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Chapter 1

Overview and Organization

Viability theory designs and develops mathematical and algorithmic methods
for investigating the adaptation to viability constraints of evolutions governed
by complex systems under uncertainty that are found in many domains involv-
ing living beings, from biological evolution to economics, from environmental
sciences to financial markets, from control theory and robotics to cognitive
sciences. It involves interdisciplinary investigations spanning fields that have
traditionally developed in isolation.

The purpose of this book is to present an initiation to applications of
viability theory, explaining and motivating the main concepts and illustrating
them with numerous numerical examples taken from various fields.

Viability Theory. New Directions plays the role of a second edition
of Viability Theory, [18, Aubin] (1991), presenting advances occurred in
set-valued analysis and viability theory during the two decades following
the publication of the series of monographs: Differential Inclusions. Set-
Valued Maps and Viability Theory, [25, Aubin & Cellina] (1984), Set-valued
Analysis, [27, Aubin & Frankowska] (1990), Analyse qualitative, [85, Dordan]
(1995), Neural Networks and Qualitative Physics: A Viability Approach, [21,
Aubin] (1996), Dynamic Economic Theory: A Viability Approach, [22, Aubin]
(1997), Mutational, Morphological Analysis: Tools for Shape Regulation and
Morphogenesis, [23, Aubin] (2000), Mutational Analysis, [150, Lorenz] (2010)
and Sustainable Management of Natural Resources, [77, De Lara & Doyen]
(2008).

The monograph La mort du devin, l’émergence du démiurge. Essai sur
la contingence et la viabilité des systèmes, [24, Aubin] (2010), divulges ver-
nacularly the motivations, concepts, theorems and applications found in this
book. Its English version, The Demise of the Seer, the Rise of the Demiurge.
Essay on contingency, viability and inertia of systems, is under preparation.

However, several issues presented in the first edition of Viability Theory,
[18, Aubin] are not covered in this second edition for lack of room. They con-
cern Haddad’s viability theorems for functional differential inclusions where
both the dynamics and the constraints depend on the history (or path) of

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 1,
c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Overview and Organization

the evolution and the Shi Shuzhong viability theorems dealing with partial
differential evolution equation (of parabolic type) in Sobolev spaces, as well
as fuzzy control systems and constraints, and, above all, differential (or
dynamic) games. A sizable monograph on tychastic and stochastic viability
and, for instance, their applications to finance, would be needed to deal with
uncertainty issues where the actor has no power on the choice of the uncertain
parameters, taking over the problems treated in this book in the worst case
(tychastic approach) or in average (stochastic approach).

We have chosen an outline, which is increasing with respect to mathemat-
ical technical difficulty, relegating to the end the proofs of the main Viability
and Invariance Theorems (see Chap. 19, p.769).

The proofs of the theorems presented in Set-valued analysis [27, Aubin &
Frankowska] (1990) and in convex analysis (see Optima and Equilibria, [19,
Aubin]), are not duplicated but referred to. An appendix, Set-Valued Analysis
at a Glance (18, p. 713) provides without proofs the statements of the main
results of set-valued analysis used in these monographs. The notations used
in this book are summarised in its Sect. 18.1, p. 713.

1.1 Motivations

1.1.1 Chance and Necessity

The purpose of viability “theory” (in the sense of a sequence [theôria,
procession] of mathematical tools sharing a common background, and not
necessarily an attempt to explain something [theôrein, to observe]) is to
attempt to answer directly the question of dynamic adaptation of uncertain
evolutionary systems to environments defined by constraints, that we called
viability constraints for obvious reasons. Hence the name of this body of
mathematical results developed since the end of the 1970s that needed to forge
a differential calculus of set-valued maps (set-valued analysis), differential
inclusions and differential calculus in metric spaces (mutational analysis).
These results, how imperfect they might be to answer this challenge, have
at least been motivated by social and biological sciences, even though
constrained and shaped by the mathematical training of their authors.

It is by now a consensus that the evolution of many variables describing
systems, organizations, networks arising in biology and human and social
sciences do not evolve in a deterministic way, not even always in a stochastic
way as it is usually understood, but evolve with a Darwinian flavor.

Viability theory started in 1976 by translating mathematically the title

Chance and Necessity
� �

x′(t) ∈ F (x(t)) & x(t) ∈ K
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of the famous 1973 book by Jacques Monod, Chance and Necessity (see
[163, Monod]), taken from an (apocryphical?) quotation of Democritus who
held that “the whole universe is but the fruit of two qualities, chance and
necessity”.

Fig. 1.1 The mathematical translation of “chance”.

The mathematical translation of “chance” is the differential inclusion x′(t) ∈
F (x(t)), which is a type of evolutionary engine (called an evolutionary
system) associating with any initial state x the subset S(x) of evolutions
starting at x and governed by the differential inclusion above. The figure
displays evolutions starting from a give initial state, which are functions from
time (in abscissas) to the state space (ordinates).

The system is said to be deterministic if for any initial state x, S(x) is made
of one and only one evolution, whereas “contingent uncertainty” happens
when the subset S(x) of evolutions contains more than one evolution for at
least one initial state. “Contingence is a non-necessity, it is a characteristic
attribute of freedom”, wrote Gottfried Leibniz.

K
x0

x1

CK

K

x(t)

Fig. 1.2 The mathematical translation of “necessity”.

The mathematical translation of “necessity” is the requirement that for all
t ≥ 0, x(t) ∈ K, meaning that at each instant, “viability constraints” are
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satisfied by the state of the system. The figure represents the state space
as the plane, and the environment defined as a subset. It shows two initial
states, one, x0 from which all evolutions violate the constraints in finite time,
the other one x1, from which starts one viable evolution and another one
which is not viable.

One purpose of viability theory is to attempt to answer directly the
question that some economists, biologists or engineers ask: “Complex
organizations, systems and networks, yes, but for what purpose?” The answer
we suggest: “to adapt to the environment.”

This is the case in economics when we have to adapt to scarcity constraints,
balances between supply and demand, and many other constraints.

This is also the case in biology, since Claude Bernard’s “constance du
milieu intérieur” and Walter Cannon’s “homeostasis”. This is naturally the
case in ecology and environmental studies.

This is equally the case in control theory and, in particular, in robotics,
when the state of the system must evolve while avoiding obstacles forever or
until they reach a target.

In summary, the environment is described by viability constraints of various
types, a word encompassing polysemous concepts as stability, confinement,
homeostasis, adaptation, etc., expressing the idea that some variables must
obey some constraints (representing physical, social, biological and economic
constraints, etc.) that can never be violated. So, viability theory started as
the confrontation of evolutionary systems governing evolutions and viability
constraints that such evolutions must obey.

At the same time, controls, subsets of controls, in engineering, regulons
(regulatory controls) such as prices, messages, coalitions of actors, con-
nectionnist operators in biological and social sciences, which parameterize
evolutionary systems, do evolve: Their evolution must be consistent with
the constraints, and the targets or objectives they must reach in finite or
prescribed time. The aim of viability theory is to provide the “regulation
maps” associating with any state the (possibly empty) subset of controls or
regulons governing viable evolutions.

Together with the selection of evolutions governed by teleological objec-
tives, mathematically translated by intertemporal optimality criteria as in
optimal control, viability theory offers other selection mechanisms by requir-
ing evolutions to obey several forms of viability requirements. In social and
biological sciences, intertemporal optimization can be replaced by myopic,
opportunistic, conservative and lazy selection mechanisms of viable evolutions
that involve present knowledge, sometimes the knowledge of the history
(or the path) of the evolution, instead of anticipations or knowledge of
the future (whenever the evolution of these systems cannot be reproduced
experimentally). Other forms of uncertainty do not obey statistical laws, but
also take into account unforeseeable rare events (tyches, or perturbations,



1.1 Motivations 5

disturbances) that must be avoided at all costs (precautionary principle1).
These systems can be regulated by using regulation (or cybernetical) controls
that have to be chosen as feedbacks for guaranteeing the viability of
constraints and/or the capturability of targets and objectives, possibly
against perturbations played by “Nature”, which we call tyches.

However, there is no reason why collective constraints are satisfied at each
instant by evolutions under uncertainty governed by evolutionary systems.
This leads us to the study of how to correct either the dynamics, and/or
the constraints in order to restore viability. This may allow us to provide
an explanation of the formation and the evolution of controls and regulons
through regulation or adjustment laws that can be designed (and computed)
to insure viability, as well as other procedures, such as using impulses
(evolutions with infinite velocity) governed by other systems, or by regulating
the evolution of the environment.

Presented in such an evolutionary perspective, this approach of (complex)
evolutionary systems departs from main stream modelling by a direct
approach:

1 [Direct Approach.] It consists in studying properties of evolutions
governed by an evolutionary system: gather the larger number of properties
of evolutions starting from each initial state. It may be an information both
costly and useless, since our human brains cannot handle simultaneously
too many observations and concepts.

Moreover, it may happen that evolutions starting from a given initial state
satisfy properties which are lost by evolutions starting from another initial
state, even close to it (sensitivity analysis) or governed by (stability analysis).

Viability theory rather uses instead an inverse approach:

2 [Inverse Approach.] A set of prescribed properties of evolutions being
given, study the (possibly empty) subsets of initial states from which

1. starts at least one evolution governed by the evolutionary system
satisfying the prescribed properties,

2. all evolutions starting from it satisfy these prescribed properties.

These two subsets coincide whenever the evolutionary system is determin-
istic.

1 Stating that one should limit, bound or even forbid potential dangerous actions, without
waiting for a scientific proof of their hazardous consequences, whatever the economic cost.
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Stationarity, periodicity and asymptotic behavior are examples of classical
properties motivated by physical sciences which have been extensively
studied.

We thus have to add to this list of classical properties other ones, such as
concepts of viability of an environment, of capturability of a target in finite
time, and of other concepts combining properties of this type.

1.1.2 Motivating Applications

For dealing with these issues, one needs “dedicated” concepts and formal
tools, algorithms and mathematical techniques motivated by complex systems
evolving under uncertainty. For instance, and without going into details, we
can mention systems sharing common features:

1. Systems designed by human brains in the sense that agents, actors,
decision-makers act on the evolutionary system, as in engineering. Control
theory and differential games, conveniently revisited, provide numer-
ous metaphors and tools for grasping viability questions. Problems in
control design, stability, reachability, intertemporal optimality, tracking of
evolutions, observability, identification and set-valued estimation, etc., can
be formulated in terms of viability and capturability concepts investigated
in this book.
Some technological systems such as robots of all types, from drones,
unmanned underwater vehicles, etc., to animats (artificial animals, a
contraction of anima-materials) need “embedded systems” implementa-
tions autonomous enough to regulate viability/capturability problems by
adequate regulation (feedback) control laws. Viability theory provides
algorithms for computing the feedback laws by modular and portable
software flexible enough for integrating new problems when they appear
(hybrid systems, dynamical games, etc.).

2. Systems observed by human brains, are more difficult to understand
since human beings did not design or construct them. Human beings live,
think, are involved in socio-economic interactions, but struggle for grasping
why and how they do it, at least, why. This happens for instance in the
following fields:

• economics, where the viability constraints are the scarcity constraints
among many other ones. We can replace the fundamental Walrasian
model of resource allocations by decentralized dynamical model in which
the role of the controls is played by the prices or other economic
decentralizing messages (as well as coalitions of consumers, interest
rates, and so forth). The regulation law can be interpreted as the
behavior of Adam Smith’s invisible hand choosing the prices as a
function of allocations of commodities,
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• finance, where shares of assets of a portfolio play the role of controls
for guaranteing that the values of the portfolio remains above a given
time/price dependent function at each instant until the exercise time
(horizon), whatever the prices and their growth rates taken above
evolving bounds,

• dynamical connectionnist networks and/or dynamical cooper-
ative games, where coalitions of players may play the role of controls:
each coalition acts on the environment by changing it through dynam-
ical systems. The viability constraints are given by the architecture of
the network allowed to evolve,

• Population genetics, where the viability constraints are the ecological
constraints, the state describes the phenotype and the controls are
genotypes or fitness matrices.

• sociological sciences, where a society can be interpreted as a set of
individuals subjected to viability constraints. Such constraints corre-
spond to what is necessary for the survival of the social organization.
Laws and other cultural codes are then devised to provide each
individual with psychological and economical means of survival as well
as guidelines for avoiding conflicts. Subsets of cultural codes (regarded
as cultures) play the role of regulation parameters.

• cognitive sciences, in which, at least at one level of investigation,
the variables describe the sensory-motor activities of the cognitive
system, while the controls translate into what could be called conceptual
controls (which are the synaptic matrices in neural networks.)

Theoretical results about the ways of thinking described above are useful
for the understanding of non teleological evolutions, of the inertia principle,
of the emergence of new regulons when viability is at stakes, of the role of
different types of uncertainties (contingent, tychastic or stochastic), of the
(re)designing of regulatory institutions (regulated markets when political
convention must exist for global purpose, mediation or metamediation
of all types, including law, social conflicts, institutions for sustainable
development, etc.). And progressively, when more data gathered by these
institutions will be available, qualitative (and sometimes quantitative)
prescriptions of viability theory may be useful.

1.1.3 Motivations of Viability Theory from Living
Systems

Are social and biological systems sufficiently similar to systems currently
studied in mathematics, physics, computer sciences or engineering? Eugene
Wigner ’s considerations on the unreasonable effectiveness of mathematics in
the natural sciences [215, Wigner] are even more relevant in life sciences.
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For many centuries, human minds used their potential “mathematical
capabilities” to describe and share their “mathematical perceptions” of the
world. This mathematical capability of human brains is assumed to be
analogous to the language capability. Each child coming to this world uses
this specific capability in social interaction with other people to join at each
instant an (evolving) consensus on the perception of their world by learning
their mother tongue (and few others before this capability fades away with
age). We suggest the same phenomenon happens with mathematics. They
play the “mathematical role” of metaphors that language uses for allowing us
to understand a new phenomenon by metaphors comparing it with previously
“understood phenomena”. Before it exploded recently in a Babel skyscraper,
this “mathematical father tongue” was quite consensual and perceived
as universal. This is this very universality which makes mathematics so
fascinating, deriving mathematical theories or tools motivated by one field
to apply them to several other ones. However, apparently, because up to
now, the mathematical “father tongue” was mainly shaped by “simple”
physical problems of the inert part of the environment, letting aside, with
few exceptions, the living world. For good reasons. Fundamental simple
principles, such as the Pierre de Fermat ’s “variational principle”, including
Isaac Newton’s law thanks to Maupertuis ’s least action principle, derived
explanations of complex phenomena from simple principles, as Ockham’s
razor prescribes: This “law of parsimony” states that an explanation of any
phenomenon should make as few assumptions as possible, and to choose
among competing theories the one that postulates the fewest concepts. This
is the result of an “abstraction process”, which is the (poor) capability
of human brains that select among the perceptions of the world the few
ones from which they may derive logically or mathematically many other
ones. Simplifying complexity should be the purpose of an emerging science of
complexity, if such a science will emerge beyond its present fashionable status.

So physics, which could be defined as the part of the cultural and physical
environment which is understandable by mathematical metaphors, has not
yet, in our opinion, encapsulated the mathematical metaphors of living
systems, from organic molecules to social systems, made of human brains
controlling social activities. The reason seems to be that the adequate mathe-
matical tongue does not yet exist. And the challenge is that before creating it,
the present one has to be forgotten, de-constructed. This is quite impossible
because mathematicians have been educated in the same way all over
the world, depriving mathematics from the Darwinian evolution which has
operated on languages. This uniformity is the strength and the weakness of
present day mathematics: its universality is partial. The only possibility to
mathematically perceive living systems would remain a dream: to gather
in secluded convents young children with good mathematical capability,
but little training in the present mathematics, under the supervision or
guidance of economists or biologists without mathematical training. They
possibly could come up with new mathematical languages unknown to us
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providing the long expected unreasonable effectiveness of mathematics in the
social and biological sciences.

Even the concept of natural number is oversimplifying, by putting in
a same equivalence class so several different sets, erasing their qualitative
properties or hiding them behind their quantitative ones. Numbers, then next
measurements, and then, statistics, how helpful they are for understanding
and controlling the physical part of the environment, may be a drawback to
address the qualitative aspects of our world, left to plain language for the
quest of elucidation. We may have to return to the origins and explore new
“qualitative” routes, without overusing the mathematics that our ancestors
accumulated so far and bequeathed to us.

Meanwhile, we are left with this paradox: “simple” physical phenomena are
explained by more and more sophisticated and abstract mathematics, whereas
“complex” phenomena of living systems use, most of the time, relatively
rudimentary mathematical tools. For instance, the mathematical tools used
so far did not answer the facts that, for instance:

1. economic evolution is never at equilibrium (stationary state),
2. and thus, there were no need that this evolution converges to it, in a stable

or unstable way,
3. elementary cognitive sciences cannot accept the rationality assumption of

human brains,
4. and even more that they can be reduced to utility functions, the existence

of which was already questioned by Henri Poincaré when he wrote to
Léon Walras that “Satisfaction is thus a magnitude, but not a measurable
magnitude” (numbers are not sufficient to grasp satisfaction),

5. uncertainty can be mathematically captured only by probabilities (num-
bers, again),

6. chaos, defined as a property of deterministic systems, is not fit to represent
a nondeterministic behavior of living systems which struggle to remain as
stable (and thus, “non chaotic”) as possible,

7. intertemporal optimality, a creation of the human brain to explain some
physical phenomena, is not the only creation of Nature, (in the sense that
“Nature” created it only through human brains!),

8. those human brains should complement it by another and more recent
principle, adaptation of transient evolutions to environments,

9. and so on.

These epistemological considerations are developed in La mort du devin,
l’émergence du démiurge. Essai sur la contingence et la viabilité des systèmes
(The Demise of the Seer, the Rise of the Demiurge. Essay on contingency,
viability and inertia of systems).
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1.1.4 Applications of Viability Theory to...
Mathematics

It is time to cross the interdisciplinary gap and to confront and hopefully to
merge points of view rooted in different disciplines.

After years of study of various problems of different types, motivated
by robotics (and animat theory), game theory, economics, neuro-sciences,
biological evolution and, unexpectedly, by financial mathematics, these few
relevant features common to all these problems were uncovered, after noticing
the common features of the proofs and algorithms.

This history is a kind of mathematical striptease, the modern version
of what Parmenides and the pre-Socratic Greeks called a-letheia, the dis-
covering, un-veiling of the world that surrounds us. This is exactly the drive
to “abstraction”, isolating, in a given perspective, the relevant information
in each concept and investigating the interplay between them. Indeed, one
by one, slowly and very shyly, the required properties of the control system
were taken away (see Sect. 18.9, p. 765 for a brief illustration of the Graal of
the Ultimate Derivative).

Mathematics, thanks to its abstraction power by isolating only few key
features of a class of problems, can help to bridge these barriers as long
as it proposes new methods motivated by these new problems instead of
applying the classical ones only motivated until now by physical sciences.
Paradoxically, the very fact that the mathematical tools useful for social
and biological sciences are and have to be quite sophisticated impairs their
acceptance by many social scientists, economists and biologists, and the gap
threatens to widen.

Hence, viability theory designs and devises a mathematical tool-box
universal enough to be efficient in many apparently different problems.
Furthermore, using methods that are rooted neither in linear system theory
nor in differential geometry, the results:

1. hold true for nonlinear systems,
2. are global instead of being local,
3. and allow an algorithmic treatment without loss of information due to the

treatment of classical equivalent problems (systems of first-order partial
differential equations for instance).

Although viability theory has been designed and developed for studying
the evolutions of uncertain systems confronted to viability constraints arising
in socioeconomic and biological sciences, as well as in control theory, it had
also been used as a mathematical tool for deriving purely mathematical
results. These tools enrich the panoply of those diverse and ingenious
techniques born out of the pioneering works of Lyapunov and Poincaré more
than one century ago. Most of them were motivated by physics and mec-
hanics, not necessarily designed to adaptation problems to environmental or
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viability constraints. These concepts and theorems provide deep insights in
the behavior of complex evolutions that even simple deterministic dynamical
systems provide.

Not only the viability/capturability problems are important in themselves
in the fields we have mentioned, but it happens that many other important
concepts of control theory and mathematics can be formulated in terms of
viability kernels or capture basins under auxiliary systems. Although they
were designed to replace the static concept of equilibrium by the dynamical
concept of viability kernel, to offer an alternative to optimal control problems
by introducing the concepts of inertia functions, heavy evolutions and
punctuated equilibrium, it happens that nevertheless, the viability results:

1. provide new insights and results in the study of Julia sets and Fatou dusts
and fractals, all concepts closely related to viability kernels;

2. are useful for providing the final version of the inverse function theorem
for set-valued maps;

3. offer new theorems on the existence of equilibria and the study of their
asymptotic properties, even for determinist systems, where the concepts
of attractors (as the Lorenz attractors) are closely related to the concept
of viability kernels;

4. Provide tools to study several types of first-order partial differential
equations, conservation laws and Hamilton–Jacobi–Bellman equations,
following a long series of articles by Hélène Frankowska who pioneered
the use of viability techniques, and thus to solve many intertemporal
optimization problems.

Actually, the role played by the Viability Theorem in dynamical and
evolutionary systems is analogous to the one played by the Brouwer Fixed
Theorems in static nonlinear analysis. Numerous static problems solved by
the equivalent statements and consequences of this Brouwer Theorem in
nonlinear analysis can be reformulated in an evolutionary framework and
solved by using viability theory.

The miraculous universality of mathematics is once again illustrated by the
fact that some viability tools, inspired by the evolutionary questions raised
in life sciences, also became, in a totally unpredicted way, tools to be added
to the existing panoply for solving engineering and purely mathematical
problems well outside their initial motivation.

1.2 Main Concepts of Viability Theory

Viability theory incorporates some mathematical features of uncertainty
without statistical regularity, deals not only with optimality but also with
viability and decisions taken at the appropriate time. Viability techniques
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are also geometric in nature, but they do not require smoothness properties
usually assumed in differential geometry. They not only deal with asymptotic
behavior, but also and mainly with transient evolutions and capturability of
targets in finite or prescribed time. They are global instead of local, and truly
nonlinear since they bypass linearization techniques of the dynamics around
equilibria, for instance. They bring other insights to the decipherability of
complex, paradoxical and strange dynamical behaviors by providing other
types of mathematical results and algorithms. And above all, they have been
motivated by dynamical systems arising in issues involving living beings, as
well as networks of systems (or organizations, organisms).

In a nutshell, viability theory investigates evolutions:

1. in continuous time, discrete time, or a “hybrid” of the two when impulses
are involved,

2. constrained to adapt to an environment,
3. evolving under contingent and/or tychastic uncertainty,
4. using for this purpose controls, regulons (regulation controls), subsets of

regulons, and in the case of networks, connectionnist matrices,
5. regulated by feedback laws (static or dynamic) that are then “computed”

according to given principles, such as the inertia principle, intertemporal
optimization, etc.,

6. co-evolving with their environment (mutational and morphological viabil-
ity),

7. and corrected by introducing adequate controls (viability multipliers) when
viability or capturability is at stakes.

1.2.1 Viability Kernels and Capture Basins Under
Regulated Systems

We begin by defining set-valued maps (see Definition 18.3.1, p. 719):

3 [Set-Valued Map] A set-valued map F : X � Y associates with any
x ∈ X a subset F (x) ⊂ Y (which may be the empty set ∅). It is a (single-
valued) map f := F : X �→ Y if for any x, F (x) := {y} is reduced to
a single element y. The symbol “�” denotes set-valued maps whereas the
classical symbol “ �→” denotes single-valued maps.
The graph Graph(F ) of a set-valued map F is the set of pairs (x, y) ∈ X×Y
satisfying y ∈ F (x). If f := F : X �→ Y is a single-valued map, it coincides
with the usual concept of graph. The inverse F−1 of F is the set-valued map
from Y to X defined by

x ∈ F−1(y) ⇐⇒ y ∈ F (x) ⇐⇒ (x, y) ∈ Graph(F )
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Fig. 1.3 Graphs of a set-valued map and of the inverse map.

The main examples of evolutionary systems, those “engines” providing
evolutions, are associated with differential inclusions, which are multi-valued
or set-valued differential equations:

4 [Evolutionary Systems] Let X := R
d be a finite dimensional space,

regarded as the state space, and F : X � X be a set-valued map associating
with any state x ∈ X the set F (x) ⊂ X of velocities available at state
x. It defines the differential inclusion x′(t) ∈ F (x(t)) (boiling down to an
ordinary differential equation whenever F is single-valued). An evolution
x(·) : t ∈ [0,∞[�→ x(t) ∈ R

d is a function of time taking its values in a
vector space R

d. Let C(0,+∞;X) denote the space of continuous evolutions
in the state space X. The evolutionary system S : X � C(0,+∞;X) maps
any initial state x ∈ X to the set S(x) of evolutions x(·) starting from x
and governed by differential inclusion x′(t) ∈ F (x(t)). It is deterministic
if the evolutionary system S is single-valued and non deterministic if it is
set-valued.

The main examples of differential inclusions are provided by

5 [Parameterized Systems] Let U := R
c be a space of parameters. A

parameterized system is made of two “boxes”:
1 - The “input–output box” associating with any evolution u(·) of the
parameter ( input) the evolution governed by the differential equation x′(t) =
f(x(t), u(t)) starting from an initial state (open loop),
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2 - The non deterministic “output–input box”, associating with any state
a subset U(x) of parameters ( output).
It defines the set-valued map F associating with any x the subset F (x) :=
{f(x, u)}u∈U(x) of velocities parameterized by u ∈ U(x). The associated
evolutionary system S maps any initial state x to the set S(x) of evolutions
x(·) starting from x (x(0) = x) and governed by

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (1.1)

or, equivalently, to differential inclusion x′(t) ∈ F (x(t)).

Fig. 1.4 Parameterized Systems.

The input–output and output–input boxes of a parameterized systems are
depicted in this diagram: the controlled dynamical system at the input–
output level, the “cybernetical” map imposing state-dependent constraints
on the control at the output–input level.

The parameters range over a state-dependent “cybernetic” map U : x �
U(x), providing the system opportunities to adapt at each state to viability
constraints (often, as slowly as possible) and/or to regulate intertemporal
optimal evolutions.

The nature of the parameters differs according to the problems and to
questions asked: They can be:

• “controls”, whenever a controller or a decision maker “pilots” the system
by choosing the controls, as in engineering,

• “regulons” or regulatory parameters in those natural systems where no
identified or consensual agent acts on the system,

• “tyches” or disturbances, perturbations under which nobody has any
control.

We postpone to Chap. 2, p. 43 more details on these issues.
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To be more explicit, we have to introduce formal definitions describing the
concepts of viability kernel of an environment and capturability of a target
under an evolutionary system.

6 [Viability and Capturability] If a subset K ⊂ R
d is regarded as an

environment (defined by viability constraints), an evolution x(·) is said to
be viable in the environment K ⊂ R

d on an interval [0, T [ (where T ≤ +∞)
if for every time t ∈ [0, T [, x(t) belongs to K.
If a subset C ⊂ K is regarded as a target, an evolution x(·) captures C
if there exists a finite time T such that the evolution is viable in K on
the interval [0, T [ until it reaches the target at x(T ) ∈ C at time T . See
Definition 2.2.3, p. 49.

Viability and capturability are the main properties of evolutions that are
investigated in this book.

1.2.1.1 Viability Kernels

We begin by introducing the viability kernel of an environment under an
evolutionary system associated with a nonlinear parameterized system.

7 [Viability Kernel] Let K be an environment and S an evolutionary
system. The viability kernel of K under the evolutionary system S is the
set ViabS(K) of initial states x ∈ K from which starts at least one evolution
x(·) ∈ S(x) viable in K for all times t ≥ 0:

ViabS(K) := {x0 ∈ K | ∃x(·) ∈ S(x0) such that ∀t ≥ 0, x(t) ∈ K}

Two extreme situations deserve to be singled out: The environment is said
to be

1. viable under S if it is equal to its viability kernel: ViabS(K) = K,
2. a repeller under S if its viability kernel is empty: ViabS(K) = ∅.

It is equivalent to say that all evolutions starting from a state belonging to
the complement of the viability kernel in K leave the environment in finite
time.
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Fig. 1.5 Illustration of a viability kernel.

From a point x1 in the viability kernel of the environment K starts at least
one evolution viable in K forever. All evolutions starting from x0 ∈ K
outside the viability kernel leave K in finite time.

Hence, the viability kernel plays the role of a viabilimeter, the “size” of
which measuring the degree of viability of an environment, so to speak.

1.2.1.2 Capture Basins

8 [Capture Basin Viable in an Environment] Let K be an environ-
ment, C ⊂ K be a target and S an evolutionary system. The capture basin
of C (viable in K) under the evolutionary system S is the set CaptS(K,C)
of initial states x ∈ K from which starts at least one evolution x(·) ∈ S(x)
viable in K on [0, T [ until the finite time T when the evolution reaches the
target at x(T ) ∈ C.

For simplicity, we shall speak of capture basin without explicit mention
of the environment whenever there is no risk of confusion.

It is equivalent to say that, starting from a state belonging to the
complement in K of the capture basin, all evolutions remain outside the
target until they leave the environment K.
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Fig. 1.6 Illustration of a capture basin.

From a state x3 in the capture basin of the target C viable in the environment
K starts at least one evolution viable in K until it reaches C in finite time.
All evolutions starting from x1 ∈ K outside the capture basin remain outside
the target C forever or until they leave K.

The concept of capture basin of a target requires that at least one evolution
reaches the target in finite time, and not only asymptotically, as it is usually
studied with concepts of attractors since the pioneering works of Alexandr
Lyapunov going back to 1892.

1.2.1.3 Designing Feedbacks

The theorems characterizing the viability kernel of an environment of the
capture basin of a target also provide a regulation map x � R(x) ⊂ U(x)
regulating evolutions viable in K:

9 [Regulation Map] Let us consider control system
{

(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t))

and an environment K. A set-valued map x � R(x) ⊂ U(x) is called a
regulation map governing viable evolutions if the viability kernel of K is
viable under the control system

{
(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ R(x(t))

Actually, we are looking for single-valued regulation maps governing viable
evolutions, which are usually called feedbacks.
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Fig. 1.7 Feedbacks.

The single-valued maps x �→ ũ(x) are called the feedbacks (or servomech-
anisms, closed loop controls, etc.) allowing one to pilot evolutions by
using controls of the form u(t) := ũ(x(t)) in system S defined by (1.1),
p. 14: x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)). Knowing such
a feedback, the evolution is governed by ordinary differential equation
x′(t) = f(x(t), ũ(x(t))).

Hence, knowing the regulation map R, viable feedbacks are single-valued
regulation maps.

Building viable feedbacks, combining prescribed feedbacks to govern viable
evolutions, etc., are issues investigated in Chap. 11, p. 437.

1.2.2 Viability Kernel and Capture Basin Algorithms

These kernels and basins can be approximated by discrete analog methods
and computed numerically thanks to Viability Kernel and Capture Basin
Algorithms. Indeed, all examples shown in this introductory chapter have
been computed using software packages based on these algorithms, devel-
oped by LASTRE (Laboratoire d’Applications des Systèmes Tychastiques
Régulés). These algorithms compute not only the viability kernel of an en-
vironment or the capture basin of a target, but also the regulation map
and viable feedbacks regulating evolutions viable in the environment (until
reaching the target if any). By opposition to “shooting methods” using
classical solvers of differential equations, these “viability algorithms” allow
evolutions governed by these feedbacks to remain viable. Shooting methods do
not provide the corrections needed to keep the solutions viable in given sets.
This is one of the reasons why shooting methods cannot compute evolutions
viable in attractors, or in stable manifolds, in fractals of Julia sets, even in
the case of discrete and deterministic systems, although the theory states
that they should remain viable in such sets. Viability algorithms allow us to
govern evolutions satisfying these viability requirements: They are designed
to do so.
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1.2.3 Restoring Viability

There is no reason why an arbitrary subsetK should be viable under a control
system. The introduction of the concept of viability kernel does not exhaust
the problem of restoring viability. One can imagine several other methods for
this purpose:

1. Keep the constraints and change the initial dynamics by introducing
regulons that are “viability multipliers”;

2. Keep the constraints and change the initial conditions by introducing a
reset map Φ mapping any state of K to a (possibly empty) set Φ(x) ⊂ X
of new “initialized states” (impulse control);

3. Keep the same dynamics and let the set of constraints evolve according to
mutational equations (see Mutational and morphological analysis: tools for
shape regulation and morphogenesis, [23, Aubin] and Mutational Analysis,
[150, Lorenz]).

Introductions to the two first approaches, viability multipliers and impulse
systems, are presented in Chap. 12, p.485.

1.3 Examples of Simple Viability Problems

In order to support our claim that viability problems are more or less hidden
in a variety of disciplines, we have selected a short list of very simple examples
which can be solved in terms of viability kernels and capture basins developed
in this monograph.

10 Heritage. Whenever the solution to a given problem can be formulated
in terms of viability kernel, capture basin, or any of the other combinations
of them, this solution inherits the properties of kernels and basins gathered
in this book. In particular, the solution can be computed by the Viability
Kernel and Capture Basin Algorithms.

Among these problems, some of them can be formulated directly in terms
of viability kernels or capture basins. We begin our gallery by these ones.

However, many other problems are viability problems in disguise. They
require some mathematical treatment to uncover them, by introducing auxil-
iary environments and auxiliary targets under auxiliary systems. After some
accidental discoveries and further development, unexpected and unsuspected
examples of viability kernels and capture basins have emerged in optimal con-
trol theory. Optimal control problems of various types appear in engineering,
social sciences, economics and other fields. They have been investigated with
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methods born out of the study of calculus of variations by Hamilton and
Jacobi, adapted to differential games and control problems by Isaacs and
Bellman (under the name “dynamical programming”). The ultimate aim is
to provide regulation laws allowing us to pilot optimal evolutions. They are
derived from the derivatives of the “value function”, which is classically a
solution to the Hamilton–Jacobi–Bellman partial differential equations in the
absence of viability constraints on the states. It turns out that these functions
can be characterized by means of viability kernels of auxiliary environments
or of capture basins of auxiliary targets under auxiliary dynamical systems.

The same happy events also happened in the field of systems of first-
order partial differential equations. These examples are investigated in depth
in Chaps. 4, p. 125, 6, p. 199, 16, p. 631 and 17, p. 681. They are graphs
of solutions of systems of partial differential equations of first order or
of Hamilton–Jacobi–Bellman partial differential equations of various types
arising in optimal control theory. The feature common to these problems is
that environments and targets are either graphs of maps from a vector space
to another or epigraphs of extended functions.

All examples which are presented have been computed using the Viability
Kernel or Capture Basin Algorithms, and represent benchmark examples
which can now be solved in a standard manner using viability algorithms.

1.3.1 Engineering Applications

A fundamental problem of engineering is “obstacle avoidance”, which appears
in numerous application fields.

1.3.1.1 Rallying a Target While Avoiding Obstacles

Chapter 5, p. 179, Avoiding Skylla and Charybdis, illustrates several concepts
on the same Zermelo navigation problem of ships aiming to rally a harbor
while avoiding obstacles called Skylla and Charybdis in our illustration, in
reference to the Homer Odyssey. The environment is the sea, the target the
harbor. The chapter presents the computations of.

1. the domain of the minimal length function (see Definition 4.4.1, p.140)
which is contained in the viability kernel,

2. the complement of the viability kernel which is the domain of the exit
function, measuring the largest survival time before the ship sinks (see
Definition 4.3.3, p.135);

3. the capture basin of the harbor, which is the domain of the minimal time
function;

4. the attraction basin, which is the domain of the Lyapunov function;
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5. the controllability basin, which is the domain of the value function of the
optimal control problem minimizing the cumulated (square of the) velocity.

For each of these examples, the graphs of the feedback maps associating
with each state the velocity and the steering direction of the ship are
computed, producing evolutions (viable with minimal length, non viable
persistent evolutions, minimal time evolution reaching the harbor in finite
time, Lyapunov evolutions asymptotically converging to the harbor and
optimal evolutions minimizing the intertemporal criterion). In each case,
examples of trajectories of such evolutions are displayed.

Environment Minimal Length Exit Time

Fig. 1.8 Minimal length and exit time functions.

The left figure describes the non smooth environment (the complement
of the two obstacles and the dyke in the square) and the harbor, regarded as
the target. The wind blows stronger in the center than near the banks, where
it is weak enough to allow the boat to sail south. The figure in the center
displays the viability kernel of the environment, which is the domain of the
minimal length functions. The viability kernel is empty north of the waterfall
and has holes south of the two mains obstacles and in the harbor on the east.
The feedback map governs the evolution of minimal length evolutions which
converge to equilibria. The presence of obstacles implies three south–east to
north–west discontinuities. For instance, trajectories starting from C and D
in the middle figure go north and south of the obstacle. The set of equilibria
is not connected: some of them are located in a vertical line near the west
bank, the other ones on a vertical line in the harbor. The trajectory of the
evolution starting from A sails to an equilibrium near the west bank and
from B sails to an equilibrium in the harbor. The figure on the right provides
trajectories of non viable evolutions which are persistent in the sense that
they maximize their exit time from the environment. The ones starting from
A and B exit through the waterfall, the one starting from C exits through
the harbor. The complement of the viability kernel is the domain of the exit
time function.
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Minimal Time Lyapunov Optimal Control

Fig. 1.9 Minimal time, Lyapunov and optimal value functions.

These three figures display the domains of the minimal time function, which
is the capture basin of the harbor, of the Lyapunov function, which is
the attraction basin and of the value function of an optimal control problem
(minimizing the cumulated squares of the velocity). These domains are empty
north of the waterfall and have “holes” south of the two mains obstacles and
of the harbor on the east. The presence of obstacles induces three lines of
discontinuity, delimitating evolutions sailing north of the northern obstacle,
between the two obstacles and south or east of the southern obstacle, as it
is shown for the evolutions starting from A, B and C in the capture basin,
domain of the minimal time function. The trajectories of the evolutions
starting from A and B are the same after they leave the left bank for
reaching the harbor.

Minimal Time Lyapunov Optimal Control

Fig. 1.10 Isolines of the minimal time, Lyapunov and value functions.

These figures display the isolines of these functions on their respective
domains, indicating in the color scale the value of these functions. For the
minimal time function, the level curves provide the (minimum) time needed
to reach the target.



1.3 Examples of Simple Viability Problems 23

1.3.1.2 Autonomous Navigation in an Urban Network

Viability concepts have not only been simulated for a large variety of
problems, but been implemented in field experiments. This is the case
of obstacle avoidance on which an experimental robot (Pioneer 3AT of
activmedia robotics) has been programmed to reach a target from any point
of its capture basin (see Sect. 3.2, p.105). The environment is a road network,
on which a target to be reached in minimal time has been assigned. Knowing
the dynamics of the pioneer robot, both the capture basin and, above all, the
feedback map, have been computed. The graph of the feedback (the command
card) has been embedded in the navigation unit of the robot. Two sensors
(odometers and GPS) tell the robot were it is, but the robot does not use
sensors locating the obstacles nor the target.

Target Reached by the RobotMap of the Network

Fig. 1.11 Experiment of the viability algorithm for autonomous navigation.

The left figure displays the trajectory of the robot in the map of the urban
network. The right figure is a close up photograph of the robot near the
target. Despite the lack of precision of the GPS, the trajectory of the robot
followed exactly the one which was simulated.

Fig. 1.12 Wind-optimal high altitude routes.

The left figure shows the wind-field over the continental US (source: NOAA).
The right figure displays the wind-optimal routes avoiding turbulence to reach
the New York airport in minimal time.
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Fig. 1.13 Persistent evolutions of drifters and their exit sets.

The figure displays the exit time function (in seconds) and the exit sets of
drifters in the Georgianna Slough of the San Francisco Bay Area (see Fig. 1.12,
p.23). The exit sets (right subfigure) are the places of the boundary of the
domain of interest where these drifters can be recovered. The level-curves of
the exit time function are indicated in the left subfigure. In this example,
drifters evolve according to currents (see Sect. 3.4, p.119).

1.3.1.3 Safety Envelopes for Landing of Plane

The state variables are the velocity V , the flight path angle γ and the altitude
z of a plane. We refer to Sect. 3.3, p. 108 for the details concerning the flight
dynamics. The environment is the “flight envelope” taking into account the
fight constraints and the target is the “zero altitude” subset of the flight
envelope, called the “touch down envelope”.

Fig. 1.14 Model of the touch down manoeuver of an aircraft.

In order to ensure safety in the last phase of landing, the airplane must stay
within a “flight envelope” which plays the role of environment.



1.3 Examples of Simple Viability Problems 25

The Touch Down Envelope is the set of flight parameters at which it is safe
to touch the ground. The touch down safety envelope is the set of altitude,
velocities and path angles from which one can reach the touch down envelope.
The touch down safety envelope can then be computed with the viability
algorithms (for the technical characteristics of a DC9-30) since it is a capture
basin:

Fig. 1.15 The “Touch down safety envelope”.

The 3-d boundary of the safety envelope is displayed. The colorimetric scale
indicates the altitude.

This topic is developed in Sect. 3.3, p. 108.

1.3.2 Environmental Illustrations

1.3.2.1 Management of Renewable Resources

This example is fully developed in Sects. 9.2, p. 321 and 7.3, p. 262.
The management of renewable resources requires both dynamics governing

the renewable resource (fishes) and the economics (fisheries), and biological
and economic viability constraints.

The following classical example (called Verhulst-Schaeffer example)
assumes that the evolution of the population of a fish species x(t) is
driven by the logistic Verhlust differential equation x′(t) = r(t, x(t))x(t) :=
rx(t)

(
1− x(t)

b

)
(see Sect. 7.2, p. 248) and that its growth rate is depleted

proportionally to the fishing activity y(t): y′(t) = (r(t, x(t)) − v(t))y(t) (see
Sect. 7.3, p. 262). The controls are the velocities v(t) of the fishing activity
(see (7.6), p. 263).
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The ecological2 environment consists of the number of fishes above a
certain threshold in order to survive (on the right of the black area on
Fig. 7.8). The economic environment is the subset of the ecological envi-
ronment, since, without renewable biological resources there is no economic
activity whatsoever. In this illustration, the economic environment is the
subset above the hyperbola: fishing activity is not viable (grey area) outside
of it.

We shall prove that the economic environment is partitioned into three
zones:

• Zone (1), where economic activity is consistent with the ecological
viability: it is the ecological and economic paradise;

• Zone (2), an economic purgatory, where economic activity will eventually
disappear, but can revive later since enough fishes survive (see the
trajectory of the evolution starting form A);

• Zone (3), the ecological and economic hell, where economic activity leads
both to the eventual bankruptcy of fisheries and eventual extinction of
fishes, like the sardines in Monterey after an intensive fishery activity
during the 1920–1940s before disappearing in the 1950s together with
Cannery Row.

Fig. 1.16 Permanence Basin of a Sub-environment.

Zone (1) is the viability kernel of the economic environment and Zone
(2) is the permanence kernel (see Definition 9.2.3, p.323) of the economic
environment, which is viable subset of the ecological environment. In Zone
(3), economic activity leads both to the bankruptcy of fisheries and extinction
of fishes.

2 The root “eco” comes from the classical Greek “oiko”, meaning house.
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We shall see in Sect. 7.3.3, p. 269 that the concept of crisis function
measures the shortest time spent outside the target, equal to zero in the
viability kernel, finite in the permanence kernel and infinite outside of the
permanence kernel: See Fig. 7.8, p. 270.

1.3.2.2 Climate-Economic Coupling and the Transition Cost
Function

This example is a metaphor of Green House Gas emissions. For stylizing the
problems and providing a three-dimensional illustration, we begin by isolating
three variables defining the state:

• the concentration x(t) of greenhouse gases,
• the short-term pollution rate y(t) ∈ R+,
• generated by economic activity summarized by a macro-economic variable
z(t) ∈ R+ representing the overall economic activity producing emissions
of pollutants.

The control represents an economic policy taken here as the velocity of
the economic activity.

The ultimate constraint is the simple limit b on the concentration of the
greenhouse gases: x(t) ∈ [0, b].

We assume known the dynamic governing the evolution of the concentra-
tion of greenhouse gases, the emission of pollutants and of economic activity,
depending, in the last analysis, on the economic policy, describing how one
can slow or increase the economic activity. The question asked is how to
compute the transitions cost (measured, for instance, by the intensity of the
economic policy). Namely, transition cost is defined as the largest intensity
of the economic activities consistent with the bound b on concentration of
greenhouse gases. The transition cost function is the smallest transaction cost
over the intensities of economic policies. This is a crucial information to know
what would be the price to pay for keeping pollution under a given threshold.
Knowing this function, we can derive, for each amount of transition cost,
what will be the three-dimensional subset of triples (concentration-emission-
economic activity) the transition costs of which are smaller than or equal to
this amount.

We provide these subsets (called level-sets) for four amounts c, including
the most interesting one, c = 0, for an example of dynamical system:
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Fig. 1.17 Level-sets of the transition function.

We provide the level-sets of the transition function for the amounts c =
0, 0.5, 1 & 2. The trajectories of some evolutions are displayed (see
The Coupling of Climate and Economic Dynamics: Essays on Integrated
Assessment, [113, Haurie & Viguier]).

Since this analysis involves macroeconomic variables which are not really
defined and the dynamics of which are not known, this illustration has only
a qualitative and metaphoric value, yet, instructive enough.

1.3.3 Strange Attractors and Fractals

1.3.3.1 Lorenz Attractors

We consider the celebrated Lorenz system (see Sect. 9.3, p. 344), known
for the “chaotic” behavior of some of its evolutions and the “strange”
properties of its attractor. The classical approximations of the Lorenz
attractor by commonly used “shooting methods” are not contained in the
mathematical attractor, because the attractor is approximated by the union
of the trajectories computed for a large, but finite, number of iterations
(computers do not experiment infinity). Theorem 9.3.12, p.352 states that the
Lorenz attractor is contained in the backward viability kernel (the viability
kernel under the Lorenz system with the opposite sign). If the solution starts
outside the backward viability theorem, then it cannot reach the attractor in
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finite time, but only approaches it asymptotically. Hence, the first task is to
study and compute this backward viability kernel containing the attractor.

However, the attractor being invariant, evolutions starting from the
attractor are viable in it. Unfortunately, the usual shooting methods do
not provide a good approximation of the Lorenz attractor. Even when one
element the attractor is known, the extreme sensitivity of the Lorenz system
on initial conditions forbids the usual shooting methods to govern evolutions
viable in the attractor.

Fig. 1.18 Viable evolutions in the backward viability kernel.

Knowing that the attractor is contained in the backward viability kernel
computed by the viability algorithm and is forward invariant, the viability
algorithm provides evolutions viable in this attractor, such as the one
displayed in the figure on the right. It “corrects” the plain shooting method
using a finite-difference approximation of the Lorenz systems (such as the
Runge–Kutta method used displayed in the figure on the left) which are
too sensitive to the round-up errors. The viability algorithm “tames” viable
evolutions (which loose their wild behavior on the attractor) by providing
a feedback governing viable evolution, as can be shown in the figure on the
right, displaying a viable evolution starting at A. Contrary to the solution
starting at A the shooting method provided in the figure on the left, this
“viable” evolution is viable.

The Lorenz system has fascinated mathematicians since the discovery of
its properties.

1.3.3.2 Fluctuations Under the Lorenz System

Another feature of the wild behavior of evolutions governed by the Lorenz
system is their “fluctuating property”: most of them flip back and forth
from one area to another. This is not the case of all of them, though, since
the evolutions starting from equilibria remain in this state, and therefore,
do not fluctuate. We shall introduce the concept of fluctuation basin (see
Definition 9.2.1, p.322), which is the set of initial states from which starts a
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fluctuating evolution. It can be formulated in terms of viability kernels and
capture basins, and thus computed with a viability algorithm.

Fig. 1.19 Fluctuation basin of the Lorenz system.

The figure displays the (very small) complement of the fluctuation: outside
of it, evolutions flip back and forth from one half-cube to the other. The
complement of the fluctuation basin is viable.

1.3.3.3 Fractals Properties of Some Viability Kernels

Viability kernels of compact sets under a class of discrete set-valued dynam-
ical systems are Cantor sets having fractal dimensions, as it is explained in
Sect. 2.9.4, p. 79. Hence they can be computed with the Viability Kernel
Algorithm, which provides an exact computation up to the pixel, instead of
approximations as it is usually obtained by “shooting methods”.

This allows us to revisit some classical examples, among which we quote
here the Julia sets, studied in depth for more than a century. They are
(the boundaries of) the subsets of initial complex numbers z such that their
iterates zn+1 = z2

n + u (or, equivalently, setting z = x + iy and u = a + ib,
(xn+1, yn+1) = (x2

n+1− y2
n+1 + a, 2xn+1yn+1 + b)), remain in a given ball. As

is clear from this definition, Julia sets are (boundaries) of viability kernels,
depending on the parameter u = a+ ib.
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Fig. 1.20 Julia sets and fractals.

Unlike “shooting methods”, the viability kernel algorithm provides the exact
viability kernels and the viable iterates for two values of the parameter u.
On the left, the viability kernel as a non-empty interior and its boundary,
the Julia set, has fractal properties. The second example, called Fatou dust,
having an empty interior, coincides with its boundary, and thus is a Julia set.
The discrete evolutions are not governed by the standard dynamics, which
are sensitive to round-up errors, but by the corrected one, which allows the
discrete evolutions to be viable on the Julia sets.

Actually, viability kernel algorithms also provide the Julia set, which is the
boundary of the viability kernel, equal to another boundary kernel thanks to
Theorem 9.2.18, p. 339:

Fig. 1.21 Julia sets and filled-in Julia sets.
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The left figure reproduces the left figure of Fig. 2.4, which is the filled-in Julia
set, the boundary of which is the Julia set (see Definition 2.9.6, p.76). We
shall prove that this boundary is itself a viability kernel (see Theorem 9.2.18,
p. 339), which can then be computed by the viability kernel algorithm.

1.3.3.4 Computation of Roots of Nonlinear Equations

The set of all roots of a nonlinear equation located in a given set A can
be formulated as the viability kernel of an auxiliary set under an auxiliary
differential equation (see Sect. 4.4, p. 139), and thus, can be computed with
the Viability Kernel Algorithm. We illustrate this for the map f : R

3 �→ R

defined by

f(x, y, z) = (|x− sin z|+ |y − cos z|) · (|x+ sin z|+ |y + cos z|)

Fig. 1.22 The set of roots of nonlinear equations.

The set of roots of the equation

(|x− sin z|+ |y − cos z|) · (|x+ sin z|+ |y + cos z|) = 0

is a double helix. It is recovered in this example by using the viability kernel
algorithm.
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1.4 Organization of the Book

This book attempts to bridge conflicting criteria: logical and pedagogical.
The latter one requires to start with easy examples and complexify them,
one after the other. The first approach demands to start from the general to
the particular (top–down), not so much for logical reasons than for avoiding
to duplicate proofs, and thus space in this book and time for some readers.
We have chosen after many discussions and hesitations some compromise,
bad as compromises can be.

When needed, the reader can work out the proofs of the theorems scattered
in the rest of the book and their consequences. We have tried to develop a
rich enough system of internal references to make this task not too difficult.

The heart of the book is made of the three first Chaps. 2, p. 43, 4, p. 125
and 6, p. 199. They are devoted to the exposition of the main concepts and
principal results of viability, dynamic intertemporal optimization (optimal
control) and heavy evolutions (inertia functions). Most of the proofs are not
provided, only the simple ones which are instructive. However, “survival kits”
summarizing the main results are provided to be applied without waiting for
the proofs and the underlying mathematical machinery behind.

These three chapters should allow the reader to master the concepts
of those three domains and use them for solving a manifold of prob-
lems: engineering, requiring both viability and intertemporal optimization
problems, life sciences, requiring both viability and inertia concepts and...
mathematics, where more viability concepts and theorems are provided either
for their intrinsic interest or for mathematical applications (detection maps,
connection and collision kernels, chaos à la Saari, etc.) to connected problems
(chaos and attractors, local stability and instability, Newton methods for
finding equilibria, inverse mapping theorem, etc.).

1.4.1 Overall Organization

The contents of viability theory may be divided in two parts:

• Qualitative concepts, exploring the concepts and providing the results
at the level of subsets, for instance, the “viability kernel”, presented
in Chaps. 2, p. 43, Viability and Capturability, 8, p. 273, Connection
Basins, 9, p. 319 Local and Asymptotic Properties of Equilibria, 10, p.
375 Viability and Capturability Properties of Evolutionary Systems and
11, p. 437 Regulation of Control Systems, the two last ones providing the
proofs. Chapter 2, p. 43 and its Viability Survival Kit, Sect. 2.15, p. 98, is
designed to allow the non mathematician to grasp the applications.

• Quantitative concepts in the form of dynamical indicators. For instance,
the “exit function” not only provides the viability kernel, over which
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this exit function takes infinite values, but, outside the viability kernel,
measures the exit time, a kind of survival time measuring the largest time
spent in the environment before leaving it. The main results are presented
in Chaps. 4, p. 125 Viability and Dynamic Intertemporal Optimality.
Sect. 4.11, p. 168 provides the Optimal Control Survival Kit allowing
the reader to study the illustrations and applications without having to
confront the mathematical proofs presented in Chaps. 13, p.523, and 17,
p. 681.

• Inertial concepts using quantitative on the velocities of the regulons. For
instance, Chaps. 6, p. 199 Inertia Functions, Viability Oscillators and
Hysteresis.

On the other hand, we propose three types of applications: to social
sciences, to engineering and to... mathematics, since viability theory provides
tools for solving first-order systems of partial differential equations, opening
the gate for many other applications.

Engineering
Applications

Social Sciences
Illustrations

Partial
differential
Equations

Viability
Tools

Qualitative
Concepts

Quantitative
Concepts

Inertial
Concepts

1.4.2 Qualitative Concepts

Qualitative concepts of viability theory constitute the main body of this book.
We have chosen to regroup the main concepts and to state the main results
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in Chap. 2, p. 43. It has been written to start slowly following a bottom–up
approach presenting the concepts from the simplest ones to more general ones,
instead of starting with the more economical and logical top–down approach
starting with the definition of the evolutionary systems. This chapter ends
with a viability survival kit summarizing the most important results used in
the applications. Hence, in a first reading, the reader can skip the four other
chapters of this book. They can be omitted upon first reading.

Viability Theory
Qualitative
Concepts

Chapter 2
Viability and
Capturability

Chapter 8
Connection

Basins

Chapter 9
Properties

of Equilibria

Chapter 10
Viability and
Capturability
Properties

Chapter 11
Regulation
of Control
Systems

Chapter 8, p. 273 presents time dependent evolutionary systems, constraints
and targets. These concepts allow us to study connection and collision
basins. Chapter 9, p. 319 deals with the concepts of permanence kernels and
fluctuation basins that we use to studies more classical issues of dynamical
systems such as local and asymptotic stability properties of viable subsets
and equilibria. Chapters 10, p. 375 and 11, p. 437 provide the proofs of the
results stated in the viability survival kit of Chap. 2, p. 43, in the framework of
general evolutionary systems, first, and next, of parameterized systems, where
the tangential regulation maps governing the evolution of viable evolutions
ares studied.
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1.4.3 Quantitative Concepts

We chose to interrupt the logical course of studying the qualitative properties
first before tackling the quantitative ones. The reason is that they provide the
most interesting application to different issues of intertemporal optimization.
Chapter 4, p. 125 is devoted to optimization of “averaging or integral criteria”
on evolutions governed by controlled and regulated systems, among them the
exit time function of an environment, the minimal time to reach a target in
a viable way, the minimal length function, occupational costs and measures,
attracting and Lyapunov functions, crisis, safety and restoration functions,
Eupalinian and collision functions, etc. As for Chap. 2, p. 43, we do not, at this
stage, provide all the proofs, in particular, the proofs concerning Hamilton–
Jacobi–Bellman partial differential equations and their rigorous role in their
use for building the feedbacks regulating viable and/or optimal evolutions.
They are relegated in Chap. 17, p. 681 at the end of the book, since it involves
the most technical statements and proofs.

Viability Theory
Quantitative

Concept

Viability Theory
Inertial Concept

Chapter 4
Viability and

Dynamic
Intertemporal
Optimality

Chapter 13
Viability

Solutions to
Hamilton–

Jacobi
Equations

Chapter 17
Viability

Solutions to
Hamilton–
Jacobi–
Bellman

Equations

Chapter 6
Inertia

Functions
Viability

Oscillators

Chapter 6, p. 199 proposes the study of the main qualitative property of
regulated systems which motivated viability theory from the very beginning:
the concept of inertia functions, which, on top of their intrinsic interest,
furnish the keys to the definition of the inertia principle, satisfied by heavy
evolutions, as well as hysterons (hysteresis loops) and other interesting
features.
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1.4.4 First-Order Partial Differential Equations

Although first-order partial differential equations were not part of the original
motivations of viability theory, it happened that some of its results were
efficient for studying some of them: Chap. 16, p. 631 A Viability Approach
to Conservation Laws is devoted to the prototype of conservations laws,
the Burgers partial differential equation, and Chap. 17, p. 681 A Viabil-
ity Approach to Hamilton–Jacobi Equations to Hamilton–Jacobi–Bellman
equations motivated by optimal control problems and more generally, by
intertemporal optimization problems.

Viability
Solutions
to First

Order Partial
Differential
Equations

Chapter 13
Hamilton–

Jacobi
Equations

Chapter 17
Hamilton–
Jacobi–
Bellman

Equations

Chapter 16
Conservation

Laws

Chapters 4, p. 125, 6, p. 199, 15, p. 603, and 14, p. 563 provide other
examples of Hamilton–Jacobi–Bellman equations.

1.4.5 Social Sciences Illustrations

Two chapters are devoted to some questions pertaining to this domain to
social sciences issues.
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Social Sciences
Illustrations

Chapter 7
Management
of Renewable
Resources

Section 15.2
Illustrations
in Finance

Section 15.3
Illustrations
in Economics

Chapter 7, p. 247 Management of Renewable Resources presents in the
simplest framework of one dimensional model a study of the management
of ecological renewable resources, such as fishes, coupled with economic
constraints.

Section 15.2, p. 605 Illustrations in Finance deals with one very specific,
yet, important, problem in mathematical finance, known under the name
of implicit volatility. Direct approaches (see Box) assumes the volatility
(stochastic or tychastic) to be known for deriving the value of portfolios.
But volatility is not known, and an inverse approach is required to deduce
the implicit volatility from empirical laws obeyed by the values of portfolios.

Section 15.3, p. 620 Illustrations in Economics deals with links between
micro-economic and macro-economic approaches of the same dynamical
economic problem. We use duality theory of convex analysis to prove that the
derivation of macroeconomic value from microeconomic behavior of economic
agents is equivalent to the derivation of the behavior of these agents from the
laws governing the macroeconomic value.

1.4.6 Engineering Applications

The two chapters placed under this label deal directly with engineering issues.
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Engineering
Applications

Chapter 3
Viability
Problems

in Robotics

Chapter 14
Regulation
of Traffic

Chapter 3, p.105, Viability Problems in Robotics, studies two applications
to robotics, one concerning field experiment of the viability feedback allowing
a robot to rally a target in a urban environment while avoiding obstacles, the
second one studying the safety envelope of the landing of a plane as well as the
regulation law governing the safe landing evolutions viable in this envelope.

Chapter 14, p. 563 Regulation of Traffic revisits the standard macroscopic
model of Lighthill – Whitham – Richards, providing the Moskowitz traffic
functions governed by an example of Hamilton–Jacobi partial differential
equation. It deals with new ways of measuring traffic. The first one uses
“Lagrangian” data by monitoring some probe vehicles instead of static sensors
measuring of traffic density, which amounts to replacing standard boundary
conditions. The second one shows that the fundamental relation linking
density to flows of traffic, determining the shape of the Hamilton–Jacobi–
Bellman equation, can be replaced by a “dual” relation linking macroscopic
traffic velocity and flows. This relation could be obtained from satellite
measurements in the future.

1.4.7 The Four Parts of the Monograph

The book is organized according to increasing mathematical difficulty. The
first part, Viability Kernels and Examples, provides the main definitions
(Chaps. 2, p.43, for the qualitative concepts, 4, p.125 for the qualitative
ones, and 6, p.199 for the inertial ones). The most useful statements are not
proved at this stage, but summarized in the Viability Survival Kit, Sect. 2.15,
p. 98, and the Optimal Control Survival Kit, Sect. 4.11, p. 168. We provide
illustrative applications at the end of these three chapters respectively:
Chaps. 3, p.105, 5, p.179, and 7, p.247.
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The second part, Mathematical Properties of Viability Kernels, is devoted
to some other concepts and issues (Chaps. 8, p.273, and 9, p.319) and
the proofs of the viability properties under general evolutionary systems
(Chap. 10, p.375) and under regulated systems Chap. 11, p.437). The main
Viability and Invariance Theorems are proved in Chap. 19, p.769, at the very
end of the book, due to the technical difficulties.

The third part, First-Order Partial Differential Equations, presents
the viability approach for solving first-order partial differential equations:
Hamilton–Jacobi equations (Chap. 13, p.523), Hamilton–Jacobi–Bellman
equations (Chap. 17, p.681), and Burgers equations (Chap. 16, p.631) as a
prototype of conservation laws. Chapter 14, p. 563, deals with regulation of
traffic and Chap. 15, p. 603 with financial and economic issues.

Besides the main Viability and Invariance Theorems, proved in Chap. 19,
p.769, and Chaps. 16, p. 631, 17, p. 681, the proofs of the results presented
in this book are technically affordable.

What may be difficult is the novelty of the mathematical approach based
on set-valued analysis instead of analysis, dealing with subsets rather than
with functions. Unfortunately, at the beginning of the Second World War,
a turn has been taken, mainly by Nicolas Bourbaki, to replace set-valued
maps studied since the very beginning of the century, after the pioneering
views by Georg Cantor, Paul Painlevé, Maurice Fréchet, Felix Hausdorff,
Kazimierz Kuratowski, René Baire and Georges Bouligand. The idea was
that a set-valued map F : X � Y was a single-valued map (again denoted
by) F : X �→ P(Y ), so that, it was enough to study single-valued map. One
could have said that single-value maps being particular cases of set-valued
maps, it would be sufficient to study set-valued maps. The opposite decision
was taken and adopted everywhere after the 1950s. This is unfortunate, just
because the P(Y ) does not inherit the structures and the properties of the
state Y . So, the main difficulty is to cure the single-valued brainwashing that
all mathematicians have been subjected to. Adapting to a new “style” and
another vision is more difficult than mastering new techniques, but in the
same “style”.

This is the reason why we summarized the main results of set-valued map
analysis in Chap. 18, p. 713 and we postponed at the end of the book Chap. 19,
p.769 gathering the proofs of the viability theorems. They constitute the
fourth part of the book.

Many results of this book are unpublished. The first edition of Viability
theory, [18, Aubin] (1991), contained 542 entries. It soon appeared that the
number of fields of motivation and applications having increased, it would be
impossible to make a relevant bibliography due to the lack of space. On the
other hand, Internet allows to get the bibliographical information easily. So,
we present only a list of monographs to conclude this book.
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Viability Kernels and Examples



Chapter 2

Viability and Capturability

2.1 Introduction

This rather long chapter is the central one. It is aimed at allowing the
reader to grasp enough concepts and statements of the principal results
proved later on in the book to read directly and independently most of
the chapters of the book: Chaps. 4, p. 125 and 6, p. 199 for qualitative
applications, Chap. 8, p. 273 and 9, p. 319 for other quantitative concepts,
Chaps. 7, p. 247 and 15, p. 603 for social science illustrations, Chaps. 3, p. 105,
14, p. 563 and 16, p. 631 in engineering, even though, here and there, some
results require statements proved in the mathematical Chaps. 10, p. 375 and
11, p. 437.

This chapter defines and reviews the basic concepts: evolutions and their
properties, in Sect. 2.2, p. 45, and next, several sections providing examples of
evolutionary systems. We begin by the simple single-valued discrete systems
and differential equations.

We next introduce parameters in the dynamics of the systems, and, among
these parameters, distinguish constant coefficients, controls, regulons and
tyches (Sect. 2.5, p. 58) according to the roles they will play. They motivate
the introduction of controlled discrete and continuous time systems. All these
systems generate evolutionary systems defined in Sect. 2.8, p. 68, the abstract
level where it is convenient to study the viability and capturability properties
of the evolutions they govern, presented in detail in Chap. 10, p. 375.

Next, we review the concepts of viability kernels and capture basins, under
discrete time controlled systems in Sect. 2.9, p. 71. In this framework, the
computation of the regulation map is easy and straightforward. We present
the viability kernel algorithm in Sect. 2.9.2, p. 74 and use it to compute the
Julia sets and Fatou dusts in Sect. 2.9.3, p. 75 and show in Sect. 2.9.4, p. 79
how the celebrated fractals are related to viability kernels under the class of
discrete disconnected systems.

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 2,
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Viability kernels and capture basins under continuous time controlled
systems are the topics of Sect. 2.10, p. 85. We illustrate the concepts of
viability kernels by computing the viability kernel under the (backward)
Lorenz system, since we shall prove in Chap. 9, p. 319 that it contains the
famous Lorenz attractor.

Viability kernels and capture basins single out initial states from which
at least one discrete evolution is viable forever or until it captures a target.
We are also interested to the invariance kernels and absorption basins made
of initial states from which all evolutions are viable forever or until they
capture a target. One mathematical reason is that these concepts are, in
some sense, “dual” to the concepts of viability kernels and capture basins
respectively, and that they will play a fundamental role for characterizing
them. The other motivation is the study of “tychastic” systems where the
parameters are tyches (perturbations, disturbances, etc.) which translate one
kind of uncertainty without statistical regularity, since tyches are neither
under the control of an actor nor chosen to regulate the system.

We also address computational issues:

• viability kernel and capture basin algorithms for computing viability
kernels and capture basins under discrete system in Sect. 2.9.2, p. 74,

• and next, discretization issues in Sect. 2.14, p. 96.

For computing viability kernels and capture basins under continuous
time controlled systems, we proceed in two steps. First, approximate the
continuous time controlled systems by discretized time controlled systems, so
that viability kernels and capture basins under discretized systems converge
to the viability kernels and capture basins under the continuous time
evolutionary system, and next, compute the viability kernels and capture
basins under the discretized time controlled systems by the viability kernel
and capture basin algorithms.

This section just mentions these problems and shows how the (trivial)
characterization of viability kernels and capture basins under discretized
controlled systems gives rise to the tangential conditions characterizing them
under the continuous time controlled system, studied in Chap. 11, p. 437.

The chapter ends with a “viability survival kit” in Sect. 2.15, p. 98,
which summarizes the most important statements necessary to apply viability
theory without proving them. They are classified in three categories:

• At the most general level, where simple and important results and are
valid without any assumption,

• At the level of evolutionary systems, where viability kernels and capture
basins are characterized in terms of local viability properties and backward
invariance,

• At the level of control systems, where viability kernels and capture basins
are characterized in terms of “tangential characterization” which allows
us to define and study the regulation map.
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2.2 Evolutions

Let X denote the state space of the system. Evolutions describe the behavior
of the state of the system as a function of time.

Definition 2.2.1 [Evolutions and their Trajectories] The time t
ranges over a set T that is in most cases,

1. either the discrete time set of times j ∈ T := N := {0, . . . ,+∞{
ranging over the set of positive integers j ∈ N,

2. or the continuous time set of times t ∈ T := R+ := [0, . . . ,+∞[
ranging over the set of positive real numbers or scalars t ∈ R+.

Therefore, evolutions are functions x(·) : t ∈ T �→ x(t) ∈ X describing the
evolution of the state x(t). The trajectory (or orbit) of an evolution x(·) is
the subset {x(t)}t∈T ⊂ X of states x(t) when t ranges over T.

Warning: The terminology “trajectory” is often used as a synonym of
evolution, but inadequately: a trajectory is the range of an evolution.

Unfortunately, for discrete time evolutions, tradition imposes upon us to
regard discrete evolutions as sequences and to use the notation −→x : j ∈
N �→ xj := x(j) ∈ X . We shall use this notation when we deal explicitly
with discrete time. We use the notation x(·) : t ∈ R+ �→ x(t) ∈ X for
continuous time evolutions and whenever the results we mention are valid for
both continuous and discrete times. It should be obvious from the context
whether x(·) denotes an evolution when time ranges over either discrete T :=
N+ time set or continuous T := R+ time set.

The choice between these two representations of time is not easy. The
“natural” one, which appears the simplest for non mathematicians, is the
choice of the set T := N+ of discrete times. It has drawbacks, though. On
one hand, it may be difficult to find a common time scale for the different
components of the state variables of the state space of a given type of models.
On the other hand, by doing so, we deprive ourselves from the concepts
of velocity, acceleration and other dynamical concepts introduced by Isaac
Newton (1642–1727), that are not well taken into account by discrete time
systems as well as of the many results of the differential and integral calculus
gathered for more than four centuries since the invention of the infinitesimal
calculus by Gottfried Leibniz (1646–1716). Therefore, the choice between
these two representations of times being impossible, we have to investigate
both discrete and continuous time systems. Actually, the results dealing with
viability kernels and capture basins use the same proofs, as we shall see in
Chap. 10, p. 375. Only the viability characterization becomes dramatically
simpler, not to say trivial, in the case of discrete systems.
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Note however that for computational purposes, we shall approximate
continuous time systems by discrete time ones where the time scale becomes
infinitesimal.

Warning: Viability properties of the discrete analogues of continuous-
time systems can be drastically different : we shall see on the simple example
of the Verhulst logistic equation that the interval [0, 1] is invariant under
the continuous system

x′(t) = rx(t)(1 − x(t))

for all r ≥ 0 whereas the viability kernel of [0, 1] under its discrete
counterpart

xn+1 = rxn(1− xn)

is a Cantor subset of [0, 1] when r > 4. Properties of discrete counterparts
of continuous time dynamical systems can be different from their discretiza-
tions. These discretizations, under the assumptions of adequate convergence
theorems, share the same properties than the continuous time systems.

