tests with a larger database, the
evaluation of this feature extraction process to on line operation and to evaluate
other classifier using neural networks among others.
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G.: The classification of seismo-volcanic signals using Hidden Markov Models as
applied to the Stromboli and Etna volcanoes. Journal of Volcanology and Geother-
mal 187(3-4), 218–226 (2009)

12. Dowla, F.U.: Neural networks in seismic discrimination. In: Husebye, E.S.,
Dainty, A.M. (eds.) NATO ASI (Advanced Science Institutes). Series E, vol. 303,
pp. 777–789. Kluwer, Dordrecht (1995)

13. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York (1995)

14. Luongo, G., Marandola, C., Mazzarella, A.: Neural forecasting of seismicity and
ground displacements in different volcanic areas. Journal of Volcanology and
Geothermal Research 130, 133–146 (2004)

15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
16. Cherkassky, V., Krasnopolsky, V., Solomatine, D.P., Valdes, J.: Computational

intelligence in earth sciences and environmental applications: Issues and challenges.
Neural Networks 19(2), 113–121 (2006)

17. Langer, H., Falsaperla, S., Masotti, M., Campanini, R., Spampinato, S., Messina,
A.: Synopsis of supervised and unsupervised pattern classification techniques ap-
plied to volcanic tremor data at Mt Etna. Italy Geophysical Journal Interna-
tional 178(2), 1132–1144 (2009)

18. Giacco, F., Esposito, A.M., Scarpetta, S., Giudicepietro, F., Marinaro, M.: Support
Vector Machines and MLP for automatic classification of seismic signals at Strom-
boli volcano. In: Proceeding of the 2009 conference on Neural Nets WIRN 2009:
Proceedings of the 19th Italian Workshop on Neural Nets. Frontiers in Artificial
Intelligence and Applications, vol. 204, pp. 116–123 (2009)
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Abstract. In this work, a new approach for supervised pattern
recognition is presented which improves the learning algorithm of the
Optimum-Path Forest classifier (OPF), centered on detection and elim-
ination of outliers in the training set. Identification of outliers is based
on a penalty computed for each sample in the training set from the cor-
responding number of imputable false positive and false negative classi-
fication of samples. This approach enhances the accuracy of OPF while
still gaining in classification time, at the expense of a slight increase in
training time.

Keywords: Optimum-Path Forest Classifier, Outlier Detection,
Supervised Classification, Learning Algorithm.

1 Introduction

Pattern recognition aims at the capacity of classifying a pattern based in its
inherent characteristics, represented as a feature vector (i.e., a point in a higher
dimensional space) [5]. Usually, this task is divided into two phases, namely,
training and classification. During the training phase the classifier learns the
distribution of the data in the feature space through a subset of the dataset,
inferring rules which then allow for predicting the correct classes of unknown
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data. Several methods also include a learning phase, based on two labeled sets
with training and evaluating samples, which are usually selected at random,
with the goal of improving the performance of the classifier. This phase employs
the evaluating set as a pseudo-test of the quality of the training set and for its
improvement.

Support Vector Machines (SVM) [9], a largely used classification method, is
formulated as an optimization problem that seeks to determine the hyperplane
which best splits the data. Also, given non-separable data, a prior mapping to a
higher dimensional space is required, assuming that the mapped data becomes
separable. SVM’s main deficiency is that, depending on the size of the training
set, too much computational time is needed before convergence to a solution oc-
curs. This lack of efficiency for large datasets can render SVM infeasible in these
cases. Furthermore, the assumption of class-separability in higher-dimensional
space may not always hold [4].

The Optimum-Path Forest classifier (OPF) [8] is a graph-based technique
which models classification problems as optimum-path searches in graphs derived
from an adjacency relation between samples in a given feature space (a complete
relation in the case of this paper). Class representatives (prototypes) are chosen
among the training samples and used to classify the remaining samples based
on lengths of paths on the graph. This method has as an advantage a very
low computational training cost, since it does not have to optimize parameters.
Furthermore, it can deal with non-separable data since its formulation is based
on multiple prototypes that represent the various classes.

As showed in [8], OPF can attain an accuracy as high as SVM’s, while keeping
the training time much lower. Those results show that OPF is the best choice for
several classification problems, mainly in the case of large datasets. However, a
disadvantage of the original learning algorithm proposed in [8], is that it does not
attempt to eliminate outliers in the training set which may cause classification
errors.

The main contribution of the present work is the development of a learning
algorithm for the OPF classifier focused on the detection and elimination of out-
liers from the training set. This paper describes the OPF classifier in Section 2,
introduces the new method in Section 3, shows the experiments in Section 4 and
Section 5 brings together the conclusions.

2 Optimum-Path Forest Classifier

For the sake of completion, the OPF classifier will be briefly described. For more
details, see [8].

Let Z1, Z2 and Z3 be the disjoint training, evaluating and testing sets, ran-
domly chosen from a dataset Z, such that Z = Z1 ∪ Z2 ∪ Z3. Let λ(s) be a
function which maps each sample s ∈ Z to its correct class i, i = 1, . . . , c. Let
−→v (s) denote the feature vector of sample s, computed by some feature extractor
v and d(s, t) denote the distance between s and t (e.g. euclidean distance).

A specially chosen subset S ⊂ Z1, whose elements are called prototypes, con-
tains the samples responsible for classifying each t ∈ Z \ S. This classification
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is accomplished by determining, for each t, which s ∈ S is the most closely
(strongly) connected to t and setting the class of t to be that of s.

The strategy of the OPF classifier is to first obtain an optimum discrete
partition of the feature space of Z1, so that it becomes possible to classify every
t ∈ Z2 ∪ Z3 based on that partition, in an incremental way.

Let (Z1, A) be the complete graph which represents the training set, where
to each sample s ∈ Z1 corresponds a node and such that to each edge 〈s, t〉 is
assigned a cost equal to d(s, t). Let f(πs1

t ) be a function which evaluates the
cost of the path πs1

t = 〈s1 = t1, t2, . . . , tn = t〉, starting at some s1 ∈ S and
ending at t ∈ Z1. A path πs

t is considered optimum if, for any other path πs′
t ,

f(πs
t ) ≤ f(πs′

t ). The union of optimum-paths for all t ∈ Z1 forms a forest (an
acyclic graph).

The optimum path forest is computed using the Image Foresting Transform
algorithm [6] by basically solving the following optimization problem:

C(t) = min
∀s∈S

{fmax(πs
t )} (2.1)

which gives an optimum path-cost C(t) for each t ∈ Z1 of an optimum path, de-
noted π∗

t for short, which starts at some s ∈ S. The function fmax(πs
t ) computes

the maximum edge cost along the path πs
t .

Algorithm 1 shows the general procedure to compute the Optimum-Path
Forest [8].

Algorithm 1. – OPF-Algorithm

Input: Training set Z1, λ-labeled prototypes S ⊂ Z1.
Output: Optimum-Path Forest P (predecessor map), path-cost map C and la-

bel map L and a list Z′
1 of the training nodes ordered by their path-

cost.
Auxiliary: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S do C(s) ← +∞.
2. For each s ∈ S do
3. C(s) ← 0, P (s) ← nil
4. L(s) ← λ(s), insert s into Q.
5. While Q is not empty do
6. Remove from Q a sample s with minimum C(s) and insert s in Z′

1.
7. For each t ∈ Z1 such that C(t) > C(s) do
8. Compute cst ← max{C(s), d(s, t)}.
9. If cst < C(t) then
10. If C(t) 	= +∞ then remove t from Q.
11. P (t) ← s, L(t) ← L(s) and C(t) ← cst.
12. Insert t in Q.

The training process (i.e., finding the set S of prototypes) consists of
computing a Minimum Spanning Tree (MST) on Z1 and, for each edge {s, t}
of the MST, if λ(s) �= λ(t) then s and t are marked as prototypes.
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In the classification phase, for every sample t ∈ Z3 all possible paths from
each s ∈ Z1 to t are computed and the optimum one, π∗

t , is chosen. This path
can easily be identified by incrementally evaluating the optimum cost C(t) as
follows:

C(t) = min
∀s∈Z′

1

{max{C(s), d(s, t)}}. (2.2)

The (first) role of Z ′
1 is to speed up the evaluation of Equation 2.2 which can

halt when max{C(s), d(s, t)} < C(p), for a node p whose position in Z ′
1 succeeds

the position of s [7].
The learning phase consists of performing, after the training process, the

classification of each sample in Z2 through the method just described and, sub-
sequently, swapping each incorrectly classified sample from Z2 for a randomly
chosen sample from Z1 \ S.

3 Optimum-Path Forest Classifier with Outliers
Detection: OPF-OD

Outliers in the training set might be identified through two kinds of errors:
when a sample is attributed an incorrect label (false positive - FP) and, when
a classifying sample does not identify a sample of its own class (false negative
- FN). Samples that cause such errors negatively impact the accuracy in the
classification phase unless they are detected during the learning phase (through
incorrect classifications) and properly dealt with, as will be described later.

Additionally, it becomes necessary to compute the number of correct classifi-
cations (true positives - TP) and of correct rejections (true negatives - TN) to
be contrasted with the false positives and false negatives in order to deduce the
usefulness of a sample in the training set.

To understand this bookkeeping, let s ∈ Z ′
1 be the sample in Equation 2.2

which classifies a sample t ∈ Z2.

– The false positive counter for s, FPs, is incremented if L(t) �= λ(t), otherwise,
the true positive counter for s, TPs, is incremented.

Now, proceeding upwards (i.e., as C(·) decreases) on Z ′
1, let p1 and p2 be the

first samples found such that L(p1) = λ(t) and L(p2) �= λ(t).

– The false negative counter for p1, FNp1 , and the true negative counter for
p2, TNp2 , are incremented.

After computing FP, TP, FN and TN for all samples in Z1, a penalty pens

is calculated for each s ∈ Z1 so that a sample s can be considered an outlier
whenever pens > ε, for some threshold 0 < ε < 1.

Let
Es+ =

FPs

TPs
Es− =

FNs

TNs
,

where Es+ and Es− are defined as acceptance and rejection rates for s, which are
then normalized in ξs+ and ξs− , respectively, by their maximum possible values.
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Define pens as follows:

pens = μ · (ξs+) + (1 − μ) · (ξs− ) (3.3)

where 0 ≤ μ ≤ 1, and hence, 0 ≤ pens ≤ 1.
In other words, this penalty corresponds to the convex combination of the

normalized acceptance and rejection rates, weighted by a parameter μ which
allows for a user-controlled balance between FP and FN, that can be application
dependent.

Once the penalties are computed for all samples in Z1, any sample s identified
as an outlier (i.e., pens > ε) is swapped for a random sample from Z2. However,
care is taken to prevent s from being swapped back into Z1, if it happens to be
misclassified in Z2 during the learning phase (see Section 2). This will guarantee
that previously identified outliers are immovable from Z2 so as not to negatively
impact the accuracy of the classification of Z3.

Algorithm 2 explains the proposed approach.

Algorithm 2. – OPF-Learning-With-Outliers-Detection

Input: λ-labeled training and evaluating sets Z1 and Z2, number T of itera-
tions, and threshold ε.

Output: Instance of the OPF-OD classifier with best accuracy over Z2.
Auxiliary: List LM of misclassified samples and Acc.

1. For each iteration i ← 1, 2, . . . , T do
2. Compute S from Z1.
3. (P, C, L, Z′

1) ← Algorithm-1(Z1, S).
4. For each sample t ∈ Z2 do � � � classify all samples in Z2

5. Use the classifier computed in Line 3 to classify t with label L(t).
6. If λ(t) 	= L(t) then LM ← LM ∪ t. � � � save missclassified samples
7. Update FP, TP, FN, TN for the corresponding samples (Section 3).
8. For each sample s ∈ Z1 do � � � compute all penalties
9. Compute pens using Equation 3.3
10. If pens > ε then Swap s for a sample from Z2.
11. Compute accuracy Acc and save the actual instance of the classifier if
12. its accuracy is maximum so far.
13. k ← |Z′

1|.
14. While LM 	= ∅ and k > 0 do � � � swap missclassified samples
15. Choose a random sample t from LM , LM ← LM\t
16. While Z′

1[k] is a prototype and k > 0 do k ← k − 1.
17. If k > 0 then Swap t for sample Z′

1[k].
18. k ← k − 1
19. Return instance of the classifier with highest accuracy.

The samples to be swapped from Z1 in Line 10 are not randomly chosen
as in [8], but in decreasing order of path-cost using Z ′

1, because samples with
higher path-cost have less probability of correctly classifying samples from Z2.
Therefore, this gives a third important role for the ordered list Z ′

1.
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4 Experiments

In this section, the datasets used in the tests, the computational environment, the
classifiers employed and the overall approach of the experiments are described.

4.1 Datasets Used

To validate the proposed approach, the following datasets from the UC Irvine
Repository [3] were used:

– The “Adult” dataset, with about 45000 samples, 14 attributes and 2 classes.
– The “King-Rook vs. King” dataset (krk), with about 30000 samples, 6 at-

tributes and 18 different classes.
– The “Gamma telescope” dataset, with about 20000 samples, 11 attributes

and 2 possible classes.

Also, the “Mpeg 7” dataset [1] was used, which consists of about 1400 samples,
70 classes and whose features were extracted using a shape descriptor called Bean
Angle Statistics (BAS) [2]. The distance between feature vectors was measured
using euclidean distance and optimal correspondence subsequence (OCS) which
is more appropriate for the BAS descriptor.

The classifiers used were the OPF with the traditional learning algorithm and
the proposed OPF-OD method which refines OPF.

The accuracy measure used to evaluate the classifiers is computed as
follows [8]:

ei,1 =
FP(i)

|Z3| − |Z3(i)|
ei,2 =

FN(i)
|Z3(i)|

, i = 1, . . . c

E(i) = ei,1 + ei,2 Acc = 1 −
∑c

i=1 E(i)
2c

where FP(i) and FN(i) are the number of false positives and false negatives for
class i and Z3(i) is the number of samples from class i which belong to Z3.

4.2 Sizes of Z1 and Z2

Due to the fact that OPF-OD is based on a learning phase, the evaluating
set Z2 must be significantly larger that the training set Z1 to allow for the
computation of meaningful penalties for each sample in Z1. To ensure a good
trade-off between accuracy and learning time, the most beneficial ratio |Z2|/|Z1|
was experimentally determined to be 5.

4.3 Results

In this section, comparisons between OPF and OPF-OD are presented. All the
experiments reported here were run on an IntelTM XeonTM 4-core 2.50 GHz
processor, with 8 GB of RAM, under Linux but without multi-thread execution.
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Firstly, the Adult dataset was used to test 10 different sizes for the training
set Z1 averaged over 10 executions for each size. Figure 1 presents the accuracy
obtained, showing the average value and the standard deviation for each size.
Note that in all cases, OPF-OD obtained higher accuracy than standard OPF.
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Fig. 1. Accuracy for OPF and OPF-OD calculated over the classification of Z3 using
different sizes for Z1. Average of ten runs and standard deviation are shown. Here
|Z2|/|Z1| = 5.

Considering the extra time required for the learning phase, the training time
for OPF-OD was, as expected, higher than for OPF, as shown in Figure 2.(a)
for the Adult dataset.

However, swapping out the outliers from Z1 leads to some gain, time-wise,
in the classification phase, as it can be seen in Figure 2.(b). This is due to the
faster convergence of the optimization process that searches, for each sample in
Z3, for its closest sample from Z1, as per Equation 2.2, since fewer samples have
to be tested when outliers are no longer present.
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Fig. 2. (a) Training time, and (b) Classification time in seconds for OPF and OPF-OD
using different sizes for Z1. Average of ten runs is shown. Here |Z2|/|Z1| = 5.

Finally, Table 1 shows the accuracy and time results for the other datasets.
Two different sizes for Z1 (depending on the dataset) were considered. The
accuracy of OPF-OD for these datasets was higher than OPF’s, while OPF-
OD’s performance was slightly worse in the training phase and better in the
classification phase.
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Table 1. Accuracy (mean ± standard deviation), Training time (mean) and Classifi-
cation time (mean) in seconds for several datasets. Best values are in bold.

Datasets |Z1| |Z2| |Z3| Accuracy Training time Classification time
OPF OPF-OD OPF OPF-OD OPF OPF-OD

krk 280 1400 26320 58.66 ± 0.64 58.90 ± 0.90 0.155 0.328 0.468 0.460

krk 2800 14000 11200 69.24 ± 0.47 67.68 ± 0.54 26.773 29.367 1.976 1.915

gamma 190 950 17860 63.66 ± 1.24 67.36 ± 0.74 0.115 0.190 0.261 0.228

gamma 1900 9500 7600 67.24 ± 0.72 70.74 ± 0.75 11.589 15.997 1.109 0.982

mpeg7 70 350 980 68.09 ± 1.76 71.53 ± 1.02 0.039 0.105 0.0194 0.0192

mpeg7 140 700 560 78.09 ± 1.49 79.68 ± 1.49 0.145 0.348 0.0223 0.0221

mpeg7-OCS 70 350 980 75.57 ± 0.82 78.40 ± 1.65 0.013 0.039 0.0007 0.0008
mpeg7-OCS 140 700 560 89.93 ± 0.66 90.92 ± 0.65 0.022 0.065 0.0010 0.0011

Note that the accuracy grows higher for all datasets as the training set be-
comes larger. For instance, with a training set of 140 samples for the mpeg7-OCS
dataset, the accuracy was 11 percentage points higher than with half as many
samples. Furthermore, it is critical to highlight that accuracy depends on other
factors such as the distance function, as was the case of the mpeg7 dataset
computed with euclidean distance vs. OCS distance.

5 Conclusions

In this work, a novel learning algorithm was presented that improves the time
performance and accuracy of the supervised Optimum Path Forest classifier.
This algorithm is essentially based on an ingenious method of detecting out-
liers in the training set and their subsequent swapping for new random samples
from the evaluating set leading to a refined training set. As substantiation, no-
tice that the attained improvement in accuracy was as high as 3.7 percentage
points in the case of the Gamma dataset. This is mostly due to the resulting
samples in the training set being better representatives of the classes present in
the testing set than if outliers had remained in it, causing negative impact in
accuracy. Despite the fact that the new learning algorithm performs extra work
to identify outliers, the overall training time is only slightly increased. However,
for most applications, this is well compensated by the lower classification time
which results from the faster convergence of the search process through the ele-
ments of the training set when outliers have been swapped out. Hence, the forest
computed by OPF-OD over the training set is more effective and efficient than
OPF’s. For instance, for the Adult dataset, the behavior of training time vs.
classification time is illustrated in Figures 2.(a) and 2.(b).
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Abstract. This work aims to present an assessment of a modified
version of the standard EM clustering algorithm for remote sensing data
classification. As observing clusters with very similar mean vectors but
differing only on the covariance structure is not natural for remote sens-
ing objects, a modification was proposed to avoid keeping clusters whose
centres are too close. Another modification were also proposed to im-
prove the EM initialization by providing results of the well known K-
means algorithm as seed points and to provide rules for decreasing the
number of modes once a certain a priori cluster probability is very low.
Experiments for classifying Quickbird high resolution images of an ur-
ban region were accomplished. It was observed that this modified EM
algorithm presented the best agreement with a reference map ploted on
the scene when compared with standard K-means and SOM results.

1 Introduction

Many supervised and unsupervised parametric classification methods usually
follow a unimodal assumption for class conditional feature distribution. In gen-
eral, this assumption is not suitable for remote sensing data, particularly for
those of very high spatial resolution. One way to improve classification results
is describing the class conditional distribution as a mixture of distributions.

The finite mixture model (FMM) is a useful tool for multimodal density es-
timation. Given the observed data X , an FMM p(x; Θ) where x ∈ X can be
defined as

p(x; Θ) =
M∑

j=1

p(x|Cj ; θj)Pj (1)

where M is the number of components, Pj is the jth mixing proportion,
p(x|Cj) the corresponding component density and Θ denotes the parameter vec-
tor of the density. If the jth underlying density is the multivariate gaussian
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p(x|Cj) =
(
|2πΣj | exp((x − μj)T Σ−1

j (x − μj))
)−1/2

, with mean vector μj and
covariance matrix Σj , the model is refered to as the gaussian mixture model
(GMM).

One way to estimate mixture models is to assume that data points have
a “membership” to the unimodal components of data distributions and such
membership is unknown. The objective is to estimate suitable parameters for
the model, where the connection to the data points is represented as their mem-
bership in the individual model distributions.

In statistical pattern recognition, mixture models allow a formal approach to
unsupervised learning [5]. A standard method to estimate FMM from observed
data is the Expectation-Maximization (EM) algorithm, firstly proposed by [3].

Given a complete set Z = (X, Y ) where X is the observed data (the incomplete
data) and Y the unobserved data, the joint probability density of Z is given as
p(X, Y ; Θ). The ML estimate of Θ is obtained by maximizing the incomplete-
data log-likelihood function

L(Θ; X) = log p(X ; Θ) = log
∫

p(X, Y ; Θ)dY (2)

The incomplete data log-likelihood function is maximized through EM algorithm
by iteratively maximizing the expectation of the complete data log-likelihood
function given by

Lc(Θ; Z) = log p(X, Y ; Θ) (3)

At (t+1)th iteration the E-step of the algoritm computes the expected complete
data log-likelihood as follows:

Q(Θ|Θ(0)) = E[Lc(Θ; Z)|X ; Θ(t)] (4)

and the M-step calculates Θ by maximizing Q(Θ|Θ(t)).
EM is an iterative procedure which under mild conditions converges to a

(local) maximum of L(Θ; X) depending on the initial solution Θ(0) .
In other words, EM is a general method of estimating the features of a given

data set, when the data are incomplete or have missing values [1]. Finite mixture
models are able to represent arbitrarily complex probability density functions [4].
This fact makes EM proper for representing complex likelihood functions. This
algorithm has been used in several areas, such as image reconstruction, signal
processing, and machine learning [9], [11].

Being an iterative procedure, EM presents high computational cost. This arti-
cle presents a variation of the algorithm EM to improve the classification results,
particularly for remote sensing applications. It is done first taking in account par-
ticularities of optical remote sensing data distribution, and providing the first set
of parameters from K-means algorithm and by performing clustering validation
techniques.

The paper is organized as follows. Section 2 describes the basic EM approach
and its application to mixture models. In Section 3 we show our main con-
tribution describing the improved EM. Section 4 presents some experimental



478 T.S. Korting et al.

results for applying the proposed method to urban remote sensing images as
well as a discussion about the classification method performance. Finally, Sec-
tion 5 presents the conclusion.

2 The Standard EM for GMM

We assume that the algorithm will estimate M class distributions Cj , j =
1, . . .M . For each of the N input vectors xk ∈ X, k = 1, . . .N , the algorithm
calculates the probability P (Cj |xk) [12]. The highest probability will point to
the vector’s class.

To apply EM for remote sensing imagery analysis we have created the input
vectors with one vector per pixel. The vector contains the pixel values for each
spectral channel in the image. An image with l bands produces a l−D attribute
space.

The EM algorithm works iteratively by applying two steps: the E-step (Expec-
tation) and the M-step (Maximization). Formally, Θ̂(t) = {μj(t), Σj(t), Pj(t)},
j = 1, . . .M stands for successive parameter estimates. In the standard EM, Θ̂(0)
is randomly defined, and EM approximates Θ̂(t) to the real data distribution
when t → ∞.

2.1 E-Step

This step calculates the conditional expectation of the complete a posteriori
probability function. Each cluster probability, given a certain attribute-vector,
is estimated as following:

P (Cj |x) =
|Σj(t)|−

1
2 eηj(t)Pj(t)∑M

k=1 |Σk(t)|− 1
2 eηk(t)Pk(t)

(5)

where

ηi(t) = −1
2
(x − μi(t))T Σ−1

i (t)(x − μi(t))

2.2 M-Step

This step updates the parameter estimation Θ̂(t). Given the cluster probabilities,
the mean and covariance values for each cluster are estimated as

μj(t + 1) =
∑N

k=1 P (Cj |xk)xk∑N
k=1 P (Cj |xk)

(6)

Σj(t + 1) =
∑N

k=1 P (Cj |xk)(xk − μj(t))(xk − μj(t))T∑N
k=1 P (Cj |xk)

(7)

The overall probability for each cluster is also calculated in this step as:

Pj(t + 1) =
1
N

N∑
k=1

P (Cj |xk) (8)
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2.3 Convergence

Both steps, E and M, are performed until convergence, according to

‖ Σ(t + 1) − Σ(t) ‖F < ς (9)

where ‖ . ‖F stands for the Frobenius norm, the square root of the sum of the
absolute squares of its elements [12], and ς is a threshold for convergence. The
second stop criteria is given by

‖ μ(t + 1) − μ(t) ‖< ε (10)

where ‖ . ‖ is the Euclidean distance between vectors, and ε is second a
convergence threshold. When both equations are true, the algorithm reaches
convergence and Equation 5 is applied to classify the image.

