
Chapter 8

Connection Basins

8.1 Introduction

Until now, we presented and studied evolutions in positive time, or forward
evolutions, and the associated concepts of (forward) viability kernels and
basins. We were looking from the present to the future, without taking into
account the past or the history of the evolution. In this chapter, we offer ways
to extend this framework by studying evolutions from −∞ to +∞.

In order to achieve this goal, we have to properly define the meaning of an
evolution arriving at a final time instead of evolutions starting at AN initial
time. In other words, we consider not only the future, as we did until now,
but also the past, and histories, defined as evolutions in the past.

For that purpose, we shall split in Sect. 8.2, p. 275 the evolution in forward
time evolutions and backward time evolutions, or in negative times, going
from 0 to −∞. So, in Sect. 8.3, p. 279, we investigate the concept of bilateral
viability kernel of an environment, the subset of initial states through which
passes at least one evolution viable in this environment.

For instance, up to now, we have only considered capture basins of targets
C viable in K, which are the subsets of initial states in K from which starts
at least one evolution viable in K until it reaches the target C in finite time.
In Sect. 8.4, p. 284, we shall consider the “backward” case when we consider
another subset B ⊂ K, regarded as a source, and study the “reachable maps”
from the source, subsets of final states in K at which arrives in finite time
at least one evolution viable in K starting from the source B. This leads us
to the concepts of reachable maps, detection tubes and Volterra inclusions in
Sect. 8.4, p. 284.

Knowing how to arrive from a source and to reach a target, we are led
to consider jointly problems when in the same time a source B and a target
C are given: we shall introduce in Sect. 8.5, p. 291 the connection basin, the
subset of elements x ∈ K through which passes at least one viable evolution
starting from the source B and arriving in finite time at target C. As a
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274 8 Connection Basins

particular case, this leads us to consider evolutions connecting in finite time
a state y to another state z by viable evolutions. The issue arises to select one
such connecting evolution by optimizing an intertemporal criterion, as we did
in Chap. 4, p. 125. For instance, in minimal time, this is the brachistochrone
problem, or in minimal length, this is the problem of (viable) geodesics. It
turns out that such optimal solutions can be obtained following a strategy
going back to Eupalinos 2,500 years ago: start at the same time from both the
initial and final states until the two evolutions meet in the middle. This is the
reason we attribute the name of this genius to the optimization of evolutions
connecting two states.

Actually, this is a particular case of the collision problem studied in
Sect. 8.6, p. 298. In this case, two evolutions governed by two different
evolutionary systems starting from two different point must collide at some
future time. The set of pairs of initial states from which start two colliding
evolutions is the collision kernel. Knowing it, we can select among the
colliding evolutions the ones which optimize an intertemporal criteria.

We studied connection basins from a source to a target, but, if we regard
them as two “cells”, one initial, the other final, among a sequence of other
cells, we investigate in Sect. 8.8, p. 302 how an evolution can visit a sequence
of cells in a given order (see Analyse qualitative, [85, Dordan]).

We present here the important results of Donald Saari dealing with this
issue. Actually, once the “visiting kernels” studied, we adapt Saari’s theorems
to the case of evolutionary systems. Given a finite sequence of cells, given any
arbitrary infinite sequence of orders of visits of the cell, under Saari’s assump-
tion, one can always find one initial state from which at least one evolution
will visit these cells in prescribed order. This is not a very quite and stable
situation, which is another mathematical translation of the polysemous word
“chaos”, in the sense that “everything can happen”. One can translate this
vague “everything” in the following way: each cell is interpreted as qualitative
cell. It describes the set of states sharing a given property characterizing this
cell. In comparative economics as well as in qualitative physics, the issue
is not so much to know precisely one evolution, but rather, to know what
would be the qualitative consequences of at least one evolution starting from
a given cell. If this cell is a viability kernel, it can be regarded as “qualitative
equilibrium”, because at least one evolution remains in the cell. Otherwise,
outside of its viability kernel, all evolutions will leave this cell to enter another
one. This fact means that the first cell is a qualitative cause of the other one.
Saari’s Theorem states that under its assumptions, whatever the sequence of
properties, there is one possibility that each property “implies” the next one,
in some weak but rigourously defined sense. Section 8.9, p. 305, explains how
the concepts of invariance kernels and capture basin offer a conceptual basis
for “non consistent” logics, involving time delays and some indeterminism.
This issue is just presented but not developed in this book.

For simplicity, we assumed until now that the systems were time
independent. This is not reasonable, and the concepts which we have met all
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along this book should hold true for time dependent systems, constraints
and targets. This is the case, naturally, thanks a well-known standard
“trick” allowing us to treat time-dependent evolutionary systems as time-
independent ones. It consists in introducing an auxiliary “time variable”
whose velocity is equal to one. So, Sect. 8.10, p. 309 is devoted to the
implementation of this procedure, especially regarding capture basins and
detection tubes.

Section 8.11, p. 316 grasps the following question: how much information
about the current state is contained in past measurements of the states when
the initial conditions are not accessible, but replaced by some observations
on the past. The question boils down to this one: knowing a control system
and a tube (obtained, for instance, as the set of states whose measures are
at each instant in a set-valued map), can we recover the evolutions governed
by this evolutionary system and satisfying these past observations? This is
a question which motivated the concept of detector in a time dependent
context, and which offers, as the Volterra inclusions (see Sect. 8.4.3, p. 289),
quite interesting perspectives for future research on evolutions governed by
an evolutionary system when the initial state is unknown.

8.2 Past and Future Evolutions

Until now, evolutions x(·) ∈ C(0, +∞; X) were meant to be “future”
evolutions starting from x(0) at “present” time 0, regarded as an initial time.

In order to avoid duplicating proofs of results, the idea is to split the “full
evolution” x(·) ∈ C(−∞, +∞; X) into two (future) evolutions:

1. the “backward part” ←−x (·) ∈ C(0, +∞; X) defined by

∀ t ≥ 0, ←−x (t) := x(−t) ∈

2. the “forward part” −→x (·) ∈ C(0, +∞; X) defined by

∀ t ≥ 0, −→x (t) := x(t)

both defined on positive times. Observe that, for negative times,

∀ t ≤ 0, x(t) = −→x (−t) (8.1)

Conversely, knowing the forward part −→x (·) and backward part ←−x (·) of a
full evolution, we recover it by formula

x(t) :=
{←−x (−t) if t ≤ 0
−→x (+t) if t ≥ 0 (8.2)

The symmetry operation x(·) 
→ ς(x(·))(·) defined by



276 8 Connection Basins

ς(x(·))(t) = x(−t)

is a bijection between the spaces C(0, +∞; X) of evolutions and C(−∞, 0; X)
of histories, as well as a bijection x(·) ∈ C(−∞, +∞; X) 
→ ς(x(·))(·) ∈
C(−∞, +∞; X). It is obviously idempotent: ς(ς(x(·)))(·) = x(·). Note that
the symmetry operation is also denoted by

∨
x (·) := ς(x(·))(·).

Definition 8.2.1 [Histories, Past and Future] Functions x(·) ∈
C(−∞, +∞; X) are called “full evolutions”. We reserve the term of (future)
“evolutions” for functions x(·) ∈ C(0, +∞; X). The space C(−∞, 0; X) is
the space of “histories”. The history of a full evolution is the symmetry of
its backward part and the backward part is the symmetry of its history.

Fig. 8.1 Operations on Evolutions.

Symmetry and decomposition of a full evolution in the its backward and
forward parts.

Recall that the translation κ(T )x(·) : C(−∞, +∞; X) 
→ C(−∞, +∞; X) of
an evolution x(·) is defined by (κ(T )x(·))(t) := x(t−T ) (see Definition 2.8.1,
p. 69). It is a translation to the right if T is positive and to the left if T is
negative, satisfying κ(T + S) = κ(T ) ◦ κ(S) = κ(S) ◦ κ(T ).

Definition 8.2.2 [Backward Shift of an Evolution] The T -backward
shift operator

∨
κ (T ) associates with any evolution x(·) its T -backward shift
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evolution
∨
κ (T )(x(·)) defined by

∀t ∈ R,
∨
κ (T )(x(·))(t) := x(T − t) (8.3)

It is easy to observe that the operator
∨
κ (T ) the operator is idempotent:

∀x(·) ∈ C(−∞, +∞; X), (
∨
κ (T )(

∨
κ (T )x(·))) = x(·)

and that
∨
κ (T ) := κ(T ) ◦ ς = ς ◦ κ(−T ).

Let x(·) : R 
→ X be a full evolution. Then for all T ≥ 0, the
restriction to ] −∞, 0] of the translation κ(−T )(x(·))(·) ∈ C(−∞, 0; X) can
be regarded as “encoding the history of the full evolution up to time T of
the evolution x(·)”. The space C(−∞, 0; X) allows us to study the evolution
of history dependent (or path dependent) systems governing the evolution
T 
→ κ(−T )x(·) ∈ C(−∞, 0; X) of histories of evolutions. The terminology
“path-dependent” is often used, in economics, in particular, but inadequately
in the sense that paths are trajectories of evolutions.

A “full” evolutionary system S : X 
→ C(−∞, +∞; X) associates with any
x ∈ X an evolution x(·) ∈ C(−∞, +∞; X) passing through x at time 0. Its
backward system : X 
→ C(−∞, +∞; X) is defined by

←−S (x) := {←−x (·)}x(·)∈S(x)

We observe that for all x(·) ∈ S(x),

∀ t ≤ 0, x(t) = ←−x (−t) where ←−x (·) ∈ ←−S (x)

Splitting evolutions allows us to decompose a full evolution passing
through a given state at a given time into its backward and forward parts
both governed by backward and forward evolutionary systems:

In particular, consider the system
{

(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) (8.4)

The backward system
←−S : X � C(0, +∞; X) associates with any x the set

of evolutions ←−x (·) ∈ C(0, +∞; X) governed by system
{

(i) ←−x ′(t) = −f(←−x (t),←−u (t))
(ii)←−u (t) ∈ U(←−x (t)) (8.5)
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Lemma 8.2.3 [Splitting Full Evolutions of a Control System] We
denote by S(T, x) the subset of full solutions x(·) to system (8.4) passing
through x at time T . We observe that a full evolution x(·) belongs to S(T, x)
if and only if:

1. its forward part −→x (·) := (κ(T )(x(·)))(·) at time T defined by
κ(T )(x(·))(t) = x(t− T ) is a solution to

−→x ′(t) = f(−→x (t),−→u (t)) in which −→u (t) ∈ U(−→x (t))

satisfying −→x (0) = x,
2. its backward part ←−x (·) := (

∨
κ (T )x(·))(·) at time T defined by (

∨
κ

(T )x(·))(t) = x(T − t) is a solution to differential inclusion

←−x ′(t) = −f(←−x (t),←−u (t)) where←−u (t) ∈ U(←−x (t))

satisfying ←−x (0) = x.