We shall assume most of the time that:

1. the state space is a finite dimensional vector space X := R
n,

2. evolutions are continuous functions x(·) : t ∈ R+ �→ x(t) ∈ X describing
the evolution of the state x(t).

We denote the space of continuous evolutions x(·) by C(0,∞;X).
Some evolutions, mainly motivated by physics, are classical: equilibria and

periodic evolutions. But these properties are not necessarily adequate for
problems arising in economics, biology, cognitive sciences and other domains
involving living beings. Hence we add the concept of evolutions viable in
a environment or capturing a target in finite time to the list of properties
satisfied by evolutions.

2.2.1 Stationary and Periodic Evolutions

We focus our attention to specific properties of evolutions, denoting by H ⊂
C(0,∞;X) the subset of evolutions satisfying these properties. For instance,
the most common are stationary ones and periodic ones:

Definition 2.2.2 [Stationary and Periodic Evolutions]

1. The subset X ⊂ C(0,∞;X) of stationary evolutions is the subset of
evolutions x : t �→ x when x ranges over the state space X.
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2. The subset PT (X) of T -periodic evolutions is the subset of evolutions
x(·) ∈ C(0,∞;X) such that, ∀t ≥ 0, x(t+ T ) = x(t).

Stationary evolutions are periodic evolutions for all periods T .
Stationary and periodic evolutions have been a central topic of investi-

gation in dynamical systems motivated by physical sciences. Indeed, the
brain, maybe because it uses periodic evolutions of neurotransmitters through
subsets of synapses, has evolved to recognize periodic evolutions, in particular
those surrounding us in daily life (circadian clocks associated with the light of
the sun). Their extensive study is perfectly legitimate in physical sciences, as
well as their new developments (bifurcations, catastrophes, dealing with the
dependence of equilibria in terms of a parameter, and chaos, investigating
the absence of continuous dependence of evolution(s) with respect to the
initial states, for instance). However, even though we shall study evolutions
regulated by constant parameters, bifurcations are quite difficult to observe,
as it was pointed out in Sect. 3.3 of the book Introduction to nonlinear systems
and chaos by Stephen Wiggins :

11 [On the Interpretation and Application of Bifurcation Dia-
grams: A Word of Caution] At this point, we have seen enough examples
so that it should be clear that the term bifurcation refers to the phenomenon
of a system exhibiting qualitatively new dynamical behavior as parameters
are varied. However, the phrase “as parameters are varied” deserves careful
consideration [...] In all of our analysis thus far the parameters have been
constant. The point is that we cannot think of the parameter as varying
in time, even though this is what happens in practice. Dynamical systems
having parameters that change in time (no matter how slowly!) and that
pass through bifurcation values often exhibit behavior that is very different
from the analogous situation where the parameters are constant.

The situation in which coefficients are kept constant is familiar in physics,
but, in engineering as well as in economic and biological sciences, they may
have to vary with time, playing the roles of controls in engineering, of regulons
in social and biological sciences, or tyches, when they play the role of random
variables when uncertainty does not obey statistical regularity, as we shall
see in Sect. 2.5, p. 58.

Insofar as physical sciences privilege the study of stability or chaotic
behavior around attractors (see Definition 9.3.8, p. 349) and their attraction
basins (see Definition 9.3.3, p. 347), the thorough study of transient evolutions
have been neglected, although they pervade economic, social and biological
sciences.
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2.2.2 Transient Evolutions

Theory of Games and Economic
Behavior. John von Neumann (1903–1957)
and Oskar Morgenstern (1902–1976) con-
cluded the first chapter of their monograph
“Theory of Games and Economic Behavior”
(1944) by these words: Our theory is
thoroughly static. A dynamic theory would

unquestionably be more complete and therefore, preferable. But there is
ample evidence from other branches of science that it is futile to try to build
one as long as the static side is not thoroughly understood. [...] Finally, let us
note a point at which the theory of social phenomena will presumably take a
very definite turn away from the existing patterns of mathematical physics.
This is, of course, only a surmise on a subject where much uncertainty and
obscurity prevail [...] A dynamic theory, when one is found, will probably
describe the changes in terms of simpler concepts.

Unfortunately, the concept of equilibrium is polysemous. The mathemat-
ical one, which we adopt here, expresses stationary – time independent –
evolution, that is, no evolution. The concept of equilibrium used by von
Neumann and Morgenstern is indeed this static concept, derived from the
concept of general equilibrium introduced by Léon Walras (1834–1910) in his
book Éléments d’économie politique pure (1873) as an equilibrium (stationary
point) of his tâtonnement process.

Another meaning results from the articulation between dynamics and
viability constraints : This means here that, starting from any initial state
satisfying these constraints, at least one evolution satisfies these constraints
at each instant (such an evolution is called viable). An equilibrium can be
viable or not, these two issues are independent of each other.

The fact that many scarcity constraints in economics are presented in
terms of “balance”, such as the balance of payments, may contribute to the
misunderstanding. Indeed, the image of a balance conveys both the concept
of equalization of opposite forces, hence of constraints, and the resulting
stationarity – often called “stability”, again, an ambivalent word connoting
too many different meanings.

This is also the case in biology, since Claude Bernard (1813-1878) intro-
duced the notion of constancy of inner milieu (constance du milieu intérieur).
In 1898 he wrote: Life results form the encounter of organisms and milieu,
[...] we cannot understand it with organisms only, or with milieu only. This
idea was taken up under the name of “homeostasis” by Walter Cannon (1871-
1945) in his book Bodily changes in pain, hunger, fear and rage (1915). This
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is again the case in ecology and environmental studies, as well as in many
domains of social and human sciences when organisms adapt or not to several
forms of viability constraints.

2.2.3 Viable and Capturing Evolutions

Investigating evolutionary problems, in particular those involving living
beings, should start with identifying the constraints bearing on the variables
which cannot – or should not – be violated. Therefore, if a subset K ⊂ X
represents or describes an environment, we mainly consider evolutions x(·)
viable in the environment K ⊂ X in the sense that

∀t ≥ 0, x(t) ∈ K (2.1)

or capturing the target C in the sense that they are viable in K until they
reach the target C in finite time:

∃ T ≥ 0 such that
{
x(T ) ∈ C
∀t ∈ [0, T ], x(t) ∈ K

(2.2)

We complement Definition 6, p. 15 with the following notations:

Definition 2.2.3 [Viable and Capturing Evolutions] The subset of
evolutions viable in K is denoted by

V(K) := {x(·) | ∀t ≥ 0, x(t) ∈ K} (2.3)

and the subset of evolutions capturing the target C by

K(K,C) := {x(·) | ∃ T ≥ 0 such that x(T ) ∈ C & ∀t ∈ [0, T ], x(t) ∈ K}
(2.4)

We also denote by
V(K,C) := V(K) ∪ K(K,C) (2.5)

the set of evolutions viable in K outside C, i.e. that are viable in K forever
or until they reach the target C in finite time.

Example: The first examples of such environments used in control theory
were vector (affine) subsets because, historically, analytical formulas could
be obtained. Nonlinear control theory used first geometrical methods, which
required smooth equality constraints, yielding environments of the form

K := {x | g(x) = 0} where g : X := R
c �→ Y := R

b (b < c) is smooth
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Subsets such as smooth manifolds (Klein bottle, for instance), having no
boundaries, the viability and invariance problems were evacuated. This is no
longer the case when the environment is defined by inequality constraints,
even smooth ones, yielding subsets of the form

K := {x | g(x) ≤ 0}

the boundary of which is a proper subset. Subsets of the form

K := {x ∈ L | g(x) ∈M}

where L ⊂ X , g : X �→ Y and where M ⊂ Y are typical environments
encountered in mathematical economics. It is for such cases that mathemat-
ical difficulties appeared, triggering viability theory.

Constrained subsets in economics and biology are generally not smooth.
The question arose to build a theory and forge new tools that did require
neither the smoothness nor the convexity of the environments. Set-valued
analysis, motivated in part by these viability and capturability issues,
provided such tools.

Remark. These constraints can depend on time (time-dependent con-
straints), as we shall see in Chap. 8, p. 273, upon the state, the history (or
the path) of the evolution of the state. Morphological equations are kind of
differential equations governing the evolution of the constrained state K(t)
and can be paired with evolutions of the state. The issues are dealt in [23,
Aubin]. ��

Remark. We shall introduce other families of evolutions, such as the
viable evolutions permanent in a cell C ⊂ K of fluctuating around C
which are introduced in bio-mathematics (see Definition 9.2.1, p. 322). In
“qualitative physics”, a sequence of tasks or objectives is described by a family
of subsets regarded as qualitative cells. We shall investigate the problem
of finding evolutions visiting these cells in a prescribed order (see Sect. 8.8,
p. 302). ��

These constraints have to be confronted with evolutions. It is now time
to describe how these evolutions are produced and to design mathematical
translations of several evolutionary mechanisms.

2.3 Discrete Systems

Discrete evolutionary systems can be defined on any metric state space X .
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12 Examples of State Spaces for Discrete Systems:

1. When X := R
d, we take any of the equivalent vector space metrics for

which the addition and the multiplication by scalars is continuous.
2. When Xρ := ρZd is a grid with step size ρ, we take the discrete topology,

defined by d(x, x) := 0 and d(x, y) := 1 whenever x �= y. A sequence of
elements xn ∈ X converges to x if there exists an integer N such that
for any n ≥ N , xn = x, any subset is both closed and open, the compacts
are finite subsets. Any single-valued map from X := Z

d to some space E
is continuous.

Deterministic discrete systems, defined by

∀j ≥ 0, xj+1 = ϕ(xj) where ϕ : x ∈ X �→ ϕ(x) ∈ X

are the simplest ones to formulate, but not necessarily the easiest ones to
investigate.

Definition 2.3.1 [Evolutionary Systems associated with Discrete
Systems] Let X be any metric space and ϕ : X �→ X be the single-valued
map associating with any state x ∈ X its successor ϕ(x) ∈ X.
The space of discrete evolutions −→x := {xj}j∈N is denoted by XN. The
evolutionary system Sϕ : X �→ XN associated with the map ϕ : x ∈ X �→
ϕ(x) ∈ X associates with any x ∈ X the set Sϕ(x) of discrete evolutions −→x
starting at x0 = x and governed by the discrete system

∀j ≥ 0, xj+1 = ϕ(xj)

An equilibrium of a discrete dynamical system is a stationary evolution
governed by this system.

An equilibrium x ∈ X (stationary point) of an evolution −→x governed by
the discrete system xj+1 = ϕ(xj) is a fixed point of the map ϕ, i.e., a solution
to the equation ϕ(x) = x. There are two families of Fixed Point Theorems
based:

1. either on the simple Banach–Cacciopoli–Picard Contraction Mapping
Theorem in complete metric spaces,

2. or on the very deep and difficult 1910 Brouwer Fixed Point Theorem on
convex compact subsets, the cornerstone of nonlinear analysis.
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Example: The Quadratic Map The quadratic map ϕ associates with
x ∈ [0, 1] the element ϕ(x) = rx(1−x) ∈ R, governing the celebrated discrete

logistic system xj+1 = rxj(1−xj). The fixed points of ϕ are 0 and c :=
r − 1
r

,

which is smaller than 1. We also observe that ϕ(0) = ϕ(1) = 0 so that the
successor of 1 is the equilibrium 0.

For K := [0, 1] ⊂ R to be a state space under this discrete logistic system,
we need ϕ to map K := [0, 1] to itself, i.e., that r ≤ 4. Otherwise, for

r > 4, the roots of the equation ϕ(x) = 1 are equal to a :=
1
2
−
√
r2 − 4r

2r
and

b :=
1
2

+
√
r2 − 4r

2r
, where b < c. We denote by d ∈ [0, a] the other root of the

equation ϕ(d) = c. Therefore, for any x ∈]a, b[, ϕ(x) > 1.
A way to overcome this difficulty is to associate with the single-valued

ϕ : [0, 1] �→ R the set-valued map Φ : [0, 1] � [0, 1] defined by Φ(x) := ϕ(x)
when x ∈ [0, a] and x ∈ [b, 1] and Φ(x) := ∅ when x ∈]a, b[. Let us set

ω�(y) :=
1
2
−
√
r2 − 4ry

2r
and ω�(y) :=

1
2

+

√
r2 − 4ry

2r

The inverse Φ−1 is defined by

Φ−1(y) :=
(
ω�(y), ω�(y)

)

Fig. 2.1 Discrete Logistic System.

The graph of the function x �→ ϕ(x) := rx(1 − x) for r = 5 is displayed as
a function ϕ : [0, 1] �→ R as a set-valued map Φ : [0, 1] � [0, 1] associating
with any x ∈ [a, b] the empty set. Equilibria are the abscissas of points of
the intersection of the graph Graph(ϕ) of ϕ and of the bisectrix. We observe
that 0 and the point c (to the right of b) are equilibria. On the right, the
graph of the inverse is displayed, with its two branches.
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The predecessors Φ−1(0) and Φ−1(c) of equilibria 0 and c are initial states
of viable discrete evolutions because, starting from them, the equilibria are
their successors, from which the evolution remains in the interval forever.
They are made of ω�(0) = 1 and of c1 := ω�(c). In the same way, the four
predecessors Φ−2(0) := Φ−1(Φ−1(0)) = {ω�(1) = a, ω�(1) = b} and Φ−2(c)
are initial states of viable evolutions, since, after two iterations, we obtain
the two equilibria from which the evolution remains in the interval forever.
And so on: The subsets Φ−p(0) and Φ−p(c) are made of initial states from
which start evolutions which reach the two equilibria after p iterations, and
thus, which are viable in K. They belong to the viability kernel of K (see
Definition 2.9.1, p. 71 below). This study will resume in Sect. 2.9.4, p. 79.

2.4 Differential Equations

2.4.1 Determinism and Predictability

We begin by the simplest class of continuous time evolutionary systems, which
are associated with differential equations

x′(t) = f(x(t))

where f : X �→ X is the single-valued map associating with any state x ∈ X
its velocity f(x) ∈ X .

Definition 2.4.1 [Evolutionary Systems associated with Differen-
tial Equations] Let f : X �→ X be the single-valued map associating with
any state x ∈ X its velocity f(x) ∈ X.
The evolutionary system Sf : X � C(0,+∞;X) defined by f : X �→ X is
the set-valued map associating with any x ∈ X the set Sf (x) of evolutions
x(·) starting at x and governed by differential equation

x′(t) = f(x(t))

The evolutionary system is said to be deterministic if Sf : X �
C(0,+∞;X) is single-valued. An equilibrium of a differential equation is
a stationary solution of this equation.

An equilibrium x (stationary point) of a differential equation x′(t) =
f(x(t)) being a constant evolution, its velocity is equal to 0, so that it is
characterized as a solution to the equation f(x) = 0.
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The evolutionary system Sf associated with the single-valued map f is a
priori a set-valued map, taking:

1. nonempty values Sf (x) whenever there exists a solution to the differential
equation starting at x, guaranteed by (local) existence theorems (the Peano
Theorem, when f is continuous),

2. at most one value Sf (x) whenever uniqueness of the solution starting at
x is guaranteed. There are many sufficient conditions guaranteeing the
uniqueness: f is Lipschitz, by the Cauchy–Lipschitz Theorem, or f is
monotone in the sense that there exists a constant λ ∈ R such that

∀x, y ∈ X, 〈f(x)− f(y), x− y〉 ≤ λ‖x− y‖2

(we shall not review other uniqueness conditions here.)

Since the study of such equations, linear and nonlinear, has, for a long
time, been a favorite topic among mathematicians, the study of dynamical
systems has for a long time focussed on equilibria: existence, uniqueness,
stability, which are investigated in Chap. 9, p. 319.

Existence and uniqueness of solutions to a differential equation was iden-
tified with the mathematical description of determinism by many scientists
after the 1796 book L’Exposition du système du monde and the 1814 book
Essai philosophique sur les probabilités by Pierre Simon de Laplace (1749–
1827):

Determinism and predictability. “We must regard the
present state of the universe as the effect of its anterior
state and not as the cause of the state which follows. An
intelligence which, at a given instant, would know all the
forces of which the nature is animated and the respective
situation of the beings of which it is made of, if by the
way it was wide enough to subject these data to analysis,
wouldembrace in a unique formula the movements of the

largest bodies of the universe and those of the lightest atom: Nothing would
be uncertain for it, and the future, as for the past, would present at its eyes.”
Does it imply what is meant by “predictability”?

Although a differential equation assigns a unique velocity to each state, this
does not imply that the associated evolutionary system S : X � C(0,+∞;X)
is deterministic, in the sense that it is univoque (single-valued). It may
happen that several evolutions governed by a differential equation start from
a same initial state. Valentin–Joseph Boussinesq (1842–1929) used this lack
of uniqueness property of solutions to a differential equation starting at some
initial state (that he called “bifurcation”, with a different meaning that this



2.4 Differential Equations 55

word has now, as in Box 11, p. 47) to propose that the multivalued character
of evolutions governed by a univoque mechanism describes the evolution of
living beings.

The lack of uniqueness of some differential equations does not allows us
to regard differential equations as a model for a deterministic evolution.
Determinism can be translated by evolutionary systems which associate with
any initial state one and only one evolution.

But even when a differential equation generates a deterministic evolu-
tionary system, Laplace’s enthusiasm was questioned by Henri Poincaré in
his study of the evolution of the three-body problem, a simplified version
of the evolution of the solar system in his famous 1887 essay. He observed
in his 1908 book “La science et l’hypothèse” that tiny differences of initial
conditions implied widely divergent positions after some time:

Predictions. “If we knew exactly the laws of Nature and
the situation of the universe at the initial moment, we
could predict exactly the situation of that same universe
at a succeeding moment. But even if it was the case
that the natural laws had no longer any secret for us,
we could still know the situation approximately. If that
enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should
say that the phenomenon has been predicted, that it is

governed by the laws. But it is not always so; it may happen that small
differences in the initial conditions produce very great ones in the final
phenomena. A small error in the former will produce an enormous error
in the latter. Prediction becomes impossible and we obtain a fortuitous
phenomenon.”

The sensitive dependence on initial conditions is one prerequisite of
“chaotic” behavior of evolutions, resurrected, because, two centuries earlier,
even before Laplace, Paul Henri Thiry, Baron d’Holbach wrote in one of his
wonderful books, the 1770 Système de la nature:

Holbach. “Finally, if everything in nature is linked to
everything, if all motions are born from each other although
they communicate secretely to each other unseen from us,
we must hold for certain that there is no cause small enough
or remote enough which sometimes does not bring about the
largest and the closest effects on us. The first elements of
athunderstorm may gather in the arid plains of Lybia, then

will come to us with the winds, make our weather heavier, alter the moods
and the passions of a man of influence, deciding the fate of several nations”.
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Some nonlinear differential equations produce chaotic behavior, quite
unstable, sensitive to initial conditions and producing fluctuating evolutions
(see Definition 9.2.1, p. 322). However, for many problems arising in biologi-
cal, cognitive, social and economic sciences, we face a completely orthogonal
situation, governed by differential inclusions, regulated or controlled systems,
tychastic or stochastic systems, but producing evolutions as regular or stable
(in a very loose sense) as possible for the sake of adaptation and viability
required for life.

2.4.2 Example of Differential Equations: The Lorenz
System

Since uncertainty is the underlying theme of this book, we propose to
investigate the Lorenz system of differential equations, which is deterministic,
but unpredictable in practice, as a simple example to test results presented
in this book.

Studying a simplified meteorological model made of a system of three
differential equations, the meteorologist Edward Lorenz discovered by chance
(the famous serendipity) in the beginning of the 1960s that for certain
parameters for which the system has three non stable equilibria, the “limit
set” was quite strange, “chaotic” in the sense that many evolutions governed
by this system “fluctuate”, approach one equilibrium while circling around it,
then suddenly leave away toward another equilibrium around which it turns
again, and so on. In other words, this behavior is strange in the sense that
the limit set of an evolution is not a trajectory of a periodic solution.1

Predictability: Does the flap of a butterfly’s wing in
Brazil set off a tornado in Texas? After Henri Poincaré
who discovered the lack of predictability of evolutions of the
three-body problem, Lorenz presented in 1979 a lecture to
the American Association for the Advancement of Sciences
with the above famous title.

Lorenz introduced the following variables:

1. x, proportional to the intensity of convective motion,

1 As in the case of two-dimensional systems, thanks to the Poincaré–Bendixon Theorem.
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2. y, proportional to the temperature difference between ascending and
descending currents,

3. z, proportional to the distortion (from linearity) of the vertical tempera-
ture profile.

Their evolution is governed by the following system of differential equations:
⎧⎨
⎩

(i) x′(t) = σy(t)− σx(t)
(ii) y′(t) = rx(t) − y(t)− x(t)z(t)
(iii) z′(t) = x(t)y(t) − bz(t)

(2.6)

where the positive parameters σ and b satisfy σ > b+1 and r is the normalized
Rayleigh number.

We observe that the vertical axis (0, 0, z)z∈R is a symmetry axis, which is
also the viability kernel of the hyperplane (0, y, z) under the Lorenz system,
from which the solutions boil down to the exponentials (0, 0, ze−bt).

Fig. 2.2 Trajectories of six evolutions of the Lorenz system.

starting from initial conditions (i, 50, 0), i = 0, . . . , 5. Only the part of the
trajectories from step times ranging between 190 and 200 are shown for
clarity.

If r ∈]0, 1[, then 0 is an asymptotically stable equilibrium. If r = 1, the
equilibrium 0 is “neutrally stable”. When r > 1, the equilibrium 0 becomes
unstable and two more equilibria appear:
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e1 :=
(√

b(r − 1),
√
b(r − 1), r − 1

)
& e2 :=

(
−
√
b(r − 1),−

√
b(r − 1), r − 1

)

Setting r� :=
σ(σ + b+ 3)
σ − b− 1

, these equilibria are stable when r� > 1 and

unstable when r > r�. We take σ = 10, b = 8
3 and r = 28 in the numerical

experiments.

2.5 Regulons and Tyches

For physical and engineering systems controlled in an optimal way by optimal
controls, agents are decision makers or identified actors having access to the
controls of the system.

For systems involving living beings, agents interfering with the evolution-
ary mechanisms are often myopic, conservative, lazy and opportunistic, from
molecules to (wo)men, exhibiting some contingent freedom to choose among
some regulons (regulatory parameters) to govern evolutions.

In both cases, controls and regulons may have to protect themselves
against tychastic uncertainty, obeying no statistical regularity.

These features are translated by adding to state variables other ones,
parameters, among which (constant) coefficients, controls, regulons and
tyches. These different names describe the different questions concerning their
role in the dynamics of the system.

In other words, the state of the system evolves according to evolutionary
laws involving parameters, which may in their turn depend on observation
variables of the states:

Definition 2.5.1 [Classification of Variables]

1. states of the system;
2. parameters, involved in the law of evolution of the states;
3. values, indicators which provide some information on the system, such

as exit functions, minimal time functions, minimal length functions,
Lyapunov functions, value functions in optimal control, value of a
portfolio, monetary mass, congestion traffic, etc.;

4. observations on the states, such as measurements, information, predic-
tions, etc., given or built.

We distinguish several categories of parameters, according to the existence
or the absence of an actor (controller, agent, decision-maker, etc.) acting on
them on one hand, or the degree of knowledge or control on the other hand,
and to explain their role:
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Definition 2.5.2 [Classification of Parameters] Parameters can be
classified in the following way:

1. constant coefficients which may vary, but not in time (see Box 11, p. 47),
2. parameters under the command of an identified actor, called controls (or

decision parameters),
3. parameters evolving independently of an identified actor, which can

themselves be divided in two classes:

a. Regulons or regulation controls,
b. Tyches, perturbations, disturbances, random events.

These parameters participate in different ways to the general concept of
uncertainty. A given system can depend only on controls, and is called a
controlled system, or on regulons, and is called a regulated system or on
tyches, and is called a tychastic system. It also can involve two or three of
these parameters: for instance, if it involves controls and tyches, it is called
a tychastic controlled system, and, in the case of regulons and tyches, a
tychastic regulated system.

The study of parameterized systems thus depends on the interpretation of
the parameters, either regarded as controls and regulons on one hand, or as
tyches or random variables on the other.

1. In control theory, it is common for parameters to evolve in order to solve
some specific requirements (optimality, viability, reachability) by at least
one evolution governed by an identified actor (agent, decision-maker,
etc.). Control theory is also known under the names of automatics, and,
when dealing with mechanical systems, robotics. Another word, Cybernet-
ics, from the Greek kubernesis,“control”,“govern”, as it was suggested first
by André Ampère (1775–1836), and later, by Norbert Wiener (1894-1964)
in his famous book Cybernetics or Control and Communication in the
Animal and the Machine published in 1948, is by now unfortunately no
longer currently used by American specialists of control theory. In physics
and engineering, the actors are well identified and their purpose clearly
defined, so that only state, control and observation variables matter.

2. In biological, cognitive, social and economic sciences, these parameters
are not under the control of an identified and consensual agent involved in
the evolutionary mechanism governing the evolutions of the state of the
system. In those so called “soft sciences” involving uncertain evolutions
of systems (organizations, organisms, organs, etc.) of living beings, the
situation is more complex, because the identification of actors governing
the evolution of parameters is more questionable, so that we regard in this
case these parameters as regulons (for regulatory parameters).
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13 Examples of States and Regulons

Field State Regulon Viability Actors
Economics Physical Fiduciary Economic Economic

goods goods scarcity agents
Genetics Phenotype Genotype Viability or Bio-mechanical

homeostasis metabolism
Sociology Psychological Cultural Sociability Individual

state codes actors
Cognitive Sensorimotor Conceptual Adaptiveness Organims
sciences states codes

The main question raised about controlled systems is to find “optimal
controls” optimizing an intertemporal criteria, or other objectives, to
which we devote Chap. 4, p. 125. The questions raised about regulated
system deal with “inertia principle” (keep the regulon constant as long as
viability is not at stakes), inertia functions, heavy evolutions, etc., which
are exposed in Chap. 6, p. 199.

3. However, even control theory has to take into account some uncertainty
(disturbances, perturbations, etc.) that we summarize under the name
of tyches. Tyches describe uncertainties played by an indifferent, maybe
hostile, Nature.

Tyche. Uncertainty without statistical regularity
can be translated mathematically by parameters
on which actors, agents, decision makers, etc.
have no controls. These parameters are often per-
turbations, disturbances (as in “robust control”
or “differential games against nature”) or more
generally, tyches (meaning “chance” in classical
Greek, from the Goddess Tyche) ranging over a
state-dependent tychastic map. They could have
be called “random variables” if this terminology
were not already preempted by probabilists.

This is why we borrow the term of tychastic evolution to Charles Peirce who
introduced it in 1893 under the title evolutionary love:
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Tychastic evolution. “Three modes of evolution have
thus been brought before us: evolution by fortuitous
variation, evolution by mechanical necessity, and evo-
lution by creative love. We may term them tychastic
evolution, or tychasm, anancastic evolution, or anancasm,
and agapastic evolution, or agapasm.” In this paper,
Peirce associates the concept of anancastic evolution
with the Greek concept of necessity, ananke, anticipating

the “chance and necessity” framework that motivated viability theory.

When parameters represent tyches (disturbances, perturbations, etc.), we are
interested in “robust” control of the system in the sense that all evolutions
of the evolutionary system starting from a given initial state satisfy a given
evolutionary property.

Fortune fortuitously left its role to randomness, originating in the French
“randon”, from the verb “randir”, sharing the same root than the English “to
run” and the German rennen. When running too fast, one looses the control
of himself, the race becomes a poor “random walk”, bumping over scandala
(stones scattered on the way) and falling down, cadere in Latin, a matter of
chance since it is the etymology of this word. Hazard was imported by William
of Tyre from the crusades from Palestine castle named after a dice game, az
zahr. Now dice, in Latin, is alea, famed after Julius Caesar’s alea jacta est,
which was actually thrown out the English language: chance and hazard took
in this language the meaning of danger, itself from Latin dominarium. Being
used in probability, the word random had to be complemented by tyche for
describing evolutions without statistical regularity prone to extreme events.

Zhu Xi (1130–1200), one of the most important unorthodox
neo-Confucian of the Song dynasty, suggested that “if you want to treat
everything, and as changes are infinite, it is difficult to predict, it must,
according to circumstances, react to changes (literally, “follow, opportunity,
reaction, change), instead of a priori action.

The four ideograms follow, opportunity, reaction, change:

are combined to express in Chinese:

1. by the first half, “follow, opportunity”, , the concept of randomness
or stochasticity,

2. while Shi Shuzhong has proposed that the second half, “reaction, change”,
; translate the concept of tychasticity,

3. and “no, necessary”, , translates contingent.
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2.6 Discrete Nondeterministic Systems

Here, the time set is N, the state space is any metric set X and the
evolutionary space is the space XN of sequences −→x := {xj}j∈N of elements
xj ∈ X . The space of parameters (controls, regulons or tyches) is another
set denoted by U . The evolutionary system is defined by the discrete
parameterized system (ϕ,U) where:

1. ϕ : X × U �→ X is a map associating with any state-parameter pair (x, u)
the successor ϕ(x, u),

2. U : X � U is a set-valued map associating with any state x a set U(x) of
parameters feeding back on the state x.

Definition 2.6.1 [Discrete Systems with State-Dependent Param-
eters] A discrete parameterized system Φ := ϕ(·, U(·)) defines the evolu-
tionary system SΦ : X � XN in the following way: for any x ∈ X, SΦ(x)
is the set of sequences −→x governed by

{
(i) xj+1 = ϕ(xj , uj)
(ii) uj ∈ U(xj)

(2.7)

starting from x.

When the parameter space is reduced to a singleton, we find discrete
equations xj+1 = ϕ(xj) as a particular case. They generate deterministic
evolutionary systems Sϕ : X �→ XN.

Setting
Φ(x) := ϕ(x, U(x)) = {ϕ(x, u)}u∈U(x)

the subset of all available successors ϕ(x, u) at x when u ranges over the
set of parameters allows us to treat these dynamical systems as difference
inclusions:

Definition 2.6.2 [Difference Inclusions] Let Φ(x) := ϕ(x, U(x))
denote the set of velocities of the parameterized system. The evolutions −→x
governed by the parameterized system

{
(i) xj+1 = ϕ(xj , uj)
(ii) uj ∈ U(xj)

(2.8)

are governed by the difference inclusion

xj+1 ∈ Φ(xj) (2.9)

and conversely.
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An equilibrium of a difference inclusion is a stationary solution of this
inclusion.

Actually, any difference inclusion xj+1 ∈ Φ(xj) can be regarded as a
parameterized system (ϕ,U) by taking ϕ(x, u) := u and U(x) := Φ(x).

Selections of the set-valued map U are retroactions (see Definition 1.7,
p. 18) governing specific evolutions. Among them, we single out the following

• The Slow Retroaction. It is associated with a given fixed element a ∈ X
(for instance, the origin in the case of a finite dimensional vector space).
We set

u◦(x) :=
{
y ∈ U(x) | d(a, y) = inf

z∈U(x)
d(a, z)

}

The evolutions governed by the dynamical system

∀n ≥ 0, xn+1 ∈ ϕ(xn, u◦(xn))

are called slow evolutions, i.e., evolutions associated with parameters
remaining as close as possible to the given element a. In the case of a
finite dimensional vector space, slow evolutions are evolutions associated
with controls with minimal norm.

• The Heavy Retroaction. We denote by P(U) the hyperspace (see
Definition 18.3.3, p. 720) of all subsets of U . Consider the set-valued
map S : P(U) × U � U associating with any pair (A, u) the subset
S(A, u) := {v ∈ A | d(u, v) = infw∈A d(u,w)} of “best approximations of
u by elements of A”. The evolutions governed by the dynamical system

∀n ≥ 0, xn+1 ∈ ϕ(xn, s(U(xn), un−1))

are called heavy evolutions.
This amounts to taking at time n a regulon un ∈ s(U(xn), un−1) as close
as possible to the regulon un−1 chosen at the preceding step. If such a
regulon un−1 belongs to U(xn), it can be kept at the present step n. This
is in this sense that the selection s(U(x), u) provides a heavy solution,
since the regulons are kept constant during the evolution as long as the
viability is not at stakes.
For instance, when the state space is a finite dimensional vector space
X supplied with a scalar product and when the subsets U(x) are closed
and convex, the projection theorem implies that the map s(U(x), u) is
single-valued.
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2.7 Retroactions of Parameterized Dynamical Systems

2.7.1 Parameterized Dynamical Systems

The space of parameters (controls, regulons or tyches) is another finite
dimensional vector space U := R

c.

Definition 2.7.1 [Evolutionary Systems associated with Control
Systems] We introduce the following notation

1. f : X × U �→ X is a map associating the velocity f(x, u) of the state x
with any state-control pair (x, u),

2. U : X � U is a set-valued map associating a set U(x) of controls feeding
back on the state x.

The evolutionary system S : X � C(0,+∞;X) defined by the control
system (f, U) is the set-valued map associating with any x ∈ X the set
S(x) of evolutions x(·) governed by the control (or regulated) system

{
(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) (2.10)

starting from x.

Remark. Differential equation (2.10)(i) is an “input-output map” associ-
ating an output-state with an input-control. Inclusion (2.10)(ii) associates
input-controls with output-states, “feeds back” the system (the a priori
feedback relation is set-valued, otherwise, we just obtain a differential
equation). See Figure 1.4, p. 14. ��

Remark. We have to give a meaning to the differential equation x′(t) =
f(x(t), u(t)) and inclusion u(t) ∈ U(x(t)) in system (2.10). Since the param-
eters are not specified, this system is not valid for any t ≥ 0, but only for
“almost all” t ≥ 0 (see Theorems 19.2.3, p.771 and 19.4.3, p.783). We delay
the consequences of the Viability Theorem with such mathematical property.
The technical explanations are relegated to Chap. 19, p.769 because they are
not really used in the rest of the book. By using graphical derivativesDx(t)(1)
instead of the usual derivatives, the “differential” equation Dx(t)(1) �
f(x(t), u(t)) providing the same evolutions holds true for any t ≥ 0 (see
Proposition 19.4.5, p.787). ��
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2.7.2 Retroactions

In control theory, open and closed loop controls, feedbacks or retroactions
provide the central concepts of cybernetics and general systems theory:

Definition 2.7.2 [Retroactions] Retroactions are single-valued maps ũ :
(t, x) ∈ R+ ×X �→ ũ(t, x) ∈ U that are plugged as inputs in the differential
equation

x′(t) = f(x(t), ũ(t, x(t))) (2.11)

In control theory, state-independent retroactions t �→ ũ(t, x) := u(t)
are called open loop controls whereas time-independent retroactions x �→
ũ(t, x) := ũ(x) are called closed loop controls or feedbacks. See Figure 1.7,
p. 18.

The class Ũ in which retroactions are taken must be consistent with the
properties of the parameterized system so that

• the differential equations x′(t) = f(x(t), ũ(t, x(t))) have solutions2,
• for every t ≥ 0, ũ(t, x) ∈ U(x).

When no state-dependent constraints bear on the controls, i.e., when
U(x) = U does not depend on the state x, then open loop controls can
be used to parameterize the evolutions S(x, u(·))(·) governed by differential
equations (2.10)(i).

This is no longer the case when the constraints on the controls depend
on the state. In this case, we parameterize the evolutions of control system
(2.10) by closed loop controls or retroactions.

Inclusion (2.10)(ii), which associates input-controls with output-states,
“feeds back” the system in a set-valued way. Retroactions can be used to
parameterize the evolutionary system spanned by the parameterized system
(f, U): with any retroaction ũ we associate the evolutionary system S(·, ũ)
generated by the differential equation

x′(t) = f(x(t), ũ(t, x(t)))

Whenever a class Ũ has been chosen, we observe the following

{S(x, ũ)}ũ∈Ũ ⊂ S(x)

2 Open loop controls can be only measurable. When the map f : X×U �→ X is continuous,
the Carathéodory Theorem states that differential equation (2.10)(i) has solutions even
when the open loop control is just measurable, (and thus, can be discontinuous as a function
of time). It is the case whenever they take their values in a finite set, in which case they
are usually called “bang-bang controls” in the control terminology.
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The evolutionary system can be parameterized by a feedback class Ũ if
equality holds true.

The choice of an adequate class Ũ of feedbacks regulating specific
evolutions satisfying required properties is often an important issue. Finding
them may be a difficult problem to solve. Even though one could solve
this problem, computing or using a feedback in a class too large may
not be desirable whenever feedbacks are required to belong to a class of
specific maps (constant maps, time-dependent polynomials, etc.). Another
issue concerns the use of a prescribed class of retroactions and to “combine”
them to construct new feedbacks for answering some questions, viability or
capturability, for instance. This issue is dealt with in Chap. 11, p. 437.

Remark. For one-dimensional systems, retroactions are classified in
positive retroactions, when the phenomenon is “amplified”, and negative ones
in the opposite case. They were introduced in 1885 by French physiologist
Charles-Edouard Brown-Séquard under the nicer names “dynamogenic” and
“inhibitive” retroactions respectively. ��

The concepts of retroaction and feedback play a central role in control
theory, for building servomechanisms, and then, later, in all versions of the
“theory of systems” born from the influence of the mathematics of their time
on biology, as the Austrian biologist Ludwig von Bertalanffy (1901-1972) in
his book Das biologische Weltbild published in 1950, and after Jan Smuts
(1870-1950) in his 1926 Holism and evolution. The fact that not only effects
resulted from causes, but that also effects retroacted on causes, “closing” a
system, has had a great influence in many fields.

2.7.3 Differential Inclusions

In the early times of (linear) control theory, the set-valued map was assumed
to be constant (U(·) = U) and even the parameter set U was taken to be
equal to the entire vector space U := R

c. In this case, the parameterized
system is a system of parameterized differential equations, so that the theory
of (linear) differential equations could be used.

The questions arose to consider the case of state-dependent constraints
bearing on the controls. For example, set-valued maps of the form U(x) :=∏m
j=1[aj(x), bj(x)] summarize state-dependent constraints of the form:

∀t ≥ 0, ∀j = 1, . . . ,m, aj(x(t)) ≤ uj(t) ≤ bj(x(t))

When the constraints bearing on the parameters (controls, regulons,
tyches) are state dependent, we can no longer use differential equations. We
must appeal to the theory of differential inclusions, initiated in the early
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1930’s by André Marchaud and Sanislas Zaremba, and next, by the Polish
and Russian schools, around Tadeusz Ważewski and Alexei Filippov, who laid
the foundations of the mathematical theory of differential inclusions after the
1950’s.

Indeed, denoting by

F (x) := f(x, U(x)) = {f(x, u)}u∈U(x)

the subset of all available velocities f(x, u) at x when u ranges over the set
of parameters, we observe the following:

Lemma 2.7.3 [Differential Inclusions] Let F (x) := f(x, U(x)) denote
the set of velocities of the parameterized system. The evolutions x(·)
governed by the parameterized system

{
(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) (2.12)

are governed by the differential inclusion

x′(t) ∈ F (x(t)) (2.13)

and conversely.
An equilibrium of a differential inclusion is a stationary solution of this

inclusion.

By taking f(x, u) := u and U(x) := F (x), any differential inclusion
x′(t) ∈ F (x(t)) appears as a parameterized system (f, U) parameterized by
its velocities. Whenever we do not need to write the controls explicitely, it is
simpler to consider a parameterized system as a differential inclusion. Most
theorems on differential equations can be adapted to differential inclusions
(some of them, the basic ones, are indeed more difficult to prove), but they
are by now available.

However, there are examples of differential inclusions without solutions,
such as the simplest one:

Example of Differential Inclusion Without Solution: The con-
strained set is K := [a, b] and the subsets of velocities are singletons except
at one point c ∈]a, b[, where F (x) := {−1, 1}:

F (x) :=

⎧⎨
⎩

+1 if x ∈ [a, c[
−1 or + 1 if x = c
−1 if x ∈]c, b]
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No evolution can start from c. Observe that this is no longer a counter-
example when F (c) := [−1,+1], since in this case c is an equilibrium, since
its velocity 0 belongs to F (c).

Remark. Although a differential inclusion assigns several velocities to a
same states, this does not imply that the associated evolutionary system is
non deterministic. It may happen for certain classes of differential inclusions.
This is the case for instance when there exists a constant λ ∈ R such that

∀x, y ∈ X, ∀u ∈ F (x), ∀v ∈ F (y), 〈u− v, x − y〉 ≤ λ‖x− y‖2

because in this case evolutions starting from each initial state, if any, are
unique. ��

For discrete dynamical systems, the single-valuedness of the dynamics ϕ :
X �→ X is equivalent to the single-valuedness of the associated evolutionary
system Sϕ : X �→ XN. This is no longer the case for continuous time
dynamical systems:

Warning: The deterministic character of an evolutionary system gen-
erated by a parameterized system is a concept different from the set-valued
character of the map F . What matters is that the evolutionary system S
associated with the parameterized system is single-valued (deterministic evo-
lutionary systems) or set-valued (nondeterministic evolutionary systems).

It is the case, for instance, for set-valued maps F which are monotone set-
valued maps in the sense that

∀ y ∈ Dom(F ), ∀ u ∈ U(x), y ∈ V (y), 〈u− v, x− y〉 ≤ 0

2.8 Evolutionary Systems

Therefore, we shall study general evolutionary systems defined as set-valued
maps X � C(0,+∞;X) satisfying given requirements listed below. For
continuous time evolutionary systems, the state space X is a finite dimen-
sional vector space for most examples. However, besides the characterization
of regulation maps, which are specific for control systems, many theorems
are true even in cases when the evolutionary system is not generated by
control systems or differential inclusions, and for infinite dimensional vector
spaces X .
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Other Examples of State Spaces:

1. When X := C(−∞, 0;X) is the space of evolution histories (see Chap. 12
of the first edition of [18, Aubin]), we supply it with the metrizable
compact convergence topology,

2. When X is a space of spatial functions when one deals with partial
differential inclusions or distributed control systems, we endow it with
its natural topology for which it is a complete metrizable spaces,

3. When X := K(Rd) is the set of nonempty compact subsets of the vector
space R

d, we use the Pompeiu–Hausdorff topology (morphological and
mutational equations, presented in [23, Aubin]).

The algebraic structures of the state space appear to be much less relevant
in the study of evolutionary systems. Only the following algebraic operations
on the evolutionary spaces C(0,+∞;X) are used in the properties of viability
kernels and capture basins:

Definition 2.8.1 [Translations and Concatenations]

1. Translation Let x(·) : R+ �→ X be an evolution. For all T ≥ 0,
the translation (to the left) κ(−T )(x(·)) of the evolution x(·) is defined
by κ(−T )(x(·))(t) := x(t + T ) and t the translation (to the right)
κ(+T )(x(·))(t) := x(t− T ),

2. Concatenation Let x(·) : R+ �→ X and y(·) : R+ �→ X be two
evolutions. For all T ≥ 0, the concatenation (x(·) �T y(·))(·) of the
evolutions x(·) and y(·) at time T is defined by

(x(·) �T y(·))(t) :=
{
x(t) if t ∈ [0, T ]
κ(+T )(y(·))(t) := y(t− T ) if t ≥ T

(2.14)

Fig. 2.3 Translations and Concatenations.

• plain (—): x(·) for t ∈ [0, T ];
• dash dot dot (− · ·): x(·) for t ≥ T ;
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• dot (· · · ): y(·);
• dash dot (−·): κ(−T )(x(·));
• dashed (− −): (x �T y)(·).
x(·) is thus the union of the plain and the dash dot dot. The concatenation
x(·) �T y(·) of x and y is the union of the plain and the dashed.

The concatenation (x(·) �T y(·))(·) of two continuous evolutions at time T
is continuous if x(T ) = y(0). We also observe that (x(·)�0 y(·))(·) = y(·), that
∀T ≥ S ≥ 0, (κ(−S)(x(·) �T y(·))) = (κ(−S)x(·)) �T−S y(·) and thus, that

∀T ≥ 0, κ(−T )(x(·) �T y(·)) = y(·)

The adaptation of these definitions to discrete time evolutions is obvious:
⎧⎨
⎩

(i) κ(−N)(−→x )j := xj+N

(ii) (−→x �N −→y )j :=
{
xj if 0 ≤ j < N
yj−N if j ≥ N

(2.15)

We shall use only the following properties of evolutionary systems:

Definition 2.8.2 [Evolutionary Systems] Let us consider a set-valued
map S : X � C(0,+∞;X) associating with each initial state x ∈ X a
(possibly empty) subset of evolutions x(·) ∈ S(x) starting from x in the
sense that x(0) = x. It is said to be an evolutionary system if it satisfies

1. the translation property: Let x(·) ∈ S(x). Then for all T ≥ 0, the
translation κ(−T )(x(·)) of the evolution x(·) belongs to S(x(T )),

2. the concatenation property: Let x(·) ∈ S(x). Then for every T ≥ 0 and
y(·) ∈ S(x(T )), the concatenation (x(·) �T y(·))(·) belongs to S(x).

The evolutionary system is said to be deterministic if S : X � C(0,+∞;X)
is single-valued.

There are several ways for describing continuity of the evolutionary system
x � S(x) with respect to the initial state, regarded as stability property:
Stability means generally that the solution of a problem depends continuously
upon its data or parameters. Here, for differential inclusions, the data are
usually and principally the initial states, but can also be other parameters
involved in the right hand side of the differential inclusion. We shall introduce
them later, when we shall study the topological properties of the viability
kernels and capture basins (See Sect. 10.3.2, p. 387 of Chap. 10, p. 375).
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2.9 Viability Kernels and Capture Basins for Discrete
Time Systems

2.9.1 Definitions

Definition 6, p. 15 can be adapted to discrete evolution −→x : it is viable in a
subset K ⊂ X (an environment) if:

∀n ≥ 0, xn ∈ K (2.16)

and capture a target C if it is viable in K until it reaches the target C in
finite time:

∃ N ≥ 0 such that
{
xN ∈ C
∀n ≤ N, xN ∈ K

(2.17)

Consider a set-valued map Φ : X � X from a metric space X to itself,
governing the evolution −→x : n �→ xn defined by

∀j ≥ 0, xj+1 ∈ Φ(xj)

and the associated evolutionary system SΦ : X � XN associating with any
x ∈ X the set of evolutions −→x of solutions to the above discrete system
starting at x. Replacing the space C(0,+∞;X) of continuous time-dependent
functions by the space XN of discrete-time dependent functions (sequences)
and making the necessary adjustments in definitions, we can still regard SΦ
as an evolutionary system from X to XN.

The viability kernels Viab(ϕ,U)(K,C) := ViabΦ(K,C) := ViabSΦ(K,C)
and the invariance kernels InvΦ(K,C) := InvSΦ(K,C) are defined in the very
same way:

Definition 2.9.1 [Viability Kernel under a Discrete System] Let
K ⊂ X be an environment and C ⊂ K a target.

The subset ViabΦ(K,C) of initial states x0 ∈ K such that at least one
evolution −→x ∈ SΦ(x0) starting at x0 is viable in K for all n ≥ 1 or viable
in K until it reaches C in finite time is called the viability kernel of K with
target C under S.

When the target C = ∅ is the empty set, we say that ViabΦ(K) =
ViabΦ(K, ∅) is the viability kernel of K.

The subset CaptΦ(K,C) of initial states x0 ∈ K such that at least one
evolution −→x ∈ SΦ(x0) starting at x0 is viable in K until it reaches C in
finite time is called the capture basin of C viable in K under SΦ.

We say that
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1. a subset K is viable outside the target C ⊂ K under the discrete system
SΦ if K = ViabΦ(K,C) and that K is viable under SΦ if K = ViabΦ(K),

2. that C is isolated in K if C = ViabΦ(K,C),
3. that K is a repeller if ViabΦ(K) = ∅, i.e. if the empty set is isolated in

K.

We introduce the discrete invariance kernels and absorption basins:

Definition 2.9.2 [Invariance Kernel under a Discrete System] Let
K ⊂ X be a environment and C ⊂ K a target.

The subset InvΦ(K,C) := InvSΦ(K,C) of initial states x0 ∈ K such
that all evolutions −→x ∈ SΦ(x0) starting at x0 are viable in K for all
n ≥ 1 or viable in K until they reach C in finite time is called the discrete
invariance kernel of K with target C under SΦ.

When the target C = ∅ is the empty set, we say that InvΦ(K) :=
InvΦ(K, ∅) is the discrete invariance kernel of K.

The subset AbsΦ(K,C) of initial states x0 ∈ K such that all evolu-
tions −→x ∈ SΦ(x0) starting at x0 are viable in K until they reach C in finite
time is called the absorption basin of C invariant in K under SΦ.

We say that

1. a subset K is invariant outside a target C ⊂ K under the discrete
system SΦ if K := InvΦ(K,C) and that K is invariant under SΦ if
K = InvΦ(K),

2. that C is separated in K if C = InvΦ(K,C).

In the discrete-time case, the following characterization of viability and
invariance of K with a target C ⊂ K is a tautology:

Theorem 2.9.3 [The Discrete Viability and Invariance Character-
ization] Let K ⊂ X and C ⊂ K be two subsets and Φ : K � X govern
the evolution of the discrete system. Then the two following statements are
equivalent

1. K is viable outside C under Φ if and only if

∀x ∈ K\C, Φ(x) ∩K �= ∅ (2.18)

2. K is invariant outside C under Φ if and only if

∀x ∈ K\C, Φ(x) ⊂ K (2.19)
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Unfortunately, the analogous characterization is much more difficult in the
case of continuous time control systems, where the proofs of the statements
require almost all fundamental theorems of functional analysis to be proved
(see Chap. 19, p.769).

Remark. The fact that the above characterizations of viability and
invariance in terms of (2.18) and (2.19) are trivial does not imply that using
them is necessarily an easy task: Proving that Φ(x) ∩ K is not empty or
that Φ(x) ⊂ K can be difficult and requires some sophisticated theorems
of nonlinear analysis mentioned in Chap. 9, p. 319. We shall meet the same
obstacles – but compounded – when using the Viability Theorem 11.3.4,
p. 455 and Invariance Theorem 11.3.7, p. 457 for continuous time systems. ��

For discrete systems xj+1 ∈ Φ(xj) := ϕ(xj , U(xj)), it is also easy to
construct the regulation map RK governing viable evolutions in the viability
kernel:

Definition 2.9.4 [Regulation Maps] Let (ϕ,U) be a discrete parameter-
ized system, K be an environment and C ⊂ K be a target. The regulation
map RK is defined on the viability kernel of K by ∀x ∈ Viab(ϕ,U)(K,C)\C,

RK(x) := {u ∈ U(x) such that ϕ(x, u) ∈ Viab(ϕ,U)(K,C)} (2.20)

The regulation map is computed from the discrete parameterized system
(ϕ,U), the environment K and the target C ⊂ K.

For discrete-time parameterized systems (ϕ,U), all evolutions governed
by the discrete parameterized subsystem (ϕ,RK) are viable in the viability
kernel ofK with target C. Unfortunately, this important property is no longer
necessarily true for continuous-time systems.

Theorem 2.9.5 [Invariance Property of Regulation Maps] The
regulation map RK satisfies

Viab(ϕ,U)(K,C) = Inv(ϕ,RK)(K,C)

All other submaps P ⊂ RK also satisfy

Viab(ϕ,U)(K,C) = Inv(ϕ,P )(K,C) (2.21)

The regulation map is the largest map satisfying this property.

Proof. Theorem 2.9.3, p. 72 and Definition 2.9.4, p. 73 imply that the
regulation map RK satisfy
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Viab(ϕ,U)(K,C) = Inv(ϕ,RK)(K,C)

1. If Q ⊂ RK ⊂ U is a set-valued map defined on Viab(ϕ,U)(K,C), then
inclusions

{
Viab(ϕ,U)(K,C) = Inv(ϕ,RK)(K,C) ⊂ Inv(ϕ,Q)(K,C)
⊂ Viab(ϕ,Q)(K,C) ⊂ Viab(ϕ,RK)(K,C) ⊂ Viab(ϕ,U)(K,C)

imply that all the subsets coincide, and in particular, that Inv(ϕ,Q)(K,C) =
Viab(ϕ,U)(K,C).

2. The regulation map RK is the largest one by construction satisfying
(2.21), p. 73, because if a set-valued map P ⊃ RK is strictly larger
than RK , then there would exist an element (x0, u0) ∈ Graph(P ) \
Graph(RK), i.e., such that ϕ(x0, u0) /∈ Viab(ϕ,U)(K,C). But since
Inv(ϕ,P )(K,C) ⊂ Viab(ϕ,U)(K,C), all elements ϕ(x, u) when u ∈ P (x0)
belong to Viab(ϕ,U)(K,C), a contradiction. ��

2.9.2 Viability Kernel Algorithms

For evolutionary systems associated with discrete dynamical inclusions and
control systems, the Viability Kernel Algorithm and the Capture Basin
Algorithm devised by Patrick Saint-Pierre allow us to

1. compute the viability kernel of an environment or the capture basin of a
target under a control system,

2. compute the graph of the regulation map governing the evolutions viable
in the environment, forever or until they reach the target in finite time.

This algorithm manipulates subsets instead of functions, and is part of the
emerging field of “set-valued numerical analysis”.

The viability kernel algorithm provides the exact subset of initial states
of the state space from which at least one evolution of the discrete system
remains in the constrained set, forever or until it reaches the target in finite
time, without computing these evolutions.

However, viable evolutions can be obtained from any state in the viability
kernel or the capture basin by using the regulation map. The viability kernel
algorithms provide the regulation map by computing their graphs, which are
also subsets.

This regulation map allows us to “tame” evolutions to maintain them
in the viability kernel or the capture basin. Otherwise, using the initial
dynamical system instead of the regulation map, evolutions may quickly leave
the environment, above all for systems which are sensitive to initial states,
such as the Lorenz system.
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Consequently, viability kernel and capture basin algorithms face the
same “dimensionality curse” than algorithms for solving partial differential
equations or other “grid” algorithms. They manipulate indeed “tables” of
points in the state space, which become very large when the dimension of the
state space is larger than 4 or 5. At the end of the process, the graph of the
regulation map can be recovered and stored in the state-control space, which
requires higher dimensions. Once the graph of the regulation map is stored,
it is then easy to pilot evolutions which are viable forever or until they reach
their target.

Despite these shortcomings, the viability kernel algorithms present some
advantage over the simulation methods, known under the name of shooting
methods. These methods compute the evolutions starting at each point and
check whether or not at least one evolution satisfies the required properties.
They need much less memory space, but demand a considerable amount of
time, because, the number of initial states of the environment is high, and
second, in the case of controlled systems, the set of evolutions starting from
a given initial state becomes huge.

On the other hand, viability properties and other properties of this type,
such as asymptotic properties, cannot be checked on computers. For instance,
one cannot verify whether an evolution is viable forever, since computers
provide evolutions defined on a finite number of time steps.

Nothing guarantees that the finite time chosen to stop the computation
of the solution is large enough to check whether a property bearing on the
whole evolution is valid. Such property can be satisfied for a given number of
times, without implying that it still holds true later on, above all for systems,
like the Lorenz one, which are sensitive to initial conditions.

Finally, starting from an initial state in the viability kernel or the capture
basin, shooting methods use solvers which do not take into consideration the
corrections for imposing the viability of the solution, for instance. Since the
initial state is only an approximation of the viability kernel, the absence of
these corrections does not allow us to “tame” evolutions which then may
leave the environment, and very quickly for systems which are sensitive to
initial states, such as the Lorenz system or the discrete time dynamics related
to Julia sets.

2.9.3 Julia and Mandelbrot Sets

Studies of dynamical systems (bifurcations, chaos, catastrophe) focus on the
dependence on some properties of specific classes of dynamical systems of
constant parameters u (which, in contrary to the control case, are not allowed
to evolve with time): The idea is to study a given property in terms of the
parameter u of a discrete dynamical system xj+1 = ϕ(xj , u) where u is a
parameter ranging over a subset U .
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Benôıt Mandelbrot introduced in the late 1970’s the Mandelbrot sets and
functions in his investigation of the fractal dimension of subsets:

Definition 2.9.6 [The Mandelbrot Function] For a discrete dynamical
system xj+1 = ϕ(xj , u) where u is a parameter ranging over a subset U ,
the Mandelbrot function μ : X ×U �→ R+ ∪{+∞} associates with any pair
(x, u) the scalar

μ(x, u) := sup
j≥0

‖xj‖

where xj+1 = ϕ(xj , u) and x0 = x.
The subset Ku := Viabϕ(B(0, 1)) is the filled-in Julia set and its boundary
Ju := ∂Ku the Julia set.

The Mandelbrot function μ is characterized through the viability kernel
of an auxiliary system:

Lemma 2.9.7 [Viability Characterization of the Mandelbrot Func-
tion] Let us associate with the map ϕ the following map Φ : X × U × R �→
X × U × R defined by Φ(x, u, y) = (ϕ(x, u), u, y).Consider the subset

K := {(x, u, y) ∈ X × U × R | ‖x‖ ≤ y}

Then the Mandelbrot function is characterized by the formula

μ(x, u) = inf
(x,u,y)∈ViabΦ(K)

y

or, equivalently,

μ(x, u) ≤ y if and only if x ∈ Viabϕ(·,u)(B(0, y))

Proof. Indeed, to say that (x, u, y) belongs to the viability kernel of K :=
{(x, u, y) | ‖x‖ ≤ y}means that the solution (xj , u, y) to the auxiliary system
satisfies

∀j ≥ 0, ‖xj‖ ≤ y

i.e., that μ(x, u) ≤ y. ��

This story was initiated by Pierre Fatou and Gaston Julia:
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Pierre Fatou and Gaston Julia. Pierre
Fatou [1878-1929] and Gaston Julia [1893-
1978] studied in depth the iterates of com-
plex function
z �→ z2 + u,
or, equivalently, of the map
(x, y) �→ ϕ(x, y) := (x2 − y2 + a, 2xy + b)

when z = x+ iy and u = a+ ib.
The subset Ku := Viabϕ(B(0, 1)) is the filled-in Julia set for this specific
map ϕ and its boundary Ju := ∂Ku the Julia set. The subsets whose filled-in
Julia sets have empty interior are called Fatou dust.

Therefore, the viability kernel algorithm allows us to compute the Julia
sets, offering an alternative to “shooting methods”. These shooting methods
compute solutions of the discrete system starting from various initial states
and check whether a given property is satisfied or not. Here, this property
is the viability of the evolution for a finite number of times. Instead, the
Viability Kernel Algorithm provides the set of initial states from which at
least one evolution is viable forever, without computing all evolutions to check
whether one of them satisfies it.

Furthermore, the regulation map built by the Viability Kernel Algorithm
provides evolutions which are effectively viable in the viability kernel. This is
a property that shooting methods cannot provide:

• first, because the viability kernel is not known precisely, but only
approximatively,

• and second, because even if we know that the initial state belongs to
the viability kernel, the evolution governed by such a program is not
necessarily viable

The reason why this happens is that programs computing evolutions are
independent of the viability problem. They do not make the corrections at
each step guaranteeing that the new state is (approximatively) viable in K,
contrary to the one computed with Viability Kernel Algorithm.

The more so in this case, since this system is sensitive to initial data.
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Fig. 2.4 Julia sets: Douady Rabbit and Fatou Dust.

We refer to Figure 2.5 for the computation of its boundary, the Julia set,
thanks to Theorem 9.2.18. Even for discrete systems, the round-off errors do
not allow the discrete evolution to remain in filled-in Julia set, which is the
viability kernel of the ball, whereas the viability kernel algorithm provides
both the filled-in Julia set, its boundary and evolutions which remain in the
Julia set.

In 1982, a deep theorem by Adrien Douady and Hubbard states that Ku

is connected if and only if μ(0, u) is finite.

Theorem 9.2.18, p. 339 states that the Julia set is the viability kernel of
K \C if and only if it is viable and C absorbs the interior of Ku. In this case,
the Viability Kernel Algorithm also provides the Julia set Ju by computing
the viability kernel of K \ C.

We illustrate this fact by computing the viability kernel of the complement
of a ball B(0, α) ⊂ K in K whenever the interior of Ku is not empty
(we took u = −0.202 − 0.787i). We compute the viability kernel for α :=
0.10, 0.12, 0.14 and 0.16, and we observed that this viability kernel is equal
to the boundary for α = 0.16. In this case, the ball B(0, 0.16) is absorbing
the interior of the filled-in Julia set. The resulting computations can be seen
in Figures 2.4 and 2.5.
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Fig. 2.5 Computation of the Julia set.

The figure on the left is the filled-in Julia set Ku with u = −0.202− 0.787i,
which is the viability kernel of the unit ball. The other figures display the
viability kernels of K \ B(0, α) for α := 0.10, 0.12, 0.14 and 0.16. We
obtain the Julia set for α = 0.16. Theorem 9.2.18, p. 339 states that the ball
B(0, 0.16) absorbs the interior of the filled-in Julia set.

2.9.4 Viability Kernels under Disconnected Discrete
Systems and Fractals

If Φ is disconnecting, the viability kernel is a Cantor set, with further
properties (self similarity, fractal dimension). Recall that Φ−1 denotes the
inverse of Φ.

Definition 2.9.8 [Hutchinson Maps] A set-valued map Φ is said to be
disconnecting on a subset K if there exists a finite number p of functions
αi : K �→ X such that
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∀x ∈ K, Φ−1(x) :=
p⋃
i=1

αi(x)

and such that there exist constants λi ∈]0, 1[ satisfying: for each subset
C ⊂ K,

⎧⎨
⎩

(i) ∀i = 1, . . . , p, αi(C) ⊂ C (αi is antiextensive)
(ii) ∀i �= j, αi(C) ∩ αj(C) = ∅
(iii) ∀i = 1, . . . , p, diam(αi(C)) ≤ λidiam(C)

If the functions αi : K �→ K are contractions with Lipschitz constants
λi ∈]0, 1[, then Φ−1 is called an Hutchinson map (introduced in 1981 by
John Hutchinson and also called an iterated function system by Michael
Barnsley.)

We now define Cantor sets:

Definition 2.9.9 [Cantor Sets] A subset K is said to be

1. perfect if it is closed and if each of its elements is a limit of other elements
of K,

2. totally disconnected if it contains no nonempty open subset,
3. a Cantor set if it is non-empty compact, totally disconnected and perfect.

The famous Cantor Theorem states:

Theorem 2.9.10 [The Cantor Theorem] The viability kernel of a
compact set under a disconnecting map is an uncountable Cantor set.

The Cantor set is a viability kernel and the Viability Kernel Algorithm is
the celebrated construction procedure of the Cantor set.
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Fig. 2.6 Example: Cantor Ternary Map.
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Corollary 2.9.11 [The Cantor Ternary Set] The Cantor ternary set
C is the viability kernel of the interval [0, 1] under the Cantor Ternary Map
Φ defined on K := [0, 1] ⊂ R by

Φ(x) := (3x, 3(1− x))

The Cantor Ternary Set is a self similar (see Definition 2.9.14, p. 84),
symmetric, uncountable Cantor set with fractal dimension log 2

log 3 (see Defini-
tion 2.9.13, p. 83) and satisfies C = α1(C)∪α2(C) and α1(C)∩α2(C) = ∅.

Proof. The Cantor Ternary Map is disconnecting because

Φ−1(x) :=
(
α1(x) :=

x

3
, α2(x) := 1− x

3

)

so that α1(K) =
[
0, 1

3

]
and α2(K) =

[
2
3 , 1
]
and that the αi’s are antiextensive

contractions of constant 1
3 . ��

Example: Quadratic Map In Sect. 2.3, p. 50, we associated with the
quadratic map ϕ(x) := 5x(1 − x) the set-valued map Φ : [0, 1] � [0, 1]
defined by Φ(x) := ϕ(x) when x ∈ [0, a] and x ∈ [b, 1] and ϕ(x) := ∅ when

x ∈]a, b[, where a :=
1
2
−
√

5
10

and b :=
1
2

+
√

5
10

are the roots of the equation

ϕ(x) = 1.
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Fig. 2.7 Viability Kernel under the Quadratic Map.

The viability kernel of the interval [0, 1] under the quadratic map Φ associated
with the map ϕ(x) := {5x(1− x)} is an uncountable, symmetric Cantor set.
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The interval [0, 1] is viable under the Verhulst logistic differential
equation x′(t) = rx(t)(1 − x(t)) whereas its viability kernel is a
Cantor set for its discrete counterpart xn+1 = rxn+1(1 − xn+1)
when r > 4.

Proof. Indeed, in this case, the inverse Φ−1 is defined by

Φ−1(y) :=
(
ω�(y), ω�(y)

)

where we set

ω�(y) :=
1
2
−
√
r2 − 4ry

2r
and ω�(y) :=

1
2

+

√
r2 − 4ry

2r

(see Sect. 2.3.1, p. 51). ��

The intervals ω�(K) =
[
0,
(

1
2 −

√
r2−4r
2r

)]
and ω�(K) =

[(
1
2 +

√
r2−4r
2r

)
, 1
]

are disjoint intervals which do not cover [0, 1]. The maps ω� and ω� are
antiextensive and contractions.

We know that the interval [0, 1] is viable under the Verhulst logistic
equation, whereas for r > 4, we saw that the discrete viability kernel is a
Cantor subset of [0, 1]. But [0, 1] is still viable under the discretizations of
the Verhulst logistic equation:

Proposition 2.9.12 [Discretization of the Verhulst Logistic Equa-
tion] The interval [0, 1] is viable under the explicit discretization Φh of the
Verhulst logistic equation, defined by

Φh(x) := rhx

(
1 + rh

rh
− x

)

Proof. Indeed, Φh is surjective from [0, 1] to [0, 1], and thus, [0, 1] is viable
under Φh: Starting from x0 ∈ [0, 1], the discrete evolution −→x defined by

xn+1 = rhxn

(
1 + rh

rh
− xn

)

remains in K. ��

This is an example illustrating the danger of using “discrete analogues”
of continuous time differential equations instead of their discretizations.
The latter share the same properties than the differential equation (under
adequate assumptions), whereas discrete analogues may not share them. This
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is the case for the quadratic map, the prototype of maps producing chaos,
analogues of the Verhulst logistic equation.

Example: Sierpinski Gasket

Fig. 2.8 The Sierpinski Gasket.

The Sierpinski Gasket is the viability kernel of the square [0, 1]2 under
the discrete map associating with each pair (x, y) the subset Φ(x, y) :={
(2x, 2y), (2x− 1, 2y), (2x− 1

2 , 2y − 1)
}

of 3 elements. Since this map is
disconnecting, the Sierpinski Gasket is a self similar, uncountable Cantor
set with fractal dimension log 3

log 2 ( left figure), named from Waclaw Sierpinski
(1882–1969) (right figure).

2.9.4.1 Fractal Dimension of Self-Similar Sets

Some viability kernels under discrete disconnecting maps have a fractal
dimension that we now define:

Definition 2.9.13 [Fractal Dimension] Let K ⊂ R
d be a subset of R

d

and νK(ε) the smallest number of ε-cubes ε[−1,+1]d needed to cover the
subset K. If the limit

dim(K) := lim
ε�→0+

log (νK(ε))
log
(

1
ε

)
exists and is not an integer, it is called the fractal dimension of K.
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To say thatK has a fractal dimension δ := dim(K) means that the smallest
number νK(ε) of ε-cubes needed to coverK behaves like a

εδ for some constant
a > 0.

Actually, it is enough to take subsequences εn := λn where 0 < λ < 1
converging to 0 when n→ +∞, so that

dim(K) := lim
n→+∞

log (νK(λn))
n log

(
1
λ

)

Definition 2.9.14 [Self-Similar Sets] Functions αi are called similari-
ties if

∀x, y ∈ K, d(αi(x), αi(y)) = λid(x, y)

Let Φ be a disconnecting map associated with p similarities αi.
A subset K∝ is said to be self-similar under Φ if

K∝ =
p⋃
i=1

αi(K∝) and the subsets αi(K∝) are pairwise disjoint.

For example,

1. the Cantor set is self-similar:

C = α1(C) ∪ α2(C)

It is the union of two similarities of constant 1
3 ,

2. the Sierpinski gasket is self-similar3:

S = Φ−1(S) =
3⋃
i=1

αi(S)

It is the union of three similarities of constant 1
2 .

3 Actually, the subsets are not pairwise disjoint, but the above results hold true when the
intersections αi(C)∩αj (C) are manifolds of dimension strictly smaller than the dimension
of the vector space.
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Lemma 2.9.15 [Fractal Dimension of Self-Similar Sets] If the p
similarities αi have the same contraction rate λ < 1, then the fractal
dimension of a self-similar set K∝ =

⋃p
i=1 αi(K∝) is equal to

dim(K∝) =
log(p)
log
(

1
λ

)

Consequently,

1. The fractal dimension of the Cantor set is equal to log 2
log 3 : p = 2 and λ = 1

3 ,
2. The fractal dimension of the Sierpinski gasket is equal to log 3

log 2 : p = 3 and
λ = 1

2 .

2.10 Viability Kernels and Capture Basins
for Continuous Time Systems

Let S : X � C(0,∞;X) denote the evolutionary system associated with
parameterized dynamical system (2.10) and H ⊂ C(0,∞;X) be a subset of
evolutions sharing a given set of properties.

2.10.1 Definitions

When the parameterized system is regarded as a control system, we single out
the inverse image (see Definition 18.3.3, p. 720) of H under the evolutionary
system:

Definition 2.10.1 [Inverse Image under an Evolutionary System]
Let S : X � C(0,∞;X) denote an evolutionary system and H ⊂ C(0,∞;X)
a subset of evolutions sharing a given set of properties. The set

S−1(H) := {x ∈ X | S(x) ∩H �= ∅} (2.22)

of initial states x ∈ X from which starts at least one evolution x(·) ∈
S(x) satisfying the property H is the inverse image of H under S.