3 Modifications to the Standard EM Algorithm

In this section we explain our main contributions to the EM algorithm. Figure 1
illustrates our method, which is composed by three main modules. The first
one describes the data initialization, followed by the probabilities estimation,
and finished by the data classification. The “Initialization” and “Probabilities
estimation” modules were adjusted to carry out the improvements in the results.

Fig. 1. The improved EM diagram

3.1 Initialization

The instance set x is built with the pixels of each image spectral channel. [6]
used agglomerative hierarquical clustering based on the classification likelihood
to estimate the initial parameters for EM. Besides this approach, [10] have also
suggested the parameter estimation from K-means. This work employs K-means
algorithm for producing the first set of unknown parameters Θ, i.e. when t = 0.
It is important to point out that K-means defines its initial parameters randomly,
and provides to our algorithm the clusters means. Therefore, in the beginning the
set of covariance matrix is created with identity matrices. By applying this to the
EM approach, we reduce the number of iterations, thus reducing computational
time.
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3.2 Probabilities Estimation

This module performs the iterative procedure for probabilities estimation. We
suggest to remove redundant clusters and to maximize the separability between
them to correct the number of clusters.

The approach performs cluster exclusion when some cluster presents low prob-
ability, according the equation 8. In Figure 1, such operation is defined by the
“Redundancy reduction” module. Through a threshold η, the cluster exclusion
is defined as:

if Pi(t) < η then exclude cluster Ci (11)

As observing clusters with very similar mean vectors but differing only on the
covariance structure is not natural for remote sensing objects, another modifi-
cation was proposed to avoid keeping clusters whose centres are too close. If a
cluster center is approaching another cluster center, one of them has its parame-
ters randomly changed. We define a module called “Separability maximization”,
as the following equation:

if ||μi(t) − μj(t)|| < ζ then μj(t) = ϑ and Σj(t) = I (12)

where ζ is a threshold, ϑ is a random vector, and I is the identity matrix.

3.3 Classification

After convergence is acchieved, the algorithm classifies each pixel k in the image.
The vector xk is associated to one class with higher probability. The algorithm
finds P (Cj |xk) > P (Ci|xk), j �= i and classify xk as Cj .

Given the classified image, the next step includes the clusters labeling phase,
which is performed manually, and stands for associating the generated clusters
to the classes of interest.

4 Results

Figure 2a shows a color composition (R3G2B1) image acquired in January 2004
by the Quickbird satellite, and covers and urban area of São José dos Cam-
pos – Brazil. By visual inspection, we can identify four main classes, namely
Shadow, Vegetation, Ground, and Roofs. To analyze the results and compare the
obtained agreement with reference regions, we also classified using well known
unsupervised methods K-means and Self-Organizing Maps (SOM) [8].

The initial number of clusters was set to 15, a number that was big enough
to consider all possibilities of class definitions in the test image. For EM and
K-means we set k = 15, and for SOM, we created a map with 3 × 5 neurons.
As the algorithm initializations are random we performed 10 classifications, us-
ing the same image for each algorithm, trying to avoid sub-optimal solutions.
Considering all tests, the minimum detected number of Gaussians, considered
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as elements of the mixture, was 9. After classification, we manually assigned the
clusters to one of the four reference classes.

We obtained an agreement coefficient with a reference classification map and
the best results for each clustering procedure. The best classification results are
shown in Figure 2, and the obtained agreement matrices are displayed on Table
1. The overall agreement with reference regions for EM was 70.58% of correct
matches, whereas K-means obtained 68.12% and SOM obtained 65%. Kappa
indices for every algorithm were κ = 0.557 for EM, κ = 0.483 for K-means and
κ = 0.474 for SOM.

EM algorithm presents some drawbacks. Being a local method, it is sensitive to
the initialization because the mixture model likelihood function is not unimodal
[5]. This was the main reason for using K-means as first set of parameters. For
certain mixture types, it may converge to the parameter space boundary, leading
to meaningless estimates. It would be expected to get better results for EM

(a) (b)

(c) (d)

Fig. 2. a) Color composition R3G2B1 of QuickBird scene from São José dos Campos –
Brazil. b) Improved EM result, c) K-means result, and d) SOM result.
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Table 1. Agreement Matrices. The reference data are displayed in the rows.

EM

52 6 0 3
20 79 13 1
32 47 245 52
11 22 101 363

K-means

36 14 0 7
17 38 12 22
16 26 223 108
7 20 78 402

SOM

16 40 4 1
3 71 22 0
1 49 278 19
5 45 161 285

than for K-means, since it provides the first set of parameters, and improved
EM adjust them in a better way, including also the estimation of covariance
matrices.

Therefore, to test the better performance of our method we performed several
tests using the original EM and the modified EM approach. The experimen-
tal tests took into account the processing time until convergence, for both ap-
proaches. We used 5 different images, regardless the image used in the previous
experiment, with different parameters. Table 2 shows the results considering the
image size, number of classes, and computational time until convergence.

Calculating the average values for time speed up, showed at the line Δt1
Δt2

of the
table, we reach the value 3.35, i.e. our improved approach is around 3× faster
than the original one. However, even becoming faster than the original approach,
EM is still more expensive in terms of processing time than the other methods.
It performs calculations of inverse matrix and determinant at each iteration for
the whole set of data.

Table 2. Comparison between original and improved approaches

Image1 Image2 Image3 Image4 Image5
Size 512 × 512 512 × 512 2002 512 × 384 264 × 377
# of classes 4 4 5 6 5
Δt1 original EM 467s 467s 103s 402s 202s
Δt2 improved EM 140s 148s 29s 105s 70s
Δt1
Δt2

3.33 3.15 3.55 3.82 2.88

Images classified by pixel-based methods (non region-based) generally present
a noisy appearance because of some isolated pixels that are misclassified [7]. As
observed in the agreement matrix, the class Roofs presented the worst classifica-
tion results. This was due to the fact that such class varies a lot and some parts
of the roofs are very similar to roads, leading to misclassifications.

5 Conclusion

This work has presented improvements to the EM clustering method, by using
K-means results as input, and some changes in the “Probabilities estimation”
module.
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Afterall, one of the main conclusions drawn from the experiments is that mix-
ture models seems to be the best way to characterize the distributions for high
resolution images, since the minimum number of detected modes was 9 for a 4
class problem, considering all tested methods. When compared with standard
clustering approaches like K-means and SOM, the modified EM algorithm pre-
sented the best agreement with the reference map. This fact suggests that the
proposed EM algorithm can be adopted as a standard choice for this task. Fu-
ture works include a complete assessment of our method comparing it with other
algorithms such as the original implementation of EM, hierarchical clustering,
and fuzzy approaches.

Wrong initial parameters might result in meaningless classification, therefore
initial estimation from K-means increased the resultant agreement. We have
implemented the algorithm using TerraLib library [2], which is available for free
download at http://www.terralib.org/.
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Abstract. The All-Distances SVM is a single-objective light extension
of the binary μ-SVM for multi-category classification that is competitive
against multi-objective SVMs, such as One-against-the-Rest SVMs and
One-against-One SVMs. Although the model takes into account consid-
erably less constraints than previous formulations, it lacks of an efficient
training algorithm, making its use with medium and large problems im-
practicable. In this paper, a Sequential Minimal Optimization-like algo-
rithm is proposed to train the All-Distances SVM, making large prob-
lems abordable. Experimental results with public benchmark data are
presented to show the performance of the AD-SVM trained with this
algorithm against other single-objective multi-category SVMs.

Keywords: Kernel Machines, Multi-category Classification, Support
Vector Machines, Sequential Minimal Optimization.

1 Introduction

Support Vector Machines [20] (SVMs) are currently well known methods for
pattern recognition and other data analysis, with strong theoretical properties
and practical results when applied to real-world problems. Originally formulated
to deal with linearly separable binary classification problems, they can also deal
with noisy data and non-linearly separable cases using a regularization and a
kernel method extension respectively.

Although the training of these machines can be assumed as finding the so-
lution to a quadratic optimization problem with linear restrictions, traditional
approaches are impractical due to the dense nature of the Hessian Matrix in-
volved in the problem definition. To deal with this, chunking and decomposition
algorithms have been proposed through time, being the Sequential Minimal Op-
timization (SMO) [18,14,10] one of the most popular methods employed for this
purpose.
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In a multi-category context, the use of these training algorithms is straight
forward when several binary SVMs are used in combination (a multi-objective
approach), as with the One-against-the-Rest scheme [20] and the One-versus-
One scheme [15]. The same is not true when the classifier is a single machine
extending a binary SVM to classify more than two classes (a mono-objective
approach), since the objective function of the machine has changed and the
underlying components in which the solvers relay on are not the same (like the
Karush-Kuhn-Tucker conditions used by the SMO algorithm). In these cases, a
suitable training algorithm needs to be designed to address the single-objective
formulation of this new kind of machines. This is the case of the method of
Weston and Watkins [21], the framework of Crammer and Singer [8,7] and the
All-Distances SVM (AD-SVM) [17], among others. Here we focus on AD-SVMs,
a method recently proposed to formulate the multi-category problem using a
reduced number of constraints.

An efficient solver for the AD-SVMs does not currently exist, and only general-
purpose solvers like the one proposed in [6] have been employed until now, mak-
ing possible the use of this machine only for small problems (no more than 500
training examples). The use of general-purpose solvers gets impractical as the
problem size grows, since training time and memory requirements scale above a
quadratic rate, due to the dense Hessian Matrix issue mentioned above. There-
fore a solver specifically designed for the AD-SVM is needed.

In this paper, a specific algorithm to train the AD-SVM is proposed. Its design,
derivation and components are based in the SMO algorithm for binary SVMs.
The SMO was chosen as base for this new solver as it is a fast and well-known
algorithm commonly used in SVM training. The performance of the new solver
is compared against other multi-category mono-objective machine (described
in [7]) both in terms of accuracy and training time efficiency.

The rest of the paper is organized as follow: An overview of binary SVMs and
the AD-SVM is given in section 2; The components and the general structure of
the new training algorithm for the AD-SVM are described in section 3; Finally,
experiments and conclusions are provided in section 4.

2 Background

Given a set of examples S = {xi : i ∈ I} ⊂ X ⊂ �
n of two classess, C− and

C+, the binary classification problem asks to learn a decision function f(x) :
X → {−1, +1} to distinguish patterns of one class from the other class. SVMs
accomplish this by modeling the boundary between C− and C+ as the hyperplane
H = {x : wT x+b = 0} whose parameters w and b are determined by minimizing
a risk functional [20]. To deal with non linearly separable data, SVMs use non-
linear kernel functions K (xi,xj) instead of the linear inner products xiT xj and
have different ways to treat noisy data through the use of slag variables, being
the C-SVM and the ν-SVM [19] two of the most popular approaches.

The All-Distances SVM (AD-SVM) [17] can be considered the natural exten-
sion of the μ-SVM [9] to multiple-classes. The extension consists in minimizing
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the sum of all pairwise distances among the different K convex hulls (each gen-
erated for one class). Its dual form can be stated as follows:

D(u) : minimize{u}
1
4

∑
i∈I

∑
j∈I

uikijuj (1)

subject to
∑
i∈Ir

ui = 1, r ∈ {1, · · · , K} ∧ 0 ≤ ui ≤ μ, ∀i ∈ I, (2)

where kij = αijkij , kij = K (xi,xj), I is the set of all indexes and Ir is the
subset of indexes belonging only to class Cr. Values αij involved in the definition
of kij are defined as:

αij = yi · y′
j =

{
K − 1, if i ∈ Ir ∧ j ∈ Ir

−1, in any other case, (3)

where yi = [yi1, yi2, . . . , yiK ] , yis =
{

K − 1, if s = r, where i ∈ Ir

−1, in any other case. (4)

Note that the labels are not scalar values but K-dimensional vectors, equiva-
lent to those proposed in the formulation of other multi-category classifier [16].
Note also that, when K = 2, the possible values of αij are the same that those
calculated with the scalar yi labels used within the binary SVM [9]. The for-
mulation lead to one hyperplane wr, one offset br and one ρr for every class
r ∈ {1, · · · , K}:

wr =
1
K

∑
i∈I

αiruixi, br =
−1
K2

∑
i∈I

∑
j∈I

uiαirkijuj , (5)

ρr =
1

K2

∑
i∈I

∑
j∈I

uiαirkijαjruj , where αir =
{

K − 1, if i ∈ Ir

−1, in any other case. (6)

As with the αij values, for K = 2, w1 = w2 = w, ρ1 = ρ2 = ρ and b2 = −b1 =
b, that is the hyperplanes model the half-spaces induced by the binary SVM
hyperplane. With this elements, the decision funtion f (·) used to classify new
examples is given by

f (x) = argmax
r

(
1
K

∑
i∈I

αiruiK (xi,x) + br − ρr

)
. (7)

which again coincides with the binary SVM decision function for K = 2 [9].

3 SMO Algorithm for the AD-SVM

The SMO scheme to train binary SVMs works iterating through a sequence of
steps until convergence is reached. At every step, only two variables are selected
for optimization and the others are temporary frozen. An algorithm of this kind
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requires of the following principal components: an (usually) analytic optimiza-
tion step to calculate new values for two Lagrange multipliers; a selection
strategy (heuristic or not) to choose these two Lagrange multipliers, so that
the convergence to the optimum is as fast as possible in every step; a stopping
criteria to efficiently determine when the optimal (or a near optimal) solution
has been achieved; an update system that efficiently updates the values in-
volved in the selection and optimization of two Lagrange multipliers, every time
that the vector of Lagrange multipliers is changed; and an algorithm that utilizes
all of the later components to achieve the optimal or near optimal solution of
the SVM problem. Here, extensions of each of these components are given to
define a functional SMO solver to train the AD-SVM. We start by defining the
subsets I0r, I1r and I2r

I0r = {i : i ∈ Ir, 0 < ui < μ} , I1r = {i : i ∈ Ir, ui =0} , I2r = {i : i ∈ Ir, ui =μ} ,

and the quantities βup
r and βlow

r

βup
r = min

{
Fi , i ∈ Iup

r := I0r ∪ I1r
}
, βlow

r = max
{
Fi , i ∈ Ilowr := I0r ∪ I2r

}
where Fi =

∑
j∈I

ujkij .

These elements will be useful for the definition of the SMO components.

3.1 Stopping Criteria

At any given moment of the training, it is useful and necesary to know if op-
timality has been reached. As demonstrated in [13] for the binary case and
futher extended in [3] for multi-category instances, when βlow

r − βup
r ≤ 0 for all

r ∈ {1, . . . , K} classes, the algorithm has reached its optimum. Since it is not
always possible to achieve optimality due to the limits of computer arithmetics
and other numerical issues, a tolerance τ > 0 is conveniently defined by the user.
If well defined, the use of this tolerance also allows a faster convergency of the
algorithm at expenses of a low precision loss. With this in mind, a τ -tolerance
optimum is achieved when βlow

r − βup
r ≤ 2τ .

3.2 Selection Strategy

If the algorithm has not achieved optimality, it means that at least one pair of
indexes {i, j} in a class r is violating optimality, i.e. Fj − Fi > 2τ , with i ∈ Iup

r

and j ∈ Ilowr . Most of the time, there will be several of these violating pairs, and
choosing the most violating one at each step will lead to a faster convergence.

Here, we implement an extension for the AD-SVM of the heuristic proposed
in [10] that uses second order information: For the index i= argmint {Ft , t ∈ Iup

r }
of every class r, find index j such that

j = arg max
t

{
b2
it

ait
, t ∈ Ilowr ∧ Ft > Fi

}
(8)

where ait = kii − 2kit + ktt, bit = Ft − Fi (9)
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Select the pair of indexes {i, j} among all K classes such that the factor b2
it/ait

is maximal. Note that a similar strategy can be followed with i = arg maxt{
Ft , t ∈ Ilowr

}
.

If the kernel function is not positive definite, there will be cases in which ait

will adopt problematic values (ait ≤ 0). It has been shown in [5] for binary
SVMs that in these cases the value of ait can be set to a very small positive
value 0 < ε � 1, redefining the problem as convex and thus it can be solved in
the same way as when ait > 0. In the experiments that have been carried for the
AD-SVM, this strategy has worked in the same way as expected for the binary
case.

3.3 Optimization Step

As it is shown in [3], when two Lagrange multipliers ui, uj exist whose indexes
are a violating pair, new values can be analytically calculated in order to achieve
optimality for the problem when all other variables are left constant. Here, we
start by calculating the new Lagrange multiplier for j, as unew

j = uj − bij

aij
. Note

that, since aij and bij were already calculated for selecting the pair {i, j} in (8),
they do not need to be recomputed here. Also note that unew

j needs to be clipped
to satisfy its boundary constraints, that is

unew,clipped
j =

⎧⎨⎩
L, if unew

j ≤ L
unew

j , if L < unew
j < H

H, if unew
j ≥ H

(10)

where L = max {0, (γ − μ)} , H = min {γ, μ} , γ = ui + uj (11)

Now unew
i can be computed as unew

i = γ − unew
j . Since unew

i also needs to ful-
fill boundary constraints, it must be clipped as unew

j was. After this step, the
new Lagrange multipliers unew,clipped

i and unew,clipped
j are returned to the main

algorithm.

3.4 Ft’s Update

As with traditional SMO algorithms, Ft’s values can be updated efficiently after
new values of a pair of Lagrange multipliers are calculated:

Fnew
t = Ft +

(
unew,clipped

i − ui

)
· kit +

(
unew,clipped

j − uj

)
· kjt (12)

3.5 Algorithm Structure

The components of the SMO procedure just defined are organized in algo-
rithm 1.1.

Algorithm 1.1 is a very general implementation of the SMO algorithm. In
practice, the SMO implemented for the experiments of this contribution [2] fol-
lows a scheme similar to those proposed in [18] or [14], where each iteration in
the training process works first by using only the I0r set of each class, and then,
in a second stage, optimality is checked with all remaining indexes. Also, a LRR
cache strategy is used to store kij products.
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Algorithm 1.1. SMO Algorithm for the AD-SVM

1: Initialize u satisfying constraints stated in 2.
2: Calculate Ft, ∀t ∈ I .
3: Find βlow

r and βup
r for each class.

4: while βlow
r − βup

r > 2τ for at least one r ∈ {1, . . . , K} , do
5: For every class r, select i = arg mint {Ft , t ∈ Iup

r }.
6: For the selected i ∈ Ir, select j = arg maxt

{
b2it
ait

, t ∈ Ilowr ∧ Ft > Fi

}
.

7: Select the pair of Lagrange multipliers {ui, uj} with maximal
b2ij

aij
among all

the classes.
8: Calculate

{
unew,clipped

i , unew,clipped
j

}
.

9: Update Ft, ∀t.
10: Find new βlow

r and new βup
r for each class.

11: end while

4 Experiments and Conclusions

Experiments were conducted to measure and compare the classification
accuracy and training runtime of the AD-SVM trained with the proposed SMO
algorithm against the Multi-Category SVM proposed in [7] (MC-SVM).
In order to obtain a platform and implementation independent comparison,
the number of kernel calls1 was used instead of the execution time to mea-
sure runtime complexity. Also, no cooling of the tolerance2 was used in any of
the algorithms.

A RBF Kernel K(xj ,xj) = e(−‖xi−xj‖2/σ2) was used in all the experiments,
with parameter σ. To find optimal values for μ and σ, a grid search was performed
using k-fold cross-validation, with k = 10 folds for relatively small datasets
(Glass, Vowel, Satimage, Shuttle small, Letter small, MNIST small) and k = 5
folds for relatively large datasets (USPS, Letter, Shuttle).

The values tested for hyper-parameters correspond as usual to a regular
logarithmic grid in base 2: for σ it was

{
2−4/2, 2−3/2, . . . , 29/2, 210/2

}
and for

μ,
{
1, 2−(1·log2(ms)/14), . . . , 2−(13·log2(ms)/14), 2−(14·log2(ms)/14)

}
, where ms =

min
(

I1, I2, . . . , IK

)
is the size of the smaller class in the training sets of the

cross-validation folds. The values for μ obey to the observation that values lower
than 2−(14·log2(ms)/14) = 1/ms lead to an infeasible optimization problem, while
values greater than 1 do not change the feasible space. In the case of the MC-
SVM, a parameter B must be set instead of μ. The same values for σ were tested,
with B ∈

{
2−2, 2−1, . . . , 211, 212

}
.

1 The number of kernel calls counts every time a kij product is used in the algorithm,
either being calculated in the moment or retrieved from the cache.

2 The cooling of the tolerance is the iterative refinement of the numerical tolerance
until a desired precision is obtained.



490 D. Candel et al.

The usps [11], Glass, Vowel, Satimage, Shuttle and Letter datasets [1] were
used in their normalized and publicly available versions [4] (this reference also
provides datasets descriptions). The training datasets for Shuttle small, Letter
small and MNIST small are all subsets of 5000 examples randomly selected
from the original datasets. Unlike the others, the Glass dataset does not have a
separated test set. In this case, 5-fold cross-validation with the whole dataset was
used to evaluate test performance. Results obtained with the values of hyper-
parameters selected in the cross-validation procedure are listed in table 1.

Table 1. Experiment Results

Datasets Machine σ B & μ Test Acc. % Kernel Calls

Glass MC-SVM 0.707 0.5 72.89 2.96 × 106

ms = 8 AD-SVM 2.828 0.125 80.61 1.97 × 105

Vowel MC-SVM 0.25 0.25 50.87 7.43 × 105

ms = 43 AD-SVM 2 0.068 44.81 2.97 × 106

Satimage MC-SVM 2 0.5 91.40 2.60 × 109

ms = 374 AD-SVM 2.828 0.034 88.30 4.49 × 107

Shuttle small MC-SVM 2 0.25 99.79 3.46 × 108

ms = 5 AD-SVM 4 0.224 99.71 2.85 × 107

Letter small MC-SVM 2.828 0.25 63.73 7.02 × 1010

ms = 1 AD-SVM 2.828 1 60.82 1.19 × 108

MNIST small MC-SVM 16 1 99.04 5.05 × 108

ms = 407 AD-SVM 32 0.032 93.55 8.14 × 107

USPS MC-SVM 5.657 0.5 95.37 5.48 × 109

ms = 433 AD-SVM 32 0.272 93.21 1.22 × 108

Letter MC-SVM 2.828 0.25 71.31 1.24 × 1012

ms = 1 AD-SVM 2 1 65.66 8.43 × 108

Shuttle MC-SVM 0.707 0.25 99.90 2.26 × 109

ms = 5 AD-SVM 4 0.447 99.89 5.15 × 108

As it can be noted, in most cases the number of kernel calls is bigger for the
MC-SVM than the AD-SVM, with a difference in order of magnitude of at least
1. In the classification performance, the situation changes, exhibiting the MC-
SVM a better classification accuracy most of the time. This is expected, since
the AD-SVM is a light extension of the μ-SVM with a number of constraints
significatively lower than MC-SVM. Nevertheless, note that the difference is not
larger than 6%.

Further work can be done to improve the time performance of the algorithm
applying for example tolerance cooling or dinamic shrinking techniques [12].
The theoretical analysis of the algorithm can be also expanded concerning the
algorithm: We believe that the convergence proof for the binary SMO presented
in [13] can be extended to this multi-category SMO. The same can be said about
the redefinition of the term aij explained at the end of subsection 3.1 to handle
semi-definite or indefinite kernels.
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Abstract. Processing of data recorded by the MODIS sensors on board the 
Terra and Aqua satellites has provided AOT maps that in some cases show low 
correlations with ground-based data recorded by the AERONET. Application of 
SVR techniques to MODIS data is a promising, though yet poorly explored, 
method of enhancing the correlations between satellite data and ground meas-
urements. The article explains how satellite data recorded over three years on 
central Europe are correlated in space and time with ground based data and then 
shows results of the application of the SVR technique which somewhat im-
proves previously computed correlations. Hints about future work in testing dif-
ferent SVR variants and methodologies are inferred from the analysis of the re-
sults thus far obtained. 