Therefore, the full evolution x(·) ∈ S(T, x) can be recovered from its
backward and forward parts by formula

x(t) =

{
←−x (T − t) (= (

∨
κ (T )←−x )(t)) if t ≤ T

−→x (t− T ) (= (κ(T )−→x )(t)) if t ≥ T

As a general rule in this chapter, all concepts introduced in the previous
chapters (viable or locally viable evolutions, viability and invariance kernels,
capture and absorption basins dealing with the forward part −→x (·) of an
evolution governed by the evolutionary system

−→S will be qualified of
“forward” and those dealing with the backward part ←−x (·) governed by the
backward system will be qualified of “backward”, taking into account that
both forward and backward evolutions are defined on [0, +∞[.

As an example, we single out the concepts backward viability or invariance:

Definition 8.2.4 [Backward Viability and Invariance] We shall say
that a subset K is backward viable (resp. invariant) under S if for every
x ∈ K, at least one backward evolution (resp. all backward evolutions) ←−x (·)
starting from x is (resp. are) viable in K, or, equivalently, at least one
evolution x(·) arriving at x = x(t) at some finite time t ≥ 0 is (resp. all
evolutions are) viable in K.
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8.3 Bilateral Viability Kernels

Definition 8.3.1 [Bilateral Viability Kernel] Let B ⊂ K be a subset
regarded as a source, C ⊂ K be a subset regarded as a target and S
be an evolutionary system. The backward viability kernel Viab←−S (K, B)
(respectively, the backward capture basin Capt←−S (K, B)) is the viability

kernel (resp. capture basin) under the backward system
←−S . The bilateral

viability kernel

←−−−−→
ViabS(K, (B, C)) = Viab←−S (K, B) ∩ViabS(K, C)

of K between a source B and a target C is the subset of states x ∈ K
such that there exists one evolution x(·) ∈ C(−∞, +∞; X) passing through
x = x(0) at time 0 and two times

←−
T ∈ [0, +∞] and

−→
T ∈ [0, +∞] such that

x(·) is

1. viable in K on ]−∞, +∞[,
2. or viable in K on [−←−T , +∞[, with x(−←−T ) ∈ B,
3. or viable in K on ]−∞, +

−→
T ] with x(

−→
T ) ∈ C,

4. or viable in K on [−←−T , +
−→
T ] with x(−←−T ) ∈ B and x(

−→
T ) ∈ C.

When B = ∅ and C = ∅ are empty,

←−−−−→
ViabS(K) :=

←−−−−→
ViabS(K, (∅, ∅))

is the set of elements x ∈ K through which passes one evolution at time 0
viable on ]−∞, +∞[, called the bilateral viability kernel of K.

Observe that a closed subset K connecting a closed source B to a closed
target C is both forward locally viable on K \C and backward locally viable
on K \ B under the evolutionary system (see Definition 2.13.1, p. 94 and
Proposition 10.5.2, p. 400).

The viability partition of the environment K is made of the four following
subsets:

• the bilateral viability kernel

←−−−−→
ViabS(K, (B, C)) = Viab←−S (K, B) ∩ViabS(K, C)

• the complement Viab←−S (K, B)\ViabS(K, C) of the forward viability kernel
in the backward viability kernel,

• the complement ViabS(K, C)\Viab←−S (K, B) of the backward viability
kernel in the forward viability kernel,
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• the complement K \ (Viab←−S (K, B) ∪ViabS(K, C)).

The following statement describes the viability properties of evolutions
starting in each of the subsets of this partition:

Theorem 8.3.2 [The Viability Partition of an Environment] Let us
consider the viability partition of the environment K under an evolutionary
system S:

• The bilateral viability kernel
←−−−−→
ViabS(K, (B, C)) is the set of initial states

such that at least one evolution passing through it is bilaterally viable in
K outside of B and C.

• The subset Viab←−S (K, B)\ViabS(K, C) is the subset of initial states x
from which all evolutions x(·) ∈ S(x) leave K in finite time τK(x(·)) :=
inf{t | x(t) /∈ K} and are viable in Viab←−S (K, B)\ViabS(K, C) on the
finite interval [0, τK(x(·))].

• The subset ViabS(K, C)\Viab←−S (K, B) is the subset of initial states x

from which all backward evolutions ←−x (·) ∈ ←−S (x) passing through x
enter K in finite time τK(←−x (·)) := inf{t | ←−x (t) /∈ K} and are viable
in ViabS(K, C)\Viab←−S (K, B) on the finite interval [0, τK(←−x (·))] (see
property (10.5.5)(iii), p. 410 of Theorem 2.15.4, p. 101).

• The set K \ (Viab←−S (K, B) ∪ ViabS(K, C)) is the subset of initial
states x such that all evolutions passing through x are viable in K \
(Viab←−S (K, B) ∪ ViabS(K, C)) from the finite instant when it enters K
to the finite instant when it leaves it.

If furthermore, the subset Viab←−S (K, B)\CaptS(K, C) ⊂ Int(K), then it is
forward invariant.

Fig. 8.2 Illustration of the Proof of Theorem 8.3.2.

Left. Proof of parts (2) and (4) of Theorem 8.3.2. Right. Proof of the last
statement.
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Proof. The first statement is obvious and the second and third ones are
symmetric. Let us prove the second and fourth ones.

1. Let x belong to Viab←−S (K, B)\ViabS(K, C) and −→x (·) ∈ S(x) be any
evolution starting at x. It is viable in Viab←−S (K, B)\ViabS(K, C) until it
must leave Viab←−S (K, B) at some time t� ≤ τK(−→x (·)), where τK(−→x (·)) :=
inf{t | −→x (t) /∈ K} (which is finite because x does not belong to the
forward viability kernel of K with target C). We observe that actually
τK(−→x (·)) = τ �

K(x). Otherwise, there would exist t0 such that τK(−→x (·)) <

t0 ≤ τ �
K(x) where −→x (t0) ∈ K\Viab←−S (K, B). Let ←−z (·) ∈ ←−S (x) be a

backward evolution starting at x and viable in K on [0,
←−
T [, where

←−
T

is either infinite or finite, and in this case, ←−z (
←−
T ) ∈ B. Such an evolution

exists since x belongs to the backward viability kernel Viab←−S (K, B). The
evolution ←−y (·) defined by

←−y (t) :=
{−→x (t0 − t) if t ∈ [0, t0]
←−z (t− t0) if t ∈ [t0,

←−
T ]

would be a viable evolution of the backward evolutionary system starting
at←−y (0) = −→x (t0) ∈ K\Viab←−S (K, B). This would imply that−→x (t0) belongs
to the backward viability kernel, a contradiction. Hence −→x (·) is viable in
Viab←−S (K, B)\ViabS(K, C) on the finite interval [0, τK(−→x (·))].

2. For the fourth subset of the viability partition, take any evolution x(·) ∈
S(x). Let us set S := τK(←−x (·)) and T := τK(x(·)). Then x(·) enters K
in finite time −S, passes through x at time 0 and leaves K in finite time
T . Its translation y(·) := (κ(S)x(·))(·) ∈ S(x(−S)) defined by y(t) :=
x(t − S) is viable in the complement of ViabS(K, C) until it leaves K
at time T + S. Then it is viable in the complement of ViabS(K, C). In
the same way, the evolution ←−z (·) := (

∨
κ (T )x(·))(·) ∈ ←−S (x(T )) defined

by ←−z (t) := x(T − t) is viable in the complement of Viab←−S (K, B). Then

the evolution x(·) = (κ(−S)x)(·) = (
∨
κ (T )←−z (·))(·) is viable both in the

complement of ViabS(K, C) and in the complement of Viab←−S (K, B), and
thus, in the complement K \ (Viab←−S (K, B) ∪ViabS(K, C)).

3. If Viab←−S (K, B)\CaptS(K, C) ⊂ Int(K), then Viab←−S (K, B)\CaptS(K, C)
is forward invariant. Indeed, any evolution −→x (·) ∈ S(x) starting
at x ∈ Viab←−S (K, B) \ CaptS(K, C) is viable in Viab←−S (K, B) \
CaptS(K, C). Otherwise, there would exist t0 > 0 such that −→x (t0) ∈
Int(K)\Viab←−S (K, B) because −→x (t) /∈ CaptS(K, C) since CaptS(K, C) is
isolated. Associating with it the backward evolution ←−y (·) defined above,
we would deduce that −→x (t0) ∈ Viab←−S (K, B), a contradiction. Therefore,
Viab←−S (K, B)\CaptS(K, C) is forward invariant, and thus, contained in
InvS(K \ CaptS(K, C)). ��
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We shall use the following consequence for localizing attractors, and in
particular, Lorenz attractors (see Theorem 9.3.12, p. 352):

Proposition 8.3.3 [Localization of Backward Viability Kernels] If
the backward viability kernel of K is contained in the interior of K, then it
is forward invariant and thus, contained in the invariance kernel of K.

Proof. Take B = C = ∅, the statement ensues. ��

8.3.1 Forward and Backward Viability Kernels
under the Lorenz System

Usually, the attractor, defined as the union of limit sets of evolutions, is
approximated by taking the union of the “tails of the trajectories” of the
solutions that provides an illustration of the shape of the attractor, although it
is not the attractor. Here, we use the viability kernel algorithm for computing
the backward viability kernel, which contains the attractor.

Let us consider the Lorenz system (2.6), p. 57
⎧⎨
⎩

(i) x′(t) = σy(t)− σx(t)
(ii) y′(t) = rx(t) − y(t)− x(t)z(t)
(iii) z′(t) = x(t)y(t) − bz(t)

(see of Sect. 2.4.2, p. 56).
Figure 8.3, p. 283 displays a numerical computation of the forward and

backward viability kernel of the cube K := [−30, +30]×[−30, +30]×[−0, +53]
and of the cylinder C := {(x, y, z) ∈ [−100, +100] × [−100, +100] ×
[−20, +80] | y2 + (z − r)2 ≤ 352}.
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Fig. 8.3 Example of viability kernels for the forward and backward Lorenz
systems when σ > b + 1.

Up: The figure displays both the forward viability kernel of the cube
K := [−30, +30]× [−30, +30]× [−0, +53] (left) and the backward viability
kernel contained in it (right). Down:. The figure displays both the forward
viability kernel of the cylinder C := {(x, y, z) ∈ [−100, +100]×[−100, +100]×
[−20, +80] | y2 + (z − r)2 ≤ 352} which coincides with C itself, meaning
that C is a viability domain, and the backward viability kernel contained
in it which coincides with the backward viability kernel of the upper figure.
Indeed, Proposition 8.3.3, p. 282 states that if the backward viability kernel is
contained in the interior of K, the backward viability kernel is also contained
in the forward viability kernel. The famous attractor is contained in the
backward viability kernel.