For instance, taking for set H := X defined as the set of stationary
evolutions, we obtain the set of all equilibria x of the evolutionary system: at
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least one evolution x(·) ∈ S(x) remains constant and equal to x. In the same
way, taking for set H := PT (X) the set of T -periodic evolutions, we obtain
the set of points through which passes at least one T -periodic evolution of
the evolutionary system.

When we take H := V(K,C) to be the set of evolutions viable in a
constrained subset K ⊂ X outside a target C ⊂ K (see 2.5, p. 49), we
obtain the viability kernel ViabS(K,C) of K with target C:

Definition 2.10.2 [Viability Kernel and Capture Basin] Let K ⊂ X
be a environment and C ⊂ K be a target.

1. The subset ViabS(K,C) of initial states x0 ∈ K such that at least one
evolution x(·) ∈ S(x0) starting at x0 is viable in K for all t ≥ 0 or
viable in K until it reaches C in finite time is called the viability kernel
of K with target C under S.
When the target C = ∅ is the empty set, we say that ViabS(K) :=
ViabS(K, ∅) is the viability kernel of K. We set CaptS(K, ∅) = ∅.

2. The subset CaptS(K,C) of initial states x0 ∈ K such that at least one
evolution x(·) ∈ S(x0) starting at x0 is viable in K until it reaches C
in finite time is called the capture basin of C viable in K under S. When
K = X is the whole space, we say that CaptS(C) := CaptS(X,C) is the
capture basin of C. (see Figure 5.2, p. 182)

We say that

1. a subset K is viable under S if K = ViabS(K),
2. K is viable outside the target C ⊂ K under the evolutionary system S

if K = ViabS(K,C),
3. C is isolated in K if C = ViabS(K,C),
4. K is a repeller if ViabS(K) = ∅, i.e., if the empty set is isolated in K.

Remark: Trapping Set. A connected closed viable subset is sometimes
called a trapping set. In the framework of differential equations, Henri
Poincaré introduced the concept of shadow (in French, ombre) of K, which
is the set of initial points of K from which (all) evolutions leave K in finite
time. It is thus equal to the complement K\ViabS(K) of the viability kernel
of K in K. ��

Remark. Theorem 9.3.13, p. 353 provides sufficient conditions (the
environment K is compact and backward viable, the evolutionary system
is upper semicompact) for the viability kernel to be nonempty.

Another interesting case is the one when the viability kernel ViabS(K) ⊂
Int(K) of K is contained in the interior of K (in this case, ViabS(K)) is said
to be source of K (see Definition 9.2.3, p. 323). ��



2.10 Viability Kernels and Capture Basins for Continuous Time Systems 87

Fig. 2.9 Viability Outside a Target and Isolated Target.

If C is isolated, all evolutions starting in K outside of C are viable outside
C before leaving K in finite time.

2.10.2 Viability Kernels under the Lorenz System

We resume our study of the Lorenz system (2.6), p. 57 initiated in Sect. 2.4.2,
p. 56.

We provide the viability kernel of the cube [−α,+α]× [−β,+β]× [−γ,+γ]
under the Lorenz system (2.6), p. 57 and the backward Lorenz system

⎧⎨
⎩

(i) x′(t) = −σy(t) + σx(t)
(ii) y′(t) = −rx(t) + y(t) + x(t)z(t)
(iii) z′(t) = −x(t)y(t) + bz(t)

We call “backward viability kernel” the viability kernel under the backward
system.
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Fig. 2.10 Viability Kernels of a Cube K under Forward and Backward Lorenz
Systems.

The figure displays the forward viability kernel of the cube K (left), the
backward viability kernel (center) and the superposition of the two (right).
We take σ > b + 1, Proposition 8.3.3, p. 282 implies that whenever the
viability kernel of the backward system is contained in the interior of K,
the backward viability kernel is contained in the forward viability kernel.
Proposition 9.3.11, p. 351 implies that the famous Lorenz attractors (see
Definition 9.3.8, p. 349) is contained in the backward viability kernel.

Fig. 2.11 Backward Viability Kernel and Viable Evolution.

This figure displays another view of the backward viability kernel and a
viable evolution. They are computed with the viability kernel algorithm.

2.11 Invariance Kernel under a Tychastic System

The questions involved in the concepts of viability kernels and capture
basins ask only of the existence of an evolution satisfying the viability or
the viability/capturability issue. In the case of parameterized systems, this
lead to the interpretation of the parameter as a control or a regulon. When
the parameters are regarded as tyches, disturbances, perturbations, etc., the
questions are dual: they require that all evolutions satisfy the viability or the
viability/capturability issue.

We then introduce the “dual” concept of invariance kernel and absorption
basin:

Here, we regard the parameterized system
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x′(t) = f(x(t), v(t)) where v(t) ∈ V (x(t)) (2.23)

where v(t) is no longer a control or a regulon, but a tyche, where the set of
tyches is V and where V : X � V is a tychastic map as a tychastic system.
Although this system is formally the same that control system (1.1), p. 14

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

the questions asked are different: We no longer check whether a given property
is satisfied by at least one evolution governed by the control or regulated
system, but by all evolutions governed by the tychastic system.

When the parameterized system is regarded as a tychastic system, it is
natural to consider the core (see Definition 18.3.3, p. 720) of a set of evolutions
under a tychastic system:

Definition 2.11.1 [Core under an Evolutionary System] Let S :
X � C(0,∞;X) denote an evolutionary system and H ⊂ C(0,∞;X) a
subset of evolutions sharing a given property. The set

S�1(H) := {x ∈ X | S(x) ⊂ H} (2.24)

of initial states x ∈ X from which all evolutions x(·) ∈ S(x) satisfy the
property H is called the core of H under S.

Taking H := V(K,C), we obtain the invariance kernel InvS(K,C) of K
with target C:

Definition 2.11.2 [Invariance Kernel and Absorption Basin] Let
K ⊂ X be a environment and C ⊂ K be a target.

1. The subset InvS(K,C) of initial states x0 ∈ K such that all evolutions
x(·) ∈ S(x0) starting at x0 are viable in K for all t ≥ 0 or viable in K
until they reach C in finite time is called the invariance kernel of K with
target C under S.
When the target C = ∅ is the empty set, we say that InvS(K) :=
InvS(K, ∅) is the invariance kernel of K.

2. The subset AbsS(K,C) of initial states x0 ∈ K such that all evolutions
x(·) ∈ S(x0) starting at x0 are viable in K until they reach C in finite
time is called the absorption basin of C invariant in K under S.
When K = X is the whole space, we say that AbsS(X,C) is
the absorption basin of C.
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We say that

1. a subset K is invariant under S if K = InvS(K),
2. K is invariant outside a target C ⊂ K under the evolutionary system S

if K = InvS(K,C),
3. C is separated in K if C = InvS(K,C).

K

x0

x1 x2
x(t)

CK

K

ViabF (K)

InvF (K)

ViabF(K)

Invariance kernel

Fig. 2.12 Figure of an Invariance Kernel.

A state x2 belongs to the invariance kernel of the environment K under an
evolutionary system if all the evolutions starting from it are viable in K
forever. Starting from a state x1 ∈ K outside the invariance kernel, at least
one evolution leaves the environment in finite time.
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InvF (K)

Invariance kernelAbsorption Basin
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Fig. 2.13 Figure of an Absorption Basin.

All evolutions starting from a state x4 in the absorption basin of the target
C invariant in the environment K are viable in K until they reach C in finite
time. At least one evolution starting from x3 ∈ K outside the absorption
basin remains viable outside the target C forever or until it leaves K.
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These are four of the main concepts used by viability theory. Other
definitions, motivations and comments are given in Chap. 2, p. 43, their
general properties in Chap. 10, p. 375, whereas their characterization in
terms of tangential conditions are presented in Chap. 11, p. 437. Many
other subsets of interest of initial conditions from which at least one or all
evolution(s) satisfies(y) more and more complicated interesting properties
will be introduced all along the book. They all are combinations in various
ways of these basic kernels and basins.

For instance, tychastic control systems (or dynamical games) involve both
regulons and tyches in the dynamics. Tyches describe uncertainties played
by an indifferent, maybe hostile, Nature. Regulons are chosen among the
available ones by the system in order to adapt its evolutions regardless of the
tyches. We introduce the concept of tychastic (or guaranteed) viability kernel,
which is the subset of initial states from which there exists a regulon such
that, for all tyches, the associated evolutions are viable in the environment
forever.

The set of initial states from which there exists a regulon such that, for all
tyches, the associated evolutions reach the target in finite time before possibly
violating the constraints is called the tychastic (or guaranteed) absorption
basin of the target invariant in the environment.

Remark: Semi-permeability. We deduce from the definitions that from
any x ∈ ViabS(K,C) \ InvS(K,C),

1. there exists at least one evolution which is viable in ViabS(K,C) until it
may reach the target C,

2. there exists at least one evolution which leaves ViabS(K,C) in finite time,
and is viable in K \ C until it leaves K in finite time.

The latter property is a semi-permeability property:

1. the boundary of the invariance kernel separates the set of initial states
from which all evolutions are viable in K until they may reach the target
from the set of initial states satisfying the above property,

2. the boundary of the viability kernel separates the set of initial states from
which there exists at least two different evolutions satisfying the above
property from the set of initial states from which all evolutions are viable
in K \ C as long as it is viable in K.

Therefore x ∈ ViabS(K,C) \ InvS(K,C) is the set where some uncertainty
about viability prevails, Outside the viability kernel, only one property is
shared by all evolutions starting from an initial state: either they are viable
in K until they may reach the target, or they leave C in finite time and are
viable in K \ C until they leave K in finite time.



92 2 Viability and Capturability

The Quincampoix Barrier Theorems 10.5.19, p. 409 and 10.6.4, p. 413
provide precise statements of the properties of the boundaries of the viability
and invariance kernels. ��

2.12 Links between Kernels and Basins

Viability kernels and absorption basins are linked to each other by comple-
mentarity, as well as invariance kernels and capture basins:

Definition 2.12.1 [Complement of a Subset] The complement of the
subset C ⊂ K in K is the set K\C := K ∩ �C of elements x ∈ K not
belonging to C. When K := X is the whole space, we set � C := X\C.
Observe that

K\C = �C\�K and �(K \ C) = C ∪ �K

The following useful consequences relating the kernels and basins follow
readily from the definitions:

Lemma 2.12.2 [Complements of Kernels and Basins] Kernels and
Basins are exchanged by complementarity:

{
(i) �ViabS(K,C) = AbsS(�C, �K)
(ii) �CaptS(K,C) = InvS(�C, �K) (2.25)

Remark. This would suggest that only two of these four concepts would
suffice. However, we would like these kernels and basins to be closed under
adequate assumption, and for that purpose, we need the four concepts, since
the complement of a closed subset is open. But every statement related to the
closedness property of these kernels and basins provide corresponding results
on openness properties of their complements, as we shall see in Sect. 10.3.2
p. 387. ��

The next result concerns the a priori futile or subtle differences between
viability kernels with targets (concept proposed by Marc Quincampoix) and
capture basins:
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Lemma 2.12.3 [Comparison between Viability Kernels with Tar-
gets and Capture Basins] The viability kernel of K with target C and
the capture basin of C viable in K are related by formulas

ViabS(K,C) = ViabS(K \ C) ∪ CaptS(K,C) (2.26)

Hence the viability kernel with target C coincides with the capture basin
of C viable in K if ViabS(K\C) = ∅, i.e., if K\C is a repeller. This is
particularly the case when the viability kernel ViabS(K) of K is contained
in the target C, and more so, when K itself is a repeller.

Proof. Actually, we shall prove that
{

(i) ViabS(K,C) \ CaptS(K,C) ⊂ ViabS(K \ C)
(ii) ViabS(K,C) \ViabS(K \ C) ⊂ CaptS(K,C)

Indeed, inclusion ViabS(K \ C) ∪ CaptS(K,C) ⊂ ViabS(K,C) being
obvious, the opposite inclusion is implied by, for instance,

ViabS(K,C) \ CaptS(K,C) ⊂ ViabS(K \ C) (2.27)

because

{
ViabS(K,C) = CaptS(K,C) ∪ (ViabS(K,C) \ CaptS(K,C))
⊂ ViabS(K \C) ∪ CaptS(K,C)

For proving the first formula

ViabS(K,C) \ CaptS(K,C) ⊂ ViabS(K \ C) (2.28)

we observe that Lemma 2.12.2, p. 92 implies that ViabS(K,C) \
CaptS(K,C) = ViabS(K,C) ∩ InvS(�C, �K) by formula (2.25)(i). Take any
x ∈ ViabS(K,C)∩InvS(�C, �K). Since x ∈ ViabS(K,C), there exists at least
one evolution x(·) ∈ S(x) either viable in K forever or reaching C in finite
time. But since x ∈ InvS(�C, �K), all evolutions starting from x are viable
in �C forever or until they leave K in finite time. Hence the evolution x(·)
cannot reach C in finite time, and thus, is viable in K forever, hence cannot
leave K in finite time, and thus is viable in �C, and consequently, in K \ C.

Next, let us prove inclusion ViabS(K,C) \ViabS(K \C) ⊂ CaptS(K,C).
Lemma 2.12.2, p. 92 implies that �ViabS(K \ C) = AbsS(X,C ∪ �K).
Therefore, for any x ∈ ViabS(K,C) \ ViabS(K \ C) = ViabS(K,C) ∩
AbsS(X,C ∪ �K), there exists an evolution x(·) ∈ S(x) viable in K forever
or until a time t� < +∞ when x(t�) ∈ C, and all evolutions starting at x
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either leave K in finite time or reach C in finite time. Hence, x(·) being
forbidden to leave K in finite time, must reach the target in finite time. ��

Lemma 2.12.4 [Partition of the Viability Kernel with Targets] The
following equalities hold true:

CaptS(K,C) ∩ InvS(K \ C) = AbsS(K,C) ∩ ViabS(K \ C) = ∅

Therefore, equality ViabS(K\C) = InvS(K\C) implies that ViabS(K \
C) and CaptS(K,C) form a partition of ViabS(K,C).

For invariance kernels, we obtain:

Lemma 2.12.5 [Comparison between Invariance Kernels with
Targets and Absorption Basins] The invariance kernel of K with target
C and the absorption basin of C viable in K coincide whenever K \C is a
repeller.

Proof. We still observe that the invariance kernel InvS(K,C) of K with
target C coincides with the absorption basin AbsS(K,C) of C invariant in
K whenever the viability kernel ViabS(K\C) is empty. ��

Therefore, the concepts of viability and of invariance kernels with a target
allow us to study both the viability and invariance kernels of a closed subset
and the capture and absorption basins of a target.

Remark: Stochastic and Tychastic Properties. There are natural
and deeper mathematical links between viability and capturability properties
under stochastic and tychastic systems. A whole book could be devoted to
this topic. We just develop in this one few remarks in Sect. 10.10, p. 433. ��

2.13 Local Viability and Invariance

We introduce the weaker concepts of local viability and invariance:

Definition 2.13.1 [Local Viability and Invariance]
Let S : X � C(0,∞;X) be an evolutionary system and a subset K ⊂ X.



2.13 Local Viability and Invariance 95

1. A subset K is said to be locally viable under S if from any initial state
x ∈ K there exists at least one evolution x(·) ∈ S(x) and a strictly
positive time Tx(·) > 0 such that x(·) is viable in K on the nonempty
interval [0, Tx(·)[ (it is thus viable if Tx(·) = +∞),

2. A subset K is said to be locally invariant under S if from any initial
state x ∈ K and for any evolution x(·) ∈ S(x), there exists a strictly
positive Tx(·) > 0 such that x(·) is viable in K on the nonempty interval
[0, Tx(·)[ (it is thus invariant if Tx(·) = +∞).

The (local) viability property of viability kernels and invariance property of
invariance kernels are particular cases of viability property of inverse images
of sets of evolutions and invariance property of their cores when the sets of
evolutions are (locally) stable under translations. Local viability kernels are
studied in Sect. 10.4.3, p. 396. For the time, we provide a family of examples of
subsets (locally) viable and invariant subsets built from subsets of evolutions
stable (or invariant) under translation.

Definition 2.13.2 [Stability Under Translation] A subset H ⊂
C(0,∞;X) of evolutions is locally stable under translation if for every
x(·) ∈ H, there exists Tx(·) > 0 such that for every t ∈ [0, Tx(·)[,
the translation κ(−t)(x(·))(·) belongs to H. It is said to be stable under
translation if we can always take Tx(·) = +∞.

Inverse images (resp. cores) of subsets of evolutions stable under transla-
tion (resp. concatenation) are viable (resp. invariant) subsets:

Proposition 2.13.3 [Viability of Inverse Images and Invariance
of Cores] Let S : X � C(0,∞;X) be an evolutionary system and
H ⊂ C(0,∞;X) be a subset of evolutions. If H is (locally) stable under
translation, then

1. its inverse image S−1(H) := {x ∈ X | S(x) ∩ H} under S is (locally)
viable,

2. its core S�1(H) := {x ∈ X | S(x) ⊂ H} under S is (locally) invariant.

(See Definition 18.3.3, p. 720).

Proof. 1. The (local) translation property of S implies the (local) viability
of the inverse image S−1(H). Take x0 ∈ S−1(H) and prove that there
exists an evolution x(·) ∈ S(x0) starting at x0 viable in S−1(H) on some
interval [0, Tx(·)]. Indeed, there exists an evolution x(·) ∈ S(x0) ∩ H and
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Tx(·) > 0 such that for every t ∈ [0, Tx(·)[, the translation κ(−t)(x(·))(·)
belongs to H. It also belongs to S(x(t)) thanks to the translation property
of evolutionary systems. Therefore x(t) does belong to S−1(H) for every
t ∈ [0, Tx(·)[.

2. The concatenation property of S implies the local invariance of the core
S�1(H). Take x0 ∈ S�1(H) and prove that for all evolutions x(·) ∈ S(x0)
starting at x0, there exists Tx(·) such that x(·) is viable in S�1(H) on
the interval [0, Tx(·)]. Indeed, take any such evolution x(·) ∈ S(x0) which
belongs to H by definition. Thus there exists Tx(·) > 0 such that for
every t ∈ [0, Tx(·)], the translation κ(−t)(x(·))(·) belongs to H. Take any
t ∈ [0, Tx(·)[ and any evolution y(·) ∈ S(x(t)). Hence the t-concatenation
(x�t y)(·) belongs to S(x0) by definition of evolutionary systems, and thus
to H because x0 ∈ S�1(H). Since H is locally stable under translation,
we deduce that y(·) = (κ(−t)((x �t y(·))))(·) also belongs to H. Since this
holds true for every any evolution y(·) ∈ S(x(t)), we infer that x(t) ∈
S�1(H). ��

The study of local viability is continued in Sect. 10.4.3, p. 396.

2.14 Discretization Issues

The task for achieving this objective is divided in two different problems:

1. Approximate the continuous problem by discretized problem (in time) and
digitalized on a grid (in state) by difference inclusions on digitalized sets.
Most of the time, the real mathematical difficulties come from the proof
of the convergence theorems stating that the limits of the solutions to
the approximate discretized/digitalized problems converge (in an adequate
sense) to solutions to the original continuous-time problem.

2. Compute the viability kernel or the capture basin of the dis-
cretized/digitalized problem with a specific algorithm, also providing
the viable evolutions, as mentioned in Sect. 2.9.2, p. 74.

Let h denote the time discretization step. There are many more or less
sophisticated ways to discretize a continuous parameterized system (f, U) by
a discrete one (φh, U). The simplest way is to choose the explicit scheme
φh(x, u) := x+ hf(x, u). Indeed, the discretized system can be written as

xj+1 − xj
h

= f(xj , uj) where uj ∈ U(xj)

The simplest way to digitalize a vector space X := R
d is to embed a

(regular) grid4 Xρ := ρZd in X . Points of the grid are of the form x :=

4 supplied with the metric d(x, y) equal to 0 if x = y and to 1 if x �= y.
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(ρni)i=1,...,n where for all i = 1, . . . , n, ni ranges over the set Z of positive or
negative integers.

We cannot define the above discrete system on the grid Xρ, because there
is no reason why for any x ∈ Xρ, φh(x, u) would belong to the grid Xρ.
Let us denote by B := [−1,+1]d the unit square ball of Xd. One way to
overcome this difficulty is to “add” the set ρB = [−ρ,+ρ]d to φh(x, u). Setting
λA+μB := {λx+μy}x∈A, y∈B when A ⊂ X andB ⊂ X are nonempty subsets
of a vector space X , we obtain the following example:

Definition 2.14.1 [Explicit Discrete/Digital Approxima-
tion] Parameterized control systems

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

can be approximated by discrete/digital parameterized systems

xj+1 − xj
h

∈ f(xj , uj) + ρB where uj ∈ U(xj)

which is a discrete system xj+1 ∈ Φh,ρ(xj) on Xρ where

Φh,ρ(x) := x+ hf(x, U(x)) + ρhB

We can also use implicit difference schemes:

Definition 2.14.2 [Implicit Discrete/Digital Approximation]
Parameterized control systems

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

can be approximated by discrete/digital parameterized systems

xj+1 − xj
h

∈ f(xj+1, uj+1) where uj+1 ∈ U(xj+1)

which is a discrete system xj+1 ∈ Ψh,ρ(xj) on Xρ where

Ψh,ρ(x) := (I− hf(·, U(·)))−1(x) + ρhB

Characterization Theorem 2.9.3, p. 72 of viability and invariance under
discrete systems, applied to the explicit discretization of control systems,
indicates how tangential conditions for characterizing viability and invariance
under control systems did emerge:
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Lemma 2.14.3 [Discretized Regulation Map] Let us introduce the
discretized regulation map RKh,ρ

defined by

∀x ∈ K, RKh,ρ
(x) :=

{
u ∈ U(x) such that f(x, u) ∈ K − x

h
+ ρB

}

(2.29)
Then K is viable (resp. invariant) under the discretized system if and only
if ∀ x ∈ K, RKh,ρ

(x) �= ∅ (resp. ∀ x ∈ K, RKh,ρ
(x) = U(x)).

For proving viability and invariance theorems in Chap. 11, p. 437, we shall
take the limit in the results of the above lemma, and in particular, for the

kind of “difference quotient”
K − x

h
, if one is allowed to say so.

14 [How Tangential Conditions Emerge] The Bouligand-Severi tan-
gent cone TK(x) (see Definition 11.2.1, p. 442) to K at x ∈ K is the upper
limit in the sense of Painlevé-Kuratowski of K−x

h when h → 0: f(x, u) is
the limit of elements vn such that x + hnvn ∈ K for some hn → 0+, i.e.,

of velocities vn ∈
K − x

hn
.

Consequently, “taking the limit”, formally (for the time), we obtain the
emergence of the (continuous-time) tangential condition

∀x ∈ K, RK(x) := {u ∈ U(x) such that f(x, u) ∈ TK(x)} (2.30)

where TK(x) is the Bouligand-Severi tangent cone to K at x ∈ K (see
Definition 11.2.1, p.442).

This tangential condition will play a crucial role for characterizing viability
and invariance properties for continuous-time systems in Chap. 11, p. 437.

2.15 A Viability Survival Kit

The mathematical properties of viability and invariance kernels and capture
and absorption basins are presented in detail in Chap. 10 p. 375 for
evolutionary systems and in Chap. 11, p. 437 for differential inclusions
and control systems, where we can take advantage of tangential conditions
involving tangent cones to the environments. This section presents few
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selected statements that are most often used, restricted to viability kernels
and capture basins only. Three categories of statements are presented:

• The first one provides characterizations of viability kernels and capture
bilateral fixed points, which are simple, important and are valid without
any assumption.

• The second one provides characterizations in terms of local viability
properties and backward invariance, involving topological assumptions on
the evolutionary systems.

• The third one characterizes viability kernels and capture basins under
differential inclusions in terms of tangential conditions, which furnishes the
regulation map allowing to pilot viable evolutions (and optimal evolutions
in the case of optimal control problems).

2.15.1 Bilateral Fixed Point Characterization

We consider the maps (K,C) �→ Viab(K,C) and (K,C) �→ Capt(K,C). The
properties of these maps provide fixed point characterizations of viability
kernels of the maps K �→ Viab(K,C) and C �→ Viab(K,C) and fixed point
characterizations of capture basins of the maps K �→ Capt(K,C) and C �→
Capt(K,C). We refer to Definition 2.10.2, p.86 for the definitions of viable
and isolated subsets.

Theorem 2.15.1 [The Fundamental Characterization of Viability
Kernels] Let S : X � C(0,+∞;X) be an evolutionary system and K ⊂
X be a environment. The viability kernel ViabS(K) := ViabS(K, ∅) of K
(see Definition 2.10.2, p. 86) is the unique subset D contained in K that
is both

1. viable in K (and is the largest viable subset D ⊂ K contained in K),
2. isolated in K (and is the smallest subset D ⊂ K isolated in K):

i.e., the bilateral fixed point

ViabS(ViabS(K)) = ViabS(K) = ViabS(K,ViabS(K)) (2.31)

For capture basins, we shall prove

Theorem 2.15.2 [The Fundamental Characterization of Capture
Basins] Let S : X � C(0,∞;X) be an evolutionary system, K ⊂ X
be an environment and C ⊂ K be a nonempty target. The capture basin
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CaptS(K,C) of C viable in K (see Definition 2.10.2, p. 86) is the unique
subset D between C and K that is both

1. viable outside C (and is the largest subset D ⊂ K viable outside C),
2. satisfying CaptS(K,C) = CaptS(K,CaptS(K,C)) (and is the smallest

subset D ⊃ C to do so):

i.e., the bilateral fixed point

CaptS(CaptS(K,C), C) = CaptS(K,C) = CaptS(K,CaptS(K,C))
(2.32)

2.15.2 Viability Characterization

However important Theorems 2.15.1, p. 99 and 2.15.2, p. 99 are, isolated
subsets are difficult to characterize, in contrast to viable or locally viable
subsets (see Definition 2.13.1, p. 94). It happens that isolated subsets are,
under adequate assumptions, backward invariant (see Sect. 10.5.2, p. 401).
Hence we shall introduce the concept of backward evolutionary system
(see Definition 8.2.1, p. 276) and the concept of backward invariance,
i.e., of invariance with respect to the backward evolutionary system (see
Definition 8.2.4, p. 278). Characterizing viability kernels and capture basins
in terms of forward viability and backward invariance allows us to use the
results on viability and invariance.

Definition 2.15.3 [Backward Relative Invariance] A subset C ⊂ K
is backward invariant relatively to K under S if for every x ∈ C, for every
t0 ∈]0,+∞[, for all evolutions x(·) arriving at x at time t0 such that there
exists s ∈ [0, t0[ such that x(·) is viable in K on the interval [s, t0], then
x(·) is viable in C on the same interval.

If K is itself backward invariant, any subset backward invariant relatively
to K is actually backward invariant.

Viability results hold true whenever the evolutionary system is upper
semicontinuous (see Definitions 18.4.3, p. 729).

Using the concept of backward invariance, we provide a further character-
ization of viability kernels and capture basins:
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Theorem 2.15.4 [Characterization of Viability Kernels] Let us
assume that S is upper semicompact and that the subset K is closed. The
viability kernel ViabS(K) of a subset K under S is the unique closed subset
D ⊂ K satisfying

⎧⎨
⎩

(i) D is viable under S
(ii) D is baclward invariant under S
(iii) K\D is a repeller under S.

(2.33)

For capture basins, we obtain

Theorem 2.15.5 [Characterization of Capture Basins] Let us
assume that S is upper semicompact, that the environment K ⊂ X and
the target C ⊂ K are closed subsets satisfying

1. K is backward invariant
2. K \ C is a repeller (ViabS(K \ C) = ∅)

Then the viable capture basin CaptS(K,C) is the unique closed subset
D satisfying C ⊂ D ⊂ K and

{
(i) D\C is locally viable under S
(ii) D is relatively baclward invariant with respect to K under S.

(2.34)

2.15.3 Tangential Characterization

These theorems, which are valid for any evolutionary system, paved the way
to go one step further when the evolutionary system is associated with a
differential inclusion (and control systems, as we shall see in Sect. 11.3.1,
p. 453). We mentioned, in the case of discrete systems, how tangential
conditions (2.30), p. 98 did emerge when we characterized viable and
invariance (see Box 14, p. 98). Actually, we shall use the closed convex hull
T ��K (x) of the tangent cone TK(x) (see Definition 11.2.1, p. 442) for this
purpose.
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Fig. 2.14 Schematic Representation of Tangent Cones.

We represent the environment K, an element x ∈ K and the origin. Six
vectors v are depicted: one which points inward K, and thus tangent to K,
two tangent vectors which are not inward and three outward vectors. Their
translations at x belong to K for the inward vector, “almost” belong to K
for the two tangent and not inward vectors (see Definition 11.2.1, p. 442) and
belong to the complement of K for the three outward vectors.

Not only Viability and Invariance Theorems provide characterizations of
viability kernels and capture basins, but also the regulation map RD ⊂ F
which governs viable evolutions:

Definition 2.15.6 [Regulation Map] Let us consider three subsets C ⊂
D ⊂ K (where the target C may be empty) and a set-valued map F : X �
X.

The set-valued map RD : x ∈ D � F (x) ∩ T ��D (x) ⊂ X is called the
regulation map of F on D \ C if

∀ x ∈ D \ C, RD(x) := F (x) ∩ T ��D (x) �= ∅ (2.35)
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Fig. 2.15 Schematic Illustration of the Regulation Map.

In this scheme, we describe four situations at elements a0, b0, c0 and
d0 ∈ K. At a0 and b0, the right hand side of the differential inclusions contains
tangent velocities to K, so that we can expect an evolution to be viable. At
c0, this hope is even more justified because the velocity points in the interior
of K. Finally, at d0, all velocities point outward K, and it is intuitive that all
evolutions leave K instantaneously. The viability theorem states that these
intuition and hopes are correct for any closed subset K and for Marchaud
maps.

The Viability and Invariance Theorems imply that

Theorem 2.15.7 [Tangential Characterization of Viability Ker-
nels] Let us assume that F is Marchaud (see Definition 10.3.2, p. 384)
and that the subset K is closed. The viability kernel ViabS(K) of a subset
K under S is the largest closed subset D ⊂ K satisfying

∀x ∈ D, RD(x) := F (x) ∩ T ��D (x) �= ∅ (2.36)

Furthermore, for every x ∈ D, there exists at least one evolution x(·) ∈ S(x)
viable in D and all evolutions x(·) ∈ S(x) viable in D are governed by the
differential inclusion

x′(t) ∈ RD(x(t))
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For capture basins, we obtain

Theorem 2.15.8 [Tangential Characterization of Capture Basins]
Let us assume that F is Marchaud, that the environment K ⊂ X and
the target C ⊂ K are closed subsets such that K \ C is a repeller
(ViabF (K\C) = ∅). Then the viable-capture basin CaptS(K,C) is the
largest closed subset D satisfying C ⊂ D ⊂ K and

∀x ∈ D\C, F (x) ∩ T ��D (x) �= ∅

Furthermore, for every x ∈ D, there exists at least one evolution x(·) ∈ S(x)
viable in D until it reaches the target C and all evolutions x(·) ∈ S(x) viable
in D until they reach the target C are governed by the differential inclusion

x′(t) ∈ RD(x(t))

Further important properties hold true when the set-valued map F is
Lipschitz (see Definition 10.3.5, p. 385).

Theorem 2.15.9 [Characterization of Viability Kernels] Let us
assume that (f, U) is both Marchaud and Lipschitz and that the subset K is
closed. The viability kernel ViabF (K) of a subset K under S is the unique
closed subset D ⊂ K satisfying

• K \D is a repeller;
• and the Frankowska property:

⎧⎨
⎩

(i) ∀ x ∈ D, F (x) ∩ T ��D (x) �= ∅
(ii) ∀ x ∈ D ∩ Int(K), −F (x) ⊂ T ��D (x)
(ii) ∀ x ∈ D ∩ ∂K, −F (x) ∩ T ��K (x) = −F (x) ∩ T ��D (x)

(2.37)

For capture basins, we obtain

Theorem 2.15.10 [Characterization of Capture Basins] Let us
assume that (f, U) is Marchaud and Lipschitz and that the environment
K ⊂ X and the target C ⊂ K are closed subsets such that K \ C is a
repeller (ViabF (K\C) = ∅). Then the viable-capture basin CaptF (K,C) is
the unique closed subset D satisfying

• C ⊂ D ⊂ K,
• and the Frankowska property (2.37), p. 104.



Chapter 3

Viability Problems in Robotics

3.1 Introduction

This chapter studies three applications to robotics, one focussing on field
experiments of the viability feedback allowing a robot to rally a target in
an urban environment while avoiding obstacles, the second one dealing with
the safety envelope of the landing of a plane as well as the regulation law
governing the safe landing evolutions viable in this envelope, and the third
one focused on navigation of submarines in rivers.

3.2 Fields Experiment with the Pioneer

Viability theory not only computes the capture basin of the target viable in
a given environment, but also provides the dedicated feedback piloting the
state variables towards the target from any state of the capture basin. For
this purpose, the time is discretized in time steps, the environment and the
target are stored in a grid, and the viability software uses the capture basin
algorithm to compute the graph of the feedback represented as a subset of
a grid of state-control pairs. The graph of this feedback is integrated in the
embedded software of the robot. At each time step, sensors locate the position
of the robot and its direction. The feedback provides the controls.

The experimental robot presented is a Pioneer 3AT of activmedia robotics
and the environment is a road network, on which a target to be reached in
minimal time has been assigned.

Two sensors (odometers and GPS) are used for its localization, but the
robot does not use the other sensors locating the obstacles and the target.

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 3,
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.1 Pioneer Robot used for the field experiment.

View of the Pionner, its “localization” sensors (GPS, left and odometer, right)
and the computer containing the tabulated graph of the viable feedback map
(see Fig. 3.2, p.107) connected to the navigation system of the robot.

The variables, controls, dynamics, constraints and target are as follow:

1. State variables: xi, i = 1, 2, positions of the vehicle, θ, heading
(direction),

2. Controls: u, total velocity, ω, angular velocity
3. Control System

⎧⎨
⎩

(i) x′1(t) = u(t) cos(θ(t))
(ii) x′2(t) = u(t) sin(θ(t))
(iii) θ′(t) = ω(t)

(3.1)

4. State Constraints and Target:
The position constraints and targets have been discretized on a grid (see
the left figure of Fig. 1.11, p.23) and the direction is bounded: θ ∈ [θ�, θ�].

5. Constraints on controls: Constraints are added which encode position
dependent bounds on velocity and angular rotation velocity:

u ∈ [−μ�(x1, x2, θ), μ�(x1, x2, θ)], & ω ∈ [−ω�(x1, x2, θ), ω�(x1, x2, θ)]

Knowing the graph of feedback map computed by the viability algorithm,
which is a five-dimensional set of vectors (x, y, θ, u1, u2), at each time step,

• The sensors measure the position and the heading (x, y, θ);
• The software takes into account this state of the robot and provides the

controls (u1, u2) such that (x, y, θ, u1, u2) belongs to the graph of the
feedback;

• These controls are transmitted to the navigation software of the Pioneer
robot which waits for the next time step to update the velocity controls
for moving to the next position

and repeats these steps.
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Fig. 3.2 Computation of the feedback for the Pioneer Robot.

The left column of the computer screen displays three windows providing
in color scales the values of the minimal time at each position in the road
(first window from the top), the direction (second window) and the velocities
(provided by the feedback map). The main window displays the map of the
road network and the trajectory of the robot, which is enlarged in the second
figure.

This viability software was used for field implementation.

The robot must remain on the
road, represented by thick lines. The
actual trajectory of the robot ral-
lying the target in minimum time
while remaining in the road is indi-
cated in grey. This actual trajectory
is subjected to position errors esti-
mated from the odometer and the
GPS (providing sometimes positions
outside the road). The dedicated
feedback computed by the viability
algorithm taking into account the
environment allows the software to
correct these errors.
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3.3 Safety Envelopes in Aeronautics

In this section, we present an application of viability theory to safety analysis
in aeronautics. We focus on the landing portion of the flight of a large civilian
airliner (DC9-30).

One of the key technologies for design and analysis of safety critical
and human-in-the-loop systems is verification, which allows for heightened
confidence that the system will perform as desired. Verification means that
from an initial set of states (for example, aircraft configurations, or states,
such as position, velocity, flight path angle and angle of attack), a system can
reach another desired set of states (target) while remaining in an acceptable
range of states, called envelope in aeronautics, (i.e., an environment, in
the viability terminology). The subset of states from which the target can
be reached while remaining in the envelope is sometimes called the set of
controllable states or maximal controllable set in aeronautics: in viability
terminology, this is the capture basin of the target viable in the envelope.
For example, if an aircraft is landing, the initial set of states is the set of
acceptable (viable) aircraft configurations of the aircraft a few hundred feet
before landing, the target is the set of acceptable aircraft states at touch
down, and the envelope is the range of states in which it is safe to operate
the aircraft. A safe landing evolution is one which starts from the envelope
until it reaches the target in finite time.

Viability theory provides a framework for computing a capture basin of a
given target, and thus, the maximal controllable set.

The benefit of this approach, is that it provides a verification (for the
mathematical models used) that the system will remain inside the envelope
and reach target.

This is an “inverse approach” (see Box 2, p. 5), to be contrasted with
“direct approaches” (see Box 1, p. 5), using simulation methods, such as
Monte-Carlo methods. They do not provide any guarantee that evolutions
starting from configurations that are not part of the testing set of the
simulation will land safely. Monte Carlo methods have historically been used
to explore the possible evolutions a system might follow. The more finely
gridded the state-space, the more information the Monte Carlo simulations
will provide. However, this class of methods is fundamentally limited in that
it provides no information about initial conditions outside the grid points.
This provides a good motivation for the use of viability techniques: they
provide both capture basin (maximal controllable set) and the a posteriori
feedback governing safe evolutions, i.e., the certificate guaranteeing that from
this set, an evolution will land safely if piloted using this feedback. Monte-
Carlo methods may provide such initial states and evolutions piloted with a
priori feedbacks if one is... lucky.

The first subsection of this section presents the model of the longitudinal
dynamics of the aircraft, as well as the definition of the safety envelopes in
the descent (flare) mode of the aircraft. The following subsection presents the
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computation of both the capture basin of the touch down target and the a
posteriori viability feedback dedicated to safe touch down, in the sense that
is its not given a priori, but computed from the target and the environment.

3.3.1 Landing Aircraft: Application of the Capture
Basin Algorithm

3.3.1.1 Physical Model, Equations of Motion

This section presents the equations of motion used to model the aircraft’s
behavior.

Fig. 3.3 Aircraft dynamic model.

Point mass force diagram for the longitudinal dynamics of the aircraft.
Equation (3.2) is given in the inertial frame. V , γ, α, L, D and T are used
in (3.2) as displayed here.

The aerodynamic properties of the aircraft, which are used for this model
are derived from empirical data as well as fundamental principles. We model
the longitudinal dynamics of an aircraft (see Fig. 3.3).
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15 States and Controls. The state variables are:

1. the velocity V ,
2. the flight path angle γ,
3. The altitude z.

We denote x = (V, γ, z) the state of the system.
The controls (inputs) are:

1. the thrust T
2. the angle of attack α.

(to be controlled by the pilot or the autopilot). We denote u = (T, α) the
control of the system.

We consider a point mass model where the aircraft is subjected to the
gravity force mg, thrust T , lift L and drag D. We call m the mass of the
aircraft. The equations of motion for this system read:

d

dt

⎡
⎣Vγ
z

⎤
⎦ =

⎡
⎢⎢⎣

1
m [T cosα−D(α, V )−mg sin γ]
1
mV [T sinα+ L(α, V )−mg cos γ]

V sin γ

⎤
⎥⎥⎦ (3.2)

Typically, landing is operated at Tidle = 0.2 · Tmax where Tmax is the
maximal thrust. This value enables the aircraft to counteract the drag due to
flaps, slats and landing gear. Most of the parameters for the DC9-30 can be
found in the literature. The values of the numerical parameters used for the
DC9-30 in this flight configuration are m = 60, 000 kg, Tmax = 160, 000N
and g = 9.8 ms−2. The lift and drag forces are thus

L(α, V ) = 68.6 (1.25 + 4.2α)V 2

D(α, V ) = [2.7 + 3.08 (1.25 + 4.2α)2]V 2 (3.3)

(they are expressed in Newtons if V is taken in m/s). We refer to the
specialized literature for the methods leading to these formulas.

3.3.1.2 Landing Maneuvers

In a typical autoland maneuver, the aircraft begins its approach approxi-
mately 10 nautical miles from the touchdown point. The aircraft descends
towards the glideslope, an inertial beam which the aircraft can track. The
landing gear is down, and the pilot sets the flaps at the first high-lift
configuration in the landing sequence.
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Fig. 3.4 Autoland Profile.

Typical Autoland Profile and flare section of the flight before touch down
studied in this example.

The autopilot captures the glideslope signal around five nautical miles from
the touch down point. The pilot increases flap deflection to effect a descent
without increasing velocity. The pilot steps the flaps through the different
flap settings, reaching the highest deflection when the aircraft reaches 1,000
feet altitude. At approximately 50 feet, the aircraft leaves the glideslope and
begins the flare maneuver, which allows the aircraft to touchdown smoothly
on the runway with an appropriate descent rate. The deflection of the slats
is correlated with the deflection of the flaps in an automated way.

3.3.1.3 Safety Envelopes

Flight operating conditions are defined by the limits of aircraft performance,
as well as by airport or the Federal Aviation Administration (FAA) regu-
lations. During descent and flare, the aircraft proceeds through successive
flap and slat settings. In each of these settings, the safe set is defined
by bounds on the state variables. The maximal allowed velocity Vmax is
dictated by regulations. The minimal velocity is related to the stall velocity
by Vmin = 1.3 ·Vstall. The minimal velocity is an FAA safety recommendation,
the aircraft might become uncontrollable below Vstall.

During descent, the aircraft tracks the glideslope and must remain within
±0.7◦ of the glideslope angle γGS. By regulation, as the aircraft reduces its
descent rate to land smoothly (in the last 50 feet before touch down), the
flight path angle γ in “flare mode” can range from γmin = −3.7◦ to 0.

During descent and flare, thrust T should be at idle, but the pilot can
use the full range of angle of attack α. Other landing procedures in which T
varies are used as well.



112 3 Viability Problems in Robotics

16 Flight and Touch down envelopes: The environment and the
target. The environment

Kflare := [Vmin, Vmax]× [γmin, 0]× R+ (3.4)

is the flight envelope in flare mode, or flare envelope, when the velocity lies
between minimal velocity Vmin = 1.3 · Vstall and a maximal velocity, when
the negative path angle is larger than γmin = −3.7◦ and the altitude is
positive.
The target
{
Ctouch down :=
{(V, γ, z) ∈ [Vmin, Vmax]× [γmin, 0]× {0} such that V sin γ ≥ ż0}

(3.5)

is the touch down envelope, when the velocity and the negative path angle
are constrained by V sin γ ≥ ż0 and the altitude is equal to 0.
The constraints on the controls are U(x) := [Tmin, Tmax]× [αmin, αmax]

At touch down (z = 0, but not V = 0 which describes the stopping
time of the aircraft), the restrictions are the same as flight parameters of the
flight envelope, except for the descent velocity. This last requirement becomes
ż(t) > ż0, where ż0 represent the maximal touch down velocity (in order not
to damage the landing gear). This condition thus reads V sin γ ≥ ż0.

The physical constraints of this problem are thus defined in terms of the
safety envelope and the target, mathematically expressed by (3.4) and (3.5)
respectively.

We now illustrate the difficulty of keeping the system inside the constraint
set Kflare defined by (3.4) and of bringing it to the target Ctouch down defined
by (3.5).

The environment (the flight envelope in flare mode) Kflare is a box in the
(V, γ, z) space. Similarly, the target Ctouch down is a subset of the z = 0 face
of Kflare, defined by 0 ≥ V sin γ ≥ ż0 and V ∈ [Vmin, Vmax].

Note that it is common for landing maneuvers to operate at constant
thrust, which does not mean that, in the current model, the controls are
constant, it only means that one of the control variables is constant for the
duration of the maneuver (or some portion of it).
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Fig. 3.5 Trajectories of evolutions with constant thrust.

Example of trajectories of evolutions emanating from a point at the γ = 0
face of Kflare, with maximal thrust and different angles of attack α. Some of
these evolutions are not viable in Kflare and do not reach C in finite time.

Figure 3.5 displays several trajectories of evolutions obtained by applying
T = Tmax with different values of α. As can be seen from this figure, the
trajectories obtained in the (V, γ, z) space exit Kflare in finite time. This
means that the control (α, Tmax) does not enable one to reach the target C
starting from the corresponding initial condition.

Similarly, Fig. 3.6 shows trajectories of several evolutions in the (V, γ, z)
space obtained with a fixed α and different values for T . As can be seen from
this figure, some of these trajectories are not viable in K and do not reach
the target Ctouch down before they hit the ground of exit Kflare.

This can be seen for the T = 0 and T = 20, 000 trajectories, which start
from the point B in Fig. 3.6, and exit K at B1. Note that other trajectories
stay in K, for example the one obtained for T = 160, 000, which manages to
reach the ground safely. Maneuvers can include several sequences for which
some of the parameters are fixed, in the present case, using a constant thrust
for descent is a common practice in aviation. The figure enables one to see
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the evolution of the flight parameters, V and z as the altitude decreases (see
in particular top right subfigure).

This figure also displays the trajectory of one viable evolution emanating
fromB which reaches the target C in finite time. This evolution is governed by
the a posteriori viability feedback computed by the Capture Basin Algorithm
providing minimal time evolutions.

These two figures illustrate the difficulty of designing viable evolutions
for this system, which thus underlines the usefulness of the Capture Basin
Algorithm.

Fig. 3.6 Trajectories of evolutions with constant thrust.

Example of trajectories of evolutions emanating from a point at the γ = 0
face of Kflare, with different thrusts and a fixed angle of attack α. Some of
these trajectories are not viable in Kflare and do not reach Ctouch down in finite
time. However, the trajectory of the evolution starting at B and governed by
the viable feedback synthesized by the Capture Basin Algorithm is viable.
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3.3.2 Computation of the Safe Flight Envelope
and the Viability Feedback

In the process of landing described in the previous sections, the following
question is now of interest: starting from a given position in space (altitude
z), with given flight conditions (velocity V and flight path angle γ), with
fixed thrust, is there a viable feedback map (i.e., a switching policy made
of a set of successive flap deflections/retractions), for which there exists a
control (angle of attack α) able to bring the aircraft safely to the ground?

The safe touch down envelope is the set of states (V, γ, z) where z > 0
(aircraft in the air), from which it is possible to touch down the ground
safely, (i.e. to reach Ctouch down) while doing a safe flare (i.e. while staying in
Kflare). It is therefore the capture basin

Capt(3.2)(Kflare, Ctouch down) (3.6)

of the target viable in Kflare.
We now provide both the capture basin and the graph of the a posteriori

viability feedback computed in terms of the target and the environment by
the Capture Basin Algorithm. Knowing this a posteriori viability feedback
dedicated to this task, one knows from the theorems and still can “verify”
that any evolution starting from the capture basin (the safe flight envelope)
and governed by this dedicated a posteriori feedback is viable until it reaches
the target.

Fig. 3.7 Capture basin, thrust and angle of attack feedback.

Left: The thrust component of the feedback to apply at the boundary
of Capt(3.2)(Kflare, Ctouch down) to maintain the aircraft in the safe flight
envelope. The thrust is indicated by the colorimetric scale on the boundary
of the capture basin Capt(3.2)(Kflare, Ctouch down). Right: The angle of attack
component is samely indicated by the colorimetric scale on the boundary of
the capture basin with the trajectories of two viable evolutions of the landing
aircraft.
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Figure 3.7 (left and right) shows the west boundary of Capt(3.2)(Kflare,
Ctouch down), Fig. 3.7 (left) the thrust component and Fig. 3.7 (right) the angle
of attack of the feedback map (V, γ, z) �→ (T, α) ∈ R(V, γ, z) needed on the
boundary of Capt(3.2)(Kflare, Ctouch down) to govern a safe evolution of the
aircraft in Kflare until landing at Ctouch down.

The target Ctouch down is not represented explicitly in Fig. 3.7, but one can
visually infer it from

Ctouch down = Capt(3.2)(Kflare, Ctouch down) ∩ ([Vmin, Vmax]× [γmin, 0]× {0})

It is the set of values of (V, γ) such that ż0 ≤ V sin γ ≤ 0, which is the almost
rectangular slab at the top of the grey bottom of the cube. Reaching any
(V, γ) value in this slab represents a safe touch down. Several trajectories
are represented in this figure, one starting from the point A, evolving inside
the capture basin until it reaches the boundary, at point A1. At that point,
it has to follow the feedback prescribed by the capture basin algorithm, to
stay inside K, until it lands safely at the end of the trajectory. The evolution
between B and B1 is of the same type, it reaches the boundary at B1, and
then needs to apply the feedback to reach the target safely.

As can be seen, the thrust needs to be maximal almost everywhere far
from the ground, which is intuitive: close to γ = γmin, high thrust is needed
to prevent the aircraft from descending along a too steep flight path angle,
or reaching z = 0 with a too fast descent velocity. Note that close to the
V = Vmax boundary of Kflare, lower values of T are required, which again is
intuitive: in order not to exceed the maximal velocity required by Kflare, a
low value of thrust must be applied. Finally, close to the ground (low values
of z and V ), low thrust is required to touch down, since the aircraft is almost
on the ground.

The evolutions of the flight parameters (V (t), γ(t), z(t)), as well as the
evolution of the viable feedback (T (t), α(t)) are displayed in Figs. 3.8 and 3.9
for the two evolutions emanating from B and A respectively.



3.3 Safety Envelopes in Aeronautics 117

1. Trajectory emanating from A.
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Fig. 3.8 Graph of the evolution starting from A.

Evolutions of the flight parameters and the control variables for the
landing starting from state A.

We first describe the trajectory emanating from the point A. This corres-
ponds to a descent at idle (no thrust) until thrust is turned on.
The trajectory evolves in the capture basin Capt(3.2)(Kflare, Ctouch down)
until a point A1 where it hits the boundary of that set. The corresponding
history of the flight parameters can be seen in Fig. 3.7. As can be seen
from this figure, until the trajectory reaches the point A1, the aircraft is
in idle mode (zero thrust), until thrust is turned back on to avoid leaving
Capt(3.2)(Kflare, Ctouch down) (which would lead to an unsafe landing, i.e.
the impossibility of reaching the target while staying in the constraint set).
As can be seen from the other flight parameters, speed is almost constant
during the landing, altitude decreases with a plateau (corresponding to
a zero flight path angle). The sharpest descent happens at the end
around A1. As can be seen from Fig. 3.7 right, as soon as the trajectory
hits A1, it stays along the boundary of the capture basin, i.e. viability is
ensured by applying the viability feedback (shown in Fig. 3.7).
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2. Trajectory emanating from B.
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Fig. 3.9 Graph of the evolution starting from B.

Evolutions of the flight parameters and the control variables for the
landing starting from state B.

We then describe the trajectory emanating from the point B, visible in
Fig. 3.7 right. This corresponds to a descent at constant thrust but zero
angle of attack until the angle of attack is raised (flare) to achieve a safe
landing. Starting from point B, the trajectory reaches the boundary of
Capt(3.2)(Kflare, Ctouch down) at point B1, where it is forced to increase
the angle of attack (which will in turn increase lift), to be able to reach
the target safely. As can be seen from the temporal histories of the flight
parameters (see Fig. 3.9, at B1, the angle of attack increases, leading to
a reduction of the decrease of the flight path angle. This is relatively
intuitive, the increased lift due to a higher angle of attack decreases the
rate at which the flight path angle decreases (hence after t = 0.5, one
can see that the flight path angle starts to increase again. The trajectory
reaches the target along the boundary of the capture basin, as can be seen
from the temporal histories, with a slight increase in speed, and with a
monotonic decay in altitude.

These two examples illustrate the power of the viability method used,
which is able to adapt the feedback (by varying the thrust and the angle of
attack) based on the scenario, in order to preserve viability while descending
in the constraint set.
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3.4 Path Planing for a Light Autonomous
Underwater Vehicle

This section presents the results of the application of the capture basin
algorithm to a minimal time problem (see Sect. 4.3, p.132). We are interested
in finding the fastest way for a Light Autonomous Underwater Vehicle
(LAUV) to reach a target location.

3.4.1 Dynamics, Environment and Target

We treat the submarine as a three degree of freedom planar vehicle. The
vehicle has a propeller for longitudinal actuation and fins for lateral and
vertical actuation. However, we decouple the actuators and use the vertical
actuation only to maintain a constant depth.

We characterize the state of the system with three variables: x, y for earth-
fixed East and North coordinates, and ψ for earth-fixed heading. For this
application it is acceptable to assume that the effect of currents can be
captured by superposition; in other words, the velocity of the surrounding
water can simply be added to the velocity of the vehicle due to actuation.

The LAUV is modelled by the tree-dimensional system
⎧⎨
⎩

(i) x′(t) = u(t) cos(ψ(t)) + vcx(x(t), y(t))
(ii) y′(t) = u(t) sin(ψ(t)) + vcy(x(t), y(t))
(iii) ψ′(t) ∈ [−rmax, rmax]

(3.7)

where vcx(x, y) and vcy(x, y) are the components of the water velocity.
The deployment area was a 400×300m rectangle containing the junction of

the Sacramento River and the Georgianna Slough in California, USA. Under
normal conditions, water flows from North to South, at speeds ranging from
0.5 to 1.5m/s.

Bathymetric data for the region is available. The channel depth drops
steeply from the bank, and is deeper than 2m at all points away from the
shore, so operations can be safely conducted as long as the LAUV does not
come within 5 m of the shore.
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Fig. 3.10 Current Map and Isochrones of the Minimal Time Function.

The left subfigure displays the currents in the Sacramento river and the
Georgianna Slough where the LAUV was deployed for the test. The current
is used in the computation of minimum time function, which itself serves to
compute the optimal trajectory. Isochrones of the minimal time functions
for various starting positions and initial direction East are displayed in the
right subfigure. Numbered contours give time to target in seconds.

Figure 3.10, p.120 shows the results of the minimal time computation using
the capture basin algorithm for the LAUV model. The effect of the anisotropic
current on the minimal time function is clearly visible in the figure showing
the isochrones, and the presence of discontinuities in the feedback map is
apparent in the eight subfigures showing the retroaction below (see Fig. 3.12,
p.122).

Fig. 3.11 Sample of generated trajectories.

Sample of generated trajectories. Pair “A” have the same starting position,
directions differ by 15◦. Pair “B” have the same starting direction, positions
separated by 10m.
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In the figure above, the trajectories labelled “A” show how a change in
initial direction (270◦ versus 255◦) can result in dramatically different actions.
The trajectories labelled “B” show how two starting points, separated by
10m, with the same initial direction 90◦, can take very different paths to the
target.

Fig. 3.12 Minimal time function (left) and feedback map (right).

Minimal time function ( left) and feedback map (right) for a 100 × 100m
region around the target, and initial direction (from top) North, East, South,
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West. The direction feedback map indicates directions of heading change
(CW stands for clockwise and CCW for counterclockwise).

3.4.2 Experimental Results

For the experiment, we use the following values which result from our tests.
The maximum speed of the submarine in still water was experimentally deter-
mined to be 2 m/s, and at that speed, the maximum turn rate was 0.5 rad/s.
By fitting a hydrodynamic model to these values, the turn rate/speed
relationship could be estimated for lower speeds. The value 2 m/s was judged
to be too fast for the planned experiments, for safety and other logistical
reasons. We used an intermediate value of V = 1 m/s and rmax = 0.2 rad/s.

Fig. 3.13 Light Autonomous Underwater Vehicle (LAUV).

The Light Autonomous Underwater Vehicle (LAUV) from Porto University
used for the implementation of the algorithm. The LAUV is a small
110 × 16 cm low-cost submarine with a maximum operating depth of 50m
for oceanographic and environmental surveys designed and built at Porto
University. It has one propeller and three control fins. The onboard navigation
suite includes a Microstrain low-cost inertial measurement unit, a Honeywell
depth sensor, a GPS unit and a transponder for acoustic positioning (GPS
does not work underwater). This transponder is also used for receiving basic
commands from the operator. The LAUV has a miniaturized computer
system running modular controllers on a real-time Linux kernel.

The viability algorithm returns the minimum time function and the
feedback map for the chosen target. Due to the way the minimum time
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function is built, it is efficient to calculate the feedback map at the same
time. The feedback map is a function that returns the direction command
necessary to stay on the optimal trajectory at each position/direction in the
viable set. Ideally, the LAUV would use this feedback map directly. In our
experiment, we instead use this feedback map to pre-calculate the optimal
trajectory. This is done by selecting a starting point and direction, then
finding the optimal trajectory from that point by using the feedback map to
find successive points. In other words, there is no need to perform a dynamic
programming optimization on the minimum time function; the feedback map
made the trajectory calculation straightforward.

We ran several experiments with the trajectory data sets provided by the
optimal control algorithm. This took place in second week of November 2007.
The qualitative behavior of the LAUV did not change significantly across
several experiments, and showed good agreement with predicted results.

Figure 3.14, p.123 displays the results for the experiment involving the
optimal trajectory planning. In this experiment the LAUV was deployed at
the location labelled start, where it drifted with the current while waiting for
the startmission command.

Fig. 3.14 Minimal time evolution of the submarine.

The minimal time evolutions of the submarine are computed by the capture
basin algorithm viable in the Georgianna Slough. The submarine starts
from the start point and rallies the target following the optimal trajectory
obtained using the minimum time function.
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Figure 3.15, p.124 shows the deviation between the planned and actual
trajectory.
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Fig. 3.15 Deviation between planned and actual trajectory.

The deviation between planned and actual trajectory is obtained by
comparing the estimated position of the submarine during the operation
(by acoustic methods) with the planned position obtained from the viability
algorithm.



Chapter 4

Viability and Dynamic Intertemporal
Optimality

4.1 Introduction

We consider throughout this chapter the parameterized system (2.10),
p.64:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

In this chapter, we denote by P the evolutionary system associating with
any x the set P(x) of state-control pairs (x(·), u(·)) governed by the control
system and starting from x. This evolutionary system is generated by the
parameterized system (2.10), but, in contrast to the evolutionary system S,
it associates evolutions of state-control pairs instead of states.

We also introduce a “transient state” cost function (often called a
Lagrangian) l : X × U �→ R+ associating with any state-controlled evolution
(x(·), u(·)) ∈ P(x) and any t ≥ 0 a positive cost l(x(t), u(t)) ≥ 0. Given a
discount rate m ≥ 0, the “discounted cumulated” cost along the evolution is

then measured by the integral
∫ +∞

0

e−mτ l(x(τ), u(τ))dτ . The value function

∞
Vl (x) := inf

(x(·),u(·))∈P(x)

∫ +∞

0

e−mτ l(x(τ), u(τ))dτ

describes this infinite horizon intertemporal optimization problem.
The objective of this chapter is to find a retroaction governing optimal

evolutions which minimize this intertemporal criterion (see Definition 2.7.2,
p. 65), and, for that purpose, two miracles happened:

1. the breakthrough uncovered by Hamilton and Jacobi is that the com-
putation of the retroaction involves the value function and its partial
derivatives, obtained as a solution to a partial differential equation,
called the Hamilton–Jacobi–Bellman partial differential equation. This was
discovered two centuries ago by William Hamilton and Carl Jacobi in the
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framework of the calculus of variations, and adapted half a century ago
to control systems by Richard Bellman and Rufus Isaacs, who extended
these concepts to differential games.
Intertemporal optimization is treated in depth in Chap. 17, p. 681. Being
the one of the most technical chapter, it is relegated to the end of the
book.

Fig. 4.1 Hamilton–Jacobi–Bellman–Isaacs.

Hamilton (Sir William Rowan) [1805–1865], Jacobi (Carl Gustav Jakob)
[1804–1851], Bellman (Richard Ernest) [1920–1984] and Isaacs (Rufus
Philip) [1914–1981]

2. another breakthrough is that it is possible to bypass this approach by
characterizing this value function by a viability kernel and thus, to derive
the retroaction map without solving this partial differential equation. The
way to do this is to associate with the initial control system (2.10):

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

governing the evolution x(·) of the state, another system governing an
auxiliary variable y(·), for most examples, a scalar. In this case, it would be

y′(t) = −l(x(t), u(t))

It would be convenient to regard the initial controlled system (2.10) as a
microsystem, regulating the evolution of a state variable x, whereas the
macrosystem regulates the evolution of y(·), regarded as a macro variable.
The distinction between “micro” and “macro” is that the dynamics
governing the evolution of the state does not depend on the macro variable,
whereas the evolution of the macro variable depends upon the state
variable either through its control law or trough constraints linking micro
and macro variables. These systems are also called structured systems (see
Chap. 13, p.523). The question arises whether these two systems, micro
and macro, are consistent, in the sense, for example, that the evolutions
of the micro and macro variables satisfy imposed links. This is a viability
problem.
In economics, for instance, the micro system governs the evolution of the
transactions among many economic agents, in a decentralized way, whereas
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the macro-variables are monetary ones, under the control of bankers. The
agents, whose behaviors are studied in micro-economics, are constrained
by fiduciary variables without acting on them, whereas bankers or the
abstract concept of “Market”, regulating these variables taking into
account the behavior of agents.
In engineering, the macro variables are observations, which summarize
the behavior of the state variables. Micro–macro systems are prevalent in
physics.

We shall “embed” the optimization problem in the framework of a viabil-
ity/capturability problem of micro–macro targets viable in a micro–macro
environment under the auxiliary micro–macro system and prove that the
viable evolutions of the auxiliary micro–macro systems generates optimal
evolutions of the state variable. Hence the regulation map governing the
evolution of micro–macro variables regulates the evolution of optimal evo-
lutions, and thus, the solution to our intertemporal optimization problem.

We shall attempt in Sect. 4.12, p. 171 to clarify without proofs the links
between viability theory on one hand, intertemporal optimization, micro–
macro systems and Hamilton–Jacobi–Bellman partial differential equations
on the other hand. These links are established and proved later in the
adequate sections of the book (see Chaps. 13, p.523 and 18.8, p.734).

This is why and how viability theory can bring a new – and unified – light
on these intertemporal optimization problems.

With this panoramic landscape described at a high level, we begin our
presentation in Sect. 4.2, p. 129 by a review of some examples of intertemporal
criteria we shall minimize over evolutions governed by control systems, as
well as extended functions which “integrate” constraints in the intertemporal
criteria, allowing them to take infinite values outside the environment where
they were initially defined.

We then proceed in Sect. 4.3, p. 132 with the main example of such func-
tions, the exit function, which could have been called a “survival function”
since it measures the time spent by an evolution in the environment before
leaving it, and the minimal time function, measuring the time needed for an
evolution to reach a target. We proceed with the exposition of minimal length
functions measuring the smallest length of an evolution starting from a given
initial state viable in the environment. This is the “spatial” counterpart of
the concept of exit function, the domain of which is contained in the viability
kernel. Minimal length evolutions converge to equilibria of the system, which
range over the states where the minimal length function vanishes.

These notions are useful to “quantify” the qualitative concepts of viability
kernels and capture basins. We shall characterize them in terms of viability
kernels and capture basins, which allows them to enjoy their properties and
to be computed.
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Section 4.5, p. 142 provides functions which allows us to quantify some of
the numerous concepts of asymptotic stability, following the road opened to us
in 1899 by Alexandr Lyapunov. We shall introduce attracting and exponential
Lyapunov functions and characterize them in terms of viability kernels.

The next example we present in Sect. 4.6, p. 152 is the one dealing with
safety and transgression functions. Starting from inside the environment, the
safety function associates with the initial state the worst distance of the states
of the evolution to the boundary of the environment, which measures a kind
of safety. In a dual way, starting outside the environment, the transgression
function measures the worst distance of the states of the evolution to the
environment, measuring how far from the environment the evolution will be.
We shall address the same theme in Sect. 9.2.2, p. 326 where space is replaced
by the time spent by an evolution outside the environment measured by
the crisis function, which quantifies the concept of permanence kernel (see
Definition 9.2.3, p. 323).

These are examples of infinite horizon intertemporal optimization prob-
lems we present in Sect. 4.7, p. 155, with a summary of their main properties
derived from their characterization in terms of viability kernels.

We provide the example of intergenerational optimization in Sect. 4.8,
p. 158, one of the useful concepts underlying the notion of sustainable
development. At initial time, one minimizes an intertemporal criterion from 0
to +∞, in such a way that for each later time t, the value of the intertemporal
criterion from 0 to +∞must be bounded by a function depending on the state
at time t of the evolution.

Finite-horizon intertemporal optimization is paradoxically somewhere
more complicated because it involves time as an explicit extra variable.
However, the approach is the same, and described in Sect. 4.9, p. 162.

We provide another application to the concept of occupational measure, an
important tool introduced by physicists for “describing” through a measure
the behavior of an evolution governed by a determinist system: knowing any
criterion function, its integral under the occupational measure automatically
provides the value of this criterion over the path of the evolution. We shall
extend this concept to the case when the evolution is governed by a control
system. In this case, we associate with any state a closed convex subset of
measures, called the generalized occupational measure, which allows us to
recover directly without solving them the optimal value of the criterion. As
can be expected of a topic treated in this book, the concept of occupational
measure is related to capture basins.

These are examples of a general theory linking intertemporal optimization
theory with viability and capturability concepts under an underlying auxil-
iary micro–macro controlled system on one hand, and with Hamilton–Jacobi–
Bellman partial differential equations on the other one. The later links are
known for a long time. The novelty consists in the links with viability theory
which allows us to add new tools for studying these problems, including the
case when the evolution must face viability (or state) constraints.



4.2 Intertemporal Criteria 129

An “optimal control survival kit” summarizing the main results of the
Hamilton–Jacobi–Bellman strategy to study intertemporal optimization is
provided in Sect. 4.11, p. 168. These results, quite technical, are presented
and proved in full details at the end of the book, in Chap. 17, p. 681.

4.2 Intertemporal Criteria

4.2.1 Examples of Functionals

Naturally, there are as many examples of functionals, and as many intertem-
poral optimization problems over evolutions governed by controlled systems.
In other words, a zoo. So that we face the same difficulties as our zoologist
colleagues, to classify those examples.

We shall cover many criteria, some classical, some more original. At no
extra cost, because all these examples of a whole class of systems share the
fundamental pair of properties.

We provide here a list of examples of functionals that we shall optimize
over the subset of evolutions governed by an evolutionary system and starting
from an initial state. They can be classified under several criteria:

1. Integral and Non Integral Functionals
These functionals are based on evaluation functions l : X �→ R+ (for
example, l(x) := ‖x‖). We associate with any evolution x(·) ∈ C(0,∞;X)
the associated functional

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) Jl(T ;x(·)) := l(x(T ))

(ii) Jl(x(·)) :=

(∫ T

0

l(x(t))pdt

) 1
p

(iii) Jl(x(·)) := supt∈[0,T [ l(x(t))

with the favorite p=1 (integral functional) or p=2 (quadratic functional).
The case p = 2 is chosen whenever we need to differentiate the functional,
because Hilbertian techniques are very well adapted, above all to linear
problems.
The first and second cases are the most natural ones to be formulated, the
second one is the simplest one mathematically in a linear world, and the
third one, that we can regard as associated with p = +∞, provides non
differentiable functionals. The third case has been relatively neglected
in the extent that tools of smooth differential and integral analysis and
functional analysis are required.
However, the viability approach does not need to differentiate the value
function. Hence viability techniques treat integral functionals and non
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integral ones in the same way (our favorite and innovating case in this
book being p = ∞).
In control theory, the case (i) corresponds to “terminal costs”, the case (ii)
corresponds to “running costs” and the case (iii) corresponds to a maximal
cost, which sometimes appears in the domain of “robust control”.
In life sciences, the case (iii) is prevalent, as we shall explain in Chap. 6,
p. 199, which is devoted to it.

2. Combining Integral and Non Integral Functionals Depending on
Controls
In the case of control problems, the functions l(x, u) can depend upon the
controls and can be regarded as a Lagrangian, interpreted as a transient
cost function, which may involve explicitly the controls u(·), as well as a
spot cost function function c and a environmental cost function k:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Jl(x(·)) :=
∫ T
0 l(x(t), u(t))dt

Jl,c(T, x(·)) := c(x(T )) +
∫ T

0

l(x(t), u(t))dt

Il,k(T ;x(·)) := sup
t∈[0,T ]

(
k(x(t), u(t)) +

∫ t

0

l(x(τ), u(τ))dτ
)

Ll,k,c(T, x(·)) := max (Il,k(T ;x(·)),Jl,c(T, x(·)))

and so on... See Definition 17.3.2, p. 687 for the largest class of functionals
that we shall study in depth in this book. However, the larger the class,
the more technical and less intuitive the formulas... This is the reason why
we postpone this general study at the end of the book.

3. Versatility and volatility
They are functionals on derivatives of (differentiable) evolutions. We define
the versatility of the evolution with respect to l on the interval [0, T [ by

Versl(x(·)) := sup
t∈[0,T [

l(x′(t)) (4.1)

and the volatility of the evolution with respect to l by

Voll(x(·)) :=

(
1
T

∫ T

0

l(x′(t))2dt

) 1
2

For example, taking l(x) := ‖x‖, the versatility and volatility are
⎧⎪⎨
⎪⎩

(i) Versl(x(·)) := supt∈[0,T [ ‖x′(t)‖

(ii) Voll(x(·)) :=

(
1
T

∫ T

0

‖x′(t)−m‖2dt

) 1
2
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For a control system, the versatility of the control variable is called the
inertia, and the minimal inertia over viable evolutions is called the inertia
function. For a tychastic system, the versatility of the tychastic variable is
called the palikinesia and the minimal palikinesia over viable evolutions is
called the palikinesia function.