Keywords: MODIS, Aerosol Optical Thickness, Earth Observation, Remote 
Sensing, Support Vector Regression. 

1   Introduction 

Remote Sensing allows measuring physical properties of distant objects often on 
dangerous or inaccessible areas where ground-based measurements are unfeasible. 
Using devices installed on board aircrafts or satellites, Remote Sensing applied to the 
Earth Observation makes it possible to monitor the Earth-Atmosphere system through 
the analysis of the interaction of radiation with matter. The signal received from the 
sensors is the sum of several contributions due to scattering, absorption, reflection and 
emission processes. Image processing techniques and specific algorithms allow ex-
tracting (direct measurement) or estimating (indirect measurement) the environmental 
parameters and their characteristics. Active and passive sensors with spectral capabili-
ties ranging from visible to thermal infrared wavelengths are used for a large variety 
of applications for Earth Observation: Agriculture, Atmosphere, Forestry, Geology, 
Land Cover and Land Use, Ocean and Coastal monitoring. 

Aerosol Optical Thickness (AOT) is representative of the amount of particulates 
presented in a vertical column of the Earth’s atmosphere. AOT is largely used in air 
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pollution monitoring applications because Particulate Matter (PM) concentration, one 
of the major pollutants that affect air quality, can be derived from it. Based on devel-
opments of observation technology, nowadays aerosol concentration can be predicted 
by elaboration of data recorded by satellite-based sensors, airborne instruments or 
ground-based measurements. Satellites provide monitoring at global scale, but with 
low temporal frequency and moderated retrieval accuracy. Conversely, ground-based 
measurements have higher precision and temporal frequency, but limits in spatial 
coverage. 

MODerate resolution Imaging Spectrometer (MODIS) is onboard two polar orbit-
ing satellites Terra and Aqua, launched in 1999 and 2002, respectively and operated 
by the National Aeronautic and Space Administration (NASA). The methodology for 
deriving AOT information from MODIS data consists of two main algorithms sepa-
rated for land and ocean [1][2]. Validation of MODIS aerosol retrieval has shown that 
these algorithms perform on ocean better than on land [3]. In theory, this limitation 
occurs over bright surfaces and cloud-contaminated scenes as a result of the reflec-
tance variability of clouds and different land surfaces. These factors strongly affect 
the Dense Dark Vegetation (DDV) approach used to estimate AOT on dark areas 
which usually correspond to pixels of vegetation and bare soil. This limitation was 
also shown in [4] in which AOT maps were validated over different land surfaces to 
point out the impact of the land cover types. 

Data mining approach has recently been investigated to improve quality of aerosol 
monitoring. The application types ranged from classification, forecasting to estima-
tion of aerosol content and properties from different sensors. Aerosol was distin-
guished from cloud in CALIPSO data by using Support Vector Machine (SVM) [5]. 
A series of data mining techniques was applied to analyze aerosol into chemical com-
ponents and then processed their streams to understand aerosol dynamics in [6]. Be-
sides, many studies emphasized on processing time-serial data to give prediction of 
air pollutants by using improved BP neural network [7], SVM [8], ensemble of SVM 
[9], or SVM and wavelet decomposition [10]. In aerosol estimation field, various 
applications of Neural Network (NN) were also considered [11][12]. 

Following this trend, in order to improve the traditional MODIS aerosol retrieval, 
many works proposed the application of data mining techniques on data collected by 
different instruments. Firstly, integrations of ground-based measurements AERONET 
(AErosol RObotic NETwork) and satellite data (MISR and MODIS [13], MODIS 
[14]) were made. Then, NNs techniques were applied on merged data to derive aero-
sol content and properties. This method proved efficiency in dealing with data uncer-
tainties and in improving estimation accuracy which became comparable with that of 
results obtained at ground level. The same approach was mentioned in [15] to correct 
the bias of MODIS Aerosol Optical Depth (AOD) over different land covers by using 
both NNs and Support Vector Regression (SVR). In this work, SVR presented more 
advantages in performance than NNs.  

In this paper we propose a driven-data approach that applies SVR, firstly intro-
duced by Vapnik [16], on MODIS and AERONET data for AOT retrievals. This pro-
posal is motivated by the better performance of SVR with respect to NNs in finding a 
global solution instead of a local one, and in coping with huge and high dimensional 
satellite data. Some similarities can be found in the work done by Vucetic et al. [14] 
in which NNs were applied on AERONET and MODIS (Collection 004) data  
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covering the U.S. continental area, recorded between 2002 and 2004. In our approach, 
we investigated using different prediction methods applied to a different data set: (i) 
the area of interest covered Europe instead of U.S. continental area and (ii) the im-
proved MODIS Collection 005 products [1] were collected from 2006 to 2008. More-
over, AOT for each MODIS pixel sized 10 km is predicted instead of AOT for a box 
of 30x30 km2. This approach is more appropriate for air pollution monitoring over 
urban areas where the assumption of aerosol stableness in an area of 50x50 km2 [17] 
is less appropriate and higher spatial resolution is desirable. 

The data fusion methodology and some details of SVR application are presented in 
section 2. Numerical experiments and their results are discussed in section 3. Finally, 
conclusions are given in section 4, together with hints about future works. 

2   Methodology 

The methodology applied for AOT retrievals based on SVR technique consists of 
three main steps: (i) collecting and processing satellite-based data (MODIS) and 
ground-based sensor measurements (AERONET) over Europe for a period of three 
years, (ii) integrating and combining data from two sources having different temporal 
and spatial resolutions, and (iii) applying SVR technique in form of “instance SVR” 
and “aggregate SVR” [18] for aerosol estimation. 

2.1   Data Sets 

AERONET is a global system of ground-based remote sensing aerosol network estab-
lished by NASA and PHOTONS (Univ. of Lille 1, CNES, and CNRS-INSU) [19]. It 
uses CIMEL Electronique 318A spectral radiometers, sun and sky scanning sun pho-
tometers, to provide AOT retrievals in various wavelengths: 0.340, 0.380, 0.440, 
0.500, 0.675, 0.870, 0.940, and 1.020 µm, in intervals of 15 minutes. Because of high 
accuracy, AERONET data are often used to validate satellite AOT retrievals. 

AERONET data level 2.0, cloud-screened and quality-assured, of 105 sites distrib-
uted in Europe, in 2006, 2007, and 2008, were collected. AOT at 0.500 µm, the clos-
est to MODIS AOT at 0.550 µm, was used to create SVR aerosol retrievals.  

MODIS provides Level 1B Calibrated Geolocation Data Set, presenting a spectrum 
region from 0.415 to 14.235 µm, separated into 36 bands at 1 km, 500 m, and 250 m 
resolutions at nadir. Original MODIS data are pre-elaborated by a software package, 
the most recent version of which is known as “Collection 005” described in detail in 
[1]. One of the most important products of the MODIS Atmosphere algorithms ap-
plied in Collection 005 is the retrieval of aerosol MOD04. It is based on data from 
Terra platform and supports the monitoring of the ambient aerosol optical thickness 
over oceans globally and over the continents. MOD04 products consist of AOT maps 
at seven wavelengths over ocean (0.470, 0.550, 0.670, 0.870, 1.240, 1.630, and 2.130 
µm) and three wavelengths over land (0.470, 0.550, and 0.670 µm). All maps have the 
same spatial resolution of 10x10 km2. Geometry information such as solar zenith 
angle, solar azimuth angle, sensor zenith angle, sensor azimuth angle, and scattering 
angle are also provided in this product. 
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We collected MODIS data in corresponding period of the retrieved AERONET 
data. Reflectance of seven bands, geometry information, and aerosol concentration are 
considered at 10x10 km2 spatial resolution. 

2.2   AERONET-MODIS Combination 

AERONET and MODIS data are products of separate sensors, which causes problems 
of temporal and spatial resolution differences. Data combination aims at obtaining 
data collocated in space and synchronized in time. MODIS data are considered if their 
distances from AERONET sites are within a radius of 30 km, while the contempora-
neous measurements of AERONET instruments are selected and averaged within a 
temporal window of 60 minutes around the satellite overpasses. 

AERONET-MODIS combinations are separated into two sets: instance data set 
and aggregate data set. The first one consists of 66,225 samples, each of which is a 
combination of measurements on a single MODIS pixel with an averaged AERONET 
AOT value satisfying collocation and synchronization conditions. One sample is pre-
sented as a vector including AERONET AOT at 0.500 µm, MODIS geometric data 
(solar zenith angle, solar azimuth angle, sensor zenith angle, sensor azimuth angle, 
scattering angle) and seven MODIS reflectances (0.646, 0.855, 0.466, 0.553, 1.243, 
1.632, and 2.119 µm). The aggregate data set contains 5,289 samples that are combi-
nations of an AERONET AOT, averaged MODIS geometric data and averaged 
MODIS reflectances calculated on all cloud-free pixels around this AERONET site. 
These vectors are stored in the same format as ones in the instance data set. 

2.3   Support Vector Regression 

SVR was applied to instance data set and aggregate data set in order to create differ-
ent data models for AOT retrievals, called instance SVR and aggregate SVR respec-
tively. SVR with epsilon loss function and Radial Basic Function (RBF) kernel pro-
vided by LIBSVM [20] was used. The accuracy was measured on three year data 
cross-validation in which we repeated selections of two year data for training and one 
year data for testing. Root Mean Square (RMS) error and correlation coefficient 
(CORR) were calculated from SVR AOT prediction and AERONET AOT data. SVR 
regularizations were searched in appropriate range with exponentially growing se-
quences. For each case, cross-validation was applied on a training data set and the 
best accuracy was picked. At the end of searching process, the chosen regularizations 
minimized mean square error in the training phase. 

Both instance and aggregate SVR were used to bring out data models for AOT 
prediction at pixels of 10x10 km2. We made experiments on them to investigate their 
accuracy and consuming time. Besides, SVRs were applied separately on different 
land cover types in order to investigate the effect of surface reflectance on aerosol 
retrievals. Concerning the land cover analysis, a spectral rule-based software system, 
called SOIL MAPPER [21], were used to distinguish surface types. This software 
uses reflectances in eight wavelengths (0.66, 0.87, 0.47, 0.55, 1.64, 2.13, 11.03, and 
12.02 µm) to identify 57 different classes, out of which 40 refer to different land 
types. In our experiments a compact classification mode with 12 land cover classes 
was used. Cloud, snow, and unclassified pixels were discarded, whereas the nine 
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remaining classes (see Table 4) were utilized to evaluate the SVR prediction model on 
a land cover basis. A land cover class for each pixel sized 10x10 km2 was determined 
as result of application of the classification system on reflectances averaged from all 
cloudy-free pixels of 1x1 km2 available in this area. 

3   Experimental Results 

Our experiments focused on assessing accuracy of the SVRs’ AOT in comparison 
with AERONET AOT. We applied and considered results obtained by aggregate 
SVR, instance SVR, and MODIS aerosol algorithm at different conditions: by year, 
by season, and by surface type. 

The accuracies of both instance and aggregate SVR estimators are slightly better 
than those of the MODIS algorithm, as summarized in Table 1. Based on RMS error 
and correlation coefficient between predicted AOT and AERONET AOT measure-
ments, averaged in 3 year data, instance SVR achieves the highest accuracy, then 
aggregate SVR follows and finally the MODIS algorithm is. This order is justified by 
the increase of RMS errors (0.077, 0.084, and 0.090, respectively) and the decrease of 
correlation coefficients (0.835, 0.812, and 0.807, respectively). The MODIS and 
SVRs AOT data in 2008 seem to have low quality as shown by the lowest correlation 
with AERONET AOT. However, instance SVR, in this case, still outperforms 
(CORR=0.802) the aggregate SVR (CORR=0.758) and MODIS algorithm 
(CORR=0.764). 

Table 1. MODIS algorithm, Aggregate SVR, and Instance SVR accuracy by year  

Year Obs. MODIS Aggregate SVR Instance SVR 
  RMS CORR RMS CORR RMS CORR 
2006 21,555 0.095 0.831 0.087 0.847 0.086 0.850 
2007 24,251 0.087 0.827 0.081 0.831 0.074 0.853 
2008 20,455 0.087 0.764 0.084 0.758 0.072 0.802 
Total 66,225 0.090 0.807 0.084 0.812 0.077 0.835 

 
Table 2 shows in detail the consuming time of aggregate SVR and instance SVR 

for the above experiment. Executions are tested on a computer with Intel (R) 
Core(TM)2 CPU 6400 @2.13 GHz, 2Gb RAM and Ubuntu 8.10 platform. Instance 
SVR spends about 240 seconds to predict 66,255 data, while aggregate SVR uses 
much smaller amount of time, 26 seconds. This difference is mainly due to the num-
ber of aggregate data set used for training in aggregate SVR less than instance data set 
used in instance SVR (132,522 data compared to 10,778), which induces data models 
with different sizes. The performance time will be meaningful for further SVR appli-
cations that aim at increasing spatial resolution of aerosol retrievals. In fact, with 
10x10 km2 spatial resolution, each MODIS image consists of 135x203 pixels. Increas-
ing spatial resolution up to 1x1 km2, more than 2 million pixels in an image would 
need to be processed. Also, the slow performance of instance SVRs hints at the need 
for further investigations of data selection and application of pruning techniques in 
the training phase. 



 Aerosol Optical Thickness Retrieval from Satellite Observation Using SVR 497 

Table 2. Aggregate SVR vs. Instance SVR in consuming time performance 

Year Obs. Aggregate SVR Instance SVR 
  Training Data Time (s) Training Data Time (s) 
2006 21,555 3,549 7.4563 44,706 66.59 
2007 24,251 3,378 8.9790 42,010 106.69 
2008 20,455 3,851 9.4843 45,806 70.94 
Total 66,225 10,778 25.9196 132,522 244.22 

 
We carried out the same further experiments on data sets separated by seasons and 

surface types to consider effects of meteorological conditions and surface reflectance 
on aerosol retrieval. Data in pairs of years were used for training SVRs, while data on 
the remaining year were classified by seasons and surface classes for testing purposes. 

In autumn period (Oct.-Dec.), aerosol retrieval has the lowest accuracy obtained in 
all algorithms. As shown in Table 3, instance SVR has the most competitive accura-
cies that are better than those of MODIS algorithm in spring (Apr.-Jun.), summer 
(Jul.-Sep.) and autumn (Oct.-Dec.) and slightly worse in winter (Jan.-Mar.). The ag-
gregate SVR presents its weakness for AOT estimation in winter (CORR=0.799). The 
RMS errors of all retrieval algorithms, which are higher in spring and summer, reflect 
the fact that larger AOT values are observed during these periods [2]. 

Table 3. MODIS algorithm, Aggregate SVR, and Instance SVR accuracy by season 

Season Obs. MODIS Aggregated SVR Instance SVR 
  RMS CORR RMS CORR RMS CORR 
Jan. - Mar.  9,014 0.074 0.828 0.073 0.799 0.066 0.819 
Apr. - Jun. 21,885 0.094 0.824 0.088 0.814 0.082 0.837 
Jul. - Sep. 24,465 0.096 0.791 0.089 0.798 0.081 0.825 
Oct. - Dec.  10,452 0.079 0.728 0.073 0.733 0.071 0.742 

 
MODIS used two algorithms for land and ocean because of different physical in-

teractions between aerosol and matters. Among all surface types listed in Table 4, 
only the water class refers to water pixels while remaining surfaces present the land 
pixels. MODIS ocean algorithm gained high accuracy (RMS=0.067, CORR=0.822), 
but it can be further improved by instance SVR (RMS=0.062, CORR=0.850). Out of 
land surface types, four classes Peat Bog, Evergreen Forest, Agricultural Areas and/or 
Artificial non Agricultural, Areas Scrub/Herbaceous Vegetation have a small number 
of samples, so their results should not be considered. In all remaining cases, instance 
SVR is more accurate than the MODIS algorithm. The biggest improvement can be 
observed at Artificial Surfaces and/or Open Spaces with little or no Vegetation sur-
face, which is consistent with results of previous studies that showed the poor per-
formance of the MODIS algorithm on bright surfaces [4]. 

Aggregate SVR has the worst accuracy on water pixels. It can be explained as re-
sult of the small contribution of water pixels on averaged data used for training ag-
gregate SVR model, that didn’t occur with instance SVR. This phenomenon  
influences pixels belonging to other surface types except Deciduous Forest and/or 
Agriculture Area class that has a large data set and therefore can be represented well 
by averaged values. 
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Table 4. MODIS algorithm, Aggregate SVR, and Instance SVR accuracy by surface 

Classes Obs. MODIS Aggregate SVR Instance SVR 
  RMS CORR RMS CORR RMS CORR 
Water 2,981 0.067 0.822 0.071 0.799 0.062 0.850 
Peat Bogs 91 0.112 0.622 0.151 0.527 0.129 0.550 
Deciduous Forest 2,734 0.086 0.692 0.072 0.681 0.065 0.700 
Evergreen Forest 19 0.054 0.489 0.065 0.584 0.053 0.714 
Deciduous Forest and/or 
Agricultural Area 

34,316 0.080 0.824 0.075 0.824 0.702 0.833 

Agricultural Areas and/or 
Artificial non Agricultural Areas 

25 0.103 0.895 0.086 0.926 0.080 0.950 

Scrub/Herbaceous Vegetation 
and/or Agricultural Areas 

5,302 0.082 0.825 0.083 0.806 0.075 0.829 

Artificial Surfaces and/or Open 
Spaces with little or no 
Vegetation 

5,961 0.096 0.746 0.085 0.769 0.078 0.808 

Scrub/Herbaceous Vegetation 134 0.060 0.892 0.075 0.871 0.066 0.882 

4   Conclusion and Future Works 

In this paper an application of SVR technique on MODIS and AERONET data to 
predict AOT information has been presented. Satellite and ground-based data cover-
ing the European areas from 2006 to 2008 were considered. Then, SVRs were applied 
on instance data set and aggregate data set to make different non-linear regressions for 
aerosol retrievals. The experiment results show that SVR approach is competitive to 
MODIS algorithm and, especially, can improve prediction accuracy over areas having 
no or little vegetation. Out of two SVR models, instance SVR outperforms the aggre-
gate SVR, but more improvements should be investigated to deal with training data 
overload and time execution. 

In future, we will investigate the instance SVR more deeply in order to overcome 
the mentioned disadvantages. Also, this approach will be applied to estimate AOT at 
1x1 km2 spatial resolution, which is suitable for local-scale monitoring applications. 
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Abstract. We present a supervised learning classification method for
model-free fault detection and diagnosis, aiming to improve the mainte-
nance quality of motor pumps installed on oil rigs. We investigate our
generic fault diagnosis method on 2000 examples of real-world vibra-
tional signals obtained from operational faulty industrial machines. The
diagnostic system detects each considered fault in an input pattern using
an ensemble of classifiers, which is composed of accurate classifiers that
differ on their predictions as much as possible. The ensemble is built
by first using complementary feature selection techniques to produce a
set of candidate classifiers, and finally selecting an optimized subset of
them to compose the ensemble. We propose a novel ensemble creation
method based on feature selection. We work with Support Vector Ma-
chine (SVM) classifiers. As the performance of a SVM strictly depends
on its hyperparameters, we also study whether and how varying the SVM
hyperparameters might increase the ensemble accuracy. Our experiments
show the usefulness of appropriately tuning the SVM hyperparameters
in order to increase the ensemble diversity and accuracy.

Keywords: Fault diagnosis, feature selection, feature extraction, clas-
sifier ensemble, Support Vector Machine, multi-label classification.

1 Introduction

The detection and diagnosis of faults in industrial machines is advantageos for
economical and security reasons. The objective is to repair damaged components
during planned maintanence, which minimizes machinery standstill besides pro-
viding more secure operations.

Two principal approaches to create a fault predictor exist: model-based tech-
niques and model-free techniques. The model-based line of research relies on an
analytical model of the studied process, involving time dependent differential
equations [1]. However in real-world processes the availability of an analytical
model is often unrealistic or inaccurate due to the complexity of the process. In
this case model-free techniques are an alternative method [2].

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 500–508, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An Overproduce-and-Choose Strategy to Create Classifier Ensembles 501

We present a model-free method based on the supervised learning [3] classi-
fication paradigm as the primal mechanism to automatically generate the fault
classifiers. This presents as advantage the requirement of a minimum of a priori
knowledge about the plant, as the fault predictor is automatically defined based
on training data. We work with 2000 examples of vibrational signals obtained
from operational faulty motor pumps, acquired from 25 oil platforms off the
Brazilian coast during five years. Human experts provided a label for every fault
present in each acquired example.

We focus on the horizontal motor pump with extended coupling between the
electric motor and the pump. Accelerometers are placed at strategic positions
along the main directions to capture specific vibrations of the main shaft. To
extract features, we apply well known signal processing techniques like Fourier
transform, envelope analysis based on the Hilbert transform [9] and median
filtering. So the features correspond to the vibrational energy in a predetermined
frequency band. The cardinality of an extracted feature vector G is 95. Several
faults can simultaneously occur in a motor pump, which increases the diagnosis
complexity. We build a predictor for detecting six fault categories in an input
pattern: rolling element bearing failures; pump blade unbalance; hydrodynamic
fault; shaft misalignment; mechanical looseness; and structural looseness.

The novelty of this paper is two-fold. First, we present a generic model-free
diagnosis procedure for diagnosing faults using features extracted from the ma-
chine signals. Each fault is predicted by a distinct ensemble [7] of support vector
machine (SVM) [4] classifiers. We propose a novel ensemble creation method
well suited to fault diagnosis as suggested by our experiments. Second, we work
with data from real-world operating industrial machines instead of using data
from a controlled laboratory environment which is almost always found in the
literature. That is highly desirable, as laboratory hardware cannot realistically
represent intricate real-world fault occurrences.

The remainder of this paper is organized as follows. Our model-free approach
to fault diagnosis based on feature extraction, feature selection and ensemble
classification is explained in section 2. Section 3 outlines the proposed ensemble
creation method for dealing with real-world fault diagnosis. In section 4 we
show the experimental results achieved by the studied faults predictors using
the acquired database. Finally, section 5 draws conclusions and points out to
future research.

2 Model-Free Approach to Fault Diagnosis

We formulate the fault diagnosis problem as a multi-label classification task
in which several labels (fault classes) may be simultaneously assigned to an
example. Each fault category is represented by a binary predictor, diagnosing
the presence or absence of that individual fault in an input pattern. Therefore
the problem at hand is the one of creating accurate binary predictors.

We work with the support vector machine [4] (SVM) classifier which is cur-
rently considered one of the most powerful machine learning approaches for solv-
ing binary classification problems. We use a widely adopted SVM model, namely
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a Radial Basis Function kernel and the C-SVM classification architecture [3].
So we work with two hyperparameters, namely the regularization parameter C
which controls the model complexity and the kernel parameter γ which controls
the nonlinear mapping of the features. As the performance of a SVM strictly de-
pends on its hyperparameters, we use an effective method to tune them, namely
grid search combined with cross-validation on each candidate parameter vector.

To increase the accuracy achieved by an individual classifier, the research in
classifier ensembles [7] indicates that a better generalization power is achieved
when the class of an input pattern is predicted by a set of very accurate classifiers
that collectively disagree on their predictions as much as possible. The traditional
approach to create an ensemble is to vary the training data set used by the
classifiers (see [5] for a reference on SVM ensembles). However such an approach
usually is not well suited to SVMs, as a small variation on the training data set
tends to cause a small variation on the SVM decision function. On the other
hand, varying the SVM parameters does decisively change the SVM decision
function [10]. This is useful for ensemble creation because the divergence among
the SVMs in an ensemble increases, and so does its accuracy [8].

Another useful approach for ensemble creation is to vary the feature set of the
classifiers (see [11] for a reference on fault diagnosis). But at the present time
the role of SVM parameters in feature-based ensembles of SVM classifiers has
not been investigated yet. In this work we propose a novel ensemble creation
method based on feature selection, and study whether and how varying also the
SVM hyperparameters might increase the ensemble accuracy.

3 Feature-Based Classifier Ensembles

In this work we propose a novel method for creating an ensemble. This method
presents as advantages simplicity and a relatively low computational cost. Be-
sides, it is well suited to fault diagnosis as it is based on feature selection, an
approach that allows the crucial features to be detected and prioritized.