Since the backward viability kernel is contained in the interior of K,
Proposition 8.3.3, p. 282 implies the following consequence:
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Corollary 8.3.4 [Lorenz Attractor] The Lorenz limit set is contained in
this backward viability kernel.

Usually, the attractor is approximated numerically by taking the union
of the trajectories of the solutions that provides an idea of the shape of the
attractor, although it is not the attractor. Here, we use the viability kernel
algorithm for computing the backward viability kernel.

8.4 Detection Tubes

8.4.1 Reachable Maps

When f : X 
→ X is a Lipschitz single-valued map, it generates a
deterministic evolutionary system Sf : X 
→ C(0, +∞; X) associating with
any initial state x the (unique) solution x(·) = Sf (x) to the differential
equation x′(t) = f(x(t)) starting at x. The single-valued map t 
→ Sf (x)(t) =
{x(t)} from R+ 
→ X is called the flow or semi-group associated with f .
A flow exhibits the semi-group property

∀t ≥ s ≥ 0, Sf (x)(t) = Sf (Sf (x)(s))(t − s)

For deterministic systems, studying the dynamical system amounts to
studying its associated flow or semi-group, even though when they are not
necessarily associated with a dynamical system. Although this will no longer
be the case for nondeterministic evolutionary systems, it is worth introducing
the semigroup analogues, called “reachable maps” in the control literature:

Definition 8.4.1 [Reachable Maps and Tubes] Let S : X �
C(0, +∞; X) be an evolutionary system and B ⊂ K ⊂ X be a source
contained in the environment. Recall that SK : K � C(0,∞; K) denotes
the evolutionary system associating with any initial state x ∈ K the subset
of evolutions governed by S starting at x viable in K. The reachable map
(or set-valued flow) ReachK

S (·; x) viable in K is defined by

∀ x ∈ X, ∀t ≥ 0, ReachK
S (t; x) := {x(t)}x(·)∈SK(x)

When K := X is the whole space, we set ReachS(t; x) := ReachK
S (t; x).

We associate with the source B the (viable) reachable tube t �
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ReachK
S (t; B) defined by

ReachK
S (t; B) :=

{
ReachK

S (t; x)
}

x∈B

For simplifying the notations, we may drop the lower index S in the
notation of reachable tubes, and mention it only when several systems are
considered (the system and the backward system, for example).

We obtain the following properties:

Proposition 8.4.2 [The Semi-Group Property] The reachable map
t� ReachK

S (t; x) exhibits the semi-group property:

∀t ≥ s ≥ 0, ReachK
S (t; x) = ReachK

S (t− s; ReachK
S (s; x))

Furthermore,

(ReachK
S (t; ·))−1 := ReachK←−S (t; ·)

Proof. The first statement is obvious. To say that x ∈ ReachK
S (T ; y) means

that there exists a viable evolution x(·) ∈ SK(x) such that x(T ) = y. The
evolution ←−y (·) defined by ←−y (t) := x(T − t) belongs to

←−S (x), is viable in K
on [0, T ] and ←−y (T ) = y. This means that y ∈ ReachK←−S (T ; x). ��

When a time-independent evolutionary system S : X 
→ C(0, +∞; X) is
deterministic, one can identify the (unique) evolution x(·) = S(x) starting
from x with the reachable (single-valued) map t ∈ R 
→ ReachS(t; x). This is
why in many cases, the classical study of deterministic systems is reduced to
the flows t ∈ R 
→ ReachS(t; x).

Important Remark: Reachable Maps and Evolutionary
Systems. Even though (set-valued) reachable maps ReachS(·; x) play an
important role, they no longer characterize a time-independent nondeter-
ministic evolutionary system S: Knowing a state y ∈ ReachS(t; x), we
know that an evolution starting from x passes through y at time t, but
this does not guarantee that this evolution passes through any arbitrary
xs ∈ ReachS(s; x) at time s.

This is why, for nondeterministic evolutionary systems, the convenient
general setting is to regard it as a set-valued map S : X 
→ C(0, +∞; X)
instead of a set-valued semi-group or flow.
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The graph of the reachable tube is itself a capture basin under an auxiliary
system, and thus, exhibits all the properties of capture basins:

Proposition 8.4.3 [Viability Characterization of Reachable Tubes]
Let us consider the backward auxiliary system

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))
(8.6)

and a source B. The graph of the viable reachable tube ReachK
S ((·); B) :

T � ReachK
S (T ; B) is the capture basin of R+ × K with target {0} × B

under the auxiliary system (8.6), p. 286:

Graph(ReachK
S (·; B)) = Capt(8.6)(R+ ×K, {0} ×B)

Proof. Indeed, to say that (T, x) belongs to the capture basin of target {0}×B
viable in R+×K under the auxiliary system (8.6) means that there exist an
evolution ←−x (·) to the backward system (8.6), p. 286:

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))

starting at ←−x (0) := x and a time t∗ ≥ 0 such that
{

(i) ∀t ∈ [0, t∗], (T − t,←−x (t)) ∈ R+ ×K
(ii) (T − t∗,←−x (t∗)) ∈ {0} ×B

The second condition means that t� = T and that ←−x (T ) belongs to B. The
first one means that for every t ∈ [0, T ], ←−x (t) ∈ K. This amounts to saying
that the evolution x(·) := ←−x (T − ·) is a solution to system (8.4) starting at
←−x (T ) ∈ B, satisfying x(T ) = x and

∀t ∈ [0, T ], x(t) ∈ K ��

8.4.2 Detection and Cournot Tubes

Definition 8.4.4 [Detection Basins and Tubes] Let B ⊂ K be a subset
regarded as a source. The detection basin DetS(K, B) is the subset of final



8.4 Detection Tubes 287

states in K at which arrives in finite time at least one evolution viable
in K starting from the source B. The subset K is said to detect B if
K = DetS(K, B).
The T -detection basin DetS(K, B)(T ) is the subset of final states in K at
which arrives before T at least one evolution viable in K starting from
the source B and the set-valued maps T � DetS(K, B)(T ) is called the
detection tube of B.

We first point-out the links between capture and detecting basins:

Lemma 8.4.5 [Capture and Detection Basins] The (forward) detec-
tion basin DetS(K, B) of the source B under S is equal to the backward
capture basin Capt←−S (K, B) under

←−S of the source B regarded as a target:

DetS(K, B) = Capt←−S (K, B)

and thus, exhibits all the properties of the capture basins.

Proof. Indeed, to say that x belongs to DetS(K, B) amounts to saying that
there exist an initial state x0 ∈ B, an evolution x(·) ∈ S(x0) and some T ≥ 0
such that x(T ) = x and x(t) ∈ K for all t ∈ [0, T ]. Then the evolution ←−x (·)
defined by ←−x (t) := x(T − t) is a solution to the backward system

←−S (x)
starting at x and viable in K until time T when ←−x (T ) = x(0) = x0 ∈ B.
This means that x belongs to Capt←−S (K, B). ��

The detection tube can be expressed in terms of “reachable maps”:

Proposition 8.4.6 [Detection Tubes and Reachable maps] Let S :
X � C(0, +∞; X) be an evolutionary system and B ⊂ K ⊂ X be a source
contained in the environment. Then the detection tube can be written in the
form

DetS(K, B)(T ) :=
⋃

t∈[0,T ]

ReachK
S (t; B)

We also deduce from Theorem 4.3.2, p. 133 a viability characterization of
the detection tube:
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Proposition 8.4.7 [Viability Characterization of Detection Tubes]
Let us consider the backward auxiliary system (8.6), p. 286:

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))

Then the graph of the viable-capturability tube DetS(K, B)(·) is the
viable-capture basin of R+ ×B viable in R+ ×K under the system (8.6):

Graph(DetS(K, B)(·)) = Capt(8.6)(R+ ×K, R+ ×B)

Proof. The proof is analogous to the one of Proposition 8.4.3, p. 286. ��

Detection tubes provide the set of final states at which arrive at least one
evolution emanating from B. The question arises whether we can find the
subset of these initial states. This is connected with a concept of uncertainty
suggested by Augustin Cournot as the meeting of two independent causal
series: “A myriad partial series can coexist in time: they can meet, so that a
single event, to the production of which several events took part, come from
several distinct series of generating causes.” The search for causes amounts
in this case to reversing time in the dynamics and to look for “retrodictions”
(so to speak) instead of predictions.

We suggest to combine this Cournot approach uncertainty with the
Darwinian view of contingent uncertainty for facing necessity (viability
constraints) by introducing the concept of Cournot map.

Definition 8.4.8 [Cournot Map] The Cournot map Cour(K,B) :
Graph(K) � B associates with any T ≥ 0 and x ∈ K(T ) the (possibly
empty) subset Cour(K,B)(T, x) of initial causes x0 ∈ B from which x :=
x(T ) can be reached by an actual evolution x(·) ∈ S(x0) viable in the tube:

∀t ∈ [0, T ], x(t) ∈ K(t) (8.7)

At time T , the state x is thus the result of past viable evolutions
starting from all causal states x0 ∈ Cour(K,B)(T, x). The size of the
set Cour(K,B)(T, x) could be taken as a measure of Cournot’s concept of
uncertainty for the event x at time T .
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The set-valued map T � Im(Cour(K,B)(T, ·)) is decreasing, refining the
set of causal states of B from which at least one evolution has been selected
through the tube K(·) as time goes on.

We shall characterize the Cournot map as a viability kernel under an
adequate auxiliary system.

Theorem 8.4.9 [Viability Characterization of Cournot Maps] Let
us set IB := {(x, x)}x∈B and introduce the auxiliary system

⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))
(iii) y′(t) = 0

(8.8)

The graph of the Cournot Map Cour(K,B) is given by the formula

Graph(Cour(K,B)) := Capt(8.9)(Graph(K×B, {0} × IB)) (8.9)

Proof. To say that (T, x, x0) belongs to Capt(8.9)(Graph(K × B, {0} × IB))
means that there exists an evolution ←−x (·) starting at x and a time t� ≥ 0
such that {

(i) ∀t ∈ [0, t�], (T − t,←−x (t), x0) ∈ Graph(K)×B
(ii) (T − t�,←−x (t�), x0) ∈ {0} × IB

The second condition means that t� = T and that ←−x (T ) = x0 belongs to
B. The first one means that for every t ∈ [0, T ], ←−x (t) ∈ K(T − t). This
amounts to saying that the evolution x(·) := ←−x (T − ·) where x0 belongs to
B satisfies x(T ) = x and the viability conditions (8.7), i.e., that x0 belongs
to Cour( K,B)(T, x). ��

The issue is pursued in Sect. 13.8, p. 551 at the Hamilton-Jacobi level.

