
Chapter 10

Viability and Capturability Properties
of Evolutionary Systems

10.1 Introduction

This chapter presents properties proved at the level of evolutionary
systems, whereas Chap. 11, p. 437 focuses on specific results on evolutionary
systems generated by control systems based on the Viability Theorem 11.3.4,
p. 455 and Invariance Theorem 11.3.7, p. 457 involving tangential conditions.
Specific results of the same nature are presented in Sect. 12.3, p. 503 for
impulse systems, in Chap. 11 of the first edition of [18, Aubin] for evolutionary
systems generated by history dependent (or path dependent) systems and in
[23, Aubin] for mutational and morphological systems, which will inherit
properties uncovered in this chapter.

This chapter is mainly devoted to the first and second fundamental
viability characterizations of kernels and basins. The first one, in Sect. 10.2,
p. 377, characterizes them as bilateral fixed points. The second one, in
Sect. 10.5, p. 399, translates these fixed point theorems in terms of viability
properties which will be exploited in Chap. 11, p. 437. The first one states
that the viability kernel is the largest subset viable outside the target and
the second one that it is the smallest isolated subset, and thus, the unique
one satisfying both. This uniqueness theorem plays an important role, in
particular for deriving the uniqueness property of viability episolutions of
Hamilton–Jacobi–Bellman partial differential equations in Chap. 17, p. 681.

For that purpose, we uncover the topological properties of evolutionary
systems in Sect. 10.3, p. 382 for the purpose of proving that under these
topological properties, kernels and basins are closed. We need to define in
Sect. 10.3.1, p. 382 two concepts of semicontinuity of evolutionary systems:
“upper semicompact” evolutionary systems, under which viability properties
hold true, and “lower semicontinuous” evolutionary systems, under which
invariance (or tychastic) properties are satisfied. These assumptions are
realistic, because they are respectively satisfied for systems generated by the
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376 10 Viability and Capturability Properties of Evolutionary Systems

“Marchaud control systems” for the class of “upper semicompact” evolution-
ary systems and “Lipschitz” ones for “lower semicontinuous” evolutionary
systems.

This allows us to prove that exit and minimal time functions are
semicontinuous in Sect. 10.4, p. 392 and that the optimization problems
defining them are achieved by “persistent and minimal time evolutions.”
Some of these properties are needed for proving the viability characterization
in Sect. 10.5, p. 399, the most useful one of this chapter. It characterizes:

1. subsets viable outside a target by showing that the complement of the
target in the environment is locally viable, a viability concept which can
be characterized further for specific evolutionary systems, or, equivalently,
that its exit set is contained in the target,

2. isolated subsets as subsets backward invariant relatively to the environ-
ment, again a viability concept which can be exploited further. Therefore,
viability kernels being the unique isolated subset viable outside a target,
they are the unique ones satisfying such local viability and backward
invariance properties.

Section 10.6, p. 411 presents such characterizations for invariance kernels and
connection basins.

We pursue by studying in Sect. 10.7, p. 416 under which conditions the
capture basin of a (Painlevé–Kuratowski) limit of targets is the limit of the
capture basins of those targets. This is quite an important property which is
studied in Sect. 10.7.1, p. 416.

The concepts of viability and invariance kernels of environments are
defined as the largest subsets of the environments satisfying either one
of these properties. The question arises whether it is possible to define
the concepts of viability and invariance envelopes of given subsets, which
are the minimal subsets containing an environment which are viable and
invariant respectively. This issue is dealt with in Sect. 10.7.2, p. 420. In the
case of invariance kernels, this envelope is unique: it is the intersection of
invariant subsets containing it. In the case of viability envelopes, we obtain,
under adequate assumptions, the existence of nonempty viability envelopes.
Equilibria are viable singletons which are necessarily minimal. They do not
necessarily exist, except in the case of compact convex environments. For
plain compact environments, minimal viability envelopes are not empty, and
they enjoy a singular property, a weaker property than equilibria, which
are the asymptotic limits of evolutions. Minimal viability envelopes are the
subsets coinciding with the limit sets of their elements, i.e., are made of limit
sets of evolutions instead of limit points (equilibria) which may not exist.

We briefly uncover without proofs the links between invariance of an
environment under a tychastic system and stochastic viability in Sect. 10.10,
p. 433. They share the same underlying philosophy: the viability property
is satisfied by all evolutions of a tychastic system (tychastic viability), by
almost all evolutions under a stochastic system. This is made much more
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precise by using the Strook–Varadhan Theorem, implying, so to speak, that
stochastic viability is a very particular case in comparison to tychastic
viability (or invariance). Hence the results dealing with invariant subsets
can bring another point of view on the mathematical translation of this type
uncertainty: either by stochastic systems, or by tychastic systems.

Exit sets also play a crucial role for regulating viable evolutions with a
finite number of non viable feedbacks (instead of a viable feedback), but
which are, in some sense made precise, “collectively viable”: this is developed
in Sect. 10.8, p. 422 for regulating viable punctuated evolutions satisfying the
“hard” version of the inertia principle.

Section 10.9, p. 427 is devoted to inverse problems of the following
type: assuming that both the dynamics F (λ, (·)), the environment K(λ)
and the target C(λ) depend upon a parameter λ, and given any state x,
what is the set of parameters λ for which x lies in the viability kernel
ViabF (λ,(·))(K(λ), C(λ))?

This is a prototype of a parameter identification problem. It amounts to
inverting the viability kernel map λ � ViabF (λ,(·))(K(λ), C(λ)). For that
purpose, we need to know the graph of this map, since the set-valued map
and its inverse share the same “graphical properties.” It turns out that the
graph of the viability kernel map is itself the viability kernel of an auxiliary
map, implying that both the viability kernel map and its inverse inherits
the properties of viability kernels. When the parameters λ ∈ R are scalar,
under some monotonicity condition, the inverse of this viability kernel map is
strongly related to an extended function associating with any state x the best
parameter λ, as we saw in many examples of Chaps. 4, p. 125 and 6, p. 199.

10.2 Bilateral Fixed Point Characterization of Kernels
and Basins

We begin our investigation of viability kernels and capture basins by
emphasizing simple algebraic properties of utmost importance, due to the
collaboration with Francine Catté, which will be implicitly used all along the
book. We begin by reviewing simple algebraic properties of viability invari-
ance kernels as maps depending on the evolutionary system, environment and
the target.

Lemma 10.2.1 [Monotonicity Properties of Viability and Invari-
ance Kernels] Let us consider the maps (S, K, C) �→ ViabS(K, C) and
(S, K, C) �→ InvS(K, C). Assume that S1 ⊂ S2, K1 ⊂ K2, C1 ⊂ C2. Then

{
(i) ViabS1(K1, C1) ⊂ ViabS2(K2, C2)
(ii) InvS2(K1, C1) ⊂ InvS1(K2, C2).

(10.1)
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The consequences of these simple observations are important:

Lemma 10.2.2 [Union of Targets and Intersection of Environ-
ments] ⎧⎨

⎩
(i) ViabS

(
K,

⋃
i∈I Ci

)
=

⋃
i∈I ViabS(K, Ci)

(ii) InvS
(⋂

i∈I Ki, C
)

=
⋂

i∈I InvS(Ki, C)
(10.2)

Evolutionary systems R ⊂ S satisfying equality InvR(K, C) =
ViabS(K, C) enjoy the following monotonicity property:

Lemma 10.2.3 [Comparison between Invariance Kernels under
Smaller Evolutionary Systems and Viability Kernels of a Larger
System] Let us assume that there exists an evolutionary system R con-
tained in S such that InvR(K, C) = ViabS(K, C). Then, for all evolutionary
systems Q ⊂ R, InvQ(K, C) = ViabS(K, C).

Proof. Indeed, by the monotonicity property with respect to the evolutionary
system, we infer that

InvR(K, C) ⊂ InvQ(K, C) ⊂ ViabQ(K, C) ⊂ ViabS(K, C) = InvR(K, C)

Hence equality InvQ(K, C) = ViabS(K, C) ensues. ��
Next, we need the following properties.

Lemma 10.2.4 [Fundamental Properties of Viable and Capturing
Evolutions] Let S : X � C(0, +∞; X) be an evolutionary system, K ⊂ X
be an environment and C ⊂ K be a target.

1. Every evolution x(·) ∈ S(x) viable in K, forever or until it reaches C in
finite time, is actually viable in the viability kernel ViabS(K, C),

2. Every evolution x(·) ∈ S(x) viable in K forever or which captures the via-
bility kernel ViabS(K, C) in finite time, remains viable in ViabS(K, C)
until it captures also the target C in finite time.
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Fig. 10.1 Illustration of the proof of Lemma 10.2.4, p. 378.

Left: an evolution x(·) viable in K is viable in ViabS(K, C) forever (spiral)
or reaches C at time T . Right: an evolution x(·) viable in K forever or which
captures ViabS(K, C) in finite time remains viable in ViabS(K, C) until it
captures the target at T (dotted trajectory).

Proof. The first statement follows from the translation property. Let us
consider an evolution x(·) ∈ S(x) viable in K, forever or until it reaches C
in finite time T . Therefore, for all t ∈ [0, T [, the translation y(·) := κ(−t)x(·)
of x(·) defined by y(τ) := x(t + τ) is an evolution y(·) ∈ S(x(t)) starting at
x(t) and viable in K until it reaches C at time T − t. Hence x(t) does belong
to ViabS(K, C) for every t ∈ [0, T [.

The second statement follows from the concatenation property because it
can be concatenated with an evolution either remaining in ViabS(K, C) ⊂ K
or reaching the target C in finite time. ��

10.2.1 Bilateral Fixed Point Characterization
of Viability Kernels

We shall start our presentation of kernels and basins properties by a simple
and important algebraic property:

Theorem 10.2.5 [The Fundamental Characterization of Viability
Kernels] Let S : X � C(0, +∞; X) be an evolutionary system, K ⊂ X be
an environment and C ⊂ K be a target. The viability kernel ViabS(K, C) of
K with target C (see Definition 2.10.2, p. 86) is the unique subset between
C and K that is both:
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1. viable outside C (and is the largest subset D ⊂ K viable outside C),
2. isolated in K (and is the smallest subset D ⊃ C isolated in K):

ViabS(K, ViabS(K, C)) = ViabS(K, C) = ViabS(ViabS(K, C), C)
(10.3)

The viability kernel satisfies the properties of both the subsets viable
outside a target and of isolated subsets in a environment, and is the unique
one to do so.

This statement is at the root of uniqueness properties of solutions to
some Hamilton–Jacobi–Bellman partial differential equations whenever the
epigraph of a solution is a viability kernel of the epigraph of a function outside
the epigraph of another function.

Proof. We begin by proving the two following statements:

1. The translation property implies that the viability kernel ViabS(K, C) is
viable outside C:

ViabS(K, C) ⊂ ViabS(K, ViabS(K, C)) ⊂ ViabS(K, C)

Take x0 ∈ ViabS(K, C) and prove that there exists an evolution x(·) ∈
S(x0) starting at x0 viable in ViabS(K, C) until it possibly reaches C.
Indeed, there exists an evolution x(·) ∈ S(x0) viable in K until some
time T ≥ 0 either finite when it reaches C or infinite. Then the first
statement of Lemma 10.2.4, p. 378 implies that x0 belongs to the viability
kernel ViabS(ViabS(K, C), C) of the viability kernel ViabS(K, C) of K
with target C.

2. The concatenation property implies that the viability kernel ViabS(K, C)
is isolated in K:

ViabS(K, ViabS(K, C)) ⊂ ViabS(K, C)

Let x0 belong to ViabS(K, ViabS(K, C)). There exists at least one
evolution x(·) ∈ S(x0) that would either remain in K or reach the viability
kernel ViabS(K, C) in finite time. Lemma 10.2.4, p. 378 implies that
x0 ∈ ViabS(K, C). ��
We now observe that the map (K, C) �→ ViabS(K, C) satisfies

{
(i) C ⊂ ViabS(K, C) ⊂ K
(ii) (K, C) �→ ViabS(K, C) is increasing (10.4)



10.2 Bilateral Fixed Point Characterization of Kernels and Basins 381

in the sense that if K1 ⊂ K2 and C1 ⊂ C2, then ViabS(K1, C1) ⊂
ViabS(K2, C2).

SettingA(K, C) := ViabS(K, C), the statements below follow from general
algebraic Lemma 10.2.6 below.

Lemma 10.2.6 [Uniqueness of Bilateral Fixed Points] Let us con-
sider a map A : (K, C) �→ A(K, C) satisfying

{
(i) C ⊂ A(K, C) ⊂ K
(ii) (K, C) �→ A(K, C) is increasing (10.5)

1. If A(K, C) = A(A(K, C), C), it is the largest fixed point of the map
D �→ A(D, C) between C and K,

2. If A(K, C) = A(K,A(K, C)), it is the smallest fixed point of the map
E �→ A(K, E) between C and K.

Then, any subset D between C and K satisfying

D = A(D, C) and A(K, D) = D

is the unique bilateral fixed point D between C and K of the map A in the
sense that:

A(K, D) = D = A(D, C)

and is equal to A(K, C).

Proof. If D = A(D, C) is a fixed point of D �→ A(D, C), we then deduce that
D = A(D, C) ⊂ A(K, C), so that whenever A(K, C) = A(A(K, C), C), we
deduce that A(K, C) is the largest fixed point of D �→ A(D, C) contained
in K. In the same way, if A(K,A(K, C)) = A(K, C), then A(K, C) is the
smallest fixed points of E �→ A(K, E) containing C. Furthermore, equalities

A(K, D) = D = A(D, C)

imply that D = A(K, C) because the monotonicity property implies that

A(K, C) ⊂ A(K, D) ⊂ D ⊂ A(D, C) ⊂ A(K, C) ��
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10.2.2 Bilateral Fixed Point Characterization
of Invariance Kernels

This existence and uniqueness of a “bilateral fixed point” is shared by the
invariance kernel with target, the capture basin and the absorption basin of a
target that satisfy property (10.5), and thus, the conclusions of Lemma 10.2.6:

Theorem 10.2.7 [Characterization of Kernels and Basins as
Unique Bilateral Fixed Point] Let S : X � C(0, +∞; X) be an
evolutionary system, K ⊂ X be a environment and C ⊂ K be a target.

1. The viability kernel ViabS(K, C) of a subset K with target C ⊂ K is the
unique bilateral fixed point D between C and K of the map (K, C) �→
ViabS(K, C) in the sense that

D = ViabS(K, D) = ViabS(D, C)

2. The invariance kernel InvS(K, C) of a subset K with target C ⊂ K is
the unique bilateral fixed point D between C and K of the map (K, C) �→
InvS(K, C) in the sense that

D = InvS(K, D) = InvS(D, C)

The same properties are shared by the maps (K, C) �→ CaptS(K, C) and
(K, C) �→ AbsS(K, C).

10.3 Topological Properties

We begin this section by introducing adequate semicontinuity concepts
for evolutionary systems in Sect. 10.3.1, p. 382 for uncovering topological
properties of kernels and basins in Sect. 10.3.2, p. 387.