3.1 Feature Selection

Feature selection [6] is the process of choosing an optimized subset of features for
classification from a larger set. In this work we employ the wrapper approach in
which the learning algorithm itself is used to access the saliency of the candidate
feature sets. So the selection criterion J used to estimate the performance of a
candidate feature set Xk is the Area Under the ROC Curve (AUC) achieved by
a classifier which uses Xk (estimated by cross-validation).

As an exhaustive search is not feasible in general we work with suboptimal
search strategies. We work with two complementary hill-climbing searches. The
Sequential Forward Selection (SFS) search method starts with an empty set of
currently selected features, and at each step one feature is definitely included
in it. Consider that k features have already been selected and included in the
feature set Xk. To include one more feature in Xk, each non-selected feature
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ξj must be tested individually together with the already selected features and
ranked according to the criterion J , so that the feature ξh which provided the
highest criterion J is selected and included in Xk. The Sequential Backward Se-
lection (SBS) search method operates in a similar way as SFS, but SFS includes
features, while SBS removes features. SBS starts with every feature already
included within the set of selected features Xk. At each step, one feature is defi-
nitely removed from the set, namely the one that provided the highest criterion
J with its individual exclusion from Xk.

3.2 Best Selected Feature Subsets Ensemble Creation

The proposed ensemble creation method, which we call Best Selected Feature
Subsets (BSFS), is based on a two-stage overproduce-and-choose [7] strategy. It
operates by initially using complementary hill-climbing feature selection methods
to build a large set L of classifiers that are candidates to constitute the ensemble,
and further using a hill-climbing search to select just a reduced, optimized subset
of classifiers E from L.

To combine the individual predictions of the classifiers in an ensemble into a
single decision we use an effective, simple method, namely averaging the classi-
fication scores given to an input pattern by the classifiers in that ensemble.

The classifier overproduction stage. To create the set L of candidate clas-
sifiers to compose the ensemble, we first build a set of feature sets Ξ composed
of several promising feature sets. Each of these feature sets uses features from
the global pool G of available features. We perform m distinct sequential feature
selection searches, {S1, . . . ,Si, . . . ,Sm}, so that the feature sets in Ξ are deter-
mined by taking each produced feature set XSi

k which uses a number k of features
selected by a search Si, for every combination of k and i with k = 1, 2, . . . , |G|
and i = 1, 2, . . . , m. To obtain the feature sets, if the search Si operates in a for-
ward way (for instance SFS), we require Si to select a total of |G − 1| features.
On the other hand if the search Si operates in a backward way (for instance
SBS), we require Si to select a total of 1 feature.

Then the set of candidate classifiers L is defined by building, for each feature
set XSi

k in the set Ξ, a classifier cj that uses this feature set, and we also
automatically tune the hyperparameters of this classifier cj aiming to increase
its accuracy. So L is composed of every produced cj.

The classifier selection stage. After building the set of candidate classifiers
L, we use a method to select an optimized set of nc classifiers to compose the final
ensemble E , selecting from L. For performing this ensemble classifier selection
ECS(L, nc) we employ the Sequential Forward Selection (SFS) search. We define
the criterion J of a particular candidate subset of classifiers to compose the
ensemble (a subset of L) as the AUC on training data achieved by this candidate
ensemble. The score that a candidate ensemble gives to a training pattern x can
be obtained by averaging the scores given to x by the classifiers in that ensemble
(the scores of the training data are estimated by cross-validation).



504 E.D. Wandekokem, F.M. Varejão, and T.W. Rauber

As we use the SFS search to select the classifiers in the ensemble, the first se-
lected classifier cl to compose the ensemble is the one with the highest individual
cross-validation AUC. Following, each next selected classifier is the non-selected
one which enables the highest criterion J with its individual inclusion in the
current ensemble. When nc classifiers are selected, the inclusion process stops,
so the ensemble E is finally built.

4 Experimental Results

To access the effectiveness of the studied classification approaches, we per-
formed a stratified 5×2 cross-validation [7]. So in the experiments we performed
five replications of a 2-fold cross-validation. In each replication, the complete
database of 2000 examples was randomly partitioned, in a stratified manner, into
two sets each one with approximately 1000 examples (the stratification process
preserves the distribution of the six fault categories between both sets). Then in
each replication each considered classification model for creating the predictor
of a fault was trained on a set and tested on the remaining one; so after the five
replications we averaged the ten distinct test accuracies it achieved.

4.1 Studied Classification Approaches

For each of the six considered faults, we studied four different classification
models for creating the predictor of that fault. Our objective is to evaluate
the efficiency of feature-based SVM ensembles besides studying an approach for
varying the hyperparameters of the SVM classifiers in an ensemble.

For the studied classification models based on the proposed BSFS ensemble
creation method, to build the set L of candidate classifiers we ran four distinct
feature selection experiments {S1, . . . ,S4}, which were: the SFS search using the
SVM hyperparameters values (C = 8.0, γ = 0.5) for building SVMs to estimate
the selection criterion (that was the AUC estimated by 10-fold cross-validation);
SFS using (C = 2.0, γ = 8.0); SBS using (C = 8.0, γ = 0.5); and SBS using
(C = 2.0, γ = 8.0). Then for each produced feature subset XSi

k (obtained by
using, for each Si, each number of selected features from k = 1 to k = 95) we
built a SVM classifier to compose L. In order to select a subset E of classifier
from L to compose the ensemble, we set the desired ensemble size as nc = 10 as
we observed a tendency of an AUC decrease using a larger set.

The SVM classification model. We studied the effectiveness of a single SVM
which used as feature set the complete global pool of features G. We used the
grid-search parameter optimization method to tune its hyperparameters. We
refer to this classification model as SVM.

The BSFS-n classification model. In this experiment we aim to get an insight
into the effectiveness of the proposed ensemble creation method to generate
a feature-based ensemble, without varying the SVM hyperparameters of the
classifiers. So after performing the four feature selection experiments, we built
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every SVM in the set of candidate classifiers L using the hyperparameters values
C = 8.0, γ = 0.5 (which usually provided accurate SVMs). So the selected SVMs
in the final ensemble E also used C = 8.0, γ = 0.5. We refer to this classification
model as BSFS-n.

The BSFS-t classification model. We studied the usefulness of directly tuning
the SVM hyperparameters of the classifiers in an SVM ensemble, aiming to
increse the individual accuracy of each of those SVMs. So we used the grid
search method to tune the hyperparameters of each SVM in an ensemble initially
defined by BSFS-n. We refer to this classification model as BSFS-t.

The BSFS-o classification model. Finally we evaluated an ensemble in which
we used the grid search method to tune the hyperparameters of every SVM in
the set of candidate classifiers L. It is expected that the subsequent selection
process actively searches for a set of diverse SVMs which differ on their feature
set and also on their SVM hyperparameters, therefore composing a more diverse
and accurate ensemble. We refer to this classification model as BSFS-o.

4.2 Misalignment Predictor Overproduced SVMs

We present some graphs related to the construction of the misalignment pre-
dictor, for the first pair of train-test data of the 5 × 2 cross-validation process.
Figures 1 and 2 present, respectively to the BSFS-o and BSFS-n classification
models, the test data AUC achieved by each produced SVM in the set L. It
can be seen that the AUC value individually achieved by the SVMs presented
much more variation among them for the BSFS-o model (in figure 1) than for
the BSFS-n model (in figure 2), as even for similar feature sets (with a similar
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Fig. 1. AUC on test data achieved by the SVMs in the set L of candidate classifiers,
for the BSFS-o classification model. For comparison we also show as a horizontal line
the test data AUC achieved by the final ensemble.
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Fig. 2. AUC on test data achieved by the SVMs in the set L of candidate classifiers,
for the BSFS-n classification model

number of features) the AUC value considerably changed. This suggests that
BSFS-o is able to produce more diverse SVMs than BSFS-n due to the different
hyperparameters values that are used.

4.3 5 × 2 Cross-Validation Estimation Results

Table 1 presents, for each considered fault, the percentage of negative class (non-
faulty) data, and also the accuracy and AUC estimated on test data by the

Table 1. Class distribution and 5x2 test data accuracy, AUC

Considered
fault classifier

Percentage
of negative
class data

The
SVM
model

The
BSFS-n
model

The
BSFS-t
model

The
BSFS-o
model

Misalignment 57.4% 75.9%
0.829

77.8%
0.851

77.5%
0.855

79.3%
0.872

Bearing 64.3% 83.4%
0.909

86.5%
0.932

86.7%
0.933

88.0%
0.945

Unbalance 75.1% 81.5%
0.836

82.4%
0.861

82.6%
0.867

83.1%
0.882

Hydrodynamic57.6% 84.0%
0.912

85.9%
0.928

85.8%
0.929

86.5%
0.936

Structural
looseness

78.8% 86.7%
0.873

86.9%
0.877

87.2%
0.881

87.8%
0.919

Mechanical
looseness

89.0% 92.9%
0.878

93.0%
0.880

93.1%
0.889

93.5%
0.901
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5×2 cross-validation estimation process, individually achieved by each considered
classification model for creating the predictor of that fault.

5 Conclusions and Future Work

In this paper we presented a data-driven supervised learning classification method
for performing real-world fault diagnosis. We proposed a novel approach for cre-
ating ensembles of SVM classifiers based on the variation of the feature sets and
also the SVM hyperparameters.

We focused on the role of SVM parameters in feature-based SVM ensembles.
Our experiments show that tuning the hyperparameters of each candidate SVM
to compose the ensemble, aiming to increase its individual accuracy, enables the
creation of a more accurate ensemble, as an optimized subset of SVMs might be
selected to finally constitute the ensemble. In this case the ensemble is composed
of accurate SVMs which are as divergent as possible due different feature sets and
also SVM hyperparameters. In opposition to that, our experiments show that
the ensemble accuracy gain is lower if that process of hyperparameters tuning
is only performed in an already defined ensemble. This suggests that, to create
a more accurate ensemble, the divergence among the produced classifiers should
be taken into account during the process of varying the SVM hyperparameters.

We intend to acquire more real-world data, from different machines and also
from more sources than just vibrational signals, which increases the classifica-
tion accuracy as the features are extracted from complementary information
sources. Thus we plan to develop a multiparametric diagnostic system, which
uses vibration signals complemented with electrical signals such as current and
power.
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Abstract. This paper presents a Semi-Supervised Feature Selection Me-
thod based on a univariate relevance measure applied to a multiobjective
approach of the problem. Along the process of decision of the optimal
solution within Pareto-optimal set, atempting to maximize the relevance
indexes of each feature, it is possible to determine a minimum set of
relevant features and, at the same time, to determine the optimal model
of the neural network.

Keywords: Semi-supervised, feature selection, Pearson, Relief.

1 Introduction

In recent years, especially in the fields of bioinformatics and web-based infor-
mation retrieval, the problem of Semi-Supervised Learning [6] (SSL) has gained
increased interest. Broadly speaking, the problem involves the construction of
classifiers with very limited labeling information and large amount of unlabeled
data. Particularly in these areas, new samples are easily generated but model
induction from input-output data is faced with scarce data due to the high cost
for labeling. Due to the availability of a large amount of untagged input data, the
question that arises is whether to use or not such a huge amount of information
in model induction.

The general problem is characterized by the induction of a model from the
labeled dataset DL = {xi, yi}NL

i=1 considering also the structural information con-
tained in the unlabeled set DU = {xi}NU

i=1
1. The approaches for such a problem

usually involve jointly solving the supervised problem defined by DL and the
unsupervised one defined by DU [1,4].
1 NL and NU are, respectively, the sizes of the labeled and unlabeled datasets, xi is

the ith observation and yi is the class label of ith observation.
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Feature selection in such a framework is also faced with the same problem of
dealing with small input-output samples under the availability of large amounts
of untagged data, so the problem should also be handled in both fronts. Clearly,
unsupervised feature selection methods [12,7] could be applied to the whole
dataset DL ∪ DU , but disregarding the labels yi ∈ DL could represent loss of
(available) information. Therefore, Semi-Supervised Feature Selection (SSFS) is
also faced with the problem of selecting features by considering both datasets
DL and DU [24,21,3]. In addition, the Supervised Learning (SL) problem char-
acterized by DL, involves the many issues related to supervised learning, such
as minimizing both the empirical and the structural risks of the model [22]. Fea-
ture selection with embedded [3] or wrapped [14] models should also take into
consideration such general issues in order to guarantee reliability in the search
for representative models.

In this paper, we present a new SSFS method that allows both the selec-
tion of a classifier from a set of neural networks candidate solutions generated
by a multi-objective (MOBJ) learning method [17] and the selection of relevant
features for such a model. The Pareto-set solutions of the MOBJ method are ob-
tained according to the general statistical learning principles [22], by minimizing
both the empirical and the structural risks, represented by the sum of squared
errors

∑
e2 and the norm of the neural network weight vectors ||w|| [17]. Once

the Pareto-Optimal solutions are generated in a supervised manner, by consid-
ering only DL, they also yield labels for DU , since each Pareto-Optimal classifier
is valid in the whole input domain. Therefore, for each Pareto-set solution Sk,
there is a labeling Dk

U{xi ŷk
i }NU

i=1 for DU . The aim of the feature selection method
is to find the optimal solution S∗ that maximizes the separability of DL ∪ Dk

U ;
the features with the highest relevance indexes (RI) are then selected.

The method can be regarded both as Semi-Supervised Learning (SSL) and
as SSFS, since labeled and unlabeled data are used for both model and feature
selection. The final classifier selected is the one that maximizes the RI of both
the labeled and unlabeled data and the features selected are those that yield the
highest RI.

In this paper, the general idea of the method is presented and the obtained
results are very consistent as discussed at the end. The general organization of
the paper is as follows. Section 2 deals with the Semi-supervised Learning and
Feature Selection; Section 3 aboard the Multi-objective learning and section 3.1
presents the proposed method. After that the results are shown and a discussion
and conclusions take place.

2 Semi-Supervised Learning

In supervised learning the methods need labeled data for training, however, la-
beling can be difficult, expensive and time consuming.The reason for that lies in
the frequent requirement of specific human experience efforts to label patterns.
In contrast, unlabeled data can be easy to obtain. In order to handle both types
of information, there are many SSL methods in the literature, however, most
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algorithms are based on a pre-established assumption about the unlabeled data,
such as data set contiguity or low density in the margin region [6, Introduc-
tion] [2,9]. The assumption usually imposes a strong bias in the kind of solutions
that may be achieved by the algorithm, although it is an important principle to
compensate the missing labeling information.

Recent works in the field can be mentioned like the one in [23] where labeled
and unlabeled data are integrated using the clustering structure of unlabeled
data as well as the smoothness structure of the estimated class priors. In [15]
the authors combined transductive inference with the Multi-relational data min-
ing (MRDM) classification. Other interesting work is presented in [20], where
authors applied transductive learning to K-Nearest Neighbors (KNN). A long
list of references in the area can be found in [13].

The algorithm described in this paper is based on the separability assumption
between classes. The decision making procedure is based on a relevance index
for features that estimates separability. A restricted set of Pareto-Optimal [5]
solutions is obtained from the labeled data and a decision making procedure is
accomplished in order to select the one that maximizes the relevance index over
labeled and unlabeled data.

2.1 Semi-Supervised Feature Selection

Semi-supervised feature selection is based on the same principles of SSL. The
goal is, therefore, to select features in the framework of a very small number
of labeled data and a large number of unlabeled samples. It is clear, however,
that feature selection does not depend uniquely on labeled data, since redun-
dancy elimination methods can be applied to the whole dataset regardless of
any existing labels [16]. Nevertheless, in order to estimate a relevance index
for features, a quantitative measure of how an individual feature or a group of
features discriminates the likelihood of classes, should be considered. Fischer
Linear Discriminant [8] and Relief [11] are examples of such Supervised Fea-
ture Selection approaches. In the absence of labels, one may search for some
structural information in the data in order to accomplish Unsupervised Feature
Selection [12,16]. The use of information coming from both sources is the goal of
Semi-Supervised Feature Selection (SSFS), which has been the subject of many
recent publications [24,21,3].

3 Multi-Objective Learning

It is well known that learning algorithms that are based only on error minimiza-
tion do not guarantee good generalization performance models. In addition to the
training set error, some other network-related parameters should be adapted in
the learning phase in order to control generalization performance. The need for
more than a single objective function paves the way for treating the supervised
learning problem with multi-objective optimization (MOBJ) techniques [19].
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Usual approaches explicitly consider the two objectives of minimizing the sum
of squares error and the norm of the weight vectors. The learning task is car-
ried on by minimizing both objectives simultaneously, using vector optimization
methods. This leads to a set of solutions that is called the Pareto-optimal set
[5], from which the best network for modeling the data is selected. Finding the
Pareto-optimal set can be interpreted as a way for reducing the search space to
a one-dimensional set of candidate solutions, from which the best one is to be
chosen. This one-dimensional set exactly follows a trade-off direction between
flexibility and rigidity, which means that it can be used for reaching a suitable
compromise solution [19].

The decision-making strategy from the Pareto-set is clearly described by a
third objective function, such as validation error or separation margin, that
also needs to be optimized. The choice of the decision-making objective function
defines the kind of solution that one aims to obtain. The strategy described in this
paper aims at selecting the solution that maximizes the separability of classes,
measured by the Pearson’s Correlation Coefficient [18], as will be described in
the next section.

3.1 Multi-Objective Semi-Supervised Feature Selection
(MOBJ-SSFS)

In general, the MOBJ learning problem can be defined according to the
Equation 2

w∗ = arg min
1
n

n∑
k=1

(dk − y (w, xk))2 (1)

Subject to : ‖w‖ ≤ λi

where w and w∗ are respectively the weight and the optimal weight vectors, n is
the number of observations, dk is the expected class label of observation k, yk is
the class label found by the neural network and λi is the norm constraint value.

Basically, what we do is the following:

– train a Multi-Layer Perceptron with the labeled set DL, using the ellipsoid
method [25] to solve the MOBJ problem described above, for different values
of λi. This procedure will generate a Pareto-optimal set of solutions, each
one representing a different classifier;

– for each different classifier:
• Label DU ;
• Calculate Pearson’s RI for all features of set DL ∪ DU ;

– Select the best solution according to one of two strategies discussed ahead

For each solution in the Pareto-set a ranking of features is obtained. The in-
terpretation of the feature ranking information is accomplished in such a way
that the solution that yields a better class separation according to Pearson’s
correlation coefficient is selected.
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We would like to select the solution that maximizes RI, however, there is no
guarantee that there is a single solution that jointly maximizes RI for all fea-
tures, so the solution selected is the one that maximizes the majority of features
(Strategy 1). In addition to selecting a solution from the Pareto-set, this strategy
also comes-up with a ranking of features, that is obtained considering DL ∪DU

and classifier’s performance resulted from MOBJ learning. SSFS can now be
accomplished by taking into consideration the resulting ranking of features. An
alternative strategy is to select the solution that maximizes the most relevant
features among all the Pareto-set solutions (Strategy 2).

4 Results and Discussions

A Multi-Layer-Perceptron (MLP) Neural Network (NN) was trained with the
MOBJ algorithm described in the previous sections for the Wisconsin Breast
Cancer data from the UCI repository. The data set has 683 samples (patients)
with 9 features each one. In order to observe the approach for different propor-
tions of labeled and unlabeled data, the model was trained 30 times for different
values of (ρ = NL/NU ), as can be seen in Figures 1 and 2. The results are
presented for the two selection strategies (Strategies 1 and 2) described in the
previous paragraph. A benchmark result is also presented in the two graphs for
comparison purposes. It is always the lowest curve in the graph (smaller error)
and was obtained by selecting each solution from the prior knowledge of the
correct labels of all patterns.

Figure 2 shows the absolute classification errors for different features sets. The
set composed by features 2,3 and 6 (S1 = {F2, F3, F6}) was selected by the MOBJ-
SSFS method. The set S2 = {F1, F4, F5, F6, F8} was selected by FS-redundancy
method [16] and set S3 = {F1, F3, F6, F8} was selected by RELIEF [10].

The proposed method has an interesting property: while it performs feature
selection it also yields Pareto-set selection, i.e. one can use this method also as a
decision-making strategy in a MOBJ learning. As expected, the larger the labeled
set size the smaller the classification error. The classification errors of networks
trained with features selected by recurrence in the highest Person’s index posi-
tions, and trained networks chosen by Maximum Pearson criteria, are close and
have similar performance for different values of ρ. In other words, training the
MLP with feature set S1 = {F2, F3, F6} leads to results very close to the bench-
mark, regardless of the proportion between labeled and unlabeled data. It’s also
interesting to notice that the average final classification errors with the reduced
data set S1 has lower variance than the obtained with Strategy 1.

Relief RI [10] was also calculated for each possible combination of features
subsets in order to identify which are the features that in presence of other
combinations of features are always well ranked. The results are very consis-
tent with MOBJ-SSFS. Subset S1 is well ranked, i.e. even in the presence of
one or more features they receive the highest relief’s indexes. Depending on Re-
lief’s parameter k other subset of features stands (S3), and it’s considered in our
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Fig. 1. The solid curve shows the real absolute classification error for the entire data
set (samples and features) after training MLP with each amount of NL defined by
ρ. The dash dot one shows the error obtained by solution whose majority of features
reaches max Pearson’s index. The dot curve shows the error after training MLP using
only features 6,2 and 3 that mostly has the three higher indexes in each solution of
Pareto.
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results. However, the subset S1 of features perform better. Features 2,3 and 6
in S1 are respectively uniformity of cell size, uniformity of cell shape and Bare
nuclei. Features 1 and 8 are Clump Thickness and Normal Nucleoli.

The method proposed here should not be regarded as a wrapper nor embedded
method since it does not use directly the classification results to select model
parameters. A MLP was used, although other possible approaches like Support
Vector Machines can be applied. The same holds for the rank metric used. Here
we applied the Pearson’s correlation coefficient because of its simplicity and
because it is simpler to manipulate as an univariate method, but other metrics
like Relief or Fischer score can also be applied.

5 Conclusions

The general concepts of a new SSFS method was presented. The results indicated
that the selected features are consistent leading to coherent results for model se-
lection. One interesting issue is that even for small values of ρ, the method was
capable to select the feature subset S1 leading to good classification results and
with good stability, when compared to other subsets and even when compared
with the results considering all features together. Finally, the ability of choos-
ing one solution from MOBJ Pareto-set, when performing feature selection, is
an interesting characteristic of the presented method, since it integrates model
selection and feature selection under the frameworks of semi-supervised learning
and statistical learning theory.
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Abstract. This paper explores the usage of the area (Az) under the Receiver 
Operating Characteristic (ROC) curve as error measure to guide the training 
process to build machine learning ANN-based classifiers for biomedical data 
analysis. Error measures (like root mean square error, RMS) are used to guide 
training algorithms measuring how far solutions are from the ideal classifica-
tion, whereas it is well known that optimal classification rates do not necessari-
ly yield to optimal Az’s. Our hypothesis is that Az error measures can guide  
existing training algorithms to obtain better Az’s than other error measures. 
This was tested after training 280 different configurations of ANN-based clas-
sifiers, with simulated annealing, using five biomedical binary datasets from the 
UCI machine learning repository with different test/train data splits. Each ANN 
configuration was trained both using the Az and RMS based error measures. In 
average Az was improved in 7.98% in testing data (9.32% for training data) 
when using 70% of the datasets elements for training. Further analysis reveals 
interesting patterns (Az improvement is greater when Az are lower). These re-
sults encourage us to further explore the usage of Az based error measures in 
training methods for classifiers in a more generalized manner.  

Keywords: ROC Curves, Artificial Neural Networks, Machine learning Classifiers, 
Biomedical Data. 

1   Introduction 

After preliminary data preparation, pattern recognition systems consist of two major 
stages: (1) feature extraction and selection and (2) classification. This means that a set 
of features is extracted from the pattern to be recognized and then classified into one 
of the possible classes. To achieve high recognition accuracy, the feature extractor is 
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required to discover salient characteristics suited for classification and the classifier is 
required to set class boundaries accurately in the feature space. Progress made in 
sensor technology and data management allows researchers to gather datasets of ever 
increasing sizes [1].   