8.4.3 Volterra Inclusions

The standard paradigm of evolutionary system that we adopted is the initial-
value (or Cauchy) problem. It assumes that the present is frozen, as well as
the initial state from which start evolutions governed by an evolutionary
system S.

But the present time evolves, too, and consequences of earlier evolutions
accumulate. Therefore, the questions of “gathering” present consequences of
all earlier initial states arises.
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There are two ways of mathematically translating this idea. The first one,
the most familiar, is to take the sum of the number of these consequences:
This leads to equations bearing the name of Volterra, of the form

∀ T ≥ 0, x(T ) =
∫ T

0

θ(T − s; x(s))ds

A particular case is obtained for instance when the “kernel” θ(·, ·) is itself
the flow of a deterministic system y′(t) = f(y(t)). A solution x(·) to the
Volterra equation, if it exists, provides at each ephemeral T ≥ 0 the sum of
the states obtained at time T from the state x(s) at earlier time T − s ∈
[0, T ] of the solution by differential equation y′(t) = f(y(t)) starting at time

0 at a given initial state x. Then
∫ T

0

θ(T − s; x(s))ds denotes the sum of

consequences at time T of a flow of earlier evolving initial conditions, for
instance.

This is a typical situation that is met in traffic problems or in biological
neuron networks. It is not enough to study the consequences of an initial
condition, a vehicle or a neurotransmitter, since they arrive continuously at
the entrance of the highway or of the neuron.

In the set-valued case, “gathering” the subsets of consequences at
ephemeral time T of earlier initial conditions is mathematically translated
by taking their union. Hence the map similar to the Volterra equation would
be to find a tube D : t� D(t) and to check whether it satisfies

∀ T ≥ 0, D(T ) =
⋃

s∈[0,T ]

θ(T − s;D(s))

where (t, K) 
→ θ(t, K) ⊂ X is a set-valued “kernel”.
The particular example of kernel is the reachable map (t, K) 
→

ReachK
S (t, K), a solution to an initial value problem, in the spirit of Cauchy.

Then, if a tube D : t� D(t) is given, the set

∀ T ≥ 0,
⋃

s∈[0,T ]

ReachK
S (T − s;D(s))

of cumulated consequences gathers the consequences at time T of the
evolutions at time T of evolutions starting at time T − s from D(s). We
shall prove that there exist solutions to the set-valued Volterra equation,
that we shall call with a slight abuse of language, Volterra inclusion

∀ T ≥ 0, D(T ) =
⋃

s∈[0,T ]

ReachK
S (T − s;D(s)) (8.10)

The reachable tube ReachK
S (·; B) is obviously a solution to such a set-

valued Volterra equation: This is nothing other than the semi-group property.
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We shall see that this is the unique viable tube satisfying the semi-group
property contained in K and starting at B.

We shall also prove that the detection tube DetK
S (·, B) is the unique viable

tube solution to the set-valued Volterra equation “Volterra inclusion (8.10)”
contained in K and starting at B.

For that purpose, we have to slightly extend the concept of detection tube
of subsets to detection tubes of tubes (see Theorem 8.10.6, p. 314).

8.5 Connection Basins and Eupalinian Kernels

8.5.1 Connection Basins

Let us consider an environment K ⊂ X and an evolutionary system S : X �
C(−∞, +∞; X).

Definition 8.5.1 [Connection Basins] Let B ⊂ K be a subset regarded
as a source, C ⊂ K be a subset regarded as a target. The connection basin
ConnS(K, (B, C)) of K between B and C is the subset of states x ∈ K
through which passes at least one viable evolution starting from the source
B and arriving in finite time at target C.

The subset K is said to connect B to C if K = ConnS(K, (B, C)).

We refer to Sect. 10.6.2, p. 413 for topological and other viability charac-
terization of connection basins.

The set-valued map which associates with any x ∈ ConnS(K, (B, C)) of
the connection basin the pair (x(�(K,B)(←−x (·)), �(K,C)(−→x (·)))) ∈ B × C ⊂
K × K of end-values of viable evolutions x(·) connecting B to C has, by
definition, nonempty values.

The question arises whether we can invert this set-valued map: given a pair
(y, z) ∈ K ×K, does there exist an evolution x(·) viable in K linking y to z
in finite time in the sense where x(0) = y and x(T ) = z for some finite time
T ? This is an instantiation of the problem of studying the connection basin
ConnS(K, ({y}, {z})) when the pairs (y, z) range over the subset E ⊂ K ×K
of pairs of end-values of viable evolutions x(·) connecting B to C.

In other words, the question boils down whether we can a priori know the
subset E ⊂ K ×K of pairs (y, z) such that

ConnS(K, (B, C)) =
⋃

(y,z)∈E
ConnS(K, ({y}, {z}))
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Therefore, the study of connection basins amounts to finding this subset
E , that we shall call the Eupalinian kernel of K under S, and to characterize
it as capture basins of an auxiliary capturability problems.

8.5.1.1 Eupalinian Kernels

Eupalinos, a Greek engineer, excavated around 550 BC a 1,036m. long tunnel
180m. below Mount Kastro for building an aqueduct supplying Pythagoreion
(then the capital of Samos) with water on orders of tyrant Polycrates. He
started to dig simultaneously the tunnel from both sides by two working teams
who met in the center of the channel and they had only 0.6m. error. There is
still no consensus on how he did it. However1, this “Eupalinian strategy” has
been used ever since for building famous tunnels (under the British Channel
or the Mont-Blanc) or bridges: it consists in starting the construction at the
same time from both end-points x and y and proceed until they meet, by
continuously monitoring the progress of the construction.

Such models can also be used as mathematical metaphors in negotiation
procedures when both actors start from opposite statements and try to reach
a consensus by making mutual concessions step by step, continuously bridging
the remaining gap.

This question arose in numerical analysis and control under the name of
“shooting” methods, which, whenever the state is known at initial and final
time, consists in integrating differential equations at the same time at both
initial and final states and matching in the middle.

We suggest a mathematical metaphor for explaining such an Eupalinian
strategy.

Definition 8.5.2 [Eupalinian Kernels] Let S : X � C(0, +∞; X) and
K ⊂ X be an environment. We denote by SK(y, z) := ConnS(K, ({y}, {z}))
the set of Eupalinian evolutions x(·) governed by the evolutionary system
S viable in K connecting y to z, i.e., the set of evolutions x(·) ∈ S(y)
such that there exists a finite time T ≥ 0 satisfying x(T ) = z and, for all
t ∈ [0, T ], x(t) ∈ K.
The Eupalinian kernel E := EupS(K) ⊂ K ×K is the subset of pairs (y, z)
such that there exists at least one viable evolution x(·) ∈ SK(y) connecting
y to z and viable in K.

1 The authors thank Hélène Frankowska for communicating them this historical
information.
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We can characterize the Eupalinian kernel as a capture basin:
Proposition 8.5.3 [Viability Characterization of Eupalinian
Kernels] Let us denote by Diag(K) := {(x, x)}x∈K ⊂ K ×K the diagonal
of K. The Eupalinian kernel EupS(K) of K under the evolutionary system
S associated with the system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

is the capture basin

EupS(K) = Capt(8.11)(K ×K, Diag(K))

of the diagonal of K viable in K ×K under the auxiliary system

{
(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = −f(z(t), v(t)) where v(t) ∈ U(z(t)) (8.11)

We “quantify” the concept of Eupalinian kernel with the concept of several
Eupalinian intertemporal optimization problems. The domains of their value
functions are the Eupalinian kernels, so that Proposition 8.5.3, p. 293 follows
from the forthcoming Theorem 8.5.6. p. 295.

Since we shall minimize an intertemporal criterion involving controls, as
we did in Chap. 4, p. 125, we denote by:

1. PK(x) the set of state-control evolutions (x(·), u(·)) where x(0) = x and
regulated by the system.

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

and viable in K
2. PK(y, z) the set of state-control evolutions (x(·), u(·)) where x(0) = y and

x(t�) = z for some finite time t� governed by this and viable in K.

We introduce a cost function c : X×X 
→ R∪{+∞} (regarded as a connection
cost) and a Lagrangian l : (x, u)� l(x, u).

We consider the Eupalinian optimization problem

{
E(c,l)(y, z)
= inf(x(·),u(·))∈PK(y,z),t� ≥ 0 | x(2t�)=z

(
c(x(t�), x(t�))+

∫ 2t�

0 l(x(t), u(t))dt
)

• By taking c ≡ 0 and l(x, u) ≡ 1, we find the following Eupalinian minimal
time problem:
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Definition 8.5.4 [Eupalinian Distance and Brachistochrones]
The Eupalinian distance εK(y, z)

εK(y, z) := 2 inf
(x(·),u(·))∈PK(y,z), t� ≥ 0 | x(2t�)=z

t� ∈ [0, +∞[ (8.12)

measures the minimal time needed for connecting the two states y and z
by a evolution viable in K. Let B ⊂ K a source and C ⊂ K be a target.
The function

εK(B, C) := inf
y∈B, z∈C

εK(y, z)

is called the Eupalinian distance between the source B and the target
C. Viable evolutions in K connecting y to z in minimal time are called
brachistochrones.

Their existence and computation was posed as a challenge by Johann
Bernoulli in 1696, challenge met by Isaac Newton, Jacob Bernoulli,
Gottfried Leibnitz and Guillaume de L’Hopital in a particular case.

• By taking c ≡ 0 and l(x, u) = ‖f(x, u)‖, we obtain the viable geodesic
connecting two states by a viable evolution in minimal length function
γK(x) : X 
→ R+ ∪ {+∞} defined by

γK(x) := inf
(x(·),u(·))∈PK(x)

∫ ∞
0

‖f(x(t), u(t))‖dt

(see Definition 4.4.1, p. 140).
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Definition 8.5.5 [Geodesics] We denote by geodesic distance

γ̂K(y, z) := inf
(x(·),u(·))∈PK(y,z), t� ≥ 0 | x(2t�)=z

∫ 2t�

0

‖f(x(t), u(t))‖dt

(8.13)
measuring the minimal length needed for connecting the two states y
and z by a evolution viable in K. Any viable evolution (x(·), u(·)) ∈

PK(y, z) achieving the minimum γ̂K(y, z) :=
∫ 2t�

0

‖f(x(t), u(t))‖dt is

called a viable geodesic. The function

γ̃K(B, C) := inf
y∈B, z∈C

γK(y, z)

is called the geodesic distance between the source B and the target C.

We shall prove that

Theorem 8.5.6 [Eupalinian Optimization Theorem] Let us consider
the auxiliary control system

⎧⎨
⎩

(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = −f(z(t), v(t)) where v(t) ∈ U(z(t))
(iii) λ′(t) = −l(y(t), u(t))− l(z(t), v(t))

(8.14)

Then

E(c,l)(y, z) = inf
(y,z,λ)∈Capt(8.14)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ

where Diag(K) := {(x, x)}x∈K ⊂ K ×K is the diagonal of K.