10.3.1 Continuity Properties of Evolutionary Systems

In order to go further in the characterization of viability and invariance
kernels with targets in terms of properties easier to check, we need to bring
in the forefront some continuity requirements on the evolutionary system
S : X � C(0, +∞; X). First, both the state space X and the evolutionary
C(0, +∞; X) have to be complete topological spaces.
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32 [The Evolutionary Space] Assume that the state space X is a
complete metric space. We supply the space C(0, +∞; X) of continuous
evolutions with the “compact topology”: A sequence of continuous evolutions
xn(·) ∈ C(0, +∞; X) converges to the continuous evolution x(·) as n→ +∞
if for every T > 0, the sequence supt∈[0,T ] d(xn(t), x(t)) converges to 0. It
is a complete metrizable space. The Ascoli Theorem states that a subset H
is compact if and only if it is closed, equicontinuous and for any t ∈ R+,
the subset H(t) := {x(t)}x(·)∈H is compact in X.

Stability, a polysemous word, means formally that the solution of a problem
depends “continuously” upon its data. Here, for evolutionary systems, the
data are principally the initial states: In this case, stability means that the
set of solutions depends “continuously” on the initial state. We recall that
a deterministic system S := {s} : X �→ C(0, +∞; X) is continuous at some
x ∈ X if it maps any sequence xn ∈ X converging to x to a sequence s(xn)
converging to s(x).

However, when the evolutionary system S : X � C(0, +∞; X) is no longer
single-valued, there are several ways of describing the convergence of the set
S(xn) to the set S(x). We shall use in this book only two of them, that we
present in the context of evolutionary systems (see Definition 18.4.3, p. 729
and other comments in the Appendix 18, p. 713). We begin with the notion
of upper semicompactness:

Definition 10.3.1 [Upper Semicompactness] Let S : X � C(0, +∞; X)
be an evolutionary system, where both the state space X and the evolutionary
space C(0, +∞; X) are topological spaces. The evolutionary system is said
to be upper semicompact at x if for every sequence xn ∈ X converging to
x and for every sequence xn(·) ∈ S(xn), there exists a subsequence xnp(·)
converging to some x(·) ∈ S(x). It is said to be upper semicompact if it is
upper semicompact at every point x ∈ X where S(x) is not empty.

Before using this property, we need to provide examples of evolutionary
system exhibiting it: this is the case for Marchaud differential inclusions:
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Definition 10.3.2 [Marchaud Set-Valued Maps] We say that F is a
Marchaud map if
⎧⎨
⎩

(i) the graph and the domain of F are nonempty and closed
(ii) the values F (x) of F are convex
(iii) ∃ c > 0 such that ∀x ∈ X, ‖F (x)‖ := supv∈F (x) ‖v‖ ≤ c(‖x‖+ 1)

(10.6)

Fig. 10.2 Marchaud map.

Illustration of a Marchaud map, with convex images, closed graph and linear
growth.

André Marchaud was with Stanislas Zaremba among the firsts to study
what did become known 50 years later differential inclusions:

André Marchaud [1887–1973]. After entering École
Normale Supérieure in 1909, he fought First World War,
worked in ministry of armement and industrial recon-
struction and became professor and Dean at Faculté des
Sciences de Marseille from 1927 to 1938 before being
Recteur of several French Universities. He was a student
of Paul
Montel, was in close relations with Georges Bouligand and

Stanislas Zaremba, and was a mentor of André Lichnerowicz [1915–1998]. His
papers dealt with analysis and differentiability.
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The (difficult) Stability Theorem states that the set of solutions depends
continuously upon the initial states in the upper semicompact sense:

Theorem 10.3.3 [Upper Semicompactness of Marchaud Evolu-
tionary Systems] If F : X � X is Marchaud, the solution map S is
an upper semicompact evolutionary system.

Proof. This a consequence of the Convergence Theorem 19.2.3, p. 771. ��
The other way to take into account the idea of continuity in the case of

evolutionary systems is by introducing the following concept:

Definition 10.3.4 [Lower Semicontinuity of Evolutionary Sys-
tems] Let S : X � C(0, +∞; X) be an evolutionary system, where both the
state space X and the evolutionary space C(0, +∞; X) are topological spaces.
The evolutionary system is said to be lower semicontinuous at x if for every
sequence xn ∈ X converging to x and for every sequence x(·) ∈ S(x)
(thus assumed to be nonempty), there exists a sequence xn(·) ∈ S(xn)
converging to x(·) ∈ S(x). It is said to be lower semicontinuous if it is
lower semicontinuous at every point x ∈ X where S(x) is not empty.

Warning: An evolutionary system can be upper semicompact at x
without being lower semicontinuous and lower semicontinuous at x without
being upper semicompact. If the evolutionary system is deterministic, lower
semicontinuity coincides with continuity and upper semicompactness coin-
cides with “properness” of single-valued maps (in the sense of Bourbaki).
Note also the unfortunate confusions between the semicontinuity of numeri-
cal and extended functions (Definition 18.6.3, p. 744) and the semicontinuity
of set-valued maps (Definition 18.4.3, p. 729).

Recall that a single-valued map f : X �→ Y is said to be λ-Lipschitz if
for any x1, x2 ∈ X , d(f(x1), f(x2)) ≤ λd(x1, x2). In the case of normed
vector spaces, denoting by B the unit ball of the vector space, this inequality
can be translated in the form f(x1) ∈ f(x2) + λ‖x1 − x2‖B. This is this
formulation which is the easiest to adapt to set-valued maps in the case of
(finite) dimensional vector spaces:

Definition 10.3.5 [Lipschitz Maps] A set-valued map F : X � Y is
said to be λ-Lipschitz(or Lipschitz for the constant λ > 0) if
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∀x1, x2, F (x1) ⊂ F (x2) + λ‖x1 − x2‖B

The Lipschitz norm ‖F‖Λ of a map F : x � Y is the smallest Lipschitz
constants of F . The evolutionary system S : X � C(0, +∞; X) associated
with a Lipschitz set-valued map is called a Lipschitz evolutionary system.

The Filippov Theorem 11.3.9, p. 459 implies that Lipschitz systems are
lower semicontinuous:

Theorem 10.3.6 [Lower Semicontinuity of Lipschitz Evolutionary
Systems] If F : X � X is Lipschitz, the associated evolutionary system S
is lower semicontinuous.

Under appropriate topological assumptions, we can prove that inverse
images and cores of closed subsets of evolutions are closed.

Definition 10.3.7 [Closedness of Inverse Images] Let S : X �
C(0, +∞; X) be an upper semicompact evolutionary system. Then for any
subset H ⊂ C(0, +∞; X),

S−1(H) ⊂ S−1(H)

Consequently, the inverse images S−1(H) under S of any closed subset H ⊂
C(0, +∞; X) are closed.

Furthermore, the evolutionary system S maps compact sets K ⊂ X to
compact sets H ⊂ C(0, +∞; X).

Proof. Let us consider a subset H ⊂ C(0, +∞; X), a sequence of elements
xn ∈ S−1(H) converging to some x and prove that x belongs to S−1(H).
Hence there exist elements xn(·) ∈ S(xn)∩H. Since S is upper semicompact,
there exists a subsequence xnp(·) ∈ S(xnp) converging to some x(·) ∈ S(x).
It belongs also to the closure of H, so that x ∈ S−1(H).

Take now any compact subset K ⊂ X . For proving that S(K) is compact,
take any sequence xn(·) ∈ S(xn) where xn ∈ K. Since K is compact, a
subsequence xn′ converges to some x ∈ K and since S is upper semicompact,
a subsequence xn′′(·) ∈ S(xn′′ ) converges to some x(·) ∈ S(x). ��
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Example: Let us consider an upper semicompact evolutionary system S :
X � C(0, +∞; X).
If K ⊂ X is a closed subset, then the set of equilibria of the evolutionary
system that belong to K is closed: Indeed, it is the inverse images S−1(K)
of the set K of stationary evolutions in K, which is closed whenever K is
closed.
In the same way, the set of points through which passes at least one T -
periodic evolution of an upper semicompact evolutionary system is closed,
since it is the inverse images S−1(PT (X)) of the set PT (X) of T -periodic
evolutions, which is closed.
If a function v : X �→ R is continuous, the set of initial states from which
starts at least one evolution of the evolutionary system monotone along the
function v is closed, since it is the inverse images of the setMv of monotone
evolutions, which is closed.

For cores, we obtain

Theorem 10.3.8 [Closedness of Cores] Let S : X � C(0, +∞; X)
be a lower semicontinous evolutionary system. Then for any subset H ⊂
C(0, +∞; X),

S�1(H) ⊂ S�1(H)

Consequently, the core S�1(H) under S of any closed subset H ⊂
C(0, +∞; X) is closed.

Proof. Let us consider a closed subset H ⊂ C(0, +∞; X), a sequence of
elements xn ∈ S�1(H) converging to some x and prove that x belongs to
S�1(H). We have to prove that any x(·) ∈ S(x) belongs to H. But since S is
lower semicontinuous, there exists a sequence of elements xn(·) ∈ S(xn) ⊂ H
converging to x(·) ∈ H. Therefore S(x) ⊂ H, i.e., x ∈ S�1(H). ��

10.3.2 Topological Properties of Viability Kernels
and Capture Basins

Recall that the set V(K, C) of evolutions viable in K outside C is defined by
(2.5), p. 49:

{V(K, C) := {x(·) such that ∀t ≥ 0, x(t) ∈ K
or ∃ T ≥ 0 such that x(T ) ∈ C & ∀t ∈ [0, T ], x(t) ∈ K}
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Lemma 10.3.9 [Closedness of the Subset of Viable Evolutions] Let
us consider a environment K ⊂ X and a (possibly empty) target C ⊂ K.
Then

V(K, C) ⊂ V(K, C)

and consequently, if C and K are closed, the set V(K, C) of evolutions that
are viable in K forever or until they reach the target C in finite time is
closed.

Proof. Let us consider a sequence of evolutions xn(·) ∈ V(K, C) converging
to some evolution x(·). We have to prove that x(·) belongs to V(K, C), i.e.,
that it is viable in K forever or until it reaches the target C in finite time.
Indeed:

1. either for any T > 0 and any N > 0, there exist n ≥ N , tn ≥ T and an
evolution xn(·) for which xn(t) ∈ K for every t ∈ [0, tn],

2. or there exist T > 0 and N > 0 such that for any t ≥ T and n ≥ N and
any evolution xn(·), there exists tn ≤ t such that xn(tn) /∈ K.

In the first case, we deduce that for any T > 0, x(T ) ∈ K, so that the
limit x(·) is viable in K forever.

In the second case, all the solutions xn(·) leave K before T . This is
impossible if evolutions xn(·) are viable in K forever. Therefore, since
xn(·) ∈ V(K, C), they have to reach C before leaving K: There exist sn ≤ T
such that

xn(sn) ∈ C & ∀t ∈ [0, sn], xn(t) ∈ K

Then some subsequence sn′ converges to some S ∈ [0, T ]. Therefore, for
any s < S, then s < sn′ for n′ large enough, so that xn′(s) ∈ K. By
taking the limit, we infer that for every s < S, x(s) ∈ K. Furthermore, since
xn(·) converges to x(·) uniformly on the compact interval [0, T ], then xn(sn)
converges to x(S), that belongs to C.

This shows that the limit x(·) belongs to V(K, C). ��
Consequently, the viability kernel of a closed subset with a closed target

under an upper semicompact evolutionary subset is closed:

Theorem 10.3.10 [Closedness of the Viability Kernel] Let S : X �
C(0, +∞; X) be an upper semicompact evolutionary system. Then for any
environment K ⊂ X and any target C ⊂ K,
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ViabS(K, C) ⊂ ViabS(K, C)

Consequently, if C ⊂ K and K are closed, so is the viability kernel
ViabS(K, C) of K with target C. Furthermore, if K\C is a repeller, the
capture basin CaptS(K, C) of C viable in K under S is closed.

Proof. Since the viability kernel ViabS(K, C) := S−1(V(K, C)) is the inverse
image of the subset V(K, C) by Definition 2.10.2, the closedness of the
viability kernel follows from Theorem 10.3.7 and Lemma 10.3.9. ��

Theorem 10.3.8 implies the closedness of the invariance kernels:

Theorem 10.3.11 [Closedness of Invariance Kernels] Let S : X �
C(0, +∞; X) be a lower semicontinuous evolutionary system. Then for any
environment K ⊂ X and any target C ⊂ K,

InvS(K, C) ⊂ InvS(K, C)

Consequently, if C ⊂ K and K are closed, so is the invariance kernel
InvS(K, C) of K with target C.

Therefore, if K\C is a repeller, the absorption basin AbsS(K, C) of C
invariant in K under S is closed.

As for interiors of capture and absorption basins, we obtain the following
statements:

Theorem 10.3.12 [Interiors of Capture and Absorption Basins]
For any environment K ⊂ X and any target C ⊂ K:

• if S : X � C(0, +∞; X) is lower semicontinuous, then

CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K, C))

• if S : X � C(0, +∞; X) is upper semicontinuous, then

AbsS(Int(K), Int(C)) ⊂ Int(AbsS(K, C))

Consequently, if C ⊂ K and K are open, so are the capture basin
CaptS(K, C) and the absorption basin CaptS(K, C) whenever the evolution-
ary system is respectively lower semicontinuous and upper semicompact.
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Proof. Observe that, taking the complements, Lemma 2.12.2 implies that if
S : X � C(0, +∞; X) is lower semicontinuous, then Theorem 10.7.8, p. 420
implies that

CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K, C))

since the complement of an invariance kernel is the capture basin of the
complements and since the complement of a closure is the interior of the
complement, and Theorem 10.3.10, p. 388 imply the similar statement for
absorption basins. ��

For capture basins, we obtain another closedness property based on
backward invariance (see Definition 8.2.4, p. 278):

Proposition 10.3.13 [Closedness of Capture Basins] If the set-valued
map

←−S is lower semicontinuous and if K is backward invariant, then for
any closed subset C ⊂ K,

CaptS(K, C) ⊂ CaptS(K, C) (10.7)

Proof. Let us take x ∈ CaptS(K, C) and an evolution x(·) ∈ S(x) viable in
K until it reaches the target C at time T < +∞ at c := x(T ) ∈ C. Hence
the function t �→ y(t) := x(T − t) is an evolution y(·) ∈ ←−S (c).