The integration of biomedical information has become an essential task for health 
care, biology and biotechnology professionals and researchers. Integration is therefore 
much more than a plain collection of digital biomedical data. Homogenization of data 
description and storage, followed by normalization across the various experimental 
conditions would be a prerequisite to enable procedures of knowledge extraction [2].  

The area under a ROC curve (or Az [3]) is a decisive factor used in many applica-
tions to measure classifier quality (performance). However, it is known that optimal 
classification rates do not necessarily yield to optimal Az’s [4] and a few attempts 
have tried to use Az in optimization problems [5-6]. This paper explores the usage of 
the ROC Az as error measure to guide the training process to build machine learning 
ANN-based classifiers for biomedical data analysis. Our hypothesis is that by doing 
this, we will obtain better Az’s than those obtained through other error measures. 

This paper is structured as follows. Section 2 establishes the theoretical back-
ground of this work. Section 3 describes the technological framework used to experi-
mentally validate our hypothesis on a Grid infrastructure. Section 4 describes the 
experiments performed and Section 5 discusses the results obtained. Section 6 draws 
some conclusions and outlines future work. 

2   ROC Az Based Error Measures 

2.1   ANNs Trained with Simulated Annealing 

Simulated annealing was first proposed in [9] and it is inspired by the physical 
process of annealing to find good values of functions depending on many parameters. 
In short, the algorithm includes a parameter, simulating temperature starting at a giv-
en value, which is lowered gradually at known steps. For each temperature, the func-
tion parameters are randomized and the range of possible values that they can take is 
proportional to the temperature, so that at lower temperatures that range is smaller. At 
each temperature step the process is repeated a predetermined number of times and 
the set of parameters giving the best function value are retained and passed on to the 
following cycle iteration.  

We use the simulated annealing approach to train ANNs as described and imple-
mented in [7] which the weights of an ANN population are randomized iteratively 
and, at each step, the ANN with the minimum root mean square (RMS) error is re-
tained. Notice that, in this case, the error used by the algorithms is the RMS of the 
whole training set, as opposed to other algorithms such as backpropagation, where it 
is the individual RMS error of each element of the training set with respect to the 
output neurons the one that is used.  

More formally, for binary classifiers, we use the following definitions: 
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Table 1. Definitions 
 

 Domain of input vectors (with  features) 1,1  The two classes into which input vectors are classified ,  ,  Input vector with its associated class (for supervised training) , , … , ,  Training set (for supervised training) | |  Size of training set :    Set of functions representing binary classifiers 

 A binary classifier 

 
Output of binary classifier  when applied to input vector ,  

 typically applies some threshold notion to  to 
obtain the final class assigned to  

 Score assigned by binary classifier  to input vector ,  ,  
A global error measure of classifier  when applied to training 
set  ,  
An individual error measure of classifier  when applied to 
input vector    ,  
Area under the ROC curve of training set  when classified 
with classifier  

 
In particular, an RMS error measure is typically defined as follows: , ∑ ,| |  (1)

where ,  represents some distance measure between  and , pos-
sibly using the output values of the output neurons in case of ANN based classifiers. 
Algorithms such as backpropagation in ANN based classifiers use the individual val-
ues ,  iterating through each element of the training set to incrementally 
correct the ANN weights, whereas simulated annealing uses only the global ,  value to select the best classifier at each cycle of each cooling step. 

2.2   ROC Az Error with Simulated Annealing 

We now use ROC Az to define a global error measure as follows: , 1 ,  (2)

and use this definition, instead of (1), as error measure in the simulated annealing 
based ANN training process described above.  is implemented in the ffsaroc 
engine included in Biomedtk (see Section 3) whereas  is used in the ffsa engine. 

Note that when using RMS there is a direct relation between the individual error 
measures of the elements of the training set ( ) and the global error ( ) which 
is given by equation (1) and this is why it can be used by backpropagation-like  
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training algorithms, whereas there is no such direct relation in  since ,  is 
a global measure of a classified set. It is the fact that simulated annealing does not use 
individual error measures for each element of the training set that allows us to replace 

 by  in a straight forward manner.  

3   The Biomedtk Framework 

The Biomedical Data Analysis Toolkit (Biomedtk) is a Java software tool developed 
by the authors that exploits existing libraries for data analysis with methods and me-
trics commonly used in the biomedical field. In addition, it provides the means to 
massively search, explore and combine different configurations of data classifiers 
provided by the underlying libraries to build robust data analysis tools. With this, it is 
possible manipulate datasets, train Artificial Neural Networks (ANN) based binary 
and multiclass classifiers with many different configurations, search for best ensemble 
classifiers, generate different types of ROC curve analysis, etc.  

An ANN-based configuration specifies a certain network structure (number of lay-
ers and neurons per layer), a training algorithm to use (such as backpropagation or 
simulated annealing) and algorithm dependant train parameters (such as learning rate, 
start/end temperatures, etc.). Biomedtk allows defining explorations of ANN configu-
rations (see Section 4) and sending them for massive training to a Grid computing 
infrastructure. Currently, biomedtk supports training engines from the Encog [7] and 
Weka [8] toolkits, as listed in table 2.  

 
Table 2. Biomedtk supported training engines 

 
Engine name Description 
ffbp Feedforward with backpropagation-based training. 
ffga Feedforward with genetic algorithm-based training. 
ffsa Feedforward with simulated annealing-based training. 
ffsaroc ffsa with WEKA ROC based error evaluation. 
Rb Radial basis. 
som Self-organizing feature map. 

 
It also includes the ffsaroc which is a modification of the ffsa engine including the 

ROC Az based error evaluation described in Section 3. Biomedtk uses the Mann-
Whitney statistic to calculate ROC Az as implemented in Weka[8]. 

4   Experimental Setup 

A set of experiments was set up in order to test whether the error measure proposed in 
Section 2 effectively improves the Az of the trained ANN classifiers. The tests were 
carried out using the binary biomedical UCI datasets [10] listed in table 3.  
 
 



 Introducing ROC Curves as Error Measure Functions 521 

Table 3. UCI Datasets used in the experiments 
 

Dataset Description # elements 
Haber Survival of patients with breast cancer surgery 306 
Liver Liver disorders from excessive alcohol consumption 345 
Mmass Benign/malign mammographic masses 961 
Pimadiab Diabetes diagnoses for Pima Indian populations 768 
Spectf Data on cardiac Single Proton Emission Computed Tomogra-

phy (SPECT) images 
267 

 
For each UCI dataset we generated two dataset splits, one using 50% of the dataset 

for training and 50% for testing, and one using 70% for training and 30% for testing. 
A Biomedtk exploration was defined for each dataset split with ANN configurations 
having one to three hidden layers and different classifier parameters. Each dataset 
split and configuration was then trained with both the ffsa and the ffsaroc engines. 
This is an extract of the exploration definition file for the two haber dataset splits: 

 
  explore.neurons.input  = 3 
  explore.neurons.output  = 2 
  explore.neurons.layer.01 = 8:18 
  explore.neurons.layer.02 = 8:18 
  explore.neurons.layer.03 = 3:8   
  explore.trainingsets    = haber-30:haber-50 
  explore.trainengines     = ffsa:ffsaroc 
  explore.stop.epochs   = 200 
  explore.stop.error     = 0.0001 
  explore.starttemp      = 10:20 
  explore.ffsa.endtemp     = 2 
  explore.ffsa.cycles     = 100 

 
This exploration includes ANNs with one, two or three hidden layers, where the 

first and second hidden layers may have 8 or 18 neurons, with a start temperature of 
10 or 20, etc. For each dataset, this exploration generates 112 ANN configurations, 56 
using the ffsa engine and 56 using the ffsaroc engine. In total, for all datasets, 560 
ANN configurations were trained on a gLite [11] Grid infrastructure using Biomedtk 
and consuming about 140 CPU hours. 

Finally, to check whether each ffsa configuration is improved by using  ffsaroc in-
stead, we compared each ANN configuration trained with the ffsa engine with the 
same configuration (same number of hidden layers, neurons and parameters) but 
trained with the ffsaroc engine. We name such pair a classifier pair. Therefore 56 
classifier pairs are made for each dataset, 28 for the 50/50 test/train data split and 28 
for the 30/70 split. 

5   Results and Discussion 

Table 4 below summarizes the average improvement obtained by ffsaroc over ffsa 
classifier pairs for each data set both for training and testing data. Results are also 
shown for the 30/70 and 50/50 test/train split for each dataset. 
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Table 4. FFSAROC improvement of FFSA per training set 
 

 test Az increase train Az increase avg test Az 
Dataset avg std dev avg std dev ffsaroc ffsa 
haber-30 7.92% 5.58 6.90% 1.53 0.691 0.642 
haber-50 2.33% 3.94 8.25% 2.13 0.729 0.713 
liver-30 3.91% 3.81 4.50% 1.94 0.698 0.672 
liver-50 0.98% 2.46 7.60% 2.99 0.725 0.718 
mmass-30 3.24% 5.43 6.83% 3.27 0.807 0.782 
mmass-50 -0.59% 4.94 7.46% 2.78 0.786 0.790 
pimadiab-30 5.44% 4.42 7.91% 3.88 0.704 0.669 
pimadiab-50 1.45% 6.69 11.83% 5.35 0.691 0.684 
spectf-30 19.38% 20.57 20.45% 8.43 0.830 0.712 
spectf-50 8.34% 17.35 25.85% 16.40 0.757 0.711 
total 30% test sets 7.98% 11.77 9.32% 7.27 0.746 0.695 
total 50% test sets 2.50% 9.37 12.20% 10.62 0.738 0.723 
total all datasets 5.24% 10.98 10.76% 9.21 0.742 0.709 

 
Table 5 shows the same classifier pairs grouped by ffsa testAz value ranges. 
 

Table 5. FFSAROC improvement over FFSA per FFSA Test Az range 
 

FFSA  
Test Az 
range 

Number of 
Classifier 

Pairs 

test Az increase train Az increase 

avg std dev avg std dev 

(0.00, 0.60] 8 51.16% 17.31 43.81% 20.36 
(0.60, 0.65]  30 12.94% 7.12 10.73% 6.13 
(0.65, 0.70] 82 5.17% 6.77 9.10% 7.01 
(0.70, 0.75] 81 2.26% 5.39 9.39% 5.34 
(0.75, 0.80] 67 1.28% 5.90 9.80% 6.79 
(0.85, 1.00] 12 -1.96% 5.65 14.76% 6.60 
total all ranges 280 5.24% 10.98 10.76% 9.21 

 
As it can be seen in the tables above there is in general a significant average im-

provement in Az both for train and test parts of the datasets. Note that the improve-
ment percentages shown are the average of the compared classifier pairs (between 
ffsaroc and ffsa trained classifiers with the same network structure and training para-
meters), which is different from the average testAz of all ffsaroc and ffsa classifiers in 
each training set shown in the last two columns of table 4. 

Improvement is constantly better when splitting datasets in 30/70 test/train data 
than when splitting in 50/50. Even if the 30/70 datasets have better average testAz 
than 50/50 (such as in the mmass, pimadiab and spectf datasets). Improvement is also 
constantly better in the train parts of the dataset than in the test parts and, in any case, 
its standard deviation is always high. This seems to indicate that the method presented 
in this paper may be hard for classifiers to generalize and does not behave homoge-
neously for all classifiers. From table 5, it can be clearly seen that for test data, im-
provement is better when the testAz for the ffsa classified dataset is worse. Finally, the 
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following plots show the ROC curves of the classifier pairs for which the best im-
provement was obtained (ffsaroc over ffsa) for the haber and spectf datasets both for 
the 30/70 and 50/50 data splits 

 

   

 

Fig. 1. Most improved classifiers for spectf and haber, 30% and 50% test data splits 
 

To simplify visual comparison, these plots use the bi-normal distribution method 
as provided by JLABROC [12] which is also supported by Biomedtk. Also, each plot 
shows the ANN layers structure (neurons per layer and activation function) and the 
training parameters for the simulated annealing processes (start temperature, end 
temperature and number of cycles) 

6   Conclusions 

The experimental results obtained here confirm that the usage of a ROC Az based 
error function to guide a simulated annealing algorithm for training ANNs improves 
the ROC Az of the obtained classifiers with respect to an RMS error function.  In 
addition, Biometk demonstrated to be a robust framework to massively explore large 
amounts of configurations of data classifiers exploiting computing power harnessed 
by Grid infrastructures. 



524 R. Ramos-Pollán, M.Á. Guevara-López, and E. Oliveira 

Future work is focused on (1) better understanding of the behavior of the proposed 
method to better explain deviations observed in the experiments and (2) on applying 
the method in a generalized manner to machine learning classifiers and validate them 
in real computer-aided detection/diagnosis systems. 
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Partition Selection Approach for Hierarchical
Clustering Based on Clustering Ensemble

Sandro Vega-Pons and José Ruiz-Shulcloper

Advanced Technologies Application Center (CENATAV), Havana, Cuba

Abstract. Hierarchical clustering algorithms are widely used in many
fields of investigation. They provide a hierarchy of partitions of the same
dataset. However, in many practical problems, the selection of a represen-
tative level (partition) in the hierarchy is needed. The classical approach
to do so is by using a cluster validity index to select the best partition ac-
cording to the criterion imposed by this index. In this paper, we present
a new approach based on the clustering ensemble philosophy. The repre-
sentative level is defined here as the consensus partition in the hierarchy.
In the consensus computation process, we take into account the similar-
ity between partitions and information from the evaluation of partitions
with different cluster validity indexes. An experimental comparison on
several datasets shows the superiority of the proposed approach with
respect to the classical approach.

Keywords: Hierarchical clustering, partition selection, clustering
ensemble, cluster validity index.

1 Introduction

Clustering algorithms can be divided into Partitional and Hierarchical [1]. Parti-
tional clustering algorithms create a partition of the data by grouping the objects
in clusters according to their (dis)similarity values. On the other hand, hierarchi-
cal clustering algorithms build a hierarchy of nested partitions of a dataset. This
hierarchy is usually associated to a dendrogram, which can be cut at different
levels to obtain the different partitions in the hierarchy (see Fig. 1).
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Fig. 1. A dataset of 25 2D points and the dendrogram produced by the Average-Link
algorithm. The broken line cutting the dendrogram (right) produces a partition of the
objects with 3 clusters (left).
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Hierarchy of partitions can offer more information about the structure of the
objects in the dataset. With a hierarchy, the group of objects can be seen at
different levels; from the bottom level where each object forms an independent
cluster (singleton clusters) to the top level with only 1 cluster containing all the
objects. However, working with the entire hierarchy is commonly very complex.
Thus, in many practical problems, the selection of a representative partition of
the hierarchy is needed.

In the traditional approach, the representative partition is obtained by using
cluster validity indexes (CVI). Every partition in the hierarchy is evaluated by
a CVI (used as stopping rule) and the partition with better results is selected.
Many CVIs have been used with this purpose, e.g., in [2] 30 CVIs are presented
and experimentally evaluated. Nowadays, classical CVIs like Calinski-Harabasz
(CH) index, Hartigan (HA) index and the Dunn index [3] together with the
Highest-Lifetime(HL) index [4] are some of the most used. However, new indexes
still appear every year in the literature, e.g., the COP index [5].

The main drawback of the CVI (stopping rule) based approach to determine
the representative level in a hierarchy is that there is no CVI capable of working
correctly for all datasets and for all clustering algorithms. In other words, ev-
ery CVI implicitly or explicitly evaluates a partition, according to a particular
property given by the mathematical definition of the index. These properties
are usually related to compactness, separability or connectivity among clusters.
If the property measured by the index is consistent with the used clustering
algorithm and the particular dataset, the index could contribute with valuable
information, but if this is not the case, the results could be very different from
the expected ones. Due to this limitation of CVIs, Everitt et al. [6] said that
it is advisable not to depend on a single CVI for selecting the representative
partition, but to synthesize the results of several indexes.

In this paper, we propose a new approach for the selection of the representative
partition in a hierarchy based on the clustering ensemble philosophy. We call it
Partition Selection based on Cluster Ensemble (PSCE) approach. With PSCE,
we define the representative partition in a hierarchy taking into account the
evaluation of several CVIs, as well as the similarity measures between partitions
in the hierarchy. This way, we select as a result the partition in the hierarchy
that better represents the common characteristics in the hierarchy.

In Section 2, the proposed approach is formally presented. In Section 3, experi-
mental results by using different datasets and hierarchical clustering algorithms,
as well as the comparison with the classical approach are shown. Finally, in
Section 4, we present the conclusions of this research.

2 Partition Selection Based on Cluster Ensemble

Clustering ensemble methods combine partitions of the same dataset in a final
consensus clustering. Formally, we denote X = {x1, x2, . . . , xn} the original set
of objects, where each xi is a tuple of some α−dimensional feature space Gα

for all i = 1, . . . , n. P = {P1, P2, . . . , Pm} is a clustering ensemble, where each
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Pj = {Cj
1 , Cj

2 , . . . , Cj
dj
} is a partition of the set of objects X with dj clusters,

for all j = 1, . . . , m. We also denote PX the set of all possible partitions of X
and the consensus partition is represented by P ∗. The consensus partition P ∗ is
usually defined through the median partition problem:

P ∗ = arg max
P∈PX

m∑
i=1

Γ (P, Pi) (1)

where Γ is a similarity measure between partitions.
Our approach to determine the representative partition in a hierarchy is based

on the philosophy of clustering ensembles. When a hierarchical clustering algo-
rithm is applied to the set of objects X , a hierarchy of partitions is obtained.
A hierarchy H = {P1, P2, . . . , Pm} is a set of nested partitions of X , where
Pi � Pj , ∀i < j. � is the partial order relationship nested in, and P � P ′ if and
only if, for all cluster C′ ∈ P ′ there are clusters Ci1 , Ci2 , . . . , Civ ∈ P such that
C′ =

⋃v
j=1 Cij . It is easy to see that H ⊂ PX . Thus, we define the representative

level in the hierarchy as the partition that better summarizes the information in
the hierarchy H taking into account two parameters. First, the evaluation of sev-
eral CVIs to all partitions in the hierarchy. Second, the similarity values between
each pair of partitions in the hierarchy. Formally, the representative partition P̂
in the hierarchy H is defined as:

P̂ = arg max
P∈H

m∑
i=1

(E(Pi) · Γ (P, Pi)) (2)

where E(Pi) is an evaluation of each partition Pi ∈ H and Γ a similarity measure
between partitions. This evaluation can be used to give more importance to
partitions that hold some desired properties. Notice that unlike the original
median partition problem (1), our best partition P̂ is one of the partitions in the
clustering ensemble as it is shown in (2) (P̂ ∈ H). Thus, this problem is easier
than the original median partition problem, since the search space here (H) is
much more smaller than the search space (PX) in (1).

Among the different clustering ensemble methods, we based our approach
on the Weighted Partition Consensus via Kernels (WPCK) [7] method. This
method satisfies the following properties that are convenient for the partition
selection problem:

– It is possible to compute a weight value for each partition, taking into ac-
count the evaluation of several cluster validity indexes. The weight value ωi

assigned to Pi can be used as the value E(Pi) in equation (2).
– It is very easy to restrict the search to partitions in H. In fact, this is an

intermediate step of WPCK. In WPCK, firstly, the best partition in the
cluster ensemble is computed and this solution is improved afterwards by
searching in the whole search space PX .

– The algorithm is theoretically well grounded and has a low computational
cost, O(n · m · rMax)1.

1 n is the number of objects, m the number of partitions and rMax is a maximum
number of iteration for the algorithm.
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Therefore, the steps of the proposed algorithm to find the representative partition
in the hierarchy (PSCE) are the following:

Subhierarchy selection
We extract from the hierarchy H a subset of partitions. Every partition in the
hierarchy has a different number of clusters. Consequently, we will select a subset
of partitions that has a number of clusters in a reasonable range. This range is
a parameter of the algorithm, e.g., [2, 10], [2, 30], [2,

√
n] could be used. We

denote H[q,t] the subhierarchy of H, where Pq is the top level, Pt is the bottom
level, and every partition Ps ∈ H with s clusters belongs to H[q,t] if and only
if p ≤ s ≤ t. For simplicity, we denote v = t − q + 1 the number of partitions
in H[q,t]. The complete hierarchy H could be used, i.e., selecting the range [1, n]
(v = n). However, smaller ranges are recommended in order to decrease the
computational cost.

Evaluation of each partition
We obtain the evaluation value of each partition through the application of sev-
eral cluster validity indexes. Firstly, a set of internal CVIs I = {I1, I2, . . . , Ir}
is defined. We use this set of indexes to evaluate the behavior of each partition
with respect to a set of different properties, where each index evaluates a partic-
ular property. These properties can be related with one or more of the following
concepts: compactness, separability, connectivity, symmetry, etc. The property
measured by each index is given by its mathematical expression. Formally, we
define a hierarchy index as a function I : H[q,t] → [0, 1], where I(P ) is the eval-
uation of the partition P by the index I. It is assumed that the highest values
represent better fulfilment of the index. Traditional internal CVIs such as CH,
HA and HL can be easily transformed to satisfy the hierarchy index definition.
This way, the evaluation of each partition E(Pi) in (2) is computed by:

E(Pi) =
1
r
·

r∑
j=1

(1 − |Ij(Pi) − Mj |) (3)

where Mj = maxPi∈H[q,t] Ij(Pi). Thus, E(Pi) is computed as a measure of how
close to the maximum value, the evaluation of each index in I in the partition
Pi is. As we obtain a weight value for each partition, for simplicity, we denote
ωi = E(Pi).

Similarity measure between partitions
Besides the evaluation measure E , we need a similarity measure Γ between
partitions in order to solve the problem (2). We use the similarity measure
k̂ (Γ = k̂) between partitions proposed in [7], which is formally defined as
k̂ : PX × PX → [0, 1] such that:

k̂(Pi, Pj) =
k(Pi, Pj)√

k(Pi, Pi) · k(Pj , Pj)
, where k(Pi, Pj) =

∑
S⊆X

δPi

S δ
Pj

S (4)
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and δPa

S =

{
|S|
|C| , if ∃C ∈ Pa, S ⊆ C;
0, otherwise.

This similarity measure is a positive semi-definite kernel [7].
In this method, the general problem (2) can be transformed by using the

results of the above steps in the following way:

P̂ = arg max
P∈H[q,t]

v∑
i=1

(
ωi · k̂(P, Pi)

)
(5)

Obtaining the representative partition
As k̂ is a kernel function, there is a mapping from PX into a Hilbert space H,
φ : PX → H, such that k̂(Pi, Pj) = 〈φ(Pi), φ(Pj)〉H. A similar problem to (5)
(kernel consensus problem) is presented in [7], the only difference is that the search
space is PX instead of H[q,t]. The kernel property of k̂ allows mapping the kernel
consensus problem in an equivalent problem in H that can be easily solved. Let
ψ be the solution in the Hilbert space H, in order to solve the kernel consensus
problem would be necessary to find P ∗ such that ψ = φ(P ∗), i.e., finding the pre-
image of the solution [8]. However, in our case, we are solving problem (5) where
the search space is H[q,t]. Thus, we need to find the partition P ∈ H[q,t] such that
φ(P ) is closest to ψ. Formally, the representative partition is defined as:

P̂ = arg min
P∈H[q,t]

‖φ(P ) − ψ‖2
H

where

‖φ (P ) − ψ‖2
H = k̃ (P, P ) − 2

v∑
i=1

ωik̃(P, Pi) +
v∑

i=1

v∑
j=1

ωiωj k̃(Pi, Pj) (6)

Therefore, we can find the representative partition by computing the distance of
each partition in the hierarchy H[q,t] to the theoretical solution ψ using equation
(6), and selecting the partition closer to ψ.

2.1 Computational Complexity Analysis

The computation of all weight values for all partitions is O(v · r · f(I)), where v
is the number of partitions in H[q,t], r is the number of hierarchy indexes and f(I)
is the computational cost of the most computationally expensive hierarchy index.
In practice, r is a small number, hence, we can consider O(v · f(I)) the compu-
tational complexity of the weight assigning mechanism. Given the weight values,
it is needed to compute equation (6) for each partition in H[q,t]. The last term in
equation (6) does not depend on the particular partition analyzed and can be com-
puted only one time in O(v2 ·n), where n is the number of objects. This is because
the computational complexity of the similarity measure k̂ is O(n) (see [7]). Once
this last value is obtained, equation (6) can be solved in O(v ·n) for one partition,
and for the v partitions in H[q,t] can be computed in O(v2 ·n). Thus, the complete
computation of equation (6) for all partitions in H[q,t] is O(v2 · n). Finally, the
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global computational complexity of the selection of the representative partition is
O(v · f(I)) + O(v2 · n). With a proper selection of the hierarchical indexes I and
the subhierarchy H[q,t], this computational cost will be lower than O(n2), which
is the common complexity of the hierarchical clustering algorithms. However, in
the worst case (v close to n) the algorithm complexity becomes O(n3), thereby the
importance of a proper selection of the subhierarchy and the hierarchy indexes.