Proof. Let (y, z, λ) ∈ Capt(8.14)(K×K×R+, Ep(c)∩(Diag(K)×R+)) belong
to the capture basin. This means that there exist one forward evolution
−→y (·) ∈ SK(y) viable in K, one backward evolution ←−z (·) ∈ ←−S K(z) viable
in K, the evolution λ(t) := λ−

∫ t

0
l(−→y (t),−→u (t))dt−

∫ t

0
l(←−z (t),←−v (t))dt and a

time t� such that:

• for all t ∈ [0, t�], −→y (t) ∈ K, ←−z (t) ∈ K,
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λ−
∫ t

0

l(−→y (t),−→u (t))dt−
∫ t

0

l(←−z (t),←−v (t))dt ≥ 0

• and −→y (t�) =←−z (t�) and

λ−
∫ t�

0

l(−→y (t),−→u (t))dt−
∫ t�

0

l(←−z (t),←−v (t))dt ≥ c(−→y (t�),←−z (t�))

Let us introduce the evolution x(t) defined by x(t) := −→y (t) for t ∈ [0, t�]
and x(t) :=←−z (2t�− t) for t ∈ [t�, 2t�]. This evolution x(·) is continuous at t�

because x(t�) = −→y (t�) =←−z (t�), belongs to SK(y, z) since x(0) = −→y (0) = y,
x(2t�) =←−z (0) = z and is governed by the differential inclusion starting at y.
Furthermore,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ−
(∫ 2t�

0

l(x(t), u(t))dt

)

= λ−
(∫ t�

0

l(−→y (t),−→u (t))dt +
∫ t�

0

l(←−z (t),←−v (t))dt

)

≥ c(x(t�), x(t�))

This means that there exist x(·) ∈ SK(y, z) and t� ≥ 0 such that

c(x(t�), x(t�)) +
∫ 2t�

0

l(x(t), u(t))dt ≤ λ

This implies in particular that

⎧⎪⎪⎨
⎪⎪⎩

E(c,l)(y, z) := inf
(x(·),u(·))∈PK(y,z), t�

(
c(x(t�), x(t�)) +

∫ 2t�

0

l(x(t), u(t))dt

)

≤ inf
(y,z,λ)∈Capt(8.14)(R+×K×K,Ep(c)∩(R+×Diag(K)))

λ

For proving the opposite inequality, we associate with any ε > 0 an
evolution xε(·) ∈ SK(y, z), a control uε(·) and t�ε ≥ 0 such that

(
c(xε(t�ε), xε(t�ε)) +

∫ 2t�
ε

0

l(xε(t), uε(t))dt

)
≤ E(c,l)(y, z) + ε

and the function

λε(t) := E(c,l)(y, z) + ε−
∫ 2t

0

l(xε(t), uε(t))dt

Introducing the forward parts −→y ε(t) := xε(t) and−→u ε(t) := uε(t) for t ∈ [0, t�ε]
and backward parts←−z ε(t) := xε(2t�ε−t) and←−v ε(t) := uε(2t�ε−t), we observe
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that (−→y ε(t),←−z ε(t), λε(t)) is a solution to the auxiliary system (8.14) starting
at (y, z,E(c,l)(y, z) + ε), viable in K ×K × R+ and satisfying

⎧⎨
⎩λε(t) := E(c,l)(y, z) + ε−

∫ 2t�
ε

0

l(xε(t), uε(t))dt

≥ c(−→y ε(t�ε),
←−z ε(t�ε))

This implies that (y, z,E(c,l)(y, z) + ε) belongs to the capture basin
Capt(8.14)(K ×K × R+, Ep(c) ∩ (Diag(K)× R+)). Hence

inf
(y,z,λ)∈Capt(8.14)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ ≤ E(c,l)(y, z) + ε

and it is enough to let ε converge to 0. ��

Remark: Eupalinian Graphs. The Eupalinian kernel is a graph in
the sense of “graph theory” where the points are regarded as “vertices” or
“nodes”, a set of pairs (y, z) connected by at least one evolution and, for
a given intertemporal optimization problem, the set of “edges” or “arcs”
E(c,l)(y, z) linking y to z. ��

Remark: The associated Hamilton-Jacobi-Bellman Equation. The
tangential and normal characterizations of capture basins imply that the
bilateral value function is the solution to the bilateral Hamilton-Jacobi-
Bellman partial differential equation

inf
u∈U(x)

(〈
∂E
∂x

, f(x, u)
〉

+ l(x, u)
)
− sup

v∈U(y)

(〈
∂E
∂y

, f(y, v)
〉
− l(y, v)

)
= 0

(8.15)
in a generalized sense (see Chap. 17, p. 681) satisfying the diagonal condition

∀ x ∈ K, E(c,l)(x, x) = c(x, x)

Even though the solution to this partial differential equation provides the
Eupalinian value function, we do not need to approximate this partial differ-
ential equation for finding this Eupalinian value function since the Viability
Kernel Algorithm provides it and the optimal Eupalinian evolutions. ��

Remark: Regulation of Optimal Eupalinian Solutions. We intro-
duce the two following forward and backward maps:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i)
−→
R (x, p) := {−→u ∈ U(x) | 〈p, f(x,−→u )〉+ l(x,−→u )

= inf
u∈U(x)

(〈p, f(x, u)〉+ l(x, u))
}

(ii)
←−
R (y, q) := {←−v ∈ U(y) | 〈q, f(y,←−v )〉 − l(y,←−v )

= sup
v∈U(y)

(〈q, f(y, v)〉 − l(y, v))

} (8.16)

depending only on the dynamics f and U of the control system and of the
transient cost function l.

In order to find and regulate the optimal evolution, we plug into them

the partial derivatives p :=
∂E(x, y)

∂x
and q :=

∂E(x, y)
∂y

of the bilateral

value function (actually, when constraints K are involved or when the
function c is only lower semicontinuous, the bilateral value function is lower
semicontinuous and we have to replace the partial derivatives by subgradients
(px, qy) ∈ ∂E(x, y) of the bilateral value-function, as indicated in Chap. 17,
p. 681).

Knowing the Eupalinian value function and its partial derivatives (or
subgradients), one can thus derive from the results of Sect. 17.4.3, p. 704 that
the optimal Eupalinian evolution x(·) linking y at time 0 and z at minimal
time 2T is governed by the control system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) x′(t) = f(x(t), u(t))
(ii) where

u(t) ∈

⎧⎪⎪⎨
⎪⎪⎩

−→
R

(
x(t),

∂E(x(t), x(2T − t))
∂x

)
if t ∈ [0, T ]

←−
R

(
x(t),

∂E(x(2T − t), x(t))
∂y

)
if t ∈ [T, 2T ]

(8.17)

In other words, the controls regulating an optimal evolution linking y to z
“feed” both at current sate x(t) and at state x(2T − t) at time 2T − t, forward
if t ∈ [0, T ] and backward if t ∈ [T, 2T ]. In other words, optimal evolutions
can be governed by “forward and backward retroactions”, keeping an eye
on the current state and the other one on the state at another instant. In
particular, the initial control depends upon both the initial and final states.
��

8.6 Collision Kernels

Eupalinian kernels are particular cases of collision kernels associated with
a pair of evolutionary systems denoted by S and T associated with control
systems
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{
(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = g(z(t), v(t)) where v(t) ∈ V (z(t)) (8.18)

Definition 8.6.1 [Collision Kernels] Let S : X � C(0, +∞; X) and
T : X � C(0, +∞; X) be two evolutionary systems, K ⊂ X and L ⊂ X
be two intersecting environments. We denote by SK(y) × T L(z) the set of
evolutions (y(·), z(·)) ∈ SK(y)×T L(z) governed by the pair of evolutionary
systems S and T viable in K ×L. We say that they collide if there exists a
finite collision time t� ≥ 0 such that y(t�) = z(t�) ∈ K ∩ L.
The collision kernel CollS,T (K, L) ⊂ K×L is the subset of pairs (y, z) ∈ K×
L such that there exist at least two viable colliding evolutions (y(·), z(·)) ∈
SK(y)× T L(z).

Remark. Eupalinian kernels are obtained when g = −f , U = V and L =
K, or, equivalently, when the evolutionary system R =

←−S is the backward
evolutionary system. ��

We can characterize the collision kernel as the capture basin of an auxiliary
problem, so that it inherits the properties of capture basins:

Proposition 8.6.2 [Viability Characterization of Collision Ker-
nels] Recall that Diag(K ∩ L) := {(x, x)}x∈K∩L denotes the diagonal of
K ∩L. The collision kernel CollS,T (K, L) of K ∩L under the evolutionary
systems S and T associated with the systems (8.18), p. 299 is the capture
basin

CollS,T (K, L) = Capt(8.18)(K × L, Diag(K ∩ L))

of the diagonal of K ∩L viable in K ×L under the auxiliary system (8.18),
p. 299.

We now “quantify” the concept of collision kernel with the concept of
several collision intertemporal optimization problems. The domains of their
value functions are the collision kernels, so that Proposition 8.6.2, p. 299
follows from Theorem 8.6.3, p. 300 below.

We introduce a cost function c : X × X 
→ R ∪ {+∞} (regarded as a
collision cost) and a Lagrangian l : (y, z, u, v)� l(y, z, u, v).

The optimal viable collision problem consists in finding colliding viable
evolutions y(·) ∈ SK(y) and z(·) ∈ T L(z) and a time t� ≥ 0 minimizing

⎧⎨
⎩

W(c,l)(y, z) = inf(y(·),z(·))∈SK(y)×T L(z), t� | y(t�)=z(t�)(
c(y(t�), z(t�)) +

∫ t�

0
l(y(t), z(t), u(t), v(t))dt

)
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By taking c ≡ 0 and l(y, z, u, v) ≡ 1, we find the problem of governing two
evolutions in minimal time.

We shall prove that

Theorem 8.6.3 [Collision Optimization Theorem] Let us consider
the auxiliary control system

⎧⎨
⎩

(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = g(z(t), v(t)) where v(t) ∈ V (z(t))
(iii) λ′(t) = −l(y(t), z(t), u(t), v(t))

(8.19)

Then

W(c,l)(y, z) = inf
(y,z,λ)∈Capt(8.19)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ

where Diag(K) := {(x, x)}x∈K ⊂ K ×K is the diagonal of K.