4.2.2 Extended Functions and Hidden Constraints

The above examples of intertemporal criteria functions do not take into
account the environment K over which they are defined. The trick for
involving constraints into the cost functions k and c, for instance, is, in a
minimization framework, to assign the value +∞ (infinite cost) outside the
environment, since no “minimizer” will choose a state with an infinite cost.
Hence if we consider an environment K ⊂ X and a function vK : K �→ R

(with finite values), we can extend it to the function v : X �→ R ∪ {+∞}
defined on the whole space, but taking finite and infinite values: v(x) :=
vK(x) whenever x ∈ K, v(x) := +∞ whenever x /∈ K. These numerical
functions taking infinite values, which will be extensively used in this book,
are called extended functions.

For that purpose, we use the convention inf{∅} := +∞ and sup{∅} := −∞.

Definition 4.2.1 [Extended Functions] A function v : X �→ R :=
R∪ {−∞}∪ {+∞} is said to be an extended function. Its domain Dom(v)
defined by

Dom(v) := {x ∈ X | −∞ < v(x) < +∞}

is the set of elements on which the function is finite.
The domain of an extended function incorporates implicitly state

constraints hidden in the extended character of the function v.

We refer to Sect. 18.6, p. 742 for further details on epigraphical analysis.
It was discovered in the 1960s with the development of convex analysis
founded by Moritz Fenchel, Jean Jacques Moreau and Terry Rockafellar
that numerous properties relevant to the optimization of general functionals,
involving the order relation of R and inequalities, are read through their
epigraphs or hypographs:

Definition 4.2.2 [Epigraph of a Function] Let v : X �→ R be an
extended function.

1. Its epigraph Ep(v) is the set of pairs (x, y) ∈ X×R satisfying v(x) ≤ y.
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2. Its hypograph Hyp(v) is the set of pairs (x, y) ∈ X×R satisfying v(x) ≥
y.

3. Its graph Graph(v) is the set of pairs (x, y) ∈ Dom(v) × R satisfying
v(x) = y.

Fig. 4.2 Epigraph and hypograph.

Illustrations of the epigraph ( left) and the hypograph (right) of an Extended
Function. The epigraph is the set of points above the graph. The hypograph
is the set below the graph.

For more details on tubes and their level sets, see Sect. 10.9, p. 427.

4.3 Exit and Minimal Time Functions

4.3.1 Viability and Capturability Tubes

Until now, we studied viability without time horizon. However, it is reason-
able to also study the case in which the concepts of viability and capturability
depend on time. They provide examples of tubes.

Fig. 4.3 Illustration of a tube.

Tubes are nicknames for “set-valued evolutions” K : t ∈ R� K(t) ⊂ X .
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We begin here the study of time-dependent viability kernels and capture
basins, so to speak. We shall pursue the thorough study of tubes in Chap. 8,
p. 273, and in particular, the study of reachable maps (see Proposition 8.4.3,
p. 286) and detectors (see Theorem 8.10.6, p. 314).

Definition 4.3.1 [Viability, Capturability and Exact Capturability
Tubes] Let S : X � C(0,+∞;X) be an evolutionary system and C and
K be two closed subsets such that C ⊂ K. The T -viability kernels, the T -
capture basins and the T -exact capture basin are defined in the following
way:

1. the T -viability kernel ViabS(K)(T ) of K under S is the set of elements
x ∈ K from which starts at least one evolution x(·) ∈ S(x) viable in K
on the interval [0, T ],

2. the T -capture basin CaptS(K,C)(T ) is the set of elements x ∈ K from
which starts at least one evolution x(·) ∈ S(x) viable in K until it reaches
the target C before time T .

3. the T -exact capture basin ĈaptS(K,C)(T ) is the set of elements x ∈ K
from which starts at least one evolution x(·) ∈ S(x) viable in K until it
reaches the target C at exactly time T .

We shall say that the set-valued maps T � ViabS(K)(T ), T �
CaptS(K,C)(T ) and T � ĈaptS(K,C)(T ) are respectively the viability
tube, the capturability tube and the exact capturability tube.

We can characterize the graphs of these viability and capturability tubes
as viability kernels (actually, capture basin):

Theorem 4.3.2 [Graphs of Viability and Capturability Tubes] Let
us consider ⎧⎨

⎩
(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))

where u(t) ∈ U(x(t))
(4.2)

1. The graph of the viability tube ViabS(K)(·) is the capture basin of {0}×K
viable in R+ ×K under the system (4.2):

Graph(ViabS(K)(·)) = Capt(4.2)(R+ ×K, {0} ×K)

2. The graph of the capturability tube CaptS(K,C)(·) is the capture basin
of R+ × C viable in R+ ×K under the system (4.2):
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Graph(CaptS(K,C)(·)) = Capt(4.2)(R+ ×K,R+ × C)

3. The graph of the exact capturability tube ĈaptS(K,C)(·) is the capture
basin of {0} × C viable in R+ ×K under the system (4.2):

Graph(ĈaptS(K,C)(·)) = Capt(4.2)(R+ ×K, {0} × C)

Proof.

1. to say that (T, x) belongs to the capture basin of R+ × K with target
{0} × K under evolutionary system (4.2) amounts to saying that there
exists an evolution x(·) ∈ S(x) starting at x such that (T−t, x(t)) is viable
in R+ ×K forever or until it reaches {0} ×K at some time t�. But T − t
leaves R+ at time T and the solution reaches the target {0} ×K at time
t = T . This means that x(·) ∈ S(x) is a solution to the evolutionary system
viable in K on the interval [0, T ], i.e., that x belongs to ViabS(K)(T )

2. to say that (T, x) belongs to the capture basin of R+ × K with target
R+ × C under auxiliary system (4.2) amounts to saying that there exists
an evolution x(·) ∈ S(x) starting at x such that (T − t, x(t)) is viable in
R+×K until it reaches (T − s, x(s)) ∈ R+×C at time s. Since T − s ≥ 0,
this means that x(·) is an evolution to the evolutionary system S(x) viable
in K on the interval [0, s] and that x(s) ∈ C, i.e., that x belongs to
CaptS(K,C)(T )

3. to say that (T, x) belongs to the viability kernel of R+ × K with target
{0} × C under auxiliary system (4.2) amounts to saying that there exists
an evolution x(·) ∈ S(x) starting at x such that (T − t, x(t)) is viable
in R+ × K forever or until it reaches (T − s, x(s)) ∈ {0} × C at time
s. Since T − s = 0, this means that x(·) is an evolution in S(x) viable
in K on the interval [0, T ] and that x(T ) ∈ C, i.e., that x belongs to
ĈaptS(K,C)(T ) ��

Hence the graphs of the viability, capturability and exact capturability
tubes inherit the general properties of capture basins.

We refer to Sects. 4.3, p. 132 and 10.4, p. 392 for other characterizations
of these tubes.

4.3.2 Exit and Minimal Time Functions

The inverse of the tubes T � ViabS(K)(T ) and T � CaptS(K,C)(T )
are respectively the hypograph of the exit function and the epigraph of the
minimal time function:
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Definition 4.3.3 [Exit and Minimal Time Functionals] Let K ⊂ X
be a subset.

1. The functional τK : C(0,+∞;X) �→ R+ ∪{+∞} associating with x(·) its
exit time τK(x(·)) defined by

τK(x(·)) := inf {t ∈ [0,∞[ | x(t) /∈ K}

is called the exit functional.
2. Let C ⊂ K be a target. We introduce the (constrained) minimal time

functional (or minimal time) �(K,C) defined by

�(K,C)(x(·)) := inf{t ≥ 0 | x(t) ∈ C & ∀s ∈ [0, t], x(s) ∈ K}

associating with x(·) its minimal time. If K = X is the entire space, we
set �C(x(·)) := �(X,C)(x(·))

We observe that
τK(x(·)) = ��K(x(·))

These being defined, we apply these functionals to evolutions provided by
an evolutionary system:

Definition 4.3.4 [Exit and Minimal Time Functions] Consider an
evolutionary system S : X � C(0,+∞;X).

Let K ⊂ X and C ⊂ K be two subsets.

1. The (extended) function τ �K : K �→ R+ ∪ {+∞} defined by

τ �K(x) := sup
x(·)∈S(x)

τK(x(·))

is called the (upper) exit function (instead of functional): see Fig. 5.11,
p. 190.

2. The (extended) function ��
(K,C) : K �→ R+ ∪ {+∞} defined by

��
(K,C)(x) := inf

x(·)∈S(x)
�(K,C)(x(·))

is called the (lower constrained) minimal time function (see Fig. 5.12, p.
192).
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These links can be interpreted by saying that the exit functions τ �K and
the minimal time functions ��

(K,C) “quantify” the concepts of viability
kernels and capture basins. Proposition 10.4.5, p. 394 states that they are
actually equalities (10.11), p. 395 whenever the evolutionary system is upper
semicompact and that they are respectively upper semicontinuous and lower
semicontinuous without further assumptions. Concerning the capture basins
CaptS(K,C), we need to assume that K \C is a repeller to guarantee that the
capture basin is closed (see Theorem 10.3.10, p. 388) although it is always
the domain of an upper semicontinuous function (whenever the evolutionary
system is upper semicompact). This is a weaker property than closedness,
but still, carries some useful information. ��

These links between these concepts are illustrated in the two following
figures:

Fig. 4.4 Hypograph of an upper exit function and graph of the viability tube.

Fig. 4.5 Epigraph of a lower minimal time function and graph of the
capturability tube.
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Proposition 4.3.5 [Elementary Properties of Exit and Minimal
Time functions]

1. Behavior under translation: Setting (κ(−s)x(·))(t) := x(t+ s),

∀s ∈ [0, τK(x(·))], τK((κ(−s)x(·))(·)) = τK(x(·)) − s (4.3)

2. Monotonicity Properties: If K1 ⊂ K2, then τK1(x(·)) ≤ τK2(x(·)) and if
furthermore, C1 ⊃ C2, then �(K1,C1)(x(·)) ≤ �(K2,C2)(x(·))

3. Behavior under union and intersection:

τ⋂n
i=1Ki

(x(·)) = min
i=1,...,n

τKi(x(·)) & �⋃n
i=1 Ci

(x(·)) = min
i=1,...,n

�Ci(x(·))

4. Exit time of the complement of a target in the environment:

∀x ∈ K\C, τK\C(x(·)) = min(�C(x(·), τK(x(·))))

5. Behavior under product:

τ∏n
i=1Ki

(x1(·), . . . , xn(·)) = min
i=1,...,n

τKi(xi(·))

Proof. The first two properties being obvious, we note that the third holds
true since the infimum on a finite union of subsets is the minimum of the
infima on each subsets by Lemma 18.2.7, p.718. Therefore, the fourth one
follows from

{
τK\C(x(·)) = ��(K\C)(x(·)) = �C∪�K(x(·)) =
min(�C(x(·)), ��K (x(·))) = min(�C(x(·), τK(x(·))))

Observing that when K := K1×· · ·×Kn :=
∏n
i=1Ki where the environments

Ki ⊂ Xi are subsets of vector spaces Xi,

�

⎛
⎝ n∏
j=1

Kj

⎞
⎠ =

n⋃
j=1

⎛
⎝j−1∏
i=1

Xi × �Kj ×
n∏

l=j+1

Xl

⎞
⎠

the last formula follows from
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τ∏n
i=1Ki

(x1(·), . . . , xn(·)) := inf{t ≥ 0 | x(t) ∈ �K}
= min

j=1,...,n

(
inf{t|xj(t) ∈ �Kj}

)
= min

j=1,...,n
τKj (xj(·)) ��

We recall that S is the evolutionary system generated by control system
x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) and we introduce the auxiliary
micro–macro system

{
(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(ii) τ ′(t) = −1 (4.4)

We now prove that exit and minimal time functions are related to viability
and capturability tube:

Theorem 4.3.6 [Viability Characterization of Minimal Time and
Exit Functions] The exit and minimal time functions are respectively
equal to

1. The exit function τ �K(·), related to the viability kernel by the following
formula

τ �K(x) = sup
(x,T )∈Capt(4.4)(K×R+,K×{0})

T = sup
(T,x)∈Graph(ViabS(K)(·))

T

(4.5)
2. The minimal time function ��

K,C(·), related to the capture basin by the
following formula

{
��

(K,C)(x) = inf(x,T )∈Capt(4.4)(K×R+,C×R+) T

= inf(T,x)∈Graph(CaptS(K,C))(·) T
(4.6)

Proof. This is a consequence of Theorem 4.9.2, p. 163 with l(x, u) := 1. ��

Remark. Inclusions⎧⎪⎪⎨
⎪⎪⎩

ViabS(K)(T ) ⊂
{
x ∈ K | τ �K(x) ≥ T

}

CaptS(K,C)(T ) ⊂
{
x ∈ X | ��

(K,C)(x) ≤ T
}
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are obviously always true, so that inequalities below follow
{

(i) τ �K(x) ≥ sup(T,x)∈Graph(ViabS(K)(·)) T

(ii) ��
(K,C)(x) ≤ inf

(T,x)∈Graph(CaptS(K,C)(·)) T
(4.7)

Let us prove that for any S < τ �K(x), S ≤ sup(T,x)∈Graph(ViabS(K))(·) T ,
so that equality (4.7)(i) will be satisfied. By the very definition of the
supremum, there exists x(·) ∈ S(x) such that S < τK(x(·)), and thus, such
that x(·) is viable in K on the interval [0, S], i.e., such that x ∈ ViabS(K)(S).
This implies that S ≤ sup(T,x)∈Graph(ViabS(K))(·) T .

The proof of inequality (4.7)(ii) is analogous. ��

Remark: The associated Hamilton–Jacobi–Bellman Equation. —
Denote by fi(x, u) the ith component of f(x, u). The exit and minimal time
functions τ �K and ��

(K,C) are the largest positive solutions to the Hamilton–
Jacobi–Bellman partial differential equation

inf
u∈U(x)

n∑
i=1

∂v(x)
∂xi

fi(x, u) + 1 = 0

satisfying respectively the conditions v = 0 on �K for the exit function and
that v = 0 on C and v = +∞ on �K for the minimal time function. ��

The study of exit and minimal time functions, which inherit the properties
of capture basins, continues in Sect. 10.4, p. 392. Among them, we shall
prove the fact that the supremum in the definition of the exit function
τ �K and the infimum in the definition of the minimal time function ��

(K,C)

are achieved by evolutions, respectively called persistent evolutions and
minimal time evolutions (see Definitions 10.4.2, p. 393 and 10.4.3, p. 393
and Theorem 10.4.4, p. 394 as well as Sect. 10.4.3, p. 396 on exit sets
ExitS(K) :=

{
x ∈ K such that τ �K(x) = 0

}
).

4.4 Minimal Length Function

A subsequent question related to viability is to find a viable evolution
minimizing its length

J(x(·)) :=
∫ ∞

0

‖x′(τ)‖dτ

among the evolutions starting from an initial state x ∈ K and viable in
K. Viable geodesics connecting y ∈ K to z ∈ K are the viable evolutions
connecting them with minimal length (see Sect. 8.5.1.1, p.292).
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Definition 4.4.1 [Minimal Length Function] The minimal length
function γK(x) : X �→ R+ ∪ {+∞} associates with x(·) its minimal length
defined by

γK(x) := inf
x(·)∈SK(x)

∫ ∞
0

‖x′(τ)‖dτ

where SK(x) denotes the set of evolutions starting from x ∈ K and viable
in K. The domain of the minimal length function can be regarded as the
“minimal length viability kernel”.

The lower level sets {x ∈ K | γK(x) ≤ λ} of the minimal length function
is the set of initial states x from which starts a viable evolution of prescribed
length smaller than or equal to λ.

The minimal length function is characterized in terms of the viability
kernel of an auxiliary micro–macro system:

⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = −‖f(x(t), u(t))‖

where u(t) ∈ U(x(t))
(4.8)

subject to the constraint

∀t ≥ 0, (x(t), y(t)) ∈ K × R+

Theorem 4.4.2 [Viability Characterization of the Minimal Length
Function] The minimal length function is related to the viability kernel of
K × R+ under the auxiliary micro–macro system (4.8) by the following
formula

γK(x) = inf
(x,y)∈Viab(4.8)(K×R+)

y

Its domain is the viability kernel ViabS(K) of the subset K and the
equilibrium set coincides with evolutions of length equal to zero (see
Fig. 5.13, p. 194).

Proof. This is a consequence of Theorem 4.7.2, p. 156 with l(x, u) :=
‖f(x(t), u(t))‖. ��

We observe that equilibria are evolutions of length equal to 0, and thus,
are located in the finite length viability kernel. But there is no reason why
should an equilibrium exists in this set. However, we shall prove in Sect. 9.5,
p.360 that this is the case when the control system is Marchaud.
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Theorem 4.4.3 [Existence of an Equilibrium in the Finite Length
Viability Kernel] Assume that the control system (f, U) is Marchaud, that
the environment K is closed and that the finite length viability kernel is not
empty. Then the control system has an equilibrium (x, u) ∈ Graph(U) such
that f(x, u) = 0.

Proof. Theorem 4.4.2, p.140 states that the epigraph of the minimum length
function is a viability kernel. Since the control system is Marchaud, the
viability kernel is closed and thus, the minimum length function is lower
semicontinuous (see Theorem 17.3.6, p.692). Furthermore, Theorem 19.4.1,
p.781 on necessary condition implies that

{
∀ (x, γK(x)) ∈ Ep(γK) = Viab(4.8)(K × R+), ∃ u ∈ U(x) such that
(f(x, u),−‖f(x, u)‖) ∈ TEp(γK)(x, γK(x)) = Ep(D↑γK(x))

This implies that

∀ x ∈ Dom(γK), ∃ u ∈ U(x) such that D↑γK(x)(f(x, u)) ≤ −‖f(x, u)‖
(4.9)

Since the minimal length function γK is lower semicontinuous and
positive, bounded on the closed subset K, Theorem 18.6.15, p.751 (Ekeland’s
variational principe) states that there exists xε ∈ X satisfying property
(18.20)(ii), p.751:

∀ v ∈ X, 0 ≤ D↑V (xε)(v) + ε‖v‖ (4.10)

Take now ε ∈]0, 1[. Hence, choosing xε in inequality (4.9), p.141, taking
uε ∈ U(xε) in inequality (4.10) and setting vε := f(xε, uε), we infer that

0 ≤ D↑V (xε)(vε) + ε‖vε‖ ≤ (ε− 1)‖vε‖

Consequently, vε := f(xε, uε) = 0, so that xε is an equilibrium. ��

Remark: The “equilibrium alternative”. Theorem 4.4.3, p.141 can be
restated by saying that whenever the system is Marchaud and K is viable,

1. either there exists a viable equilibrium in K;
2. or the length of all evolutions is infinite ��

Proposition 4.4.4 [Asymptotic Properties of Minimum Length
Evolutions.] Let x(·) ∈ S(f,U)(x) be a minimum length evolution. Then
limt�→+∞ x(t) exists and is an equilibrium.
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Proof. Viable evolutions (x(·), γK(x(·))) regulated by the auxiliary system
(4.8), p.140 and starting from (x0, γK(x0)) satisfy

∀ t ≥ s ≥ 0, γK(x(t)) ≤ γK(x(s)) −
∫ t

s

‖x′(τ)‖dτ ≤ γK(x(s))

Hence t �→ γK(x(t)) is decreasing and bounded below by 0, so that γK(x(t))
converges to some α ≥ 0 when t→ +∞. Consequently,

‖x(t)− x(s)‖ =
∥∥∥∥
∫ t

s

x′(τ)dτ
∥∥∥∥ ≤

∫ t

s

‖x′(τ)‖dτ ≤ γK(x(s))− γK(x(t))

converges to α− α = 0 when t ≥ s goes to +∞. Hence the Cauchy criterion
implies that the sequence x(t) converges to some x when t goes to +∞. The
limit set of x(·) being a singleton, Theorem 9.3.11, p.351, implies that it is
viable, and thus, an equilibrium. ��

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The minimal length function γK is the smallest positive solution to the
Hamilton–Jacobi–Bellman partial differential equation

∀x ∈ K, inf
u∈U(x)

(
n∑
i=1

∂v(x)
∂xi

fi(x, u) + ‖f(x, u)‖
)

= 0 ��

4.5 Attracting and Exponential Lyapunov
for Asymptotic Stability

4.5.1 Attracting Functions

Let us consider a target C ⊂ K. We denote by d(K,C) the constrained distance
to the subset C in K defined by

d(K,C)(x) :=
{

infy∈C ‖x− y‖ if x ∈ K
+∞ if x /∈ K

We set dC(x) := d(X,C)(x) when the environment is the whole space.
We say that a subset C is clustering an evolution x(·) in K if there exists

a subsequence d(K,C)(x(tn)) converging to 0, i.e., such that

lim inf
t→+∞

d(K,C)(x(t)) = 0
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A sufficient condition implying this clustering property is provided by the
following elementary lemma:

Lemma 4.5.1 [Integral of a Positive Lagrangian] Let us consider a
positive continuous function l : X �→ R ∪ {+∞} independent of the control

and an evolution x(·) such that
∫ +∞

0

l(x(t))dt < +∞. Hence

∀ t ≥ 0, l(x(t)) < +∞ and lim inf
t→+∞

l(x(t)) = 0

Proof. Assume that
∫ ∞

0

l(x(τ))dτ < +∞ is finite and that

lim inf
t→+∞

l(x(t)) ≥ 2c > 0

The latter condition means that there would exist T > 0 such that

∀ t ≥ T, l(x(t)) ≥ c > 0

Hence
∫ S

T

l(x(τ))dτ ≥ c(S − T ) and converges to +∞ with S, a contradic-

tion. ��

Definition 4.5.2 [Attracting Function to a Target] Let us consider
a target C ⊂ K and the distance function d(K,C) to a subset C. Let us
consider the functional

J(x(·)) :=
∫ ∞

0

d(K,C)(x(τ))dτ

called the attraction functional. The extended attracting function ζ(K,C)(·)
is defined by

∀x ∈ K, ζ(K,C)(x) := inf
x(·)∈S(x)

∫ ∞
0

d(K,C)(x(τ))dτ

Lemma 4.5.1, p. 143 and Definition 4.5.2, p. 143 imply that for any x such
that ζ(K,C)(x) < +∞, there exists an evolution x(·) viable in K and such
that

lim inf
t→+∞

d(K,C)(x(t)) = 0

This property justifies the name of attracting function.
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Proposition 4.5.3 [Viability Characterization of the Attracting
Function] Let us consider the auxiliary control system

⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = −d(K,C)(x(t))

where u(t) ∈ U(x(t))
(4.11)

Then the attracting function is equal to

ζ(K,C)(x) = inf
(x,y)∈Capt(4.11)(K×R+)

y

Proof. This is a consequence of Theorem 4.7.2, p. 156 with l(x, u) :=
dC(x). ��

Example We consider

• the differential equation x′(t) = −x(t)((x(t) − 1)2 + 0.1),
• the distance function d(x) := |x| to the equilibrium {0},
• the environment [−10,+10]

The Viability Kernel Algorithm provides the graphs of the attracting and
the exponential Lyapunov functions used to compute the viability kernel of
the environment of Ep(| · |) under the auxiliary micro–macro systems x′(t) =
−x(t)((x(t)−1)2+0.1) and y′(t) = −|x(t)| and the environment [−10,+10]×
R+ under the auxiliary micro–macro system x′(t) = −x(t)((x(t)− 1)2 + 0.1)
and y′(t) = −my respectively.

They are respectively the epigraphs of the attracting function
ζ([−10,+10],{0}) and the exponential Lyapunov function of the equilibrium
{0} under the differential equation x′(t) = −x(t)((x(t) − 1)2 + 0.1) for the
distance function d(x) := |x|. ��
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Fig. 4.6 Examples of Attracting and Lyapunov Functions.

The x-axis is the axis of the variable, the y-axis the axis of the attracting
function ( left) and the exponential Lyapunov function (right). The grey area
is the epigraph of the function.

4.5.2 Exponential Lyapunov Functions

We can accelerate the convergence of the distance d(K,C)(x(t)) of an evolution
x(·) to 0 when t �→ +∞ whenever one can establish an estimate of the form

∀ t ≥ 0, dC(x(t)) ≤ ye−mt

This idea goes back to Alexandr Lyapunov.

Alexandr Mikhalovitch Lyapunov (1857–1918). Many
methods for studying stability and asymptotic stability of an
equilibrium, of the trajectory of a periodic evolution (limit
cycles) or of any viable subset C have been designed by Alexandr
Mikhalovitch Lyapunov and Henri Poincaré in 1892.

4.5.2.1 Examples of Lyapunov Functions

• Asymptotic Lyapunov Stability
Let us consider a target C ⊂ K. Recall that d(K,C) denotes the function:
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d(K,C)(x) :=
{

infy∈C ‖x− y‖ if x ∈ K
+∞ if x /∈ K

We ask if one can find an evolution x(·) ∈ S(x) viable in K and some
positive constant y satisfying inequalities of the type

∀t ≥ 0, d(K,C)(x(t)) ≤ ye−mt

If so, and ifm is strictly positive, we deduce that the evolution x(·) is viable
in K and converges to C when t→ +∞. Then, if the above property holds
true for any initial state x in a neighborhood of C, we are answering the
question of exponential asymptotic stability in an exponential way.
This property can be reformulated by stating that the function λd(K,C)

defined by
λd(K,C)(x) := inf

x(·)∈S(x)
sup
t≥0

emtd(K,C)(x(t))

is finite at x. We shall say the function λd(K,C) (providing the smallest
constant y in the above inequality) is the m-Lyapunov function associated
with the distance function d(K,C) and that its domain Dom(λd(K,C)) is the
exponential attraction basin.

• a posteriori Estimates
We are looking whether one can find an evolution x(·) ∈ S(x) and some
positive constant y satisfying inequalities of the type

∀t ≥ 0, ‖x(t)‖ ≤ ye−mt

This property can be reformulated by stating that the 0-order inertia
function μm defined by

μm(x) := inf
x(·)∈S(x)

sup
t≥0

emt‖x(t)‖

is finite at x.
In this case, we deduce that there exists at least one evolution satisfying a
priori estimates on the growth of the solution, where μm(x) provides the
smallest constant y in the above inequality.
In particular, when m = 0, we can determine whether or not there exists
at least one bounded evolution starting from x.
Instead of looking for a priori estimates on the evolutions starting from
a given initial state by providing an estimate μm(x) of the norms of the
states of the evolution, we may obtain a posteriori estimates singling out
the initial states satisfying, for a given constant c, the set

L≤μ0
(c) := {x ∈ Dom(U) such that μ0(x) ≤ c}

(see Comments 1, p. 5 and 2, p. 5).
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L≤α0
(c) := {x ∈ Dom(U) such that α0(x) ≤ c}

provides the subset of initial states from which at least one evolution is
governed by open-loop controls bounded by the given constant c. Instead
of looking for a priori estimates on the regulons, we are looking for a
posteriori estimates singling out what are the initial states satisfying this
property (see Comments 1, p. 5 and 2, p. 5).

• Mandelbrot Functions
The Mandelbrot function is involved in the study of Julia and Mandelbrot
subsets presented in Chap. 2, p. 43. Its continuous analogue is a Lyapunov
function that we define in the general case of a parameterized differential
equation x′(t) = f(x(t), u) parameterized by constant coefficients u. We
are looking for the subset of pairs (x, u) such that the solution to the above
differential equation starting from x is bounded. This can be reformulated
by checking whether the Mandelbrot function

μ(x, u) := sup
t≥0

‖x(t)‖

is finite. Therefore, μ(x, u) = λ‖(·)‖(x, u), where λ‖(·)‖ is the function
associated to the auxiliary micro–macro system

{
(i) x′(t) = f(x(t), u(t))
(ii) u′(t) = 0 ��

4.5.2.2 Definition of Lyapunov Functions

The problem is to find functions λv associated with functions v such as the
distance function d(K,C) or the norm of the vector space:

Definition 4.5.4 [Exponential Lyapunov Functions] The exponential
Lyapunov function λv(m; ·) : X �→ R+ ∪{+∞} associated with v is defined
by

λv(m;x) := inf
x(·)∈S(x)

sup
t≥0

emtv(x(t))

Therefore, for any x ∈ Dom(λv(m; ·)), regarded as the exponential
attraction basin of v, and for any ε > 0, there exists at least one evolution
x(·) ∈ S(x) such that

∀t ≥ 0, v(x(t)) ≤ e−mt(λv(m;x) + ε)

If m > 0, this implies that v(x(t)) converges to 0 exponentially when t →
+∞ and if m = 0, that v(x(t)) remains bounded.
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The exponential Lyapunov function can be characterized in terms of the
viability kernel of the epigraph of the function v under the auxiliary micro–
macro system: ⎧⎨

⎩
(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = −my(t)

where u(t) ∈ U(x(t))
(4.12)

subject to the constraint

∀t ≥ 0, (x(t), y(t)) ∈ Ep(v)

Proposition 4.5.5 [Viability Characterization of the Exponential
Lyapunov Function] The exponential Lyapunov function λv is related to
the viability kernel of the epigraph Ep(v) of the function v under auxiliary
micro–macro system (4.12) by the following formula

λv(m;x) = inf
(x,y)∈Viab(4.12)(Ep(v))

y

Proof. Indeed, to say that (x, y) belongs to the viability kernel of Ep(v) under
auxiliary micro–macro system (4.12) amounts to saying that there exists an
evolution t �→ (x(t), y(t)) starting at (x, y) and governed by the auxiliary
micro–macro system such that, for all t ≥ 0, u(t) ∈ U(x(t)). By definition of
(4.12), we know that for all t ≥ 0, this evolution also satisfies for all t ≥ 0,

v(x(t)) ≤ y(t) = e−mty

Therefore
sup
t≥0

emtv(x(t)) ≤ y

and thus, λv(m;x) ≤ inf(x,y)∈Viab(4.12)(Ep(v)) y. ��

We refer to Fig. 4.6, p. 145 where we compute the exponential function for
the standard example x′(t) = −x(t)((x(t) − 1)2 + 0.1).

Remark: The Separation Function. The same type of approach applies
for the separation function ρw(x) : X �→ R+ ∪ {+∞} associated with w
defined by

ρw(x) := sup
x(·)∈S(x)

inf
t≥0

emtw(x(t))

Therefore, for any x ∈ Dom(ρw), regarded as the separation domain of w,
and for any ε > 0, there exists an evolution x(·) ∈ S(x) such that
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∀t ≥ 0, w(x(t)) ≥ e−mt(ρw(x) + ε)

If m < 0, this implies that w(x(t)) → +∞ when t→ +∞ and if m = 0, that
w(x)(t) ≥ ρ(x).

They can be characterized in terms of viability kernels by introducing the
auxiliary micro–macro system:

⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = −my(t)

where u(t) ∈ U(x(t))
(4.13)

subject to the constraint

∀t ≥ 0, (x(t), y(t)) ∈ Hyp(w)

Then the same type of proof implies the formula

ρw(x) = sup
(x,y)∈Viab(4.13)(Hyp(w))

y ��

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The Lyapunov function λv is the smallest solution to the Hamilton–Jacobi–
Bellman partial differential equation

inf
u∈U(x)

n∑
i=1

∂v(x)
∂xi

fi(x, u) +mv(x) = 0

larger than the function v. ��

4.5.3 The Montagnes Russes Algorithm for Global
Optimization

Consider a positive extended function v : X �→ R+ ∪ {+∞} satisfying

inf
x∈X

v(x) = 0

and the set v−1(0) of its global minima.
A way to introduce the “Gradient Descent Method” is to use the simple

differential inclusion
∀t ≥ 0, x′(t) ∈ B
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where B denotes the unit ball of the finite dimensional vector space X ,
leaving open the direction to be chosen by the algorithm, as in the method
of simulated annealing or some versions of Newton type Algorithms for
finding equilibria (see Sect. 9.6.2, p. 363). However, instead of choosing the
velocities at random and being satisfied by convergence in probability, we
shall apply it not to the original function v, but to its Lyapunov function
λv under the differential equation x′(t) ∈ B (see Mathematical Morphology,
[166, Najman]). In this case, we know that starting from an initial state
x ∈ Dom(v), and for any ε > 0, there exists an evolution x(·) satisfying
x(0) = x and supt≥0 ‖x′(t)‖ ≤ 1 such that

v(x(t)) ≤ λv(x(t)) ≤ e−mt(λv(x) + ε)

Therefore, any cluster point x� of the evolution t �→ x(t) when t→ +∞ is a
global minimum of v.

Hence, the epigraph of the function λv is the viability kernel of the
epigraph Ep(v) of the function v under the auxiliary micro–macro system
x′(t) ∈ B and y′(t) = −my(t).

V(x)

Œp(Va) Œp(Va)

Œp(V )

X

Fig. 4.7 The Montagnes Russes Algorithm.

Epigraph of the auxiliary function involved in the Montagnes Russes
Algorithm.

17 The Montagnes Russes Algorithm. Although we know that v(x(t))
converges to v0 when t → +∞, the function t �→ v(x(t)) is not necessarily
decreasing. Along such a solution, the function v jumps above local maxima,
leaves local minima, play “Montagnes Russes” (called “American Moun-
tains” in Russian and “Big Dipper” in American English!), but, ultimately,
converges to its infimum.
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Fig. 4.8 Example 1.

The epigraph of the original function (see Fig. 4.7) is displayed ( left) and
several steps of the Montagnes Russes Algorithm are shown on a different
scale (right).
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Fig. 4.9 Example 2.

The epigraph of the original function x �→ v(x) := 1− cos(2x) cos(3x) having
many local minima and only one global minimum is displayed ( left) and
several steps of the Montagnes Russes Algorithm are shown on a different
scale (right).
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Fig. 4.10 Example 3.

The descent algorithm stops at local minima. The Montagnes Russes
algorithm is the descent algorithm applied to the optimal exponential
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Lyapunov function, the minima of which are the global minima of the
function x �→ v(x) := 1− cos(2‖x‖) cos(3‖x‖) defined in R

2. Source: Laurent
Najman.

4.6 Safety and Transgression Functions

Consider an environment K with a nonempty interior
◦
K. Starting from an

initial state x ∈
◦
K, i.e., a state such that the distance d(x, �K) > 0, we would

like to know the smallest distance inft≥0 d(x(t), �K) of the evolution to the
boundary of K: the further away from the boundary the state is, the more
secure the state of the evolution is.

In a dual way, starting from an initial state outside the environment, we
would like to measure the largest distance supt≥0 d(x(t),K) of the evolution
to K. This is a measure to viability transgression, which tells how far from the
environment the state of the evolution will remain during the course of time.
This idea is parallel to the concept of crisis function investigated later (see
Sect. 9.2.2, p. 326) which measures the time spent by an evolution outside of
the environment.

Consider an evolutionary system S : X � C(0,+∞;X) generated by a
control problem

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (4.14)

We thus introduce the safety and transgression functionals and functions:

Definition 4.6.1 [Safety and Transgression Functions] We associate
with a subset K safety functional σK and transgression functional ξK
defined by:

{
(i) σK(x(·)) := inft≥0 d(x(t), �K)
(ii) ξK(x(·)) := supt≥0 d(x(t),K) (4.15)

The extended functions
{

(i) σ�K(x) := supx(·)∈S(x) σK(x(·))
(ii) ξ�K(x) := infx(·)∈S(x) ξK(x(·)) (4.16)

are called safety function σ�K and transgression function ξ�K respectively.
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We can characterize these two functions as the viability kernel of auxiliary
environments Hyp(d(·, �K)) and Ep(d(·,K)) under auxiliary micro–macro
systems of the form

{
(i) x′(t) = f(x(t), u(t) where u(t) ∈ U(x(t))
(ii) y′(t) = 0 (4.17)

Theorem 4.6.2 [Viability Characterization of the Safety and
Transgression Functions.] The safety function and the transgression
function are equal to:

∀ x ∈ K,

{
(i) σ�K(x) = sup(x,y)∈Viab(4.17)(Hyp(d(·,�K))) y

(ii) ξ�K(x) = inf(x,y)∈Viab(4.17)(Ep(d(·,K))) y
(4.18)

Proof. 1. If (x, y) ∈ Viab(4.17)(Hyp(d(·, �K))), then there exists an evolution
x(·) ∈ S(x) such that (x(t), y) ∈ Hyp(d(·, �K)) for all t ≥ 0, i.e., such
that, for all t ≥ 0, y ≤ d(x(t), �K). By taking the infimum of d(x(·), �K)
over t ≥ 0, we infer that

y� := sup
(x,y)∈Viab(4.17)(Hyp(d(·,�K)))

y ≤ σ�K(x)

For proving the opposite inequality, take μ < σ�K(x). By definition of the
supremum, there exists an evolution x(·) ∈ S(x) such that μ ≤ σK(x(·)),
and thus, such that for all t ≥ 0, μ ≤ d(x(t), �K). This implies that
(x(·), μ) is viable in Hyp(d(·, �K)), and therefore, that μ ≤ y�. Letting μ

converge to σ�K(x) implies the opposite inequality we were looking for.
2. If (x, y) ∈ Viab(4.17)(Ep(d(·,K))), then there exists an evolution x(·) ∈
S(x) such that (x(t), y) ∈ Ep(d(·,K)) for all t ≥ 0, i.e., such that, for all
t ≥ 0, y ≥ d(x(t),K). By taking the supremum over t ≥ 0, we infer that

y� := inf
(x,y)∈Viab(4.17)(Ep(d(·,K)))

y ≥ ξ�K(x)

For proving the opposite inequality, take μ > ξ�K(x). By definition of the
infimum, there exists an evolution x(·) ∈ S(x) such that μ ≥ ξK(x(·)), and
thus, such that for all t ≥ 0, μ ≥ d(x(t),K). This implies that (x(·), μ)
is viable in Ep(d(·,K)), and therefore, that μ ≥ y�. Letting μ converge to
ξ�K(x) implies the opposite inequality we were looking for. ��

We observe that whenever K is closed,
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{
(i) K � y

◦
B =

{
x such that y ≤ d(x, �K)

}
(ii) K − yB = {x such that d(x,K) ≤ y}

(4.19)

where
◦
B is the open unit ball and where the Minkowski sums and differences

are defined by:

Definition 4.6.3 [Minkowski Sums and Differences of Sets] Let A ⊂
X and B⊂X two subsets of a vector space X.The subset A−B :=

⋃
b∈B

(A−

b) is the Minkowski sum of A and −B and A�B :=
⋂
b∈B

(A− b) is the

Minkowski difference between A and B.

In mathematical morphology, a convex compact subset B containing the
origin (such as a ball) is regarded as a “structuring element”, and these
subsets are called dilations and erosions of K by the “structuring element”
B respectively (see Morphologie Mathématique, [187, Schmitt M. & Mattioli],
and Mathematical Morphology, [166, Najman]). To say that x ∈ A−B means
that (x + B) ∩ A �= ∅ and to say that x ∈ A � B amounts to saying that
x+B ⊂ A. We note that A�B is closed whenever A is closed and that A−B
is closed whenever A is closed and B is compact. We observe that

�(A−B) = �(A)�B

We also observe that whenever A1 ⊂ A2, B �A2 ⊂ B �A1 and whenever
P is a convex cone,

B � (A+ P ) ⊂ B �A ⊂ (B + P )� (A+ P ) (4.20)

so that whenever B = B+P , then B�A = B�(A+P ). Indeed, since 0 ∈ P ,
A ⊂ A+P so that B� (A+P ) ⊂ B�A. For any x ∈ B�A, then x+A ⊂ B
and thus, x+A+ P ⊂ B + P , so that x belongs to (B + P )� (A+ P ).

We regard y ≥ 0 as a degree of safety of an evolution if x(·) viable in

K � y
◦
B as well as a degree of transgression if x(·) is viable in K − yB. This

suggests to study the viability kernels of the erosionsK�y
◦
B and the dilations

K − yB respectively. We denote by Graph(K − (·)B) and Graph(K � (·)
◦
B)

the graphs of the set-valued maps y � K − yB and y � K � y
◦
B.

{
(i) y′(t) = 0
(ii) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (4.21)
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Theorem 4.6.4 [Minkowski Characterizations of the Safety and
Transgression Functions.] Let us consider the Minkowski sum and

difference K − yB and K � y
◦
B. For all x ∈ K,

{
(i) σ�K(x) = sup

(y,x)∈Viab(4.21)(Graph(K�(·)
◦
B))

y

(ii) ξ�K(x) = inf(y,x)∈Viab(4.21)(Graph(K−(·)B)) y
(4.22)

This example is the particular case of a more general situation when
we have to inverse the set-valued map associating with a parameter y the
viability kernel of an environment depending upon y with a target depending
upon this parameter under an evolutionary system depending also on this
parameter, investigated in Sect. 10.9, p. 427. These crucial questions are
related to the important class of parameter identification.

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The safety function σ�K is the largest positive solution to the Hamilton–
Jacobi–Bellman partial differential equation

inf
u∈U(x)

n∑
i=1

∂v(x)
∂xi

fi(x, u) + d(x, �K) = 0

on the subset K, and the transgression function ξ�K is the smallest positive
solution to the Hamilton–Jacobi–Bellman partial differential equation

inf
u∈U(x)

n∑
i=1

∂v(x)
∂xi

fi(x, u) + d(x,K) = 0

on the subset �
◦
K. ��

4.7 Infinite Horizon Optimal Control and Viability
Kernels

Minimal time and exit functions, attracting and Lyapunov functions, safety
and transgression functions, crisis functions, etc., are all examples of selection
of “optimal evolutions” in S(x) starting from a given initial state x according
to a given intertemporal optimality criterion.

The usual shape of a criterion on the space C(0,+∞;X) of continuous
functions involves:
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1. a “final state” cost function c : X �→ R+ ∪ {+∞},
2. a “transient state” cost function (often called a Lagrangian) l : X × U �→

R+.

Namely, consider parameterized system (2.10):

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

generating the evolutionary system P associating with any x the set of pairs
(x(·), u(·)) governed by (2.10) and starting from x.

Definition 4.7.1 [Infinite Horizon Optimization Problem] Given the

system (2.10) and the cost function l : X×U �→ R+, the function
∞
V defined

by

∞
V (x) := inf

(x(·),u(·))∈P(x)
sup
t≥0

(
e−mtc(x(t)) +

∫ t

0

e−mτ l(x(τ), u(τ))dτ
)

(4.23)
is called the valuation function of the infinite horizon control problem: find
an evolution (x(·), u(·)) ∈ P(x) minimizing the intertemporal cost functional

∞
V (x) = sup

t≥0

(
e−mtc(x(t)) +

∫ t

0

e−mτ l(x(τ), u(τ))dτ
)

See Fig. 5.14, p. 196.

We relate the valuation functions of an infinite horizon control problem to
viability kernels of epigraphs of functions under the auxiliary micro–macro
system ⎧⎨

⎩
(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = my(t)− l(x(t), u(t))

where u(t) ∈ U(x(t))
(4.24)

Theorem 4.7.2 [Viability Characterization of the Valuation Func-
tion] The valuation function

∞
V (x) := inf

(x(·),u(·))∈P(x)
sup
t≥0

(
e−mtc(x(t)) +

∫ t

0

e−mτ l(x(τ), u(τ))dτ
)
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is related to the viability kernel Viab(4.24)(Ep(c)) of the epigraph of the
function c under the auxiliary micro–macro system (4.24) by the formula

∞
V (x) = inf

(x,y)∈Viab(4.24)(Ep(c))
y

Proof. Indeed, to say that (x, y) belongs to Viab(4.24)(Ep(c)) means that there
exists an evolution t �→ (x(t), y(t)) starting at (x, y) governed by the auxiliary
evolutionary system (4.24) such that

∀t ≥ 0, (x(t), y(t)) ∈ Ep(c)

By the very definition of the epigraph, these inequalities can be written in
the form

∀t ≥ 0, y(t) ≥ c(x(t))

We now recall that the evolution (x(·), u(·)) belongs to P(x) so that

y(t) = emt
(
y −

∫ t

0

e−mτ l(x(τ), u(τ))dτ
)

Hence the above inequalities become

∀t ≥ 0, y ≥ e−mtc(x(t)) +
∫ t

0

e−mτ l(x(τ), u(τ))dτ

Therefore,

∞
V (x) ≤ inf{y such that (x, y) ∈ Viab(4.24)(Ep(c))}

Conversely, it is enough to prove that for any ε > 0,

inf{y such that (x, y) ∈ Viab(4.24)(Ep(c))} ≤
∞
V (x) + ε

and to let ε converge to 0.
By definition of the infimum, there exists an evolution (x(·), u(·)) ∈ P(x)

such that

∞
V (x) = sup

t≥0

(
e−mtc(x(t)) +

∫ t

0

e−mτ l(x(τ), u(τ))dτ
)
≤
∞
V (x) + ε

Setting

yε(t) = emt
(
∞
V (x) + ε−

∫ t

0

e−mτ l(x(τ), u(τ))dτ
)
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we observe that (x(·), yε(·)) is a solution to the auxiliary micro–macro system

(4.24) starting at (x,
∞
V (x) + ε) and viable in the epigraph of the function c.

Hence the pair (x,
∞
V (x) + ε) belongs to its viability kernel, so that

inf{y such that (x, y) ∈ Viab(4.24)(Ep(c))} ≤
∞
V (x) + ε

Therefore,

∞
V (x) = inf{y such that (x, y) ∈ Viab(4.24)(Ep(c))} ��

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The valuation function

∞
V of an infinite horizon control problem is

the smallest solution to the Hamilton–Jacobi–Bellman partial differential
equation

inf
u∈U(x)

(
n∑
i=1

∂v(x)
∂xi

fi(x, u) + l(x, u)

)
−mv(x) = 0

larger than or equal to the function c.
These results have been obtained in collaboration with Hélène Frankowska

(see also Infinite Horizon Optimal Control: Theory and Applications, [55,
Carlson & Haurie] on this topic). ��

4.8 Intergenerational Optimization

We introduce not only a positive Lagrangian l, but also a “generational
cost function” d:X �→ R+ and denote by D(x) the subset of evolutions
(x(·), u(·)) ∈ P(x) satisfying the intergenerational constraints

∀t ≥ 0,
∫ ∞
t

e−m(τ−t)l(x(τ), u(τ))dτ ≤ d(x(t)) (4.25)

This expresses the fact that at each instant t, the future cumulated cost∫ ∞
t

e−m(τ−t)l(x(τ), u(τ))dτ should be below a given cost d(x(t)) of the value

of the state at time t.

Definition 4.8.1 [The Intergenerational Valuation Function] The

intergenerational valuation function
∞
Vd of the infinite horizon intertempo-

ral minimization problem
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∞
Vd (x) := inf

(x(·),u(·))∈D(x)

∫ ∞
0

e−mτ l(x(τ), u(τ))dτ

over the subset D(x) of all the evolutions satisfying the intergenerational
constraints (4.25)

∀t ≥ 0,
∫ ∞
t

e−m(τ−t)l(x(τ), u(τ))dτ ≤ d(x(t))

is called the intergenerational valuation function. They express that at

each future time t ≥ 0, the intertemporal value generation
∫ ∞
t

e−m(τ−t)

l(x(τ), u(τ))dτ of the state x(t) of the future “generation” starting at time
t up to +∞ is smaller than or equal to a predetermined “generational”
upper cost d(x(t)) that the present generation leaves or bequests to the future
generations at time t.

Let us observe that if x(·) satisfies the intergenerational constraints, then

0 ≤
∫ ∞

0

e−mτ l(x(τ), u(τ))dτ ≤ d(x)

so that
0 ≤

∞
Vd (x) ≤ d(x)

Hence, whenever d(x) is finite, inequalities (4.25), p. 158 imply that
⎧⎪⎪⎨
⎪⎪⎩
∀t ≥ 0,

∫ ∞
0

e−mτ l(x(τ), u(τ))dτ

≤ e−mtd(x(t)) +
∫ t

0

e−mτ l(x(τ), u(τ))dτ

We introduce the auxiliary control system
⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = my(t)− l(x(t), u(t))

where u(t) ∈ U(x(t))
(4.26)

Theorem 4.8.2 [Viability Characterization of the Intergenera-
tional Function] Assume that the extended function d is nontrivial and
positive and that the Lagrangian l is positive. Consider the viability kernel
Viab(4.26)(K) of the subset
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K := {(x, y) ∈ X × R+ | y ≤ d(x) }

under auxiliary the set-valued evolutionary system (4.26). Then

∀x ∈ K,
∞
Vd (x) = inf{y|(x, y) ∈ Viab(4.26)(K)}

Proof. We set
v(x) := inf{y|(x, y) ∈ Viab(4.26)(K)}

For proving inequality v(x) ≤
∞
Vd (x), let us take any evolution (x(·), u(·)) ∈

D(x) satisfying the intergenerational constraints (4.25).
We set

z(t) :=
∫ +∞

t

e−m(τ−t)l(x(τ), u(τ))dτ

and observe that the pair (x(·), z(·)) is an evolution to auxiliary micro–macro
system (4.26) starting at

(
x,

∫ +∞

0

e−mτ l(x(τ), u(τ))dτ
)

Since (x(·), u(·)) ∈ D(x) satisfies the intergenerational constraints (4.25),
the means that

∀t ≥ 0, z(t) ≤ d(x(t))

Since this can also be written in the form

∀t ≥ 0, (x(t), z(t)) ∈ K

we deduce that the pair
(
x,

∫ +∞

0

e−mτ l(x(τ), u(τ))dτ
)

belongs to the

viability kernel W := Viab(4.26)(K). Therefore

v(x) ≤
∫ +∞

0

e−mτ l(x(τ), u(τ))dτ (4.27)

and thus, we infer that v(x) ≤
∞
Vd (x).

For proving the opposite inequality, take any pair (x, y) in the viability
kernel

W := Viab(4.26)(K) ⊂ K

This means that there exists an evolution (x̃(·), y(·)) to the auxiliary micro–
macro system starting at (x, y) such that
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∀t ≥ 0, (x̃(t), y(t)) ∈ W ⊂ K

where

y(t) = emt
(
y −

∫ t

0

e−mτ l(x̃(τ), ũ(τ))dτ
)

By the very definition of W , this is equivalent to say that

∀t ≥ 0, 0 ≤ y(t) ≤ d(x̃(t))

i.e.,

∀t ≥ 0, 0 ≤ emty −
∫ t

0

e−m(τ−t)l(x̃(τ), ũ(τ))dτ ≤ d(x̃(t)) (4.28)

The first inequality 0 ≤ emty −
∫ t

0

e−m(τ−t)l(x̃(τ), ũ(τ))dτ implies that

∀t ≥ 0,
∫ t

0

e−mτ l(x̃(τ), ũ(τ))dτ ≤ y

so that, letting t converge to ∞,
∫ ∞

0

e−mτ l(x̃(τ), ũ(τ))dτ ≤ y (4.29)

The second inequality emty −
∫ t

0

e−m(τ−t)l(x̃(τ), ũ(τ))dτ ≤ d(x̃(t)) implies

that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∞
t

e−m(τ−t)l(x̃(τ), ũ(τ))dτ

= emt
∫ ∞

0

e−mτ l(x̃(τ), ũ(τ))dτ −
∫ t

0

e−m(τ−t)l(x̃(τ), ũ(τ))dτ

≤ emt
∫∞
0 e−mτ l(x̃(τ), ũ(τ))dτ − emty + d(x̃(t)) ≤ d(x̃(t))

so that the evolution satisfies the intergenerational constraints (4.25). Hence

∞
Vd (x) ≤

∫ ∞
0

e−mτ l(x̃(τ), ũ(τ))dτ ≤ y ≤ d(x) (4.30)

Properties (4.30) can be rewritten in the form

∞
Vd (x) ≤ v(x) := inf

(x,y)∈W
y ≤ d(x) (4.31)

and thus, we have proved that the valuation function
∞
Vd (x) coincides with

the function v associated with the viability kernel W of K under (4.26). ��
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4.9 Finite Horizon Optimal Control and Capture Basins

Consider parameterized system (2.10), p. 64:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

generating the evolutionary system denoted P and

1. a “final state” cost function c : X �→ R+ ∪ {+∞},
2. a “transient state” cost function (often called a Lagrangian) l : X × U �→

R+.

We introduce a finite horizon T that is used as a parameter in the argument
of the valuation function:

Definition 4.9.1 [Intertemporal Optimization Problem] Given an
evolutionary system S : X �→ C(0,∞;X) and cost functions c:X �→
R+ ∪ {+∞} and l:X �→ R+, the function V defined by

V(T, x) := inf
(x(·),u(·))∈P(x)

(
c(x(T )) +

∫ T

0

l(x(τ), u(τ))dτ

)
(4.32)

is called the valuation function of the finite horizon control problem: find an
evolution (x(·), u(·)) ∈ P(x) minimizing the intertemporal cost functional

V(T, x) = c(x(T )) +
∫ T

0

l(x(τ), u(τ))dτ

This is known as the Bolza problem in control theory and, when l(x, u) ≡ 0,
the Mayer problem.

We introduce the auxiliary micro–macro system
⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = −l(x(t), u(t))

where u(t) ∈ U(x(t))

(4.33)

We set 0 defined by

0(t, x) =
{

0 if t ≥ 0,
+∞ if not (4.34)

and extend the function c : X �→ R ∪ {+∞} to the function c∞ : R+ × X
defined by
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c∞(t, x) :=
{

c(x) if t = 0
+∞ if not (4.35)

Theorem 4.9.2 [Viability Characterization of the Valuation Func-
tion] The valuation function

V(T, x) := inf
x(·)∈S(x)

(
c(x(T )) +

∫ T

0

l(x(τ), u(τ))dτ

)

is related to capture basin Capt(4.33)(Ep(0), Ep(c∞)) of the epigraph of the
function 0 with the target equal to the epigraph of the function c∞ under
auxiliary micro–macro system (4.33) by the formula

V(T, x) = inf
(T,x,y)∈Capt(4.33)(Ep(0),Ep(c∞))

y

Proof. (Theorem 4.7.2) Indeed, to say that (T, x, y) belongs to
Capt(4.33)(Ep(0), Ep(c∞)) means that there exist an evolution

t �→ (T − t, x(t), y(t))

governed by auxiliary evolutionary system (4.33), p.162 starting at (T, x, y)
and some time t ∈ [0, T ] such that

{
(i) (T − t, x(t), y(t)) ∈ Ep(c∞)
(ii) ∀t ∈ [0, t], (T − t, x(t), y(t)) ∈ Ep(0)

because (T − t, x(t), y(t)) /∈ Ep(0) whenever t > T .
By the very definition of the epigraph, these inequalities can be written in

the form {
(i) y(t) ≥ c∞(T − t, x(t))
(ii) ∀t ∈ [0, t], y(t) ≥ 0(T − t, x(t))

By definition of the function c∞, the first inequality implies that t = T
(otherwise, we would have ∞ > y(t) ≥ c∞(T − t, x(t)) = +∞) so that the
above system of inequalities is equivalent to

{
(i) y(T ) ≥ c(x(T ))
(ii) ∀t ∈ [0, T ], y(t) ≥ 0

We now recall that the evolution x(·) belongs to S(x) and that y(t) =
y −

∫ t
0 l(x(τ), u(τ))dτ by (4.33)(iii). Hence the above inequalities become
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) y ≥ c(x(T )) +
∫ T

0

l(x(τ), u(τ))dτ

(ii) ∀t ∈ [0, T ], y ≥
∫ t

0

l(x(τ), u(τ))dτ

Since the first inequality holds true whenever (T, x, y) belongs to the capture
basin Capt(4.33)(Ep(0), Ep(c∞)), it implies also that

V(T, x) ≤ c(x(T )) +
∫ T

0

l(x(τ), u(τ))dτ ≤ inf
(T,x,y)∈Capt(4.33)(Ep(0),Ep(c∞))

y

Conversely, we know that for any ε > 0, there exists an evolution xε(·) ∈
S(x) such that

c(xε(T )) +
∫ T

0

l(xε(τ), uε(τ))dτ ≤ V(T, x) + ε

Setting yε(t) := V(T, x) + ε −
∫ t
0 l(xε(τ), uε(τ))dτ , we infer that t �→ (T −

t, xε(t), yε(t)) is a solution to the auxiliary evolutionary system starting at
(T, x,V(T, x) + ε) reaching the target Ep(c∞) in finite time since

(
0, xε(T ),V(T, x) + ε−

∫ T

0

l(xε(τ), uε(τ))dτ

)
∈ Ep(c∞)

Hence (T, x,V(T, x) + ε) belongs to Capt(4.33)(Ep(0), Ep(c∞)), so that
inf(T,x,y)∈Capt(4.33)(Ep(0),Ep(c∞)) y ≤ V(T, x) + ε. Letting ε converge to 0,
we obtain the converse inequality

inf
(T,x,y)∈Capt(4.33)(Ep(0),Ep(c∞))

y ≤ inf
x(·)∈S(x)

(
c(x(T )) +

∫ T

0

l(x(τ), u(τ))dτ

)

In summary, we proved that

V(T, x) = inf{y such that (T, x, y) ∈ Capt(4.33)(Ep(0), Ep(c∞))} ��

4.10 Occupational Costs and Measures

Instead of measuring occupational costs, some physicists and other scientists

use to measure “occupational measures”
1
T

∫ T

0

ϕ(x(t), u(t))dt over state-

control evolutions governed by control system (2.10):
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x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

generating the evolutionary system P associating with any x the set of state-
control pairs (x(·), u(·)) governed by (2.10) and starting from x. We denote
by PK(x) the set of pairs (x(·), u(·)) ∈ P(x) such that x(·) is viable in K.

As in the infinite horizon case, we define:

Definition 4.10.1 [Occupational Costs] We associate with any positive
lower semicontinuous function ϕ : Graph(U) �→ R+ with linear growth the
occupational measure NK(x, ϕ) defined by

NK(x, ϕ) := inf
(x(·),u(·))∈PK(x)

1
T

∫ T

0

ϕ(x(τ), u(τ))dτ (4.36)

As for occupational cost, occupational measures can be couched in terms
of capture basins:

Proposition 4.10.2 [Viability Characterization of Occupational
Costs] Let us associate with control system (2.10) and the function ϕ the
auxiliary differential inclusion

⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = −ϕ(x(t), u(t))

where u(t) ∈ U(x(t))

(4.37)

Then the occupational cost NK(x, ϕ) is equal to

NK(x, ϕ) =
1
T

inf
(T,x,y)∈Viab(4.37)(R+×K×R+)

y

Proof. It is an immediate consequence of Theorem 4.7.2, p. 156. ��

When the control system boils down to a differential equation x′(t) =
f(x(t)) generating a deterministic evolutionary system x(·) := Sf (x) (see
Definition 2.4.1, p. 53), the function

dμK(x) : ϕ �→ 1
T

∫ T

0

ϕ(x(t))dt :=
1
T

∫ T

0

ϕ((Sf (x))(t))dt
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where ϕ ranges over the space Cb(K) of bounded continuous functions on K
is a continuous linear functional. Consequently, it is a measure dμK(x), called
the occupational measure, since the (topological) dual M(K) := (Cb(K))� is
the space of Radon measures with compact support on the locally compact
subset K. We summarize studies by Zvi Arstein, Valdimir Gaitsgory and
Marc Quincampoix.

Naturally, the linearity of this function is lost when the evolutionary sys-
tem is no longer deterministic. Therefore, the functions ϕ ∈ Cb(Graph(U)) �→
NK(x, ϕ) ∈ R+∪{+∞} are no longer linear, and thus, are no longer measures
in the sense of measure theory.

However, being the infimum of continuous linear functions with respect
to test functions ϕ, they are upper semicontinuous positively homogeneous
functions on the test function space Cb(Graph(U)).

Since any upper semicontinuous positively homogenous function is the
support function of a closed convex subset of its dual, we can associate with
the function ϕ �→ NK(x, ϕ) the closed convex dMK(x) ⊂M(Graph(U)).

Naturally, when the system is deterministic, this closed convex subset is
reduced to a singleton dMK(x) = dμK(x), which is the usual occupational
Radon measure (with compact support) because the function ϕ �→ NK(x, ·)
is linear and continuous on Cb(Graph(U)).

Definition 4.10.3 [Generalized Occupational Measures under
Control Systems] Let us consider control system (2.10):

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

and a closed environment K. The closed convex subset

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dMK(x) :=

{
μ ∈M(Graph(U)) | ∀ ϕ ∈ Cb(Graph(U)),

∫
Graph(U)

ϕ(y, u)dμ(y, u) ≥ NK(x, ϕ)

} (4.38)

is the generalized occupational measure at x.

Therefore, summarizing, we obtain the following formulas:

Theorem 4.10.4 [Viability Kernels and Occupational Measures]
Knowing either the viability kernel Viab(4.37)(R+ × K × R+) or the gen-
eralized occupational measure dMK(x), the occupational cost NK(x, ϕ) can
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be recovered thanks to the following formulas:
⎧⎪⎪⎨
⎪⎪⎩
NK(x, ϕ) =

1
T

inf
(T,x,y)∈Viab(4.37)(R+×K×R+)

y

:= inf
dμ∈dMK(x)

∫
Graph(U)

ϕ(y, u)dμ(y, u)
(4.39)

Remark: Infinite Horizon Occupational Measures. When the
horizon is infinite, several approaches can be used, among which we suggest
a simple one: use probability measures of the form

Nm
K (x, ϕ) := inf

(x(·),u(·))∈P(x)
m

∫ +∞

0

e−mtϕ(x(t), u(t))dt

Introducing the auxiliary micro–macro system
⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = my(t)− ϕ(x(t), u(t))

where u(t) ∈ U(x(t))
(4.40)

Theorem 4.7.2, p. 156 implies that x �→ Nm
K (x, ϕ) can be characterized by

formula

Nm
K (x, ϕ) = inf

(x,y)∈Viab(4.40)(K×R+)
y

Also, since the function ϕ �→ Nm
K (x, ϕ) being upper semicontinuous,

positively homogeneous and concave, we can characterize it by the support
function of a closed convex subset dMm

K (x) ⊂ Cb(Graph(U)) (see (4.38),
p.166), so that

Nm
K (x, ϕ) = inf

dμ∈dMm
K (x)

∫
Graph(U)

ϕ(y, u)dμ(y, u)

The drawback with this approach is that the concept of generalized
occupational measure depends upon the discount rate m. Another strategy
defines limiting occupational costs

N∞K (x, ϕ) := inf
(x(·),u(·))∈P(x)

sup
T≥0

1
T

∫ T

0

ϕ(x(τ), u(τ))dτ

the study of which being outside the scope of this book. ��
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4.11 Optimal Control Survival Kit

We summarize the questions that are answered by using the properties of the
capture basins in the framework of finite-horizon control problems (4.32)

V(T, x) := inf
(x(·),u(·))∈P(x)

(
c(x(T )) +

∫ T

0

l(x(τ), u(τ))dτ

)

that we shall state and prove rigorously in Chap. 17, p. 681. The adaptation
of these statements to infinite horizon optimization is left to the reader. Let
the horizon T and the initial state x be fixed.

We shall assume once and for all in this section that:

1. the control system x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) is Marchaud,
2. the function x �→ c(x) is lower semicontinuous,
3. the function u �→ l(x, u) is positive and convex,
4. the function (x, u) �→ l(x, u) is lower semicontinuous,
5. l� := sup(x,u)∈Graph(U) l(x, u) is finite.

We begin by the existence of at least one optimal evolution: Recall that
the associated micro–macro system (4.33), p. 162 is defined by

⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = −l(x(t), u(t))

where u(t) ∈ U(x(t))

Theorem 17.3.6, p. 692 implies

Theorem 4.11.1 [Existence of Optimal Evolutions] The valuation
function V is lower semicontinuous and its epigraph

Ep(V) = Capt(4.33)(Ep(0), Ep(c∞))

(where 0 is the function defined by (4.34), p.162) is equal to the capture
basin above. Furthermore,

1. there exists at least one optimal evolution minimizing the valuation
functional V,

2. optimal evolutions x(·) are the components of the evolutions t �→ (T −
t, x(t), y(t)) governed by auxiliary micro–macro system and viable on
[0, T ].

Theorem 17.3.9, p. 696 states that optimal evolutions do satisfy the Isaac–
Bellman’s dynamical optimality principle:
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Theorem 4.11.2 [Dynamic Programming Equation] Optimal evolu-
tions x(·) satisfy dynamic programming equation

V(T − s, x(s)) +
∫ s

0

l(x(τ), u(τ))dτ = V(T, x) (4.41)

for all s ∈ [0, T ].

When the evolutionary system is the solution map of control system (2.10),
p. 64:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

the tangential characterization of the viability kernels provided by the
Theorem 11.4.6, p. 463 implies the following statement:

Theorem 4.11.3 [Hamilton–Jacobi–Bellman Equation for the
Valuation Function] The valuation function is the unique solution
(defined in an adequate “generalized” sense) to Hamilton–Jacobi–Bellman
partial differential equation

−∂V(t, x)
∂t

+ inf
u∈U(x)

(
n∑
i=1

∂V(t, x)
∂xi

fi(x, u) + l(x, u)

)
= 0

satisfying the initial condition V(0, x) = c(x).

The sign “minus” in front of
∂V(t, x)

∂t
appears here since we study the

valuation function V(t, x) parameterized by the horizon here denoted by
t instead of the standard value function where the horizon is fixed and
the current time is denoted by t, providing the Hamilton–Jacobi–Bellman
equation in the traditional form

+
∂V(t, x)

∂t
+ inf
u∈U(x)

(
n∑
i=1

∂V(t, x)
∂xi

fi(x, u) + l(x, u)

)
= 0

The valuation function is useful in the extent that it allows us to build the
regulation map that provides the controls or regulons governing the evolution
of optimal solutions:
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Definition 4.11.4 [Regulation Map] The regulation map for the
intertemporal optimization problem is defined by

R(t, x) :=

{
u ∈ U(x) | − ∂V(t, x)

∂t
+

n∑
i=1

∂V(t, x)
∂xi

fi(x, u) + l(x, u) = 0

}

We shall prove the following regulation mechanism:

Theorem 4.11.5 [Regulating Optimal Evolutions] Optimal solutions
are governed by the control system

∀t ∈ [0, T ],
{

(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ R(T − t, x(t)) (4.42)

For simplicity of the exposition, we restricted in this chapter the concepts
of intertemporal optimization to problems without state constraints. We can
add state constraints, or even, functional viability constraints, which are
associated with any positive extended function k ≤ c by formula

Capt(4.33)(Ep(k), Ep(c∞))

Theorem 17.3.4, p. 689 implies that the capture basin of the epigraph
of the function c viable in the epigraph of the function k is the epigraph
of valuation function of an intertemporal optimization problem described in
Definition 17.3.2, p. 687.

Remark. The viability solution to these intertemporal optimization
problems is a “concrete” one, which can be computed by the viability
algorithm. We just prove that for Marchaud control systems, the valuation
function is lower semicontinuous. Next, regularity issues arise: under which
conditions is the valuation function continuous, Lipschitz, more or less
differentiable, as a function of the state or as a function of time along an
(optimal) evolution, etc. These issues are not dealt with in this book, but an
immense literature is available. The questions related to necessary conditions,
an adaptation to intertemporal optimization problems of the Fermat rule,
known under the concept of Pontriagin principle, are not addressed. For a
survey, we refer to [103,104, Frankowska]. ��
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4.12 Links Between Viability Theory
and Other Problems

We already have seen many examples of intertemporal optimization problems
over evolutions of state-control pairs governed by micro–macro systems of the
form {

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = my(t)− l(x(t), u(t)) where u(t) ∈ U(x(t))

and to environmental and epigraphical environments Ep(k) and epigraphical
targets Ep(c).

We also mentioned that the value functions of these intertemporal
optimization problems are solutions to Hamilton–Jacobi–Bellman equations,
as is proved rigourously in Theorem 17.4.3, p. 701.

We devote this section to these three types or problems and try to uncover
in a more systematic way the links between each of these three points of view
and viability kernels and their properties, and, consequently, between each of
these three problems.

4.12.1 Micro–Macro Dynamic Consistency

As we saw in the introduction,

Definition 4.12.1 [Micro–Macro Systems] A system
{

(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(ii) y′(t) = g(x(t), y(t), u(t)) where u(t) ∈ V(x(t), y(t)) (4.43)

governing the evolution of pairs (x(t), y(t)) ∈ X×Y is called a micro–macro
system whenever the dynamics governing the evolution x(·) of the state does
not depend on the macro variable y(·), whereas the evolution of the macro
variable depends upon the state variable either through its control law or
trough constraints linking micro and macro variables.

Naturally, we assume that whenever u ∈ V(x, y), then u ∈ U(x). Since the
micro–macro states range over the product X ×Y , an environment (denoted
by) K ⊂ X × Y is a subset of X × Y , as well as a target C ⊂ K ⊂ X × Y , so
that the viability kernel Viab(4.43)(K, C) ⊂ X × Y with target C viable in K
is a subset of X × Y . In the graphical framework we advocate in this book,
any subset V ⊂ X × Y can be regarded as the graph
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V =: Graph(V)

of the set-valued map defined by

∀ x ∈ X, V(x) := {y ∈ Y such that (x, y) ∈ V}

(see Definition 18.3.1, p. 719). Therefore, we can associate with the subsets
C and K three set-valued maps

⎧⎨
⎩

(i) Graph(C) := C
(ii) Graph(K) := K
(iii) Graph(V(K,C)) := Viab(4.43)(K, C)

satisfying
∀ x ∈ X, C(x) ⊂ V(K,C)(x) ⊂ K(x)

Theorem 2.15.1, p. 99 states that the set-valued map V(K,C) is the unique
set-valued map from X to Y satisfying the above inclusions and

V(V(K,C),C) = V(K,C) = V(K,V(K,C))

Consequently, whenever set-valued map K and C ⊂ K are given, the set-
valued map V(K,C) can be regarded as a viability graphical solution of a
micro–macro problem associated with the data K and C.