Let us consider a sequence of elements cn ∈ C converging to c. Since←−S is lower semicontinuous, there exist evolutions yn(·) ∈ ←−S (cn) converging
uniformly over compact intervals to y(·). These evolutions yn(·) are viable in
K, since K is assumed to be backward invariant. The evolutions xn(·) defined
by xn(t) := yn(T − t) satisfy xn(0) = yn(T ) ∈ K, xn(T ) = cn and, for all
t ∈ [0, T ], xn(t) ∈ K. Therefore xn(0) := yn(T ) belongs to CaptS(K, C) and
converges to x := x(0), so that x ∈ CaptS(K, C). ��

As a consequence, we obtain the following topological regularity property
(see Definition 18.2.2, p. 714) of capture basins:

Proposition 10.3.14 [Topological Regularity of Capture Basins] If
the set-valued map S is upper semicompact and the set-valued map

←−S is
lower semicontinuous, if K = Int(K) and C = Int(C), if K \C is a repeller
and if Int(K) is backward invariant, then

CaptS(K, C) = CaptS(Int(K), Int(C)) = Int(CaptS(K, C)) (10.8)



10.3 Topological Properties 391

Proof. Since K = Int(K) and C = Int(C), since
←−S is lower semicontinuous

and since Int(K) is backward invariant, Proposition 10.3.14, p. 390 implies
that

CaptS(K, C) = CaptS(Int(K), Int(C)) ⊂ CaptS(Int(K), Int(C))

Inclusion
CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K, C))

follows from Theorem 10.3.12, p. 389. On the other hand, since S is upper
semicompact and K \ C is a repeller, Theorem 10.3.10, p. 388 implies that

CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K, C)) ⊂ CaptS(K, C)

so that CaptS(K, C) = Int(CaptS(K, C)). ��
We turn now our attention to connectedness properties of viability kernels:

Lemma 10.3.15 [The connectedness Lemma] Assume that the evolu-
tionary system S is upper semicompact. Let K be a closed environment and
C1 ⊂ K and C2 ⊂ K be nonempty closed disjoint targets. If the viability
kernel ViabS(K, C1 ∪ C2) is connected, then the intersection

ViabS(K, C1) ∩ViabS(K, C2)

is closed and not empty. Consequently, if we assume further that K \ C1

and K \ C2 are repellers, we infer that

CaptS(K, C1) ∩ CaptS(K, C2) �= ∅

Proof. This follows from the definition of connectedness since S being
upper semicompact, the viability kernels ViabS(K, C1) and ViabS(K, C2)
are closed, nonempty (they contain their nonempty targets) and cover the
viability kernel with the union of targets :

ViabS(K, C1 ∪ C2) = ViabS(K, C1) ∪ViabS(K, C2)

Since this union is assumed connected, the intersection ViabS(K, C1) ∩
ViabS(K, C2) must be empty (and is closed). ��

Motivating Remark. The intersection

CaptS(K, C1) ∩ CaptS(K, C2) �= ∅



392 10 Viability and Capturability Properties of Evolutionary Systems

being the subset of states from which at least one volution reaches one target
in finite time and another one reaches the other target also in finite time, could
be use as a proto-concept of a “watershed”. It is closed when the evolutionary
system is upper semicompact and when the environment and the targets are
closed (see Morphologie Mathématique, [187, Schmitt M. & Mattioli], and
Mathematical Morphology, [166, Najman]).

10.4 Persistent Evolutions and Exit Sets

This section applies the above topological results to the study of exit and
minimal time functions initiated in Sect. 4.3, p. 132. We shall begin by proving
that these functions are respectively upper and lower semicontinuous and
that persistent and minimal time evolutions exist under upper semicompact
evolutionary systems. We next study the exit sets, the subset of states at the
boundary of the environment from which all evolutions leave the environment
immediately. They play an important role in the characterization of local
viability, of transversality.

10.4.1 Persistent and Minimal Time Evolutions

Let us recall the definition of the exit function of K defined by

τK(x(·)) := inf {t ∈ [0,∞[ | x(t) /∈ K} and τ �
K(x) := sup

x(·)∈S(x)

τK(x(·))

and of minimal time function �(K,C) defined by

�(K,C)(x(·)) := inf{t ≥ 0 | x(t) ∈ C & ∀s ∈ [0, t], x(s) ∈ K }

and
��

(K,C)(x) := inf
x(·)∈S(x)

�(K,C)(x(·))

We summarize the semi-continuity properties of the exit and minimal time
functions in the following statement:

Theorem 10.4.1 [Semi-Continuity Properties of Exit and Mini-
mal Time Functions] Let us assume that the evolutionary system is upper
semicompact and that the subsets K and C ⊂ K are closed. Then:

1. the hypograph of the exit function τ �
K(·) is closed,
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2. the epigraph of the minimal time function ��
(K,C)(·) is closed

This can be translated by saying that the exit function is upper semicon-
tinuous and the minimal time function is lower semicontinuous.

Proof. The first statements follow from Theorems 4.3.6 and 10.3.10. ��
Actually, in several applications, we would like to maximize the exit

functional and minimize the minimal time or minimal time functional. Indeed,
when an initial state x ∈ K does not belong to the viability kernel, all
evolutions x(·) ∈ S(x) leave K in finite time. The question arises to select
the “persistent evolutions” in K which persist to remain in K as long as
possible:

Definition 10.4.2 [Persistent Evolutions] Let us consider an evolu-
tionary system S : X � C(0, +∞; X) and a subset K ⊂ X.

The solutions x�(·) ∈ S(x) which maximize the exit time function

∀x ∈ K, τK(x�(·)) = τ �
K(x) := max

x(·)∈S(x)
τK(x(·)) (10.9)

are called persistent evolutions in K (Naturally, when x ∈ ViabS(K),
persistent evolutions starting at x are the viable ones).
We denote by SK�

: K � C(0, +∞; X) the evolutionary system SK� ⊂ S
associating with any x ∈ K the set of persistent evolutions in K.

In a symmetric way, we single out the evolutions which minimize the
minimal time to a target:

Definition 10.4.3 [Minimal Time Evolutions] Let us consider an
evolutionary system S : X � C(0, +∞; X) and subsets K ⊂ X and C ⊂ K.

The evolutions x�(·) ∈ S(x) which minimize the minimal time function

∀x ∈ K, �(K,C)(x�(·)) = ��
(K,C)(x) := min

x(·)∈S(x)
�(K,C)(x(·)) (10.10)

are called minimal time evolutions in K.

Persistent evolutions and minimal time evolutions exist when the evolu-
tionary system is upper semicompact:
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Theorem 10.4.4 [Existence of Persistent and Minimal Time Evo-
lutions] Let K ⊂ X be a closed subset and S : X � C(0, +∞; X) be an
upper semicompact evolutionary system. Then:

1. For any x /∈ ViabS(K), there exists at least one persistent evolution
x�(·) ∈ SK�

(x) ⊂ S(x) viable in K on the interval [0, τ �
K(x)].

2. For any x ∈ CaptS(K, C), there exists at least one evolution x�(·) ∈ S(x)
reaching C in minimal time while being viable in K.

Proof. Let t < τ �
K(x) and n > 0 such that t < τ �

K(x) − 1
n . Hence, by

definition of the supremum, there exists an evolution xn(·) ∈ S(x) such
that τK(xn(·)) ≥ τ �

K(x) − 1
n , and thus, such that xn(t) ∈ K. Since the

evolutionary system S is upper semicompact, we can extract a subsequence
of evolutions xn′(·) ∈ S(x) converging to some evolution x�(·) ∈ S(x).
Therefore, we infer that x�(t) belongs to K because K is closed. Since this is
true for any t < τ �

K(x) and since the evolution x�(·) is continuous, we infer
that τ �

K(x) ≤ τK(x�(·)). We deduce that such an evolution x�(·) ∈ S(x) is
persistent in K because τK(x�(·)) ≤ τ �

K(x) by definition.
By definition of T := ��

(K,C)(x), for every ε > 0, there exists N such
that for n ≥ N , there exists an evolution xn(·) ∈ S(xn) and tn ≤ T + ε
such that xn(tn) ∈ C and for every s < tn, xn(s) ∈ K. Since S is upper
semicompact, a subsequence (again denoted by) xn(·) converges uniformly
on compact intervals to some evolution x(·) ∈ S(x). Let us also consider a
subsequence (again denoted by) tn converging to some T � ≤ T +ε. By taking
the limit, we infer that x(T �) belongs to C and that, for any s < T �, x(s)
belongs to K. This implies that

��
(K,C)(x) ≤ �(K,C)(x(·)) ≤ T � ≤ T + ε

We conclude by letting ε converge to 0: The evolution x(·) obtained above
achieves the infimum. ��

We deduce the following characterization of viability kernels and viable-
capture basins:

Proposition 10.4.5 [Sections of Exit and Minimal Time Func-
tions] Let S : X � C(0, +∞; X) be a strict upper semicompact evolutionary
system and C and K be two closed subsets such that C ⊂ K. Then the
viability kernel is characterized by

ViabS(K) = {x ∈ K | τ �
K(x) = +∞}
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and the viable-capture basin

CaptS(K, C) = {x ∈ K | ��
(K,C)(x) < +∞}

is the domain of the (constrained) minimal time function ��
(K,C).

Furthermore, for any T ≥ 0, the viability kernel and capture basin tubes
defined in Definition 4.3.1, p. 133 can be characterized by exit and minimal
time functions:

⎧⎪⎪⎨
⎪⎪⎩

ViabS(K)(T ) :=
{

x ∈ K | τ �
K(x) ≥ T

}

CaptS(K, C)(T ) :=
{

x ∈ X | ��
(K,C)(x) ≤ T

} (10.11)

Proof. Inclusions
{

ViabS(K) ⊂ {x ∈ K | τ �
K(x) = +∞}

CaptS(K, C) ⊂ {x ∈ K | ��
(K,C)(x) < +∞}

as well as ⎧⎪⎪⎨
⎪⎪⎩

ViabS(K)(T ) ⊂
{

x ∈ K | τ �
K(x) ≥ T

}

CaptS(K, C)(T ) ⊂
{

x ∈ X | ��
(K,C)(x) ≤ T

}

are obviously always true.
Equalities follow from Theorem 10.4.4 by taking one persistent evolution

x�(·) ∈ S(x) when T ≤ τ �
K(x) ≤ +∞, since we deduce that T ≤ τ �

K(x) =
τK(x�(·)), so that x(·) is viable in K on the interval [0, T ]. In the same way,
taking one minimal time evolution x�(·) ∈ S(x) when ��

(K,C)(x) ≤ T < +∞,
we deduce that �(K,C)(x�(·)) = ��

(K,C)(x) ≤ T , so that x(·) is viable in K
before it reaches C at T . ��

The viability kernel is in some sense the paradise for viability, which is
lost whenever an environment K is a repeller. Even though there is no viable
evolutions in K, one can however look for an ersatz of viability kernel, which
is the subset of evolutions which survive with the highest life expectancy:

Proposition 10.4.6 [Persistent Kernel] If K is a compact repeller
under a upper semicompact evolutionary system S, then there exists a
nonempty compact subset of initial states which maximize their exit time.
This set can be regarded as a persistent kernel.
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Proof. By Theorem 10.4.1, p. 392, the exit functional τ �
K is upper semicon-

tinuous. Therefore, it achieves its maximum whenever the environment K is
compact. ��

10.4.2 Temporal Window

Let x ∈ K and x(·) ∈ S(x) be a (full) evolution passing through x (see
Sect. 8.2, p. 275). The sum of the exit times τK(−→x (·)) of the forward part
of the evolution and of the exit time τK(←−x (·)) of its backward part can be
regarded as the “temporal window” of the evolution in K. One can observe
that the maximal temporal window is the sum of the exit time function of its
backward time and of its forward part since

sup
x(·)∈S(x)

(τK(←−x (·))+τK (−→x (·))) = sup
←−x (·)∈←−S (x)

(τK(←−x (·)))+ sup
−→x (·)∈S(x)

(τK(−→x (·)))

Any (full) evolution x�(·) ∈ S(x) passing through x ∈ K maximizing
the temporal window is still called persistent. It is the concatenation of the
persistent forward part τK(−→x �(·)) and of its backward part τK(←−x �(·)). The
maximal temporal window of a (full) evolution viable in K is infinite, and
the converse is true whenever the evolutionary system is upper semicompact
(see Proposition 10.4.6, p. 395). If the subset K \ B is a backward repeller
and the subset K \ C is a forward repeller, the bilateral viability kernel is
empty, but the subset of states x ∈ K maximizing their temporal window
function is not empty and can be called the persistent kernel of K.

10.4.3 Exit Sets and Local Viability

We continue the study of local viability initiated in Sect. 2.13, p. 94 by
characterizing it in terms of exit sets:

Definition 10.4.7 [Exit Subsets] Let us consider an evolutionary system
S : X � C(0, +∞; X) and a subset K ⊂ X. The exit subset ExitS(K) is
the (possibly empty) subset of elements x ∈ ∂K which leave K immediately:

ExitS(K) :=
{
x ∈ K such that τ �

K(x) = 0
}
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Exit sets characterize viability and local viability of environments. Recall
that Definition 2.13.1, p. 94 states that a subset D is said locally viable under
S if from any initial state x ∈ D, there exists at least one evolution x(·) ∈ S(x)
and a strictly positive Tx(·) > 0 such that x(·) is viable in D on the nonempty
interval [0, Tx(·)[.

Proposition 10.4.8 [Local Viability Kernel] The subset K \ExitS(K)
is the largest locally viable subset of K (and thus, can be regarded as the
“ local viability kernel of K”).

Proof. Let D ⊂ K be locally viable. If an evolution x(·) ∈ S(x) starting from
x ∈ D is locally viable in D, it is clear that τ �

K(x) ≥ τ �
D(x) ≥ τD(x(·)) > 0, so

that x ∈ K \ExitS(K). Furthermore, the subset K \ExitS(K) itself is locally
viable because to say that x ∈ K \ ExitS(K) means that τ �

K(x) > 0. Hence
for any 0 < λ < τ �

K(x), there exists x(·) ∈ S(x) such that 0 < λ ≤ τK(x(·)),
i.e., such that x(·) is viable in K on the nonempty interval [0, τK(x(·))]. ��

If an environment K is not viable, the subset K can be covered in the
following way:

K = ViabS(K) ∪AbsS(K, ExitS(K))

because, starting outside the viability kernel of K, all solutions leave K in
finite time through the exit set.

We also observe that K \ (ViabS(K)∪ExitS(K)) is the set of initial states
from which starts at least one evolution locally viable in K, but not viable
in K.

Proposition 10.4.8, p. 397 implies

Proposition 10.4.9 [Locally Viable Subsets] The following statements
are equivalent:

1. the complement K \C of a target C ⊂ K in the environment K is locally
viable

2. ExitS(K) ⊂ C,
3. C ∩ ExitS(K) ⊂ ExitS(C).

In particular, K is locally viable if and only if its exit set ExitS(K) = ∅ is
empty.

Proof. Indeed, K \ C is locally viable if and only if K \ C ⊂ K \ ExitS(K)
is contained in the local viability kernel K \ ExitS(K), i.e., if and only if
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ExitS(K) ⊂ C. On the other hand, since C ∩ ExitS(K) ⊂ ExitS(C). Hence
the three statements are equivalent. ��

There is a close link between the closedness of exit sets and the continuity
of the exit function:

Theorem 10.4.10 [Closedness of Exit Sets and Continuity of
Exit Functions] Let us assume that the evolutionary system is upper
semicompact and that the subset K is closed. Then the epigraph of the exit
function τ �

K(·) is closed if and only if the exit subset ExitS(K) is closed.