3 Experimental Results

We used 8 datasets in our experiments (see Table 1), 5 from the UCI Machine
Learning Repository [9] and the other 3 are 2D synthetical datasets. For all
these datasets the ideal data partition (ground-truth) is available. Therefore,
in the experiments, we compared the obtained results with the ground-truth of
each dataset. We used the Normalized Mutual Information (NMI) [10] measure
to evaluate the algorithm results. This is a very used similarity measure between
partitions that evaluates the resulting partition by measuring the information
shared between the result and the ground-truth.

Table 1. Overview of datasets

Name Inst-per-classes 2D synthetic datasets
Cassini 120-60-120
Half-Rings 100-100
Smiley 33-33-50-84
Wine 59-41-78
Opt-Digits 10-11-11-11-12-5-8-

12-9-11
Iris 50-50-50
Glass 70-76-17-13-9-29
Ionosphere 126-225 Cassini Half-Rings Smiley

In each experiment, hierarchies are obtained by using 3 well-known hierarchi-
cal clustering algorithms: Single-Link (SL), Complete-Link (CL) and Average-
Link (AL) [1]. For each dataset, we compare the results obtained by the proposed
Partition Selection based on Cluster Ensemble (PSCE) approach and the stop-
ping rule approach with the following indexes: Highest-Lifetime(HL), Calinski-
Harabasz (CH) and Hartigan (HA). In Table 2, they are denoted SR-HL, SR-CH
and SR-HA respectively. We also present for each algorithm the Nearest to
Ground-Truth (NGT) value, which is computed by evaluating all the partitions
in the hierarchy with respect to the ground-truth using the NMI measure and
taking the highest value. Notice that NGT values depend on the quality of the
hierarchies. Besides, the results of SR-HL, SR-CH, SR-HA and PSCE are upper
bounded by the NGT value of each hierarchy. In all cases, we used the subhier-
archy H[2,35] composed by the partitions with s clusters, with 2 ≤ s ≤ 35. For
all generated hierarchy, the NGT value was obtained in a partition of the sub-
hierarchy H[2,35]. Hence, the range [2, 35] is appropriated for these experiments
and allows decreasing the computational cost of the algorithms.

We used 5 hierarchy indexes in the evaluation of partitions step of our approach:
Variance, Connectivity, HL, CH and HA. The first two are very simple indexes [7].
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Table 2. Comparison of SR-HL, SR-CH, SR-HA and PSCE methods for the selection
of the representative partition in a hierarchy. The hierarchies were generated by the
application of the SL, CL, and AL hierarchical clustering algorithms on the 8 datasets.
The results were evaluated by using the NMI measure. In each case, the best results
are highlighted. The NGT value is also presented for each hierarchy. Each cell in the
most right column (AVE) is the average value of its entire row.

Alg Method Cassini Half-R Smiley Wine Opt-D Iris Glass Ionosp AVE

SL

SR-HL 0.941 0.720 0.846 0.102 0.706 0.733 0.154 0.076 0.534
SR-CH 0.941 0.488 0.863 0.092 0.250 0.733 0.154 0.008 0.441
SR-HA 0.941 0.488 0.863 0.092 0.250 0.545 0.154 0.076 0.426
PSCE 0.941 0.720 0.853 0.102 0.798 0.720 0.154 0.076 0.545
NGT 0.970 0.961 1.0 0.502 0.801 0.733 0.394 0.129 0.686

CL

SR-HL 0.657 0.197 0.712 0.790 0.789 0.756 0.446 0.143 0.561
SR-CH 0.551 0.353 0.291 0.665 0.250 0.756 0.442 0.037 0.418
SR-HA 0.522 0.353 0.646 0.709 0.723 0.756 0.442 0.037 0.523
PSCE 0.743 0.393 0.820 0.709 0.805 0.756 0.516 0.160 0.612
NGT 0.792 0.442 0.865 0.798 0.825 0.756 0.590 0.193 0.657

AL

SR-HL 0.779 0.066 0.766 0.693 0.730 0.643 0.452 0.082 0.526
SR-CH 0.779 0.347 0.685 0.775 0.250 0.685 0.452 0.082 0.506
SR-HA 0.513 0.347 0.623 0.775 0.712 0.643 0.452 0.082 0.518
PSCE 0.779 0.433 0.728 0.775 0.814 0.661 0.454 0.083 0.590
NGT 0.792 0.474 0.883 0.775 0.843 0.783 0.501 0.169 0.652

Variance is a way of measuring the compactness of the clusters in a partition. Con-
nectivity evaluates the degree of connectedness of clusters in a partition, by mea-
suring how many neighbors of each object belong to the same cluster as the object.
The other 3 indexes are the same used independently in the stopping rule approach.
However, in this case, all of them were normalized to the range [0, 1]. We do not re-
port the results of Variance and Connectivity used as stopping rules because the
results were very bad. The simplicity of these indexes does not allow them to play as
a stopping rule with a certain degree of accuracy. However, in the PSCE approach
they can be very useful, since each index evaluates the partitions from a different
perspective and all these points of view are combined to obtain the final result.

In Table 2, the experimental results are summarized. From the last column
of this table it can be seen that PSCE has the best average performance in all
cases. In the Single-Link (SL) hierarchies, SR-HL and PSCE work very similar.
However, in the Complete-Link (CL), and Average-Link (AL) hierarchies, the
PSCE approach clearly outperforms the other techniques. The results in this
table corroborate the capability of the PSCE approach to work well in different
circumstances, i.e., different clustering algorithms and different datasets.

From Table 2 it can also be seen that the Nearest to Ground-Truth NGT
value is almost never reached. This fact ratifies that a single index cannot work
correctly for all datasets in the case of the stopping rule approach. Besides, this
means that a better and more complete set of hierarchy indexes could be used
in order to improve even more the results of the PSCE approach.

4 Conclusions

In this paper, we have presented a new approach for the selection of a representa-
tive partition in a hierarchy, based on the philosophy of clustering ensembles. In
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this approach, the evaluation of the partitions in the hierarchy by using different
cluster validity indexes is considered in order to obtain the final result. Hence,
different criteria about the quality of the partitions in the hierarchy are com-
bined to compute the representative level. Besides, the similarity values between
partitions are also taken into account in this process. Consequently, the repre-
sentative partition is theoretically well defined as a weighted consensus among
the partitions in the hierarchy. The main drawback of the traditional (stopping
rule) approach is that if the characteristics of the used index are not in cor-
respondence with the dataset and with the algorithm applied to generate the
hierarchy, the results will not be satisfactory. The proposed approach is more
robust to the change of datasets and clustering algorithms, due to the consensus
definition of the representative partition and the possibility of combining the in-
formation from different cluster validity indexes. Experimental results, obtained
by using different clustering algorithms and different datasets, corroborate this
last assertion. On the other hand, the proposed approach is computationally
more expensive than the traditional approach. However, a proper selection of
the subhierarchy and hierarchy indexes used by the algorithm could decrease
the computational complexity to be comparable with the classical approach.

Recently, the idea of searching for the representative partition of a hierarchy,
not only in the explicit levels of the hierarchy, but in an extended partition set
was proposed [5]. As future work, we will generalize our current approach to this
extended partition set, where better results could be found.
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Abstract. In this paper we present an experimental study of the per-
formance of six machine learning algorithms applied to morphological
galaxy classification. We also address the learning approach from im-
balanced data sets, inherent to many real-world applications, such as
astronomical data analysis problems. We used two over-sampling tech-
niques: SMOTE and Resampling, and we vary the amount of generated
instances for classification. Our experimental results show that the learn-
ing method Random Forest with Resampling obtain the best results for
three, five and seven galaxy types, with a F-measure about .99 for all
cases.

Keywords: machine learning, imbalanced data sets, galaxies.

1 Introduction

Imbalanced class problems are often encountered in many real world applica-
tions. The problem occurs when the number of instances in one class heavily
outnumbers the instances in the other class. With imbalanced data sets we will
have biased classifiers that obtain high predictive accuracy over the majority
class, but poor predictive accuracy over the minority class which is generally the
class of interest. Some examples of domains that present an imbalanced class
are: text classification, detection of fraudulent telephone calls, disease detection,
astronomical object classification, and many others.

A short time ago, there has been a great deal of interest from astronomers in
applying machine learning techniques in order to solve astronomical problems
such as classification of galaxies, classification of stars, classification of binary
stars, galaxy/star discrimination, astronomical object classification in spectral
images, among others. Although they have used a wide variety of learning al-
gorithms, these approaches have not addressed the class imbalance inherent to
this kind of problems.
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We present an experimental study of the performance of six machine learning
algorithms applied to morphological galaxy classification considering the imbal-
anced data set problem. Classification of galaxy images is one of the most impor-
tant challenges for astronomers because it provides significant clues about the
origin and evolution of the Universe. The paper is organized as follows: Section 2
describes related work to deal with imbalanced data sets and a brief introduction
of galaxy classification. In Section 3 we describe the methods used for doing the
experiments. In Section 4 we show experimental results and finally in Section 5
conclusions and future work are presented.

2 Related Work

2.1 Imbalanced Data Sets

The class imbalance problem has received much attention from the machine
learning community. This problem has been addressed in two main approaches:
internal and external approaches. The first approach consists of modifying or
creating new learning methods, while in the second approach, sampling tech-
niques are used in order to build a more balanced data set. We now present
some works proposed to deal with imbalanced data sets.

Kubat and Matwin [8] presented a heuristic under-sampling method to bal-
ance the data set in order to eliminate noisy, borderline, and redundant training
examples of the majority class, keeping the original population of the minor-
ity class. Chawla et al. [3], devised a method called Synthetic Minority Over-
sampling Technique (SMOTE). This technique creates new synthetic examples
from the minority class. SMOTEBoost is an approach introduced by Chawla et
al. [4] that combines SMOTE with the boosting ensemble. Han et al. presented
two new minority over-sampling methods: borderline-SMOTE1 and borderline-
SMOTE2, in which only the minority examples near the borderline are over-
sampled. Hongyu and Herna [7] introduced a method that combines boosting and
data generation (DataBoost-IM), that achieved comparable and slightly better
predictions, when using G-mean and F-measures metrics. Liu et al. [9] proposed
an ensemble of SVMs with an integrated sampling technique, which combines
both over-sampling and under-sampling. Wang and Japkowicz [15] proposed the
boosting-SVMs with Asymmetric Cost algorithm, and they obtained very good
results for the majority class as well as the minority class.

2.2 Automated Galaxy Classification

Increasing astronomical data is becoming available in quantities vastly too large
to analyze by traditional methods. Therefore, automated and robust tools are
required for any kind of analysis, such as morphological classification of galaxies.

Recently, there has been a great deal of interest from astronomers in applying
machine learning techniques to solve astronomical problems, such as morpholog-
ical galaxy classification. The morphology of galaxies is generally an important
issue in the large scale study of the Universe. Galaxy classification is the first step
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towards a greater understanding of the origin an formation process of galaxies,
and the evolution process of the Universe. The easiest way to classify galaxies is
by their shape, and Edwin Hubble devised a basic scheme for classify them into
three main types: Spirals, Ellipticals and Irregulars.

Automated classification of galaxies has been tackled using several machine
learning techniques [1,5,11,12,13,16,17] such as neural networks, decision trees,
ensembles of classifiers, instance-based methods, self organized maps, random
forest, just to name a few. Nevertheless, they have not have not addressed the
class imbalance inherent to this problem.

3 The Methods

In this section we briefly describe the learning methods we used for the exper-
iments. For a deeper introduction of the algorithms we recommend the reader
review the references.

3.1 Naive Bayes Classifier

The Naive Bayes classifier [10] is a probabilistic algorithm based on the assump-
tion that the attribute values are conditionally independent given the target
values. The Naive Bayes classifier applies to learning tasks where each instance
x can be described as a tuple of attribute values a1, a2, . . . an and the target
function f(x) can take on any value from a finite set V . When a new instance
x is presented, the Naive Bayes classifier assigns to it the most probable target
value by applying the rule:

f(x) = argmaxvjεV P (vj)ΠiP (ai | vj) (1)

The learning task of the Naive Bayes is to build a hypothesis by estimating the
different P (vi) and P (ai | vj) terms based on their frequencies over the training
data.

3.2 C4.5

C4.5 [10] operates by recursively splitting a training set based on feature values
to produce a tree such that each example can end up in only one leaf. An ini-
tial feature is chosen as the root of the tree, and the examples are split among
branches based on the feature value for each example. If the values are contin-
uous, then each branch takes a certain range of values. Then a new feature is
chosen, and the process is repeated for the remaining examples. Then the tree
is converted to an equivalent rule set, which is pruned.

3.3 Radial Basis Function Networks

A radial basis function network (RBFNet) [10] is a variant of artificial neural
networks. RBFNets are embedded in a two layer neural network, where each
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hidden unit implements a radial activated function. The output units implement
a weighted sum of hidden unit outputs. Due to their nonlinear approximation
properties, RBFNets are able to model complex tasks.

3.4 Random Forest

Random forest [2] is an ensemble of unpruned classification trees, induced from
bootstrap samples of the training data, using random feature selection in the
tree induction process. Prediction is made by aggregating the predictions of the
ensemble. Random forest generally yields better performance than single tree
classifiers such as C4.5.

3.5 Support Vector Machines

Support Vector Machines (SVMs) [14] are based on the Structural Risk Mini-
mization principle from computational learning theory. This principle provides
a formal mechanism to select a hypothesis from a hypothesis space for learning
from finite training data sets. The aim of SVMs is to compute the hyperplane
that best separates a set of training examples. Two cases are analyzed: the linear
separable case and the non-linear separable case. In the first case we are looking
for the optimal hyperplane in the set of hyper-planes separating the given train-
ing examples. The optimal hyperplane maximizes the sum of the distances to the
closest positive and negative training examples (considering only two classes).
The second case is solved by mapping training examples to a high-dimensional
feature space using kernel functions. In this space the decision boundary is linear
and we can apply the first case. There are several kernels such as polynomial,
radial basis functions, neural networks, Fourier series, and splines, among others;
that are chosen depending on the application.

3.6 SMOTE

The Synthetic Minority Over-sampling TEchnique [3] is an over-sampling method
to deal with imbalanced data sets. This technique operates in the feature space
rather than the data space. The minority class is over-sampled by taking each mi-
nority class sample and introducing synthetic examples along the line segments
joining any/all of the k minority class nearest neighbors. Depending upon the
amount of over-sampling required, neighbors from the k nearest neighbors are ran-
domly chosen.

4 Experimental Results

The experiments were done using a data set of 310 galaxy images to classify three
types of galaxies (E, S, Irr), and 293 for five (E, S0, Sa+Sb, Sc+Sd, Irr) and seven
classes (E, S0, Sa, Sb, Sc, Sd, Irr). The minority class was represented by the
Irregular galaxies, about 3.5% for three types and 3.7% for five and seven types.
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We used 13 features to perform the classification task, which were obtained in
an automated manner using principal component analysis (details can be found
in [5]).

We used the Naive Bayes classifier, a RBF Network (a normalized Gaussian
radial basis function network), SMO (Support Vector Machines), J48 (a particu-
lar C4.5 implementation), J48graft (J48 with pruning) and Random Forest that
are implemented in Weka1. For SVMs we use a linear kernel, with 1.0 for the
complexity constant and 0.0010 for rescale kernel. In the case of RBF we use
logistic regression applied to k-means clusters as basis functions, with 2 clus-
ters, a minimum standard deviation of 0.1, until convergence is reached. We also
used the SMOTE and Resampling methods for over-sampling, testing different
amounts for generating new instances: 100%, 200% and 500%.

In learning imbalanced data sets, accuracy is often not a good measure of
performance, because a classifier that labels everything with the majority class
can still achieve very high accuracy. We use metrics such as precision, recall,
and F-measure to evaluate the performance of the learning algorithms. These
metrics have been widely used for comparison and can be defined as:

Recall = TP/(TP + FN) (2)

Precision = TP/(TP + FP ) (3)

F − measure = 2 × Recall × Precision/(Recall + Precision) (4)

where TP and TN denote the number of positive and negative examples that
are classified correctly, while FN and FP denote the number of misclassified
positive and negative examples, respectively.

Tables 1, 2 and 3 show the results for three, five and seven classes, respectively.
This results were obtained by averaging ten runs of 10-fold cross-validation for
each learning method. Analyzing the tree-class case, we can observe that Random
Forest obtained the best results for SMOTE-100%, SMOTE-500%, Resampling-
100%, Resampling-200% and Resampling-500%. We can also note that J48,
J48graft and RBFNet obtained very good results for SMOTE as well as for
Resampling.

For the five-class case, when we use SMOTE, RBFNet obtained the best
results for 100% and 200%, while Random Forest obtained the best precision,
recall and F-measure using 500%. For the case of Resampling, Random Forest
again obtained the best results with over .77 for 100%, over .91 for 200% and
over .99 for 500%.

Finally, for the seven-class case, RBFNet obtained the best results in eight of
the nine results for SMOTE. However, Random Forest again obtained the best
results for Resampling, with about .75, .91 and .99, for 100%, 200% and 500%,
respectively.

1 Weka is a collection of machine learning algorithms for data mining tasks.
http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/


538 J. de la Calleja et al.

Table 1. Results for 3 types of galaxies

SMOTE
100% 200% 500%

Prec Rec F -m Prec Rec F -m Prec Rec F -m
Naive Bayes 0.8678 0.8189 0.8333 0.8493 0.7995 0.8154 0.8001 0.7616 0.7719
J48 0.8310 0.8358 0.8323 0.8137 0.8166 0.8145 0.7890 0.7937 0.7908
J48graft 0.8384 0.8519 0.8421 0.8218 0.8364 0.8272 0.7890 0.7937 0.7908
RBFNet 0.8632 0.8834 0.8632 0.8464 0.8645 0.8485 0.8076 0.8191 0.8090
Random Forest 0.8825 0.8919 0.8615 0.8462 0.8622 0.8303 0.8684 0.8706 0.8559
SMO 0.7660 0.8750 0.8170 0.7160 0.8460 0.7760 0.5930 0.7700 0.6700

Resampling
100% 200% 500%

Prec Rec F -m Prec Rec F -m Prec Rec F -m
Naive Bayes 0.8879 0.8777 0.8790 0.8927 0.8589 0.8691 0.9885 0.9882 0.9881
J48 0.9336 0.9345 0.9330 0.9724 0.9715 0.9716 0.9945 0.9944 0.9944
J48graft 0.9468 0.9468 0.9440 0.9820 0.9820 0.9818 0.9953 0.9952 0.9952
RBFNet 0.9272 0.9280 0.9257 0.9320 0.9296 0.9275 0.9186 0.9271 0.9189
Random Forest 0.9689 0.9682 0.9659 0.9888 0.9888 0.9885 0.9997 0.9997 0.9997
SMO 0.7980 0.8940 0.8430 0.7840 0.8850 0.8320 0.8180 0.9050 0.8590

Table 2. Results for 5 types of galaxies

SMOTE
100% 200% 500%

Prec Rec F -m Prec Rec F -m Prec Rec F -m
Naive Bayes 0.4481 0.4588 0.4420 0.4248 0.4334 0.4171 0.4565 0.4570 0.4449
J48 0.4034 0.4207 0.4045 0.3947 0.4144 0.3996 0.4188 0.4354 0.4233
J48graft 0.4080 0.4280 0.4107 0.3954 0.4159 0.4008 0.4197 0.4382 0.4244
RBFNet 0.4667 0.4914 0.4686 0.4586 0.4813 0.4599 0.4808 0.4949 0.4788
Random Forest 0.4719 0.4684 0.4590 0.4537 0.4507 0.4439 0.5236 0.5208 0.5181
SMO 0.2772 0.4574 0.2997 0.2731 0.4414 0.2824 0.3597 0.4178 0.2892

Resampling
100% 200% 500%

Prec Rec F -m Prec Rec F -m Prec Rec F -m
Naive Bayes 0.4659 0.4453 0.4466 0.5115 0.4875 0.4892 0.4804 0.4875 0.4656
J48 0.7163 0.7149 0.7143 0.8699 0.8692 0.8694 0.9729 0.9726 0.9724
J48graft 0.7146 0.7133 0.7123 0.8666 0.8662 0.8660 0.9729 0.9727 0.9725
RBFNet 0.6005 0.6005 0.5954 0.5991 0.6020 0.5902 0.5828 0.5924 0.5652
Random Forest 0.7786 0.7744 0.7744 0.9132 0.9123 0.9122 0.9941 0.9939 0.9939
SMO 0.3913 0.4990 0.4352 0.4142 0.5196 0.4263 0.3853 0.4705 0.3380
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Table 3. Results for 7 types of galaxies

SMOTE
100% 200% 500%

Prec Rec F -m Prec Rec F -m Prec Rec F -m
Naive Bayes 0.3407 0.3760 0.3446 0.3525 0.3829 0.3544 0.3503 0.3831 0.3550
J48 0.3369 0.3455 0.3393 0.3424 0.3478 0.3429 0.3598 0.3642 0.3611
J48graft 0.3395 0.3505 0.3422 0.3413 0.3508 0.3434 0.3623 0.3693 0.3652
RBFNet 0.3739 0.4300 0.3846 0.3769 0.4254 0.3880 0.4231 0.4632 0.4335
Random Forest 0.3496 0.3943 0.3641 0.3800 0.4093 0.3860 0.4198 0.4548 0.4326
SMO 0.1950 0.4420 0.2710 0.1850 0.4300 0.2590 0.1635 0.3966 0.2287

Resampling
100% 200% 500%

Prec Rec F -m Prec Rec F -m Prec Rec F -m
Naive Bayes 0.4141 0.3977 0.3875 0.5571 0.5592 0.5386 0.4804 0.4875 0.4656
J48 0.6715 0.6708 0.6686 0.8272 0.8247 0.8248 0.9729 0.9726 0.9724
J48graft 0.6657 0.6634 0.6617 0.8285 0.8263 0.8262 0.9729 0.9727 0.9725
RBFNet 0.5564 0.5569 0.5474 0.5590 0.5700 0.5433 0.5828 0.5924 0.5652
Random Forest 0.7582 0.7540 0.7488 0.9166 0.9148 0.9145 0.9941 0.9939 0.9939
SMO 0.2631 0.3936 0.2522 0.1950 0.4415 0.2707 0.3853 0.4705 0.3380

5 Conclusions

We have presented an experimental study of the performance of six machine learn-
ing algorithms applied to galaxy classification, addressing the imbalanced class
inherent to this astronomical problem. From the results we can say that Random
Forest was the best classifier for most of the cases, nevertheless, RBFNets and
J48 obtained very good results. In addition, we can mention that the Resampling
technique obtained better results than SMOTE in almost all cases for all the clas-
sifiers.

Future work includes addressing the class imbalanced problem in other do-
mains such as text classification, astronomical classification in wide-field images,
biological structures, where the imbalanced problem is very common.
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Abstract. This paper presents a novel re-ranking approach based on
contextual information used to improve the effectiveness of Content-
Based Image Retrieval (CBIR) tasks. In our approach, image process-
ing techniques are applied to ranked lists defined by CBIR descriptors.
Conducted experiments involving shape, color, and texture descriptors
demonstrate the effectiveness of our method.

1 Introduction

Technological improvements in image acquisition and the decreasing cost of stor-
age devices have enabled the dissemination of large image collections. In this
scenario, there is the need of methods for indexing and retrieving these data.
One of the most common approaches to support image searches relies on the use
of Content-Based Image Retrieval (CBIR) systems.

Basically, given a query image, a CBIR system aims at retrieving the most
similar images in a collection by taking into account image visual properties (such
as, shape, color, and texture). Collection images are ranked in decreasing order
of similarity, according to a given image descriptor. However, in general, these
approaches perform only pairwise image analysis and compute similarity (or
distance) measures considering only pair of images, ignoring the rich information
encoded in the relations among several images.