Proof. Let (y, z, λ) ∈ Capt(8.19)(K × L × R+, Ep(c) ∩ (Diag(K) × R+))
belong to the capture basin. This means that there exist one evolution
y(·) ∈ SK(y) viable in K, one evolution z(·) ∈ T L(z) viable in L, the

evolution λ(t) := λ−
∫ t

0

l(y(s), z(s), u(s), v(s))ds and a time t� such that:

• for all t ∈ [0, t�], y(t) ∈ K, z(t) ∈ L,

λ−
∫ t

0

l(y(s), z(s), u(s), v(s))ds ≥ 0

• y(t�) = z(t�)
• and

λ−
∫ t�

0

l(y(s), z(s), u(s), v(s))ds ≥ c(y(t�), z(t�))

This implies that

W(c,l)(y, z) ≤ c(y(t�), z(t�)) +
∫ t�

0

l(y(s), z(s), u(s), v(s))ds ≤ λ

and thus, that

W(c,l)(y, z) ≤ inf
(y,z,λ)∈Capt(8.19)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ
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For proving the opposite inequality, we associate with any ε > 0 two
colliding evolutions yε(·) ∈ SK(y) and zε(·) ∈ T L(z) at some time t�ε ≥ 0,
controls uε(·) and vε(·) such that
(

c(yε(t�ε), zε(t�ε)) +
∫ t�

ε

0

l(yε(t), zε(t), uε(t), vε(t))dt

)
≤ W(c,l)(y, z) + ε

and the function

λε(t) := W(c,l)(y, z) + ε−
∫ t

0

l(yε(s), zε(s), uε(s), vε(s))ds

By construction,

λε(t�ε) ≥ c(y(t�ε), z(t�ε)) and y(t�ε) = z(t�ε)

This implies that (y, z,W(c,l)(y, z) + ε) belongs to the capture basin
Capt(8.19)(K ×K × R+, Ep(c) ∩ (Diag(K)× R+)). Hence

inf
(y,z,λ)∈Capt(8.19)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ ≤ W(c,l)(y, z) + ε

and it is enough to let ε converge to 0. ��

8.7 Particular Solutions to a Differential Inclusion

Consider a pair of evolutionary systems S and T associated with control
systems (8.18), p. 299:

{
(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = g(z(t), v(t)) where v(t) ∈ V (z(t))

We look for common solutions x(·) of these two evolutionary systems
(8.18). Whenever the control system (8.18)(i) is simpler to solve than the
differential inclusion (8.18)(ii), the solutions of which are interpreted as
“particular” solutions, one can regard such common solutions to (8.18)(i)
and (8.18)(ii) as particular solutions to the differential inclusions (8.18)(i)
and (8.18)(ii).

For instance,

• taking g(z, v) := 0, the common solutions are equilibria of (8.18)(i),
• taking for g(z, v) = v a constant velocity, then common solutions are affine

functions of time t,
• taking for g(z, v)=−mz, then common solutions are exponential functions

of time ze−mt
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and so on. The problem is to detect what are the initial states y which
are equilibria, from which starts an affine evolution or from which starts an
exponential solution.

In other words, finding particular solutions amounts to finding the set of
the initial states from which common solutions do exist.

Lemma 8.7.1 [Extraction of Particular Solutions] Denote by
Diag(X) := {(x, x)}x∈X the “diagonal” of X × X. Then the set of points
from which start common solutions to the control systems is the viability
kernel Viab(8.18)(Diag(X)) of the diagonal under (8.18).

Proof. Indeed, to say that x(·) ∈ S(x)∩T (x) is a common solution to control
systems (8.18), p. 299 amounts to saying that the pair (x(·), x(·)) is a solution
to system (8.18) viable in the diagonal Diag(K), so that (x, x) belongs to the
viability kernel Viab(8.18)(Diag(X)). Conversely, to say that (x, x) belongs to
this viability kernel amounts to saying that there exist evolutions (y(·), z(·)) ∈
S(x)×T (y) viable in the diagonal Diag(X), so that, for all t ≥ 0, y(t) = z(t)
is a common solution. ��

Being a viability kernel, the subset of initial states from which start
particular evolutions inherits the properties of viability kernels.

8.8 Visiting Kernels and Chaos À la Saari

The fundamental problem of qualitative analysis (and in particular, of qualita-
tive physics in computer sciences and comparative statics in economics) is the
following: subsets Cn ⊂ K are assumed to describe “qualitative properties”,
and thus are regarded as qualitative cells or, simply, cells. Examples of such
qualitative cells are the monotonic cells (see Definition 9.2.14, p. 332). Given
such an ordered sequence of overlapping qualitative cells, the question arises
whether there exist viable evolutions visiting successively these qualitative
cells in prescribed order. These are questions treated by Donald Saari that
we partially cover here (see [182–184, Saari]).

We answer here the more specific question of the existence of such
viable evolutions visiting not only finite sequences of cells, but also infinite
sequences. Existence of viable visiting cells require some assumptions.

Definition 8.8.1 [Visiting Kernels] Let us consider a sequence of
nonempty closed subsets Cn ⊂ K such that Cn ∩ Cn+1 �= ∅. An evolution
x(·) ∈ S(x) is visiting the subsets Cn successively in the following sense:
there exists a sequence of finite duration τn ≥ 0 such that, starting with
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t0, for all n ≥ 0,
{

(i) tn+1 = tn + τn

(ii) ∀ t ∈ [tn, tn+1], x(t) ∈ Cn and x(tn+1) ∈ Cn+1
(8.20)

The set VisS(K,
−→
C ) of initial states x ∈ K such that there exists an

evolution x(·) ∈ S(x) visiting successfully the cells Cn is called the visiting
kernel of the sequence

−→
C of cells Cn viable in K under the evolutionary

system S.
The T -visiting kernel VisS(K,

−→
C )(T ) is the set of initial states from which

starts at least one viable evolution visiting the cells with duration τn bounded
by T .

We begin by considering the case of a finite sequence of cells and a result
due to Donald Saari :

Lemma 8.8.2 [Existence of Evolutions Visiting a Finite Number
of Cells] Let us consider a finite sequence of subsets Cn ⊂ K (n =
0, . . . , N) such that

T := sup
n=0,...,N−1

sup
y∈Cn+1

inf
z∈Cn

εCn(y, z) < +∞ (8.21)

where εCn is the Eupalinian function viable in Cn (see Definition 8.5.4,
p. 294).

Then, the T -visiting kernel VisS(K, C1, . . . , CN )(T ) of this finite
sequence is not empty.

Proof. We set

MN
N−1 := CaptS(CN−1, CN−1 ∩ CN )(T )

which is the subset of x ∈ CN−1 such that there exist τ ∈ [0, T ] and an
evolution x(·) ∈ S(x) viable in CN−1 on [0, T ] such that x(τ) ∈ CN . For
j = N − 2, . . . , 0, we define recursively the cells:

MN
j := CaptS(Cj , Cj ∩MN

j+1)(T )

which can be written

MN
j = {x ∈ Cj | ∃ τj ∈ [0, T ], ∃ x(·) ∈ SCj (x) such that x(τj) ∈MN

j+1}
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Therefore the set VisS(K, C0, . . . , CN )(T ) = MN
0 is the set of initial states

x0 ∈ C0 from which at least one solution will visit successively the cells
Cj , j = 0, . . . , N . ��

We shall prove here the existence of viable evolutions visiting a infinite
number of cells Cn, although they require to take the limit, and therefore,
to use theorems of Chap. 10, p. 375 (the proof can thus be omitted in a first
reading).

Proposition 8.8.3 [Existence of Evolutions Visiting an Infinite
Sequence of Cells] Let K be a closed subset viable under an upper
semicompact evolutionary system S. We consider a sequence of compact
subsets Cn ⊂ K and we assume that

T := sup
n ≥ 0

sup
y∈Cn+1

inf
z∈Cn

εCn(y, z) < +∞ (8.22)

Then, the T -visiting kernel VisS(K,
−→
C )(T ) of this infinite sequence is not

empty.

Proof. We shall prove that the intersection

K∞ :=
⋂

n ≥ 0

VisS(K, C1, . . . , Cn)(T ) ⊂ VisS(K,
−→
C )(T )

is not empty and contained in the visiting kernel VisS(K,
−→
C )(T ).

Lemma 8.8.2, p. 303 implies that the visiting kernels VisS(K, C1, . . . , Cn)(T )
are not empty, and closed since the evolutionary system is upper
semicompact (see Theorem 10.3.14, p. 390). Since the family of subsets
VisS(K, C1, . . . , Cn)(T ) form a decreasing family and since K is compact,
the intersection K∞ is nonempty.

It remains to prove that it is contained in the visiting kernel
VisS(K,

−→
C )(T ). Let us take an initial state x in K∞ and fix n. Hence

there exist xn(·) ∈ S(x) and a sequence of tjn ∈ [0, jT ] such that

∀j = 1, . . . , n, xn(tjn) ∈Mn
j ⊂ Cj and ∀t ∈ [tj−1

n , tjn], xn(t) ∈ Cj

Indeed, there exist y1(·) ∈ S(x) and τn
1 ∈ [0, T ] such that y1(τn

1 ) belongs
to Mn

1 . We set tn1 := τn
1 , xn

1 = y1(tn1 ) and xn(t) := y1(t) on [0, tn1 ].
Assume that we have built xn(·) on the interval [0, tnj ] such that xn(tnj ) ∈

Mn
j ⊂ Cj for j = 1, . . . , k. Since xn(tnk ) belongs to Mn

k , there exist yk+1(·) ∈
S(xn(tnk )) and τn

k+1 ∈ [0, T ] such that

yk+1(τn
k+1) ∈Mn

k+1
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We set
tnk+1 := tnk + τn

k+1 & xn(t + τn
k ) := yk+1(t)

on [tnk , tnk+1]. When k = n, we extend xn(·) to [tnn, +∞[ by any evolution
starting at xn(tnn) at time tnn.

Since the evolutionary system is assumed to be upper semicompact, the
Stability Theorem 10.3.3, p. 385 implies that a subsequence (again denoted
xn(·)) of the sequence xn(·) ∈ S(x) converges (uniformly on compact
intervals) to some evolution x(·) ∈ S(x) starting at x. By extracting
successive converging subsequences of τn

j ∈ [0, T ] converging to τj when
n ≥ j → +∞ and setting tj+1 := tj + τj , we infer that x(tj) ∈ Cj . ��

As a consequence, we obtain an extension to evolutionary systems of a
theorem on “chaos” due to Donald Saari :

Theorem 8.8.4 [Chaotic Behavior à la Saari] Let K be a compact
subset viable under an upper semicompact evolutionary system S. We
assume that K is covered by a family of closed subsets Ka (a ∈ A) satisfying
the following assumption:

T := sup
a∈A

sup
y∈K

inf
z∈Ka

εKa(y, z) < +∞ (8.23)

Then, for any sequence a0, a1, . . . , an, . . ., there exists at least one
evolution x(·) ∈ S(x) and an increasing sequence of elements tj ≥ 0 such
that for all j ≥ 0, ∀t ∈ [tj , tj+1], x(t) ∈ Kaj and x(tj+1) ∈ Kaj+1 .