Proof. Since the exit function is upper semicontinuous, its continuity is
equivalent to its lower semicontinuity, i.e., to the closedness of its epigraph.
The lower semicontinuity of the exit function implies the closedness of the
exit subset

ExitS(K) :=
{

x ∈ K such that τ �
K(x) = 0

}

because the lower sections of a lower semicontinuous function are closed. Let
us prove the converse statement. Consider a sequence (xn, yn) of the epigraph
of the exit function converging to some (x, y) and prove that the limit belongs
to its epigraph, i.e., that τ �

K(x) ≤ y.
Indeed, since tn := τ �

K(xn) ≤ yn ≤ y + 1 when n is large enough,
there exists a subsequence (again denoted by) tn converging to t� ≤ y + 1.
Since the evolutionary system is assumed to be upper semicompact, there
exists a persistent evolution x�

n(·) ∈ S(xn) such that tn := τK(x�
n(·)).

Furthermore, a subsequence (again denoted by) x�
n(·) converges to some

evolution x�(·) ∈ S(x) uniformly on the interval [0, y + 1]. By definition of
the persistent evolution, for all t ∈ [0, tn], x�

n(t) ∈ K and xn(tn) ∈ ExitS(K),
which is closed by assumption. We thus infer that for all t ∈ [0, t�], x�(t) ∈ K
and x�(t�) ∈ ExitS(K). This means that t� = τK(x�(·)) and consequently,
that τK(x�(·)) ≤ y. This completes the proof. ��

We single out the important case in which the evolutions leaving K cross
the boundary at a single point:

Definition 10.4.11 [Transverse Sets] Let S be an evolutionary system
and K be a closed subset. We shall say that K is transverse to S if for
every x ∈ K and for every evolution x(·) ∈ S(x) leaving K in finite time,
τK(x(·)) = �∂K(x(·)).
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Transversality of an environment means that all evolutions governed by
an evolutionary system cross the boundary as soon as they reach it to leave
the environment immediately.

We deduce the following consequence:

Proposition 10.4.12 [Continuity of the Exit Function of a Trans-
verse Set] Assume that the evolutionary system S is upper semicompact
and that the subset K is closed and transverse to S. Then the exit function
τ �
K is continuous and the exit set ExitS(K) of K is closed.

10.5 Viability Characterizations of Kernels and Basins

We shall review successively the viability characterizations of viable subsets
outside a target, introduce the concept of relative backward invariance for
characterizing isolated systems before proving the second viability character-
izations of viability kernels and capture basins. They enjoy semi-permeable
barrier properties investigated at the end of this section.

10.5.1 Subsets Viable Outside a Target

We now provide a characterization of a subset D viable outside a target C
in terms of local viability of D\C:

Proposition 10.5.1 [Characterization of Viable Subsets Outside a
Target] Assume that S is upper semicompact. Let C ⊂ D and D be closed
subsets. The following conditions are equivalent:

1. D is viable outside C under S (ViabS(D, C) = D by Definition 2.2.3,
p. 49),

2. D \ C is locally viable under S,
3. The exit set of D is contained in the exit set of C: C ∩ ExitS(D) ⊂

ExitS(C)

In particular, a closed subset D is viable under S if and only if its exit
set is empty:

ViabS(D) = D if and only if ExitS(D) = ∅
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Proof.

1. First, assume that ViabS(D, C) = D and derive that D\C is locally viable.
Take x0 ∈ D\C and prove that there exists an evolution x(·) ∈ S(x0)
starting at x0 viable in D\C on a nonempty interval. Indeed, since
C is closed, there exists η > 0 such that B(x0, η) ∩ C = ∅, so that
x(t) ∈ B(x0, η) ∩D ⊂ D\C on some nonempty interval. This means that
ViabS(D, C)\C is locally viable.

2. Assume that D \ C is locally viable and derive that ViabS(D, C) = D.
Take any x ∈ D \ C and, since the evolutionary system is assumed to
be semicompact, at least one persistent evolution x�(·) ∈ S(x), thanks to
Theorem 10.4.4. Either this persistent evolution is viable forever, and thus
x ∈ ViabS(D) ⊂ ViabS(D, C), or else, it leaves D in finite time τ �

D(x) at
x⇒ := x�(τ �

D(x)) ∈ ∂D.
Such an element x⇒ belongs to C because, otherwise, since D\C is locally
viable and C is closed, one could associate with x⇒ ∈ D\C another
evolution y(·) ∈ S(x⇒) and T > 0 such that y(τ) ∈ D\C for all τ ∈ [0, T ],
so that τ �

D(x⇒) = T > 0, contradicting the fact that x�(·) is a persistent
evolution.

3. The equivalence between the second and third statement follows from
Propositions 10.4.9, p. 397 on exit sets. ��
As a consequence, Proposition 10.5.2, p. 400 and Theorem 10.3.10,

p. 388 (guaranteeing that the viability kernels ViabS(D, C) are closed)
Theorem 2.15.2 imply the following:

Theorem 10.5.2 [Characterization of Viable Subsets Outside a
Target] Assume that S is upper semicompact. Let C ⊂ K and K be closed
subsets.

Then the viability kernel ViabS(K, C) of K with target C under S is:

• either the largest closed subset D ⊂ K containing C such that D\C is
locally viable,

• or, equivalently, the largest closed subset satisfying

C ∩ ExitS(D) ⊂ ExitS(C) ⊂ C ⊂ D ⊂ K (10.12)

Therefore, under these equivalent assumptions (10.12), p. 400, inclusion

D ∩ ExitS(K) ⊂ C ⊂ D (10.13)

holds true. In particular, the viability kernel ViabS(K) of K is the largest
closed viable subset contained in K.
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Remark. We shall see that inclusion (10.13), p. 400 is the “mother of
boundary conditions” when the subsets C, K and D are graphs of set-valued
maps or epigraphs of extended functions. ��

10.5.2 Relative Invariance

We characterize further isolated subsets in terms of backward invariance
properties – discovered by Hélène Frankowska in her investigations of
Hamilton-Jacobi equations associated with value functions of optimal control
problems under state constraints. They play a crucial role for enriching
the Characterization Theorem 10.2.5 stating that the viability kernel of an
environment with a target is the smallest subset containing the target and
isolated in this environment. We already introduced the concept of backward
relative invariance (see Definition 2.15.3, p. 100):

Definition 10.5.3 [Relative Invariance] We shall say that a subset C ⊂
K is (backward) invariant relatively to K under S if for every x ∈ C, all
(backward) evolutions starting from x and viable in K on an interval [0, T [
are viable in C on the same interval [0, T [.

If K is itself (backward) invariant, any subset (backward) invariant
relatively to K is (backward) invariant.

If C ⊂ K is (backward) invariant relatively to K, then C ∩ Int(K) is
(backward) invariant.

Proposition 10.5.4 [Capture Basins of Relatively Invariant Tar-
gets] Let C ⊂ D ⊂ K three subsets of X.

1. If D is backward invariant relatively to K, then CaptS(K, C) =
CaptS(D, C),

2. If C is backward invariant relatively to K, then CaptS(K, C) = C.

Proof. Since CaptS(D, C) ⊂ CaptS(K, C), let us consider an element x ∈
CaptS(K, C), an evolution x(·) viable in K until it reaches C in finite time
T ≥ 0 at z := x(T ) ∈ C. Setting ←−y (t) := x(T − t), we observe that ←−y (·) ∈←−
S (x(T )), satisfies ←−y (T ) = x ∈ K and is viable in K on the interval [0, T ].
Since D is backward invariant relatively to K, we infer that this evolution←−y (·) is viable in D on the interval [0, T ], so that x(t) =←−y (T − t) belongs to
D for all t ∈ [0, T ]. This implies that x belongs to CaptS(D, C).
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Taking C := D, then CaptS(D, C) = C, so that CaptS(K, C) =
CaptS(D, C) = C. ��

Capture basins of targets viable in environments are backward invariants
relatively to this environment:

Proposition 10.5.5 [Relative Backward Invariance of Capture
Basins] The capture basin CaptS(K, C) of a target C viable in the
environment K is backward invariant relatively to K.

Proof. We have to prove that for every x ∈ CaptS(K, C), every backward
evolution ←−y (·) ∈ ←−S (x) viable in K on some interval [0, T ] is actually viable
in CaptS(K, C) on the same interval.

Since x belongs to CaptS(K, C), there exists an evolution z(·) ∈ S(x) and
S ≥ 0 such that z(S) ∈ C and, for all t ∈ [0, S], z(t) ∈ K. We associate with
it the evolution −→x T (·) ∈ S(←−y (T )) defined by

−→x T (t) :=
{←−y (T − t) if t ∈ [0, T ]−→z (t− T ) if t ∈ [T, T + S]

starting at y(T ) ∈ K. It is viable in K until it reaches C at time T + S.
This means that y(T ) belongs to CaptS(K, C) and this implies that for every
t ∈ [0, T + S], −→x T (t) belongs to the capture basin CaptS(K, C). This is in
particular the case when t ∈ [0, T ]: then ←−y (t) = −→x T (T − t) belongs to the
capture basin. Therefore, the backward evolution ←−y (·) ∈ ←−S (x) is viable in
CaptS(K, C) on the interval [0, T ]. ��

We deduce that a subset C ⊂ K is backward invariant relatively to K if
and only if K is the capture basin of C:

Theorem 10.5.6 [Characterization of Relative Invariance] A sub-
set C ⊂ K is backward invariant relatively to K if and only if
CaptS(K, C) = C.

Proof. First, Proposition 10.5.5, p. 402 implies that whenever CaptS(K, C) =
C, C is backward invariant relatively to K. Conversely, assume that C is
backward invariant relatively to K and we shall derive a contradiction by
assuming that there exists x ∈ CaptS(K, C)\C: in this case, there would
exist a forward evolution denoted −→x (·) ∈ S(x) starting at x and viable in
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K until it reaches C at time T > 0 at c = x(T ). Let ←−z (·) ∈ ←−S (x) be any
backward evolution starting at x and viable in K on some interval [0, T ]. We
associate with it the function ←−y (·) defined by

←−y (t) :=
{−→x (T − t) if t ∈ [0, T ]←−z (t− T ) if t ≥ T

Then ←−y (·) ∈ ←−S (c) and is viable in K on the interval [0, T ]. Since C is
assumed to be backward invariant relatively to K, then ←−y (t) ∈ C for all
t ∈ [0, T ], and in particular ←−y (T ) = x belongs to C. We have obtained a
contradiction since we assumed that x /∈ C. Therefore CaptS(K, C)\C = ∅,
i.e., CaptS(K, C) = C. ��

As a consequence of Proposition 10.5.6, we obtain:

Proposition 10.5.7 [Backward Invariance of the Complement of
an Invariant Set] A subset C is backward invariant under an evolutionary
system S if and only if its complement �C is invariant under S.

Proof. Applying Proposition 10.5.6 with K := X , we infer that C is
backward invariant if and only if C = CaptS(X, C), which is equivalent,
by Lemma 2.12.2, to the statement that �C = InvS(�C, ∅) =: InvS(�C) is
invariant. ��

10.5.3 Isolated Subsets

The following Lemma is useful because it allows isolated subsets to be also
characterized by viability properties:

Lemma 10.5.8 [Isolated Subsets] Let D and K be two subsets such that
D ⊂ K. Then the following properties are equivalent:

1. D is isolated in K under S: ViabS(K, D) = D,
2. ViabS(K) = ViabS(D) and CaptS(K, D) = D,
3. K\D is a repeller and CaptS(K, D) = D.
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Proof. Assume that D is isolated in K. This amounts to writing that,

1. by definition,

D = ViabS(K, D) = ViabS(K) ∪ CaptS(K, D)

and thus, equivalently, that CaptS(K, D) = D and ViabS(K) ⊂ D. Since
D ⊂ K, inclusion ViabS(K) ⊂ D is equivalent to ViabS(K) = ViabS(D).

2. by formula (2.26),

D = ViabS(K, D) = ViabS(K\D) ∪ CaptS(K, D)

and thus, equivalently, that CaptS(K, D) = D and that ViabS(K\D) ⊂
D. Since D ∩ ViabS(K\D) = ∅, this implies that ViabS(K\D) = ∅.
��

We derive the following characterization:

Theorem 10.5.9 [Characterization of Isolated Subsets] Let us con-
sider a closed subset D ⊂ K. Then D is isolated in K by S if and only
if:

1. D is backward invariant relatively to K,
2. either K\D is a repeller or ViabS(K) = ViabS(D).

We provide now another characterization of isolated subsets involving
complements:

Proposition 10.5.10 [Complement of an Isolated Subset] Let us
assume that K and D ⊂ K are closed.

1. If the evolutionary system S is lower semicontinuous and if D =
CaptS(K, D), then either one of the following equivalent properties:

⎧⎨
⎩

(i) �D = InvS(�D, �K) (�D is invariant outside �K)
(ii) Int(D) = CaptS(Int(K), Int(D))
(iii) Int(D) is backward invariant relatively to Int(K)

(10.14)

hold true.
2. Conversely, if Int(K) is backward invariant and if the set-valued map

←−S
is lower semicontinuous, then any of the equivalent properties (10.14),
p. 404 implies that Int(D) = CaptS(Int(K), Int(D)).
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Proof. Lemma 2.12.2 implies that CaptS(K, D) = D if and only if

�D = InvS(�D, �K)

Since S is assumed to be lower semicontinuous, we deduce from Theo-
rem 10.3.7 that{

�(Int(D)) = �D = InvS(�D, �K)
⊂ InvS(�D, �K) = InvS(�(Int(D)), �(Int(K))) ⊂ �(Int(D))

so that the closure of the complement of D is invariant outside the closure of
the complement of K. Observe that, taking the complements, Lemma 2.12.2
states that this is equivalent to property Int(D) = CaptS(Int(K), Int(D)),
which, by Theorem 10.5.6, p. 402, amounts to saying that the interior of D
is relatively backward invariant relatively to the interior of K.

For proving the converse statement, Proposition 10.3.14, p. 390
states that under the assumptions of the theorem, condition Int(D) =
CaptS(Int(K), Int(D)) implies that

Int(D) ⊂ CaptS(Int(K), Int(D)) ⊂ CaptS(Int(K), Int(D)) = Int(D) ��

10.5.4 The Second Fundamental Characterization
Theorem

Putting together the characterizations of viable subsets and isolated subsets,
we reformulate Theorem 10.2.5 characterizing viability kernels with targets
in the following way:

Theorem 10.5.11 [Viability Characterization of Viability Kernels]
Let us assume that S is upper semicompact and that the subsets C ⊂ K and
K are closed. The viability kernel ViabS(K, C) of a subset K with target C
under S is the unique closed subset satisfying C ⊂ D ⊂ K and

⎧⎨
⎩

(i) D\C is locally viable under S, i.e., D = ViabS(D, C)
(ii) D is backward invariant relatively to K under S,
(iii) K\D is a repeller under S, i.e., ViabS(K \D) = ∅.