The set-valued map V(K,C) associates with any x the subset of elements
y ∈ K(x) such that there exists a micro–macro (x(·), y(·)) evolution governed
by (4.43), p. 171 and a time t� such that y(t) ∈ K(x(t)) for all t ∈ [0, T ]
and y(t�) ∈ C(x(t�)). We shall see in Sect. 4.12.3, p. 174 that this set-
valued map V(K,C) is the unique solution of a partial differential equation or
partial differential inclusion, among which we shall find Burgers type partial
differential equation (see Chap. 16, p. 631).

4.12.2 The Epigraphical Miracle

We now turn our attention to the special but very important case when
Y := R, i.e., when the macro variable is a scalar. In this case, we recall
(Definition 18.6.5, p. 745) that a subset V ⊂ X × R is an epigraph if

V + {0} × R+ = V

that epigraphs of functions are epigraph and that, conversely, if the epigraphs
are closed, they are the epigraphs of (lower semicontinuous) extended
functions.
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Theorem 4.12.2 [Viability Kernels of Epigraphs] Consider control
systems of the form

{
(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(ii) y′(t) = g(x(t), y(t), u(t)) where u(t) ∈ V(x(t), y(t)) (4.44)

where y(t) ∈ R is a real variable.
Assume that the micro–macro environment K and targets C are

epigraphs. So is the viability kernel Viab(4.43)(K,C).

Proof. Let us consider a pair (x, y) ∈ Viab(4.44)(K, C) and ỹ ≥ y. Then, there
exist an evolution (x(·), y(·)) starting at (x, y) and a finite time t� such that
(x(t), y(t)) ∈ K forever or until the finite time t� when (x(t�), y(t�)) ∈ C. If
ỹ > y, there exists an evolution ỹ(·) governed by ỹ′(t) = g(x(t), ỹ(t), u(t))
larger than or equal to y(·). Indeed, since ỹ(0) > y(0) and since the
functions ỹ(·) and y(·) are continuous, either ỹ(t) > y(t) for all positive
t ≥ 0 or there exists a smallest finite time t̂ when ỹ(t̂) = y(t̂). It is then
enough to concatenate the evolution ỹ(·) with the solution y(·) at time t̂
(see Definition 2.8.1, p. 69) to observe that the concatenation is still an
evolution starting at ỹ and larger or equal to the evolution y(·). Therefore,
(x(t), ỹ(t)) = (x(t), y(t) + p(t)) where p(t) ≥ 0, so that (x(t), ỹ(t)) ∈ K
forever or until the finite time t� where (x(t�), ỹ(t�)) ∈ C. This means
that (x, ỹ) belongs to the viability kernel Viab(4.44)(K, C), which is, then,
an epigraph. ��

Therefore, if the environment K := Ep(k) and the target C := Ep(c) are
epigraphs of extended functions k ≤ c, and whenever the viability kernel
is closed, it is the epigraph of the function denoted by v(k,c), satisfying
inequalities

k(x) ≤ v(k,c)(x) ≤ c(x)

Theorem 2.15.1, p. 99 states that the extended function v(k,c) is the unique
extended function from X to R∪{+∞} satisfying the above inequalities and

v(v(k,c),c) = v(k,c) = v(k,v(k,c))

We shall see in Sect. 4.12.3, p. 174 that this extended function v(k,c) is the
unique solution of a Hamilton–Jacobi–Bellman partial differential equation,
as we have seen in these examples.
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4.12.3 First-Order Systems of Partial Differential
Equations

Since we have related viability kernels under auxiliary micro–macro systems
as graphs of set-valued maps or epigraphs of extended functions (when Y :=
R), the question arises to take advantage of these graphical or epigraphical
representations for formulating the statements of Viability Theorem 11.3.4,
p. 455 and Invariance Theorem 11.3.7, p. 457.

The basic idea goes back to Fermat in 1637, when, translated in modern
terms, he defined the tangent to the graph of a function (from R to R) is the
graph of its derivative. This was the starting point of the differential calculus
of set-valued maps: the graph of the derivative of a set-valued map is the
tangent cone to its graph (see Definition 18.5.3, p. 739 and Theorem 18.5.4,
p. 739). This is how the tangential conditions characterizing the graph of the
set-valued map V(K,C) can be translated by saying that V(K,C) is a solution
to a first-order “partial differential inclusion”. Needless to say, in the case
we recover usual systems of first-order with smooth solution, the above set-
valued solution coincides with the regular one.

When Y := R and since we related viability kernels under auxiliary
micro–macro systems as epigraphs of extended functions, we follow the
same approach, defining “epiderivatives” of extended functions through their
epigraphs: the epigraph of an epiderivative is the tangent cone to the epigraph
of the function (see Definition 18.6.9, p. 747 and Theorem 18.6.10, p. 748).

It is then enough to “translate” the tangential conditions on the epigraph
of the extended function v(k,c), which is a viability kernel under a micro–
macro system, in terms of epiderivatives for stating that it is a generalized
(extended) solution of Hamilton–Jacobi–Bellman partial differential equa-
tions of the type

h
(
x,v(x),

∂v(x)
∂x

)
:= inf

u∈V(x,v(x))

(〈
∂v(x)
∂x

, f(x, u)
〉
− g(x,v(x), u)

)
= 0

with adequate conditions depending upon the auxiliary environment Ep(k)
and target Ep(b), where the function h:(x, y, p) ∈ X × R ×X� �→ h(x, y, p)
defined by

h(x, y, p) := inf
u∈V(x,y)

(〈p, f(x, u)〉 − g(x, y, u))

is called an Hamiltonian.
The Hamilton–Jacobi–Bellman partial differential equation depends only

the data f , g and V describing the micro–macro system, whereas inequalities

k(x) ≤ v(k,c)(x) ≤ c(x)
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depend on the environment and target functions k and c. Hence, there are as
many solutions to the Hamilton–Jacobi–Bellman partial differential equation
as pairs (k, c) of functions such that k ≤ c.

In this way, the Viability and Invariance Theorems provide existence and
uniqueness of a solution to a Hamilton–Jacobi–Bellman equation. Naturally,
since the solutions are not necessarily differentiable in the classical sense, the
derivatives involved are epiderivatives, which coincide with usual derivatives
whenever the solution is differentiable. These conditions state that the value
function v(k,c) is a “generalized solution” to the above Hamilton–Jacobi–
Bellman equation. They bear as many names as concepts of tangents and
normal provided by set-valued analysis (for instance, viscosity solutions,
Barron–Jensen/Frankowska solutions, etc. See Definition 17.4.2, p. 701). This
is at the level of the translation of tangential properties of graphs and
epigraphs that technical difficulties arise, and not at the level of existence,
uniqueness and stability properties of the solution to the partial differential
equation, which derives directly from the existence, uniqueness and stability
properties of viability kernels. Above all, this is no longer useful, since
Viability Kernel Algorithms provide directly both the value function and
the optimal regulation map. We shall postpone the thorough study to the
end of this book (see Chap. 17, p. 681), since the translation from tangential
properties to partial differential equation is quite technical.

The inverse question arises: what are the Hamilton–Jacobi–Bellman partial
differential equations

h
(
x,v(x),

∂v(x)
∂x

)
= 0

which can be derived from the tangential characterization under an unknown
micro–macro system? Not all, naturally, since a necessary condition is that
for any (x, y) ∈ X ×R, the Hamiltonian p �→ h(x, y, p) is concave and upper
semicontinuous. In this case, we can always associate with the Hamiltonian
h a micro–macro controlled system

{
(i) x′(t) = u
(ii) y′(t) = −l(x(t), y(t), u(t))

where the (artificial) controls u are chosen in X and where l is a Lagrangian
associated with the Hamiltonian in an adequate way. In this case, controls and
partial derivatives of the value functions are in duality, a situation common
in mechanics and physics, which provided the motivations for Jean Jacques
Moreau to be a co-founder of convex analysis.

Once related to a micro–macro system where the macro-system is affine
with respect to y, their solutions are value functions of intertemporal
optimization of criteria concealed in the partial differential equation.

We shall illustrate this important method relying in convex analysis
(Sect. 18.7, p. 755) in Sect. 14, p. 563 for nonlinear Hamilton–Jacobi–Bellman
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partial differential equations arising in finance (Sect. 15.2, p. 605), in micro–
macro economics (Sect. 15.3, p. 620) and a macroscopic approach to traffic
theory (Chap. 14, p. 563).

4.12.4 Intertemporal Optimization Under State
Constraints

We already have related several intertemporal optimization problems over
evolutions of state-control pairs governed by a control system

{
(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = my(t)− l(x(t), u(t)) where u(t) ∈ U(x(t))

and to environmental and epigraphical environments Ep(k) and epigraphical
targets Ep(c).

In this chapter, we started from functionals involving the transient costs
l and spot costs c involved in the criterion, and the constraints where plain
environmental constraints K ⊂ X , with which we associate the indicator
function k := ψK of K (see Definition 18.6.1, p. 743).

Naturally, if the links between value function of some classical control
problems (Bolza problems) and viability kernel of epigraphs with epigraphical
targets under adequate micro–macro systems are straightforward, it is not
always the case: the discovery of some micro–macro systems may require
some ingenuity.

However, we can proceed differently, and compute the viability kernels
of the epigraphical environments with epigraphical targets and discover the
associated intertemporal criterion (see Sect. 17.3.1, p. 685). This provides a
factory of intertemporal optimization problems which will be reviewed in
Chap. 17, p. 681.

Once this micro–macro system is found, we use the links between micro–
macro systems and first-order partial differential equations to derive the
Hamilton–Jacobi–Bellman equation providing the value function for each
problem associated with a discount factor m (which may depend upon the
state-control pair), the transient cost l, satisfying the conditions

k(x) ≤ v(k,c)(x) ≤ c(x)

associated with the constraint k and spot costs c.
Therefore, value functions inherit the properties of viability kernels and

capture basins, and optimal evolutions can be regulated by the regula-
tion maps provided by Viability Theorem 11.3.4, p. 455 and Invariance
Theorem 11.3.7, p. 457. Furthermore, they can be computed by the Viability
Kernel Algorithms.
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4.12.5 The Viability Strategy for Dynamic
Optimization

The list of intertemporal optimization problems we provided in this Section
is far to be exhaustive, and we shall review other later in the book. For
instance, by taking invariance kernels instead of viability kernels, we obtain
optimization problems of the same nature where the infimum over the set of
evolutions is replaced by the supremum.

On the other hand, we shall see that other problems in dynamical
economics and social sciences are naturally formulated in terms of viability
and/or invariance kernels of epigraphs of functions with targets which are
themselves epigraphs of functions.

According to the choice of these functions and of the auxiliary problems,
we can cover a wide spectrum of dynamical optimization problems.

Being related to viability kernels, the Viability Kernel Algorithm allows us
to compute these valuation functions. We can derive from the characterization
of the viability kernel in terms of tangential conditions that these valuation
functions are solutions to Hamilton–Jacobi–Bellman equations in a adequate
generalized sense, since these functions are not necessarily differential, not
even continuous.

Therefore, we suggest:

1. to relate a whole class of problems to much simpler corresponding
viability/capturability problems,

2. to “solve” these viability/capturability problems at this general level and
gather as much characterization theorems and properties of various kinds
as possible,

3. to approximate and compute these valuation functions by using viabil-
ity/capturability algorithms and software,

4. when the environments and the targets are epigraphs of functions or graphs
of maps, to use set-valued analysis and nonsmooth analysis for translating
the general results on viability kernels and for giving a precise meaning
to the concept of generalized solutions to systems of first-order Hamilton–
Jacobi–Bellman differential equations, as we shall do in Chaps. 13, p.523,
and 17, p. 681.



Chapter 5

Avoiding Skylla and Charybdis

5.1 Introduction: The Zermelo Navigation Problem

This chapter provides a similar viability framework with two-dimensional
nonsmooth environments, targets and a nonlinear control system for which
we illustrate and compare basic concepts, such as minimal length and exit
time functions, minimal time, Lyapunov and value function of an optimal
control problem.

Ernst Zermelo [1871–1953]. The German mathemati-
cian Ernst Zermelo is mainly known for his major contribu-
tions to the foundations of mathematics when David Hilbert
challenged his colleagues with the first of his 23 celebrated
problem during the 1900 conference of the International
Congress of Mathematicians in Paris, dealing with the
continuum hypothesis introduced by Georg Cantor. Before
that, he started his mathematical investigations on the

calculus of variations and studied hydrodynamics under the guidance of Max
Planck. As early as 1935, Zermelo resigned his chair to protest Hitler’s regime,
to which he was reinstated at the end of World War II.

18 The Zermelo Navigation Problem. In his 1935 book [54, Calculus
of Variations and partial differential equations of the first order ], Constantin
Carathéodory mentions that Zermelo “completely solved by an extraor-
dinary ingenious method” the “Zermelo Navigation Problem” stated as
follows: In an unbounded plane where the wind distribution is given by a

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 5,
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vector field as a function of position and time, a ship moves with constant
velocity relative to the surrounding air mass. How much the ship be steered
in order to come from a starting point to a given goal in the shortest time?

The state variables x and y denote the coordinates of the moving ship,
f(x, y) and g(x, y) the components of the wind velocity. There are two control
variables for governing the evolution of the ship: the velocity v, the norm
‖v‖ of which is bounded: ‖v‖ ≤ c, and the steering direction u, that is,
the angle which the vector of the relative velocity forms with the x-direction.
Indeed, the components of the absolute velocity are f(x(t), y(t))+v(t) cos u(t)
and g(x(t), y(t)) + v(t) sinu(t). We can also incorporate state-dependent
constraints on velocity by a bound c(x, y) and constraints on the steering
direction described by the bounds αmin(x, y) and αmax(x, y).

The evolution of the ship is thus governed by the following control system

⎧⎪⎪⎨
⎪⎪⎩

(i) x′(t) = f(x(t), y(t)) + v(t) cos u(t)
(ii) y′(t) = g(x(t), y(t)) + v(t) sinu(t)

where u(t) ∈ [αmin(x(t), y(t)), αmax(x(t), y(t))] , ‖v(t)‖ ≤ c(x(t), y(t))
0 ≤ αmin(x, y) ≤ αmax(x, y) ≤ 2π and 0 ≤ c(x(t), y(t))

(5.1)
We shall investigate Zermelo’s problem, where we replace the “unbounded

plane” by an arbitrary closed environment K ⊂ R
2 with obstacles, the “goal”

being the harbor, playing the role of the “target” C ⊂ K in our terminology.
This is of course is a more challenging problem because of these added
constraints.

We instantiate these results numerically when the evolution of the ship is
governed by Zermelo’s equation

⎧⎨
⎩

(i) x′(t) = v(t) cosu(t)
(ii) y′(t) = a

(
b2 − x2

)
+ v(t) sin u(t)

where u(t) ∈ [0, 2π], ‖v(t)‖ ≤ c
(5.2)

with a =
1
80

, b = 12 and c = 1.
The environment and target shown next provide the basis for five two-

dimensional examples for the sake of comparison. We chose a compromise
between enough complexity for underlying interesting features and simplicity
to have the same figures to adapt to.
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5.2 The Odyssey

Odyssey. Odysseus (or Ulysses) was warned by Circe that
if he sailed too close to Scylla, she would attack and swallow
his crew. If he sailed near by Charybdis, she would suck the
ship down the sea.

So was Odysseus’ dilemma: fight Scylla, and thus, be attracted to her down
below the sea by Charybdis, or sail too close to Scylla, and loose six sailors.
But Odysseus survived 10 years to reach Ithaca and the arms of Penelope. Had
Odysseus known viability theory, that even his hubris could not replace, he
could have saved his crew by finding a safe route to Ithaca avoiding the mon-
sters from any point of the capture basin, and in particular from the point B
of Figure 5.6, p. 185 (left), where he would have had the provocative pleasure
to sail safely between them. Either to the secure part of the harbor where the
winds would not blow him away, i.e., the viability kernel of the harbor, which
he could have done starting from the permanence kernel, since he is still living
in our minds, or in the insecure part, where the ship wrecks, also for eternity.

Fig. 5.1 Charybdis and Scylla.

Since the dispute goes on to guess where these monsters were, either in the
Strait of Messina, or Cape Skilla, we chose to locate it in Yellowstone Park
(Left). The environment K is schematized by a square sea (Right), with a
waterfall on the north, cliffs the west and the east where the ship cannot
berth, the two monsters Scylla Charybdis south of a dyke. The target C is
the harbor. The winds blow with a stronger force in the center, so that ships
cannot sail south in the center, but weak enough along the banks to allow
the ships to sail back south.
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This light reminder illustrates on this example how to escape Odysseus
dilemma. Not only starting from the capture basin, but by reaching the har-
bor in finite (and shortest) time, or in an asymptotic way, or with the shortest
route, or by minimizing the effort, or for reaching the harbor of Ithaca, and
stay there forever in the arms of Penelope, the real happy end of Homer’s
Odyssey. Or, if by a bad trick of Tyche, he left, even for a second, the capture
basin, he will survive as long as possible until he fought Scylla, or be drowned
by Charybdis or die in the waterfall.

5.3 Examples of Concepts and Numerical Computations

5.3.1 Dynamical Morphological Structure
of the Environment and its Behavior

We first illustrate some of the basic concepts presented in this book (we do
not explicitly mention control system (5.2), p. 180 because it is the only one
used in this chapter).

• Kernels and Basins. Figure 5.2 (Left), p. 182 displays, the viability kernel
Viab(K) of the environment K, including naturally the harbor C ⊂ K
(left) (see Definition 2.10.2, p.86). Fig. 5.2 (Right), p. 182 describes the
capture basin Capt(K,C) of the harbor, in dark, superposed to the viabil-
ity kernel Viab(K). It displays the subset Viab(K) \Capt(K,C) of initial
states viable in the environment but not reaching the harbor in finite time.

Fig. 5.2 Viability Kernel and Capture Basin.
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The subset Viab(K \C) of evolutions viable in K \C is depicted in Fig. 5.3
(Left), p. 183. This subset being not empty, K \ C is not a repeller.
Figure 5.3 (Right), p. 183 displays the viability kernel Viab(C) ⊂ C
of the harbor, which is not empty.

Fig. 5.3 Viability Kernel outside the Harbor and close up view of the
Viability Kernel of the Harbor.

The trajectories of three evolutions are displayed: starting from A, B and
C, outside of the viability kernel of the harbor, they leave the environment
in finite time, the two first ones outside and the third one inside the harbor.

• Equilibrium and Exit Sets.

Fig. 5.4 Equilibrium and Exit Sets.

(Left). The equilibrium subset (see Definition 9.2.13, p.332) is the subset
of states of the environment which remain still, either because the velocity
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is equal to zero or because the directions of the winds and the ship are
“balanced”. There are equilibria close to the left bank, and, inside the
harbor, close to the right bank. (Right). The figure displays the exit set (see
Definition 10.4.7, p.396), contained ∂K \ Viab(K), where all evolutions
leave the environment immediately.

These kernels and basins, providing a “qualitative” description of the
dynamical behavior consistent with the environment and the target, are
the domains of indicator functions, adding a “quantitative” provided by
indicators. We classify them in two categories.

5.3.2 Behavior in the Environment: Minimal Length
and Persistent Evolutions

• Theorem 4.4.2, p.140 states that the finite length viability kernel contains
the viable equilibria. Figure 5.10, p. 188 provides a description of the
minimal length function and its properties.

• Definition 4.3.4, p.135 implies that the complement of the viability kernel
of the environment is the domain of the exit time function, indicating
the maximal time a persistent evolution can remain in the environment
before leaving it. Figure 5.11, p. 190 provide a description of the exit time
function and its properties.

We reproduce below trajectories of minimal length and persistent evolu-
tions for the sake of comparison of behavior of evolutions starting from the
finite length viability kernel and the complement of the viability kernel.

Fig. 5.5 Viable Minimal Length and Non-Viable Persistent Evolutions.
Since the equilibria are contained in the finite length viability kernel (see Definition 4.4.1,
p.140), some finite length evolution converges to them. Figure 5.4, p. 184 shows the
trajectories of some evolutions reaching equilibria. In the same way, Fig. 5.4 (Right, p.
184) displays persistent evolutions reaching in finite time the exit set through which it
leaves K.
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5.3.3 Behavior In and Out the Harbor: Minimal Time,
Lyapunov and Optimal Evolutions

• Minimal Time Functions. Definition 4.3.4, p.135 implies that the capture
basin is the domain of the minimal time function, indicating the minimal
time to reach the target, p. 192).

• Lyapunov Functions. Among all indicators describing the asymptotic
behavior of the evolutions, we chose the exponential Lyapunov function
which converges exponentially to the target. Its domain is the exponential
attraction basin. Evolutions converging asymptotically to the harbor are
depicted in Fig. 5.13, p. 194.

• We describe the behavior of the solutions of an intertemporal control prob-
lem, minimizing a given intertemporal criterion. The value function (see
Definition 4.9.1, p.162) of this optimal problem with viability constraints
(also referred as a problem with state constraints) is computed in Fig. 5.14,
p. 196.

Optimal�ControlMinimal Time Lyapunov

Fig. 5.6 Comparison of the Trajectories.

These figures compare trajectories of the minimal time evolutions (Left),
of Lyapunov evolutions (Middle) and evolutions minimizing the cumulated
squares of the velocity. (Right). Comments are provided in the snapshots
below.
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Optimal ControlMinimal Time Lyapunov

Fig. 5.7 Comparison of Projections of the Indicator.

Optimal ControlMinimal Time Lyapunov

Fig. 5.8 Comparison of the Projections of the Angular Regulation Map.

Optimal ControlMinimal Time Lyapunov

Fig. 5.9 Comparison of the Projections of the Velocity Regulation Map.
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5.4 Viewgraphs Describing Five Value Functions

We present the snapshots of the minimal length function, the exit time
function, the minimal time function, the Lyapunov function and value
function of an optimal control problem according to the same scheme: each
result is displayed on two pages facing each other.

1. The even page. The three dimensional graph of the indicators (minimal
length, exit time, minimal time, Lyapunov and optimal functions) are
displayed and commented on left,

2. The odd page. provides six two dimensional figures.

• Left in the top row. This figure provides the projection of the value
function on its domain, with color scale helping to visualize the shape
of the indicator, which takes infinite values.

• Right in the top row. The presence of obstacles destroys the
continuity of the indicator, which also takes infinite values. This figure
displays the projections of its discontinuities, separating zones with
different qualitative behaviors. It also shows some trajectories of the
evolutions optimizing the indicator (minimal length, persistent, minimal
time, Lyapunov and optimal evolutions).

• Left in the middle row. The angular feedback map ũ(·) associates
with any state x the angular control ũ(x) to be used at this state for
governing the optimal evolution through the open loop control u(t) :=
ũ(x(t)). This figure provides the projection of the angular feedback map
on the domain of the value function, with a color code providing the
value of the steering direction on each state of the environment.

• Right in the middle row. The graph of the evolution t �→ u(t) :=
ũ(x(t)) of the steering direction u(t) along some evolutions are displayed
in this figure to provide an easy and instructive way, showing the time
behavior of each of the prototypical evolutions.

• Left in the bottom row. The velocity feedback map ṽ(·) associates
with any state x the velocity control ṽ(x) to be used at this state for
governing the optimal evolution through the open loop control v(t) :=
ṽ(x(t)).

• Right in the bottom row. This figure displays the graphs of the
velocity open loop control t �→ v(t) := ṽ(x(t)) along the prototypical
evolutions.
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Fig. 5.10 The Minimal Length Function.

The viability kernel contains the domain of the minimal length function,
which is the colored part of the projection of its graph. Obstacles can cause
discontinuities. In the figure at the right of the first row, we chose to represent
four trajectories of evolutions. The evolutions starting from initial states A
and B in both sides of the western discontinuity sale west, south and north
of the southern obstacle. The evolutions starting from C and D, the one
starting from C goes west and the one starting form D heads east, berthing
inside the harbor. These minimal length evolutions converge to equilibria,
some of them along the left bank, the other ones on the right bank of the
harbor. Observe that behind the two obstacles and in the south corner of
the harbor, the minimal length is infinite.
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Fig. 5.11 The Exit Time Function.

The exit time function is defined on the complement of the viability kernel
(where it is equal to +∞). It provides the maximal “survival time” in which
persistent evolutions remain in the environment before leaving it through
the exit set, on which the exit time function vanishes. Persistent evolution
starting from C leaves the environment through the harbor, the one starting
from A leaves the river on the north–east and the one leaving from B on the
north–west.
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Fig. 5.12 The Minimal Time Function.

The capture basin being the domain of the minimal time function, it
is the colored part of the projection of its graph. Obstacles can imply
discontinuities. In the figure at the right of the first row of next page, we
chose to represent three trajectories of evolutions starting from inial states
A, B and C. Being north of the first discontinuity, the evolution starting
from A turns around the northern obstacle towards the left bank, sales south
far enough to bypass the southern obstacle and then, to the harbor. Since B
is located between the two discontinuities, the evolution sales west between
the two obstacles and then follows the same trajectory than A. From C, the
evolution flies directly to the harbor. The first figure of the third row shows
that the norm of the velocity remains maximal and constant and that the
evolution is governed only through the steering control. Observe that behind
the two obstacles and in the south corner of the harbor, the minimal time is
infinite, so that these white areas do not belong to the capture basin.
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Fig. 5.13 The Lyapunov Function.

The exponential growth of an evolution is measured by supt≥0 e
mtd(K,C)(x(t))

(see Definition 4.5.4, p.147). The Lyapunov function minimizes the
exponential graph of evolutions starting from a given state. Its graph is
displayed. The trajectories of evolutions starting from A (going around the
two obstacles) and from B are governed by the feedbacks in the two last rows.
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Fig. 5.14 The Value Function.

In this example, we chose the evolutions minimizing the cumulated squares
of velocities.
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Chapter 6

Inertia Functions, Viability Oscillators
and Hysteresis

6.1 Introduction

This chapter is devoted to the original motivation of viability theory, which
was (and still is) an attempt to mathematically capture some central ideas
of evolution of species of Darwinian type, turning around the concept of
“punctuated equilibrium” of Eldredge and Gould.

For that purpose, we investigate first in Sect. 6.2, p. 202 whether intertem-
poral optimization studied in Chap. 4, p. 125 can help us in this undertaking.
We observe that this approach requires the existence of a decision-maker
acting on the controls of the system, using an intertemporal optimization
criterion, which involves some knowledge of the future, for choosing the “best”
decision once and for all at the initial time.

We may consider another point of view, in which, in an evolutionary
context, it may be wiser to choose a decision at the right time rather than an
intertemporal optimal one taken at the wrong time. As mentioned in Sect. 2.5,
p. 58, many systems involving living organisms are regulated by regulatory
controls, called “regulons”. They evolve, but there is no consensus on the
identity of “who” is acting on them. So, we assume that if such an actor does
exist, “he” is lazy, myopic, conservative and opportunistic, who, whenever it
is possible, will keep the regulons constant as long as viability is not at stakes,
by minimizing at each instant , but not in an intertemporal, the velocity
of the regulons (heavy evolutions). Indeed these are different behaviors
than the ones of an “intertemporal optimizer”, where an identified agent acts
on the controls for optimizing a given criterion. We thus review in Sect. 6.3,
p. 203 the concept of “punctuated equilibrium” for which we shall propose a
rigorous mathematical definition (Definition 6.4.9, p. 216) in Sect. 6.4, p. 207.

Actually, the rest of this chapter is not only devoted to issues involving
inertia functions for defining the inertia principle, punctuated equilibria and
heavy evolutions, but also, in Sect. 6.5, p. 233, to viability oscillators and
hysterons, useful for several biological and physical problems, and finally, in
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Sect. 6.6, p. 242, to the regulation of systems where the controls are involved
not only in the dynamics, but also in the environments and the targets.

These issues share the fact that they can be approached by metasystems,
defined as follows: a metasystem is made of the adjunction to the controlled
system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (6.1)

of the differential equation
u′(t) = v(t)

which are coupled through the set-valued map U . In other words, a
metasystem governs the state-control pairs (x(·), u(·)) governed by the system

{
(i) x′(t) = f(x(t), u(t))
(ii) u′(t) = v(t)

viable in the graph Graph(U) of the set-valued map U . Or, equivalently the
states of the metasystem are the state-control pairs (x(·), u(·)) and its con-
trols, the “metacontrols”, are the velocities of the original system (6.1), p. 200.

Metasystems govern evolutions by continuous open loop controls instead
of measurable ones. They can be investigated using viability tools.

• We begin the study of inertia functions in Sect. 6.4, p.207. The objective
is to derive heavy evolutions of regulated system (6.1), p. 200: at each
instant, the norm of the velocity of the viable controls is minimized.
This is no longer an intertemporal minimization problem studied in
Chap. 4, p. 125, but a spot minimization problem. This behavior is
consistent with the required myopic, exploratory but lazy, opportunistic
but conservative behavior we are about to describe:

– Myopic, since the knowledge or the future is not required.
– Exploratory thanks to the set of available controls.
– Lazy, since at each instant, he minimizes the norm of the velocity of the

regulon.
– Opportunistic, since the controls have to be modified whenever viability

is at stakes.
– Conservative, since the controls are kept constant whenever the viability

constraints are satisfied.

Heavy evolutions are the ones which satisfy the principle stating that,
given an inertia threshold, heavy evolutions keep their regulon constant
until the warning time (called kairos, see Box 24, p. 218) when the state
of the heavy evolution system reaches a critical zone (see Definition 6.4.9,
p. 216), where the regulons have to evolve (the decision taken at the
right moment) in order to remain viable.
If by any chance, an equilibrium lies in the critical zone, a heavy evolution
which reaches it remains there forever. Otherwise, defining the viability
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niche of a (constant) regulon u as the viability kernel of the environment
under the dynamics x′(t) = f(x(t), u), a heavy evolution which reaches the
(nonempty) viability niche of a regulon remains there. This is a “lock in”
property explaining punctuated evolution (under a constant environment).
We adapt these results for high-order systems where we study the behavior
of high-order derivatives of the controls. We also extend this idea to control
problems involving the derivatives of the controls, useful in economics and
ecology for evaluating the transition costs in the sense that instead of the
norm of the velocity of the regulon, one minimizes a Lagrangian l(x, u, v)
taking into account the cost of the velocity v of the regulon, measuring
what is understood as a transition cost.

In order to explain these uncommon mathematical concepts, we illustrate
them by the simplest one-dimensional example we can think of: regulated
system x′(t) = u(t) (called simple integrator in control theory), where the
open loop control u(t) translates our ignorance of the dynamical system
governing the evolution of the state. A situation familiar in life sciences,
where “models”, in the physicist sense of the word, are difficult to design,
contrary to engineering, where models of man made products are easier
to uncover. Hence, imposing viability constraints x(t) ∈ K and an inertia
threshold ‖u′(t)‖ ≤ c are enough to produce heavy evolutions which can
be computed both analytically and by the Viability Kernel Algorithm.
Note that while system x′(t) = u(t) looks like a trivial system to study,
the introduction of viability constraints x(t) ∈ K and inertia threshold
|x′(t)| ≤ c for producing heavy and cyclic evolutions introduce significant
difficulties that can be solved using viability tools.

• We examine in Sect. 6.5, p. 233 how this system provides not only heavy
evolutions, but also “cyclic evolutions”, in the framework of this simple
example for the sake of clarity. Since the above system is not periodic, we
cannot call them periodic evolutions. It turns out that viability and inertia
threshold are sufficient to provide regulons governing cyclic evolutions.
This approach may be more relevant for explaining the functioning of
biological clocks, for example. They at least produce hysteresis loops,
evolutions going back and forth between two equilibria by using velocities
the norm of which are equal to the inertia threshold.

• Section 6.6, p. 242 briefly deals with systems in which the controls or the
regulons are involved in the environment and/or the target. This is the case
whenever we “control a target”, instead of the dynamics, for instance, for
solving a given set of properties. The use of metasystems allows us to
handle this question, since we do not have to assume that the set-valued
map U is Marchaud, but only closed. The relation u(t) ∈ U(x(t)) can
be inverted and becomes the relation x(t) ∈ U−1(u(t)), where K(u) :=
U−1(u) can be regarded as a control dependent environment.
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6.2 Prerequisites for Intertemporal Optimization

Intertemporal minimization problem implicit requirements that deserve to be
made explicit are as follows:

19 [Implicit Prerequisites for Intertemporal Optimization]
Intertemporal optimization requires:

1. the existence of an actor (agent, decision-maker, controller, etc.),
2. an optimality criterion,
3. that decisions are taken once and for all at the initial time,
4. a knowledge of the future (or of its anticipation).

We already mentioned that in systems involving living beings, there is no
consensus on the necessity of an actor governing the evolution of regulons.

The choice of criteria c and l in intertemporal optimization problems (see
Definition 4.9.1, p. 162) is open to question even in static models, even when
multicriteria or several decision makers are involved in the model.

Furthermore, the choice (even conditional) of the controls is made once
and for all at some initial time, and thus cannot be changed at each instant
so as to take into account possible modifications of the environment of the
system, thus forbidding adaptation to viability constraints.

Finally, the intertemporal cost involving the knowledge of the state x(t) at
future times t ∈ [0, T ] requires some knowledge of the future. Most systems
we investigate involve, at least, implicitly, a myopic behavior. Therefore, they
are unable to take into account the future, whereas their evolutions are
certainly constrained by their history. The knowledge of the future needs to
assume some regularity (for instance, periodicity, cyclicity) of the phenomena
(as in mechanics), or to make anticipations, or to demand experimentation.
Experimentation, by assuming that the evolution of the state of the system
starting from a given initial state for a same period of time will be the same
whatever the initial time, allows one to translate the time interval back and
forth, and, thus, to “know” the future evolution of the system. But in life
sciences, and, in particular, in economics, the systems are irreversible, their
dynamics may disappear and cannot be recreated, forbidding any insight into
the future.

Hence, we are left to make forecasting, prediction, anticipations of the
future, which are extrapolations of past evolutions, constraining in the last
analysis the evolution of the system to be a function of its history (See
Chap. 11 of the first edition of [18, Aubin]). However, we should note the
quotation:
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20 Paul Valéry (1871–1945) Forecasting is a dream from which event
wakes us up. (La prévision est un rêve duquel l’événement nous tire.)

After all, in biological evolution, intertemporal optimization can be traced
back to Sumerian mythology which is at the origin of Genesis: one Decision-
Maker, deciding what is good and bad and choosing the best (fortunately,
on an intertemporal basis with infinite horizon, thus wisely postponing to
eternity the verification of optimality), knowing the future, and having taken
the optimal decisions, well, during one week...

We had to wait for Alfred Wallace (1823–1913) to question this view in
1858 in his essay On the Tendency of Varieties to Depart Indefinitely from
Original Type which he sent to Darwin (1809–1882) who had been working
on his celebrated Origin of Species (1859) since 1844. Selection by viability
and not by intertemporal optimization motivated viability theory presented
in this book.

This is the reason why we shall assume in Sect. 6.3, p. 203 that, in living
system, there is no identified actor governing the evolution of the regulons, or
that, if such an actor exists, he is myopic, lazy, opportunistic and conservative,
and that the evolution of the controls, regarded in this case as regulons, obey
the inertia principle (see Comment 21, p. 204).

However, history has its own perversions, since Hélène Frankowska has
shown that these very techniques of viability theory designed to replace
optimal control theory are also very useless to solve optimal control problems
and other intertemporal optimization problems in the Hamilton–Jacobi–
Bellman tradition.

6.3 Punctuated Equilibria and the Inertia Principle

More generally, in regulated systems, agents acting on state variables are well
identified, but no identified actor governs the evolution of the regulons. In
the absence of such an actor piloting the regulons, or by assuming that this
actor is myopic, lazy, opportunistic and conservative, we cannot assume any
longer that the controls are chosen to minimize an intertemporal criterion,
due to the prerequisites for optimal control stated in Comment 19, p. 202
(the existence of an actor, of an optimality criterion, that decisions are taken
once and for all at the initial time, a knowledge of the future) are not met.

We may assume instead that regulons evolve as “slowly” as possible be-
cause the change of regulons (or controls in engineering) is costly, even very
costly. Hence we are led to assume that the regulons are constrained by some
inertia threshold that can be estimated through some measure of their
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velocities (see definition (4.1), p. 130 of the versatility of an evolution). We
may even look for heavy evolutions when the regulons evolve as slowly as
possible.

The situation in which controls are kept constant (they are called coeffi-
cients in this case) is familiar in physics, because these physical coefficients
are assumed to remain constant. Important properties (set of equilibria, sta-
bility or instability of equilibria) are then studied in terms of such parameters,
as in bifurcation theory, catastrophe theory, chaotic behavior, etc. (see for
instance Stephen Wiggins’s Quotation 11, p. 47 and [26, Aubin & Ekeland]).

However, evolutions under constant coefficients may not satisfy required
properties, such as viability, capturability or optimality. Then the question
arises to study when, where and how coefficients must cease to be constant
and start to “evolve” in order to guarantee the viability property, for instance.
In this case, their status as “coefficients” is modified, and they become
controls or regulons, according to the context (engineering or life sciences).

Whenever the viability property is concerned, we shall give a name to
this phenomenon which seems to be shared by so many systems dealing with
living beings:

21 [The Inertia Principle] In a loose way, the inertia principle states
that the “regulons” of the system are kept constant as long as possible and
changed only when viability or inertia is at stake.

The inertia principle provides a mathematical explanation of the emer-
gence of the concept of punctuated equilibrium introduced in paleontology
by Nils Eldredge and Stephen J. Gould in 1972 (see Comment 23, p. 216,
which we link another ecological concept, the ecological niche). We shall
translate these biological concepts into rigorous mathematical definitions (see
Definition 6.4.9, p. 216) and prove the existence of “heavy evolutions locking
in” the viability niche of a punctuated equilibrium whenever the evolution
of the regulon u(·) reaches such a punctuated equilibrium on its way. It
runs against the teleological trend assigning aims to be achieved (in even an
optimal way) by the state of the system and the belief that actors control the
system for such purposes (see Sect. 6.2, p. 202). The concept of “locking-
in” had been introduced in different fields of economics (of innovation),
and with other mathematical techniques, for explaining why, once adopted,
some technologies, which may look non-optimal in regard of some criterion,
are still adopted, whereas some solutions, maybe optimal with respect to
such or such criterion, are not adopted. The same phenomenon appears in
biological evolution, and may be explained mathematically by the inertia
principle in the paradigm of adaptation to an environment. These are the
very considerations which triggered the investigations of what became viability
theory at the end of the 1970s.
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Fig. 6.1 Punctuated Evolution.

Starting from x0 with the constant regulon u0, the solution evolves in K
until time t1, (first punctuated equilibrium phase) when the state x(t1) is
about to leave the environment K and when the constant regulon u0 must
start to evolve. Then a critical phase happens during which velocities also
evolve (as slowly as possible) to maintain viability, until time t1 when the
control u1 := u(t1) can remain constant during a nonempty time interval:
second punctuated equilibrium phase, after which a second critical phase.

However, they were anticipated by Darwin himself, who added in the sixth
edition of is celebrated book the following underlined sentence:

Addition to Chapter XI of the sixth edition of
Origin of Species by Charles Darwin

“Summary of the preceding and present chapters”

Darwin (1809–1882). I have attempted to show that
the geological record is extremely imperfect; that only a
small portion of the globe has been geologically explored
with care; that only certain classes of organic beings have
been largely preserved in a fossil state; that the number
both of specimens and of species, preserved in our muse-
ums, is absolutely as nothing compared with the numberof
generations which must have passed away even during

a single formation; that, owing to subsidence being almost necessary for
the accumulation of deposits rich in a fossil species of many kinds, and
thick enough to outlast future degradation, great intervals of time must
have elapsed between most of our successive formations; that there has
probably been more extinction during the periods of subsidence, and more
variation during the periods of elevation, and during the latter the record
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will have been least perfectly kept; that each single formation has not been
continuously deposited; that the duration of each formation is, probably short
compared with the average duration of specific forms; that migration has
played an important part in the first appearance of new forms in any one
area and formation; that widely ranging species are those which have varied
most frequently, and have oftenest given rise to new species; that varieties
have at first been local; and lastly, although each species must have
passed through numerous transitional stages, it is probable that the
periods, during which each underwent modification, though many
and long as measured by years, have been short in comparison with
the periods during which each remained in an unchanged condition.
These causes, taken conjointly, will to a large extent explain why though we
do find many links- we do not find interminable varieties, connecting together
all extinct and existing forms by the finest graduated steps. It should also be
constantly borne in mind that any linking variety between two forms, which
might be found, would be ranked, unless the whole chain could be perfectly
restored, as a new and distinct species; for it is not pretended that we have
any sure criterion by which species and varieties can be discriminated”.

For instance, this has been documented in paleontology:

22 Excavations at Lake Turkana. Excavations at Kenya’s Lake
Turkana have provided clear evidence of evolution from one species to an-
other. The rock strata there contain a series of fossils that show every
small step of an evolution journey that seems to have proceeded in fits
and starts. Examination of more than 3,000 fossils by Peter Williamson
showed how 13 species evolved. He indicated in a 1981 article in Nature
that the animals stayed much the same for immensely long stretches of
time. But twice, about two million years ago and then, 700,000 years ago,
the pool of life seemed to explode – triggered, apparently, by a drop in the
lake’s water level. Intermediate forms appeared very quickly, new species
evolving in 5,000–50,000 years, after millions of years of constancy, leading
paleontologists to challenge the accepted idea of continuous evolution by
proposing the concept of punctuated equilibrium.

The question arises how to change constant regulons when the viability
condition is about to be violated. This can be done:

1. either brutally, as in Sect. 10.8, p. 422, by changing persistent evolutions
(see Definition 10.4.2, p. 393 and Theorem 10.4.4, p. 394), remaining viable
as long as possible until the moment when the reach their exit set (see
Sect. 10.8, p. 422) [hard version of the inertia principle or infinite inertia
threshold ]
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2. or in a smoother manner, by setting a finite inertia threshold and mini-
mizing at each instant the velocity of the control [soft version of the inertia
principle].

Naturally, there are many other approaches between these two extremes
allowing the inertial principle to be satisfied. The hard version of the inertia
principle is the topic of Sect. 10.8, p. 422 and, more generally, of impulse
control and/or hybrid systems in Sect. 12.3, p. 503. The soft version of the
inertia principle is the topic of this chapter.

6.4 Inertia Functions, Metasystems and Viability Niches

We consider the parameterized system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

where the set-valued map U : X � U implicitly involves the viability
constraints

∀t ≥ 0, x(t) ∈ K := Dom(U)

Remark. Conversely, the viability constraint described by an environment
K under the parameterized system (6.1), p. 200, can be taken into account
by introducing the restriction U |K of the set-valued map U to K defined by

U |K(x) :=
{
U(x) if x ∈ K
∅ if x /∈ K

This amounts to studying the system

x′(t) = f(x(t), u(t)) where u(t) ∈ U |K(x(t))

which is the above system (6.1), p. 200, when U is replaced by U |K . This is
possible whenever the set-valued map U intervenes through its graph and not
as a set-valued map x� U(x) which would need to satisfy the assumptions
of the Viability Theorem 11.3.4, p. 455. Since the domain of a set-valued map
with closed graph is not necessarily closed, using this approach allows us to
also deal with more general viability problems where the environment K is
just the domain of a closed set-valued map. ��
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6.4.1 The Inertia Cascade

We classify specific evolutions in increasing inertia order. The most “inert”
evolutions are equilibria (x�, u�) of the control system, solutions to

f(x�, u�) = 0 where u� ∈ U(x�)

since both the state and the controls do not evolve (see Sect. 9.5, p. 360).
We next distinguish evolution governed under constant controls:

Definition 6.4.1 [Evolutions under Constant Controls] Evolutions
governed by systems

∀t ∈ [t0, t1], x′(t) = f(x(t), u)

subjected to viability constraints

∀t ∈ [t0, t1], x(t) ∈ U−1(u)

with constant regulon are called evolutions under constant controls on
the time interval [t0, t1]. They are said persistent evolutions (see Defini-
tion 10.4.2, p. 393) if they remain in K as long as possible, actually, on the
interval [0, τ �K(x)], where τ �K(x) is its (upper) exit time (see Definition 4.3.4,
p. 135).

Proposition 10.5.1, p. 399 states that a persistent evolution reaches
the boundary of K and leaves K through its exit subset Exitu(K) (see
Definition 10.4.7, p. 396).

Naturally, viable evolutions under constant controls may not exist, or exist
only on a finite time interval, or the class of evolutions under constant controls
is too small to contain solutions to given problems (viability, capturability,
optimal controls, etc.).

For climbing the next step of the inertia cascade, we can look for
evolutions regulated by affine open-loop controls of the form u(t) := u+ u1t,
nicknamed ramp controls in control theory, regulating what we shall call
“ramp evolutions”:

Definition 6.4.2 [Ramp Evolutions] An evolution (x(·), u(·)) is said to
be a ramp evolution on a time interval [t0, t1] if it is regulated by an affine
open-loop controls of the form u(t) := u + u1t, called ramp controls, the
velocities of which are constant.
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Inert evolutions are evolutions controlled by regulons with velocities the
norm of which is constant and equal to a finite inertia threshold c:

∀t ∈ [t0, t1], x′(t) = f(x(t), u(t)) where ‖u′(t)‖ = c

Although we shall concentrate our study on inert evolutions, we shall
provide some properties common to evolutions governed by open-loop
controls u(t) := u + u1t + · · · + um−1

tm−1

(m−1)! which are (m − 1)-degree
polynomials in time.

More generally, we are interested in evolutions governed by open-loop
controls t �→ u(t) with bounded derivative u(m)(t) or satisfying ‖um(t)‖ = c
for some m ≥ 1 (see Sect. 6.4.6, p. 226).

In this example of inert evolutions of a given degree, we look for the
regulation by polynomial open loop controls of fixed degree m, ranging over
the space R

m+1 of coefficients. This amounts to regulating the system with
combinations of a finite number of controls, the coefficients of polynomials
of degree m. This answers the important issue of quantized controls (see
Comment 33, p. 422). In Sect. 10.8, p. 422, we shall regulate viable evolutions
by concatenations of systems governed by a combination (called amalgam)
of finite number of feedbacks (see Definition 10.8.2, p. 424).

An adequate way to handle concepts of evolutions governed by open-
loop polynomial controls and differentiable open-loop controls is by means
of inertia functions. These inertia functions measure the versatility of the
regulons (0-order inertia function), the versatility of their first derivatives
and/or of their higher order derivatives.

Definition 6.4.3 [0-Order Inertia Function] Recall that SK(x) denotes
the set of state evolutions x(·) governed by the control system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

satisfying the initial condition x(0) = x ∈ K and viable in K.
The 0-order inertia function α0 : X �→ R ∪ {+∞} defined by

α0(x) := inf
x(·)∈SK(x)

sup
t≥0

‖u(t)‖ ∈ [0,+∞]

measures the minimal worst intertemporal norm of the open-loop controls.

Its domain is the subset of initial states from which at least one evolution
is governed by bounded open-loop controls and its c-lower level set (see
Definition 10.9.5, p. 429):
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L≤α0
(c) := {x ∈ Dom(U) such that α0(x) ≤ c}

provide the subset of initial states from which at least one evolution is
governed by open-loop controls bounded by the given constant c. Instead of
looking for a priori estimates on the regulons, we are looking for a posteriori
estimates singling out what are the initial states satisfying this property (see
Comments 1, p. 5 and 2, p. 5).

Lemma 6.4.4 [Viability Characterization of 0-th order inertia
function] Introduce the auxiliary micro–macro system:

⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = 0

where ‖u(t)‖ ≤ y(t)
(6.2)

The 0-th order inertia function is related to the viability kernel of K × R+

under system (6.2) by formula

α0(x) = inf
(x,y)∈Viab(6.2)(K×R+)

y

6.4.2 First-Order Inertia Functions

We denote by P(x, u) the set of state-control solutions (x(·), u(·)) to the
control system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

starting at (x, u) ∈ Graph(U) and viable in this graph.

Definition 6.4.5 [Inertia Functions] The inertia function α of the
system (6.1), p. 200 is defined by

α(x, u) := inf
(x(·),u(·))∈P(x,u)

sup
t≥0

‖u′(t)‖ ∈ [0,+∞]

on Graph(U). It associates with any state-control pair (x, u) ∈
Graph(U) the minimal worst intertemporal inertia α(x, u) of the evolutions
(x(·), u(·)) ∈ P(x, u) starting from x ∈ Dom(U) and u ∈ U(x).
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Therefore, viable evolutions starting from an initial state-control pair
(x, u) ∈ Dom(α) can be regulated by (absolutely) continuous open-loop con-
trols (i.e., whose derivatives are measurable) instead of “wilder” measurable
controls. Hence, the first information provided by the inertia function is to
localize the set of initial state-control pairs from which the system can be
regulated by smoother controls.

We observe that

α(x, u) = 0 if and only if ∀t ≥ 0, α0(x(t)) = ‖u‖

We shall characterize the inertia function in terms of the viability kernel
of Graph(U)× R+ under the specific auxiliary system:

Definition 6.4.6 [Metasystems] The metasystem associated with initial
control system (6.1), p. 200 is the auxiliary system

⎧⎪⎪⎨
⎪⎪⎩

(i) x′(t) = f(x(t), u(t))
(ii) u′(t) = v(t)
(iii) y′(t) = 0

where ‖v(t)‖ ≤ y(t)

(6.3)

It is regulated by the velocities v(t) = u′(t) of the controls of initial system
(6.1), called metacontrols.

Metasystems are used to characterize inertia functions:

Theorem 6.4.7 [Viability Characterization of Inertia Functions]
Recall that P(x, u) denotes the set of state-control evolutions (x(·), u(·))
governed by the regulated system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

such that x(0) = x and u(0) = u. The inertia function is related to the
viability kernel of Graph(U)× R+ under metasystem (6.3) by formula

α(x, u) = inf
(x,u,y)∈Viab(6.3)(Graph(U)×R+)

y

Proof. Indeed, to saythat (x, u, y) belongs to Viab(6.3)(Graph(U) × R+)
amounts to saying that there exists an evolution t �→ (x(t), u(t)) governed by
(6.3) where t �→ (x(t), u(t), y(t)) is governed by control system (6.1), p. 200
and where y(t) ≡ y. In other words, the solution (x(·), u(·)) ∈ P(x, u) satisfies
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∀t ≥ 0, ‖u′(t)‖ ≤ y

so that α(x, u) ≤ supt≥0 ‖u′(t)‖ ≤ y.
Conversely, if α(x, u) < +∞, we can associate with any ε > 0 an evolution

(xε(·), uε(·)) ∈ P(x, u) such that

∀t ≥ 0, ‖u′ε(t)‖ ≤ α(x, u) + ε =: yε

Therefore, setting vε1(t) := u′ε(t) and yε(t) = yε, we observe that
t �→ (xε(t), uε(t), yε) is a solution to the auxiliary system (6.3) viable in
Graph(U)×R+, and thus, that (x, u, yε) belongs to Viab(6.3)(Graph(U)×R+).
Hence

inf
(x,u,y)∈Viab(6.3)(Graph(U)×R+)

y ≤ yε := α(x, u) + ε

and it is enough to let ε converge to 0. ��

The metasystem (6.3) is Marchaud (see Definition 10.3.2, p. 384) whenever
the single-valued map f is continuous, Lipschitz (see Definition 10.3.5, p. 385)
whenever the single-valued map f is Lipschitz and the “metaenvironment”
is closed whenever the graph of U is closed and convex if f is affine and is
the graph of U is convex. Hence it inherits of the properties of Marchaud,
Lipschitz and convex systems respectively.

Illustration: Newtonian Inertia Function. We begin with a one
dimensional example, the simplest one. We have to model a complex system
where the dynamics is unknown to us. Hence, we describe our ignorance by
an “open” right hand side

∀ t ≥ 0, x′(t) = u(t) where u(t) ∈ R (6.4)

It is tempting to try guessing right hand sides, by selecting feedbacks x �→
ũ(x), solving

x′(t) := ũ(x(t))

and checking what are the properties of the evolutions governed by this
specific differential equation, for instance, whether they are viable in a given
subset K, for instance.

Just for illustrating this point of view, consider simple example of affine
feedbacks defined by

ũ(x) := r(b− x)

The solution starting from x ∈ [0, b] is equal to

x(t) = e−rtx+ b
(
1− e−rt

)
= b− (b − x)e−rt

It remains confined in the interval [x, b], converges to the equilibrium b when
t �→ +∞, whereas its derivative decreases to 0 when t→ +∞.
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Although numerous other illustrations (a term better adapted than
“models” for economic or biological systems) have been proposed because,
contrary to the physical and engineering sciences, we really do not know
these feedbacks, and, in particular, feedbacks producing “heavy evolutions”,
or feedbacks governing “cyclic evolutions”.

The question remains to know whether this is the only feedback satisfying
these properties, and whether one can find the class of all possible feedbacks
and choose the one which satisfies further properties. Furthermore, if the
open-loop control system and the constraints are complicated (in higher
dimensions), guessing feedbacks for governing evolutions satisfying such and
such property.

Instead, we can begin with the only knowledge we may have at our
disposal, for instance,

⎧⎨
⎩

(i) viability constraints: x(t) ∈ K := [a, b], 0 < a < b < +∞

(ii) inertia threshholds c ∈ R+: ‖x′′(t)‖ ≤ c
(6.5)

The above dynamical inequality can be written in the form of the regulated
“metasystem” ⎧⎨

⎩
(i) x′(t) = u(t)
(ii) u′(t) = v(t)

where ‖v(t)‖ ≤ c
(6.6)

(where the controls are the accelerations), the equilibria of which are of the
form (x, 0) where x ∈ [a, b].

These simple constraints are enough to deduce many information over the
evolutions governed by the regulated system (6.4), p. 212.

Viability and inertia constraints (6.5), p. 213 are sufficient to deduce
information over the evolutions governed by the regulated system (6.4), p. 212
by studying the Newtonian inertia function defined by

α(x, u) := inf
(x(·),u(·))∈P(x,u)

sup
t≥0

‖u′(t)‖ = inf
(x(·),u(·))∈P(x,u)

sup
t≥0

‖x′′(t)‖

where P(x, u) denote the set of state-control solutions (x(·), u(·)) to differ-
ential equation (6.4) viable in the interval [a, b] such that x(0) = x and
u(0) = x′(0) = u.

In Newtonian mechanics, the evolution of the second derivative x′′(t),
i.e., the acceleration, is inversely proportional to the mass: the smaller the
evolution of acceleration, the larger the evolution inertia.

Let us introduce (6.7) the auxiliary system
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⎧⎪⎪⎨
⎪⎪⎩

(i) x′(t) = u(t)
(ii) u′(t) = v(t)
(iii) y′(t) = 0

where ‖v(t)‖ ≤ y(t)

(6.7)

Theorem 6.4.7, p. 211 states that the inertia function is characterized by
formula

α(x, u) = inf
(x,u,y)∈Viab(6.7)(K×R×R+)

y

Therefore, the inertia function inherits all the properties of viability kernel
and can be computed thanks to the viability kernel algorithm. In this simple
example, we can even provide explicit formulas. One can check for instance
the analytical formula of the inertia function:
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Fig. 6.2 Newtonian Inertia Function.

Left: The Viability Kernel Algorithm computes the graph of the inertia
function. Right: A lower lever set (or section) of the inertia function: Its
boundary is the critical zone, over which the state evolves with constant
acceleration. The trajectory of a heavy evolution minimizing the velocity of
the controls and which stops at equilibrium b is shown.

Lemma 6.4.8 [Newtonian Inertia Function] The Newtonian inertia
function α defined on ]a, b[×R is equal to:

α(x, u) :=
u2

2(b− x)
if u ≥ 0 and

u2

2(x− a)
if u ≤ 0 (6.8)

Its domain is ({a} × R+) ∪ (]a, b[×R) ∪ ({b} × R−). Hence, from
each state-control pair (x, u) ∈ Dom(α) starts at least one evolution with
acceleration bounded by α(x, u).
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This allows us to check the precision of the solution provided by
the viability kernel algorithm and the analytical formulas, which are not
distinguishable at the pixel level.

Remark. We can also check that the inertia function is a solution to the
Hamilton–Jacobi partial differential equation

⎧⎪⎨
⎪⎩
∂α(x, u)
∂x

u− α(x, u)
∂α(x, u)
∂u

if u ≥ 0
∂α(x, u)
∂x

u+ α(x, u)
∂α(x, u)
∂u

if u ≤ 0

Indeed, the partial derivatives of this inertia function is equal to

∂α(x, u)
∂x

:=

⎧⎪⎪⎨
⎪⎪⎩

u3

2 (b− x)2
if u ≥ 0

− u3

2 (x− a)2
if u ≤ 0

&
∂α(x, u)
∂u

:=

⎧⎪⎨
⎪⎩

u

(b− x)
if u ≥ 0

u

(a− x)
if u ≤ 0

Observe that ∂α(x,u)
∂u is positive when u > 0 and negative when u < 0. ��

Remark: Finite Horizon Inertia functions. One can be interested by
finite horizon inertia function

α(T, x, u) := inf
(x(·),u(·))∈P(x,u)

sup
t∈[0,T ]

‖u′(t)‖ ∈ [0,+∞]

Their study being very similar, we skip it in this book. Let us mention
however that introducing the auxiliary system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) u′(t) = v(t)
(iv) y′(t) = 0

where ‖v(t)‖;≤ y(t)

(6.9)

the auxiliary environment K := R+ × Graph(U) × R+ and the target C :=
{0} × Graph(U) × R+, then the finite horizon inertia function is related to
the capture basin of target C viable in the environment K under auxiliary
metasystem (6.9) by formula

α(T, x, u) = inf
(T,x,u,y)∈Capt(6.9)(R+×Graph(U)×R+,{0}×Graph(U)×R+)

y

They inherit the properties of capture basins. ��
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6.4.3 Inert Regulation and Critical Maps

We associate with the inertia function the useful concepts of inert retroaction
map and critical map:

Definition 6.4.9 [Inert Regulation and Critical Maps] We associate
with the inertia function α the following set valued maps:

1. inert regulation map Rc : x� Rc(x) := {u ∈ R such that α(x, u) ≤ c}
2. critical map Ξc : u� Ξc(u) := {x ∈ [a, b] such that α(x, u) = c}

When c > 0, the subset Ξc(u) is called the critical zone of the control u
bounded by inertia threshold c > 0. When c = 0, the subset Ξ0(u) is called
the viability niche of the control u. A regulon is a punctuated equilibrium
(or, actually, punctuated regulon) if its viability niche Ξ0(u) is not empty.

Therefore, starting from (x, u) ∈ Dom(α), then there exists an evolution
x(·) regulated by a control u(·) satisfying

∀ t ≥ 0, u(t) ∈ Rα(x,u)(x(t))

23 [Mathematical Implementation of Punctuated Equilibria] The
concepts of punctuated regulon and their viability niches offer a mathemati-
cal translation of the Eldredge and Gould concept of punctuated equilibrium.
If a regulon u is a punctuated equilibrium, its viability niche Ξ0(u) is the
viability kernel of U−1(u) under the system x′(t) = f(x(t), u) regulated
by the constant punctuated regulon U . Starting from x ∈ Ξ0(u), there
exists an evolution regulated by this punctuated regulon remaining in its
viability niche forever. In other words, the viability niche of a punctuated
equilibrium can be regarded as a kind of “punctuated equilibrium”: It is
no longer reduced to a point, but is a subset viable under the system
governed by the punctuated equilibrium. If u is the regulon associated to
an equilibrium x ∈ U−1(u), solution to equation f(x, u) = 0, then u is
naturally a punctuated equilibrium and x ∈ Ξ0(u).

Illustration (continuation). We compute now the inert regulation map
Rc and the critical map Ξc (see Definition 6.4.9, p. 216):

Lemma 6.4.10 [Inert Regulation and Critical Maps] We set
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r�(x) :=
√

2(b− x), r�(x) :=
√

2 (x− a) and R(x) :=
[
−r�(x),+r�(x)

]
(6.10)

The regulation map is equal to

Rc(x) :=
√
c
[
−r�(x),+r�(x)

]
=
√
c R(x)

The critical map Ξc (c > 0) is defined by

Ξc(u) = b − u2

2c
if u > 0 and Ξc(u) = a+

u2

2c
if u < 0

The viability niche Ξ0(u) of the regulon u is empty when u �= 0 and
equal to Ξ0(0) = [a, b] when u = 0, which is the set of equilibria.

The graph of the regulation map Rc associated to the inertia function is
limited by the two graphs of −

√
c r� below and

√
c r� above. The derivatives

of these two maps r� and r� are given by

dr�(x)
dx

=
−1√

2 (b− x)
and

dr�(x)
dx

=
1√

2(x− a)

The map r� is decreasing and the map r� is increasing. ��

Remark: Infinite Inertia Thresholds. When c := +∞, Theo-
rem 10.8.3, p. 424 provides a sufficient condition for persistent evolutions
associated with a constant control to remain viable until its exit time when
it reaches its exit set (playing the role of the critical set for c := +∞)
and switches for another constant control (see Sects. 10.8, p. 422 and 10.8,
p. 422). ��

6.4.4 Heavy Evolutions

How can we implement the inertia principle?
There are numerous methods for regulating evolutions satisfying the

inertia principle. We introduce the simplest way to achieve this objective,
by selecting at each instant the regulons providing viable evolutions with
minimal velocity. They obeys this inertia principle because, whenever the
control can be constant on some time interval, its velocity is equal to 0, and
the evolutions governed by controls with minimal velocity necessarily catches
velocities equal to 0. Evolutions obtained in this way are called “heavy”
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viable evolutions in the sense of heavy trends in economics or in Newtonian
mechanics.

We assume here for simplicity that the solutions to the differential
equations x′(t) = f(x(t), u) with constant regulons are unique. This is the
case when the maps x �→ f(x, u) are Lipschitz or monotone.

For defining heavy solutions, we still fix a bound c on the norms of the
velocities of the regulons and take any initial state-control pair (x, u) such that
α(x, u) < c. We then fix the regulon u and consider the evolution (xu(t), u)
under constant control where xu(·) is the solution to differential equation
x′(t) = f(x(t), u) (evolving with velocity u′(t) = 0).

As long as α(xu(t), u) is smaller than the velocity bound c, the regulon
u inherited from the past can be maintained, allowing the system to be
regulated by this constant control u. Since the state xu(·) of the system
evolves while the regulon remains constant and equal to u, the inertia function
α(xu(t), u) evaluated on such an evolution may increase and eventually
overrun the bound c measuring the maximal velocity of the regulons at
some time σc(x, u) at the state xu(σc(x, u)) ∈ Ξc(u) providing warning time
defined as follows:

Definition 6.4.11 [Warning Times] Assume that c > α(x, u). Then the
warning time σc(x, u) ∈ R ∪ {+∞} is the first instant when the evolution
xu(·) starting from x when xu(σc(x, u)) ∈ Ξc(u) reaches the critical zone

Ξc(u) := {x ∈ Dom(U) such that α(x, u) = c}

of the regulon u.

This warning time is nothing other than the minimal time function to reach
the critical zone Ξc(u) being viable in Rc(u). Therefore, it can be computed
by the Viability Kernel Algorithm.

Warning times and critical zones tell us when (σc(x, u)), where (Ξc(u))
and how (minimizing the velocity at each instant) the regulons must evolve,
defining a viability critical period: To survive, other regulons must emerge
when the state reaches the critical zone of the regulon, in such a way that
the new velocities of the regulons are bounded by the inertia threshold c until
the regulon can again remain constant for a new period of time.

24 [Warning Time or “Kairos”] The concept of warning time is a
mathematical translation of the anglo-saxon concept of timing, or the Italian
concept of tempismo, modernizing the concept of kairos of classical Greece,
meaning propitious or opportune moment. The ancient Greeks used this
qualitative concept of time by opposition to chronos, the quantitative...
chronological time, which can be measured by clocks.
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Lysippos sculptured a wonderful concrete representation of this very
abstract concept, which was depicted by Posidippos who gave his definition
of the kairos of Lysippos ’s bas-relief (in the museum of Torino):

25 [Epigram of Posidippos]

Who and whence was the sculptor?
From Sikyon. And his name? Lysip-
pos. And who are you? Time who
subdues all things. Why do you stand
on tip-toe? I am ever running. And
why you have a pair of wings on your
feet? I fly with the wind. And why do
you hold a razor in your right hand?
As a sign to men that I am sharper
than any sharp edge. And why does
your hair hang over your face? For
him who meets me to take me by the
forelock. And why, in Heaven’s name,

is the back of your head bald? Because none whom I have once raced by
on my winged feet will now, though he wishes it sore, take hold of me
from behind. Why did the artist fashion you? For your sake, stranger,
and he set me up in the porch as a lesson.

The razor is reminiscent of Ockham’s razor:

26 [Ockham’s Razor]

Ockham’s Razor is the principle proposed by William of
Ockham [1285–1347]: “Pluralitas non est ponenda sine
neccesitate”, which translates as “entities should not be
multiplied unnecessarily”. This “law of parsimony” states
that an explanation of any phenomenon should make as few

assumptions as possible, and to choose among competing theories the one
that postulates the fewest concepts.

The concept of inertia principle and heavy evolution is also closely
connected with the concept of emergence in physics (phase transition) and
in biological and social sciences.
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The concepts of viability niche and heavy evolution are closely related
through a concept of “locking-it” introduced in economics of innovation:

Proposition 6.4.12 [Locking-in Viability Niches] If at some time tf ,
u(tf ) is a punctuated regulon, then the heavy viable solution enters its
viability niche and may remain in this viability niche forever whereas the
regulon remains equal to this punctuated regulon. In other words, any heavy
evolution arriving at the viability niche of a regulon is “locked-in” this
viability niche.

This property explains the survival of species in ecological niches or the
socio-economic of selection of commodities, which, far from optimal, become
viable once they have been adopted by a sufficient number of organisms.

Remark: The associated Hamilton–Jacobi–Bellman Equation.
We supply the finite dimensional vector space X with a norm x �→ ‖x‖

with which we associate its dual norm ‖p‖� := sup
‖x‖≤1

〈p, x〉. When X := R
n,

the dual norm to the norm ‖x‖∞ := maxi=1,...,n |xi| is the norm ‖p‖1 :=
n∑
i=1

|pi| and the dual norm to the norm ‖x‖α :=

(
n∑
i=1

|xi|α
) 1

α

is the norm

‖x‖β :=

(
n∑
i=1

|xi|β
) 1

β

with
1
α

+
1
β

= 1.

One can prove that the inertia function α is the smallest positive lower
semicontinuous solution to the Hamilton–Jacobi–Bellman partial differential
equation: ∀(x, u) ∈ Graph(U),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
∂v(x, u)
∂x

, f(x, u)
〉
− v(x, u)

∥∥∥∥∂v(x, u)
∂u

∥∥∥∥
�

=
n∑
i=1

∂v(x, u)
∂xi

fi(x, u)− v(x, u)
∥∥∥∥∂v(x, u)

∂u

∥∥∥∥
�

= 0

on the graph of U . Naturally, this statement needs to define rigourously in
which sense derivatives are understood in order to give a meaning for solutions
which are only lower semicontinuous, and which are not even continuous, even
less differentiable. ��

Illustration (continuation). We can check that the inertia function is
the (smallest positive lower semicontinuous) solution to the Hamilton–Jacobi
partial differential equation

∂α(x, u)
∂x

u− α(x, u)
∣∣∣∣∂α(x, u)

∂u

∣∣∣∣ = 0
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on ]a, b[×R. It thus splits in two parts:
⎧⎪⎨
⎪⎩
∂α(x, u)
∂x

u− α(x, u)
∂α(x, u)
∂u

= 0 if u ≥ 0
∂α(x, u)
∂x

u+ α(x, u)
∂α(x, u)
∂u

= 0 if u ≤ 0

Indeed, the partial derivatives of this inertia function are equal to

∂α(x, u)
∂x

:=

⎧⎪⎪⎨
⎪⎪⎩

u2

2 (b− x)2
if u ≥ 0

− u2

2 (x− a)2
if u ≤ 0

&
∂α(x, u)
∂u

:=

⎧⎪⎨
⎪⎩

u

(b− x)
if u ≥ 0

u

(a− x)
if u ≤ 0

Observe that ∂α(x,u)
∂u is positive when u > 0 and negative when u < 0. ��

6.4.5 The Adjustment Map and Heavy Evolutions

Hamilton–Jacobi–Bellman equations are useful only in the extent where
they help us to possibly give analytical formulas of the regulation (see
Definition 2.15.6, p. 102) which we shall compute informally:

Definition 6.4.13 [Adjustment Map] Denote by U the control space.
The adjustment map G : Ep(α) � U is the regulation map of metasystem
(6.3): It associates with any (x, u, c) ∈ Graph(U)×R+ the subset G(x, u, c)
of metacontrols v such that

G(x, u, c) :=
{
‖v‖ ≤ α(x, u) and (f(x, u), v, 0) ∈ T ��Ep(α)(x, u, c)

}

where T ��K (x) denotes the convexified tangent cone (see Definition 18.4.8,
p. 732).