Some post-processing methods have been proposed for improving effectiveness
of information retrieval tasks [5,18,17,9]. Efforts were put on post-processing the
similarity scores by analyzing the relations among all documents in a given col-
lection. The influence among shape similarities is analized in [18], using Markov
chains to perform a diffusion process on a graph formed by a set of shapes,
where the influences of other shapes are propagated. An unsupervised clustering
algorithm is used in [5], aiming to capture the manifold structure of the image
relations by defining a neighborhood for each data point in terms of a mutual
k-nearest neighbor graph. A graph transduction learning approach is introduced
in [17]. The algorithm computes the shape similarity of a pair of shapes in the
context of other shapes. In [9], a distance optimization algorithm has been pro-
posed. The objective is to cluster shapes by taking into account the similariy
among ranked lists. Distances between shapes are updated based on created
clusters aiming at improving the retrieval effectiveness.
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Recently, contextual information have also been considered for improving the
effectiveness of image retrieval [4,10,12]. The objective of these methods is some-
how mimic the human behavior on judging the similarity among objects by con-
sidering specific contexts. More specifically, the notion of context can refer to
updating image similarity measures by taking into account information encoded
on the ranked lists defined by a CBIR system [12].

In this paper we present a new post-processing method that re-ranks images
by taking into account contextual information. We propose a novel approach for
retrieving contextual information, by creating a gray scale image representation
of distance matrices computed by CBIR descriptors. The gray scale image is con-
structed for k-nearest neighbor of a query and analyzed using image processing
techniques. The use of image processing techniques for contextual information
representation and processing is the main novelty of our work. We believe that
our strategy opens a new are of investigation related to the used of image pro-
cessing approaches for image re-ranking in CBIR systems.

We evaluated the proposed method on shape, color, and texture descriptors.
Experimental results demonstrate that the proposed method can be used in
several CBIR tasks and yields better results in terms of effectiveness performance
than various post-processing algorithms recently proposed in the literature.

2 A Re-ranking Method Based on Contextual
Information

2.1 Contextual Information Representation

Let C={img1, img2, . . . , imgN} be an image collection and let D be an image
descriptor that deinfes a distance function ρ : C × C → R, where R denotes
real numbers. Consider ρ(X, Y ) ≥ 0 for all (X, Y ) and ρ(X, Y ) = 0 if X = Y .
The distance ρ(imgi,imgj) among all images imgi,imgj ∈ C can be computed
to obtain an N × N distance matrix A.

Our goal is to represent the distance matrix A as a gray scale image (named
context image Î) and analyse this image for extracting contextual information.
For this representation we consider two reference images imgi, imgj ∈ C.

Let the context image Î be a gray scale image defined by the pair (DI ,f),
where DI is a finite set of pixels (points in N2, defined by a pair (x, y)) and
f : DI → R is a function that assigns to each pixel p ∈ DI a real number. We
define the values of f function in terms of the distance function ρ (encoded into
matrix A) and reference images imgi, imgj ∈ C.

Let Ri = {imgi1, imgi2 , . . . , imgiN} be the ranked list defined by matrix A
considering the reference image imgi as query image; and Rj = {imgj1 , imgj2 ,
. . . , imgjN} the ranked list of reference image imgj. On this way, the axis of con-
text image Î are ordered according to the order defined by ranked lists Ri and Rj .
Let imgix ∈ Ri be an image at x postion of ranked list Ri and imgjy ∈ Rj an im-
age at y position of the ranked list Rj , the value of f(x, y) (function that defines
the gray scale of pixel p(x, y)) is defined as follows: f(x, y) = ρ̄(imgix , imgjy),
where ρ̄ is defined by the distance function ρ normalized in the interval [0,255].
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Fig. 1. Similar reference images Fig. 2. Dissimilar reference images

Fig. 3. Representation for similar
images

Fig. 4. Representation for dissimilar
images

An example considering similar reference images (from MPEG-7 database) is
illustrated in Figure 1. The respective gray scale image representing matrix A is
illustrated in Figure 3. An analogous example for dissimilar images is illustrated
in figures 2 and 4.

Our goal is to exploit useful context information provided by these images.
Low distance values (similar images) are associated with dark pixels in the image,
while high values (non-similar images) refers to non-black pixels. Considering
two similar images as reference images, the begining of two ranked lists should
have similar images as well. This behavior creates a dark region in top left
corner of context image (as we can observe in Figure 3). The region represents
a neighborhood of similar images with low distances.

We aim to characterize contextual information by analyzing this region using
image processing techniques. These information will be used by the re-ranking
method presented in next section.

2.2 Exploiting Contextual Information for Image Re-ranking

Given an image imgi ∈ C, we aim to process contextual information of imgi

by constructing context images for the k-nearest neighbors of imgi (based on
distance matrix A). We use an affinity matrix W to store the results of contextual
information. Let N be the size of collection C, the affinity matrix W is a N ×N
matrix where W [k, l] represents the similarity between k and l.

We apply image processing techniques to process the context image of each
k-nearest neighbor of imgi and then update the affinity matrix W . The same
process is performed for all imgi ∈ C. Since all images of C are processed, the
affinity matrix W is used as input for computing a new distance martix At+1
(where t indicates the current iteration). These steps are repeated along several
iterations. Finally, after a number T of iterations a re-ranking is performed based
on final distance matrix AT . Algorithm 1 outlines the re-ranking method.

The affinity matrix W is initilized with value 1 for all positions in step 4.
Context images are created in step 7, as explained in Section 2.1, considering



544 D.C.G. Pedronette and R.da S. Torres

Algorithm 1. Contextual Re-Ranking Algorithm
Require: Original distance matrix A
Ensure: Processed distance matrix AT

1: t ← 0
2: At ← A
3: while t < T do
4: initializeAffinityMatrix(W, 1)
5: for all imgi ∈ C do
6: for all imgj ∈ KNN(imgi) do
7: grayImg ← createGrayScaleImage(imgi, imgj , At, L)
8: grayImg′ ← processGrayScaleImage(grayImg,L)
9: W ← incrementaAffinityMatrix(grayImg′, W, j)

10: end for
11: end for
12: At+1 ← computeDistanceMatrix(W )
13: t = t + 1
14: end while
15: performReRanking(AT )

imgi (image being processed) and imgj (current neighbor of imgi) as reference
images. Parameter L refers to the size of the square in top left corner of context
image that will be analyzed.

Image processing techniques are applied to context images in step 8. Our
goal is to identify dense regions of dark pixels (low distance values). We use
a limiarization for obtaining a binary image and discriminating dark pixels. In
the following, we apply a median filter for determining regions of dense black
pixels. The threshold l used for limiarization is computed based on average and
maximum distance values contained in L×L square in top left corner of context
image: l = avg(ρ(imgi,imgj))

max(ρ(imgi,imgj)) with i, j < L. Figure 5 illustrates an example of
limiarized image and Figure 6 shows the limiarized image after applying the
median filter.

Step 9 updates the affinity matrix W based on context images. For updating,
only black pixels (and their positions) are considered. The idea consists of giv-
ing more relevance to pixels next to the origin (0, 0), e.g., pixels that represent
the begining of ranked lists. The importance of neighbors should also be con-
sidered: neighbors at first k positions should be considered more relevant when
updating W .

Fig. 5. Example of
limiarized image

Fig. 6. Example of
filtered image

Fig. 7. Computing up-
dates of matrix W
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Let imgi ∈ C be the current image being processed. Let imgj be the k (such
that k < K) neighbor of imgi. Let imgi and imgj be reference images and let
Î(DI , f) be the context image after limiarization and applying median filter.
Let L be the size of top left corner square that should be processed and let
p(x, y) ∈ DI be a black pixel (f(x, y) = 0), such that x, y < L. Let H =

√
2 × L2

be the maximum distance of a pixel p(x, y) to origin (0, 0), as ilustrated in
Figure 7. Let W [imgix , imgiy ] represent the similarity between images imgix and
imgiy . Then, for each black pixel p(x, y) the matrix W is updated as follows:

W [imgix , imgiy ] = W [imgix , imgiy ] + [(K − k) × (H/
√

x2 + y2)] (1)

Note that low values of k, x, y (the begining of ranked lists) leads to high
increments of W . Smaller increments occur when k has high values and x, y = L.
In this case, the term H/

√
x2 + y2 is equal to 1.

At the end of an iteration (when all images have been processed), W presents
high values for similar images. But there may be positions of W that did not
receive any increments (e.g., dissimilar images), and have the initial value 1. The
new distance matrix At+1 (step 12 of Algorithm 1) is computed as follows:

At+1[x, y] =
{

1 + Āt[x, y] if W[x,y] = 1
2 × (1/W [x, y]) if W[x,y] > 1 (2)

where Āt is the distance matrix At normalized in the interval [0,1]. When
W [x, y] = 1, e.g., W [x, y] was not updated by equation 1, we use the old dis-
tance matrix At for determining values of At+1. Otherwise (when W [x, y] > 1),
values of new distance matrix At+1 is equal to inverse of affinity matrix W .
Since the smaller increment for W is 1 (and therefore W [x, y] = 2), the largest
value of a new distance in At+1 is 0.5. Therefore we normalize distance values
in the interval [0,1] by multiplying by 2. At+1 will have values in the interval
[0,2]: (i) in the interval [0,1] when W [x, y] > 1, and (ii) in the interval [1,2]
when W [x, y] = 1. A last operation is performed on new distance matrix At+1
for ensure the simetry in terms of distances between images (ρ(x, y) = ρ(y, x)):
At+1[x, y] = At+1[y, x] = min(At+1[x, y], At+1[y, x]).

At the end of T iterations, a new computed distance matrix AT is obtained.
Finally, a re-ranking is performed based on values of AT (step 15 of Algorithm 1).

3 Experimental Evaluation

3.1 Impact of Parameters

The execution of Algorithm 1 considers three parameters: (i) K - number of
neighbors used as reference images; (ii) L - size of top left square of context
image to be analyzed; and (ii) T - number of iterations that the algorithm is
executed.

To evaluate the influence of different parameter settings on the retrieval scores
and for determining the best parameters values we conducted a set of experi-
ments. We use MPEG-7 database with the so-called bullseye score, which counts
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all matching objects within the 40 most similar candidates. Since each class con-
sists of 20 objects, the retrieved score is normalized with the highest possible
number of hits. For distance computation, we used the CFD [9] shape descriptor.

Retrieval scores are computed ranging parameters K in the interval [1,10]
and L in the interval [1,60] (with increments of 5) for each iteration. For each
iteration, the best retrieval score was determined.

We observed that best retrieval scores increased along iterations and parame-
ters converged for values K = 4 and L = 25. The best retrieval score was reached
in iteration 4: 94.55%. Note that these parameters may change for database with
different sizes.

3.2 Experimental Results

In this section, we present a set of conducted experiments for demonstrating
the applicability and effectiveness of our method. We analyzed our method with
respect its use fo re-ranking images considering shape, color, and texture descrip-
tors. We also compared our method to state-of-the-art post-processing methods.

Table 1 presents results (bullseye score - Recall@40) for shape descriptors
on MPEG-7 database. We can observe a significative gains from +5.09% to
+11.99%.

Table 1. Contextual Re-Ranking for Shape Descriptors on MPEG-7 (Recall@40)

Shape Descriptor Score [%] Contextual Re-Ranking Gain

SS [11] 43.99% 49.08% +11.57%
BAS [1] 75.20% 80.35% +6.85%
IDSC+DP [7] 85.40% 89.75% +5.09%
CFD [9] 84.43% 94.55% +11.99%

In addition to shape descriptors, we conducted experiments with color and
texture descriptors. For texture descriptor, we used the Brodatz [2] dataset, a
popular dataset for texture descriptors evaluation. For color descriptor, we used
a soccer data set proposed in [16] and composed by images from 7 soccer teams,
containing 40 images per class. For Brodatz dataset, we used the same parameter
of MPEG-7 (determined in previous section). Since the soccer dataset have a
very different size, we used K = 1, L = 50, and T = 2. Table 2 presents results
for 10 image descriptors in 3 different datasets. The measure adopted is Mean
Average Precision (MAP). We can observe that the proposed re-ranking method
presented positive precision gains for all descriptors, ranging from +0.87% to
+14.75%.

Finally, we also evaluated our method in comparison to other state-of-the-
art post-processing methods. We use MPEG-7 database with the called bullseye
score. Table 3 presents results of our contextual re-ranking method and four post-
processing methods. We also present the retrieval scores for IDSC+DP [7] and
CFD [9] shape descriptors, that has been used as input for these methods. Note
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Table 2. Contextual Re-Ranking Evaluation on Content-Based Image Retrieval Tasks

Descriptor Type Dataset Score [%]
(MAP)

Contextual
Re-Ranking

Gain

SS [11] Shape MPEG-7 37.67% 43.23% +14.75%
BAS [1] Shape MPEG-7 71.52% 75.88% +6.09%
IDSC+DP [7] Shape MPEG-7 81.70% 85.65% +4.83%
CFD [9] Shape MPEG-7 80.71% 91.28% +13.09%
GCH [14] Color Soccer Dataset 32.24% 32.52% +0.87%
ACC [3] Color Soccer Dataset 37.23% 39.05% +4.89%
BIC [13] Color Soccer Dataset 39.26% 41.81% +6.50%
LBP [8] Texture Brodatz 48.40% 49.59% +2.46%
CCOM [6] Texture Brodatz 57.57% 63.48% +10.27%
LAS [15] Texture Brodatz 75.15% 78.39% +4.31%

Table 3. Post-processing methods comparison on MPEG-7 database (Recall@40)

Algorithm Descriptor Score [%] Gain

CFD [9] - 84.43% -
IDSC+DP [7] - 85.40% -
Graph Transduction [17] IDSC+DP 91.00% +6.56%
Distance Optmization [9] CFD 92.56% +9.63%
Constrained Diffusion Process [18] IDSC+DP 93.32% +9.27%
Mutual kNN Graph [5] IDSC+DP 93.40% +9.37%
Contextual Re-Ranking CFD 94.55% +11.99%

that our contextual re-ranking method (last line) has the best effectiveness
performace when compared to all other post-processing methods.

4 Conclusions

In this work, we presented a new re-ranking method based on contextual infor-
mation. The main idea consists in creating gray scale image representations of
distance matrix and performs a re-ranking based on information extracted from
these images. We conducted a large set of experiments and experimental results
demonstrated the applicability of our method to several image retrieval tasks
based on shape, color and texture descriptors. The proposed method achieves
very high effectiveness performance when compared with state-of-the-art post-
processing methods on the well-known MPEG-7 dataset. Future work focuses on
using other image processing techniques, as dynamic limiarization and filtering.
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Abstract. It has been proved that spatial relations among objects and
object’s parts play a fundamental role in the human perception and
understanding of images, thus becoming very relevant in the compu-
tational fields of object recognition and content-based image retrieval.
In this work we propose a spatial descriptor to represent topological
and orientation/directional relationships, which are obtained by means
of combinatorial pyramids. A combination of visual and spatial features
is performed to improve the object recognition task. We ran an exper-
iment to evaluate the expressiveness of this representation and it has
shown promising results. It was performed on the benchmark ETH-80
Image Set database and we compare our approach with a state-of-the-art
method recently published.

Keywords: object recognition, spatial relations, topological relations.

1 Introduction

Spatial relations between objects of a scene have received much attention in
the field of image analysis and retrieval, due to the fact that they can reveal
important properties of the scene being analyzed. Moreover, it has been stated
that structural relations among image components are fundamental in the human
process of similarity comparison.

In general, spatial relations can be classified into three major categories [1]:
(1) Topological relations, which remain invariant under transformations such
as translation, scaling and rotating. (2) Direction (orientation) relations, which
specify the absolute or relative spatial locations of objects. (3) Metric relations,
which deals with sizes of objects or the distance between them.

Within this context, there are many works related to region-based represen-
tation of images that do not use the spatial information between regions, or they
do it poorly. Also, there are methods that only use direction relations [2][3], only
topological relations [4][5], and others that combine them together [6][7][8]. Most
of these representations consider that each object is ideally identified or deals
with their bounding box to compute the spatial relations descriptors. Yet, this
does not match the case in a segmented image where objects are often arbitrarily
over-segmented, or the cases when bounding boxes overlap.

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 549–556, 2010.
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One explicit representation of spatial relations among regions is the region
adjacency graph (RAG)[9]. However, the unique notion of adjacency is too poor
to describe complex spatial organization of the different parts of an object, and
does not provide enough information to differentiate an adjacency relationship
from a contains or inside one[9].

Irregular graph pyramids [10] can overcome these drawbacks by using dual
graphs to determine important edges in the pyramid construction. In this case,
each level will be an extended RAG, where parallel edges and self-loops encode
important relations between two regions (relevant parallel edges represent several
common boundaries and self-loops represent a contains relation).

In this work we use the combinatorial pyramid framework [11] to obtain a hier-
archy of partitions from an image and to determine the spatial relations between
the regions found at each level. We propose a new representation to compute a
spatial relations descriptor, taking into account topological and orientation rela-
tions. A similarity measure for this descriptor is proposed and a graph matching
algorithm is used to identify similar images from a database. The spatial de-
scription of regions relationships is combined with visual descriptions of them to
make more robust the recognition task.

Section 2 of this paper explains the visual representation used for describing
the images and the similarity measures selected for comparison. In Section 3 we
present our novel spatial descriptor and a way for computing the similarity using
this representation. Finally Section 4 provides the results of an experiment to
evaluate the proposed representation.

2 Visual Description of Images

Graph pyramids and combinatorial pyramids are built from bottom (each vertex
is a pixel in the image) to top (each vertex is a group of pixels forming a region),
and all levels in between form partitions of the image at different scales. To build
a new level, a series of topology-preserving edge contractions are performed from
the previous level, following some criteria [10]. The criteria for combining pixels
into regions may vary.

In the present case, we are using only the color value in RGB color space of the
image pixels. The difference between the color value of pixels is computed, and
if it falls beneath a threshold, these pixels are merged into a region, which will
survive to the next level and its color value will be the average of the pixels that
were combined. That is why, one of the features selected for similarity purposes
is the average color of each region.

For texture representation we chose the locally binary patterns (LBP) his-
togram of regions [12]. The LBP operator codes a local window pattern from a
texture patch, and its histogram is often treated as texture feature in classifica-
tion problems. Among the advantages of LBP are its invariance to any monotonic
change in gray level and its computational simplicity.

The structure of the combinatorial pyramid is perfect for computing statistical
features, such as histograms. The computation of each region’s histogram can
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be performed during the construction of the pyramid very easily, updating each
level from the data of the level below. Given an image obtained by computing the
LBPs from the original image, it is possible to update each region’s histogram
at each level by using the following equation:

H(R)j =
n∑

i=1

H(i)j−1 (1)

Where n is the number of regions merged into the current region R, and j is the
level of the pyramid.

2.1 Computing Visual Similarity

Once defined the visual features to be used, one important step is to select the
similarity measures for them. Since our main contribution is not in the aspects of
visual similarity, we chose two well-known similarity measures for our features.

For computing visual similarity between two pairs of regions regarding color
value, we will compute the Euclidean distance in RGB space. Since this distance
will yield a dissimilarity value, we will turn it into a similarity value SC .

The LBP histograms of each region of the pyramid are normalized, since the
different sizes of regions produce uneven histograms. For the LBP histogram
similarity we use the Bhattacharyya distance, which is then transformed into a
similarity measure SH .

For combining these similarity values, we add two weights, ωC and ωH , in
order to give different importance to the features and to have a final value of
visual similarity between two regions:

SV = ωC ∗ SC + ωH ∗ SH , where SV ∈ [0, 1] (2)

3 Our Proposed Spatial Descriptor

There have been several models proposed for representing spatial relations among
regions. For topological relations, the 4IM and 9IM [13] are well known. In these
models, and for the case of 2D images, eight topological relations are described:
disjoint, contains, inside, equal, meet, covers, covered by and overlap. The main
drawback of these models is their inability to represent complex topological re-
lations (i.e. when two regions have more than one boundary in common).

For the case of 2D images, eight relations are unnecessary since some of them
will never be present (i.e the overlap relation). In 2D images, we certainly can
have occlusion (two objects overlapped), but at the time of segmentation we
will be unable to establish a difference between this and a simple adjacency
relation, since we will have only a boundary in common. We selected from these
eight relations, three of them that will be representative for 2D images. These
relations can be seen in Figure 1.

We consider that orientation relations between regions can also provide im-
portant information, this is why we choose to create a spatial descriptor that
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Fig. 1. Topological relations between 2D regions and the selection for 2D images

would take both types of relations into account. For this matter we decided
to use the relations left of, right of, top of, bottom of, horizontally aligned and
vertically aligned, somehow similar to the order relations proposed in [8]. These
relations will be computed based on the spatial disposition of the centroids for
every pair of regions.

3.1 The Spatial Descriptor

Our spatial description proposal consists of a binary vector that will encode
both topological and orientation relations. The vector will have 9 elements, each
representing one basic spatial relation, as shown in Figure 2. For every position,
we put a 1 if the two regions share that spatial relation and 0 otherwise. These
basic relations are split into three categories: (1) Topological relations - adjacent,
contains and inside, (2) Alignment relations - horizontally aligned and vertically
aligned, (3) Orientation relations - left of, right of, top of and bottom of.

Fig. 2. Spatial descriptor combining topological and orientation relations

We also store for every pair of related regions the number of common boundary
segments, which will be a descriptor of the adjacency between them.

For computational purposes, each value of the descriptor will be stored as
bits. This leads us to a 9 bit (2 bytes with 7 unused bits) representation, which
is very simple, compact and easy to use.

3.2 The Spatial Relationship Similarity

In order to compute the similarity between two spatial relations, we need to
find out how many basic relations they share, this is why we chose a similarity
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measure that can be used with binary vectors. We are proposing to use the Sokal-
Michener measure [14] since it treats positive and negative matches equally. Let
X and Y be binary vectors of the same length d and let xi denote the ith value
which is either 0 or 1. The Sokal-Michener measure can be computed as:

SSD =
xy + xy

d
(3)

The term xy denotes the positive matches (i.e. the number of 1 bits that matched
between X and Y ) and the term xy denotes the negative matches (i.e. the number
of 0 bits that matched between X and Y ).

We believe that, when computing the spatial similarity between two pairs of
regions, all the basic relations should not contribute in the same way in the final
result. We consider that topological relations are more relevant than the others,
since they are invariant to transformations such as scaling, translating and rota-
tion. Therefore, they must have a bigger weight in the decision of whether two
spatial relations are similar or not. In the same way, we consider the alignment
relations to be more important than the orientation relations. For this reason
we decided to use three weights ωT , ωA and ωO for topological, alignment and
orientation relations respectively, following the criteria ωT > ωA > ωO . These
weights will be applied to every element’s match/mismatch in the computation of
the Sokal-Michener measure, using the weight corresponding to the basic spatial
relation represented by the element in each case.

4 Experiments

For validating this representation, we chose to implement a graph matching
algorithm since this makes possible to compute similarity between images. In the
present case, we’re not interested in finding the similarity between two images,
but to find similarities between the objects of each image, so we are talking
about a subgraph matching problem.

4.1 Matching Strategy

We are using a greedy algorithm to find matchings between structures but, in
order to avoid the high complexity of this kind of algorithm, we used the visual
similarity measure and the spatial similarity measure proposed previously to
discriminate nodes and edges that are too different to be taken into account.

In a nutshell, the algorithm takes an input graph that must be compared to
an irregular pyramid of graphs. For each graph (level) in the pyramid we find
all the similar structures to the input graph. We take every node in the input
graph and compare it to each node in a level of the pyramid, and if they are
visually similar, according to equation 2, then we try to expand the structure by
testing the node’s edges using the weighted SSD measure in equation 3. If they
are spatially similar, we repeat the process for every node they connect. This
matching strategy is based on the algorithm proposed in [15], please refer to this
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work for further details in its implementation. We compute the final similarity
between the structures as a combination of the average of spatial similarities of
the matched edges and the average of visual similarities of the matched nodes.

4.2 Experiment Description and Results

We carry out the experiments using the ETH-80 Image Set database [16] which
contains 80 objects from 8 categories (apples, cars, cows, cups, dogs, horses, pears
and tomatoes). Each object is represented by 41 different views yielding a total
of 3280 images (See Figure 3).