(10.15)

We mentioned in Sect. 2.15, p. 98 the specific versions for viability kernels
(Theorem 2.15.4, p. 101) and capture basin (Theorem 2.15.5, p. 101).
However, Theorem 10.5.11 implies that when K\C is a repeller, the above
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theorem implies a characterization of the viable-capture basins in a more
general context:

Theorem 10.5.12 [Characterization of Capture Basins] Let us
assume that S is upper semicompact and that a closed subset C ⊂ K satisfies
property

ViabS(K\C) = ∅ (10.16)

Then the viable-capture basin CaptS(K, C) is the unique closed subset
D satisfying C ⊂ D ⊂ K and

{
(i) D\C is locally viable under S
(ii) D is backward invariant relatively to K under S (10.17)

We deduce from Proposition 10.5.10, p. 404 another characterization of
capture basins that provide existence and uniqueness of viscosity solutions
to some Hamilton–Jacobi–Bellman equations:

Theorem 10.5.13 [“Viscosity” Characterization of Capture
Basins] Assume that the evolutionary system S is both upper semicompact
and lower semicontinuous, that K is closed, that Int(K) �= ∅ is backward
invariant, that ViabS(K\C) = ∅, that Int(K) = K and that Int(C) = C.

Then the capture basin CaptS(K, C) is the unique subset topologically
regular subset D between C and K satisfying

{
(i) D\C is locally viable under S,
(ii) �D is invariant outside �K under S.

(10.18)

Proof. Since ViabS(K\C) = ∅, the viability kernel and the capture basin are
equal. By Theorem 10.2.5, p. 379, the capture basin is the unique subset D
between C and K such that:

1. the largest subset D ⊂ K such that CaptS(D, C) = D,
2. the smallest subset D ⊃ C such that CaptS(K, D) = D.

The evolutionary system being upper semicompact, the first condition
amounts to saying that D\C is locally viable.

By Proposition 10.5.10, p. 404, property CaptS(K, D) = D implies that
�D is invariant outside �K, as well as the other properties (10.14), p. 404.

Conversely, let D satisfy those properties (10.14). Proposition 10.7.6,
p. 419 implies that, under the assumptions of the theorem, the capture basin
CaptS(K, C) is topologically regular whenever K and C are topologically
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regular. Let D satisfy properties (10.18), p. 406. By Proposition 10.5.10,
p. 404, property CaptS(K, D) = D implies that CaptS(K, D) = D.
Therefore, Theorem 10.2.5, p. 379 implies that D = CaptS(K, C). ��

Remark. We shall see that whenever the environment K := Ep(k) and
the target C := Ep(c) are epigraphs of functions k ≤ c, the capture basin
under adequate dynamical system is itself the epigraph of a function v.
Theorem 10.5.13, p. 406 implies that v is a viscosity solution to a Hamilton–
Jacobi–Bellman equation. ��

10.5.5 The Barrier Property

Roughly speaking, an environment exhibits the barrier property if all viable
evolutions starting from its boundary are viable on its boundary, so that no
evolution can enter the interior of this environment: this is a semi-permeability
property of the boundary.

For that purpose, we need to define the concept of boundary:

Definition 10.5.14 [Boundaries] Let C ⊂ K ⊂ X be two subsets of X.
The subsets

∂KC := C ∩K\C &
◦
∂K C := C ∩K\C

are called respectively the boundary and the pre-boundary of the subset C
relatively to K. When K := X, we set

∂C := C ∩ � C &
◦
∂ C := C ∩ � C

In other words, the interior of a set D and its pre-boundary form a partition
of D = Int(D)∪ ◦

∂ D. Pre-boundaries are useful because of the following
property:

Lemma 10.5.15 [Pre-boundary of an intersection with an open
set] Let Ω ⊂ X be an open subset and D ⊂ X be a subset. Then

◦
∂ (Ω ∩D) = Ω∩ ◦∂ D

In particular, if C ⊂ D is closed, then
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Int(D) \ C = Int(D \ C) and
◦
∂ (D \ C) =

◦
∂ (D) \ C

Proof. Indeed, D = Int(D)∪ ◦∂ D being a partition of D, we infer that D ∩
Ω = Int(D∩Ω)∪ ◦∂ D∩Ω is still a partition. By definition, D∩Ω = Int(D∩
Ω)∪ ◦∂ (D ∩Ω) is another partition of D ∩Ω. Since Ω is open, Int(D ∩Ω) =

Int(D) ∩ Int(Ω) = Int(D) ∩Ω, so that
◦
∂ (D ∩Ω) = Ω∩ ◦∂ D. ��

Definition 10.5.16 [Barrier Property] Let D ⊂ X be a subset and S be
an evolutionary system. We shall say that D exhibits the barrier property
if its pre-boundary

◦
∂ D is relatively invariant with respect to D itself. In

other words, starting from any x ∈◦∂ D, all evolutions viable in D on some
time interval [0, T [ are actually viable in

◦
∂ D on [0, T [.

Remark. The barrier property of an environment is a semi-permeability
property of D, since no evolution can enter the interior of D from the
boundary (whereas evolutions may leave D). This is very important in terms
of interpretation. Viability of a subset D having the barrier property is
indeed a very fragile property, which cannot be restored from the outside,
or equivalently, no solution starting from outside the viability kernel can
cross its boundary from outside. In other words, starting from the pre-
boundary of the environment, love it or leave it... The “barrier property”
played an important role in control theory and the theory of differential
games, because their boundaries could be characterized as solutions of first-
order partial differential equations under (severe) regularity assumptions.
Marc Quincampoix made the link at the end of the 1980s between this
property and the boundary of the viability kernel: every solution starting
from the boundary of the viability kernel can either remain in the boundary
or leave the viability kernel, or equivalently, no solution starting from outside
the viability kernel can cross its boundary. ��

We deduce from Theorem 10.5.6, p. 402 that a subset D exhibits the
barrier property if and only if its interior is backward invariant:
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Proposition 10.5.17 [Backward Invariance of the interior and
Barrier Property] A subset D exhibits the barrier property if and only
if its interior Int(D) is backward invariant.

Proof. Theorem 10.5.6, p. 402 states that the pre-boundary
◦
∂ D ⊂ D is

invariant relatively to D if and only if Capt←−S (D,
◦
∂ D) =

◦
∂ D. Therefore,

from every x ∈ Int(D) = D\ ◦∂ D = D \ Capt←−S (D,
◦
∂ D), all backward

evolutions are viable in Int(D) = D\ ◦∂ D as long as they are viable in
D. Such evolutions always remain in Int(D) because they can never reach

x(t) ∈◦∂ D in some finite time t. ��
Viability kernels exhibit the barrier property whenever the evolutionary

system is both upper and lower semicontinuous:

Theorem 10.5.18 [Barrier Property of Boundaries of Viability
Kernels] Assume that K is closed and that the evolutionary system S is
lower semicontinuous. Then the intersection ViabS(K, C) ∩ Int(K) of the
viability kernel of K with the interior of K exhibits the barrier property
and the interior Int(ViabS(K)) of the viability kernel of K is backward
invariant.

If ViabS(K) ⊂ Int(K), then ViabS(K) exhibits the barrier property,
and thus, its interior is backward invariant.

In some occasions, the boundary of the viability kernel can be characterized
as the viability kernel of the complement of a target, and in this case, exhibits
the properties of viability kernels, in particular, can be computed by the
Viability Kernel Algorithm: see Theorem 9.2.18, p. 339.

Actually, Theorem 10.5.18, p. 409 is a consequence of the Barrier
Theorem 10.5.19, p. 409 of viability kernels with nonempty targets:

Theorem 10.5.19 [Barrier Property of Viability Kernels with
Targets] Assume that K and C ⊂ K are closed and that the evolutionary
system S is lower semicontinuous. Then the intersection ViabS(K, C) ∩
Int(K \C) of the viability kernel of K with target C ⊂ K under S with the
interior of K \ C exhibits the barrier property.
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Furthermore, Int(ViabS(K, C)) \ C is backward invariant.
In particular, if ViabS(K, C) ⊂ Int(K \ C), then Int(ViabS(K, C)) \ C
exhibits the barrier property.

Proof. Let us set D := ViabS(K, C). Theorem 10.5.11, p. 405 implies that D
satisfies (10.5.5), p. 410:

⎧⎨
⎩

(i) D\C is locally viable under S
(ii) D is backward invariant relatively to K under S
(iii) K\D is a repeller under S or ViabS(K) = ViabS(D).

and Proposition 10.5.10, p. 404 states that if the evolutionary system S is
lower semicontinuous, then condition D = CaptS(K, D) implies that

�D = InvS(�D, �K) (�D is invariant outside �K)

Lemma 10.5.15, p. 407 states that, since the target C is assumed to be closed,

◦
∂ (Int(K \ C) ∩D) = Int(K \ C)∩ ◦∂ D = (

◦
∂ D ∩ Int(K)) \ C

because the interior of a finite intersection of subsets is the intersection of
their interiors.

Let x belong to Int(K \ C)∩ ◦
∂ (ViabS(K, C)). Since x ∈ D :=

ViabS(K, C), there exists at least one evolution belonging to S(x) viable
in K forever or until it reaches C in finite time. Take any such evolution
x(·) ∈ S(x). Since x ∈ �D := InvS(�D, �K), this evolution x(·), as well as
every evolution starting from x, remains viable in �D as long as x(t) ∈
Int(K). Therefore, it remains viable in Int(K \ C)∩ ◦

∂ (D) as long as
x(t) ∈ Int(K) \ C = Int(K \ C) (since C is assumed to be closed, thanks
to the second statement of Lemma 10.5.15, p. 407).

Proposition 10.5.17, p. 409 implies that the interior Int(D ∩ (K \ C)) =
Int(D) \ C is backward invariant. ��

Remark. If we assume furthermore that S is upper semicompact, then
the viability kernel with target is closed, so that its pre-boundary coincides
with its boundary. ��
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10.6 Other Viability Characterizations

10.6.1 Characterization of Invariance Kernels

We now investigate the viability property of invariance kernels.

Proposition 10.6.1 [Characterization of Invariant Subsets Out-
side a Target] Assume that S is upper lower semicontinuous. Let C ⊂ K
be closed subsets.

Then the invariance kernel InvS(K, C) of K with target C under S is
the largest closed subset D ⊂ K containing C such that D\C is locally
invariant.

In particular, K is invariant outside C if and only if K\C is locally
invariant.

Proof. First, we have to check that if D ⊃ C is invariant outside C, then D\C
is locally invariant: take x0 ∈ D\C and prove that all evolutions x(·) ∈ S
starting at x0 are viable in D\C on a nonempty interval. Indeed, since C
is closed, there exists η > 0 such that B(x0, η) ∩ C = ∅, so that x(t) ∈
B(x0, η) ∩D ⊂ D\C on some nonempty interval.

In particular, InvS(K, C)\C is locally invariant and the invariance kernel
InvS(K, C) of K with target C under S is closed by Theorem 10.7.8.

Let us prove now that any subset D between C and K such that D\C is
locally invariant is contained in the invariance kernel InvS(K, C) of K with
target C under S.

Since C ⊂ InvS(K, C), let us pick any x in D\C and show that it belongs
to InvS(K, C). Let us take any evolution x(·) ∈ S(x). Either it is viable in
D forever or, if not, leaves D in finite time τD(x(·)) at x := x(τD(x(·))):
there exists a sequence tn ≥ τD(x(·)) converging to τD(x(·)) such that
x(tn) /∈ D. Actually, this element x belongs to C. Otherwise, since D\C is
locally invariant, this evolution remains in D in some nonempty interval
[τD(x(·)), T ], a contradiction. ��

Further characterizations require properties of the invariance kernels in
terms of closed viable or invariant subsets. For instance:

Proposition 10.6.2 [Invariance Kernels] Let us assume that C ⊂ K
and K are closed, that K\C is a repeller and that the evolutionary system S
is both upper semicompact and lower semicontinuous. Then the invariance
kernel InvS(K, C) is a closed subset D between C and K satisfying
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{
(i) D = InvS(D, C)
(ii) �D = CaptS(�D, �K)

(10.19)

Furthermore, condition (10.19)(ii), p. 412 is equivalent to

Int(D) = InvS(Int(K), Int(D)) is invariant in Int(K) outside Int(D).

Proof. Let us consider the invariance kernel D := InvS(K, C). By Theo-
rem 10.2.7, p. 382, it is the unique subset between C and K such that
D = InvS(D, C) and D = InvS(K, D). Thanks to Lemma 2.12.2, the latter
condition is equivalent to

�InvS(K, D) = CaptS(�D, �K)

Since S is upper semicompact and since �C\�K = K\C is a repeller, we
deduce from Theorem 10.3.10 that

�D = CaptS(�D, �K) ⊂ CaptS(�D, �K) ⊂ �D

and thus, that �
◦
D= CaptS(�

◦
D, �

◦
K). By Lemma 2.12.2, this amounts to

saying that Int(D) = InvS(Int(K), Int(D)). ��

Lemma 10.6.3 [Complement of a Separated Subset] Let us assume
that the evolutionary system S is upper semicompact and that a closed subset
D ⊂ K is separated from K. Then Int(K \D)\Int(D) is locally viable under
S. In particular, if C ⊂ K is closed, Int(K)\Int(InvS(K, C)) is locally
viable.

Proof. Let x ∈ Int(K)\Int(D) be given and xn ∈ Int(K)\D converge to x.
Since D = InvS(K, D) is separated by assumption, for any n, there exists
xn(·) ∈ S(xn) such that

Tn := �∂K(xn(·)) ≤ τK(xn(·)) ≤ �D(xn(·))

because xn ∈ K\D and �∂K(xn(·)) ≤ τK(xn(·)) < +∞. Therefore, for any
t < �∂K(xn(·)), xn(t) ∈ Int(K) \D.

Since S is upper semicompact, a subsequence (again denoted by) xn(·)
converges to some x(·) ∈ S(x). Since the functional �∂K is lower semicon-
tinuous, we know that for any t < �∂K(x(·)), we have t < �∂K(xn(·)) for n
large enough. Consequently, xn(t) ∈ �D, and, passing to the limit, we infer
that for any t < �∂K(x(·)), x(t) ∈ � D. This solution is thus locally viable
in Int(K)\Int(D). ��
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The boundary of the invariance kernel is locally viable:

Theorem 10.6.4 [Local Viability of the Boundary of an Invariance
Kernel] If C ⊂ K and K are closed and if S is upper semicompact, then,

for every x ∈ (
◦
∂ (InvS(K, C))∩Int(K))\C, there exists at least one solution

x(·) ∈ S(x) locally viable in

(
◦
∂ (InvS(K, C)) ∩ Int(K)) \ C

Proof. Let x belong to
◦
∂ InvS(K, C) ∩ Int(K \ C). Lemma 10.6.3, p. 412

states there exists an evolution x(·) viable in Int(K) \ (InvS(K, C)) because
the invariance kernel is separated from K. Since x belongs to the invariance
kernel, it is viable in InvS(K, C) until it reaches the target C, and thus viable

in
◦
∂ InvS(K, C) as long as it is viable in the interior of K \ C. ��

10.6.2 Characterization of Connection Basins

The connection basin ConnS(K, (B, C)) of K between B and C (see
Definition 8.5.1, p. 291) can be written

ConnS(K, (B, C))=DetS(K, B)∩CaptS(K, C)=Capt←−S (K, B)∩CaptS(K, C)

because DetS(K, B) := Capt←−S (K, B) thanks to Lemma 8.4.5, p. 287.
We begin by proving a statement analogous to Theorem 10.2.5, p. 379 for

viability kernels:

Theorem 10.6.5 [Characterization of Connection Basins] Let S :
X � C(−∞,∞; X) be an evolutionary system, K ⊂ X be a environment,
and B ⊂ K be a source and C ⊂ K be a target. The connection basin
ConnS(K, (B, C)) is the intersection of the detection and capture basin

ConnS(K, (B, C)) = DetS(K, B) ∩ CaptS(K, C)

The connection basin is the largest subset D ⊂ K of K that is connecting
B to C viable in D, i.e., the largest fixed point of the map D �→
ConnS(D, (B ∩D, C ∩D)) contained in K.