We derive from Theorem 4.11.5, p. 170 the existence of the regulation map
associated with metasystem, which we call an adjustment map:

Proposition 6.4.14 [Characterization of the Adjustment Map] Let
us assume that the inertia function α is continuous on its domain. We refer
to Definition 18.5.5, p. 740 of the definition of the (convexified) derivative
D��
↑ α(x, u) of the inertia function and set
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{
(i) Γ (x, u) :=

{
v ∈ α(x, u)B such that D��

↑ α(x, u)(f(x, u), v) ≤ 0
}

(ii) γ(x, u) := infv∈Γ (x,u) ‖v‖

Then the adjustment map can be written in the following form

G(x, u, c) =
{
α(x, u)B, if α(x, u) < c
Γ (x, u) if α(x, u) = c

Therefore, all evolutions of metasystem (6.3) starting from (x, u, c) viable
in Graph(U)× R+ are regulated by the system of differential inclusions

{
(i) x′(t) = f(x(t), u(t))
(ii) u′(t) ∈ G(x(t), u(t)) (6.11)

We deduce the method for building the adjustment law governing the
evolution of heavy evolutions:

Theorem 6.4.15 [Regulating Heavy Evolutions] Assume that the iner-
tia function α is continuous on its domain and that the function γ is upper
semicontinuous. Then from any (x, u, c) ∈ Ep(α):

1. starts at least one evolution governed by the system of differential
inclusions (6.11), p. 222 viable in the epigraph of the inertia function,

2. all evolutions viable in the epigraph of the inertia function are governed
by the system of differential inclusions (6.11)

Heavy evolution are regulated by the system
{

(i) x′(t) = f(x(t), u(t))
(ii) u′(t) ∈ g0(x(t), u(t), y(t)) (6.12)

where the heavy adjustment map g0 is defined by

g0(x, u, y) =
{
{0} if α(x, u) < y
γ(x, u)S if α(x, u) = y

where S := {u such that ‖u‖ = 1} denotes the unit sphere.

Proof. Observe that the heavy adjustment map g0(x, u, y) is upper semicon-
tinuous, so that the auxiliary system

{
(i) x′(t) = f(x(t), u(t))
(ii) u′(t) ∈ g0(x(t), u(t), y(t))
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is Marchaud. By construction, the epigraph of the inertia function is viable
under this auxiliary system, so that, from any initial (x, u, c) starts an
evolution viable in Ep(α) satisfying

‖u′(t)‖ ≤ ‖g0(x(t), u(t), c)‖

Being viable in Ep(α), it satisfies

u′(t) ∈ G(x(t), u(t), c)

This implies that for almost all t ≥ 0,

u′(t) = g0(x(t), u(t), c)

This concludes the proof. ��

We now complete the description of the behavior of heavy evolutions for
an inertia threshold c.

Assume that α(x, u) < c. Since α is assumed to be continuous, we deduce
that whenever α(x(t), u(t)) < c, the velocity u′(t) = 0 so that the control
remains constant. Hence x(·) is regulated by a constant control as long as
α(x(t), u) < c. Let t� be the first instant (kairos) when α(x(t�), u) = c, i.e.,
when x(t�) ∈ Ξc(u) belongs to the critical zone Ξc(u) of the regulon u for
the inertia threshold c. Then we know that u′(t�) = γ(x(t�), u(t�)), so that
‖u′(t�)‖ = c.

If the map f is Lipschitz, then the Quincampoix Barrier Theorem (see
Theorem 10.5.18, p. 409) implies that α(x(t), u(t)) = α(x(t�), u(t�)) = c
as long as (x(t), u(t)) ∈ Int(Graph(U)), since the boundary of the epigraph
of α, which is equal to the graph of α at each state-control pair where it
is continuous, exhibits the barrier property: The evolution remains in the
boundary as long as (x(t), u(t), c) belongs to the interior of Graph(U)×R+.
It may change only when the state control pair (x(t), u(t)) hits the boundary
of Graph(U).

If c = 0, then the viability niche Ξ(0, u) is viable under differential
condition x′(t) = f(x(t), u) with constant control.

Illustration (continuation). We have seen that evolutions with constant
velocities are not viable in the interval K := [a, b] whereas inert evolutions
with strictly positive constant acceleration c > 0 are viable.

What happens when we start with controls with inertia α(x, u) < c
strictly smaller than an imposed inertia threshold c? We can choose the
heavy evolution which is governed by the control constant equal to u until it
reaches the critical zone Ξc(u) and, next, the inert evolution until it reaches
the equilibrium b or a with a regulon equal to 0.

Lemma 6.4.10, p. 216 implies that solutions x± |u|t regulated by constant
controls ±|u| reach the critical zone at warning time equal to
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σc(x, u) :=
(b − x)
|u| − |u|

2c
if u > 0 and σc(x, u) :=

(x− a)
|u| − |u|

2c
if u < 0

(6.13)

because x+ uσc(x, u) = Ξc(u) = b − u2

2c
. We recall that τc(Ξc(±|u|),±u) =

|u|
c

.
The inertia function α increases over the evolutions under constant regulon

u according

∀t ∈
[
0,

(b− x)
u

]
, α(xc(t), u) =

u2

2 ((b− x)− ut)

The derivative of the inertia function over the inert evolutions is equal to

dα(xc(t), u)
dt

=
u2

2 ((b− x)− ut)2

Hence, once a bound c is fixed, the heavy solution evolves with constant
regulon u until the last instant σc(x, u) when the state reaches Ξc(u) and the
velocity of the regulon αc(Ξc(u), u) = c:

∀ t ∈
[
0,

(b− x)
u

− |u|
2c

]{
uc(t) = u
xc(t) = x+ tu

until the warning time or kairos (see Definition 24, p. 218)

σc(x, u) :=
(b − x)
|u| − |u|

2c

This is the last moment when we have to change the regulon. After this
warning time, the evolution starting at (Ξc(u), u) follows the graph of

√
c r�

and is thus equal to
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∀ t ∈
[
(b− x)
u

,
(b − x)
u

+
|u|
c

]
,

uc(t) := u− c(t− σc(x, u)) = u− c

(
t− (b− x)

u
+
|u|
2c

)

xc(t) := b − u2

2c
+ u

(
t− (b− x)

u
+
|u|
2c

)
−
c
(
t− (b−x)

u + |u|
2c

)2

2

until it reaches equilibrium (b, 0) at time

t� := σc(x, u) +
u

c
=

(b − x)
u

+
|u|
2c

and thus, remains at equilibrium (b, 0) forever, because the heavy evolution
chooses the evolution with minimal norm.
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Fig. 6.3 Graph of the Heavy Evolution.

Both the graphs of the heavy evolution (in blue) and of its control (in red) are
plotted. They are not computed from the analytical formulas given below,
but extracted from the Viability Kernel Algorithm. The control remains
constant until the trajectory of the (affine) solution hits the boundary of the
viability kernel and then slows down when it is controlled with a decreasing
linear time dependent controls with velocity equal to −c. It reaches in finite
time the boundary of the constrained interval with a velocity equal to 0 and
may remain at this equilibrium.

The warning signal σc(x, u) tells us:

1. when the system must start moving its regulon in order to remain viable
with an inertia threshold.

2. where, at the critical zone Ξc(u), on which both the controls u(t) := u −
c(t − τc(x, u)) and the state ranges over the critical zone x(t) ∈ Ξc(u −
c(t− τc(x, u))) until they reach b.

Heavy evolutions are regulated by the following maps:

r�c(x) :=
{

min(+u,+
√
c r�(x)) if u > 0

max(−|u|,−
√
cr�(x)) if u < 0

Remark. This study of one dimensional systems can be extended to
the case of n decentralized controlled systems x′i(t) = ui(t) confronted to
decentralized viability constraints

∀ t ≥ 0, x(t) ∈ K :=
n∏
i=1

[ai, bi]

and to collective inertia constraint
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∀ t ≥ 0, ‖x′(t)‖ := max
i=1,...,n

|x′i(t)| ≤ c

The multidimensional Newtonian inertia function α defined on
n∏
i=1

([ai, bi]×R)

is equal to:

∀ (x, u) ∈
n∏
i=1

([ai, bi]× R), α(x, u) = sup
i=1,...,n

α(xi, ui) (6.14)

where, by (6.8), p. 214,

α(xi, ui) :=
u2
i

2(bi − xi)
if ui ≥ 0 and

u2
i

2(xi − ai)
if ui ≤ 0

Hence, from each state-control pair (x, u) ∈ Dom(α) starts at least one
evolution (x(·), u(·)) ∈ P(x, u) with bounded acceleration, actually, bounded
by α(x, u). ��

6.4.6 High-Order Metasystems

We continue our investigation of the regulation by twice-differentiable open-
loop controls, and, among them, affine controls of the form u(t) := u + u1t
(called ramp controls), where we replaced the former notation v(t) := u′(t)
by u1(t) := v(t) := u′(t).

For that purpose, we denote by P2(x, u, u1) the set of solutions (x(·), u(·))
to the control system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

satisfying the initial conditions

x(0) = x, u(0) = u, u′(0) = u1

Definition 6.4.16 [Second-Order Inertia Function] The second-
order inertia function α of parameterized system (6.1), p. 200 associates
the minimal worst intertemporal inertia α2(x, u, u1) defined by

α2(x, u, u1) := inf
(x(·),u(·))∈P2(x,u,u1)

sup
t≥0

‖u′′(t)‖ ∈ [0,+∞]

In the case of differential inclusions x′(t) ∈ F (x(t)) where the controls are
the velocities of the state the second-order inertia function becomes the jerk
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function

α2(x, v, γ) := inf
(x(·),u(·))∈P2(x,v,γ)

sup
t≥0

‖u(2)(t)‖ ∈ [0,+∞]

We observe that

α2(x, u, u1) = 0 if and only if ∀t ≥ 0, α1(x(t), u + u1t) = ‖u1‖.

Generally, we associate with any integer m ≥ 0 the set Pm(x, u, . . . , um−1)
of solutions (x(·), u(·)) to the control system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

satisfying the initial conditions

x(0) = x, u(0) = u, u′(0) = u1, . . . , u
m−1(0) = um−1

Definition 6.4.17 [High-Order Inertia Function] The m-order inertia
function α1 of parameterized system(6.1), p. 200 associates the minimal
worst intertemporal inertia αm(x, u, . . . , um−1) of the evolutions starting
from (x, u, u1, . . . , um−1) ∈ Graph(U)× Um−1 defined by

αm(x, u, . . . , um−1) := inf
(x(·),u(·))∈Pm(x,u,...,um−1)

sup
t≥0

‖u(m)(t)‖ ∈ [0,+∞]

We observe that α(x, u, u1, . . . , um−1) = 0 if and only if

∀t ≥ 0, αm−1

⎛
⎝x(t),

m−1∑
j=0

uj
tj

j!
, . . . , um−2 + um−1t

⎞
⎠ = ‖um−1‖.

For characterizing high-order inertia functions in terms of viability kernels,
we introduce the following auxiliary system, called the m-metasystem:

Definition 6.4.18 [m-Metasystem] The “metavariables” of the m-
metasystem associated with parameterized system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
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are made of sequences (x, u, u1, . . . , um−1, y) ranging over the “metaenvi-
ronment” Graph(U) × U (m−1) × R+, regulated by “metaregulons” um ∈ U
and governed by “metasystem”

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) x′(t) = f(x(t), u(t))
(ii) u′(t) = u1(t)
· · · · · ·

(m+ 1) u′m−1(t) = um(t)
(m+ 2) y′(t) = 0

where ‖um(t)‖ ≤ y(t)

(6.15)

We begin by providing the viability characterization of m-order inertia
functions:

Theorem 6.4.19 [Viability Characterization of High-Order Iner-
tia Functions] For any m ≥ 1, the m-order inertia function is related to
the viability kernel of Graph(U) × U (m−1) × R+ under metasystem (6.15)
by formula

αm(x, u, . . . , um−1) = inf
(x,u,...,um−1,y)∈Viab(6.15)(Graph(U)×U(m−1)×R+)

y

Proof. Indeed, to say that (x, u, . . . , um−1, y) belongs to Viab(6.15)(Graph(U)
×U (m−1) × R+) amounts to saying that there exists an evolution t �→
(x(t), u(t), u1(t), . . . , um(t), y(t)) governed by control system (6.15), p. 228
such that y(t) = y and uj(t) = u(j)(t). In other words, the solution
(x(·), u(·)) ∈ Pm(x, u, . . . , um−1) satisfies

∀t ≥ 0, ‖u(m)(t)‖ ≤ y

so that αm(x, u, . . . , um−1) ≤ supt≥0 ‖u(m)(t)‖ ≤ y.
Conversely, if αm(x, u, . . . , um−1) < +∞, we can associate with any ε > 0

an evolution (xε(·), uε(·)) ∈ Pm(x, u, . . . , um−1) such that

∀t ≥ 0, ‖umε (t)‖ ≤ α(x, u, . . . , um−1) + ε =: yε

Therefore, setting uεj (t) := ujε(t) and yε(t) = yε, we observe that t �→
(xε(t), uε(t), uε1(t), uεm−1(t), yε)(t) is a solution to the auxiliary system (6.15)
viable in Graph(U)×U (m−1)×R+, and thus, that (x, u, . . . , um−1, yε) belongs
to Viab(6.15)(Graph(U)× U (m−1) × R+). Therefore



6.4 Inertia Functions, Metasystems and Viability Niches 229

inf
(x,u,...,um−1,y)∈Viab(6.15)(Graph(U)×U(m−1)×R+)

y ≤ yε := α(x, u, . . . , um−1)+ε

and it is enough to let ε converge to 0. ��
The metasystem (6.15) is Marchaud whenever the single-valued map f is

continuous, Lipschitz whenever the single-valued map f is Lipschitz and the
“metaenvironment” is closed whenever the graph of U is closed. Hence it
inherits of the properties of Marchaud and Lipschitz systems.

Theorem 6.4.20 [Existence of Evolutions with Minimal Inertia] If
f is continuous and the graph of U is closed, the epigraph of the mth-order
inertia function αm is closed. Furthermore, from any (x, u, . . . , um−1) ∈
Dom(αm) starts at least one evolution (x(·), u(·)) ∈ Pm(x, u, . . . , um−1)
such that

αm(x, u, . . . , um−1) := sup
t≥0

‖u(m)(t)‖

Proof. Since the auxiliary system (6.15) is Marchaud whenever m ≥ 1 and f
continuous and since the auxiliary environment Graph(U) × U (m−1) × R+

is closed by assumption, then the viability kernel Viab(6.15)(Graph(U) ×
U (m−1) × R+) is also closed and the upper semi-compactness of the asso-
ciated evolutionary system implies that a subsequence (again denoted by)
of (xε(·), uε0(·), ·, uεm−1(·), αm(x, u, . . . , um−1) + ε) converges to a solution
(x(·), u(·), . . . , um−1(·), α(x, u, . . . , um−1)) satisfying

∀t ≥ 0, ‖um(t)‖ ≤ α(x, u, . . . , um−1)

Therefore, the infimum of the m-order inertia function is achieved. ��

Remark: Hamilton–Jacobi–Bellman Equations. One can prove that
the inertia function αm is the smallest positive solution to the Hamilton–
Jacobi–Bellman partial differential equation: ∀(x, u) ∈ Graph(U),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
∂v(x, u)
∂x

, f(x, u)
〉
− v(x, u)

∥∥∥∥∂v(x, u)
∂u

∥∥∥∥
n∑
i=1

∂v(x, u)
∂xi

fi(x, u)− v(x, u)
∥∥∥∥∂v(x, u)

∂u

∥∥∥∥ = 0

for m = 1 and, for m ≥ 2,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
∂v(x, u, u1, . . . , um−1)

∂x
, f(x, u)

〉
+
m−2∑
j=0

〈
∂v(x, u, u1, . . . , um−1)

∂uj
, uj+1

〉

−v(x, u, u1, . . . , um−1)
∥∥∥∥∂v(x, u, u1, . . . , um−1)

∂um−1

∥∥∥∥ = 0

��
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We can regard the domain and the sections of the inertia functions as
graphs of regulation maps expressing the evolution of the derivative u(m−1)(t)
of the regulon in terms of the state, the regulon and the derivatives of lower
order:

Definition 6.4.21 [Inert Regulation Maps and Viability Niches]
We associate with the mth-order inertia function αm of system (6.1), p. 200
the inert regulation map Rm∞ : Graph(U)× U (m−2) � U defined by

Graph(Rm∞) := {(x, u, . . . , um−1) such that αm(x, u, . . . , um−1) < +∞}

and the inert regulation map Rmc : Graph(U) × U (m−2) � U with finite
threshold c ≥ 0 defined by

Graph(Rmc ) := {(x, u, . . . , um−1) such that αm(x, u, . . . , um−1) ≤ c}

We deduce the following regulation property of smooth evolutions.

Theorem 6.4.22 [Regulation of Smooth Evolutions of Parameter-
ized systems] Let us assume that f is continuous and that the graph
of U is closed. Then for any initial state (x, u, . . . , um−1) such that
αm(x, u, . . . , um−1) < +∞, there exists a smooth evolution to system (6.1),
p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

satisfying initial conditions x(0) = x, u(0) = u, . . . , u(m−1) = um−1 and
regulated by

{
u(m−1)(t)
∈ Rmαm(x,u,...,um−1)(x(t), u(t), . . . , u(m−2)(t))

Proof. Since αm(x, u, . . . , um−1) < +∞, we deduce that the inertia function
αm(x, u, . . . , um−1, αm(x, u, . . . , um−1)) is increasing

{
∀t ≥ 0, α(x(t), u(t), . . . , um−1(t)) = sups≥t ‖um(s)‖
≤ supt≥0 ‖um(t)‖ = α(x, u, . . . , um−1)

This means that

u(m−1)(t) ∈ Rmαm(x,u,...,um−1)(x(t), u(t), . . . , u(m−2)(t)) ��
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The specific case when the threshold c is equal to 0 is worth of attention.

Definition 6.4.23 [High-Order Viability Niches] We regard the graph

Graph(Rm0 ) := {(x, u, . . . , um−1) such that αm(x, u, . . . , um−1) = 0}

as the m-order inertia set and the set Nm(u, u1, . . . , um−1) of elements x ∈
Dom(U) such that αm(x, u, u1, . . . , um−1) = 0 as the m-order viability niche
of (u, u1, . . . , um−1).

The m-order viability niches lock-in heavy evolutions:

Proposition 6.4.24 [Locking-in Viability Niches] From any x belong-
ing to a m-order viability niche Nm(u, u1, . . . , um−1) starts at least an
evolution

x(t) ∈ Nm
(
u+ u1t+ · · ·+ um−1

tm−1

(m− 1)!

)

governed by the open-loop control u(t) = u+ u1t+ · · ·+ um−1
tm−1

(m−1)! which
is a (m− 1)-degree polynomial in time.

If at some time tf , x(tf ) belongs to the m-order viability niche
Nm(u(tf ), u′(tf ), . . . , u(m−1)(tf )), then for t ≥ tf , the evolution x(·) ∈ S(x)
may be regulated by the open-loop polynomial u(t) = u(tf )+u′(tf )(t− tf )+

· · ·+ u(m−1)(tf )
(t−tf )m−1

(m−1)! and satisfy

x(t) ∈ Nm
(
u+ u1(t− tf ) + · · ·+ um−1

(t− tf )m−1

(m− 1)!

)

for t ≥ tf .

6.4.7 The Transition Cost Function

The inertia function defined in Definition 6.4.5 offers the simplest example
of cost incurred by changing regulons. The general form of costs incurred by
changing regulons is given by:

Definition 6.4.25 [The Transition Function] Consider a positive
extended cost function c : X×U �→ R+, a cumulated transition cost function
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of the regulons l : X ×U × U � R+ ∪ {+∞} and a discount factor m(x, u)
(which may depend upon both of the states and the controls).The transition
function α(c,l) is defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α(c,l)(x, u) := inf
(x(·),u(·))∈P(x,u)

sup
t≥0(

e−
∫ t
0 m(x(s),u(s))dsc(x(t), u(t))

+
∫ t

0

e−
∫ τ
0 m(x(s),u(s))dsl(x(τ), u(τ), u′(τ))dτ

) (6.16)

Starting from an initial stat x, it will be advantageous to look for an initial
regulon u ∈ U(x) that minimizes the worst transition cost of regulons.

For characterizing the transition cost function in terms of viability kernels,
we introduce the set-valued map

Vc : (x, u; y)� {v ∈ U | c(x, u) ≤ y}

and the following auxiliary metasystem of differential inclusions
⎧⎪⎪⎨
⎪⎪⎩

(i) x′(t) = f(x(t), u(t))
(ii) u′(t) = v(t)
(iii) y′(t) = m(x(t), u(t))y(t) − l(x(t), u(t), v(t))

where v(t) ∈ Vc(x(t), u(t); y(t))

(6.17)

subject to the constraint

∀t ≥ 0, (x(t), u(t), y(t)) ∈ Graph(U)× R+

Theorem 6.4.26 [Viability Characterization of the Transition
Cost Function] The transition cost function is related to the viability
kernel of the graph of U under the auxiliary metasystem (6.17) by the
following formula

α(c,l)(x, u) = inf
(x,u,y)∈Viab(6.17)(Graph(U)×R+)

y

Proof. Indeed, to say that (x, u, y) belongs to the viability kernel of the graph
of U under the auxiliary system (6.17) amounts to saying that there exists
an evolution t �→ (x(t), u(t), y(t)) governed by the auxiliary metasystem such
that, for all t ≥ 0, u(t) ∈ U(x(t)). By definition of (6.17), we know that for
all t ≥ 0, this evolution satisfies also for all t ≥ 0,
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c(x(t), u(t))
≤ y(t) = e

∫ t
0 m(x(s),u(s))ds

(
y −

∫ t
0 e
−
∫ τ
0 m(x(s),u(s))dsl(x(τ), u(τ), v(τ))dτ

)

Therefore
⎧⎪⎪⎨
⎪⎪⎩

sup
t≥0

(
e−

∫
t
0 m(x(s),u(s))dsc(x(t), u(t))

+
∫ t

0

e−
∫ τ
0 m(x(s),u(s))dsl(x(τ), u(τ), u′(τ))dτ

)
≤ y

and thus, α(c,l)(x, u) ≤ inf(x,u,y)∈Viab(6.17)(Graph(U)×R+) y.
Conversely, we know that for any ε > 0, there exists an evolution

(x(·), u(·)) ∈ P(x, u) such that

supt≥0

(
e−

∫
t
0 m(x(s),u(s))dsc(x(t), u(t))

+
∫ t
0
e−

∫ τ
0 m(x(s),u(s))dsl(x(τ), u(τ), u′(τ)dτ)

)
≤ α(c,l)(x, u) + ε

Setting
⎧⎨
⎩
yε(t) := e

∫
t
0 m(x(s),u(s))ds

(
α(c,l)(x, u) + ε

−
∫ t

0

e−
∫

τ
0 m(x(s),u(s))dsl(x(τ), u(τ), u′(τ))dτ

)

we infer that c(x(t), u(t), v(t)) ≤ yε(t) and thus, that t �→ (x(t), u(t), yε(t))
is a solution to the solution to auxiliary evolutionary system (6.17) starting
at (x, u, α(c,l)(x, u) + ε). This evolution is viable in Graph(U) × R+ since
(x(·), u(·)) ∈ P(x, u), and thus, since x(t) ∈ U(x(t)), or, equivalently, since

∀t ≥ 0, (x(t), u(t), yε(t)) ∈ Graph(U)× R+

Hence (x, u, α(c,l)(x, u) + ε) belongs to the viability kernel Viab(6.17)

(Graph(U)× R+), so that

inf
(x,u,y)∈Viab(6.17)(Graph(U)×R+)

y ≤ α(c,l)(x, u) + ε

Letting ε converge to 0, we obtain the converse inequality. ��

6.5 Viability Oscillators and Hysterons

Biology offers to our investigations myriads of biological clocks or oscillators,
producing periodic evolutions, or, rather, cyclic evolutions. This modification
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of the terminology is justified by the fact that nowadays, periodic evolutions
are understood as produced by a system of periodic differential equations.
The search of these equations is a very difficult undertaking, and may not be
realistic at all. Hence the question arises to look for other ways to produce
periodic solutions, that we suggest to call cyclic to underlie the fact that they
are not solutions of a given system of periodic differential equations. As often
in biology or in life sciences, we face the following dilemma:

27 [Simple Dynamics and Complex Constraints] Are the examples
of biological clocks produced by complex systems of differential equations
or produced by very simple dynamics, confronted to a complex maze of
constraints?

The authors, being mathematicians, have no competence to answer this
question. They can only suggest the possibility of producing mathematically
such complex cyclic evolutions from very simple dynamics. The first approach,
looking for a priori systems of differential equations pertains to a direct
approach (see Comment 1, p. 5) whereas the second follows the inverse
approach (see Comment 2, p. 5).

Remark. For example, the history of the mathematical modelling of
the propagation of the nervous influx started in 1903 with very simple
impulse models by Louis Lapicque. At the time, a mathematical theory of
impulse systems did not exist yet. It started as such two decades ago, and is
briefly presented in Sect. 12.3, p. 503. This triggered the search of systems of
differential equations reproducing evolutions “looking like” or reminiscent of
the propagation or the nervous influx by the ingenious works of Alan Hodgkin
and Andrew Huxley (nephew of the writer Aldous Huxley and grandson
of Thomas Huxley). These equations reproduce evolutions looking like
nervous influxes, but without producing explanations, whereas the Lapicque
model, very simple indeed, but involving constraints and impulse evolutions
when they reach those constraints, provides both a simple explanation and
evolutions looking like the propagation of the nervous influx. ��

Therefore, the underlying assumptions of our engine producing cyclic
evolutions is

28 [Viability Oscillator] A viability oscillator is made of:

1. viability constraints on the state of the system in a given environment,
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2. inertia thresholds imposing a speed limit on each component of the
evolutions of the regulons.

When the inertia thresholds are infinite, we shall say that the viability
oscillator is impulsive (see Box 34 and Theorem 10.8.3, p. 424, p. 426).

The case of impulse cyclic systems can be dealt with the concept
of amalgamated system (see Definition 10.8.2, p. 424) using alternatively
persistent evolutions (see Definitions 10.4.2, p. 393 and Theorem 10.4.4,
p. 394), remaining viable as long as possible until the moment when they
reach their exit set (see Sect. 10.4.3, p. 396).

In this section, we shall study the more realistic case when the inertia
thresholds are finite.

From now on, we shall restrict our analysis to the simple illustration (6.4),
p. 212

∀ t ≥ 0, x′(t) = u(t) where u(t) ∈ R

for the sake of clarity.

6.5.1 Persistent Oscillator and Preisach Hysteron

Let us consider the case in which the inertia threshold c = 0 is equal to 0.
Hence the velocities u are constant and the evolutions x(t) = x+ut are affine.
Therefore, the viability niches of the regulons (see Definition 6.4.9, p. 216)
are empty if the regulon u �= 0 is different from 0 and equal to K := [a, b]
when u = 0. Persistent evolutions x(t) = x+ ut (see Definition 6.4.1, p. 208)
are regulated by constant velocity (control) u. Their exist times are equal to

τ �K(x) :=
(b− x)
|u| if u > 0 and τ �K(x) :=

(x− a)
|u| if u < 0

and their exit sets (see Definition 10.4.7, p. 396) are equal to

Exitu(K) := {b} × R+ if u > 0 and Exitu(K) := {a} × R− if u < 0

They are governed by the metasystem associated with the 0-inertia
threshold: {

(i) x′(t) = u(t)
(ii) u′(t) = 0 (6.18)

Therefore, starting from a with control +u and b with control −u
respectively, the persistent cyclic evolution (with the inertia bound 0) is given
by the formulas
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⎧⎪⎪⎨
⎪⎪⎩
∀ t ∈ [0,

(b− a)
|u| ],

ua(t) = +u & xa(t) = a+ ut if u > 0
ub(t) = −|u| & xb(t) = b− |u|t if u < 0

(6.19)

Concatenating these evolutions alternatively, we obtain, starting from
(a, u) the evolution u(t) = +u & x(t) = a + ut which arrives at the

exit set {b}×R+ at exit time
(b− a)
|u| with constant velocity equal to +u. In

order to pursue the evolution, we have to introduce a reset map describing
an impulse (infinite negative velocity) forcing the velocity to jump from +u

to −u when the state reaches b. Next, at exit time
(b− a)
|u| , the state-control

pair starts from (b, u) and is equal to u(t) = +− u and x(t) = b− ut until

it arrives at the exit set {b} × R+ at exit time 2
(b− a)
|u| . In order to pursue

the evolution, the reset map describing an impulse (infinite positive velocity)
forcing the velocity to jump from −u to +u when the state reaches a.

We obtained a cyclic evolution with cycle 2 (b−a)
|u| which oscillates linearly

and continuously back and forth between a and b with 0 acceleration, but
with discontinuous controlsjumping alternatively from +u to −u with infinite
velocities (infinite acceleration of the state) in order to maintain the viability
of the interval K under metasystem (6.18), p. 235.

This is nothing other than the 1784 Coulomb approximation law of friction,
an adequate representation of friction for the analysis of many physical
systems, appeared in his Recherches théoriques et expérimentales sur la force
de torsion et sur l’élasticité des fils de metal. It provides a threshold value for
a net force tending to cause the beginning of a motion, rather than providing
an estimate of the actual frictional force. This is the model of the rectangular
hysteresis loop, known under the name of Preisach hysteris cycle: Actually,
this simplest hysteron was proposed in 1938 by Preisach to subsume the
behavior of magnetic hysteresis:

Definition 6.5.1 [The Preisach Hysteron] The Preisach hysteron is the
set-valued map ΦPreisach defined by

⎧⎨
⎩
ΦPreisach(a) := +u if x = a
ΦPreisach(x) := {−u,+u} if a ≤ x < b
ΦPreisach(x) := −u if x = b

(where u is a given value). Its graph is the Preisach hysteresis loop contained
in the phase space (actually, the state-control space).
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Fig. 6.4 Preisach’s Hysteron and Evolution.

Left: The Preisach hysteris cycle, which is the graph of the Preisach hysteron
(see Definition 6.5.1, p. 236). Right: Graphs of the evolutions t �→ u(t)
and t �→ x(t) of the persistent cyclic evolution with 0-inertia threshold (see
Lemma 6.5.2, p. 238). The acceleration is equal to 0 when a < x < b and
equal to +∞ (impulse) when x = a and to −∞ when x = b.

This is the simplest example of a hysteresis loop:

29 [Hysteresis Loops and Hysterons] James Ewin, a Scottish physi-
cist discovered and coined the word hysteresis meaning lagging behind in
classical Greek. This polysemous word is used in many different fields,
including in mathematics, where several mathematical translations have
been observed (among which Visintin’one, [212, Visintin], related to subsets
invariant with respect to affine time scaling). We use it here as an engine,
called hysteron, producing hysteresis loops or hysteresis cycles: when the
evolution of the state of a system with hysteresis is plotted on a graph
against the applied force (in our case, the control), the resulting curve is
in the form of a loop.

These hysteresis issues are closely related with “quantized” controls (in
control theory), governed by an amalgam of a finite number (here, 2) of
controls only (see Comment 33, p. 422).

Starting from (a,+u), the persistent cyclic evolution follows the northern
boundary of the graph of the Preisach hysteron with 0 acceleration and

positive velocity up to the exit time
(b− a)
|u| when the control jumps to the

value −u with infinite negative velocity (impulse) while the states reaches
the upper boundary b of the interval. Then, starting (b,−|u|), the persistent
cyclic evolution follows the southern boundary of the graph of the Preisach

hysteron up to the warning time 2
(b− a)
|u| , when the control jumps with
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infinite positive velocity (impulse) to the value +u while the states reaches
the lower boundary a of the interval, and so on.

Hence Preisach’s classical hysteron subsuming the ferromagnetic loop can
thus be built from two principles: viability constraint and 0-inertia threshold.
It generates persistent oscillators:

Lemma 6.5.2 [Persistent Oscillators] The 0-persistent cyclic control
and evolution are equal to:

∀ n ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ t ∈
[
2n

(b− x)
u

, (2n+ 1)
(b− x)
u

[
,

u(t) = u & x(t) = a+ ut
and

∀ t ∈
[
(2n+ 1)

(b − x)
u

, (2n+ 2)
(b− x)
u

[
,

u(t) = −u & x(t) = b− ut

In summary, this cyclic evolution is regulated by accelerations being equal
to 0 in the interior of the interval and infinite values at the boundary. The
question arises whether we can regulate cyclic evolutions with continuous
controls instead of discontinuous ones.

6.5.2 Viability Oscillators and Hysterons

Let us choose an inertia threshold c and assume that |u| ≤
√
c
√
b− a.

Instead of choosing the heavy evolution which remains at one of the
equilibria (a, 0) or (b, 0) forever by switching the acceleration (velocity of
the regulon) to 0, we continue the evolution by keeping the acceleration −c
or +c as long as possible, and then, switch again to 0, again, as long as it is
possible to obey viability and inertia constraints.

Recall that the critical map is equal to

Ξc(u) = b− u2

2c
if u > 0 and Ξc(−|u|) = a+

u2

2c
if u < 0

We set

x� :=
b− a

2
and u� :=

√
b− a

The two values are equal if u =
√
c u� where we set u� :=

√
b− a. We observe

that x� := Ξc(
√
c u�) =

b− a

2
does not depend on c.
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Hence, by (6.13), p. 224, we deduce that the warning time is equal to
⎧⎪⎪⎨
⎪⎪⎩

(i) σc(a, u) = σc(b,−|u|) =
(b− a)
|u| − |u|

2c

(ii) σc

(
a+

u2

2c
, u

)
= σc

(
b− u2

2c
,−|u|

)
=

(b − a)
|u| − |u|

c

(6.20)

Recall that
|u|
c

is the time needed to reach (b, 0) from (Ξc(u), u) (or (a, 0)

from (Ξc(−|u|),−|u|)). If u :=
√
cu�, then

√
c|u�|
c

=
√
b− a√
c

.

The inert evolutions ranging over the boundary of the regulation map
satisfy the Titanic effect described by the following property:

Definition 6.5.3 [Titanic Effect] A state-control pair (x(·), u(·)) ∈ R
2

satisfies the Titanic effect on the interval I if

∀ t ∈ I, x′(t)u′(t) < 0

The Titanic effect means that a decrease of the control corresponds to
an increase of the state and vice-versa. In our example, starting at a and
decelerating with acceleration equal to −c, the state xa(t) increases from a

to b whereas the regulon decreases from ua to 0 at time
√

2√
c
τ�.

We define the smooth heavy hysteresis cycle (xh(·), uh(·)) of cycle

2
(
b− a

|u| +
|u|
c

)
starting at (Ξc(−|u|), u) with u>0 where Ξc(−|u|) := a+

u2

2c
in the following way:

1. The state-regulon pair (xh(·), uh(·)) starts from (Ξc(−|u|), u) by taking the
velocity of the regulon equal to 0. It remains viable on the time interval[
0,
b− a

|u| − |u|
c

]
until it reaches the state-regulon pair (Ξc(u), u) where

Ξc(u) := b− u2

2c
because σc

(
a+

u2

2c

)
=

(b − a)
|u| − |u|

c
.

2. The state-regulon pair (xh(·), uh(·)) starts from (Ξc(u), u) at time
b− a

|u| − |u|
c

by taking the velocity of the regulon (acceleration) equal

to −c.

(a) It ranges over the graph of
√
c r�(x) on the time interval[

b− a

|u| − |u|
c
,
b− a

|u|

]
until it reaches the state-regulon pair (b, 0). The

heavy evolution would remain at this equilibrium forever with an
acceleration equal to 0.
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Note that during this time interval, the state-control evolution satisfies
the Titanic effect (see Definition 6.5.3, p. 239).

(b) However, for defining the heavy hysteresis cycle, we assume that
we keep the acceleration equal to −c. Hence the state-regulon
pair (xh(·), uh(·)) ranges over the graph of −

√
c r�(x) on the time

interval
[
b− a

|u| ,
b− a

|u| +
|u|
c

]
until it reaches the state-regulon pair

(Ξc(u),−|u|).

3. The state-regulon pair (xh(·), uh(·)) starts from (Ξc(u),−|u|) at time
b− a

|u| +
|u|
c

by taking the velocity of the regulon equal to 0. It remains

viable on the time interval
[
b− a

|u| +
|u|
c
, 2
b− a

|u|

]
until it reaches the state-

regulon pair (Ξc(−|u|),−u).
4. The state-regulon pair (xh(·), uh(·)) starts from (Ξc(−|u|),−u) at time

2
b− a

|u| by taking the velocity of the regulon equal to +c.

(a) It ranges over the graph of −√c r�(x) on the time interval[
2
b− a

|u| , 2
b− a

|u| +
|u|
c

]
until it reaches the state-regulon pair (a, 0),

satisfying the Titanic effect. The heavy evolution would remain at this
equilibrium forever with an acceleration equal to 0.

(b) However, for defining the heavy hysteresis cycle, we assume that
we keep the acceleration equal to +c. Hence the state-regulon pair
(xh(·), uh(·)) ranges over the graph of +

√
c r�(x) on the time interval[

2
b− a

|u| c+
|u|
c
, 2
(
b− a

|u| +
|u|
c

)]
until it reaches the state-regulon pair

(Ξc(−|u|), u).

This ends the smooth heavy hysteresis cycle: When regulated by strictly
positive regulons, the state goes from a to b and the state-regulon pair
ranges over the graph of x �→ min(u,

√
cr�(x),

√
c r�(x)) whereas, when

regulated by negative regulons, the state goes from b to a, and the state-
regulon pair ranges over the graph of x �→ −min(u,

√
cr�(x),

√
c r�(x)).

The evolution t �→ (xh(t), uh(t)) is cyclic of cycle 2
(
b− a

|u| +
|u|
c

)
.

Heavy hysteresis cycles are governed by three velocities of regulons only,
−c, 0 and c, which can be regarded as “meta-regulons”. They provide
an example of “quantized” evolutions, governed by a combination (called
amalgam), of a finite number of (meta) regulons only.

Quantization is a recent issue in control theory, where, instead of comput-
ing the complicated feedback regulating viable evolutions, the question arises
to achieve the regulation of viable evolutions with a finite number of controls
or feedbacks.
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This number can be reduced to two (meta) regulons in the limiting case
u :=

√
c u� and when Ξc(

√
c u�) = Ξc(−

√
c u�) =: x�. In this case, heavy

hysteresis cycles are called smooth inert hysteresis cycle xh(·) (of cycle 4u�
√
c

)
in the following way:

1. The state-regulon pair (xh(·), uh(·)) starts from (x�,
√
c u�) at time 0 by

taking the velocity of the regulon equal to −c. It ranges over the graph

of
√
c r� on the time interval [0,

u�√
c
] until it reaches the equilibrium (b, 0)

and next, keeping the velocity of the regulon equal to −c, it ranges over

the graph of −
√
c r� on the time interval

[
u�√
c
,
2u�√
c

]
until it reaches the

state-regulon pair (x�,−√c u�).
2. The state-regulon pair (xh(·), uh(·)) starts from (x�,−

√
c u�) at time

2u�√
c

by taking the velocity of the regulon equal to +c. It ranges over the graph

of −
√
c r� on the time interval

[
2u�√
c
,
3u�√
c

]
until it reaches the equilibrium

(a, 0) and next, keeping the velocity of the regulon equal to +c, it ranges
over the graph of +

√
c r� on the time interval [3u

�
√
c
, 4u�
√
c

] until it reaches the
state-regulon pair (x�,

√
c u�).

Fig. 6.5 Inert Hysteresis Cycle.

The graph of the smooth evolution is shown in Fig. 6.6. The Algorithm
computes the graph of the regulation map Rc (which is a viability kernel)
and the inert hysteresis loop.
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Fig. 6.6 Graph of the Inert Hysteresis Cycle.

Both the graphs of the smooth inert evolution (in blue) and of its regulon (in
red) are plotted. They are not computed from the analytical formulas, but
extracted from the Viability Kernel Algorithm. The velocity of the regulon
oscillates from +u� to −u�. The evolution is then cyclic, alternatively
increasing and decreasing from the lower bound of the constrained interval
to its upper bound.

30 This very simple mathematical metaphor implies that two excita-
tory/inhibitory simple mechanism of a DNA site with bounds on the
quantities and their accelerations are sufficient to explain the production
of an isolated protein increasing up to a given viability bound and then,
decreasing to disappear and being produced again according to a clock,
the cyclicity of which is concealed in this very simple viability oscillator,
triggering a biological clock.

6.6 Controlling Constraints and Targets

Consider parameterized system (6.1), p. 200:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

We study in this section the case when not only the dynamics depends upon
the controls, but also when the environmentK(u) and the targetC(u) depend
upon these controls.
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Definition 6.6.1 [Controlled-Dependent Viability Kernels] Let us
consider the control system (6.1), p. 200 and controlled-dependent envi-
ronment u � K(u) and target u � C(u). The controlled-dependent
viability kernel Viab(6.1)(Graph(K),Graph(C)) is the subset of state-control
pairs (x, u) from which start at least an evolution satisfying the control-
dependent viability constraints x(t) ∈ K(u(t)) forever or until a finite time
t� when x(t�) reaches the control-dependent target C(u(t�)). The controlled-
dependent capture basin Capt(6.1)(Graph(K),Graph(C)) is the subset of
state-control pairs (x, u) from which start at least an evolution satisfying
the control-dependent viability constraints x(t) ∈ K(u(t)) until a finite time
t� when x(t�) reaches the control-dependent target C(u(t�)).

Introducing metasystems allows us to characterize this subset regulate such
systems in order that they satisfy the control-dependent viability constraints
forever or until they reach the control-dependent target in finite time:

Definition 6.6.2 [Controlled-Dependent Inertia Function] Let us
consider control-dependent environment K(u) and targets C(u). We denote
by P(K,C)(x, u) the set of evolutions of state-control (x(·), u(·)) governed by
the control system (6.1) starting at (x, u) such that either

∀t ≥ 0, x(t) ∈ K(u(t))

or such that there exists a finite time t� such that
{

(i) x(t�) ∈ C(u(t�))
(ii) ∀t ∈ [0, t�], x(t) ∈ K(u(t))

The associated inertia function β(K,C) : X ×U �→ R∪ {+∞} is defined
by

β(K,C)(x, u) := inf
(x(·),u(·))∈P(K,C)

inf
T∈R∪{+∞}

sup
t∈[0,T ]

‖u′(t)‖ (6.21)

As for the case of control-independent constraints, the epigraph of the
inertia function is the viability kernel of a meta-environment with a meta-
target under the metasystem
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⎧⎪⎪⎨
⎪⎪⎩

(i) u′(t) = v(t)
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = 0

where ‖v(t)‖ ≤ y(t)

(6.22)

Theorem 6.6.3 [Characterization of Controlled-Dependent Via-
bility Kernels by Inertia Functions] The controlled-dependent viability
kernel Viab(6.1)(Graph(K),Graph(C)) is characterized by the viability ker-
nel of the meta-environment Graph(K) with meta-target Graph(C) under
auxiliary meta-system (6.22), p. 244 in the following way:

β(K,C)(x, u) = inf
(u,x,y)∈Viab(6.22)(Graph(K)×R+,Graph(C)×R+)

y (6.23)

In other words, the controlled-dependent viability kernel is the domain
of the inertia function β(K,C).

Proof. Indeed, to say that (u, x, y) belongs to Viab(6.22)(Graph(K) ×
R+,Graph(C) × R+) amounts to saying that there exists an evolution
t �→ (x(t), u(t)) governed by (6.1) such that t �→ (x(t), u(t), y) is governed by
control system (6.22), p. 244 because y(t) ≡ y. In other words, there exists a
solution (x(·), u(·)) ∈ P(K,C)(x, u) and t� ∈ R ∪ {+∞} satisfying

∀t ≥ 0, x(t) ∈ K(u(t))

(when t� +∞) or such that there exists a finite time t� such that
{

(i) x(t�) ∈ C(u(t�))
(ii) ∀t ∈ [0, t�], x(t) ∈ K(u(t))

and

∀t ∈ [0, t�], ‖u′(t)‖ ≤ y

so that β(K,C)(x, u) ≤ supt∈[0,t�] ‖u′(t)‖ ≤ y. Hence

β(K,C)(x, u) ≤ V (x, u) := inf
(u,x,y)∈Viab(6.22)(Graph(K)×R+,Graph(C)×R+)

y

Conversely, if β(K,C)(x, u) < +∞, we can associate with any ε > 0 an
evolution (xε(·), uε(·)) ∈ P(K,C)(x, u) and tε ∈ R ∪ {+∞} such that

∀t ∈ [0, tε], ‖u′ε(t)‖ ≤ β(K,C)(x, u) + ε =: yε
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Therefore, setting vε(t) := u′ε(t) and yε(t) = yε, we observe that t �→
(xε(t), uε(t), yε) is a solution to the auxiliary system (6.22) viable in
Graph(K) × R+ forever (if tε = +∞), or until a finite time tε < +∞ when
x(tε) ∈ C(u(tε)), i.e., when (xε(tε), uε(tε), yε(tε)) ∈ Graph(C) × R+. This
implies such that (u, x, yε) belongs to Viab(6.22)(Graph(K)×R+,Graph(C)×
R+). Hence

{
V (x, u) := inf(u,x,y)∈Viab(6.22)(Graph(K)×R+,Graph(C)×R+) y

≤ yε := β(K,C)(x, u) + ε

and it is enough to let ε converge to 0 to prove the opposite inequality
V (x, u) ≤ β(K,C)(x, u). ��

The metasystem (6.22) is Marchaud (see Definition 10.3.2, p. 384) when-
ever the single-valued map f is continuous, Lipschitz (see Definition 10.3.5,
p. 385) whenever the single-valued map f is Lipschitz and the meta-
environements and meta-targets are closed whenever the graph of the set-
valued maps u � K(u) and u � C(u) are closed. Hence it inherits of the
properties of Marchaud and, Lipschitz systems respectively. ��



Chapter 7

Management of Renewable Resources

7.1 Introduction

This chapter is devoted to some problems dealing with births, growth, and
survival of populations.

Section 7.2, p. 248 starts with a simple model of the growth of the biomass
of a renewable resource, fish population, for instance, following the track of
Sect. 6.4, p. 207 of Chap. 6. We first review some dynamical growth systems
devised from Malthus to Verhulst and beyond, up to recent growth models.
They all share the same direct approach (see Box 1, p. 5) where growth models
are proposed and the evolutions they govern are studied.

Instead, we suggest to follow the inverse approach to the same problem
in the framework of this simple example (see Box 2, p. 5): we assume only
the knowledge or viability constraints and inertia thresholds. This provides,
through the inertia function, the “Mother of all viable feedbacks” (since
the term “matrix” is already used) governing the evolutions satisfying these
two requirements. Among them, we find the Verhulst feedback driving the
logistic curves, the trajectories of which are “S-shaped”. Furthermore, we
are tempted to look for the two “extreme feedbacks”. Each of them provides
what we call inert evolutions, with velocity of the growth rates equal to the
inertial threshold. When, alternatively combined (amalgamated), they govern
cyclic viable evolutions. This may provide explanations of economic cycles
and biological cycles and clocks without using periodic systems.

Combined with the Malthusian feedback, which does not belong the
progeny of this Mother, we obtain heavy evolutions, the growth rate of which
is kept constant (Malthusian evolution) as long as possible and then, switched
to an inert evolution.

Section 7.3, p. 262 introduces fishermen. Their industrial activity depletes
the growth rate of their renewable resource. They thus face a double challenge:
maintain the economic viability of their enterprize by fishing enough re-
sources, and not fishing too much for keeping the resource alive, even

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 7,
c© Springer-Verlag Berlin Heidelberg 2011
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though below the level of economic viability. Without excluding the double
catastrophe: fishes disappear forever.

Even though the real problem is complex, involving too many variables to
be both computable and reasonably relevant, the illustration of the concepts
of permanence kernels and crisis functions in the framework of this simple
example is quite instructive. It offers a mathematical metaphor showing
that these two types of constraints, economical and ecological, produce
evolutionary scenarios which can be translated in terms of viability concepts,
sharing their properties.

7.2 Evolution of the Biomass of a Renewable Resource

We illustrate some of the results of Sect. 6.4, p. 207 with the study, for
example, of the evolution of the biomass of one population (of renewable
resources, such as fish in fisheries) in the framework of simple one-dimensional
regulated systems. The mention of biomass is just used to provide some
intuition to the mathematical concepts and results, but not the other way
around, as a “model” of what happens in this mysterious and difficult field
of management of renewable resources. Many other interpretations of the
variables and controls presented could have been chosen, naturally. In any
case, whatever the chosen interpretation, these one-dimensional systems are
far too simplistic for their conclusions to be taken seriously.

We assume that there is a constant supply of resources, no predators and
limited space: at each instant t ≥ 0, the biomass x(t) of the population must
remain confined in an interval K := [a, b] describing the environment (where
0 < a < b). The maximal size b that the biomass can achieve is called the
carrying capacity in the specialized literature.

The dynamics governing the evolution of the biomass is unknown, really.

7.2.1 From Malthus to Verhulst and Beyond

Several models have been proposed to describe the evolution of these systems.
They are all particular cases of a general dynamical system of the form

x′(t) = ũ(x(t))x(t) (7.1)

where ũ : [a, b] �→ R is a feedback, i.e., a mathematical translation of the
growth rate of the biomass of the population feeding back on the biomass
(specialists in these fields prefer to study growth rates than velocities, as in
mechanics or physics).
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The scarcity of resources sets a limit to population growth: this is
typically a viability problem. The question soon arose to know whether the
environment K := [a, b] is viable under differential equation (7.1) associated
with such or such feedback ũ proposed by specialists in population dynamics.

Another question, which we answer in this chapter, is in some sense
“inverse problem” (see box 2, p. 5): Given an environment, the viability
property and maybe other properties required on the evolutions, what are
all the feedbacks ũ under which these properties are satisfied? Answering the
second question automatically answers the first one.

Thomas Robert Pierre François Raymond Alfred J.
Malthus Verhulst Pearl Lotka

(1766–1834) (1804–1849) (1879–1940) (1880–1949)

1. Thomas Malthus was the first one to address this viability problem and
came up with a negative answer. He advocated in 1798 to choose a
constant positive growth rate ũ0(x) = r > 0, leading to an exponential
evolution x(t) = xert starting at x. It leaves the interval [a, b] in finite

time t� :=
1
r

log
(
b

x

)
(see left column of Fig. 7.1, p. 251). In other words,

no bounded interval can be viable under Malthusian dynamics. This is the
price to pay for linearity of the dynamics of the population: “Population,
when unchecked, increases in a geometrical ratio”, as he concluded in his
celebrated An essay on the principle of population (1798). He thus was
worried by the great poverty of his time, so that he finally recommended
“moral restraint” to stimulate savings, diminish poverty, maintain wages
above the minimum necessary, and catalyze happiness and prosperity.
For overcoming this pessimistic conclusions, other explicit feedbacks
have next been offered for providing evolutions growing fast when the
population is small and declining when it becomes large to compensate for
the never ending expansion of the Malthusian model.

2. The Belgian mathematician Pierre-François Verhulst proposed in 1838 the
Verhulst feedback of the form

ũ1(x) := r(b − x) where r > 0
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after he had read Thomas Malthus’ Essay. It was rediscovered in 1920 by
Raymond Pearl and again in 1925 by Alfred Lotka who called it the law
of population growth.
The environment K is viable under the associated purely logistic Verhulst
equation x′(t) = rx(t)(b − x(t)). The solution starting from x ∈ [a, b]

is equal to the “sigmoid” x(t) =
bx

x+ (b − x)e−rt
. It has the famous S-

shape, remains confined in the interval [a, b] and converges to the carrying
capacity b when t �→ +∞ (see center column of Fig. 7.1, p. 251). The
logistic model and the S-shape graph of its solution became very popular
since the 1920s and stood as the evolutionary model of a large manifold
of growths, from the tail of rats to the size of men.

3. However, other examples of explicit feedbacks have been used in population
dynamics. For instance, the environment K is viable under the following
feedbacks:

• ũ2(x) := er(b−x)− 1, a continuous counterpart of a discrete time model
by model proposed by Ricker and May,

• ũ3(x) := r(b − x)α, a continuous counterpart of a discrete-time model
proposed by Hassel and May,

• the feedback ũ4(x) := r

(
1√
x
− 1√

b

)
,

• and several other feedbacks can be constructed similarly,

These feedbacks provide increasing evolutions which reach the upper
bound b of the environment asymptotically. The three next feedbacks provide
viable evolutions which reach b in finite time:

1. Inert feedbacks

ũ5(x) := r

√
2 log

(
b

x

)

govern evolutions reaching b in finite time with a vanishing velocity so
that the state may remain at b forever. It will be studied in more details
in Sect. 7.3.1.
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Fig. 7.1 Malthus, Verhulst and Heavy Feedbacks.

The three figures of the top row illustrate the curves representing three
examples of feedbacks. The left figures shows the (constant) Malthusian
feedback, the center ones the affine Verhulst feedback and the right one the
heavy feedback. The Malthus and Verhulst feedbacks are given a priori.
The Malthus feedback is not viable in the environment [0.2, 2] depicted
in the vertical axis, but the Verhulst feedback is. The heavy feedback is
computed a posteriori from viability, flexibility and inertia requirements.
For that purpose, we have to compute the viability kernel obtained with the
Viability Kernel Algorithm. The three figures of the bottom row provide
the corresponding evolutions. The coordinates represent the time t and the
biomass x. The evolution is exponential in the Malthusian case, and thus,
leaves the viability interval, the logistic sigmoid in the Verhulst case, which
converges asymptotically to the upper bound of the viability interval. It is
reached in finite time t� by a heavy evolution, starting as an exponential,
and next slowed down to reach the upper bound with a growth rate equal
to zero (an equilibrium).

2. Heavy feedbacks are hybrid feedbacks obtained by “concatenating” the
Malthusian and inert feedbacks:

ũ6(x) :=

⎧⎨
⎩
r if a ≤ x ≤ be−

r2
2c

r
√

2 log
(
b
x

)
if be−

r2
2c ≤ x ≤ b

They govern evolutions combining Malthusian and inert growth: a heavy
solution evolves (exponentially) with constant regulon r until the instant

when the state reaches be−
r2
2c . This is the last time until which the growth

rate could remain constant before being changed by taking
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ũ(x) = c

√
2 log

(
b

x

)

Then the evolution follows the inert solution starting and reaches b in
finite time

t� :=
log
(
b
x

)
r

+
r

2c
It may remain there forever.

3. Allee inert feedbacks are obtained by “concatenating” the following
feedbacks:

ũ7(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
r

√
2 log

(x
a

)
if a ≤ x ≤

√
ab

r

√
2 log

(
b

x

)
if
√
ab ≤ x ≤ b

They govern evolutions combining positive and negative inert growths:
An Allee inert evolution increases with positive increasing growth under
feedback until the instant when the state reaches

√
ab. This is the last

time until which the growth rate could increase before being switched to

the second feedback r

√
2 log

(
b

x

)
, continuing to increase despite the fact

that the positive feedback decreases (the Titanic effect, see Definition 6.5.3,
p. 239). Then the evolution reaches b in finite time. It may remain there
forever, but not forced to do so (see Sect. 7.2.3).

The growth rate feedbacks ũi, i = 0, . . . , 7 are always positive on the
interval [a, b], so that the velocity of the population is always positive, even
though it slows down. Note that ũ0(b) = r > 0 is strictly positive at b whereas
the values ũi(b) = 0, i = 1, . . . , 7 for all other feedbacks presented above. The
growth rates ũi, i = 0, . . . , 6 are decreasing whereas the Allee inert growth
rate ũ7 is (strictly) increasing on a sub-interval. ��

7.2.2 The Inverse Approach

Instead of finding one feedback ũ satisfying the above viability requirements
by trial and error, as most scientists historically did, viability theory enables
us to proceed systematically for designing feedbacks by leaving the choice of
the growth rates open, regarding them as regulons (regulation parameters)
of the control system

x′(t) = u(t)x(t) (7.2)
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where the control u(t) is chosen at each time t for governing evolutions
confined in the interval [a, b].

1. viability constraints on the biomass by requiring that

∀ t ≥ 0, x(t) ∈ [a, b]

2. inertia thresholds imposing a speed limit on the evolutions of the
regulons:

∀ t ≥ 0, u′(t) ∈ [−c,+c]

As we saw in Chap. 6, p. 199, these two requirements are enough to
delineate the set of viable feedbacks satisfying inertia threshold thanks to
the inertia function.

Lemma 7.2.1 [Inertia Function] We denote by P(x, u) the set of
solutions (x(·), u(·)) to system (7.2) viable in the interval [a, b] starting
at (x, u).

The inertia function is defined by

α(x, u) := inf
(x(·),u(·))∈P(x,u)

sup
t≥0

|u′(t)|

The domain Dom(α) of the inertia function of system x′(t) = u(t)x(t)
confronted to the environment K := [a, b] is equal to

Dom(α) := ({a} × R+) ∪ (]a, b[×R) ∪ ({b} × R−)

and the inertia function is equal to:

α(x, u) :=

⎧⎪⎪⎨
⎪⎪⎩

u2

2 log
(
b
x

) if a ≤ x < b & u ≥ 0

u2

2 log
(
x
a

) if a < x ≤ b & u ≤ 0

The epigraph Ep(α) of the inertia function is closed. However, its domain
is neither closed nor open (and not even locally compact). The restriction of
the inertia function to its domain is continuous.

Remark: The associated Hamilton–Jacobi–Bellman Equation. The
inertia function is the unique lower semicontinuous solution (in the general-
ized sense of Barron–Jensen & Frankowska, Definition 17.4.2, p. 701) to the
Hamilton-Jacobi partial differential equation
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⎧⎪⎪⎨
⎪⎪⎩
−∂α(x, u)

∂x
ux+ α(x, u)

∂α(x, u)
∂u

= 0 if a ≤ x < b & u ≥ 0

−∂α(x, u)
∂x

ux− α(x, u)
∂α(x, u)
∂u

= 0 if a < x ≤ b & u ≤ 0

on Dom(α) with discontinuous coefficients. Indeed, one can a posteriori
check that the partial derivatives of the inertia function α are equal to

∂α(x, u)
∂x

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u2

2x
(
log
(
b
x

))2 if u ≥ 0

− u2

2x
(
log
(
x
a

))2 if u ≤ 0

&
∂α(x, u)
∂u

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u

log
(
b
x

) if u ≥ 0

u

log
(
x
a

) if u ≤ 0

defined on the graph of U .
Observe that ∂α(x,u)

∂u is positive when u > 0 and negative when u < 0. ��

Fig. 7.2 Inertia Function.

Two views of the inertia function, a section of which being displayed in
Fig. 7.3, p. 256.

We deduce from Lemma 7.2.1, p. 253 the analytical formulas of the inert
regulation and critical maps:

Proposition 7.2.2 [Inert Regulation Map] For system x′(t) =
u(t)x(t), the inert regulation map defined by

(c, x)� Rc(x) := {u ∈ R such that α(x, u) ≤ c}

is equal to
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Rc(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0,

√
2c log

(
b

a

)]
if x = a

[
−
√

2c log
(x
a

)
,

√
2c log

(
b

x

)]
if a < x < b

[
−

√
2c log

(
b

a

)
, 0

]
if x = b

The critical map (c, u)� Ξc(u) := {x ∈ [a, b] such that α(x, u) = c} is
equal to

Ξc(u) :=

{
be−

u2
2c if u > 0

ae
u2
2c if u < 0

if c > 0 and to

Ξ(0, u) :=
{

[a, b] if u = 0
∅ if u �= 0

if c = 0

Since the epigraph of the inertia function is the viability kernel of the
“metaenvironment” K := [a, b]× R+ × R+ under the metasystem

⎧⎪⎪⎨
⎪⎪⎩

(i) x′(t) = u(t)x(t)
(ii) u′(t) = v(t)
(ii) y′(t) = 0

where |v(t)| ≤ y(t)

(7.3)

the Viability Theorem 11.3.4, p. 455 provides the analytical formula of the
adjustment map (x, u, c) � G(x, u, c) associating with any auxiliary state
(x, u, c) the set G(x, u, c) of control velocities governing the evolution of
evolutions with finite inertia:

1. Case when α(x, u) < c. Then

G(x, u, c) :=

⎧⎨
⎩

[0, α(a, u)] if x = a
[−α(x, u),+α(x, u)] if a < x < b
[−α(b, u), 0] if x = b

2. Case when α(x, u) = c. Then

G(x, u, c) :=
{
−α(x, u) if u ≥ 0 & a ≤ x < b
α(x, u) if u ≤ 0 & a < x ≤ b

The minimal selection g◦(x, u, c) ∈ G(x, u, c) is equal to g◦(x, u, c) = 0 if
α(x, u) < c and to
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g◦(x, u, α(x, u)) :=
{
−α(x, u) if u ≥ 0 & a ≤ x < b
α(x, u) if u ≥ 0 & a < x ≤ b

if α(x, u) = c, i.e., if x ∈ Ξc(u) is located in the critical zone of the control u
at inertia threshold c.

Although the minimal selection g◦ is not continuous, for any initial pair
(x, u) ∈ Dom(α) in the domain of the inertia function, the system of
differential equations

{
(i) x′(t) = u(t)x(t)
(ii) u′(t) = g◦(x(t), u(t), c) (7.4)

has solutions which are called heavy viable evolutions of initial system (7.2).
The trajectory of this heavy evolution is shown on the graph of the inertia
function displayed in Fig. 7.2 and Fig. 7.3.

Fig. 7.3 Viability Kernel and Inert Evolution.

The Viability Kernel Algorithm computes the viability kernel (which is the
graph of the regulation map) on a sequence of refined grids, provides an
arbitrary viable evolution, the heavy evolution minimizing the velocity of
the controls and which stops at equilibrium b, and the inert evolutions going
back and forth from a to b in an hysteresis cycle.



7.2 Evolution of the Biomass of a Renewable Resource 257

Fig. 7.4 Heavy evolution.

The evolution of the growth rate ( in blue) of the heavy evolution starting
at (x, u) such that α(x, u) < c and u > 0 is constant until the time

(kairos)
1
u

log
(
b

x

)
− u

2c
at which the evolution reaches the critical zone

Ξc(u) = [be−
u2
2c , b].

During this period, the state ( in blue) follows an exponential (Malthusian)
growth xeut. After, the growth rate decreases linearly until the time
1
u log

(
b
x

)
+ u

2c when it vanishes and when the evolution reaches the upper
bound b. During this period, the inertia α(x(t), u(t)) = c remains equal to
the inertia threshold until the evolution reaches the upper bound b with a
velocity equal to 0. This is an equilibrium at which the evolution may remain
forever.

7.2.3 The Inert Hysteresis Cycle

As was shown in Sect. 6.5, p. 233, the inertia feedback provides hysterons and
cyclic evolutions.

We observe that the graphs of the feedbacks
√
cr� and

√
cr� intersect at the

point (x�,
√
cu�) where

x� :=
√
ab & u� :=

√
log
(
b

a

)

Therefore, the warning time is equal to

τ� = τ(x�,
√
cu�) = 2

log
(
b
x�

)
√
cu�

=

√
log
(
b
a

)
c

The inert evolution (x(·), u(·)) starting at (x�,
√
cu�) is governed by the

regulons
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∀t ∈ [0, τ�], u(t) = ũ6(x(t)) :=
√
c r�(x(t))

During this interval of time, the regulon decreases whereas the biomass
continues to increase: this is a phenomenon known under the Titanic
syndrome (see Definition 6.5.3, p. 239) due to inertia.

It reaches the state-control equilibrium pair (b, 0) at time τ� :=
τ(x�,

√
cu�). At this point, the solution:

1. may stop at equilibrium by taking u(t) ≡ 0 when t ≥ τ�,
2. or switch to an evolution governed by the feedback law

∀t ≥ τ�, u(t) = ũ8(x(t)) := −
√
c r�(x(t))

among (many) other possibilities to find evolutions starting at (b, 0) remain-
ing viable while respecting the velocity limit on the regulons because (b, 0)
lies on the boundary of [a, b]× R.

Using the feedback ũ8 for instance, for t ≥ τ�, we the evolutions x(t) is
still defined by

∀t ≥ τ�, x(t) = xe
ut− u2t2

4 log( b
x )

and is associated with the regulons

∀t ≥ τ�, u(t) = u

(
1− ut

2 log
(
b
x

)
)

Fig. 7.5 Graph of the Inert Hysteretic Evolution Computed Analytically.

This Figure explains how the inert hysteretic evolution can be obtained by
piecing together four feedbacks. Starting from (x�,

√
cu�) at time 0 with the

velocity of the regulon equal to −c, the evolution is governed by the inert

feedback ũ6(x) :=
√
c

√
2 log

(
b

x

)
until it reaches b, next governed by the
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feedback ũ8(x) := −
√
c

√
2 log

(
b

x

)
until it reaches x�, next governed by the

inert feedback ũ9(x) := −
√
c

√
2 log

(x
a

)
until it reaches a and last governed

by the feedback ũ10(x) :=
√
c

√
2 log

(x
a

)
until it reaches the point x� again.

It can be generated automatically by the Viability Kernel Algorithm, so that
inert hysteretic evolutions can be computed for non tractable examples. See
Fig. 7.6.

Let us state ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r�(x) :=

√
2c log

(
b

a

)

r�(x) := −

√
2c log

(
b

a

)

The state-control pair (x(·), u(·)) is actually governed by the metasystem
{

(i) x′(t) = u(t)x(t)
(ii) u′(t) = −c

It ranges over the graph of the map
√
c r�(·) between 0 and τ� and over the

graph of the map −
√
c r�(·) between τ� and 2τ�. During this interval of time,

both the regulon u(t) and the biomass x(t) starts decreasing. The velocity of
the negative regulon is constant and still equal to −α(x, u).

2.5

2

1.5

1

0.5

0
0 5 10 15 20 25 30

t x(t)

t u(t) t

Inert solutionux

Fig. 7.6 Graph of the Inert Hysteretic Evolution and its Control Computed
by the Viability Kernel Algorithm.

Both the graphs of the inert hysteretic evolution (in blue) and of its control
(in red) are plotted. They are not computed from the analytical formulas as
in Fig. 7.5, but extracted from the Viability Kernel Algorithm. The velocity
of the control remains constant until the trajectory of the solution hits the
boundary of the viability kernel and then switches to the other extremal
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control with opposite sign and so on. The evolution is then cyclic (contrary
to logistic evolutions), alternatively increasing and decreasing from the lower
bound of the constrained interval to its upper bound.

But it is no longer viable on the interval [a, b], because with such a strictly
negative velocity −α(x, u), x(·) leaves [a, b] in finite time. Hence regulons
have to be switched before the evolution leaves the graph of Uc by crossing
through the graph of −

√
c r�(·) when −

√
c r�(x�) = −

√
c r�(x�) at time 2τ�.

Therefore, in order to keep the evolution viable, it is the last instant to
switch the velocity of the regulon from −c to +c.

Starting at (x�,
√
cu�) at time 2τ�, we let the state-control pair (x(·), u(·))

evolve according the metasystem
{

(i) x′(t) = u(t)x(t)
(ii) u′(t) = +c

It is governed by the regulons

∀t ∈ [0, τ�], u(t) = ũ9(x(t)) := −
√
c r�(x(t))

and ranges over the graph of the map −
√
c r�(·) between 2τ� and 3τ�. During

this interval of time, the regulon increases whereas the biomass continues to
decrease (the Titanic syndrome again due to inertia) and stops when reaching
the state-control equilibrium pair (a, 0) at time 3τ�. Since (a, 0) lies on the
boundary of [a, b]×R, there are (many) other possibilities to find evolutions
starting at (a, 0) remaining viable while respecting the velocity limit on the
regulons. Therefore, we continue to use the above metasystem with velocity
+c starting at 3τ�. The evolutions x(t) obtained through the feedback law

∀t ≥ τ�, u(t) = ũ10(x(t)) := +
√
c r�(x(t))

The state-control pair (x(·), u(·)) ranges over the graph of the map
√
c r�(·)

between 3τ� and 4τ�. During this interval of time, both the regulon u(t)
and the biomass x(t) increase until reaching the pair (x�,

√
cu�), the initial

state-control pair.
Therefore, letting the heavy solution bypass the equilibrium by keeping its

velocity equal to +c instead of switching it to 0, allows us to build a cyclic
evolution by taking velocities of regulons equal successively to −c and +c
on the intervals [2nτ�, (2n+ 1)τ�] and [(2n + 1)τ�, (2n + 2)τ�] respectively.
We obtain in this way a cyclic evolution of period 4τ� showing an hysteresis
property: The evolution oscillates between a and b back and forth by ranging
alternatively two different trajectories on the metaenvironment [a, b]×R. The
evolution of the state is governed by concatenating four feedbacks, ũ6 :=
+
√
cr� on [x�, b], ũ8 := −√cr� on [x�, b], ũ9 := −√cr� on [a, x�] and ũ10 :=

+
√
cr� on [a, x�].
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Remark. Note also that not only this evolution is cyclic, but obeys a
quantized mode of regulation: We use only two control velocities −c and
+c to control the metasystem (instead of an infinite family of open loop
controls v(·) := u′(·), as in the control of rockets in space). This is also an
other advantage of replacing a control system by its metasystem: use a finite
number (quantization) of controls... to the price of increasing the dimension
of the system by replacing it by its metasystem. ��

We can adapt the inert hysteresis cycle to the heavy case when we start

with a given regulon u <
√
c u� =

√
c log

(
b
a

)
. We obtain a cyclic evolution

by taking velocities of regulons equal successively to 0, −c, 0, +c, and so on
showing an hysteresis property: The evolution oscillates between a and b back
and forth by taking two different routes.

It is described in the following way. We denote by ac(u) and bc(u) the
roots

ac(u) = ae
u2
2c & bc(u) = be−

u2
2c

of the equations r�(x) = u and r�(x) = u and we set

τ�(u) = 2
log
(
b
a

)
u

1. The state-control pair (x(·), u(·)) starts from (ac(u), u) by taking the
velocity of the regulon equal to 0. It remains viable on the time interval
[0, τ�(u)− u

2c ] until it reaches the state-control pair (bc(u), u).
2. The state-control pair (xh(·), uh(·)) starts from (bc(u), u) at time τ�(u)− u

2c
by taking the velocity of the regulon equal to −c. It is regulated by the
metasystem {

(i) x′(t) = u(t)x(t)
(ii) u′(t) = −c

ranging successively over the graphs of
√
c r� and −

√
c r� on the time

interval [τ�(u) − u
2c , τ

�(u) + 3u
2c ] until it reaches the state-control pair

(bc(u),−u).
3. The state-control pair (xh(·), uh(·)) starts from (bc(u),−u) at time τ�(u)+

3u
2c by taking the velocity of the regulon equal to 0. It remains viable on
the time interval [τ�(u) + 3u

2c , 2τ
�(u) + u

c ] until it reaches the state-control
pair (ac(u),−u).