Proof. We associate with the sequence a0, a1, . . . , an, . . . the sequence of sub-
sets Cn := Kan and we observe that assumption (8.22) of Proposition 8.8.3,
p. 304 is satisfied. ��

8.9 Contingent Temporal Logic

By identifying a subset K ⊂ X with the subset of elements x ∈ X satisfying
the property PK(x) of belonging to K, i.e., PK(x) if and only if x ∈ K,
we know that we can identify implication and negation with inclusion and
complementation:

{
(i) PK ⇒ PL (PK implies PL) if and only if K ⊂ L
(ii) ¬PK(x) (not PK(x)) if and only if x ∈ �K
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These axioms have been relaxed in many ways to define other logics. We
adapt to the “temporal case” under uncertainty the concept of atypic logic
introduced by Michel de Glas.

Taking into account time and uncertainty into logical operations requires
an evolutionary system S, associating with any x for instance the set S(x)
of solutions x(·) to a differential inclusion x′ ∈ F (x) starting at x.

Definition 8.9.1 [Eventual Consequences] Given an evolutionary sys-
tem, we say that y is an eventual consequence of x – and write y � x – if
there exist an evolution x(·) ∈ S(x) starting from x and a time T ≥ 0 such
that y = x(T ) is reached by this evolution.

This binary relation y � x is the contingent temporal preorder
associated with the evolutionary system S, temporal because evolution is
involved, contingent because this evolution is contingent.

It is obvious that the binary relation y � x is:

1. reflexive: x � x and
2. transitive: if y � x and z � y, then z � x,

so that it is, by definition, a preorder on X .

Definition 8.9.2 [Contingent Temporal Implications and Falsifica-
tion] Let us consider an evolutionary system S. We say that x:

1. satisfies typically (�PK(x)) property PK if all eventual consequences
of x satisfy property PK :

2. satisfies atypically (�PK(x)) property PK if at least one eventual
consequence of x satisfies property PK ,

3. falsifies (�PK(x)) property PK if at least one eventual consequence
of x does not satisfy property PK,

Falsification. The contingent temporal preorder allows us
to define a concept of falsification (in French, réfutation),
which translates mathematically a weaker concept of nega-
tion which Karl Popper (1902–1994) made popular.
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These definitions can readily be formulated in terms of capture basins and
invariance kernels:

Lemma 8.9.3 [Viability Formulation of Contingent Temporal
Operations] The formulas below relate logical operations to invariance
kernels and capture basins:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) �PK(x) if and only if x ∈ Inv(K) := Inv(K, ∅)
x satisfies typically property PK

(ii) �PK(x) if and only if x ∈ Capt(K) := Capt(X, K)
x satisfies atypically property PK

(iii) �PK(x) if and only if x ∈ Capt(�(K))
x falsifies (or does not typically satisfies) property PK

Fig. 8.4 Typical, atypical and falsifying elements.

This figure illustrates the above concepts: the subset K of elements satisfying
property PK is partitioned in the set Inv(K) of typical elements satisfying
property PK , and in the set Capt(�(K)) of elements falsifying property PK .
The capture basin Capt(K) of K is the set of atypical elements satisfying
property PK .

We now translate some elementary properties of capture basins and
invariance kernels: For instance, contingent temporal logics are nonconsistent
in the following sense:

Proposition 8.9.4 [Non-Consistency of Contingent Temporal Log-
ics] The contingent temporal logic is not consistent in the sense that:

1. �PK(x) ∨ �PK(x) is always true,
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2. �PK(x)∧�PK (x) may be true (or is not false): �PK(x)∧�PK (x) if and
only if x both atypically satisfies and falsifies property PK

3. The falsification of the falsification of property PK is the set of element
satisfying extensively and intensively this property:

��PK(x) ⇔ � � PK(x)

The relationships with conjunction and disjunction become
{

(i) �(PK1 ∧ PK2) if and only if �PK1 ∨ �PK2

(ii) �(PK1 ∨ PK2) implies �PK1 ∧ �PK2

Definition 8.9.5 [Contingent Temporal Implications] With an evo-
lutionary system S, we associate the following logical operations:

1. Intensive contingent temporal implication

PK ⇒ PL

means that all eventual consequences of elements satisfying property
PK satisfy property PL

2. Extensive contingent temporal implication

PK � PL

means that whenever at least one eventual consequence of an
element satisfies property PK , it satisfies property PL.

We observe that the intensive and extensive contingent temporal implica-
tions imply the usual implication.

Lemma 8.9.6 [Viability Characterization of Implications] Exten-
sive and intensive implications are respectively formulated in this way:
{

(i) PK � PL (PK extensively implies PL) if and only if K ⊂ Inv(L)
(ii) PK ⇒ PL (PK intensively implies PL) if and only if Capt(K) ⊂ L

and weak extensive and intensive implications defined respectively by
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⎧⎪⎪⎨
⎪⎪⎩

(i) PK ⇀ PL (PK weakly extensively implies PL) if and only if
Capt(K) ⊂ Capt(L)

(ii) PK ⇁ PL (PK weakly intensively implies PL) if and only if
Inv(K) ⊂ Inv(L)

We infer the following

Proposition 8.9.7 [Contraposition Properties] The following state-
ments are equivalent:

1. property PK intensively implies PL:

PK ⇒ PL

2. negation of property PL extensively implies the negation of property PK :

¬PL � ¬PK

3. falsification of property PL implies the negation of property PK :

�PL ⇒ ¬PK

8.10 Time Dependent Evolutionary Systems

8.10.1 Links Between Time Dependent
and Independent Systems

Consider the time-dependent system

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

Definition 8.10.1 [Time-Dependent Systems] When the dynamics
{

(i) x′(t) = f(t, x(t), u(t))
(ii) u(t) ∈ U(t, x(t)) (8.24)

of a system depend upon the time, we denote by S : R×X � C(−∞, +∞; X)
the time-dependent evolutionary system associating with any (T, x) the set
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of evolutions x(·) ∈ C(−∞, +∞; X) governed by this time-dependent system
passing through x at time T : x(T ) = x. Whenever K : t � K(t) is a tube,
we denote by SK(x) the set of evolutions x(·) ∈ S(x) such that

∀ t ≥ 0, x(t) ∈ K(t)

Splitting evolutions allows us to decompose a full evolution passing
through a given state at present time 0 into its backward and forward parts
both governed by backward and forward evolutionary systems:

The backward time-dependent system
←−S : R × X � C(−∞, +∞; X)

associates with any (T, x) the set of evolutions x(·) ∈ C(−∞, +∞; X) passing
through x at time T : x(T ) = x and governed by

{
(i) ←−x ′(t) = −f(−t,←−x (t),←−u (t))
(ii)←−u (t) ∈ U(−t,←−x (t)) (8.25)

We observe that x(·) ∈ S(T, x) if and only if:

1. its forward part −→x (·) := κ(T )(x(·))(·) at time T defined by κ(T )(x(·))(t) =
x(t − T ) is a solution to differential inclusion

−→x ′(t) = f(T + t,−→x (t),−→u (t)) where −→u (t) ∈ U(T + t,−→x (t))

satisfying −→x (0) = x.
2. its backward part ←−x (·) := (

∨
κ (T )x(·))(·) at time T defined by (

∨
κ (T )x

(·))(t) = x(T − t) is a solution to differential inclusion

←−x ′(t) = f(T − t,←−x (t),←−x (t)) where←−u (t) ∈ U(T − t,←−x (t))

satisfying ←−x (0) = x.

This implies that when the system is time-independent, the backward time-
independent system

←−S : X � C(0, +∞; X) associates with any x ∈ X the
set of evolutions ←−x (·) ∈ C(0, +∞; X) passing through x at time T : x(T ) = x
and governed by (8.25), p. 310, which boils down to

{
(i) ←−x ′(t) = −f(←−x (t),←−u (t))
(ii)←−u (t) ∈ U(←−x (t))

This also allows us to introducing an auxiliary “time variable” τ the
absolute value of the velocity of which is equal to one: +1 for forward time,
−1 for backward time (time to horizon, time to maturity in finance, etc.).

Definition 8.10.2 [Time-Independent Auxiliary System] We asso-
ciate with the time-dependent evolutionary system (8.24), p. 309 the time-
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independent auxiliary system AS associated with:
⎧⎨
⎩

(i) τ ′(t) = 1
(ii) x′(t) = f(τ(t), x(t), u(t))

where u(t) ∈ U(τ(t), x(t))
(8.26)

and the backward time-independent auxiliary system A←−S associated with
⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(τ(t), x(t), u(t))

where u(t) ∈ U(τ(t), x(t))
(8.27)

We can reformulate the evolutions of the time-dependent system in terms
of evolutions of the auxiliary time-independent systems AS :

Lemma 8.10.3 [Links Between Evolutionary Systems and their
Auxiliary Systems]

1. an evolution x+(·) ∈ S(T, x) is a solution to system (8.24), p. 309
starting from x at time T and defined on the interval [T, +∞[ if and
only if x+(·) = κ(T )−→x (·) where (−→τ (·),−→x (·)) is a solution of the auxiliary
time-independent system (8.26) starting at (T, x).

2. an evolution x−(·) ∈ S(T, x) is a solution to system (8.24) arriving at x

at time T and defined on the interval ] −∞, T ] if and only if x−(·) =
∨
κ

(T )
←−−
x(·)(·) where (←−τ (·),←−x (·)) is a solution to the backward auxiliary time-

independent system (8.27) starting at (T, x).

In other words, an evolution x(·) ∈ S(T, x) governed by time-dependent
system (8.24), p. 309

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

can be split in the form

x(t) :=
{←−x (−t) if t ≤ 0
−→x (t) if t ≥ 0

where ←−x (·) ∈ A←−S (T, x) and −→x (·) ∈ AS(T, x).

Proof. Indeed, let x+(·) satisfying x+(T ) = x and x′+(t) = f(t, x+(t), u+(t)).
Therefore, −→x (·) := κ(−T )x+(·) defined by −→x (t) := x+(t + T ) satisfies
−→x (0) := x+(T ) = x and −→x ′(t) := x′+(t+T ) = f(t+T, x′+(t+T ), u+(t+T )) =
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f(−→τ (t),−→x (t),−→u (t)) where −→τ (t) := t + T . This means that (−→τ (·),−→x (·)) is a
solution of the auxiliary time-independent system (8.26) starting at (T, x).

In the same way, let x−(·) satisfying x−(T ) = x and x′−(t) =

f(t, x−(t), u−(t)). Therefore, ←−x (·) := (
∨
κ (T )x−(·))(·) defined by ←−x (t) :=

x−(T − t) satisfies ←−x (0) := x−(T ) = x and ←−x ′(t) := −x′−(T − t) =
f(T − t, x′−(T − t), u−(T − t)) = f(←−τ (t),←−x (t),←−u (t)) where ←−τ (t) := T − t.
This means that (←−τ (·),←−x (·)) is a solution of the backward auxiliary time-
independent system (8.27) starting at (T, x). ��

Consequently, we just have to transfer the properties of the forward and
backward systems of time-independent systems in forward time for obtaining
the properties of time-dependent systems.