Furthermore, all evolutions connecting B to C viable in K are actually
viable in ConnS(D, (B ∩D, C ∩D)).
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Proof. Let us set D := ConnS(K, (B, C)).
If D = ∅, and since ∅ = ConnS(∅, (B ∩ ∅, C ∩ ∅)), the empty set is a fixed

point of D �→ ConnS(D, (B ∩D, C ∩D)).
Otherwise, we shall prove that

D ⊂ DetS(D, D ∩B) ∩ CaptS(D, D ∩ C)

and thus, since D ⊂ DetS(D, D∩B)∩CaptS(D, D∩C) ⊂ ConnS(K, (B, C)) =:
D, that D is a fixed point of the map D �→ ConnS(D, (B ∩D, C ∩D)).

Indeed, let x belong to the connection basin D. By Definition 8.5.1, p. 291,
there exist an evolution x(·) ∈ S(x) passing through x and times

←−
T ≥ 0 and−→

T ≥ 0 such that

∀ t ∈ [−←−T , +
−→
T ], x(t) ∈ K, x(

←−
T ) ∈ B and x(

−→
T ) ∈ C

Now, let us consider any such evolution x(·) ∈ S(x) connecting B to C and
viable in K and prove that it is viable in ConnS(D, (B ∩D, C ∩D)).

Let us consider the evolution y(·) := (κ(
←−
T )x(·))(·) ∈ S(x(

←−
T )) defined by

y(t) := x(t−←−T ), viable in K until it reaches the target C in finite time
←−
T +
−→
T

at y(
←−
T +

−→
T ) = x(

−→
T ) ∈ C. This implies that x(

←−
T ) ∈ CaptS(K, C). Since

all evolutions capturing C viable in K are actually viable in CaptS(K, C)
by Lemma 10.2.4, p. 378, this implies that y(·) is viable in CaptS(K, C) on
the interval [0,

←−
T +

−→
T ]. Hence the evolution x(·) = (κ(−←−T )y(·))(·) ∈ S(x) is

viable in CaptS(K, C) on the interval [−←−T , +
−→
T ]. We prove in the same way

that the evolution x(·) is viable in DetS(K, B) on the interval [−←−T , +
−→
T ].

Therefore, this evolution x(·) is connecting B to C in the connection basin
ConnS(D, (B∩D, C∩D)) itself. Therefore, we deduce that D is a fixed point
D = ConnS(D, (B ∩D, C ∩D)) and the largest one, obviously. ��

Proposition 10.6.6 [Relative Bilateral Invariance of Connection
Basins] The connection basin ConnS(K, (B, C)) between a source B and a
target C viable in the environment K is both forward and backward invariant
relatively to K.

Proof. We have to prove that for every x ∈ ConnS(K, (B, C)), every
evolution x(·) ∈ S(x) connecting B to C, viable in K on some time interval
[S, T ], is actually viable in ConnS(K, (B, C)) on the same interval.

Since x(S) belongs to DetS(K, B), there exist an element b ∈ B, a time
Tb ≥ 0 and an evolution zb(·) ∈ S(b) viable in K until it reaches x(S) = zb(Tb)
at time Tb. Since x(T ) belongs to CaptS(K, C), there exist Tc ≥ 0, an element
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c ∈ C and an evolution zc(·) ∈ S(x(T )) such that zc(Tc) = c ∈ C and, for all
t ∈ [0, S], zc(t) ∈ K. We associate with these evolutions their concatenation
y(·) ∈ S(b) defined by

y(t) :=

⎧⎨
⎩

zb(t) if t ∈ [0, Tb]
x(t + S − Tb) if t ∈ [Tb, Tb + T − S]
zc(t− Tb + S − T ) if t ∈ [Tb + T − S, Tb + T − S + Tc]

starting at b ∈ B is viable in K until it reaches C at time Tb + S + T + Tc.
This means that b belongs to ConnS(K, (B, C)) and this implies that for every
t ∈ [0, Tb+S+T+Tc], y(t) belongs to the connection basin ConnS(K, (B, C)).
This is in particular the case when t ∈ [S, T ]: then x(t) = y(t + Tb − S)
belongs to the capture basin. Therefore, the evolution x(·) is viable in
ConnS(K, (B, C)) on the same interval [S, T ]. ��

Theorem 10.6.7 [Characterization of Bilateral Relative Invari-
ance] A subset D ⊂ K is bilaterally invariant relatively to K if and only if
ConnS(K, (D, D)) = D.

Proof. First, Proposition 10.6.6, p. 414 implies that whenever ConnS(K, (D,
D)) = D, D is bilaterally invariant relatively to K.

Conversely, assume that D is bilaterally invariant relatively to K
and we shall derive a contradiction by assuming that there exists
x ∈ ConnS(K, (D, D))\D. Indeed, there would exist an evolution x(·) ∈ S(x)
through x, times Tb ≥ 0 and Tc ≥ 0 and elements b ∈ D and c ∈ D such that
x(−Tb) = b, x(Tc) = c and viable in K on the interval [−Tb, +Tc]. Since D
is bilaterally viable and since x(·) is bilaterally viable in K, it is bilaterally
viable in D by assumption. Therefore, for all t ∈ [−Tb, +Tc], x(t) belongs to
D, and in particular, for t = 0: then x(0) = x belongs to D, the contradiction
we were looking for. ��

Theorem 10.6.8 [Characterization of Connection Basins as
Unique Bilateral Fixed Point] Let S : X � C(0, +∞; X) be an
evolutionary system, K ⊂ X be a environment and C ⊂ K be a target.
The connection basin ConnS(K, (D, D)) between subset C and itself is
the unique bilateral fixed point between C and K of the map (L, D) �→
ConnS(L, (D, D)) in the sense that

D = ConnS(D, (C, C)) = ConnS(K, (D, D))
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Proof. Let us consider the map (K, C) �→ A(K, C) := ConnS(K, (C, C)). It
satisfies properties (10.5), p. 381:

{
(i) C ⊂ A(K, C) ⊂ K
(ii) (K, C) is increasing

Theorem 10.6.5, p. 413 states that A(K, C) := ConnS(K, (C, C)) is a fixed
point of L �→ A(L, C) and Theorem 10.6.7, p. 415 that A(K, C) is a fixed
point of D �→ A(K, D). Then A(K, C) is the unique bilateral fixed point of
the map D between C and K of the map A: D = A(D, C) = A(K, D) thanks
to the Uniqueness Lemma 10.2.6, p. 381. ��

10.7 Stability of Viability and Invariance Kernels

In this section we study conditions under which kernels and basins of limit
of a sequence of environments and/or of targets is the limit of these kernels
and basins, and apply these results to the existence of viability envelopes in
Sect. 10.7.2, p. 420.

10.7.1 Kernels and Basins of Limits of Environments

Let us consider a sequence of environments Kn ⊂ X , of targets Cn ⊂ Kn,
and of viability kernels ViabS(Kn, Cn) of Kn with targets Cn under a given
evolutionary system S.

A natural and important question arises whether we can “take the limit”
and compare the limit of the viability kernels and the viability kernels of the
limits.

Answers to such questions require first an adequate concept of limit. Here,
dealing with subsets, the natural concept of limit is the one of the Painlevé–
Kuratowski upper limit of subsets. We recall the Definition 18.4.1, p. 728:

Definition 10.7.1 [Upper Limit of Sets] Let (Kn)n∈N be a sequence of
subsets of a metric space E. We say that the subset

Limsupn→∞Kn :=
{

x ∈ E | lim inf
n→∞ d(x, Kn) = 0

}

is the upper limit of the sequence Kn.

We would like to derive formulas of the type
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Limsupn→+∞ViabS(Kn, Cn) ⊂ ViabS(Limsupn→+∞Kn, Limsupn→+∞Cn)

and analogous formulas for invariance kernels.

10.7.1.1 Upper Limit of Subsets of Viable Evolutions

It is worth recalling that the viability kernel

ViabS(K, C) = S−1(V(K, C))

is the inverse image of the subset V(K, C) ⊂ C(0, +∞; X) of evolutions viable
in K outside C defined by (2.5):

{V(K, C) := {x(·) such that ∀t ≥ 0, x(t) ∈ K
or ∃ T ≥ 0 such that x(T ) ∈ C & ∀t ∈ [0, T ], x(t) ∈ K}

and that the invariance kernel

InvS(K, C) = S�1(V(K, C))

is the core of the subset V(K, C) ⊂ C(0, +∞; X).
Hence, we begin by studying the upper limits of subsets V(Kn, Cn):

Lemma 10.7.2 [Upper Limit of Subsets of Viable Evolutions] For
any sequence of environments Kn ⊂ X and any target Cn ⊂ Kn,

Limsupn→+∞V(Kn, Cn) ⊂ V(Limsupn→+∞Kn, Limsupn→+∞Cn)

Proof. The proof is a slight generalization of the proof of Lemma 10.3.9,
p. 388. Let us consider a sequence of evolutions xn(·) ∈ V(Kn, Cn)
converging to some evolution x(·). We have to prove that x(·) belongs to
V(Limsupn→+∞Kn, Limsupn→+∞Cn), i.e., that is viable in Limsupn→+∞Kn

forever or until it reaches the target Limsupn→+∞Cn in finite time.
Indeed:

1. either for any T > 0 and any N > 0, there exist n ≥ N , tn ≥ T and an
evolution xn(·) for which xn(t) ∈ Kn for every t ∈ [0, tn],

2. Or there exist T > 0 and N > 0 such that for any n ≥ N and any evolution
xn(·), there exists tn ≤ T such that xn(tn) /∈ Kn.

In the first case, we deduce that for any T > 0, x(T ) ∈ Limsupn→+∞Kn, so
that the limit x(·) is viable in Limsupn→+∞Kn forever. In the second case, all
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the solutions xn(·) leave Kn before T . This is impossible if evolutions xn(·)
are viable in Kn forever. Therefore, since xn(·) ∈ V(Kn, Cn), they have to
reach Cn before leaving Kn: there exists sn ≤ T such that

xn(sn) ∈ Cn & ∀t ∈ [0, sn], xn(t) ∈ Kn

Then a subsequence sn′ converges to some S ∈ [0, T ]. Therefore, for any
s < S, then s < sn′ for n′ large enough, so that xn′(s) ∈ Kn. By taking the
limit, we infer that for every s < S, x(s) ∈ Limsupn→+∞Kn. Furthermore,
since xn(·) converges to x(·) uniformly on the compact interval [0, T ], then
xn(sn) ∈ Cn converges to x(S), which therefore belongs to Limsupn→+∞Cn.

This shows that the limit x(·) belongs to V(Limsupn→+∞Kn,
Limsupn→+∞Cn). ��

10.7.1.2 Upper Limits of Inverse Images and Cores

Stability problems amount to study the upper limits of inverse images
and cores of subsets Hn ⊂ C(0, +∞; X) of evolutions, such as the subsets
V(Kn, Cn) defined by (2.5), p. 49.

Theorem 10.7.3 [Upper Limit of Inverse Images] Let S : X �
C(0, +∞; X) be an upper semicompact evolutionary system. Then for any
sequence of subsets Hn ⊂ C(0, +∞; X),

Limsupn→+∞S−1(Hn) ⊂ S−1(Limsupn→+∞Hn)

Proof. Let x ∈ Limsupn→+∞S−1(Hn) be the limit of a sequence of elements
xn ∈ S−1(Hn). Hence there exist evolutions xn(·) ∈ S(xn) ∈ Hn.
Since S is upper semicompact, there exists a subsequence of evolutions
xn′(·) ∈ S(xn′ ) starting at xn′ and converging to some x(·) ∈ S(x). It
also belongs to the upper limit Limsupn→+∞Hn of the subsets Hn, so that
x ∈ S−1(Limsupn→+∞Hn). ��

For cores, we obtain

Theorem 10.7.4 [Upper Limit of Cores] Let S : X � C(0, +∞; X)
be a lower semicontinous evolutionary system. Then for any sequence of
subsets Hn ⊂ C(0, +∞; X),

Limsupn→+∞S�1(Hn) ⊂ S�1(Limsupn→+∞Hn)
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Proof. Let us consider a sequence of subsets Hn ⊂ C(0, +∞; X) and
a sequence of elements xn ∈ S�1(Hn) converging to some x ∈
Limsupn→+∞S�1(Hn). We have to prove that any x(·) ∈ S(x) belongs
to Limsupn→+∞Hn. Indeed, since S is lower semicontinuous, there exists a
sequence of elements xn(·) ∈ S(xn) ⊂ Hn converging to x(·). Therefore the
evolution x(·) belongs to the upper limit Limsupn→+∞Hn of the subsets
Hn. Since the evolution x(·) was chosen arbitrarily in S(x), we infer that
x ∈ S�1(Limsupn→+∞Hn). ��

10.7.1.3 Upper Limits of Viability and Invariance Kernels

Theorem 10.7.3 and Lemma 10.7.2 imply

Theorem 10.7.5 [Upper Limit of Viability Kernels] Let S : X �
C(0, +∞; X) be an upper semicompact evolutionary system. Then for any
sequence of environments Kn ⊂ X and of targets Cn ⊂ Kn,

Limsupn→+∞ViabS(Kn, Cn) ⊂ ViabS(Limsupn→+∞Kn, Limsupn→+∞Cn)

For capture basins, we obtain another property:

Lemma 10.7.6 [Upper Limit of Capture Basins] If the set-valued map←−S is lower semicontinuous and if K is backward invariant, then for any
closed subset C ⊂ K,

CaptS(Limsupn→+∞Kn, Limsupn→+∞Cn) ⊂ Limsupn→+∞CaptS(Kn, Cn)
(10.20)

Proof. Let us take x ∈ CaptS(Limsupn→+∞Kn, Limsupn→+∞Cn) and an
evolution x(·) ∈ S(x) viable in Limsupn→+∞Kn until it reaches the target
Limsupn→+∞Cn at time T < +∞ at c := x(T ) ∈ Limsupn→+∞Cn. Hence
the function t �→ y(t) := x(T − t) is an evolution y(·) ∈ ←−S (c). Let us
consider a sequence of elements cn ∈ Cn converging to c. Since

←−S is lower
semicontinuous, there exist evolutions yn(·) ∈ ←−S (cn) converging uniformly
over compact intervals to y(·). These evolutions yn(·) are viable in Kn,
since Kn is assumed to be backward invariant, so that xn(0) belongs to
CaptS(Kn, Cn). Therefore xn(0) := yn(T ) converges to x := x(0). ��
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Putting together these results, we obtain the following useful theorem on
the stability of capture basins:

Theorem 10.7.7 [Stability Properties of Capture Basins] Let us
consider a sequence of closed subsets Cn satisfying ViabS(K) ⊂ Cn ⊂ K
and

Limn→+∞Cn := Limsupn→+∞Cn = Liminfn→+∞Cn

If the evolutionary system S is upper semicompact and lower semicon-
tinuous and if K is closed and backward invariant under S, then

Limn→+∞CaptS(K, Cn) = CaptS(K, Limn→+∞Cn) (10.21)

For invariance kernels, we deduce from Theorem 10.7.4 and Lemma 10.7.2
the stability theorem:

Lemma 10.7.8 [Upper Limit of Invariance Kernels] Let S : X �
C(0, +∞; X) be a lower semicontinuous evolutionary system. Then for any
sequence of environments Kn ⊂ X and any target Cn ⊂ Kn,

Limsupn→+∞InvS(Kn, Cn) ⊂ InvS(Limsupn→+∞Kn, Limsupn→+∞Cn)

10.7.2 Invariance and Viability Envelopes

Since the intersection of sets that are invariant under an evolutionary system
is still invariant, it is natural to introduce the smallest invariant subset
containing a given set:
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Definition 10.7.9 [Invariance Envelope] We shall say that the smallest
invariant subset containing C is the invariance envelope of C and that the
smallest subset of K containing C invariant outside C is the invariance
envelope of K outside C.