4. The state-control pair (xh(·), uh(·)) starts from (ac(u),−u) at time
2τ�(u)+ u

c by taking the velocity of the regulon equal to +c. It is regulated
by the metasystem {

(i) x′(t) = u(t)x(t)
(ii) u′(t) = +c
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ranging successively over the graphs of −
√
c r� and

√
c r� on the time

interval [τ�(u) − u
2c , τ

�(u) + 3u
2c ] until it reaches the state-control pair

(ac(u), u).

In summary, the study of inertia functions and metasystems allowed us to
discover several families of feedbacks or concatenation of feedbacks providing
several cyclic viable evolutions, using two (for the inert hysteresis cycle) or
three (for the heavy hysteresis cycle) “control velocities” +c, −c and, for the
heavy cycle, +c, −c and 0.

7.3 Management of Renewable Resources

Let us consider a given positive growth rate feedback ũ governing the
evolution of the biomass of a renewable resource x(t) ≥ a > 0, through
differential equation: x′(t) = ũ(x(t))x(t). We shall take as examples the
Malthusian feedback u0(x) := u, the Verhulst feedback u1(x) := r(x− b) and

the inert feedbacks ũ5(x) := r

√
2 log

(
b

x

)
and ũ9(x) := −

√
c

√
2 log

(x
a

)
.

The evolution is slowed down by industrial activity which depletes it, such
as fisheries.

We denote by v ∈ R+ the industrial effort for exploiting the renewable
resource, playing now the role of the control. Naturally, the industrial
effort is subjected to state-dependent constraints V (x) describing economic
constraints.

We integrate the ecological constraint by setting V (x) = ∅ whenever x < a.
Hence the evolution of the biomass is regulated by the control system

{
(i) x′(t) = x(t) (ũ(x(t)) − v(t))
(ii) v(t) ∈ V (x(t)) (7.5)

We denote by Qũ(x, v) the set of solutions (x(·), v(·)) to system (7.5). The
inertia function is defined by

βũ(x, v) := inf
(x(·),v(·))∈Qũ(x,v)

sup
t≥0

|v′(t)|

This function is characterized as the viability kernel of a subset under an
auxiliary system, known as its “metasystem”. It inherits the properties of
the viability kernel of an environment and can be computed by the Viability
Kernel Algorithm.

The epigraph of the inertia function is characterized as the viability kernel
of the “metaenvironment” K := Graph(V )× R+ under the metasystem
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⎧⎪⎪⎨
⎪⎪⎩

(i) x′(t) = (ũ(x(t)) − v(t))x(t)
(ii) v′(t) = w(t)
(ii) y′(t) = 0

where |w(t)| ≤ y(t)

(7.6)

The metasytem (7.6) is regulated by the velocities of the former regulons.
In other words, the metasystem regulates the evolution of the initial system
by acting on the velocities of the controls instead of controlling them directly.
The component y of the “auxiliary state” is the “inertia threshold” setting
an upper bound to the velocities of the regulons. Therefore, metasystem
(7.6) governs the evolutions of the state x(t), the control v(t) and the inertia
threshold y(t) by imposing constraints on the velocities of the regulons

∀t ≥ 0, |v′(t)| ≤ y(t)

called control velocities and used as auxiliary regulons.
Unfortunately, the state-control environment Graph(V )×R+ is obviously

not viable under the above metasystem: Every solution starting from
(a(u), v, c) with u < v leaves it immediately.

Assume from now on that there exists a decreasing positive map v:[a, b] �→
[0, v] defining the set-valued map V

∀x ∈ [a,∞[, V (x) := [v(x), v] (7.7)

The epigraph Ep(βũ) of the inertia function βũ is equal to the via-
bility kernel Viab(7.6)(Graph(V ) × R+) of the state-control environment
Graph(V )× R+ under metasystem (7.6).

We observe that the inertia function vanishes on the equilibrium line:

βũ(x, ũ(x)) = 0

It is identically equal to 0 if for any x ≥ a, ũ(x) ≥ v(x) and identically
infinite if for any x ≥ a, ũ(x) < v(x).

The fundamental economic model was originated by Michael Graham in
1935 and taken up by Milner Schaefer in 1954. They assumed that the
exploitation rate is proportional to the biomass and the economic activity:
viability constraints are described by economic constraints

∀t ≥ 0, cv(t) + C ≤ γv(t) x(t)

where C ≥ 0 is a fixed cost, c ≥ 0 the unit cost of economic activity and
γ ≥ 0 the price of the resource. We also assume that

∀t ≥ 0, 0 ≤ v(t) ≤ v
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where v > C
γx−c is the maximal exploitation effort. Hence the Graham-

Schaeffer constraints are summarized under the set-valued map V : [a,∞[�
R+ defined by

∀x ≥ a, V (x) :=
[

C

γx− c
, v

]

In any case, the epigraph of the inertia function being a viability kernel,
it can be computed by the Viability Kernel Algorithm. Figure 7.7 provides
the level sets of the inertia function for the Verhulst and inert feedbacks
respectively.

Fig. 7.7 Sections of the Inertia Function for Several Growth Rate Feedbacks.

This figure displays the computation of the section od level 0 of the inertia
function for Schaeffer models coupled with four growth rate feedbacks ũ:
a constant growth rate, the Verhulst one (first row) and, the two growth

rates feedbacks
√

2 log
(
x
a

)
and

√
2 log

(
b
x

)
. The equilibrium lines are the

graphs of the feedbacks. Heavy evolutions stop when their trajectories hit
the equilibrium line.
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Using the Malthusian (constant) feedbacks ũ0(x) ≡ u for the growth of
the renewable resource allows us to provide analytical formula of the inertia
function for any decreasing exploitation function v(x) such as the Graham-
Schaeffer one. Let us define by ν(u) the root of the equation v(x) = u and
set a(u) := max(a, γ(u)).

The inertia function is equal to:

βu(x, v) =

⎧⎪⎨
⎪⎩

(v − u)2

2 log
(

c
a(u)

) if v ≥ u and x ≥ a(u)

0 if v(x) ≤ v ≤ u and x ≥ a(u)

(7.8)

where the function v was introduced in (7.7), p. 263.
The epigraph Ep(βu) of the inertia function is closed. However, its domain

is neither closed nor open (and not even locally compact). The restriction of
the inertia function to its domain is continuous.

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The inertia function is a solution to the Hamilton–Jacobi partial differential
equation

∀ v ≥ u,
∂βu(x, v)

∂x
(u − v)x− βu(x, v)

∂βu(x, v)
∂v

= 0

Indeed, the partial derivatives of these two inertia functions are equal to

∂βu(x, v)
∂x

:= − (v − u)2

2x
(

log
(

x
a(u)

)2
) &

∂βu(x, v)
∂v

:=
v − u

log
(

x
a(u)

)

Observe that ∂βu(x,v)
∂v is positive when v > u and negative when v < u. ��

Proposition 7.3.1 [Regulation and Critical Maps] For system x′(t) =
(u− v(t))x(t), the inert regulation map

(c, x)� Rc(x) = {v ∈ R such that βu(x, v) ≤ c}

associated with the inertia function βu defined in (7.8), p. 265, is equal to

Rc(x) :=

[
v(x), u +

√
2c log

(
bx

a(u)

)]
if a(u) ≤ x

where v is defined in (7.7), p. 263.
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The critical map (c, v) � Ξc(v) := {x ∈ [a, b] such that βu(x, v) = c}
is equal to

Ξ(c, v) = [a(u), ξ(c, v)] where ξ(c, v) := a(u)e
(v−u)2

2c

if c > 0 and to

Ξ(0, v) :=
{

[a(u),+∞[ if v(x) ≤ v ≤ u
∅ if v > u

if c = 0.

The Viability Theorem 11.3.4, p. 455 provides the analytical formula of
the adjustment map (x, v, c)� G(x, v, c) associating with any auxiliary state
(x, v, c) the set G(x, v, c) of control velocities governing the evolution of
evolutions with finite inertia:

1. Case when βu(x, v) < c. Then

G(x, v, c) := [−βu(x, v),+βu(x, v)]

2. Case when βu(x, v) = c and v > u. Then

G(x, v, c) := −βu(x, v)

The minimal selection g0(x, v, c) is defined by g0(x, v, c) = 0 if v(x) ≤

v < u +
√

2c log
(

bx
a(u)

)
and by g0(x, v, c) = −βu(x, v) whenever v < u +√

2c log
(

bx
a(u)

)
.

7.3.1 Inert Evolutions

An evolution (x(·), u(·)) is said to be inert on a time interval [t0, t1] if it
is regulated by an affine open-loop controls of the form v(t) := v + wt, the
velocities v′(t) = w of which are constant.

The inertia function remains constant over an inert evolution as long as
the evolution is viable: On an adequate interval, we obtain

∀t ∈ [0, t], βu(x(t), v(t)) = βu(x, v) = c

Let us consider the case when v > u.
The velocity governing the inert evolution is constant and equal to v′(t) =

−βu(x, v), so that
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v(t) = v
(v − u)2t

2 log
(

x
a(u)

)

and

x(t) = xe
−(v−u)t− (v−u)2t2

4 log( x
a(u) )

The state decreases until it reaches the lower bound a(u) at time

τ(x, v) = 2
log
(

x
a(u)

)
v − u

and decreases until it reaches a(u) in finite time.
This inert evolution is governed by the feedback:

ṽ(x) := u+

√
2 log

(
x

a(u)

)
.

7.3.2 Heavy Evolutions

Let c > 0 an inertia threshold. Heavy evolutions xc(·) are obtained when the
absolute value |w(t)| := |v′(t)| of the velocity w(t) := v′(t) of the regulon is
minimized at each instant. In particular, whenever the velocity of the regulon
is equal to 0, the regulon is kept constant, and if not, it changes as slowly as
possible.

The “heaviest” evolutions are thus obtained by constant regulons. This
is not always possible, because, by taking v > u for instance, the solution

x(t) = xe−(v−u)t is viable for t ≤
log
(

x
a(u)

)
v − u

. At that time, the regulon should

be changed immediately (with infinite velocity) to any regulon v ≤ u. This
brutal and drastic measure – which is found in many natural systems – is
translated in mathematics by impulse control.

In order to avoid such abrupt changes of regulons, we add the requirement
that the velocity of the regulons is bounded by a velocity bound c > βu(x, v).

Starting from (x, v), the state xc(·) of an heavy evolution evolves according

xc(t) = xe−(v−u)t

and reaches a at time
log( x

a(u) )
v−u .
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The inertia function βu provides the velocity of the regulons and increases
over the heavy evolution according to

∀t ∈

⎡
⎣0,

log
(

x
a(u)

)
v − u

⎤
⎦ , βu(xc(t), v) =

(v − u)2

2
(
log
(

x
a(u)

)
− (v − u)t

)

The derivatives of the inertia function over the inert evolutions are equal
to

dβu(xc(t), v)
dt

=
(v − u)3

2
(
log
(

x
a(u)

)
− (v − u)t

)2

The inertia function reaches the given velocity limit c > βu(x, v) at
⎧⎨
⎩

warning state ξ(c, u) = a(u)e
(u−v)2

2c

warning time σc(x, v) :=
log( x

a(u) )
v−u − v−u

2c

Hence, once a velocity limit c is fixed, the heavy solution evolves with
constant regulon v until the last instant σc(x, v) when the state reaches ξc(v)
and the velocity of the regulon βu(ξc(v), v) = c. This is the last time when
the regulon remains constant and has to changed by taking

vc(t) = v − c

⎛
⎝t− log

(
x

a(u)

)
v − u

+
v − u

2c

⎞
⎠

Then the evolution (xc(·), vc(·)) follows the inert solution starting at
(ξc(v), )c. It reaches equilibrium (a(u), u) at time

t� :=
log
(

x
a(u)

)
v − u

+
v − u

2c

Taking x(t) ≡ a(u) and v(t) ≡ u when t ≥ t�, the solution may remain at
a(u) forever.

For a given inertia bound c > βu(x, v), the heavy evolution (xc(·), vc(·)) is
associated with the heavy feedback ṽc defined by

ṽc(x) :=

⎧⎨
⎩
v if ξ(c, u) ≤ x

u+
√

2c log
(

x
a(u)

)
if a(u) ≤ x ≤ ξ(c, u)
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7.3.3 The Crisis Function

If we regard [a, b] × R as an ecological environment and Graph(V ) as an
economical sub-environment (instead of a target), the crisis function (see
Definition 9.2.6, p. 327) assigns to any (prey-predator) state (x, v) the
smallest time spent outside the economical sub-environment by an evolution
starting from it. It is equal to 0 in the viability kernel of its environment,
finite on the permanence kernel (see Definition 9.2.3, p. 323) and infinite
outside.

The Inert-Schaeffer Metasystem x′(t) = x(t)
(√
α
√

2 log( b
x(t))− v(t)

)
modelling the evolution of renewable resources depleted by an economic
activity v(t). The velocities |v′(t)| ≤ d of economic activity are bounded

by a constant d. The environment
{

(x, v) ∈ [a, b]× [0, v] | v ∈
[

C

γx− c
, v

]}

translates economic constraints.

1. The viability kernel of the target (Zone 1 ): the level of economic activity
v is not in crisis and can be regulated in order to maintain the viability of
both the biological and economical systems, i.e., the survival of fishes and
fisheries,

2. The permanence kernel, made of the union of (Zones 1, 2 and 5 ), where
economic activities are no longer necessarily viable, but the fishes will
survive: (Zone 2 ): The level of economic activity v is not in crisis now,
but the enterprize will eventually bankrupt, whereas the fishes survive.
(Zone 5 ): The economy is in a recoverable crisis, from which it is possible
to go back to the viability kernel of the target (Zone 1 ).

3. The complement of the permanence kernel, made of the union of (Zone
3 and 4 ) is the zone from which both economic activity and renewable
resources will eventually die out: (Zone 3 ): The level of economic activity
v is not in crisis now, but will end up in a nonrecoverable crisis leading to
(Zone 4 ): The economy is bankrupted, and fishes eventually disappear.
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Fig. 7.8 Crisis Function.

Crisis Function under the Inert-Schaeffer Metasystem.

The left figure represents the graph of the crisis function, equal to zero on
the viability kernel (Zone 1 ), taking finite values at states on the permanence
kernel (Zones 2 and 5 ) and infinite values elsewhere (Zones 3 and 4 ), from
which it is impossible to reach the environment.

Note that viability algorithm provides the computation of the regulation
policy v(·). It can be used to compute particular evolutions. Starting from A
in Zone 2, the economy ends up in a crisis Zone 5, coming back to Zone 1
(viability kernel if the economic environment).

The case when the feedback is the Verhulst feedback is presented in the
Introduction.
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Chapter 8

Connection Basins

8.1 Introduction

Until now, we presented and studied evolutions in positive time, or forward
evolutions, and the associated concepts of (forward) viability kernels and
basins. We were looking from the present to the future, without taking into
account the past or the history of the evolution. In this chapter, we offer ways
to extend this framework by studying evolutions from −∞ to +∞.

In order to achieve this goal, we have to properly define the meaning of an
evolution arriving at a final time instead of evolutions starting at AN initial
time. In other words, we consider not only the future, as we did until now,
but also the past, and histories, defined as evolutions in the past.

For that purpose, we shall split in Sect. 8.2, p. 275 the evolution in forward
time evolutions and backward time evolutions, or in negative times, going
from 0 to −∞. So, in Sect. 8.3, p. 279, we investigate the concept of bilateral
viability kernel of an environment, the subset of initial states through which
passes at least one evolution viable in this environment.

For instance, up to now, we have only considered capture basins of targets
C viable in K, which are the subsets of initial states in K from which starts
at least one evolution viable in K until it reaches the target C in finite time.
In Sect. 8.4, p. 284, we shall consider the “backward” case when we consider
another subset B ⊂ K, regarded as a source, and study the “reachable maps”
from the source, subsets of final states in K at which arrives in finite time
at least one evolution viable in K starting from the source B. This leads us
to the concepts of reachable maps, detection tubes and Volterra inclusions in
Sect. 8.4, p. 284.

Knowing how to arrive from a source and to reach a target, we are led
to consider jointly problems when in the same time a source B and a target
C are given: we shall introduce in Sect. 8.5, p. 291 the connection basin, the
subset of elements x ∈ K through which passes at least one viable evolution
starting from the source B and arriving in finite time at target C. As a
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particular case, this leads us to consider evolutions connecting in finite time
a state y to another state z by viable evolutions. The issue arises to select one
such connecting evolution by optimizing an intertemporal criterion, as we did
in Chap. 4, p. 125. For instance, in minimal time, this is the brachistochrone
problem, or in minimal length, this is the problem of (viable) geodesics. It
turns out that such optimal solutions can be obtained following a strategy
going back to Eupalinos 2,500 years ago: start at the same time from both the
initial and final states until the two evolutions meet in the middle. This is the
reason we attribute the name of this genius to the optimization of evolutions
connecting two states.

Actually, this is a particular case of the collision problem studied in
Sect. 8.6, p. 298. In this case, two evolutions governed by two different
evolutionary systems starting from two different point must collide at some
future time. The set of pairs of initial states from which start two colliding
evolutions is the collision kernel. Knowing it, we can select among the
colliding evolutions the ones which optimize an intertemporal criteria.

We studied connection basins from a source to a target, but, if we regard
them as two “cells”, one initial, the other final, among a sequence of other
cells, we investigate in Sect. 8.8, p. 302 how an evolution can visit a sequence
of cells in a given order (see Analyse qualitative, [85, Dordan]).

We present here the important results of Donald Saari dealing with this
issue. Actually, once the “visiting kernels” studied, we adapt Saari’s theorems
to the case of evolutionary systems. Given a finite sequence of cells, given any
arbitrary infinite sequence of orders of visits of the cell, under Saari’s assump-
tion, one can always find one initial state from which at least one evolution
will visit these cells in prescribed order. This is not a very quite and stable
situation, which is another mathematical translation of the polysemous word
“chaos”, in the sense that “everything can happen”. One can translate this
vague “everything” in the following way: each cell is interpreted as qualitative
cell. It describes the set of states sharing a given property characterizing this
cell. In comparative economics as well as in qualitative physics, the issue
is not so much to know precisely one evolution, but rather, to know what
would be the qualitative consequences of at least one evolution starting from
a given cell. If this cell is a viability kernel, it can be regarded as “qualitative
equilibrium”, because at least one evolution remains in the cell. Otherwise,
outside of its viability kernel, all evolutions will leave this cell to enter another
one. This fact means that the first cell is a qualitative cause of the other one.
Saari’s Theorem states that under its assumptions, whatever the sequence of
properties, there is one possibility that each property “implies” the next one,
in some weak but rigourously defined sense. Section 8.9, p. 305, explains how
the concepts of invariance kernels and capture basin offer a conceptual basis
for “non consistent” logics, involving time delays and some indeterminism.
This issue is just presented but not developed in this book.

For simplicity, we assumed until now that the systems were time
independent. This is not reasonable, and the concepts which we have met all
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along this book should hold true for time dependent systems, constraints
and targets. This is the case, naturally, thanks a well-known standard
“trick” allowing us to treat time-dependent evolutionary systems as time-
independent ones. It consists in introducing an auxiliary “time variable”
whose velocity is equal to one. So, Sect. 8.10, p. 309 is devoted to the
implementation of this procedure, especially regarding capture basins and
detection tubes.

Section 8.11, p. 316 grasps the following question: how much information
about the current state is contained in past measurements of the states when
the initial conditions are not accessible, but replaced by some observations
on the past. The question boils down to this one: knowing a control system
and a tube (obtained, for instance, as the set of states whose measures are
at each instant in a set-valued map), can we recover the evolutions governed
by this evolutionary system and satisfying these past observations? This is
a question which motivated the concept of detector in a time dependent
context, and which offers, as the Volterra inclusions (see Sect. 8.4.3, p. 289),
quite interesting perspectives for future research on evolutions governed by
an evolutionary system when the initial state is unknown.

8.2 Past and Future Evolutions

Until now, evolutions x(·) ∈ C(0,+∞;X) were meant to be “future”
evolutions starting from x(0) at “present” time 0, regarded as an initial time.

In order to avoid duplicating proofs of results, the idea is to split the “full
evolution” x(·) ∈ C(−∞,+∞;X) into two (future) evolutions:

1. the “backward part” ←−x (·) ∈ C(0,+∞;X) defined by

∀ t ≥ 0, ←−x (t) := x(−t) ∈

2. the “forward part” −→x (·) ∈ C(0,+∞;X) defined by

∀ t ≥ 0, −→x (t) := x(t)

both defined on positive times. Observe that, for negative times,

∀ t ≤ 0, x(t) = −→x (−t) (8.1)

Conversely, knowing the forward part −→x (·) and backward part ←−x (·) of a
full evolution, we recover it by formula

x(t) :=
{←−x (−t) if t ≤ 0
−→x (+t) if t ≥ 0 (8.2)

The symmetry operation x(·) �→ ς(x(·))(·) defined by
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ς(x(·))(t) = x(−t)

is a bijection between the spaces C(0,+∞;X) of evolutions and C(−∞, 0;X)
of histories, as well as a bijection x(·) ∈ C(−∞,+∞;X) �→ ς(x(·))(·) ∈
C(−∞,+∞;X). It is obviously idempotent: ς(ς(x(·)))(·) = x(·). Note that
the symmetry operation is also denoted by

∨
x (·) := ς(x(·))(·).

Definition 8.2.1 [Histories, Past and Future] Functions x(·) ∈
C(−∞,+∞;X) are called “full evolutions”. We reserve the term of (future)
“evolutions” for functions x(·) ∈ C(0,+∞;X). The space C(−∞, 0;X) is
the space of “histories”. The history of a full evolution is the symmetry of
its backward part and the backward part is the symmetry of its history.

Fig. 8.1 Operations on Evolutions.

Symmetry and decomposition of a full evolution in the its backward and
forward parts.

Recall that the translation κ(T )x(·) : C(−∞,+∞;X) �→ C(−∞,+∞;X) of
an evolution x(·) is defined by (κ(T )x(·))(t) := x(t−T ) (see Definition 2.8.1,
p. 69). It is a translation to the right if T is positive and to the left if T is
negative, satisfying κ(T + S) = κ(T ) ◦ κ(S) = κ(S) ◦ κ(T ).

Definition 8.2.2 [Backward Shift of an Evolution] The T -backward
shift operator

∨
κ (T ) associates with any evolution x(·) its T -backward shift
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evolution
∨
κ (T )(x(·)) defined by

∀t ∈ R,
∨
κ (T )(x(·))(t) := x(T − t) (8.3)

It is easy to observe that the operator
∨
κ (T ) the operator is idempotent:

∀x(·) ∈ C(−∞,+∞;X), (
∨
κ (T )(

∨
κ (T )x(·))) = x(·)

and that
∨
κ (T ) := κ(T ) ◦ ς = ς ◦ κ(−T ).

Let x(·) : R �→ X be a full evolution. Then for all T ≥ 0, the
restriction to ] −∞, 0] of the translation κ(−T )(x(·))(·) ∈ C(−∞, 0;X) can
be regarded as “encoding the history of the full evolution up to time T of
the evolution x(·)”. The space C(−∞, 0;X) allows us to study the evolution
of history dependent (or path dependent) systems governing the evolution
T �→ κ(−T )x(·) ∈ C(−∞, 0;X) of histories of evolutions. The terminology
“path-dependent” is often used, in economics, in particular, but inadequately
in the sense that paths are trajectories of evolutions.

A “full” evolutionary system S : X �→ C(−∞,+∞;X) associates with any
x ∈ X an evolution x(·) ∈ C(−∞,+∞;X) passing through x at time 0. Its
backward system : X �→ C(−∞,+∞;X) is defined by

←−S (x) := {←−x (·)}x(·)∈S(x)

We observe that for all x(·) ∈ S(x),

∀ t ≤ 0, x(t) = ←−x (−t) where ←−x (·) ∈ ←−S (x)

Splitting evolutions allows us to decompose a full evolution passing
through a given state at a given time into its backward and forward parts
both governed by backward and forward evolutionary systems:

In particular, consider the system
{

(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) (8.4)

The backward system
←−S : X � C(0,+∞;X) associates with any x the set

of evolutions ←−x (·) ∈ C(0,+∞;X) governed by system
{

(i) ←−x ′(t) = −f(←−x (t),←−u (t))
(ii) ←−u (t) ∈ U(←−x (t)) (8.5)
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Lemma 8.2.3 [Splitting Full Evolutions of a Control System] We
denote by S(T, x) the subset of full solutions x(·) to system (8.4) passing
through x at time T . We observe that a full evolution x(·) belongs to S(T, x)
if and only if:

1. its forward part −→x (·) := (κ(T )(x(·)))(·) at time T defined by
κ(T )(x(·))(t) = x(t− T ) is a solution to

−→x ′(t) = f(−→x (t),−→u (t)) in which −→u (t) ∈ U(−→x (t))

satisfying −→x (0) = x,
2. its backward part ←−x (·) := (

∨
κ (T )x(·))(·) at time T defined by (

∨
κ

(T )x(·))(t) = x(T − t) is a solution to differential inclusion

←−x ′(t) = −f(←−x (t),←−u (t)) where ←−u (t) ∈ U(←−x (t))

satisfying ←−x (0) = x.

Therefore, the full evolution x(·) ∈ S(T, x) can be recovered from its
backward and forward parts by formula

x(t) =

{
←−x (T − t) (= (

∨
κ (T )←−x )(t)) if t ≤ T

−→x (t− T ) (= (κ(T )−→x )(t)) if t ≥ T

As a general rule in this chapter, all concepts introduced in the previous
chapters (viable or locally viable evolutions, viability and invariance kernels,
capture and absorption basins dealing with the forward part −→x (·) of an
evolution governed by the evolutionary system

−→S will be qualified of
“forward” and those dealing with the backward part ←−x (·) governed by the
backward system will be qualified of “backward”, taking into account that
both forward and backward evolutions are defined on [0,+∞[.

As an example, we single out the concepts backward viability or invariance:

Definition 8.2.4 [Backward Viability and Invariance] We shall say
that a subset K is backward viable (resp. invariant) under S if for every
x ∈ K, at least one backward evolution (resp. all backward evolutions) ←−x (·)
starting from x is (resp. are) viable in K, or, equivalently, at least one
evolution x(·) arriving at x = x(t) at some finite time t ≥ 0 is (resp. all
evolutions are) viable in K.
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8.3 Bilateral Viability Kernels

Definition 8.3.1 [Bilateral Viability Kernel] Let B ⊂ K be a subset
regarded as a source, C ⊂ K be a subset regarded as a target and S
be an evolutionary system. The backward viability kernel Viab←−S (K,B)
(respectively, the backward capture basin Capt←−S (K,B)) is the viability

kernel (resp. capture basin) under the backward system
←−S . The bilateral

viability kernel

←−−−−→
ViabS(K, (B,C)) = Viab←−S (K,B) ∩ViabS(K,C)

of K between a source B and a target C is the subset of states x ∈ K
such that there exists one evolution x(·) ∈ C(−∞,+∞;X) passing through
x = x(0) at time 0 and two times

←−
T ∈ [0,+∞] and

−→
T ∈ [0,+∞] such that

x(·) is

1. viable in K on ]−∞,+∞[,
2. or viable in K on [−←−T ,+∞[, with x(−←−T ) ∈ B,
3. or viable in K on ]−∞,+

−→
T ] with x(

−→
T ) ∈ C,

4. or viable in K on [−←−T ,+−→T ] with x(−←−T ) ∈ B and x(
−→
T ) ∈ C.

When B = ∅ and C = ∅ are empty,

←−−−−→
ViabS(K) :=

←−−−−→
ViabS(K, (∅, ∅))

is the set of elements x ∈ K through which passes one evolution at time 0
viable on ]−∞,+∞[, called the bilateral viability kernel of K.

Observe that a closed subset K connecting a closed source B to a closed
target C is both forward locally viable on K \C and backward locally viable
on K \ B under the evolutionary system (see Definition 2.13.1, p. 94 and
Proposition 10.5.2, p. 400).

The viability partition of the environment K is made of the four following
subsets:

• the bilateral viability kernel

←−−−−→
ViabS(K, (B,C)) = Viab←−S (K,B) ∩ViabS(K,C)

• the complement Viab←−S (K,B)\ViabS(K,C) of the forward viability kernel
in the backward viability kernel,

• the complement ViabS(K,C)\Viab←−S (K,B) of the backward viability
kernel in the forward viability kernel,
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• the complement K \ (Viab←−S (K,B) ∪ViabS(K,C)).

The following statement describes the viability properties of evolutions
starting in each of the subsets of this partition:

Theorem 8.3.2 [The Viability Partition of an Environment] Let us
consider the viability partition of the environment K under an evolutionary
system S:

• The bilateral viability kernel
←−−−−→
ViabS(K, (B,C)) is the set of initial states

such that at least one evolution passing through it is bilaterally viable in
K outside of B and C.

• The subset Viab←−S (K,B)\ViabS(K,C) is the subset of initial states x
from which all evolutions x(·) ∈ S(x) leave K in finite time τK(x(·)) :=
inf{t | x(t) /∈ K} and are viable in Viab←−S (K,B)\ViabS(K,C) on the
finite interval [0, τK(x(·))].

• The subset ViabS(K,C)\Viab←−S (K,B) is the subset of initial states x

from which all backward evolutions ←−x (·) ∈ ←−S (x) passing through x
enter K in finite time τK(←−x (·)) := inf{t | ←−x (t) /∈ K} and are viable
in ViabS(K,C)\Viab←−S (K,B) on the finite interval [0, τK(←−x (·))] (see
property (10.5.5)(iii), p. 410 of Theorem 2.15.4, p. 101).

• The set K \ (Viab←−S (K,B) ∪ ViabS(K,C)) is the subset of initial
states x such that all evolutions passing through x are viable in K \
(Viab←−S (K,B) ∪ ViabS(K,C)) from the finite instant when it enters K
to the finite instant when it leaves it.

If furthermore, the subset Viab←−S (K,B)\CaptS(K,C) ⊂ Int(K), then it is
forward invariant.

Fig. 8.2 Illustration of the Proof of Theorem 8.3.2.

Left. Proof of parts (2) and (4) of Theorem 8.3.2. Right. Proof of the last
statement.
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Proof. The first statement is obvious and the second and third ones are
symmetric. Let us prove the second and fourth ones.

1. Let x belong to Viab←−S (K,B)\ViabS(K,C) and −→x (·) ∈ S(x) be any
evolution starting at x. It is viable in Viab←−S (K,B)\ViabS(K,C) until it
must leave Viab←−S (K,B) at some time t� ≤ τK(−→x (·)), where τK(−→x (·)) :=
inf{t | −→x (t) /∈ K} (which is finite because x does not belong to the
forward viability kernel of K with target C). We observe that actually
τK(−→x (·)) = τ �K(x). Otherwise, there would exist t0 such that τK(−→x (·)) <
t0 ≤ τ �K(x) where −→x (t0) ∈ K\Viab←−S (K,B). Let ←−z (·) ∈ ←−S (x) be a

backward evolution starting at x and viable in K on [0,
←−
T [, where

←−
T

is either infinite or finite, and in this case, ←−z (
←−
T ) ∈ B. Such an evolution

exists since x belongs to the backward viability kernel Viab←−S (K,B). The
evolution ←−y (·) defined by

←−y (t) :=
{−→x (t0 − t) if t ∈ [0, t0]
←−z (t− t0) if t ∈ [t0,

←−
T ]

would be a viable evolution of the backward evolutionary system starting
at←−y (0) = −→x (t0) ∈ K\Viab←−S (K,B). This would imply that−→x (t0) belongs
to the backward viability kernel, a contradiction. Hence −→x (·) is viable in
Viab←−S (K,B)\ViabS(K,C) on the finite interval [0, τK(−→x (·))].

2. For the fourth subset of the viability partition, take any evolution x(·) ∈
S(x). Let us set S := τK(←−x (·)) and T := τK(x(·)). Then x(·) enters K
in finite time −S, passes through x at time 0 and leaves K in finite time
T . Its translation y(·) := (κ(S)x(·))(·) ∈ S(x(−S)) defined by y(t) :=
x(t − S) is viable in the complement of ViabS(K,C) until it leaves K
at time T + S. Then it is viable in the complement of ViabS(K,C). In
the same way, the evolution ←−z (·) := (

∨
κ (T )x(·))(·) ∈ ←−S (x(T )) defined

by ←−z (t) := x(T − t) is viable in the complement of Viab←−S (K,B). Then

the evolution x(·) = (κ(−S)x)(·) = (
∨
κ (T )←−z (·))(·) is viable both in the

complement of ViabS(K,C) and in the complement of Viab←−S (K,B), and
thus, in the complement K \ (Viab←−S (K,B) ∪ViabS(K,C)).

3. If Viab←−S (K,B)\CaptS(K,C) ⊂ Int(K), then Viab←−S (K,B)\CaptS(K,C)
is forward invariant. Indeed, any evolution −→x (·) ∈ S(x) starting
at x ∈ Viab←−S (K,B) \ CaptS(K,C) is viable in Viab←−S (K,B) \
CaptS(K,C). Otherwise, there would exist t0 > 0 such that −→x (t0) ∈
Int(K)\Viab←−S (K,B) because −→x (t) /∈ CaptS(K,C) since CaptS(K,C) is
isolated. Associating with it the backward evolution ←−y (·) defined above,
we would deduce that −→x (t0) ∈ Viab←−S (K,B), a contradiction. Therefore,
Viab←−S (K,B)\CaptS(K,C) is forward invariant, and thus, contained in
InvS(K \ CaptS(K,C)). ��
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We shall use the following consequence for localizing attractors, and in
particular, Lorenz attractors (see Theorem 9.3.12, p. 352):

Proposition 8.3.3 [Localization of Backward Viability Kernels] If
the backward viability kernel of K is contained in the interior of K, then it
is forward invariant and thus, contained in the invariance kernel of K.

Proof. Take B = C = ∅, the statement ensues. ��

8.3.1 Forward and Backward Viability Kernels
under the Lorenz System

Usually, the attractor, defined as the union of limit sets of evolutions, is
approximated by taking the union of the “tails of the trajectories” of the
solutions that provides an illustration of the shape of the attractor, although it
is not the attractor. Here, we use the viability kernel algorithm for computing
the backward viability kernel, which contains the attractor.

Let us consider the Lorenz system (2.6), p. 57
⎧⎨
⎩

(i) x′(t) = σy(t)− σx(t)
(ii) y′(t) = rx(t) − y(t)− x(t)z(t)
(iii) z′(t) = x(t)y(t) − bz(t)

(see of Sect. 2.4.2, p. 56).
Figure 8.3, p. 283 displays a numerical computation of the forward and

backward viability kernel of the cubeK := [−30,+30]×[−30,+30]×[−0,+53]
and of the cylinder C := {(x, y, z) ∈ [−100,+100] × [−100,+100] ×
[−20,+80] | y2 + (z − r)2 ≤ 352}.
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Fig. 8.3 Example of viability kernels for the forward and backward Lorenz
systems when σ > b + 1.

Up: The figure displays both the forward viability kernel of the cube
K := [−30,+30]× [−30,+30]× [−0,+53] (left) and the backward viability
kernel contained in it (right). Down:. The figure displays both the forward
viability kernel of the cylinder C := {(x, y, z) ∈ [−100,+100]×[−100,+100]×
[−20,+80] | y2 + (z − r)2 ≤ 352} which coincides with C itself, meaning
that C is a viability domain, and the backward viability kernel contained
in it which coincides with the backward viability kernel of the upper figure.
Indeed, Proposition 8.3.3, p. 282 states that if the backward viability kernel is
contained in the interior of K, the backward viability kernel is also contained
in the forward viability kernel. The famous attractor is contained in the
backward viability kernel.

Since the backward viability kernel is contained in the interior of K,
Proposition 8.3.3, p. 282 implies the following consequence:
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Corollary 8.3.4 [Lorenz Attractor] The Lorenz limit set is contained in
this backward viability kernel.

Usually, the attractor is approximated numerically by taking the union
of the trajectories of the solutions that provides an idea of the shape of the
attractor, although it is not the attractor. Here, we use the viability kernel
algorithm for computing the backward viability kernel.

8.4 Detection Tubes

8.4.1 Reachable Maps

When f : X �→ X is a Lipschitz single-valued map, it generates a
deterministic evolutionary system Sf : X �→ C(0,+∞;X) associating with
any initial state x the (unique) solution x(·) = Sf (x) to the differential
equation x′(t) = f(x(t)) starting at x. The single-valued map t �→ Sf (x)(t) =
{x(t)} from R+ �→ X is called the flow or semi-group associated with f .
A flow exhibits the semi-group property

∀t ≥ s ≥ 0, Sf (x)(t) = Sf (Sf (x)(s))(t − s)

For deterministic systems, studying the dynamical system amounts to
studying its associated flow or semi-group, even though when they are not
necessarily associated with a dynamical system. Although this will no longer
be the case for nondeterministic evolutionary systems, it is worth introducing
the semigroup analogues, called “reachable maps” in the control literature:

Definition 8.4.1 [Reachable Maps and Tubes] Let S : X �
C(0,+∞;X) be an evolutionary system and B ⊂ K ⊂ X be a source
contained in the environment. Recall that SK : K � C(0,∞;K) denotes
the evolutionary system associating with any initial state x ∈ K the subset
of evolutions governed by S starting at x viable in K. The reachable map
(or set-valued flow) ReachKS (·;x) viable in K is defined by

∀ x ∈ X, ∀t ≥ 0, ReachKS (t;x) := {x(t)}x(·)∈SK(x)

When K := X is the whole space, we set ReachS(t;x) := ReachKS (t;x).
We associate with the source B the (viable) reachable tube t �
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ReachKS (t;B) defined by

ReachKS (t;B) :=
{

ReachKS (t;x)
}
x∈B

For simplifying the notations, we may drop the lower index S in the
notation of reachable tubes, and mention it only when several systems are
considered (the system and the backward system, for example).

We obtain the following properties:

Proposition 8.4.2 [The Semi-Group Property] The reachable map
t� ReachKS (t;x) exhibits the semi-group property:

∀t ≥ s ≥ 0, ReachKS (t;x) = ReachKS (t− s; ReachKS (s;x))

Furthermore,

(ReachKS (t; ·))−1 := ReachK←−S (t; ·)

Proof. The first statement is obvious. To say that x ∈ ReachKS (T ; y) means
that there exists a viable evolution x(·) ∈ SK(x) such that x(T ) = y. The
evolution ←−y (·) defined by ←−y (t) := x(T − t) belongs to

←−S (x), is viable in K
on [0, T ] and ←−y (T ) = y. This means that y ∈ ReachK←−S (T ;x). ��

When a time-independent evolutionary system S : X �→ C(0,+∞;X) is
deterministic, one can identify the (unique) evolution x(·) = S(x) starting
from x with the reachable (single-valued) map t ∈ R �→ ReachS(t;x). This is
why in many cases, the classical study of deterministic systems is reduced to
the flows t ∈ R �→ ReachS(t;x).

Important Remark: Reachable Maps and Evolutionary
Systems. Even though (set-valued) reachable maps ReachS(·;x) play an
important role, they no longer characterize a time-independent nondeter-
ministic evolutionary system S: Knowing a state y ∈ ReachS(t;x), we
know that an evolution starting from x passes through y at time t, but
this does not guarantee that this evolution passes through any arbitrary
xs ∈ ReachS(s;x) at time s.

This is why, for nondeterministic evolutionary systems, the convenient
general setting is to regard it as a set-valued map S : X �→ C(0,+∞;X)
instead of a set-valued semi-group or flow.
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The graph of the reachable tube is itself a capture basin under an auxiliary
system, and thus, exhibits all the properties of capture basins:

Proposition 8.4.3 [Viability Characterization of Reachable Tubes]
Let us consider the backward auxiliary system

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))
(8.6)

and a source B. The graph of the viable reachable tube ReachKS ((·);B) :
T � ReachKS (T ;B) is the capture basin of R+ × K with target {0} × B
under the auxiliary system (8.6), p. 286:

Graph(ReachKS (·;B)) = Capt(8.6)(R+ ×K, {0} ×B)

Proof. Indeed, to say that (T, x) belongs to the capture basin of target {0}×B
viable in R+×K under the auxiliary system (8.6) means that there exist an
evolution ←−x (·) to the backward system (8.6), p. 286:

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))

starting at ←−x (0) := x and a time t∗ ≥ 0 such that
{

(i) ∀t ∈ [0, t∗], (T − t,←−x (t)) ∈ R+ ×K
(ii) (T − t∗,←−x (t∗)) ∈ {0} ×B

The second condition means that t� = T and that ←−x (T ) belongs to B. The
first one means that for every t ∈ [0, T ], ←−x (t) ∈ K. This amounts to saying
that the evolution x(·) := ←−x (T − ·) is a solution to system (8.4) starting at
←−x (T ) ∈ B, satisfying x(T ) = x and

∀t ∈ [0, T ], x(t) ∈ K ��

8.4.2 Detection and Cournot Tubes

Definition 8.4.4 [Detection Basins and Tubes] Let B ⊂ K be a subset
regarded as a source. The detection basin DetS(K,B) is the subset of final
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states in K at which arrives in finite time at least one evolution viable
in K starting from the source B. The subset K is said to detect B if
K = DetS(K,B).
The T -detection basin DetS(K,B)(T ) is the subset of final states in K at
which arrives before T at least one evolution viable in K starting from
the source B and the set-valued maps T � DetS(K,B)(T ) is called the
detection tube of B.

We first point-out the links between capture and detecting basins:

Lemma 8.4.5 [Capture and Detection Basins] The (forward) detec-
tion basin DetS(K,B) of the source B under S is equal to the backward
capture basin Capt←−S (K,B) under

←−S of the source B regarded as a target:

DetS(K,B) = Capt←−S (K,B)

and thus, exhibits all the properties of the capture basins.

Proof. Indeed, to say that x belongs to DetS(K,B) amounts to saying that
there exist an initial state x0 ∈ B, an evolution x(·) ∈ S(x0) and some T ≥ 0
such that x(T ) = x and x(t) ∈ K for all t ∈ [0, T ]. Then the evolution ←−x (·)
defined by ←−x (t) := x(T − t) is a solution to the backward system

←−S (x)
starting at x and viable in K until time T when ←−x (T ) = x(0) = x0 ∈ B.
This means that x belongs to Capt←−S (K,B). ��

The detection tube can be expressed in terms of “reachable maps”:

Proposition 8.4.6 [Detection Tubes and Reachable maps] Let S :
X � C(0,+∞;X) be an evolutionary system and B ⊂ K ⊂ X be a source
contained in the environment. Then the detection tube can be written in the
form

DetS(K,B)(T ) :=
⋃

t∈[0,T ]

ReachKS (t;B)

We also deduce from Theorem 4.3.2, p. 133 a viability characterization of
the detection tube:
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Proposition 8.4.7 [Viability Characterization of Detection Tubes]
Let us consider the backward auxiliary system (8.6), p. 286:

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))

Then the graph of the viable-capturability tube DetS(K,B)(·) is the
viable-capture basin of R+ ×B viable in R+ ×K under the system (8.6):

Graph(DetS(K,B)(·)) = Capt(8.6)(R+ ×K,R+ ×B)

Proof. The proof is analogous to the one of Proposition 8.4.3, p. 286. ��

Detection tubes provide the set of final states at which arrive at least one
evolution emanating from B. The question arises whether we can find the
subset of these initial states. This is connected with a concept of uncertainty
suggested by Augustin Cournot as the meeting of two independent causal
series: “A myriad partial series can coexist in time: they can meet, so that a
single event, to the production of which several events took part, come from
several distinct series of generating causes.” The search for causes amounts
in this case to reversing time in the dynamics and to look for “retrodictions”
(so to speak) instead of predictions.

We suggest to combine this Cournot approach uncertainty with the
Darwinian view of contingent uncertainty for facing necessity (viability
constraints) by introducing the concept of Cournot map.

Definition 8.4.8 [Cournot Map] The Cournot map Cour(K,B) :
Graph(K) � B associates with any T ≥ 0 and x ∈ K(T ) the (possibly
empty) subset Cour(K,B)(T, x) of initial causes x0 ∈ B from which x :=
x(T ) can be reached by an actual evolution x(·) ∈ S(x0) viable in the tube:

∀t ∈ [0, T ], x(t) ∈ K(t) (8.7)

At time T , the state x is thus the result of past viable evolutions
starting from all causal states x0 ∈ Cour(K,B)(T, x). The size of the
set Cour(K,B)(T, x) could be taken as a measure of Cournot’s concept of
uncertainty for the event x at time T .
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The set-valued map T � Im(Cour(K,B)(T, ·)) is decreasing, refining the
set of causal states of B from which at least one evolution has been selected
through the tube K(·) as time goes on.

We shall characterize the Cournot map as a viability kernel under an
adequate auxiliary system.

Theorem 8.4.9 [Viability Characterization of Cournot Maps] Let
us set IB := {(x, x)}x∈B and introduce the auxiliary system

⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(x(t), u(t))

where u(t) ∈ U(x(t))
(iii) y′(t) = 0

(8.8)

The graph of the Cournot Map Cour(K,B) is given by the formula

Graph(Cour(K,B)) := Capt(8.9)(Graph(K×B, {0} × IB)) (8.9)

Proof. To say that (T, x, x0) belongs to Capt(8.9)(Graph(K × B, {0} × IB))
means that there exists an evolution ←−x (·) starting at x and a time t� ≥ 0
such that {

(i) ∀t ∈ [0, t�], (T − t,←−x (t), x0) ∈ Graph(K)×B
(ii) (T − t�,←−x (t�), x0) ∈ {0} × IB

The second condition means that t� = T and that ←−x (T ) = x0 belongs to
B. The first one means that for every t ∈ [0, T ], ←−x (t) ∈ K(T − t). This
amounts to saying that the evolution x(·) := ←−x (T − ·) where x0 belongs to
B satisfies x(T ) = x and the viability conditions (8.7), i.e., that x0 belongs
to Cour( K,B)(T, x). ��

The issue is pursued in Sect. 13.8, p. 551 at the Hamilton-Jacobi level.

8.4.3 Volterra Inclusions

The standard paradigm of evolutionary system that we adopted is the initial-
value (or Cauchy) problem. It assumes that the present is frozen, as well as
the initial state from which start evolutions governed by an evolutionary
system S.

But the present time evolves, too, and consequences of earlier evolutions
accumulate. Therefore, the questions of “gathering” present consequences of
all earlier initial states arises.
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There are two ways of mathematically translating this idea. The first one,
the most familiar, is to take the sum of the number of these consequences:
This leads to equations bearing the name of Volterra, of the form

∀ T ≥ 0, x(T ) =
∫ T

0

θ(T − s;x(s))ds

A particular case is obtained for instance when the “kernel” θ(·, ·) is itself
the flow of a deterministic system y′(t) = f(y(t)). A solution x(·) to the
Volterra equation, if it exists, provides at each ephemeral T ≥ 0 the sum of
the states obtained at time T from the state x(s) at earlier time T − s ∈
[0, T ] of the solution by differential equation y′(t) = f(y(t)) starting at time

0 at a given initial state x. Then
∫ T

0

θ(T − s;x(s))ds denotes the sum of

consequences at time T of a flow of earlier evolving initial conditions, for
instance.

This is a typical situation that is met in traffic problems or in biological
neuron networks. It is not enough to study the consequences of an initial
condition, a vehicle or a neurotransmitter, since they arrive continuously at
the entrance of the highway or of the neuron.

In the set-valued case, “gathering” the subsets of consequences at
ephemeral time T of earlier initial conditions is mathematically translated
by taking their union. Hence the map similar to the Volterra equation would
be to find a tube D : t� D(t) and to check whether it satisfies

∀ T ≥ 0, D(T ) =
⋃

s∈[0,T ]

θ(T − s;D(s))

where (t,K) �→ θ(t,K) ⊂ X is a set-valued “kernel”.
The particular example of kernel is the reachable map (t,K) �→

ReachKS (t,K), a solution to an initial value problem, in the spirit of Cauchy.
Then, if a tube D : t� D(t) is given, the set

∀ T ≥ 0,
⋃

s∈[0,T ]

ReachKS (T − s;D(s))

of cumulated consequences gathers the consequences at time T of the
evolutions at time T of evolutions starting at time T − s from D(s). We
shall prove that there exist solutions to the set-valued Volterra equation,
that we shall call with a slight abuse of language, Volterra inclusion

∀ T ≥ 0, D(T ) =
⋃

s∈[0,T ]

ReachKS (T − s;D(s)) (8.10)

The reachable tube ReachKS (·;B) is obviously a solution to such a set-
valued Volterra equation: This is nothing other than the semi-group property.
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We shall see that this is the unique viable tube satisfying the semi-group
property contained in K and starting at B.

We shall also prove that the detection tube DetKS (·, B) is the unique viable
tube solution to the set-valued Volterra equation “Volterra inclusion (8.10)”
contained in K and starting at B.

For that purpose, we have to slightly extend the concept of detection tube
of subsets to detection tubes of tubes (see Theorem 8.10.6, p. 314).

8.5 Connection Basins and Eupalinian Kernels

8.5.1 Connection Basins

Let us consider an environment K ⊂ X and an evolutionary system S : X �
C(−∞,+∞;X).

Definition 8.5.1 [Connection Basins] Let B ⊂ K be a subset regarded
as a source, C ⊂ K be a subset regarded as a target. The connection basin
ConnS(K, (B,C)) of K between B and C is the subset of states x ∈ K
through which passes at least one viable evolution starting from the source
B and arriving in finite time at target C.

The subset K is said to connect B to C if K = ConnS(K, (B,C)).

We refer to Sect. 10.6.2, p. 413 for topological and other viability charac-
terization of connection basins.

The set-valued map which associates with any x ∈ ConnS(K, (B,C)) of
the connection basin the pair (x(�(K,B)(←−x (·)), �(K,C)(−→x (·)))) ∈ B × C ⊂
K × K of end-values of viable evolutions x(·) connecting B to C has, by
definition, nonempty values.

The question arises whether we can invert this set-valued map: given a pair
(y, z) ∈ K ×K, does there exist an evolution x(·) viable in K linking y to z
in finite time in the sense where x(0) = y and x(T ) = z for some finite time
T ? This is an instantiation of the problem of studying the connection basin
ConnS(K, ({y}, {z})) when the pairs (y, z) range over the subset E ⊂ K ×K
of pairs of end-values of viable evolutions x(·) connecting B to C.

In other words, the question boils down whether we can a priori know the
subset E ⊂ K ×K of pairs (y, z) such that

ConnS(K, (B,C)) =
⋃

(y,z)∈E
ConnS(K, ({y}, {z}))
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Therefore, the study of connection basins amounts to finding this subset
E , that we shall call the Eupalinian kernel of K under S, and to characterize
it as capture basins of an auxiliary capturability problems.

8.5.1.1 Eupalinian Kernels

Eupalinos, a Greek engineer, excavated around 550 BC a 1,036m. long tunnel
180m. below Mount Kastro for building an aqueduct supplying Pythagoreion
(then the capital of Samos) with water on orders of tyrant Polycrates. He
started to dig simultaneously the tunnel from both sides by two working teams
who met in the center of the channel and they had only 0.6m. error. There is
still no consensus on how he did it. However1, this “Eupalinian strategy” has
been used ever since for building famous tunnels (under the British Channel
or the Mont-Blanc) or bridges: it consists in starting the construction at the
same time from both end-points x and y and proceed until they meet, by
continuously monitoring the progress of the construction.

Such models can also be used as mathematical metaphors in negotiation
procedures when both actors start from opposite statements and try to reach
a consensus by making mutual concessions step by step, continuously bridging
the remaining gap.

This question arose in numerical analysis and control under the name of
“shooting” methods, which, whenever the state is known at initial and final
time, consists in integrating differential equations at the same time at both
initial and final states and matching in the middle.

We suggest a mathematical metaphor for explaining such an Eupalinian
strategy.

Definition 8.5.2 [Eupalinian Kernels] Let S : X � C(0,+∞;X) and
K ⊂ X be an environment. We denote by SK(y, z) := ConnS(K, ({y}, {z}))
the set of Eupalinian evolutions x(·) governed by the evolutionary system
S viable in K connecting y to z, i.e., the set of evolutions x(·) ∈ S(y)
such that there exists a finite time T ≥ 0 satisfying x(T ) = z and, for all
t ∈ [0, T ], x(t) ∈ K.
The Eupalinian kernel E := EupS(K) ⊂ K ×K is the subset of pairs (y, z)
such that there exists at least one viable evolution x(·) ∈ SK(y) connecting
y to z and viable in K.

1 The authors thank Hélène Frankowska for communicating them this historical
information.
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We can characterize the Eupalinian kernel as a capture basin:
Proposition 8.5.3 [Viability Characterization of Eupalinian
Kernels] Let us denote by Diag(K) := {(x, x)}x∈K ⊂ K ×K the diagonal
of K. The Eupalinian kernel EupS(K) of K under the evolutionary system
S associated with the system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

is the capture basin

EupS(K) = Capt(8.11)(K ×K,Diag(K))

of the diagonal of K viable in K ×K under the auxiliary system

{
(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = −f(z(t), v(t)) where v(t) ∈ U(z(t)) (8.11)

We “quantify” the concept of Eupalinian kernel with the concept of several
Eupalinian intertemporal optimization problems. The domains of their value
functions are the Eupalinian kernels, so that Proposition 8.5.3, p. 293 follows
from the forthcoming Theorem 8.5.6. p. 295.

Since we shall minimize an intertemporal criterion involving controls, as
we did in Chap. 4, p. 125, we denote by:

1. PK(x) the set of state-control evolutions (x(·), u(·)) where x(0) = x and
regulated by the system.

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

and viable in K
2. PK(y, z) the set of state-control evolutions (x(·), u(·)) where x(0) = y and

x(t�) = z for some finite time t� governed by this and viable in K.

We introduce a cost function c : X×X �→ R∪{+∞} (regarded as a connection
cost) and a Lagrangian l : (x, u)� l(x, u).

We consider the Eupalinian optimization problem

{
E(c,l)(y, z)
= inf(x(·),u(·))∈PK(y,z),t� ≥ 0 | x(2t�)=z

(
c(x(t�), x(t�))+

∫ 2t�

0 l(x(t), u(t))dt
)

• By taking c ≡ 0 and l(x, u) ≡ 1, we find the following Eupalinian minimal
time problem:
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Definition 8.5.4 [Eupalinian Distance and Brachistochrones]
The Eupalinian distance εK(y, z)

εK(y, z) := 2 inf
(x(·),u(·))∈PK(y,z), t� ≥ 0 | x(2t�)=z

t� ∈ [0,+∞[ (8.12)

measures the minimal time needed for connecting the two states y and z
by a evolution viable in K. Let B ⊂ K a source and C ⊂ K be a target.
The function

εK(B,C) := inf
y∈B, z∈C

εK(y, z)

is called the Eupalinian distance between the source B and the target
C. Viable evolutions in K connecting y to z in minimal time are called
brachistochrones.

Their existence and computation was posed as a challenge by Johann
Bernoulli in 1696, challenge met by Isaac Newton, Jacob Bernoulli,
Gottfried Leibnitz and Guillaume de L’Hopital in a particular case.

• By taking c ≡ 0 and l(x, u) = ‖f(x, u)‖, we obtain the viable geodesic
connecting two states by a viable evolution in minimal length function
γK(x) : X �→ R+ ∪ {+∞} defined by

γK(x) := inf
(x(·),u(·))∈PK(x)

∫ ∞
0

‖f(x(t), u(t))‖dt

(see Definition 4.4.1, p. 140).
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Definition 8.5.5 [Geodesics] We denote by geodesic distance

γ̂K(y, z) := inf
(x(·),u(·))∈PK(y,z), t� ≥ 0 | x(2t�)=z

∫ 2t�

0

‖f(x(t), u(t))‖dt

(8.13)
measuring the minimal length needed for connecting the two states y
and z by a evolution viable in K. Any viable evolution (x(·), u(·)) ∈

PK(y, z) achieving the minimum γ̂K(y, z) :=
∫ 2t�

0

‖f(x(t), u(t))‖dt is

called a viable geodesic. The function

γ̃K(B,C) := inf
y∈B, z∈C

γK(y, z)

is called the geodesic distance between the source B and the target C.

We shall prove that

Theorem 8.5.6 [Eupalinian Optimization Theorem] Let us consider
the auxiliary control system

⎧⎨
⎩

(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = −f(z(t), v(t)) where v(t) ∈ U(z(t))
(iii) λ′(t) = −l(y(t), u(t))− l(z(t), v(t))

(8.14)

Then

E(c,l)(y, z) = inf
(y,z,λ)∈Capt(8.14)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ

where Diag(K) := {(x, x)}x∈K ⊂ K ×K is the diagonal of K.

Proof. Let (y, z, λ) ∈ Capt(8.14)(K×K×R+, Ep(c)∩(Diag(K)×R+)) belong
to the capture basin. This means that there exist one forward evolution
−→y (·) ∈ SK(y) viable in K, one backward evolution ←−z (·) ∈ ←−S K(z) viable
in K, the evolution λ(t) := λ−

∫ t
0
l(−→y (t),−→u (t))dt−

∫ t
0
l(←−z (t),←−v (t))dt and a

time t� such that:

• for all t ∈ [0, t�], −→y (t) ∈ K, ←−z (t) ∈ K,
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λ−
∫ t

0

l(−→y (t),−→u (t))dt−
∫ t

0

l(←−z (t),←−v (t))dt ≥ 0

• and −→y (t�) = ←−z (t�) and

λ−
∫ t�

0

l(−→y (t),−→u (t))dt−
∫ t�

0

l(←−z (t),←−v (t))dt ≥ c(−→y (t�),←−z (t�))

Let us introduce the evolution x(t) defined by x(t) := −→y (t) for t ∈ [0, t�]
and x(t) := ←−z (2t�− t) for t ∈ [t�, 2t�]. This evolution x(·) is continuous at t�

because x(t�) = −→y (t�) = ←−z (t�), belongs to SK(y, z) since x(0) = −→y (0) = y,
x(2t�) = ←−z (0) = z and is governed by the differential inclusion starting at y.
Furthermore,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ−
(∫ 2t�

0

l(x(t), u(t))dt

)

= λ−
(∫ t�

0

l(−→y (t),−→u (t))dt+
∫ t�

0

l(←−z (t),←−v (t))dt

)

≥ c(x(t�), x(t�))

This means that there exist x(·) ∈ SK(y, z) and t� ≥ 0 such that

c(x(t�), x(t�)) +
∫ 2t�

0

l(x(t), u(t))dt ≤ λ

This implies in particular that

⎧⎪⎪⎨
⎪⎪⎩

E(c,l)(y, z) := inf
(x(·),u(·))∈PK(y,z), t�

(
c(x(t�), x(t�)) +

∫ 2t�

0

l(x(t), u(t))dt

)

≤ inf
(y,z,λ)∈Capt(8.14)(R+×K×K,Ep(c)∩(R+×Diag(K)))

λ

For proving the opposite inequality, we associate with any ε > 0 an
evolution xε(·) ∈ SK(y, z), a control uε(·) and t�ε ≥ 0 such that

(
c(xε(t�ε), xε(t

�
ε)) +

∫ 2t�ε

0

l(xε(t), uε(t))dt

)
≤ E(c,l)(y, z) + ε

and the function

λε(t) := E(c,l)(y, z) + ε−
∫ 2t

0

l(xε(t), uε(t))dt

Introducing the forward parts −→y ε(t) := xε(t) and−→u ε(t) := uε(t) for t ∈ [0, t�ε]
and backward parts ←−z ε(t) := xε(2t�ε−t) and ←−v ε(t) := uε(2t�ε−t), we observe
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that (−→y ε(t),←−z ε(t), λε(t)) is a solution to the auxiliary system (8.14) starting
at (y, z,E(c,l)(y, z) + ε), viable in K ×K × R+ and satisfying

⎧⎨
⎩λε(t) := E(c,l)(y, z) + ε−

∫ 2t�ε

0

l(xε(t), uε(t))dt

≥ c(−→y ε(t�ε),←−z ε(t�ε))

This implies that (y, z,E(c,l)(y, z) + ε) belongs to the capture basin
Capt(8.14)(K ×K × R+, Ep(c) ∩ (Diag(K)× R+)). Hence

inf
(y,z,λ)∈Capt(8.14)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ ≤ E(c,l)(y, z) + ε

and it is enough to let ε converge to 0. ��

Remark: Eupalinian Graphs. The Eupalinian kernel is a graph in
the sense of “graph theory” where the points are regarded as “vertices” or
“nodes”, a set of pairs (y, z) connected by at least one evolution and, for
a given intertemporal optimization problem, the set of “edges” or “arcs”
E(c,l)(y, z) linking y to z. ��

Remark: The associated Hamilton-Jacobi-Bellman Equation. The
tangential and normal characterizations of capture basins imply that the
bilateral value function is the solution to the bilateral Hamilton-Jacobi-
Bellman partial differential equation

inf
u∈U(x)

(〈
∂E
∂x

, f(x, u)
〉

+ l(x, u)
)
− sup
v∈U(y)

(〈
∂E
∂y

, f(y, v)
〉
− l(y, v)

)
= 0

(8.15)
in a generalized sense (see Chap. 17, p. 681) satisfying the diagonal condition

∀ x ∈ K, E(c,l)(x, x) = c(x, x)

Even though the solution to this partial differential equation provides the
Eupalinian value function, we do not need to approximate this partial differ-
ential equation for finding this Eupalinian value function since the Viability
Kernel Algorithm provides it and the optimal Eupalinian evolutions. ��

Remark: Regulation of Optimal Eupalinian Solutions. We intro-
duce the two following forward and backward maps:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i)
−→
R (x, p) := {−→u ∈ U(x) | 〈p, f(x,−→u )〉+ l(x,−→u )

= inf
u∈U(x)

(〈p, f(x, u)〉+ l(x, u))
}

(ii)
←−
R (y, q) := {←−v ∈ U(y) | 〈q, f(y,←−v )〉 − l(y,←−v )

= sup
v∈U(y)

(〈q, f(y, v)〉 − l(y, v))

} (8.16)

depending only on the dynamics f and U of the control system and of the
transient cost function l.

In order to find and regulate the optimal evolution, we plug into them

the partial derivatives p :=
∂E(x, y)

∂x
and q :=

∂E(x, y)
∂y

of the bilateral

value function (actually, when constraints K are involved or when the
function c is only lower semicontinuous, the bilateral value function is lower
semicontinuous and we have to replace the partial derivatives by subgradients
(px, qy) ∈ ∂E(x, y) of the bilateral value-function, as indicated in Chap. 17,
p. 681).

Knowing the Eupalinian value function and its partial derivatives (or
subgradients), one can thus derive from the results of Sect. 17.4.3, p. 704 that
the optimal Eupalinian evolution x(·) linking y at time 0 and z at minimal
time 2T is governed by the control system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) x′(t) = f(x(t), u(t))
(ii) where

u(t) ∈

⎧⎪⎪⎨
⎪⎪⎩

−→
R

(
x(t),

∂E(x(t), x(2T − t))
∂x

)
if t ∈ [0, T ]

←−
R

(
x(t),

∂E(x(2T − t), x(t))
∂y

)
if t ∈ [T, 2T ]

(8.17)

In other words, the controls regulating an optimal evolution linking y to z
“feed” both at current sate x(t) and at state x(2T − t) at time 2T − t, forward
if t ∈ [0, T ] and backward if t ∈ [T, 2T ]. In other words, optimal evolutions
can be governed by “forward and backward retroactions”, keeping an eye
on the current state and the other one on the state at another instant. In
particular, the initial control depends upon both the initial and final states.
��

8.6 Collision Kernels

Eupalinian kernels are particular cases of collision kernels associated with
a pair of evolutionary systems denoted by S and T associated with control
systems
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{
(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = g(z(t), v(t)) where v(t) ∈ V (z(t)) (8.18)

Definition 8.6.1 [Collision Kernels] Let S : X � C(0,+∞;X) and
T : X � C(0,+∞;X) be two evolutionary systems, K ⊂ X and L ⊂ X
be two intersecting environments. We denote by SK(y) × T L(z) the set of
evolutions (y(·), z(·)) ∈ SK(y)×T L(z) governed by the pair of evolutionary
systems S and T viable in K ×L. We say that they collide if there exists a
finite collision time t� ≥ 0 such that y(t�) = z(t�) ∈ K ∩ L.
The collision kernel CollS,T (K,L) ⊂ K×L is the subset of pairs (y, z) ∈ K×
L such that there exist at least two viable colliding evolutions (y(·), z(·)) ∈
SK(y)× T L(z).

Remark. Eupalinian kernels are obtained when g = −f , U = V and L =
K, or, equivalently, when the evolutionary system R =

←−S is the backward
evolutionary system. ��

We can characterize the collision kernel as the capture basin of an auxiliary
problem, so that it inherits the properties of capture basins:

Proposition 8.6.2 [Viability Characterization of Collision Ker-
nels] Recall that Diag(K ∩ L) := {(x, x)}x∈K∩L denotes the diagonal of
K ∩L. The collision kernel CollS,T (K,L) of K ∩L under the evolutionary
systems S and T associated with the systems (8.18), p. 299 is the capture
basin

CollS,T (K,L) = Capt(8.18)(K × L,Diag(K ∩ L))

of the diagonal of K ∩L viable in K ×L under the auxiliary system (8.18),
p. 299.

We now “quantify” the concept of collision kernel with the concept of
several collision intertemporal optimization problems. The domains of their
value functions are the collision kernels, so that Proposition 8.6.2, p. 299
follows from Theorem 8.6.3, p. 300 below.

We introduce a cost function c : X × X �→ R ∪ {+∞} (regarded as a
collision cost) and a Lagrangian l : (y, z, u, v)� l(y, z, u, v).

The optimal viable collision problem consists in finding colliding viable
evolutions y(·) ∈ SK(y) and z(·) ∈ T L(z) and a time t� ≥ 0 minimizing

⎧⎨
⎩

W(c,l)(y, z) = inf(y(·),z(·))∈SK(y)×T L(z), t� | y(t�)=z(t�)(
c(y(t�), z(t�)) +

∫ t�
0

l(y(t), z(t), u(t), v(t))dt
)
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By taking c ≡ 0 and l(y, z, u, v) ≡ 1, we find the problem of governing two
evolutions in minimal time.

We shall prove that

Theorem 8.6.3 [Collision Optimization Theorem] Let us consider
the auxiliary control system

⎧⎨
⎩

(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = g(z(t), v(t)) where v(t) ∈ V (z(t))
(iii) λ′(t) = −l(y(t), z(t), u(t), v(t))

(8.19)

Then

W(c,l)(y, z) = inf
(y,z,λ)∈Capt(8.19)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ

where Diag(K) := {(x, x)}x∈K ⊂ K ×K is the diagonal of K.

Proof. Let (y, z, λ) ∈ Capt(8.19)(K × L × R+, Ep(c) ∩ (Diag(K) × R+))
belong to the capture basin. This means that there exist one evolution
y(·) ∈ SK(y) viable in K, one evolution z(·) ∈ T L(z) viable in L, the

evolution λ(t) := λ−
∫ t

0

l(y(s), z(s), u(s), v(s))ds and a time t� such that:

• for all t ∈ [0, t�], y(t) ∈ K, z(t) ∈ L,

λ−
∫ t

0

l(y(s), z(s), u(s), v(s))ds ≥ 0

• y(t�) = z(t�)
• and

λ−
∫ t�

0

l(y(s), z(s), u(s), v(s))ds ≥ c(y(t�), z(t�))

This implies that

W(c,l)(y, z) ≤ c(y(t�), z(t�)) +
∫ t�

0

l(y(s), z(s), u(s), v(s))ds ≤ λ

and thus, that

W(c,l)(y, z) ≤ inf
(y,z,λ)∈Capt(8.19)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ
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For proving the opposite inequality, we associate with any ε > 0 two
colliding evolutions yε(·) ∈ SK(y) and zε(·) ∈ T L(z) at some time t�ε ≥ 0,
controls uε(·) and vε(·) such that
(

c(yε(t�ε), zε(t
�
ε)) +

∫ t�ε

0

l(yε(t), zε(t), uε(t), vε(t))dt

)
≤ W(c,l)(y, z) + ε

and the function

λε(t) := W(c,l)(y, z) + ε−
∫ t

0

l(yε(s), zε(s), uε(s), vε(s))ds

By construction,

λε(t�ε) ≥ c(y(t�ε), z(t
�
ε)) and y(t�ε) = z(t�ε)

This implies that (y, z,W(c,l)(y, z) + ε) belongs to the capture basin
Capt(8.19)(K ×K × R+, Ep(c) ∩ (Diag(K)× R+)). Hence

inf
(y,z,λ)∈Capt(8.19)(K×K×R+,Ep(c)∩(Diag(K)×R+))

λ ≤ W(c,l)(y, z) + ε

and it is enough to let ε converge to 0. ��

8.7 Particular Solutions to a Differential Inclusion

Consider a pair of evolutionary systems S and T associated with control
systems (8.18), p. 299:

{
(i) y′(t) = f(y(t), u(t)) where u(t) ∈ U(y(t))
(ii) z′(t) = g(z(t), v(t)) where v(t) ∈ V (z(t))

We look for common solutions x(·) of these two evolutionary systems
(8.18). Whenever the control system (8.18)(i) is simpler to solve than the
differential inclusion (8.18)(ii), the solutions of which are interpreted as
“particular” solutions, one can regard such common solutions to (8.18)(i)
and (8.18)(ii) as particular solutions to the differential inclusions (8.18)(i)
and (8.18)(ii).