Fig. 3. Example images from the ETH-80 Image Set database

For this experiment we used 6 categories. For each category we took 4 objects
and for each object we took 10 different views, leaving a total of 240 images
in the database. From the remaining images we took 60 per category (15 views
per object) to be used as the examples to be classified. The main goal was to
recognize similar objects in the database, then we found the nearest neighbor of
each example image among the images in the database. We consider a positive
match if the nearest neighbor of the example image belongs to its category.

The combinatorial pyramids for the images of this database have an average
of 16 levels. The base level contains 16385 nodes and 33020 edges, while the up-
permost level usually has 2 nodes and 1 edge. The level selected for representing
the example images has between 40 and 50 nodes, and about 130 edges.

For selecting the sub-graph that will represent the image for the matching
process, we draw a square box having the same center of the image, and we get
all the regions (nodes) that this box touches at a given level of the pyramid. A
global view of the structure matching process can be seen in Figure 4.

Fig. 4. Sub-structure matching process
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Fig. 5. Recognition accuracy for the L5 ensemble classifier and the proposed method

We compared our results with those obtained in [17]. They proposed a col-
laborative ensemble learning model where they construct four types of ensemble
classifiers (L2 , L3 , L4 and L5) by integrating two, three, four and five base
learners respectively. We compared our method with the L5 ensemble classifier,
which showed the best results. The comparison result regarding the recognition
accuracy for each category can be seen in Figure 5.

According to these results, our algorithm outperforms the recognition of ap-
ples, cups, tomatoes and cows having a 100% of recognition accuracy for the first
three of them. The categories of cars and horses did not show improvements in
the recognition accuracy compared to the L5 ensemble classifier. We believe that
this may be due to the form of selecting the initial graph for comparing, since
the square box used to select the regions of the graph may incorporate several
background regions in the case of horses and cars, due to their elongated shape.

The overall recognition accuracy for the L5 ensemble classifier is of 87.6%,
while our method yields 87.5%. It is important to notice that, although we
achieved a very similar global accuracy to the one obtain with the L5 ensemble
classifier, the visual description that we used is much simpler, thus showing the
relevance of the spatial relations.

5 Conclusions

In this work we have proposed a new approach for describing spatial relations
between regions of images based on the partitions provided by combinatorial
pyramids and we proposed a spatial similarity measure to test the similarity
between this kind of features. We performed an experiment that proved that
the object recognition accuracy can be improved by taking into account the
spatial distribution of object’s parts, even when the visual description of the
image regions is very simple. In future works we plan to study the selection
of the sub-graph in the example images, and to find optimal levels for com-
parison in the irregular pyramids in order to increase the performance of the
method.
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Abstract. Providing Geographical Information Systems (GIS) with the mechan-
isms for processing geographical data based on their semantic abstraction is a 
task that at present is carried out in a number of research given their scope of 
applications. Tackling this issue may help to solve many problems of geograph-
ical data like its heterogeneity, since the SIG could process geographical data 
focusing on their meaning and not on their syntax and/or structure, thus reduc-
ing the Man-Machine semantic gap. An important aspect for achieving these 
objectives is the establishment of an automatic way of correspondence between 
geographical data and their conceptualization in a Domain Ontology. In this 
work, we propose a new type of Ontology, a Data-Representation Ontology. 
We also propose a new method for the automatic generation of the Data-
Representation Ontology from geographical data and his interrelationships with 
the Domain Ontology. For this we use pattern classification techniques and a 
dissimilarity measure. The experiments showed that once the Data-
Representation Ontology was generated, the classifier using dissimilarities 
could correctly classify all the data.  

Keywords: Ontology, Classification, Semantic, Geographical data. 

1   Introduction 

For some years, scientists have been working with the aim of having a uniform access 
to geographical data. One of the principal problems of geographical data [1] is the 
heterogeneity in them.  This implies that it becomes very difficult to work with this 
data in a uniform way, mainly by compatibility problems between them.  

The problem of getting a uniform access to heterogeneous data is known as inte-
gration of geographical data. Efforts in this direction are focused mainly on these two 
types of integration: 

• Syntactic-Structural Integration: It proposes the existence of a technical interconnec-
tion between data that may be in different reference systems or in different formats.  

• Semantic Integration: It proposes the integration of heterogeneous data based on 
their meaning and not based on what they are, ensuring a mutual understanding 
over a context defined between different systems including human beings who may 
interact with them. 
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In the literature there are recent papers [2-7] that deal with the issue of semantic  
integration of geographical data. In them, the use of Ontologies as the knowledge repre-
sentation mechanism for the integration process is proposed, precisely because Ontolo-
gies are based on both Object-Oriented (OO) and Relationship-Entity (RE) paradigms. 
These paradigms are essential to phenomena modeling in geographical scope. 

One of the major problems for geodata processing from the semantic point of view 
is precisely the way in which they will be conceptualized. Firstly, one must have 
knowledge about the nature of data based on conceptual domain that it is wished to 
model. On the other hand we have the geographical data complexity and finally the 
conceptualization way of these data; this means the way to represent the structure 
semantic abstraction of data and their interrelationships with the Domain Ontology. In 
this paper we focus on the task of representing geographical data based on their se-
mantic abstraction supported by a Domain Ontology that models their nature with a 
higher level of abstraction.  

This paper continues with a brief section where some key concepts for the under-
standing are defined. After that, the types of Ontologies existing in the literature are 
presented followed by the proposal of a new type of Ontology and its structural de-
scription. Then, the principal steps for establishing the correspondence between the 
semantic abstraction of geographical data and the Domain Ontology is described 
using a classification technique based on a distance. Paper continues with experiments 
and its results and fallow by the conclusions. 

2   Definitions 

• Geographical Datum: The geographical dictionary ESDIG[8] defines Geographi-
cal Datum as "Object or Entity resulting from an abstraction of the real geographi-
cal space. (...), its definitive characteristic is a spatial reference in two or three  
dimensions". It also states that in some cases the following terms are considered 
synonymous with geographical datum: geospatial datum, geographical object and 
others that correspond with these definitions. These synonyms will be used 
throughout this paper indistinctly.  

• Class: Class could be defined as "A set of similar objects" [9] e.g.: Objects that 
share common features, taking this into our context we could say that a Class is de-
fined as a concept that could contain other sub-concepts and represents the seman-
tic nature of geographical objects that have common features on a set.     

• Semantic Abstraction: We understand by semantic abstraction the process that 
implies a reduction of the main components of the information from a phenomenon 
so as to preserve its most important features aiming at extrapolating this phenome-
non to a semantic space in which it is defined according to their meaning. 

3   Ontologies  

There are forms of semantic representation and in general they are limited or focused 
to a specific semantic domain such as shown in [10-11]. Ontologies are the most 
widely used since they provide formal specifications of the logical models in which 
the data is based. Ontologies have appeared to provide a common vocabulary in a 
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knowledge domain and to specify, at different formalism levels, the meaning of terms 
and their relationships. Therefore Ontologies provide a shared and accepted under-
standing of the knowledge of a domain, which can be communicated among human 
beings, between heterogeneous systems and between human beings and systems. One 
of the most popular and quoted definitions of ontology is the one proposed by Gruber 
and later extended by Studer "An ontology is an explicit specification of a shared 
conceptualization"[12-13], which shows that they have been developed for inter-
change and use of knowledge efficiently.  

Guarino in [14] defines several levels of generality that give rise to different types 
of ontologies, see Fig. 1: 

• Top-Level Ontologies: Contains reusable generic terms in different domains. 
• Domain Ontologies and Task Ontologies: Contain terms that are specific in a par-

ticular domain (e.g.: Soils or Geology) or specific task (e.g.: Selling). These terms 
are usually defined as specializations of existing concepts in Top-Levels  
Ontologies. 

• Application Ontologies: Contain all necessary terms to model a particular applica-
tion. They are often specializations of Domain Ontologies or Task Ontologies. 

 

 

Fig. 1. Graphic representation of kinds of Ontologies proposed by Guarino 

4   Data-Representation Ontology (DRO) 

To face the semantic integration problems of heterogeneous geographical data it is 
then necessary to extrapolate this data into a common space independent of type 
and/or format in which they have been stored based on their semantic abstraction. The 
Ontologies mentioned above are designed to to capture the semantics from the differ-
ent geographical domains but in a broad manner. These Ontologies only express the 
different concepts and their relationships up to a specific abstraction level, since it 
does not take into account the semantic embed in the geographical data integrated in 
GIS. As result of this, the characteristic of these data and the relationships between 
them (see Fig.3-A) are not used, therefore valuable information may be lost. Further-
more, these Ontologies are neither capable of discovering new and more specialized 
concepts that could be embedded in the data, see Fig.3 –C. These new concepts may 
be obtained from the data processing, e.g. a process of data clustering. It contributes 
to a major granularity in the Ontology and therefore the new abstraction levels. Both 
the information embedded in the data and the new abstraction levels contributes to 
better accuracies in the results after its use in many tasks like information retrieval 
and/or data analysis for the decision making. 
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To tackle these issues we consider it necessary to define a new type of Ontology 
that covers this semantic emptiness above the geographical data integrated in GIS. To 
this end we propose the definition of a new type of Ontology, "Data-Representation 
Ontology (DRO)" it will represent the features that describe the nature of data and the 
existing relationships between them. 

It would be formally defined as: 

• Data Representation Ontology: Contains the necessary definitions for the represen-
tation of features and relationships that model and give meaning to objects belong-
ing to a domain from a semantic point of view.  

Based on the scheme proposed by Guarino[14] , see Fig.1, we have included the Data 
Representation Ontology (DRO) in the lowest level of generality since the DRO 
represents the major degree of specialization with respect to the other Ontologies, see 
Fig. 2: 
 

 
 

Fig. 2. Graphic representation of kinds of Ontologies, including DRO 

The DRO is essentially a dynamic ontology since its structure; terms and relation-
ships are always going to depend on the data the user is working with. The use of DRO 
allows the integration of heterogeneous data, see Fig.3 and it also provides a greater 
semantic enrichment from the complement generated between DRO and the Ontology 
employed by the user (e.g.: Domain Ontology (DO)). This complement is addressed in 
both directions, from DO to DRO and from DRO to DO, see Fig. 3. This is explained 
by the fact that on the one hand the DO will have exact information of the data being 
worked with allowing a major level of specialization and therefore a major granularity; 
and on the other hand the DRO will contain more levels of abstraction from the seman-
tic point of view, which is provided by DO. Here a process of synergy is shown in 
which the results obtained through the use of the two ontologies (DRO and DO) are 
better than the sum of the results obtained by each of them separately. 

The user could change (add, delete or modify) his working data, this implies the re-
structuring of Ontology (generation of new terms and relationships), here we would 
like to distinguish that the Domain Ontology does not change, retaining its original 
structure; only the DRO undergoes the changes. These changes occur below the inter-
connection layer, see Fig. 3. 

4.1   Structure of the DRO 

As mentioned above, the DRO is the projection in the semantic space of geographical 
data, see Fig. 3, in which all the represented geographical data is described in the 
same structure and consequently a uniform access to it is possible, taking a step for-
ward in the process of integration of heterogeneous data. 
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Fig. 3. Graphic representation of the different models in which the geographical data can be 
stored (one zone) and the projection in the semantic space of geographical data and the com-
plement between the DRO and the DO (second zone). The Legend shows in (A) the representa-
tion of the relationships between geographic objects (e.g. topological relationships), in (B) the 
hierarchical relations are shown (e.g. sub_class or super_class) and (C) shows the new concepts 
that may be obtained from the data processing e.g. a process of data clustering. 

In this paper, an architecture for the DRO construction is proposed. The basic unit 
of this architecture is constituted by Data-Representation Nodes (DRN) and edges that 
interconnect these DRN. Each DRN represents the semantic abstraction of a single 
datum and the edges representing the existing relationships between data, e.g.:  
topological relationships see Fig. 4. The structure of these DRN is based on the repre-
sentation of thematic features, spatial features and temporal features of geographical 
data, by means of three substructures (Thematic Component, Spatial Component and 
Temporal Component) in semantic space. 

 

 

Fig. 4. Graphic representation of Data-Representation Node 

4.2   Principals Steps for Automatic Generation of DRO 

The DRO is generated from the data information the user is working with. In this 
section the main steps of the algorithm for automatic generation of the DRO are 
shown, these are:  
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1. Definition of the structure in which the data is stored: 
1.1. To specify which the structures of a geographical datum that refer to its three 

main components (Thematic Component, Spatial Component, and Temporal 
Component) are and how to access their values.   

2. Extraction of values: 
2.1. Thematic Component: All thematic attributes which characterize the geograph-

ical datum are extracted and normalized. These are attributes that answer the 
question: What is it? 

2.2. Spatial Component: All spatial attributes that define location in space and car-
tographic projection are extracted and normalized. These are attributes that re-
spond to the question: Where is it? 

2.3. Temporal Component: All temporal attributes that define the moment in which 
the datum is manifested are extracted and normalized. These are attributes that 
respond to the question: When? Also from these components the changes oc-
curred in time with respect to both the thematic component and spatial compo-
nent are extracted, e.g.: the changing values of its properties or its position in 
space. 

3. Extraction of  Relations: 
3.1. To extract all existing relations in the geographical datum with respect to other 

data, e.g.: Topological relationships. 

The way to carry out these steps depends mainly on the formats and standards of the 
data. Each kind of formats and standards has its own characteristics that can modify 
the way in which the steps for automatic generation of DRO are carried out.   

5   Semantic Abstraction of Geographical Data 

As mentioned above the semantic abstraction of data refers to the operation by which 
certain properties of a geographical phenomenon are isolated for their processing 
from a semantic point of view. In this sense, geographical data can be represented in 
different semantic spaces, since it is possible to do several observations of the same 
phenomenon from different viewpoints, e.g.: a biologist can see a lake as a fish habi-
tat while a hydrologist can see it as a body of water. Fonseca in [7] defines this  
phenomenon as roles. Therefore, in our context, the role played by the data will be 
determined by the ontology that defines its application domain, e.g. the lake object 
seen previously could play the role of  fish habitat or body of water depending on the 
domain ontology used. 

To increase levels of semantics abstraction of data it is necessary to link it with the 
domain ontology, i.e. to establish a correspondence with the concept it belongs to in 
the Domain Ontology. In such a way the data acquires more expressiveness and this 
turns out to be vital for the processing of data from an abstract point of view. To 
achieve this we propose the following steps: 

1. For the Domain Ontology (DO): 
1.1. To extract the features present in each concept of type leaf1 with the aim of 

identifying all the features that are to be processed. The concepts in the  

                                                           
1 Concept of type Leaf: A concept does not contain sub concepts and allows being instantiated. 
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Domain Ontology represent the samples and the classes that will be used in the 
classification process.  

1.2. To build a vector of occurrences and absences of the features present in classes 
taking into account the features extracted in step (1.1).  

2. For the Data-Representation Nodes (DRN): 
2.1. To extract the features present in each Data Representation Nodes. 
2.2. To build vector occurrences and absences from the features present in the 

DRN, taking into account the features extracted in step (1.1). 
3. To classify the DRN with respect to the classes present in the Domain Ontology 

using the classification process that is presented in the next section. 

Since these vectors represent the occurrence or absence of features it is very conve-
nient to represent these vectors with binary values. These values are usually encoded 
with one or zero denoting whether the property exists or not in the datum or the sam-
ple of the class. With these steps we automatically provide higher levels of semantic 
abstraction and definition of the role the data is playing according to the Domain 
Ontology being used. 

5.1   Classification of Data Representation Nodes (DRN) 

There are several techniques for data classification; between these techniques we can 
find those that use distances. The k-NN [15] is an example of a classifier based on 
distances that can even work with dissimilarities that do not meet metric properties 
such as symmetry or the triangle inequality. In essence, when it comes to classifying 
new data, the method calculates the distances to all the classes, then sorts the dis-
tances and assigns to the new data the label of the class that had the smallest distance 
to it; this means that the smaller distance between the data and the class, the bigger 
will be the correspondence.  

As we only have one sample per class, where the sample "i" and the class "i" are 
precisely represented by the concept "i" in the Domain Ontology, then the K-NN 
classifier with K=1 (1-NN) is used. It is precisely for this reason that the 1-NN clas-
sifier is proposed. It is suitable furthermore to establish a threshold for classification, 
in order to avoid the risk of assigning a class with a low probability of being the cor-
rect one. In this way it is ensured that classification is made offering a certain guaran-
tee, therefore a datum will not be classified in a class if it is not likely to belong to this 
class. To this end the 1-NN with reject is used, this variant of 1-NN classification 
excludes those data for which the threshold was not reached.  

On the other hand, for computing the distances between objects there are a several 
measures that differ essentially in the type of data for which they have been designed. 
These measures are grouped into two main groups: Similarity Measures and Dissimi-
larity Measures. 

• Similarity Measures: Measures that make more emphasis on the nearness between 
objects, where smaller values indicate that the elements are more different.  

• Dissimilarity Measures: Measures that make more emphasis on the remoteness 
between objects, where smaller values indicate that the elements are more similar. 

In our case, to classify a new DRN "n" is equivalent to finding the class whose dis-
tance is minimal with respect to "n", therefore the use of a dissimilarity measure to 



564 R.L. Fonseca and E.G. Llano 

calculate the resemblance between DRN and classes is proposed. This dissimilarity 
measure is explained in details in the next section.  

5.2   Dissimilarity Measure 

In general, there is not a dissimilarity measure for all kinds of data, this must be cho-
sen or adapted depending on the kind of data of the problem at hand. In the case of 
DRN classification we can take into account the present features in the Thematic 
Component since it represents the most adequate point of contact, at semantic level, 
between DRN and its conceptualization in the Domain Ontology. 
As explained above, for the classification, the DRN and classes will be represented by 
vectors that will contain the occurrence or not of common characteristics between 
them, thus simplifying the problem in the sense of working with binary data. Among 
the measures to calculate dissimilarities between binary data, it was chosen the Sim-
ple Matching Distance [16] due to the nature of binary vectors with which we are 
working. As its name suggests this dissimilarity is a distance. It uses the coefficient 
shown in equation (1) and the distance is defined as shown in expression (2): 

 

 (1)  (2) 

 
Where: 
• T: Classi. 
• K: DRNp. 
• S(T,K): Simple Matching Coefficient 

between Classi and DRNp. 
• D(T,K): Simple Matching Distance 

between Classi and DRNp. 
 

• a: Number of properties where T and 
K have an occurrence. 

• b and c: Number of properties where T 
and K have different values. 

• d: Number of properties where T and 
K have an absence. 

 
 

This measure should be used in data in which the existence of occurrences and ab-
sences of the same features have a significant contribution in the classification. From 
the other distance measures for binary data it could also be used the Jaccard´s dis-
tance, but this measure only considers the common features for both individuals, 
which means that important information could be discarded in the classification 
process. Therefore the type of measure to be used must be selected depending on the 
nature of data. 

The classification of geographical data based furthermore on its semantic abstrac-
tion tends to be more robust than the classification based only on spatial and geome-
trics features, since e.g., different data as Soil and Geology can be represented in the 
same form from the spatial and geometrical point of view and visually they are simi-
lar objects but from the semantic point of view they are different.  

6   Experimental Results 

In order to be able to represent automatically the semantic abstraction of geographical 
data a case study to illustrate the above methods is shown in this section. For this case 
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study, Soil and Geological data layers were taken from the stored database in Spatial 
Data Infrastructure of the Republic of Cuba (IDERC)[17] (Geology.shp and Soil.shp). 
These data were stored in ESRI Shapefile format. This is a geospatial vector data 
format developed by ESRI company[18] and lately it has become de facto standard 
format for the exchange of geographical data. For each geographic object stored in the 
shapefile layers the information stored in both files * .dbf and * .shp were extracted 
for the creation of the Thematic and Spatial component in the NRD. The Temporal 
component has not been taken into account since these data lacks temporal characte-
ristics. The ESRI Shapefile lacks the capability for the topologic information storage, 
therefore the relations between these objects has been defined based on 9-
Intersections model [19]  and the topological relationships proposed in the paper of 
JDARE'10 event[20].   

To determine the semantic abstraction of data in the classification process we used 
a Land Cover Ontology, where apart from other concepts we can cite Soil and Geolo-
gy concepts. Soil data and Geology data have been chosen to illustrate this study case, 
precisely because these data are similar from a geospatial representation point of view 
but not from a semantic point of view. Samples of classes, as noted above, are 
represented by each concept in the Domain Ontology, e.g. the Soil concept in the 
Land Cover Ontology itself represents the class of Soil and the sample of the Soil 
class. These samples for Soil and Geology classes contain the following features: 

 

• Soil Class: ID, NAME, GROUP, TYPE, TEXTURE, EROSION, ACIDITY and 
SALINITY. 

• Geology Class: ID, CODE, NAME, DESCRIPTION, AGE, TEXTURE and 
HARDNESS.  

 

These classes contain some common characteristics, since they are likely to happen. 
The vector extracted per class contains the occurrences or absences of the common 
features that have been taken into account and it has constructed the following array 
of features per class, see Table.1: 

Table 1. Vectors of occurrences and absences of common features per classes  
 
      Features 

    

Classes 

 
id 

 
code 

 
name 

 
description 

 
age 

 
Texture 

 
… 

 
salinity 

Geology 1 1 1 1 1 1 … 0 
Soil 1 0 1 0 0 1 … 1 

 
All the used data in the classification contains a subset of all these features. Each 

row of Table 3 represents a data layer that belongs to Geological or Soil classes; see 
Table.3 and Fig. 5, in which these features were collected. Therefore, a good classifi-
cation of the layer represents a good classification of the objects therein. Table 2 
shows the number of geographical objects both Geological and Soil layers. 

The classification accuracy using 1-NN classifier of Distools toolbox[21] and using 
the structures "dataset" of PRTools [22] was 100% for all layers analyzed. Fig.7 
shows the vectors of dissimilarity of each data layer regarding Geology and Soil 
classes, which shows that the layers belonging to the same class are grouped. 
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Table 2. Number of geographic objects both Geological and Soil layers  
 

Geology Layer Soil Layer 
Layer Name Number of objects Layer Name Number of objects 
geoLayer_1 928 sueLayer_1 307 
geoLayer_2 1145 sueLayer_2 385 
geoLayer_3 712 sueLayer_3 524 
geoLayer_4 1098 sueLayer_4 233 
geoLayer_5 977 sueLayer_5 189 

 
 

Fig. 5. Graphic representation of data layers of Geology (A) and soil (B) 

Table 3. Vectors of occurrences and absences of common features per Layers  
 

    Features 
Classes 

 
id 

 
code 

 
name 

 
description 

 
age 

 
Texture 

 
… 

 
salinity 

geoDat_1 1 0 1 0 1 1 … 0 
… … … … … … … … … 

geoDat_5 0 1 1 1 1 1 … 0 
sueDat_1 1 0 1 0 0 0 … 1 

… … … … … … … … … 
sueDat_5 1 0 0 0 0 1 … 1 

 
Fig. 6. Graphic representation of dissimilarity vectors of each layer respecting to Geology and 
Soil classes 
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This case study demonstrates the feasibility of automatically representing the se-
mantic abstraction of geographical data, which means a step forward in the integration 
and processing of geographic data from a semantic point of view.  

7   Conclusions 

The work with geographical data from a semantic point of view and with the use of 
Ontologies as a way to represent knowledge, allows new and better ways of analyzing 
and exploiting these data. These ways undoubtedly improve existing tasks in the con-
ventional Geographical Information Systems such as information retrieval and deci-
sion making. Nowadays it is necessary to create new mechanisms to represent auto-
matically the semantic abstraction of geographical data given the great volume and 
heterogeneity that they present. The Ontologies that have been proposed in the litera-
ture cannot represent the characteristics and relationships that may exist in the geo-
graphical data integrated on GIS. We consider that the use of the information ex-
tracted from these data can improve the conventional task like the analysis task and/or 
information retrieval. For that reason in this paper a new type of Ontology has been 
proposed (Data-Representation Ontology (DRO)), which is automatically generated 
from the user data using the algorithms also proposed in this paper. The DRO 
represents the semantic abstraction of user data providing a bigger degree of speciali-
zation in the results and therefore a bigger granularity from interrelationship between 
the DRO and DO. Furthermore we have proposed a method to provide with more 
abstraction levels in the geographical data across the use of Domain Ontology based 
on classification techniques based on distances using a dissimilarity measure, some-
thing which is currently being done by hand. 
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Crespo, Raúl 212
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