However, an intersection of subsets viable under an evolutionary system is
not necessarily viable. Nevertheless, we may introduce the concept of minimal
subsets viable outside a target:

Definition 10.7.10 [Viability Envelope] Let L be any subset satisfying
C ⊂ L ⊂ ViabS(K, C). A (resp. closed) viability envelope of K with target
C is any (resp. closed) set L� ⊃ L viable outside C such that there is no
strictly smaller subset M ⊃ L viable outside C.

We prove the existence of viability envelopes:

Proposition 10.7.11 [Existence of Viability Envelopes] Let K be a
closed subset viable under an upper semicompact evolutionary system S.
Then any closed subset L ⊂ K is contained into a viability envelopes of L
under S.

Proof. We apply Zorn’s lemma for the inclusion order on the family of
nonempty closed subsets viable under S between L and K. For that purpose,
consider any decreasing family of closed subsets Mi, i ∈ I, viable under S
and their intersection M� :=

⋂
i∈I Mi. It is a closed subset viable under S

thanks to the Stability Theorem 10.7.7. Therefore every subset L ⊂ K is
contained in a minimal element for this preorder. ��

When L = ∅, we have to assume that K is compact to guarantee that the
intersection of any decreasing family of nonempty closed subset viable under
S is not empty. In this case, we obtain the following

Proposition 10.7.12 [Non emptiness of Viability Envelopes] Let
K be a nonempty compact subset viable under an upper semicompact
evolutionary system S. Then nonempty minimal closed subsets M viable
under S exist and are made of limit sets of viable evolutions. Actually, they
exhibit the following property:
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∀x ∈M, ∃ x(·) ∈ S(x) | x ∈M = ω(x(·))

where, by Definition 9.3.1, p. 344, ω(x(·)) :=
⋂

T>0 (x([T,∞[)) is the
ω-limit set of x(·).

Proof. Let M ⊂ K be a minimal closed subset viable under S. We can
associate with any x ∈M a viable evolution x(·) ∈ S(x) starting at x. Hence
its limit set ω(x(·)) is contained in M . But limit sets being closed subsets
viable under S by Theorem 9.3.11 and M being minimal, it is equal to ω(x(·)),
so that x ∈ ω(x(·)). ��

10.8 The Hard Version of the Inertia Principle

Exit sets also play a crucial role for regulating viable evolutions with a
finite number of feedbacks instead of the unique feedback, which, whenever
it exists, regulates viable evolutions. However, even when its existence is
guaranteed and when the Viability Kernel Algorithm allows us to compute
it, it is often preferable to use available and well known feedbacks derived
from a long history than computing a new one. Hence, arises the question of
“quantized retroactions” using a subset of the set of all available retroactions
(see Sect. 6.4, p. 207 for fixed degree open loop controls). In this section, we
are investigating under which conditions a given finite subset of available
feedbacks suffices to govern viable evolutions. We have to give a precise
definition of the concept of “amalgams” of feedbacks for producing other
ones, in the same way that a finite number of monomials generates the class of
fixed degree polynomials. Once this operation which governs concatenations
of evolutions defined, we can easily characterize a condition involving the
exit set of the system under each of the finite class of systems. They govern
specific evolutions satisfying the hard version of the inertia principle.

33 [Quantized Controls.] Recent important issues in control theory are
known under the name of “ quantized controls”, where, instead of finding
adequate retroactions for governing evolutions satisfying such and such
properties (viability, capturability, optimality, etc.), we are restricting the
regulation of these evolutions by a smaller class of retroactions generated
in some way by a finite number of feedbacks. Indeed, the regulation map
(see Definition 2.14.3, p. 98) using the entire family of controls u ∈ U(x)
may be too difficult to construct. Quantized control combines only a finite
number of retroactions to regulate viable, capturing or optimal evolutions.
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Chapter 6, p. 199 provided examples of such quantized systems where the
retroactions are open loops controls made of polynomials of fixed degree m.
The regulation by the amalgam of a finite number of given feedbacks provides
another answer to the issue of quantization. Indeed, let us consider control
system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

We introduce a finite family of closed loop feedbacks ũi : x � ũi(x) ∈
U(x) and i ∈ I where I is a finite number of indices. They define a finite
number of evolutionary systems Si associated with differential equations

x′(t) = f(x(t), ũi(x(t)))

Each of these a priori feedbacks is not especially designed to regulate viable
evolutions in an arbitrary set, for instance. A compromise is obtained by
“amalgamating” those closed loop feedbacks for obtaining the following class
of retroactions (see Definition 2.7.2, p. 65):

Recall (Definition 18.3.12, p. 724) that the mark Ξ[s,t]×A := ΞU[s,t]×A :
R ×X � U of a subset [s, t]×A is defined by

Ξ[s,t]×A(τ, x) :=
{U if (τ, x) ∈ [s, t]×A
∅ if (τ, x) /∈ [s, t]×A

(10.22)

and plays the role of a “characteristic set-valued map of a subset”. Therefore,
for any u ∈ U

u ∩ Ξ[s,t]×A(τ, x) :=
{ {u} if (τ, x) ∈ [s, t]× A
∅ if (τ, x) /∈ [s, t]× A

Definition 10.8.1 [Amalgam of Feedbacks] Let us consider a family
of feedbacks ũi : X � U , a covering X =

⋃
i∈I

Ai of X and an increasing

sequence of instants ti, i = 0, . . . , n. The associated amalgam of these
feedbacks is the retroaction

ũ :=
⋃
i≥0

ũi ∩ Ξ[ti,ti+1[×Ai

defined by

ũ(t, x) := ũi(x) if t ∈ [ti, ti+1[ and x ∈ Ai
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Amalgams of feedbacks play an important role in the regulation of control
and regulated systems.

Proposition 10.5.1, p. 399 characterizes environments viable outside a
target C under an evolutionary system S if and only if ExitS(K) ⊂ C.

What happens if a given environment is not viable under any of the
evolutionary systems Si of a finite family i ∈ I? Is it possible to restore
the viability by letting these evolutionary system cooperate?

To say that K is not viable outside C under Si means that ExitSi(K) ∩
�C �= ∅. However, even though K is not viable under each of the system Si,
it may be possible that amalgated together, the collective condition

⋂
i∈I

ExitSi(K) ⊂ C

weaker than the individual condition ExitS(K) ⊂ C may be enough to
regulate a control system. This happens to be the case, if, for that purpose,
we define the “cooperation” between evolutionary systems Si by “amalga-
mating” them. For control systems, amalgamating feedbacks amounts to
amalgamating the associated evolutionary system.

The examination of the exit sets of each of the evolutionary systems allows
us to answer this important practical question by using the notion of the
amalgam S‡ of the evolutionary systems Si:

Definition 10.8.2 [Amalgam of a Family of Evolutionary Systems]
The amalgamated system S‡ of the evolutionary systems Si associates with
any x ∈ K concatenated evolutions x(·) associated with sequences of indices
ip, p ∈ N, of times τip > 0 and of evolutions xip(·) ∈ Sip(xp) such that,
defining

t0 = 0, tp+1 := tp + τip

the evolution x(·) is defined by

∀ p ≥ 0, ∀ t ∈ [tp, tp+1], x(t) := xip(t− tp) and xip(tp+1) = xp+1

where x0 := x and xp := xip−1(tp), p ≥ 1.

We derive a viability criterion allowing us to check whether a target C ⊂ K
can be captured under the amalgated system:

Theorem 10.8.3 [Viability Under Amalgams of Evolutionary Sys-
tems] Let us consider a finite set I of indices and a family of upper
semicompact evolutionary systems Si. Assume that K is a repeller under
each evolutionary system Si and that
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⋂
i∈I

ExitSi(K) ⊂ C (10.23)

then K is viable outside C under the amalgam S‡ of the evolutionary
systems Si

ViabS‡(K, C) = K

Proof. For simplicity, we set S� := SK� ⊂ S the sub-evolutionary system
generating persistent evolutions (see Definition 10.4.2, p. 393).

Let us set Ei := ExitSi(K). Assumption
⋂

i∈I Ei ⊂ C amounts to saying
that

K \ C =
⋃
i∈I

(K \ Ei)

Therefore, we associate with any x ∈ K \C the set I(x) ⊂ I of indices i such
that

τ
S�

i

K (x) := max
k∈I

τ
S�

k

K (x)

achieving the maximum of the exit times for each evolutionary system S�
k.

For each index i ∈ I, and ei ∈ Ei, one can observe that maxj∈I τ
S�

j

K (ei) =

maxj∈I(ei) τ
S�

j

K (ei). We next define the smallest of the largest exit times of
states ranging the exit sets of each evolutionary system S�

j :

τ := min
i∈I

sup
ei∈ExitSi

(K)

sup
j∈I(ei)

τ
S�

j

K (ei)

Since the set I of indices is finite, assumption
⋂

i∈I Ei ⊂ C implies that
0 < τ < +∞.

This being said, we can build a concatenated evolution x(·) made of an
increasing sequence of times tp and of “pieces” of persistent evolutions x�

ip
(·) ∈

Sip(xip) defined by

∀ p ≥ 0, ∀ t ∈ [tp, tp+1], x(t) := x�
ip

(t− tp) and x(tp+1) = xp+1

which is viable in K forever or until a finite time when it reaches C.
Indeed, we associate with any evolutionary system Si and any xi ∈ K a

persistent evolution x�
i(·) ∈ Si(xi), its exit time τ �

i > 0 (since we assumed
that K is a repeller under each evolutionary system Si) and an exit state
e�

i ∈ Ei := ExitSi(K).
To say that

⋂
i∈I Ei ⊂ C amounts to saying that
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K \ C =
⋃
i∈I

(K \ Ei)

Therefore, starting with any initial state x0 ∈ K \ C, we infer from the
assumption

⋂
i∈I Ei ⊂ C that there exists i0 ∈ I such that x ∈ K \ Ei0 .

Hence, we associate x�
i0

(·) ∈ Si0(xi0 ), its exit time τ �
i0

> 0 and an exit state
e�

i0
∈ Ei0 . Setting x1 := e�

i0
, either x1 ∈ C, and the evolution x(·) := x�

i0
(·)

reaches C in finite time 0, or x1 ∈ K \ C, and our assumption implies the
existence of i1 ∈ I such that x ∈ K\Ei1 , so that we can find a x�

i1
(·) ∈ Si1(x1),

its exit time τ �
i1

> 0 and an exit state e�
i1
∈ Ei1 . And so on, knowing that

e�
ip−1
∈ Eip−1 ∈ K \ C, we choose an index ip ∈ I such that xip ∈ K \ Eip

and built recursively evolutions x�
ip

(·) ∈ Sip(xip), its exit time τ �
ip

> 0 and

an exit state e�
ip
∈ Eip .

We associate with this sequence of evolutions the sequence of times
defined by

t0 = 0, tp+1 := tp + τ �
ip

and evolutions

xp(t) := (κ(τ �
ip

)x�
ip

(·))(t) = x�
ip

(t − τ �
ip

) where t ∈ [tp, tp+1] and xp(tp+1) = xp+1

and their concatenation x(·) defined by

∀ p ≥ 0, ∀ t ∈ [tp, tp+1], x(t) := xp(t)

Since the set I of indices is assumed to be finite, then τ > 0, so that the

concatenated evolution is defined on R+ because
+∞∑
p=0

τ �
ip

= +∞. Hence the

concatenated evolution of persistent evolutions is viable forever or until it
reaches the target C in finite time. ��

We mentioned in Sect. 6.4, p. 207 the concept of the “soft” version of the
inertia principle. Persistent evolutions and Theorem 10.8.3, p. 424 provide
the “hard version” of this principle:

34 [The Hard Inertia Principle] Theorem 10.8.3, p. 424 provides
another answer to the inertia principle (see Sect. 6.4.4, p. 217) without
inertia threshold: When, where and how change the available feedbacks
(among them, constant controls) to maintain the viability of a system.
Starting with a finite set of regulons, the system uses them successively as
long as possible (persistent evolutions), up to the exit time (warning signal)
and its exit set, which is its critical zone (see Definition 6.4.9, p. 216).
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In summary, when the viability is at stakes:

1. The hard version of the inertia principle requires that whenever the
evolution reaches the boundary, then, and not before, the state has to
switch instantaneously to a new initial state and a new feedback has to be
chosen,

2. The soft version of the inertia principle involves an inertia threshold
determining when, at the right time, the kairos, where, in the critical
zone, the regulon only has to evolve and how.

10.9 Parameter Identification: Inverse Viability
and Invariance Maps

When the differential inclusion (or parameterized system) F (λ, ·), the
environment K(λ) and the target C(λ) depend upon a parameter λ ∈ Y
ranging over a finite dimensional vector space Y , a typical example of inverse
problem (see Comment 2, p. 5) is to associate with any state x the subset of
parameters λ such that we know, for instance, that x belongs to the viability
kernel V(λ) := ViabF (λ,·)(K(λ), C(λ)).

The set of such parameters λ is equal to V
−1(x), where V

−1 : X � Y is
the inverse of the set-valued map V : Y �→ X associating with λ the viability
kernel V(λ) := ViabF (λ,·)(K(λ), C(λ)).

In control terminology, the search of those parameters λ such that a given x
belongs to V(λ) := ViabF (λ,·)(K(λ), C(λ)) is called a parameter identification
problem formulated for viability problems. This covers as many examples as
problems which can be formulated in terms of kernels and basins, as the
ones covered in this book. As we shall see, most of the examples covered in
Chaps. 4, p. 125 and 6, p. 199 are examples of inverse viability problems.

10.9.1 Inverse Viability and Invariance

It turns out that for these types of problems, the solution can be obtained
by viability techniques. Whenever we know the graph of a set-valued map,
we know both this map and its inverse (see Definition 18.3.1, p. 719). The
graphs of such maps associating kernels and basins with those parameters are
also kernels and basins of auxiliary environments and targets under auxiliary
systems. Therefore, they inherit their properties, which are then shared by
both the set-valued map and its inverse. This simple remark is quite useful.