8.10.2 Reachable Maps and Detectors

Fig. 8.5 Reachable Maps.

Left: Illustration of the reachable map Reach(t, s; x) associated with a point
x between the times s and t. Right: Illustration of the reachable tube
Reach(t, s; B) associated with a set B between the times s and t.

Definition 8.10.4 [Viable Reachable Tubes] Let us consider a tube K
regarded as the tube of time-dependent environments K(t) and a source B ⊂
X. Let SK : R × X � C(0, +∞; X) be the evolutionary system associated
with (8.24), p. 309

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

the set of evolutions viable in the tube K. The viable reachable map
ReachK

S ((·), s; x) : t � ReachK
S (t, s; x) associating with any x ∈ K(s) the
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set of x(t) when x(·) ∈ SK(s, x) ranges over the set of evolutions starting
from x at time s ≤ t and viable in the tube:

∀ x ∈ X, ∀t ≥ s ≥ 0, ReachK
S (t, s; B) := {x(t)}x(·)∈SK(s,B)

Fig. 8.6 Reachable Tubes.

Left: Illustration of ReachK
S (t, s; x) as defined in Definition 8.10.4. It

depicts the reachable tube ReachS(t, s; x) without constraints and the tube
representing the evolving environment K(·). The dark area at time t is the
viable reachable set ReachK

S (t, s; B). It is contained in the intersection of
the constrained tube and the reachable tube without constraints. Right:
Illustration of ReachK

S (t, s; B), obtained by taking the union of the tubes
ReachK

S (t, s; x) when x ranges over B.

Definition 8.10.5 [Detectors] Consider an evolutionary system S : R ×
X � C(−∞, +∞; X) and two tubes K(·) : t� K(t) and B(·) : t� B(t) ⊂
K(t). The detector DetS(K,B) : R+ � X associates with any T ≥ 0 the
(possibly empty) subset DetS(K,B)(T ) of states x ∈ K(T ) which can be
reached by at least one evolution x(·) starting at some finite earlier time
τ ≤ T from B(τ) and viable on the interval [τ, T ] in the sense that

∀t ∈ [τ, T ], x(t) ∈ K(t) (8.28)

In other words, it is defined by formula:

DetS(K,B)(T ) :=
⋃
s≤T

ReachK
S (T, s;B(s)) (8.29)

Observe that when the system is time-independent, the formula for
detectors boils down to
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DetS(K,B)(T ) =
⋃

0≤s≤T

ReachK
S (T − s, 0;B(s))

By taking for tube B∅(·) the tube defined by

B∅(t) :=
{

B if t = 0
∅ if t > 0

we recognize the viable reachable tube

DetS(K,B∅)(T ) := ReachK
S (T, 0; B)

and by taking the constant tube B0 : t� B, we obtain

DetS(K,B0)(T ) := DetS(K, B)(T )

An illustration of a detector is shown in Fig. 8.7. This figures relates to
Theorem 8.10.6 below.

Fig. 8.7 Detectors.

Left: Illustration of ReachK
S (T, s;B(s)). Right: Illustration of

⋃T
s=0 ReachK

S
(T, s;B(s)) which is the detector DetS(K,B)(T ).

As for the viable reachable map, the graph of the detector is the viability
kernel of the graph of the tube K(·) with the target chosen to be the graph
of the source tube B(·) under the auxiliary evolutionary system (8.27).

Theorem 8.10.6 [Viability Characterization of Detectors] The
graph of the detector DetS(K,B) is the capture basin of the target Graph(B)
viable in the graph Graph(K) under the auxiliary system (8.27):

Graph(DetS(K,B)) = Capt(8.27)(Graph(K), Graph(B))
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Furthermore, the detector is the unique tube D between the tubes B and
K satisfying the “bilateral fixed tube” property:

D(T ) =
⋃
s≤T

ReachD
S (T, s;B(s))

and the Volterra property

D(T ) =
⋃

s≤T

ReachK
S (T, s;D(s)) (8.30)

Proof. Indeed, to say that (T, x) belongs to the capture basin of target
Graph(B) viable in Graph(K) under the auxiliary system (8.27) means that
there exist an evolution ←−x (·) to the backward system

{
(i) ←−x ′(t) = −f(T − t,←−x (t),←−u (t))
(ii)←−u (t) ∈ U(T − t,←−x (t))

starting at ←−x (0) := x and a time t∗ ≥ 0 such that
{

(i) ∀t ∈ [0, t∗], (T − t,←−x (t)) ∈ Graph(K)
(ii) (T − t∗,←−x (t∗)) ∈ Graph(B)

The second condition means that ←−x (t�) belongs to B(T − t�). The first one
means that for every t ∈ [t�, T ],←−x (t) ∈ K(T−t). This amounts to saying that
the evolution x(·) :=

∨
κ (T )←−x (·) =←−x (T −·) is a solution to the parameterized

system (8.24), p. 309

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

starting at ←−x (T − t�) ∈ B(T − t�), satisfying x(T ) = x and

∀t ∈ [T − t�, T ], x(t) ∈ K(t)

Setting s� := T − t�, this means that x ∈ DetS(K,B)(T ). Hence x ∈
ReachK

S (T, s�; x(s�)). This proves formula (8.29).
Theorem 10.2.5 implies that the graph of the detector is the unique graph

Graph(D) of a set-valued map D between Graph(B) and Graph(K) satisfying
{

Graph(D) = Capt(8.27)(Graph(D), Graph(B))
= Capt(8.27)(Graph(K), Graph(D))

and thus formula (8.30). ��
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We shall extend this concept of detection tubes to travel time tubes useful
in transportation engineering or in population dynamics.

We do not provide here more illustrations of straightforward adaptations
to the time-dependent case of other results gathered in this book to time-
independent case.

8.11 Observation, Measurements and Identification
Tubes

Detectors are extensively used in control theory, under various names,
motivated by different problems dealing with observations, measurements
and questions revolving around these issues.

For instance, there are situations when the initial state is not known: We
only know the evolutionary system, associated, for instance, with a time-
dependent control system

{
(i) x′(t) = f(t, x(t), u(t))
(ii) u(t) ∈ U(t, x(t)) (8.31)

The question arises to compensate for the ignorance of initial conditions.
Among various ways to do it, we investigate here the case when we have
access to some observation y(t) = h(x(t)) up to a given present time T ,
where h : X 
→ Y is regarded as a measurement map (or a sensor map, an
observation map). In other words, we do not have direct access to the state
x(t) of the system, but to some measurements of observations y(t) ∈ Y of
the state.

The questions arises whether we can find at each present time T an
evolution x(·) governed by control system (8.31) satisfying

∀t ∈ [0, T ], y(t) = h(x(t))

More generally, we can take into account “contingent noise” in the
measurements, and assume instead that the measurement map is a set-valued
map H : X � Y associates with the

∀t ∈ [0, T ], y(t) ∈ H(x(t)) (8.32)

In summary, we have to detect evolutions governed by an evolutionary
system satisfying the “time-dependent viability conditions” (8.32) on each
time interval [0, T ]. This answers questions raised by David Delchamps in
1989:

Information Contained in Past Measurements. David Delchamps
(see State Space and Input-Output Linear Systems, [78, Delchamps]) regards
measurements as a deterministic memoryless entity that gives us a limited
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amount of information about the states. The problem is formulated as
follows: How much information about the current state is contained in
a long record of past (quantized) measurements of the system’s output?
Furthermore, how can the inputs to the system be manipulated so as to
make the system’s output record more informative about the state evolution
than might appear possible based on a cursory appraisal?

We shall study this problem in a more general setting, since condition
(8.32) can be written in the form

∀t ∈ [0, T ], x(t) ∈ K(t) := H−1(y(t))

Since the solutions we will bring to this problem depends upon the “tube”
t � K(t) and not on the fact that it is derived from a measurement map,
this is in this context that we shall look for the set ReachK

(8.4)(T,K(0)) of
sates x(T ) where x(·) is an evolution governed by (8.32) satisfying the “time-
dependent viability conditions” (8.32).

Furthermore, we may need also to regulate the evolutions satisfying the
above viability property by a regulation law associating with the observations
y(t) up to time T the controls u(t) performing such a task. This is a
solution to the parameter identification problem where controls are regarded
as state-dependent parameters to be identified, problems also called “inverse
problems” (see Sect. 10.9, p. 427).

8.11.1 Anticipation Tubes

Another example of tube K(t) is provided not only by past measurements,
but also by taking into account expectations made at each instant t for future
dates s := t + a, a ≥ 0. For each current time t ≥ 0, we assume not only that
we know (through measurements, for instance) that the state x(t) belongs
to a subset P (t), but also that from x(t) starts a prediction a 
→ x(t; a)
made at time t, solution to a differential inclusion d

dax(t; a) ∈ G(t; x(a))
(parameterized by time t) satisfying constraints of the form

∀a ≥ 0, x(t; a) ∈ P (t)

In other words, we take for tube the viability kernel

K(t) := ViabG(t,·)(P (t))

Taking such a tube K(·) as an evolving environment means that the
decision maker involves at each instant t predictions on the future viewed
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at time t concerning future evolutions a 
→ x(t; a) governed by an anticipated
dynamical system d

dax(t; a) ∈ G(t; x(a)) viable on anticipated constraints
P (t). These anticipations are taken into account in the viability kernel K(t)
only, but are not implemented in the differential inclusion x′(t) ∈ F (t, x(t)).
When the dynamics depend upon the past, we have to study viability
problems under historical differential inclusions.


	Chapter 8: Connection Basins
	8.1 Introduction
	8.2 Past and Future Evolutions
	8.3 Bilateral Viability Kernels
	8.3.1 Forward and Backward Viability Kernelsunder the Lorenz System

	8.4 Detection Tubes
	8.4.1 Reachable Maps
	8.4.2 Detection and Cournot Tubes
	8.4.3 Volterra Inclusions

	8.5 Connection Basins and Eupalinian Kernels
	8.5.1 Connection Basins
	8.5.1.1 Eupalinian Kernels


	8.6 Collision Kernels
	8.7 Particular Solutions to a Differential Inclusion
	8.8 Visiting Kernels and Chaos À la Saari
	8.9 Contingent Temporal Logic
	8.10 Time Dependent Evolutionary Systems
	8.10.1 Links Between Time Dependentand Independent Systems
	8.10.2 Reachable Maps and Detectors

	8.11 Observation, Measurements and Identification Tubes
	8.11.1 Anticipation Tubes




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