Let us consider the parameterized differential inclusion

x′(t) ∈ F (λ, x(t)) (10.24)
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when environments K(λ) and targets C(λ) depend upon a parameter λ ∈ Y
ranging over a finite dimensional vector space Y . We set F (λ, ·) : x � F (λ, x).

The problem is to invert the set-valued maps

V : λ � ViabF (λ,·)(K(λ), C(λ)) and I : λ � InvF (λ,·)(K(λ), C(λ))

For that purpose, we shall characterize the graphs of these maps:

Proposition 10.9.1 [Graph of the Viability Map] The graph of the
map V : λ � ViabF (λ,·)(K(λ), C(λ)) is equal to the viability kernel

Graph(V) = Viab(10.25)(K, C)

of the graph K := Graph(λ � K(λ)) with target C := Graph(λ � C(λ))
under the auxiliary system

{
(i) λ′(t) = 0
(ii) x′(t) ∈ F (λ(t), x(t)) (10.25)

Proof. The proof is easy: to say that (λ, x) belongs to the viability kernel
Viab(10.25)(K, C) amounts to saying that there exists a solution t �→
(λ(t), x(t)) viable in K := Graph(K(·)) of (10.25) until it possibly reaches
C := Graph(C(·)), i.e., since λ(t) = λ and (λ(·), x(·)) ∈ S{0}×F (λ, x) such
that x(t) ∈ K(λ) forever or until it reaches C(λ). This means that (λ, x)
belongs to the graph of the viability map V. ��

In the same way, one can prove the analogous statement for the invariance
map:

Proposition 10.9.2 [Graph of the Invariance Map] The graph of the
map I : λ � InvF (λ,·)(K(λ), C(λ)) is equal to the invariance kernel

Graph(I) = Inv(10.25)(K, C)

of the graph K := Graph(λ � K(λ)) with target C := Graph(λ � C(λ))
under the auxiliary system (10.25), p. 428.

Consequently, the inverses V
−1 and I

−1 of the set-valued maps V and
I associate with any x ∈ X the subsets of parameters λ ∈ Y such that
the pairs (λ, x) belong to the viability and invariance kernels of the graph
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K := Graph(λ � K(λ)) with target C := Graph(λ � C(λ)) under the
auxiliary system (10.25) respectively.

10.9.2 Level Tubes of Extended Functions

When the parameters λ ∈ R are scalars, the set-valued maps λ �
Graph(F (λ, ·)), λ � Graph(K(λ)) and λ � Graph(C(λ)), V : λ � V(λ)
and the viability and invariance maps I : λ � I(λ) are tubes (see Fig. 4.3,
p. 132).

We shall study the monotonicity properties of tubes:

Definition 10.9.3 [Monotone Tubes] A tube is increasing (resp.
decreasing) if whenever μ ≤ ν, then K(μ) ⊂ K(ν) (resp. K(ν) ⊂ K(μ)). A
monotone tube is a tube which is either increasing or decreasing.

The monotonicity properties of the tubes λ � V(λ) and λ � I(λ) depend
upon the monotonicity properties of the tubes λ � Graph(F (λ, ·)), λ �
Graph(K(λ)) and λ � Graph(C(λ)):

Lemma 10.9.4 [Monotonicity of the Viability and Invariance
Maps] The map (F, K, C) � ViabF (K, C) is increasing, the map (K, C) �
InvF (K, C) is increasing and the map F � InvF (K, C) is decreasing.

Recall, a tube is characterized by its graph (see Definition 18.3.1, p. 719):
The graph of the tube K : R � X is the set of pairs (λ, x) such that x
belongs to K(λ):

K := Graph(K) = {(λ, x) ∈ R×X such that x ∈ K(λ)}

Monotonic tubes can be characterized by their epilevel and hypolevel
functions whenever the tubes λ � V(λ) and λ � I(λ) are monotone:

We then introduce the concepts of lower and upper level sets or sections
of an extended function:

Definition 10.9.5 [Levels Sets or Sections of a Function] Let v :
X �→ R be an extended function. The lower level map L≤v associates with
any λ ∈ R the λ-lower section or λ-lower level set



430 10 Viability and Capturability Properties of Evolutionary Systems

L≤v (λ) := {x ∈ K such that v(x) ≤ λ}

We define in the same way the strictly lower, exact, upper and strictly
upper level maps L�

v which associate with any λ the λ-level sets

L�
v (λ) := {x ∈ K such that v(x)�λ}

where � denotes respectively the signs <, =, ≥ and >.

We next introduce the concept of level function of a tube:

Definition 10.9.6 [Level Function of a Tube] Let us consider a tube
K : R � X. The epilevel function Λ↑K of the tube K is the extended function
defined by

Λ↑K(x) := inf {λ such that x ∈ K(λ)} = inf
(λ,x)∈Graph(K)

λ (10.26)

and its hypolevel function Λ↓K is the extended function defined by

Λ↓K(x) := sup {λ such that x ∈ K(λ)} = sup
(λ,x)∈Graph(K)

λ (10.27)

We observe that level set map λ � L�
v (λ) is a tube from R to the vector

space X . For instance, the lower level map λ � L≤v (λ) is an increasing tube:

If λ1 ≤ λ2, then L≤v (λ1) ⊂ L≤v (λ2)

and that the upper level map λ � L≥v (λ) is a decreasing tube. Lemma 18.6.3,
p. 744 implies that the level set map L≤v of a lower semicontinuous function
is a closed tube.

We observe at once that the images K(λ) are contained in the λ-lower
level sets:

∀ λ ∈ R, K(λ) ⊂ L≤
Λ↑

K

(λ)

The question arises whether the converse is true: is an increasing tube the
lower level map of an extended function Λ↑K , called the epilevel function of
the tube? This means that we can represent the images K(λ) of the tube in
the form

∀ λ, K(λ) =
{
x such that Λ↑K(x) ≤ λ

}
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This property can be reformulated as K(λ) = L≤
Λ↑

K

(λ), stating that the

inverse of the set-valued map x � K−1(x) of the tube is the map x �
Λ↑K(x) + R+.

The answer is positive for closed monotonic tubes.
The equality between these two subsets is (almost) true for increasing

tubes (a necessary condition) and really true when, furthermore, the tube is
closed:

Proposition 10.9.7 [Inverses of Monotone Tubes and their Level
Functions] Let us assume that the tube K is increasing. Then it is related
to its epilevel function by the relation

∀ λ ∈ R, L<

Λ↑
K

(λ) ⊂ K(λ) ⊂ L≤
Λ↑

K

(λ) (10.28)

Furthermore, if the graph of the tube is closed, then x ∈ K(λ) if and only
if Λ↑K(x) ≤ λ, i.e.,

∀ λ ∈ R, K(λ) = L≤
Λ↑

K

(λ) =: {x | Λ↑K(x) ≤ λ} (10.29)

Proof. By the very definition of the infimum, to say that Λ↑K(x) =
inf(λ,x)∈Graph(K) λ amounts to saying that for any λ > Λ↑K(x), there exists
(μ, x) ∈ Graph(K) such that μ ≤ λ. To say that x ∈ L<

Λ↑
K

(λ) means

λ > Λ↑K(x). Hence there exists (μ, x) ∈ Graph(K), and there exist μ ≤ λ
and x ∈ K(μ). Since the tube K is decreasing, we deduce that x ∈ K(λ).
The first inclusion is thus proved, the other one being always obviously true.

If the graph of K is closed, then letting λ > Λ↑K(x) converge to Λ↑K(x) and
knowing that (λ, x) belongs to Graph(K), we deduce (Λ↑K(x), x) belongs to
the graph of K, and thus, that x ∈ K(Λ↑K(x)). ��

The counterpart statement holds true for decreasing tubes and their
hypolevel functions: If a tube is decreasing, then

∀ λ ∈ R, L>

λ↓
K

(λ) ⊂ K(λ) ⊂ L≥
Λ↓

K

(λ) (10.30)

and if it is closed
∀ λ ∈ R, K(λ) = L≥

Λ↓
K

(λ) (10.31)

In this case, when the graph of the tube is closed, (10.29) and (10.31) can
be written in terms of epigraphs and hypographs (see Definition 4.2.2, p. 131)
in the form
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Graph(K−1) = Ep(Λ↑K) (10.32)

and
Graph(K−1) = Hyp(Λ↓K) (10.33)

respectively.

In the scalar case, Theorem 10.9.7, p. 431 implies that these tubes are
characterized by their epilevel or hypolevel functions (see Definition 10.9.6,
p. 430). For instance, the epilevel function of the viability tube is defined by
Λ↑

V
(x) := inf(λ,x)∈Graph(V) λ whenever this map is increasing. In this case, if

the graph of the viability tube is closed,

V(λ) =
{

x such that Λ↑
V
(x) ≤ λ

}

If the tube is decreasing, the hypolevel function defined by Λ↓
V
(x) :=

sup(λ,x)∈Graph(V) λ characterizes the tube in the sense that

V(λ) =
{

x such that Λ↓
V
(x) ≥ λ

}

whenever the tube is closed.
For instance, for the viability map, we derive the following statement from

Proposition 10.9.1, p. 428:

Proposition 10.9.8 [Level Functions of the Viability Tube] Let us
assume that the tubes λ �→ Graph(F (λ, ·)), λ �→ K(λ) and λ �→ C(λ) are
increasing. Then the tube V is characterized by its epilevel function

Λ↑
V
(x) := inf

(λ,x)∈Graph(V)
λ := inf

(λ,x)∈Viab(10.25)(K,C)
λ (10.34)

If λ �→ Graph(F (λ, ·)), λ �→ K(λ) and λ �→ C(λ) are increasing, the
tube V is characterized by its hypolevel function

Λ↓
V
(x) := sup

(λ,x)∈Graph(V)

λ = sup
(λ,x)∈Viab(10.25)(K,C)

λ (10.35)

The counterpart statement holds true for the invariance tubes.



10.10 Stochastic and Tychastic Viability 433

10.10 Stochastic and Tychastic Viability

The invariance kernel is an example of the core S�1(H) of a subset H ⊂
C(0,∞; Rd) for H = K(K,C) being the set of evolutions viable in K reaching
the target C in finite time.

Let us consider random events ω ∈ Ω, where (Ω,F , P) is a probability
space, instead of tyches v(·) ranging over the values V (x(·)) of a tychastic
map V (see (2.23), p. 89).

A stochastic system is a specific parameterized evolutionary system
described by a map X : (x, ω) ∈ R

d × Ω �→ X(x, ω) ∈ C(0,∞; Rd)
(usually denoted by t �→ X

x
ω in the stochastic literature) where C(0,∞; Rd)

is the space of continuous evolutions. In other words, it defines evolutions
t �→ X(x, ω)(t) := X

x
ω(t) ∈ R

d starting at x at time 0 and parameterized
by random events ω ∈ Ω satisfying technical requirements (measurability,
filtration, etc.) that are not relevant to involve at this stage of the exposition.
The initial state x being fixed, the random variable ω �→ X(x, ω) := X

x
ω(·) ∈

C(0, +∞; Rd) is called a stochastic process. A subset H ⊂ C(0,∞; Rd) of
evolutions sharing a given property being chosen, it is natural, as we did for
tychastic systems, to introduce the stochastic core of H under the stochastic
system: it is the subset of initial states x from which starts a stochastic
process ω �→ X(x, ω) such that for almost all ω ∈ Ω, X(x, ω) ∈ H:

StocX(H) := {x ∈ R
d | for almost all ω ∈ Ω, X(x, ω) := X

x
ω(·) ∈ H}

(10.36)
Regarding a stochastic process as a set-valued map X associating with any

state x the family X(x) := {X(x, ω)}ω∈Ω, the definitions of stochastic cores
(10.36) of subsets of evolution properties are similar in spirit to definition:

S�1(H) := {x ∈ R
d | for all v(·) ∈ Q(x(·)), xv(·)(·) ∈ H}

under a tychastic system

x′(t) = f(x(t), v(t)) where v(t) ∈ Q(x(t))

Furthermore, the parameters ω are constant in the stochastic case, whereas
the tychastic uncertainty v(·) is dynamic in nature and involves a state
dependence, two more realistic assumptions in the domain of life sciences.

There is however a deeper similarity that we mention briefly. When the
stochastic system (x, ω) �→ X(x, ω) is derived from a stochastic differential
equation, the Strook-Varadhan Support Theorem (see [201, Stroock &Varad-
han]) states that there exists a tychastic system (x, v) �→ S(x, v) such that,
whenever H is closed, the stochastic core of H under the stochastic system
X and its tychastic core under the associated tychastic system S coincide:

StocX(H) = S�1(H)
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To be more specific, let X(x, ω) denote the solution to the stochastic
differential equation

dx = γ(x)dt + σ(x)dW (t)

starting at x, where W (t) ranges over R
c, the drift γ : R

d �→ R
d and the

diffusion σ : R
d �→ L(Rc, Rd) are smooth and bounded maps. Let us associate

with them the Stratonovitch drift γ̂ defined by γ̂(x) := γ(x) − 1
2σ′(x)σ(x).

The Stratonovitch stochastic integral is an alternative to the Ito integral,
and easier to manipulate. Unlike the Ito calculus, Stratonovich integrals are
defined such that the chain rule of ordinary calculus holds. It is possible to
convert Ito stochastic differential equations to Stratonovich ones.

Then, the associated tychastic system is

x′(t) = γ̂(x(t)) + σ(x(t))v(t) where v(t) ∈ R
c (10.37)

where the tychastic map is constant and equal to R
c.

Consequently, the tychastic system associated with a stochastic one by the
Strook–Varadhan Support Theorem is very restricted: there are no bounds
at all on the tyches, whereas general tychastic systems allow the tyches to
range over subsets Q(x) depending upon the state x, describing so to speak a
state-dependent uncertainty:

x′(t) = γ̂(x(t)) + σ(x(t))v(t) where v(t) ∈ Q(x(t))

This state-dependent uncertainty, unfortunately absent in the mathematical
representation of uncertainty in the framework of stochastic processes, is of
utmost importance for describing uncertainty in problems dealing with living
beings.

When H is a Borelian of C(0,∞; Rd), we denote by PX(x,·) the law of the
random variable X(x, ·) defined by

PX(x,·)(H) := P({ω | X(x, ω) ∈ H}) (10.38)

Therefore, we can reformulate the definition of the stochastic core of a set H
of evolutions in the form

StocX(H) = {x ∈ R
d | PX(x,·)(H) = 1} (10.39)

In other words, the stochastic core of H is the set of initial states x such
that the subset H has probability one under the law of the stochastic process
ω �→ X(x, ω) ∈ C(0, +∞; Rd) (if H is closed, H is called the support of the law
PX(x,·)). The Strook–Varadhan Support Theorem states that under regularity
assumptions, this support is the core of H under the tychastic system
(10.37). It furthermore provides a characterization of stochastic viability in
terms of tangent cones and general curvatures of the environments (see the
contributions of Giuseppe da Prato, Halim Doss, Hélène Frankowska and
Jerzy Zabczyk among many other).
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These remarks further justify our choice of privileging tychastic systems
because, as far as the properties of initial states of evolution are concerned,
stochastic systems are just (very) particular cases of tychastic systems.
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