For instance,

• taking g(z, v) := 0, the common solutions are equilibria of (8.18)(i),
• taking for g(z, v) = v a constant velocity, then common solutions are affine

functions of time t,
• taking for g(z, v)=−mz, then common solutions are exponential functions

of time ze−mt
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and so on. The problem is to detect what are the initial states y which
are equilibria, from which starts an affine evolution or from which starts an
exponential solution.

In other words, finding particular solutions amounts to finding the set of
the initial states from which common solutions do exist.

Lemma 8.7.1 [Extraction of Particular Solutions] Denote by
Diag(X) := {(x, x)}x∈X the “diagonal” of X × X. Then the set of points
from which start common solutions to the control systems is the viability
kernel Viab(8.18)(Diag(X)) of the diagonal under (8.18).

Proof. Indeed, to say that x(·) ∈ S(x)∩T (x) is a common solution to control
systems (8.18), p. 299 amounts to saying that the pair (x(·), x(·)) is a solution
to system (8.18) viable in the diagonal Diag(K), so that (x, x) belongs to the
viability kernel Viab(8.18)(Diag(X)). Conversely, to say that (x, x) belongs to
this viability kernel amounts to saying that there exist evolutions (y(·), z(·)) ∈
S(x)×T (y) viable in the diagonal Diag(X), so that, for all t ≥ 0, y(t) = z(t)
is a common solution. ��

Being a viability kernel, the subset of initial states from which start
particular evolutions inherits the properties of viability kernels.

8.8 Visiting Kernels and Chaos À la Saari

The fundamental problem of qualitative analysis (and in particular, of qualita-
tive physics in computer sciences and comparative statics in economics) is the
following: subsets Cn ⊂ K are assumed to describe “qualitative properties”,
and thus are regarded as qualitative cells or, simply, cells. Examples of such
qualitative cells are the monotonic cells (see Definition 9.2.14, p. 332). Given
such an ordered sequence of overlapping qualitative cells, the question arises
whether there exist viable evolutions visiting successively these qualitative
cells in prescribed order. These are questions treated by Donald Saari that
we partially cover here (see [182–184, Saari]).

We answer here the more specific question of the existence of such
viable evolutions visiting not only finite sequences of cells, but also infinite
sequences. Existence of viable visiting cells require some assumptions.

Definition 8.8.1 [Visiting Kernels] Let us consider a sequence of
nonempty closed subsets Cn ⊂ K such that Cn ∩ Cn+1 �= ∅. An evolution
x(·) ∈ S(x) is visiting the subsets Cn successively in the following sense:
there exists a sequence of finite duration τn ≥ 0 such that, starting with
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t0, for all n ≥ 0,
{

(i) tn+1 = tn + τn
(ii) ∀ t ∈ [tn, tn+1], x(t) ∈ Cn and x(tn+1) ∈ Cn+1

(8.20)

The set VisS(K,
−→
C ) of initial states x ∈ K such that there exists an

evolution x(·) ∈ S(x) visiting successfully the cells Cn is called the visiting
kernel of the sequence

−→
C of cells Cn viable in K under the evolutionary

system S.
The T -visiting kernel VisS(K,

−→
C )(T ) is the set of initial states from which

starts at least one viable evolution visiting the cells with duration τn bounded
by T .

We begin by considering the case of a finite sequence of cells and a result
due to Donald Saari :

Lemma 8.8.2 [Existence of Evolutions Visiting a Finite Number
of Cells] Let us consider a finite sequence of subsets Cn ⊂ K (n =
0, . . . , N) such that

T := sup
n=0,...,N−1

sup
y∈Cn+1

inf
z∈Cn

εCn(y, z) < +∞ (8.21)

where εCn is the Eupalinian function viable in Cn (see Definition 8.5.4,
p. 294).

Then, the T -visiting kernel VisS(K,C1, . . . , CN )(T ) of this finite
sequence is not empty.

Proof. We set

MN
N−1 := CaptS(CN−1, CN−1 ∩ CN )(T )

which is the subset of x ∈ CN−1 such that there exist τ ∈ [0, T ] and an
evolution x(·) ∈ S(x) viable in CN−1 on [0, T ] such that x(τ) ∈ CN . For
j = N − 2, . . . , 0, we define recursively the cells:

MN
j := CaptS(Cj , Cj ∩MN

j+1)(T )

which can be written

MN
j = {x ∈ Cj | ∃ τj ∈ [0, T ], ∃ x(·) ∈ SCj (x) such that x(τj) ∈MN

j+1}
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Therefore the set VisS(K,C0, . . . , CN )(T ) = MN
0 is the set of initial states

x0 ∈ C0 from which at least one solution will visit successively the cells
Cj , j = 0, . . . , N . ��

We shall prove here the existence of viable evolutions visiting a infinite
number of cells Cn, although they require to take the limit, and therefore,
to use theorems of Chap. 10, p. 375 (the proof can thus be omitted in a first
reading).

Proposition 8.8.3 [Existence of Evolutions Visiting an Infinite
Sequence of Cells] Let K be a closed subset viable under an upper
semicompact evolutionary system S. We consider a sequence of compact
subsets Cn ⊂ K and we assume that

T := sup
n ≥ 0

sup
y∈Cn+1

inf
z∈Cn

εCn(y, z) < +∞ (8.22)

Then, the T -visiting kernel VisS(K,
−→
C )(T ) of this infinite sequence is not

empty.

Proof. We shall prove that the intersection

K∞ :=
⋂
n ≥ 0

VisS(K,C1, . . . , Cn)(T ) ⊂ VisS(K,
−→
C )(T )

is not empty and contained in the visiting kernel VisS(K,
−→
C )(T ).

Lemma 8.8.2, p. 303 implies that the visiting kernels VisS(K,C1, . . . , Cn)(T )
are not empty, and closed since the evolutionary system is upper
semicompact (see Theorem 10.3.14, p. 390). Since the family of subsets
VisS(K,C1, . . . , Cn)(T ) form a decreasing family and since K is compact,
the intersection K∞ is nonempty.

It remains to prove that it is contained in the visiting kernel
VisS(K,

−→
C )(T ). Let us take an initial state x in K∞ and fix n. Hence

there exist xn(·) ∈ S(x) and a sequence of tjn ∈ [0, jT ] such that

∀j = 1, . . . , n, xn(tjn) ∈Mn
j ⊂ Cj and ∀t ∈ [tj−1

n , tjn], xn(t) ∈ Cj

Indeed, there exist y1(·) ∈ S(x) and τn1 ∈ [0, T ] such that y1(τn1 ) belongs
to Mn

1 . We set tn1 := τn1 , xn1 = y1(tn1 ) and xn(t) := y1(t) on [0, tn1 ].
Assume that we have built xn(·) on the interval [0, tnj ] such that xn(tnj ) ∈

Mn
j ⊂ Cj for j = 1, . . . , k. Since xn(tnk ) belongs to Mn

k , there exist yk+1(·) ∈
S(xn(tnk )) and τnk+1 ∈ [0, T ] such that

yk+1(τnk+1) ∈Mn
k+1
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We set
tnk+1 := tnk + τnk+1 & xn(t+ τnk ) := yk+1(t)

on [tnk , t
n
k+1]. When k = n, we extend xn(·) to [tnn,+∞[ by any evolution

starting at xn(tnn) at time tnn.
Since the evolutionary system is assumed to be upper semicompact, the

Stability Theorem 10.3.3, p. 385 implies that a subsequence (again denoted
xn(·)) of the sequence xn(·) ∈ S(x) converges (uniformly on compact
intervals) to some evolution x(·) ∈ S(x) starting at x. By extracting
successive converging subsequences of τnj ∈ [0, T ] converging to τj when
n ≥ j → +∞ and setting tj+1 := tj + τj , we infer that x(tj) ∈ Cj . ��

As a consequence, we obtain an extension to evolutionary systems of a
theorem on “chaos” due to Donald Saari :

Theorem 8.8.4 [Chaotic Behavior à la Saari] Let K be a compact
subset viable under an upper semicompact evolutionary system S. We
assume that K is covered by a family of closed subsets Ka (a ∈ A) satisfying
the following assumption:

T := sup
a∈A

sup
y∈K

inf
z∈Ka

εKa(y, z) < +∞ (8.23)

Then, for any sequence a0, a1, . . . , an, . . ., there exists at least one
evolution x(·) ∈ S(x) and an increasing sequence of elements tj ≥ 0 such
that for all j ≥ 0, ∀t ∈ [tj , tj+1], x(t) ∈ Kaj and x(tj+1) ∈ Kaj+1 .

Proof. We associate with the sequence a0, a1, . . . , an, . . . the sequence of sub-
sets Cn := Kan and we observe that assumption (8.22) of Proposition 8.8.3,
p. 304 is satisfied. ��

8.9 Contingent Temporal Logic

By identifying a subset K ⊂ X with the subset of elements x ∈ X satisfying
the property PK(x) of belonging to K, i.e., PK(x) if and only if x ∈ K,
we know that we can identify implication and negation with inclusion and
complementation:

{
(i) PK ⇒ PL (PK implies PL) if and only if K ⊂ L
(ii) ¬PK(x) (not PK(x)) if and only if x ∈ �K
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These axioms have been relaxed in many ways to define other logics. We
adapt to the “temporal case” under uncertainty the concept of atypic logic
introduced by Michel de Glas.

Taking into account time and uncertainty into logical operations requires
an evolutionary system S, associating with any x for instance the set S(x)
of solutions x(·) to a differential inclusion x′ ∈ F (x) starting at x.

Definition 8.9.1 [Eventual Consequences] Given an evolutionary sys-
tem, we say that y is an eventual consequence of x – and write y � x – if
there exist an evolution x(·) ∈ S(x) starting from x and a time T ≥ 0 such
that y = x(T ) is reached by this evolution.

This binary relation y � x is the contingent temporal preorder
associated with the evolutionary system S, temporal because evolution is
involved, contingent because this evolution is contingent.

It is obvious that the binary relation y � x is:

1. reflexive: x � x and
2. transitive: if y � x and z � y, then z � x,

so that it is, by definition, a preorder on X .

Definition 8.9.2 [Contingent Temporal Implications and Falsifica-
tion] Let us consider an evolutionary system S. We say that x:

1. satisfies typically (�PK(x)) property PK if all eventual consequences
of x satisfy property PK :

2. satisfies atypically (�PK(x)) property PK if at least one eventual
consequence of x satisfies property PK ,

3. falsifies (�PK(x)) property PK if at least one eventual consequence
of x does not satisfy property PK,

Falsification. The contingent temporal preorder allows us
to define a concept of falsification (in French, réfutation),
which translates mathematically a weaker concept of nega-
tion which Karl Popper (1902–1994) made popular.
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These definitions can readily be formulated in terms of capture basins and
invariance kernels:

Lemma 8.9.3 [Viability Formulation of Contingent Temporal
Operations] The formulas below relate logical operations to invariance
kernels and capture basins:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) �PK(x) if and only if x ∈ Inv(K) := Inv(K, ∅)
x satisfies typically property PK

(ii) �PK(x) if and only if x ∈ Capt(K) := Capt(X,K)
x satisfies atypically property PK

(iii) �PK(x) if and only if x ∈ Capt(�(K))
x falsifies (or does not typically satisfies) property PK

Fig. 8.4 Typical, atypical and falsifying elements.

This figure illustrates the above concepts: the subset K of elements satisfying
property PK is partitioned in the set Inv(K) of typical elements satisfying
property PK , and in the set Capt(�(K)) of elements falsifying property PK .
The capture basin Capt(K) of K is the set of atypical elements satisfying
property PK .

We now translate some elementary properties of capture basins and
invariance kernels: For instance, contingent temporal logics are nonconsistent
in the following sense:

Proposition 8.9.4 [Non-Consistency of Contingent Temporal Log-
ics] The contingent temporal logic is not consistent in the sense that:

1. �PK(x) ∨ �PK(x) is always true,
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2. �PK(x)∧�PK (x) may be true (or is not false): �PK(x)∧�PK (x) if and
only if x both atypically satisfies and falsifies property PK

3. The falsification of the falsification of property PK is the set of element
satisfying extensively and intensively this property:

��PK(x) ⇔ � � PK(x)

The relationships with conjunction and disjunction become
{

(i) �(PK1 ∧ PK2) if and only if �PK1 ∨ �PK2

(ii) �(PK1 ∨ PK2) implies �PK1 ∧ �PK2

Definition 8.9.5 [Contingent Temporal Implications] With an evo-
lutionary system S, we associate the following logical operations:

1. Intensive contingent temporal implication

PK ⇒ PL
means that all eventual consequences of elements satisfying property
PK satisfy property PL

2. Extensive contingent temporal implication

PK � PL
means that whenever at least one eventual consequence of an
element satisfies property PK , it satisfies property PL.

We observe that the intensive and extensive contingent temporal implica-
tions imply the usual implication.

Lemma 8.9.6 [Viability Characterization of Implications] Exten-
sive and intensive implications are respectively formulated in this way:
{

(i) PK � PL (PK extensively implies PL) if and only if K ⊂ Inv(L)
(ii) PK ⇒ PL (PK intensively implies PL) if and only if Capt(K) ⊂ L

and weak extensive and intensive implications defined respectively by
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⎧⎪⎪⎨
⎪⎪⎩

(i) PK ⇀ PL (PK weakly extensively implies PL) if and only if
Capt(K) ⊂ Capt(L)

(ii) PK ⇁ PL (PK weakly intensively implies PL) if and only if
Inv(K) ⊂ Inv(L)

We infer the following

Proposition 8.9.7 [Contraposition Properties] The following state-
ments are equivalent:

1. property PK intensively implies PL:

PK ⇒ PL

2. negation of property PL extensively implies the negation of property PK :

¬PL � ¬PK

3. falsification of property PL implies the negation of property PK :

�PL ⇒ ¬PK

8.10 Time Dependent Evolutionary Systems

8.10.1 Links Between Time Dependent
and Independent Systems

Consider the time-dependent system

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

Definition 8.10.1 [Time-Dependent Systems] When the dynamics
{

(i) x′(t) = f(t, x(t), u(t))
(ii) u(t) ∈ U(t, x(t)) (8.24)

of a system depend upon the time, we denote by S : R×X � C(−∞,+∞;X)
the time-dependent evolutionary system associating with any (T, x) the set
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of evolutions x(·) ∈ C(−∞,+∞;X) governed by this time-dependent system
passing through x at time T : x(T ) = x. Whenever K : t � K(t) is a tube,
we denote by SK(x) the set of evolutions x(·) ∈ S(x) such that

∀ t ≥ 0, x(t) ∈ K(t)

Splitting evolutions allows us to decompose a full evolution passing
through a given state at present time 0 into its backward and forward parts
both governed by backward and forward evolutionary systems:

The backward time-dependent system
←−S : R × X � C(−∞,+∞;X)

associates with any (T, x) the set of evolutions x(·) ∈ C(−∞,+∞;X) passing
through x at time T : x(T ) = x and governed by

{
(i) ←−x ′(t) = −f(−t,←−x (t),←−u (t))
(ii) ←−u (t) ∈ U(−t,←−x (t)) (8.25)

We observe that x(·) ∈ S(T, x) if and only if:

1. its forward part −→x (·) := κ(T )(x(·))(·) at time T defined by κ(T )(x(·))(t) =
x(t − T ) is a solution to differential inclusion

−→x ′(t) = f(T + t,−→x (t),−→u (t)) where −→u (t) ∈ U(T + t,−→x (t))

satisfying −→x (0) = x.
2. its backward part ←−x (·) := (

∨
κ (T )x(·))(·) at time T defined by (

∨
κ (T )x

(·))(t) = x(T − t) is a solution to differential inclusion

←−x ′(t) = f(T − t,←−x (t),←−x (t)) where ←−u (t) ∈ U(T − t,←−x (t))

satisfying ←−x (0) = x.

This implies that when the system is time-independent, the backward time-
independent system

←−S : X � C(0,+∞;X) associates with any x ∈ X the
set of evolutions ←−x (·) ∈ C(0,+∞;X) passing through x at time T : x(T ) = x
and governed by (8.25), p. 310, which boils down to

{
(i) ←−x ′(t) = −f(←−x (t),←−u (t))
(ii) ←−u (t) ∈ U(←−x (t))

This also allows us to introducing an auxiliary “time variable” τ the
absolute value of the velocity of which is equal to one: +1 for forward time,
−1 for backward time (time to horizon, time to maturity in finance, etc.).

Definition 8.10.2 [Time-Independent Auxiliary System] We asso-
ciate with the time-dependent evolutionary system (8.24), p. 309 the time-
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independent auxiliary system AS associated with:
⎧⎨
⎩

(i) τ ′(t) = 1
(ii) x′(t) = f(τ(t), x(t), u(t))

where u(t) ∈ U(τ(t), x(t))
(8.26)

and the backward time-independent auxiliary system A←−S associated with
⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −f(τ(t), x(t), u(t))

where u(t) ∈ U(τ(t), x(t))
(8.27)

We can reformulate the evolutions of the time-dependent system in terms
of evolutions of the auxiliary time-independent systems AS :

Lemma 8.10.3 [Links Between Evolutionary Systems and their
Auxiliary Systems]

1. an evolution x+(·) ∈ S(T, x) is a solution to system (8.24), p. 309
starting from x at time T and defined on the interval [T,+∞[ if and
only if x+(·) = κ(T )−→x (·) where (−→τ (·),−→x (·)) is a solution of the auxiliary
time-independent system (8.26) starting at (T, x).

2. an evolution x−(·) ∈ S(T, x) is a solution to system (8.24) arriving at x
at time T and defined on the interval ] −∞, T ] if and only if x−(·) =

∨
κ

(T )
←−−
x(·)(·) where (←−τ (·),←−x (·)) is a solution to the backward auxiliary time-

independent system (8.27) starting at (T, x).

In other words, an evolution x(·) ∈ S(T, x) governed by time-dependent
system (8.24), p. 309

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

can be split in the form

x(t) :=
{←−x (−t) if t ≤ 0
−→x (t) if t ≥ 0

where ←−x (·) ∈ A←−S (T, x) and −→x (·) ∈ AS(T, x).

Proof. Indeed, let x+(·) satisfying x+(T ) = x and x′+(t) = f(t, x+(t), u+(t)).
Therefore, −→x (·) := κ(−T )x+(·) defined by −→x (t) := x+(t + T ) satisfies
−→x (0) := x+(T ) = x and −→x ′(t) := x′+(t+T ) = f(t+T, x′+(t+T ), u+(t+T )) =
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f(−→τ (t),−→x (t),−→u (t)) where −→τ (t) := t+ T . This means that (−→τ (·),−→x (·)) is a
solution of the auxiliary time-independent system (8.26) starting at (T, x).

In the same way, let x−(·) satisfying x−(T ) = x and x′−(t) =

f(t, x−(t), u−(t)). Therefore, ←−x (·) := (
∨
κ (T )x−(·))(·) defined by ←−x (t) :=

x−(T − t) satisfies ←−x (0) := x−(T ) = x and ←−x ′(t) := −x′−(T − t) =
f(T − t, x′−(T − t), u−(T − t)) = f(←−τ (t),←−x (t),←−u (t)) where ←−τ (t) := T − t.
This means that (←−τ (·),←−x (·)) is a solution of the backward auxiliary time-
independent system (8.27) starting at (T, x). ��

Consequently, we just have to transfer the properties of the forward and
backward systems of time-independent systems in forward time for obtaining
the properties of time-dependent systems.

8.10.2 Reachable Maps and Detectors

Fig. 8.5 Reachable Maps.

Left: Illustration of the reachable map Reach(t, s;x) associated with a point
x between the times s and t. Right: Illustration of the reachable tube
Reach(t, s;B) associated with a set B between the times s and t.

Definition 8.10.4 [Viable Reachable Tubes] Let us consider a tube K
regarded as the tube of time-dependent environments K(t) and a source B ⊂
X. Let SK : R × X � C(0,+∞;X) be the evolutionary system associated
with (8.24), p. 309

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

the set of evolutions viable in the tube K. The viable reachable map
ReachK

S ((·), s;x) : t � ReachK
S (t, s;x) associating with any x ∈ K(s) the
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set of x(t) when x(·) ∈ SK(s, x) ranges over the set of evolutions starting
from x at time s ≤ t and viable in the tube:

∀ x ∈ X, ∀t ≥ s ≥ 0, ReachK
S (t, s;B) := {x(t)}x(·)∈SK(s,B)

Fig. 8.6 Reachable Tubes.

Left: Illustration of ReachK
S (t, s;x) as defined in Definition 8.10.4. It

depicts the reachable tube ReachS(t, s;x) without constraints and the tube
representing the evolving environment K(·). The dark area at time t is the
viable reachable set ReachK

S (t, s;B). It is contained in the intersection of
the constrained tube and the reachable tube without constraints. Right:
Illustration of ReachK

S (t, s;B), obtained by taking the union of the tubes
ReachK

S (t, s;x) when x ranges over B.

Definition 8.10.5 [Detectors] Consider an evolutionary system S : R ×
X � C(−∞,+∞;X) and two tubes K(·) : t� K(t) and B(·) : t� B(t) ⊂
K(t). The detector DetS(K,B) : R+ � X associates with any T ≥ 0 the
(possibly empty) subset DetS(K,B)(T ) of states x ∈ K(T ) which can be
reached by at least one evolution x(·) starting at some finite earlier time
τ ≤ T from B(τ) and viable on the interval [τ, T ] in the sense that

∀t ∈ [τ, T ], x(t) ∈ K(t) (8.28)

In other words, it is defined by formula:

DetS(K,B)(T ) :=
⋃
s≤T

ReachK
S (T, s;B(s)) (8.29)

Observe that when the system is time-independent, the formula for
detectors boils down to
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DetS(K,B)(T ) =
⋃

0≤s≤T
ReachK

S (T − s, 0;B(s))

By taking for tube B∅(·) the tube defined by

B∅(t) :=
{
B if t = 0
∅ if t > 0

we recognize the viable reachable tube

DetS(K,B∅)(T ) := ReachK
S (T, 0;B)

and by taking the constant tube B0 : t� B, we obtain

DetS(K,B0)(T ) := DetS(K, B)(T )

An illustration of a detector is shown in Fig. 8.7. This figures relates to
Theorem 8.10.6 below.

Fig. 8.7 Detectors.

Left: Illustration of ReachK
S (T, s;B(s)). Right: Illustration of

⋃T
s=0 ReachK

S
(T, s;B(s)) which is the detector DetS(K,B)(T ).

As for the viable reachable map, the graph of the detector is the viability
kernel of the graph of the tube K(·) with the target chosen to be the graph
of the source tube B(·) under the auxiliary evolutionary system (8.27).

Theorem 8.10.6 [Viability Characterization of Detectors] The
graph of the detector DetS(K,B) is the capture basin of the target Graph(B)
viable in the graph Graph(K) under the auxiliary system (8.27):

Graph(DetS(K,B)) = Capt(8.27)(Graph(K),Graph(B))
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Furthermore, the detector is the unique tube D between the tubes B and
K satisfying the “bilateral fixed tube” property:

D(T ) =
⋃
s≤T

ReachD
S (T, s;B(s))

and the Volterra property

D(T ) =
⋃
s≤T

ReachK
S (T, s;D(s)) (8.30)

Proof. Indeed, to say that (T, x) belongs to the capture basin of target
Graph(B) viable in Graph(K) under the auxiliary system (8.27) means that
there exist an evolution ←−x (·) to the backward system

{
(i) ←−x ′(t) = −f(T − t,←−x (t),←−u (t))
(ii) ←−u (t) ∈ U(T − t,←−x (t))

starting at ←−x (0) := x and a time t∗ ≥ 0 such that
{

(i) ∀t ∈ [0, t∗], (T − t,←−x (t)) ∈ Graph(K)
(ii) (T − t∗,←−x (t∗)) ∈ Graph(B)

The second condition means that ←−x (t�) belongs to B(T − t�). The first one
means that for every t ∈ [t�, T ],←−x (t) ∈ K(T−t). This amounts to saying that
the evolution x(·) :=

∨
κ (T )←−x (·) = ←−x (T −·) is a solution to the parameterized

system (8.24), p. 309

x′(t) = f(t, x(t), u(t)) where u(t) ∈ U(t, x(t))

starting at ←−x (T − t�) ∈ B(T − t�), satisfying x(T ) = x and

∀t ∈ [T − t�, T ], x(t) ∈ K(t)

Setting s� := T − t�, this means that x ∈ DetS(K,B)(T ). Hence x ∈
ReachK

S (T, s�;x(s�)). This proves formula (8.29).
Theorem 10.2.5 implies that the graph of the detector is the unique graph

Graph(D) of a set-valued map D between Graph(B) and Graph(K) satisfying
{

Graph(D) = Capt(8.27)(Graph(D),Graph(B))
= Capt(8.27)(Graph(K),Graph(D))

and thus formula (8.30). ��
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We shall extend this concept of detection tubes to travel time tubes useful
in transportation engineering or in population dynamics.

We do not provide here more illustrations of straightforward adaptations
to the time-dependent case of other results gathered in this book to time-
independent case.

8.11 Observation, Measurements and Identification
Tubes

Detectors are extensively used in control theory, under various names,
motivated by different problems dealing with observations, measurements
and questions revolving around these issues.

For instance, there are situations when the initial state is not known: We
only know the evolutionary system, associated, for instance, with a time-
dependent control system

{
(i) x′(t) = f(t, x(t), u(t))
(ii) u(t) ∈ U(t, x(t)) (8.31)

The question arises to compensate for the ignorance of initial conditions.
Among various ways to do it, we investigate here the case when we have
access to some observation y(t) = h(x(t)) up to a given present time T ,
where h : X �→ Y is regarded as a measurement map (or a sensor map, an
observation map). In other words, we do not have direct access to the state
x(t) of the system, but to some measurements of observations y(t) ∈ Y of
the state.

The questions arises whether we can find at each present time T an
evolution x(·) governed by control system (8.31) satisfying

∀t ∈ [0, T ], y(t) = h(x(t))

More generally, we can take into account “contingent noise” in the
measurements, and assume instead that the measurement map is a set-valued
map H : X � Y associates with the

∀t ∈ [0, T ], y(t) ∈ H(x(t)) (8.32)

In summary, we have to detect evolutions governed by an evolutionary
system satisfying the “time-dependent viability conditions” (8.32) on each
time interval [0, T ]. This answers questions raised by David Delchamps in
1989:

Information Contained in Past Measurements. David Delchamps
(see State Space and Input-Output Linear Systems, [78, Delchamps]) regards
measurements as a deterministic memoryless entity that gives us a limited
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amount of information about the states. The problem is formulated as
follows: How much information about the current state is contained in
a long record of past (quantized) measurements of the system’s output?
Furthermore, how can the inputs to the system be manipulated so as to
make the system’s output record more informative about the state evolution
than might appear possible based on a cursory appraisal?

We shall study this problem in a more general setting, since condition
(8.32) can be written in the form

∀t ∈ [0, T ], x(t) ∈ K(t) := H−1(y(t))

Since the solutions we will bring to this problem depends upon the “tube”
t � K(t) and not on the fact that it is derived from a measurement map,
this is in this context that we shall look for the set ReachK

(8.4)(T,K(0)) of
sates x(T ) where x(·) is an evolution governed by (8.32) satisfying the “time-
dependent viability conditions” (8.32).

Furthermore, we may need also to regulate the evolutions satisfying the
above viability property by a regulation law associating with the observations
y(t) up to time T the controls u(t) performing such a task. This is a
solution to the parameter identification problem where controls are regarded
as state-dependent parameters to be identified, problems also called “inverse
problems” (see Sect. 10.9, p. 427).

8.11.1 Anticipation Tubes

Another example of tube K(t) is provided not only by past measurements,
but also by taking into account expectations made at each instant t for future
dates s := t+ a, a ≥ 0. For each current time t ≥ 0, we assume not only that
we know (through measurements, for instance) that the state x(t) belongs
to a subset P (t), but also that from x(t) starts a prediction a �→ x(t; a)
made at time t, solution to a differential inclusion d

dax(t; a) ∈ G(t;x(a))
(parameterized by time t) satisfying constraints of the form

∀a ≥ 0, x(t; a) ∈ P (t)

In other words, we take for tube the viability kernel

K(t) := ViabG(t,·)(P (t))

Taking such a tube K(·) as an evolving environment means that the
decision maker involves at each instant t predictions on the future viewed
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at time t concerning future evolutions a �→ x(t; a) governed by an anticipated
dynamical system d

dax(t; a) ∈ G(t;x(a)) viable on anticipated constraints
P (t). These anticipations are taken into account in the viability kernel K(t)
only, but are not implemented in the differential inclusion x′(t) ∈ F (t, x(t)).
When the dynamics depend upon the past, we have to study viability
problems under historical differential inclusions.



Chapter 9

Local and Asymptotic Properties
of Equilibria

9.1 Introduction

This chapter expands to the case of control and regulated systems some
central concepts of “dynamical systems”, dealing with local and asymptotic
stability, attractors, Lyapunov stability and sensitivity to initial conditions,
equilibria, Newton’s methods for finding them and the inverse function
theorem for studying their stability.

1. We begin by singling out two important and complementary concepts in
Sect. 9.2, p. 321. Permanence, a concept introduced in biomathematics by
Josef Hofbauer and Karl Sigmund is a stronger concept than the capture
of a target: not only we wish to reach the target in finite time, but stay
there forever. The permanence kernel is the subset of initial states from
which such an evolution exits (see [122, Hofbauer & Sigmund]). In some
sense, this is a “double viability” concept, so to speak: to remain in the
environment for some finite time, and, next, in the target forever.
In this framework, the interpretation of the subset of the environment as a
target is no longer suitable, it is better to regard it as a sub-environment,
defined by stronger or harder constraints, as a support for interpretation.
Therefore, the evolution either remains in this sub-environment forever.
when it reaches its viability kernel, or faces an alternative: either it
fluctuates in the sense that it leaves the sub-environment for some finite
time, it even fluctuates around it, but it finally reaches the viability kernel
of the sub-environment to remain there forever. Otherwise, all evolutions
leave both environments in finite time.
The crisis function introduced by Luc Doyen and Patrick Saint-Pierre
(see Sect. 9.2.2, p. 326) measures the minimal time spent outside the sub-
environment by evolutions starting from an initial state.
It turns out that these concepts of permanence and fluctuation are not only
interesting in themselves, but also quite useful for deriving several
interesting consequences: concepts of heteroclines asymptotically linking
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equilibria, or even, compact viable subsets. For Lorenz systems, for
instance, we compute numerically the fluctuation basin of the Lorenz
system. We provide in Sect. 9.2.4, p. 331 an important example of
qualitative cells, the monotonic cells. Assigning to each component a
monotonic behavior (for instance, the first component is decreasing, the
second one is increasing, the third one is increasing, etc.), the monotonic
cells are the subsets of states for which these monotonic properties
are satisfied, of which we consider the fluctuation basin (see Analyse
qualitative, [85, Dordan]).
Permanence and fluctuation will be used in the rest of this chapter.

2. Section 9.3, p. 344 deals with the concepts of limit sets, attractors,
attraction basins, their viability properties and some criteria implying the
non emptiness of viability kernels.
The main concept introduced is the limit map associating with any
evolution its limit set, made of cluster points of the evolution when
time goes to infinity. The core of a subset, most often, reduced to an
equilibrium, under the limit map is the set of evolutions converging to this
set, and the inverse image of this core is the attraction basin of this set,
which enjoys viability properties. These properties allow us to define in a
rigorous way the biological concept of spike evolutions, which converges
to an equilibrium, but after leaving a neighborhood of this equilibrium.
The attractor map assigns to each initial state the image by the limit set
map of all evolutions starting from this state, i.e., the collection of all
cluster points of all evolutions, which is called here the attractor (this
word is polysemous).
It enjoys viability properties that we shall uncover as well as localization
properties providing “upper set-valued estimates”, so to speak. For
instance, if the attractor of a set is contained in its interior, it is backward
invariant.

3. Next, we focus our attention in Sect. 9.4, p. 354 to the concepts of (local)
Lyapunov stability around an equilibrium or, more generally, around
a compact subset viable under the evolutionary system. We above all
measure the sensitivity on initial conditions by a sensitivity function,
which can be characterized in terms of viability kernels: the sensitivity
function assigns to each initial state a measure of its sensitivity to initial
conditions around it.

4. Since stability or instability results deal with equilibria, we devote
the short Sect. 9.5, p. 360 to their existence. We recall an equivalent
statement to the Brouwer Fixed Point theorem stating that viability
implies stationarity: it states that any compact convex subset viable
under a system contains, under adequate assumptions, an equilibrium.

5. The question arises whether we can adapt the Newton method for finding
equilibria to control systems. It turns out that this question is closely
related to viability techniques, as we shall see in Sect. 9.6, p. 361. They
allow us to find alternatives to the Newton method by characterizing maps
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different from the derivatives, which enjoy the same goal (convergence to
the equilibrium), the graph of which are viability kernels. They can thus
be computed by the Viability Kernel Algorithm.

6. We conclude this section with the adaptation to set-valued maps of
the Inverse Function Theorem, a cornerstone theorem of differential
calculus. It is not only an existence theorem, but also a stability result.
An equilibrium x is the solution to the equation f(x) = 0 or to the
inclusion 0 ∈ F (x). The Inverse Function Theorem states that for right
hand sides y ≈ 0 small enough, not only there exists a solution x to the
equation f(x) = y or to the inclusion F (x) � y, but also that there exists
a constant c such that ‖x− x‖ ≤ c‖y‖, which is a stability result.
The price to pay to obtain this conclusion is to assume that the derivative
of the map is continuous and invertible. Thanks to differential calculus of
set-valued maps, we adapt this result to set-valued maps by also assuming
that adequately defined derivatives of set-valued maps are (lower semi-)
continuous and invertible. Section 9.7, p. 365 provides the more recent
statement of a long series of results on metric regularity, proved thanks
to viability tools.

9.2 Permanence and Fluctuation

Reaching the target C ⊂ K of an environment in finite time is not the end of
the story: What happens next? If the target C is viable, then the evolution
may stay in C forever, whereas it has to leave the target in finite time if
the target is a repeller. In some sense, the time spent outside the subset C
measures the duration of crisis of not staying in C. This is what the crisis
function does, instead of measuring the minimal time spent to reach the
target C by the minimal time function ��

(K,C) (see Definition 4.3.4, p. 135).
If an evolution x(·) reaches the target in finite time at a point x ∈ ∂K ∩

ViabS(C), it may remain in C forever and, otherwise, if the evolution x(·)
reaches C at a point x ∈ ∂K\ViabS(C), the evolution will leave C in finite
time and enters a new period of crisis. This crisis may be endless if the
evolution enters the complement of the capture basin CaptS(K,C) of C.
Otherwise, the same scenario is played again, i.e., the evolution captures C.

Hence the complement C\ViabS(C) can itself been partitioned in two
subsets, one from which the evolutions will never return to the target (before
leaving K), the other from which at least one evolution returns and remains
in the viability kernel of the target after a crisis lasting for a finite time
of crisis. Luc Doyen and Patrick Saint-Pierre introduced and studied the
concept of crisis function to measure the time spent in K but outside C by
evolutions x(·) ∈ S(x).
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9.2.1 Permanence Kernels and Fluctuation Basins

Evolutions x(·) ∈ K(K,C) viable in K until they reach the target C in finite
time (see Definition 2.2.3, p. 49) do not tell us what happens after they hit
the target. Here, the idea is not so much to regard C ⊂ K as a target,
but rather as a cell (see Sect. 9.2.4, p. 331) or a sub-environment defined
by stronger viability constraints and to investigate interesting behaviors of
evolutions regarding the sub-environment C.

We adapt the concept of permanent evolution introduced in biomathe-
matics by Josef Hofbauer and Karl Sigmund and the concept of fluctuating
evolution around C introduced by Vlastimil Krivan in the ecological frame-
work of carrying capacity:

Definition 9.2.1 [Permanent and Fluctuating Evolutions] Let us
consider two subsets C ⊂ K ⊂ X. We denote by:

1. P(K,C) ⊂ C(0,+∞;X) the subset of evolutions viable in K until they
reach C in finite time and then, are viable in C forever, called permanent
evolutions in C viable in K:

∃ T ≥ 0 such that x(s) ∈ K if s ∈ [0, T ] and x(t) ∈ C if t ≥ T

2. F(K,C) ⊂ C(0,+∞;X) the subset of evolutions viable in K leaving C in
finite time whenever they reach it, called fluctuating evolutions around
C viable in K:

∀ t ≥ 0, x(t) ∈ K and ∃ T ≥ t such that x(T ) ∈ K \ C

For the sake of brevity, we shall not always mention that permanent
evolutions in C or fluctuating around C are viable in K: this will be assumed
implicitly whenever no risk of confusion happens.

Remark: Bursting and Recurrent Evolutions.
The concept of fluctuating evolution conveys the notion introduced in

neuro-sciences and bio-mathematics under the name bursting evolution, which
have to leave the given cell in finite time (to burst, to break open or apart
suddenly) again and again (see [101, Françoise] for more details).

By setting D := K\C, fluctuating evolutions aroundC are called recurrent
evolutions in D in the dynamical system literature. Since viable evolutions
which are not permanent in C are fluctuating around C and vice-versa, and
since the concept of fluctuating evolution is prevalent in bio-mathematics, we
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chose to exchange the concept of recurrent evolution in a set with the concept
of fluctuating evolution around its complement. ��

Lemma 9.2.2 [Partition of the Set of Viable Evolutions] Recall that
V(K) ⊂ C(0,+∞;X) denotes the set of evolutions viable in K ⊂ X. Then,
for every subset C ⊂ K, the families P(K,C) of permanent evolutions in
C and F(K,C) of fluctuating evolutions around C form a partition of the
family V(K) of viable evolutions in K:

V(K) = P(K,C) ∪∅ F(K,C)

Recall that a partition of V(K) = P(K,C) ∪∅ F(K,C) means

V(K) = P(K,C) ∪ F(K,C) and P(K,C) ∩ F(K,C) = ∅

As for viability kernels and absorption basins which are respectively the
inverse image of the family of viable evolutions in K and the core of the set
of capturing evolutions under the evolutionary system (see Definition 18.3.3,
p. 720), we suggest to use the Partition Lemma 18.3.4, p. 721 for introducing
the inverse image of the family of permanent evolutions in C and the core
of the family of fluctuating evolutions around C. Indeed, it states that the
partition V(K) = P(K,C) ∪∅ F(K,C), with P(K,C) ∩ F(K,C) = ∅ implies
that the inverse image S−1(P(K,C)) of P(K,C) and the core S�1(F(K,C))
form a partition of the core S�1(V(K)) of V :

⎧⎨
⎩
S�1(V(K)) = S−1(P(K,C)) ∪ S�1(F(K,C))
and
S−1(P(K,C)) ∩ S�1(F(K,C)) = ∅

We recognize the invariance kernel InvS(K) := S�1(V(K)) in the left-hand
side (see Definition 2.11.2, p. 89). It is convenient to attribute names to the
subsets appearing in the right hand side:

Definition 9.2.3 [Permanence Kernel and Fluctuation Basins of
a Set] The permanence kernel PermS(K,C) of a nonempty subset C ⊂ K
(viable in K) under the evolutionary system S is the subset of initial states
x ∈ K from which starts at least one permanent evolution in C viable in
K. In other words, it is the set of initial states from which starts at least
one evolution viable in K and eventually viable in C forever.
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The fluctuation basin FluctS(K,C) of a nonempty subset C ⊂ K
(viable in K) under the evolutionary system S is the subset of initial states
x ∈ K from which all evolutions x(·) ∈ S(x) are viable in K and fluctuate
around C forever (see Definition 9.2.1, p. 322).

We observe that

ViabS(C) ⊂ PermS(K,C) = CaptS(K,ViabS(C)) ⊂ ViabS(K) (9.1)

These definitions readily imply that

Lemma 9.2.4 [Viability Characterization of Permanence Kernels
and Fluctuation Basins] The permanence and fluctuation basins form a
partition of the invariance kernel of K:

InvS(K) = PermS(K,C) ∪∅ FluctS(K,C) (9.2)

If K is assumed to be invariant, it is the unique partition K = P ∪∅ Q
such that

ViabS(C) ⊂ P, P is viable and Q is invariant

In this case,
FluctS(K,C) = InvS(K \ViabS(C))

Recall that (9.2) means that
⎧⎨
⎩

InvS(K) = PermS(K,C) ∪ FluctS(K,C)
and
PermS(K,C) ∩ FluctS(K,C) = ∅

Proof. The first statement is a consequence of Partition Lemma 18.3.4, p. 721
and the second is the translation in plain language of CaptS(K,ViabS(C)).

By Theorem 10.2.7, p. 382, the capture basin CaptS(K,ViabS(C))
is the unique subset P between ViabS(C) and K such that P =
CaptS(P,ViabS(C)) and CaptS(K,P ) = P . By taking complements, this
means that Q := K \P = InvS(�P, �K). Since K is assumed to be invariant,
this means that K = InvS(K). Hence

ViabS(C) ⊂ P, P is viable and K is invariant

When K is invariant, then
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{
FluctS(K,C) = K ∩

(
�CaptS(K,ViabS(C))

)
= K ∩ InvS(�ViabS(C), �K) = InvS(K \ViabS(C))

because, to say that x ∈ K ∩ InvS(�ViabS(C), �K) means that all
evolutions starting from x are either viable in �ViabS(C) forever or until they
reach K in finite time. Since K is assumed to be invariant, this possibility
never happens. ��

Proposition 9.2.5 [Case when the viability kernel and permanence
kernels of the target coincide] Let us assume that the subsets C and K
are closed, that C has a nonempty interior and that K is invariant. The
following statements are equivalent:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) PermS(K,C) = ViabS(C)
(ii) ViabS(C) ⊂ Int(C)
(iii) ∂C ⊂ FluctS(K,C)
(iv) K \ViabS(C) = InvS(K \ViabS(C)) is invariant
(v) ViabS(C) is backward invariant with respect to K

(see Definition 10.5.3, p. 401.)

(9.3)

Proof. 1. Assume that ViabS(C) ⊂ Int(C). We shall prove that

∂C ∪ (K \ViabS(C)) ⊂ FluctS(K,C)

Indeed, let us take x ∈ K \ ViabS(C) and any evolution x(·) ∈ S(x). It
is viable in K since K is assumed to be invariant. Let �(K,C)(x(·)) the
first time when x(·) reaches C at its boundary ∂C. Since ViabS(C) ⊂
Int(C), we deduce that x� := x(�(K,C)(x(·))) does not belong to the
viability kernel of C, so that every evolution starting from x� leaves C
in finite time, including the evolution x(·) ∈ S(x). This implies that x ∈
FluctS(K,C).
Furthermore, since ∂C ⊂ K \ Int(C) ⊂ K \ViabS(C), we infer that

∂C ⊂ FluctS(K,C)

2. Condition ∂C ⊂ FluctS(K,C) implies that the viability kernel of C is
contained in its interior. If not, there would exist some x ∈ ViabS(C)∩∂C.
Since x ∈ ViabS(C), there exists x(·) ∈ S(x) such that, for all t ≥ 0,
x(t) ∈ K. Since x ∈ ∂C ⊂ FluctS(K,C), all evolutions starting from
x, and in particular x(·) ∈ S(x), leave C in finite time. We obtained a
contradiction.
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3. Consequently, condition ∂C ⊂ FluctS(K,C) implying that the viability
kernel of C is contained in its interior, it implies that K \ ViabS(C) ⊂
FluctS(K,C).

4. Condition K \ ViabS(C) ⊂ FluctS(K,C) is equivalent, by complemen-
tarity, to PermS(K,C) ⊂ ViabS(C). Actually, equality PermS(K,C) =
ViabS(C) holds true because ViabS(C) ⊂ PermS(K,C) by (9.1), p. 324.

5. This equality implies that K \ViabS(C) = FluctS(K,C). Lemma 9.2.4,
p. 324 implies that since K in invariant, FluctS(K,C) = InvS(K \
ViabS(C)).

6. Equality ViabS(C) = PermS(K,C) = CaptS(K,ViabS(C)) is equivalent
to say that the viability kernel of C is backward invariant relatively to K,
thanks to Theorem 10.5.6, p. 402. ��

Remark: Barriers. Barrier Theorem 10.5.19, p. 409 implies that when-
ever the evolutionary system is upper semicompact and lower semicontinuous:

1. Int(C) ∩ ∂ViabS(C) exhibits the barrier property: For every x ∈ Int(C) ∩
∂ViabS(C), all evolutions viable in the viability kernel ViabS(C) are
actually viable in its boundary as long as they remain in the interior
of C,

2. Int(K \ ViabS(C)) ∩ (∂PermS(K,C) \ ViabS(C)) exhibits the barrier
property: For every x ∈ Int(K \ViabS(C))∩∂PermS(K,C), all evolutions
viable in the permanence kernel PermS(K,C) are actually viable in its
boundary as long as they remain in the interior of K \ViabS(C). ��

9.2.2 The Crisis Function

In the same way that the exit functions τ �K and the minimal time functions
��

(K,C) “quantify” the concepts of viability kernels and capture basins, the
crisis function υ(K,C) “quantifies” the concept of permanence kernel, which
is its domain (see Definition 9.2.1, p. 322).

31 [Wei Ji = Danger-Opportunity] In Chinese, the two ideograms
viability translating the word crisis have an interesting meaning in
terms of viability: The first ideogram, wei-xian, means “danger”, the second
one, “ji hui”, means “opportunity”. The Greek etymology “Krisis” means
decision.

Consider a target C ⊂ K contained in the environment K assumed to be
invariant. Starting from the viability kernel, the minimal time spent outside
C is equal to zero, starting from the permanence kernel outside the viability
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kernel, it will be strictly positive, but finite, and infinite outside the
permanence kernel. The crisis function measures this minimal finite time
of an evolution in the permanence kernel.

Definition 9.2.6 [Crisis Function] The crisis function υ(K,C)(x) : X �→
R+ ∪ {+∞} associates with x(·) its crisis time defined by

υ(K,C)(x) := inf
x(·)∈S(x)

meas{t ≥ 0 | x(t) ∈ K\C}

By introducing the characteristic function χK\C of the complement of
K\C, we observe that

υ(K,C)(x) = inf
x(·)∈S(x)

∫ +∞

0

χK\C(x(τ))dτ

This is an intertemporal minimization problem in infinite horizon.
As a consequence, Theorem 4.7.2, p. 156 implies that the crisis function

can be characterized in terms of the viability kernel of the auxiliary system:
⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = −χK\C(x(t))

where u(t) ∈ U(x(t))
(9.4)

subject to the constraint

∀t ≥ 0, (x(t), y(t)) ∈ K × R+

Proposition 9.2.7 [Viability Characterization of the Crisis Func-
tion] The crisis function is related to the viability kernel of K×R+ under
auxiliary system (9.4) by the following formula

υ(K,C)(x) = inf
(x,y)∈Viab(9.4)(K×R+)

y

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The crisis function υ(K,C) is the smallest positive solution to the Hamilton–
Jacobi–Bellman partial differential equation
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) ∀x ∈ K\C, inf
u∈U(x)

n∑
i=1

∂v(x)
∂xi

fi(x, u) + 1 = 0

(ii) ∀x ∈ C, inf
u∈U(x)

n∑
i=1

∂v(x)
∂xi

fi(x, u) = 0 ��

Example. The epigraph of the crisis function under the Verhulst-Schaeffer

metasystem x′(t) = x(t)
(√

α

√
2 log

(
b
x(t)

)
− v(t)

)
and some evolutions are

described in Fig. 7.8 in Chap. 7, p. 247.

9.2.3 Cascades of Environments

From now on, we shall assume once and for all in this section that the
environment K is invariant, so that we will be able to use its partition
K = PermS(K,C)∪∅ FluctS(K,C) in two disjoint subsets PermS(K,C) and
FluctS(K,C). The above partition can be interpreted as follows:

Lemma 9.2.8 [Paradise, Purgatory and Hell] Assume that K is
invariant under an evolutionary system S. Given a subset C ⊂ K regarded
as a cell, it can be divided into:

1. the Hell: C ∩ FluctS(K,C) from which all evolutions x(·) fluctuate
around C forever,

2. the Purgatory: (C ∩ PermS(K,C))\ViabS(C) from which at least one
evolution leaves C in finite time before returning to C in finite time
and then remaining in C forever, but some evolutions may leave it to
enter hell FluctS(K,C) without being able to return (semi-permeability
property),

3. the Paradise: ViabS(C), from which starts at least one evolution
viable in C forever, but some evolution may leave it (semi-permeability
property).

The Paradise is eternal, but does not guarantee that all evolutions remain
in the paradise eternally and without interruption. Paradise ViabS(C) is
lost whenever C is a repeller. The Purgatory is lost whenever ViabS(C) =
PermS(K,C), so that, in this case, outside Paradise is Hell, never allowing
an evolution to enter C and remaining in it forever.

We can extend this result to the case in which the environment K is
covered by an (increasing) cascade of N + 1 sub-environments K0 ⊂ K1 ⊂
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· · · ⊂ Ki ⊂ · · · ⊂ KN := K. Each cellKi can describe more severe constraints
increasingly. One assumes in this context that violating the constraints
defining a sub-environment is dangerous, but not necessarily lethal. The
candidate to be the “paradise” of this cascade is naturally the viability kernel
C0 := ViabS(K0) of K0, since from each state x ∈ C0 starts at least one
evolution viable in K0, and thus, in all other cells Ki for i ≥ 1.

However, there are several ways to reach this paradise from K0 according
to the position of the initial state outside K0:

Proposition 9.2.9 [Viability Kernel of a Cascade of Cells] Let us
associate with an (increasing) cascade of “cells” K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂
· · · ⊂ KN := K of N + 1 environments:

• the increasing sequence of subsets Ci := CaptS(Ki, Ci−1) between Ci−1

and Ki

• the sequence of disjoint subsets Pi := (Ci+1 \ Ci) ∩Ki of Ki.

Then the ultimate environment K0 can be partitioned as the union of C0,
the subsets Pj ∩K0 and K0 \CN . From C0, at least one evolution remains
viable in C0 forever. Starting from Pj ∩K0, j = 0, . . . , N − 1, at least one
evolution will leave successively the cells Pj ∩ Kl in increasing order for
l = 0, . . . , j, reach the cell Cj+1 and then, all cells Ck ∩ Pk−1 in decreasing
order k = j, . . . , 1 and reach the paradise in which it can remain viable
forever. Starting from K0 \ CN , all evolutions fluctuate around K0.

Proof. Indeed, starting from Ck, at least one evolution will cross successively
for periods of finite duration the m-th order “purgatories” in decreasing order
to reach finally the paradise C0 in which he can stay forever.

Starting from Pj ∩Ki for 0 ≤ j ≤ i, at least one evolution starting from
Pj ∩ Ki will cross successively for periods of finite duration the lth-order
purgatories in increasing order i ≤ l ≤ j to reach the (j + 1)-th purgatory
from which the evolution will go down through better and better purgatories
before reaching in finite time C0 in which he can remain viable forever.

Therefore, the ultimate environmentK0 can be partitioned in the paradise
C0, a sequence of k-th order purgatories Pj∩K0 and the ultimate hell K0\CN .
From C0, at least one evolution remains viable in C0 forever. Starting from
Pj ∩K0, j = 0, . . . , N − 1, at least one evolution will leave successively the
cells Pj ∩Kl in increasing order for l = 0, . . . , j, reach the cell Cj+1 and then,
all cells Ck ∩ Pk−1 in decreasing order k = j, . . . , 1 and reach the paradise in
which it can remain viable forever.

The environment K being assumed invariant, the complement of CN in
K is the set of initial states from which all evolutions are fluctuating around
CN−1, and thus, in K0. ��
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Remark. Barrier Theorem 10.5.19, p. 409 implies that whenever the
evolutionary system is upper semicompact and lower semicontinuous, then,
for all i = 1, . . . , N , Int(Ki\Ci−1)∩(∂Ci\Ci−1) exhibits the barrier property:
For every x ∈ Int(Ki \ Ci−1) ∩ ∂Ci, all evolutions viable in Ci are actually
viable in its boundary as long as they remain in the interior of Ki \Ci−1. ��

The concepts of fluctuation basins around one subset can easily be
extended to the concept of fluctuation basins between two, or even, a finite

number of cells Ki coveringK (in the sense that K = K1∪K2 or K =
n⋃
i=1

Ki),

regarded as “cells” (as qualitative cells of Sect. 9.2.4, p. 331 for example),
because:

Proposition 9.2.10 [Fluctuation Between Two Subsets] Let K1 ⊂ K
and K2 ⊂ K be two closed subsets covering an invariant subset K: K =
K1 ∪K2. Then the intersection

{
FluctS(K;K1,K2) := FluctS(K,K1) ∩ FluctS(K,K2)
= InvS(K \ (ViabS(K1) ∪ViabS(K2)))

of the fluctuation basins of each or the cells Ki (i = 1, 2) is the set of initial
states x ∈ K from which all evolutions x(·) ∈ S(x) viable in K fluctuate
back and forth between K1 to K2 in the sense that the evolution leaves
successively K1 and K2 in finite time.

If we assume furthermore that ViabS(Ki) ⊂ Int(Ki), i = 1, 2, then

FluctS(K;K1,K2) := K \ (ViabS(K1) ∪ViabS(K2))

We can extend the situation where the subset K is covered by two cells to
the case when K =

⋃n
i=1Ki is covered by n “cells” Ki ⊂ K:

Proposition 9.2.11 [Fluctuation between Several Cells] Assume that
an invariant environment K =

⋃n
i=1 Ki is covered by n “cells” Ki ⊂ K.

Then the intersection{
FluctS(K;K1, . . .Ki . . . ,Kn) :=

⋂n
i=1 FluctS(K,Ki)

= InvS(K \
⋃n
i=1(ViabS(Ki)))

of the fluctuation basins of the cells Ki is the set of initial states x ∈ K such
that, for any evolution x(·) ∈ S(x), for any cell Ki, i = 1, . . . , n and for
any x(t) ∈ Ki, there exist a different cell Kj and a finite time tji > t such
that x(tji ) ∈ Kj. If we assume furthermore that ViabS(Ki) ⊂ Int(Ki), i =
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1, . . . , n, then

FluctS(K;K1, . . . ,Kn) : = K \
n⋃
i=1

(ViabS(Ki))

Proof. To say that x belongs to the intersection of the fluctuation basins of
the cells Ki amounts to saying that for every cell Ki, any evolution x(·) ∈
S(x) fluctuates around Ki, i.e., that whenever x(t) ∈ Ki at some t, there

exists some t� ≥ t such that x(t�) ∈ K \ Ki. Since K =
n⋃
j=1

Kj, we infer

that K \Ki =
n⋃
j �=i

(Kj \Ki). This means that there exists j �= i such that

x(t�) ∈ Kj \Ki.
The second statement follows from Proposition 9.2.5, p. 325 stating that

whenever the viability kernel ViabS(Ki) ⊂ Int(Ki) is contained in the interior
of Ki, then FluctS(K,Ki) = InvS(K \ViabS(Ki)). ��

This justifies the introduction of the definition

Definition 9.2.12 [Fluctuation Basins] Assume that an invariant envi-
ronment K =

⋃n
i=1 Ki is covered by n “cells” Ki ⊂ K. The intersection

FluctS(K;K1, . . .Ki . . . ,Kn) :=
n⋂
i=1

FluctS(K,Ki)

of the fluctuation basins of the cells Ki is called the fluctuation basin of the
covering K =

⋃n
i=1 Ki by n “cells” Ki ⊂ K.

9.2.4 Fluctuation Between Monotonic Cells

9.2.4.1 Monotonic Cells

Consider the control system (f, U) of the form (2.10):

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
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Definition 9.2.13 [The Equilibrium Map] A state e is an equilibrium
if there exists at least one regulon u ∈ U(e) such that the associated velocity
f(e, u) = 0 vanishes to 0, so that the stationary evolution t �→ x(t) := e is
governed by this system. Given a subset K, we say that an equilibrium e is
viable in K if it belongs to K. The set-valued map U∝ : X � U defined by

U∝(x) := {u ∈ U(x) such that f(x, u) = 0}

associates with any state x the (possibly empty) subset U∝(x) of regulons
for which x is an equilibrium, called the equilibrium map.

Observe that a state e is an equilibrium if and only if the associated
singleton {e} is viable under the system (f, U) (so that they are minimal
viable sets, see Definition 10.7.10, p. 421). The study of the inverse U−1

∝
of the equilibrium map, associating with any regulon the set of associated
equilibria, is the topic of bifurcation and of catastrophe theories.

Monotonic cells are subsets on which the monotonicity behavior of the
evolutions is the same, i.e., on which the sign of the velocities are the same.

For that purpose, we introduce the family of n-signs a ∈ A := {−,+}n
with which we associate the cones

R
n
a := {u ∈ R

n | sign(ui) = ai or 0, i = 1, . . . , n}

Definition 9.2.14 [Monotonic Cell Maps] For studying the functions
t �→ sign(x′(t)) associated with solutions x(·) of (2.10), we associate with
any n-sign a ∈ A := {−,+}n:

1. the monotonic map

Ua(x) := {u ∈ U(x) such that f(x, u) ∈ R
n
a}

2. its domain, called the monotonic cell

K(a) := {x ∈ K such that Ua(x) �= ∅}

Indeed, the “quantitative” states x(·) evolving in a given monotonic cell
K(a) share the same monotonicity properties because, as long as x(t) remains
in K(a),

∀i = 1, . . . , n, sign
(
dxi(t)
dt

)
= ai
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Hence,
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) K =
⋃
a∈A

K(a), and ∀x ∈ K, U(x) =
⋃
a∈A

Ua(x)

(ii) K0 :=
⋂
a∈A

K(a) is the set of (viable) equilibria

U∝(x) =
⋂
a∈A Ua(x) is the equilibrium map

Indeed, to say that x belongs to K0 means that, for all sign vectors a ∈
A := {−,+}n, f(x, u) ∈ R

n
a , so that, f(x, u) = 0, i.e., that x is an equilibrium.

Lemma 9.2.15 [Viable Evolutions in Monotonic Cells] Assume that
K is compact. Then whenever x ∈ ViabS(K(a)), any evolution x(·) ∈ S(x)
viable in the monotonic cell K(a) converges to an equilibrium.

Proof. Indeed, since the evolution x(·) is viable in a monotonic cell K(a),
the signs of the derivatives x′i(t) of the components xi(t) of the evolutions
are constant, so that the numerical functions t �→ xi(t) are monotone and
bounded, and thus, convergent. ��

The same proof than the one of Proposition 9.2.11 implies the following

Proposition 9.2.16 [Monotonic Fluctuations] Let us consider the
covering of K =

⋃
a∈{−,+}n K(a) by the “monotonic cells” K(a) ⊂ K.

Then

FluctS (K; {Ka}a∈A) = InvS

⎛
⎝K \

⋃
a∈{−,+}n

ViabS(K(a))

⎞
⎠

is the set of initial states x ∈ K such that, for all evolutions x(·) ∈ S(x)
viable in K, for all t ≥ 0, there is a finite time s > t such that the sign of
the derivative of one component of the evolution changes.
When K is invariant, so is the subset

FluctS (K; {Ka}a∈A) = K \
⋃

a∈{−,+}n

ViabS(K(a))
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Fig. 9.1 Monotonic Fluctuations, Proposition 9.2.16.

Fig. 9.2 The Viability Kernel of the Monotonic Cell K−+− under the Lorenz
System.

This Figure shows K+−+ (in light), and the corresponding ViabS(K−+−, C)
for the cell. Points in ViabS(K−+−, C) (in dark) are viable in the set K+−+

(in light).
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Fig. 9.3 Viability Kernels of Monotonic Cells under the Lorenz System.

Each of the subfigures displays the 8 viability kernels ViabS(K(a)) of the
monotonic cells of the cube under the Lorenz system. The viability kernels
of the monotonic cells K+++ and K−−+ are reduced to the equilibrium set
made of the three equilibria. The solutions starting from the viability kernel
of a monotonic cell converge to an equilibrium and the solutions starting
outside leave the cell in finite time.
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Figure 9.3 shows the computation of ViabS(K(a), C) for K(a) :=
K+++, K+−+, K−−+, etc. Each subfigure shows the set K(a) for the
corresponding a (light set). For example for the top right subfigureK−+− this
set represents the set of points x such U−+−(x) �= ∅. The dark set corresponds
to ViabS(K−+−, C).

Thus, a point in the complement of the capture basin of the union of all
dark sets is the starting point of an evolution which fluctuates between all
orthants K+++, K+−+, K−−+, etc.

9.2.4.2 Example: Fluctuation Basin Under the Lorenz System

One of the striking features of evolutions governed by the Lorenz system is
the property that, apparently, all of them “fluctuate” between the half-cube
containing one of the nontrivial equilibria to the half-cube containing the
other equilibrium. Actually, it is the main flavor or the most spectacular
feature encapsulated in the concept of “chaotic property” of the Lorenz
system, a concept not rigourously defined in the literature. This fluctuation
property is not true for all initial states: none of the three equilibria fluctuate!
Hence the desire to know what is the fluctuation basin between those two half-
cubes arises. The Viability Kernel Algorithms allowing to compute viability
kernels and capture basins, hence permanence kernels, and thus, fluctuation
basins, one can compute indeed this fluctuation basin.

The reason why apparently all evolutions fluctuate is due to the strong
sensitivity on initial conditions (see Definition 9.4.3, p. 355). Using standard
numerical methods, even if an approximate evolution belongs to the com-
plement of the fluctuation basin, the next steps have a high chance to enter
the fluctuation basin. However, as displayed in the following Fig. 9.4, p. 337,
the Viability Kernel Algorithm allows us to precisely locate an initial state
in the union of the permanent basins and to illustrate that these evolutions
do not fluctuate at all, but, rather, that they are viable in the complement
of the fluctuation basin. Otherwise, starting from the complement of the
permanence kernel, the evolution does fluctuate.
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Fig. 9.4 Fluctuation Basin under the Lorenz System.

Forward Viability Kernel of K−1 and K+
1 . For clarity, the viability kernels of

K−1 and K+
1 are separated in this figure. The evolutions starting from each of

these viability kernels remain in them, and do not fluctuate by construction.
Observe the structure of these viability kernels. Starting outside the viability
kernel of C−1 , the evolutions reach C+

1 in finite time. Either they reach it in
the viability kernel of C+

1 , and they do not fluctuate anymore, or they reach
the capture basin of C−1 viable in K, and they fluctuate once more. They
fluctuate back and forth from C−1 to C+

1 if they do not belong to the capture
basin of the union of the two viability kernels, thanks to Proposition 9.2.10.

Fig. 9.5 Fluctuation Basin under the Lorenz System.

Union of the Forward Viability Kernel of K−1 and K+
1 . The fluctuation is the

complement of the invariant envelope InvS(K \ (ViabS(K1) ∪ ViabS(K2)))
of the union of viability kernels of the two half-cubes.
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9.2.5 Hofbauer-Sigmund Permanence

Consider an evolutionary system S : X � C(0,+∞;X) and a closed
environment K ⊂ X . We first observe that the viability of the boundary
implies the viability of the environment:

Lemma 9.2.17 [Viable or Invariant Boundaries] If the boundary of
a closed subset is viable (respectively invariant), so is the subset itself.

Fig. 9.6 Proof of Lemma 9.2.17.

Proof. Indeed, if x ∈ Int(K), any evolution x(·) ∈ S(x) starting from x is
either viable in the interior of K, and thus in K, or otherwise, leaves K at a
finite time T at a point x(T ) of its boundary. Then we can concatenate the
evolution with an evolution viable in ∂K, so that the concatenated evolution
is viable in K. Then K is viable.

The converse is not true, naturally. However, Theorem 9.2.18, p. 339
expresses the boundary as viability kernel of some closed subset C such that
∂K ⊂ C ⊂ K under adequate assumptions. Hence we study in more details
the viability properties of the boundary ∂K := K\

◦
K= K ∩ �

◦
K= K ∩ �(K)

of K where
◦
K:= Int(K) denotes the interior of K (see Definition 10.5.14,
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p. 407). In order to avoid the trivial case ∂K = K, we assume once and for
all in this section that the interior of K is not empty.

The problem to solve it to characterize such subsets C satisfying the
property ∂K = ViabS(C).

This problem is important for several purposes:

• First, if this property is true, then the boundary ∂K of K inherits the
properties of viability kernels presented in this book, and in particular, can
be computed (see the computation of Julia sets, which are the boundaries
of fill-in Julia sets, in Fig. 2.5, p. 79).

• Second, the characterization is interesting in itself, since it is (up to a

minor detail) equivalent to saying that the interior
◦
K of K fluctuates

around
◦
K ∩C:

◦
K= FluctS(K,

◦
K ∩C). This means that the interior

◦
K is

invariant and that every evolution x(·) ∈ S(x) starting from x ∈
◦
K remains

in the interior of K and for any t ≥ 0, there exists a finite time t� ≥ t such
that x(t�) /∈

◦
K ∩C.

Theorem 9.2.18 [Characterization of Viable Boundaries] Let us
consider an evolutionary system S and two closed subsets C ⊂ K such that
the boundary ∂K ⊂ C. Then the two following statements are equivalent:

• the boundary ∂K is equal to the viability kernel of C:

∂K = ViabS(C) (9.5)

• the boundary of K is contained in the viability kernel of C and the
interior

◦
K:= Int(K) of K is invariant and fluctuates around

◦
K ∩C

of C in the interior of K:
{

(i) ∂K ⊂ ViabS(C)

(ii)
◦
K = FluctS(

◦
K,

◦
K ∩C)

(9.6)

Observe that whenever the viability of the boundary is satisfied, then,
property (9.6)(i) is satisfied for any subset C such that ∂K ⊂ C ⊂ K, because
whenever the boundary is viable, it is contained in the viability kernel of any
larger set C:

∂K = ViabS(∂K) implies that ∂K ⊂ ViabS(C)
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Proof.

• Assume that ∂K = ViabS(C) and derive that
◦
K⊂ AbsS(

◦
K,

◦
K \C). Il not,

there would exist some x ∈
◦
K \AbsS(

◦
K,

◦
K \C) ⊂

◦
K. By Lemma 2.12.2,

p. 92, we use equality

�(AbsS(
◦
K,

◦
K \C)) = ViabS(C ∪ �

◦
K, �

◦
K)

to derive that x belongs to
◦
K ∩ViabS(C∪�

◦
K, �

◦
K) ⊂ C. Therefore, there

exists an evolution x(·) ∈ S(x) viable in C forever or up to some time T
when x(T ) belongs to the boundary ∂K. In this case, since ∂K ⊂ ViabS(C)
by assumption, the evolution can be extended as the concatenation of x(·)
viable in C up to time T and an evolution y(·) ∈ S(x(T )) viable in C
forever, so that this concatenated evolution starting from x is viable in C.
Hence x belongs to ViabS(C), which, by assumption, is contained in ∂K.

This is a contradiction to the fact that x was chosen in
◦
K. We thus have

proved that property ∂K = ViabS(C) implies that
◦
K⊂ AbsS(

◦
K,

◦
K \C),

and actually,
◦
K= AbsS(

◦
K,

◦
K \C) on one hand, and that, on the other

hand, the obvious inclusion ∂K ⊂ ViabS(C) holds true.

• To prove the converse statement, assume that both inclusions
◦
K ⊂AbsS(

◦
K,

◦
K \C) and inclusion ∂K ⊂ ViabS(C) hold true and derive that
ViabS(C) ⊂ ∂K, and thus, that ∂K = ViabS(C). Indeed, since

ViabS(C ∪ �
◦
K, �

◦
K) = �(AbsS(

◦
K,

◦
K \C)) ⊂ �

◦
K

then K ∩ ViabS(C ∪ �
◦
K, �

◦
K) ⊂ K ∩ �

◦
K=: ∂K whenever K is closed.

Obviously, since ViabS(C) ⊂ K and ViabS(C) ⊂ ViabS(C ∪ �
◦
K, �

◦
K),

we infer that ViabS(C) ⊂ K ∩ ViabS(C ∪ �
◦
K, �

◦
K), and thus, that

ViabS(C) ⊂ ∂K. Since we assumed the opposite inclusion, we deduce that
ViabS(C) = ∂K.

• In this case,
◦
K= FluctS(

◦
K,

◦
K ∩C). Indeed, whenever the evolution x(·)

leaves
◦
K ∩C at x(t�) a given time t� (which always happens in finite time),

either x(t�) ∈ ViabS(
◦
K \C), and thus, x(·) remains in

◦
K \C forever, or it

enters
◦
K ∩C ⊂

◦
K in finite time t1. Hence there exists another finite instant

t�1 ≥ t1 such that x(t�1) ∈
◦
K \C, from which either the evolution remains

in
◦
K \C forever or until a finite time t2 ≥ t�1 where x(t)�2 ∈

◦
K ∩C and so

on. ��

Remark. Proposition 10.5.17, p. 409 also implies that K exhibits the
backward barrier property: every backward evolution starting from the
boundary ∂K viable in K is actually viable in the boundary ∂K. ��
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We illustrate Theorem 9.2.18, p. 339 by computing Julia sets in Fig. 2.5,
p. 79, which are by Definition 2.9.6, p. 76 boundaries of viability kernels, and
thus, can be computed as the viability kernel of the complement of a smaller
absorbing ball in K (in the sense that K = Viab(K \ C)).

As a consequence, we obtain:

Corollary 9.2.19 [Permanence and Fluctuation Properties] Let
C ⊂ K be a closed subset of a closed environment K such that ∂K =
ViabS(C). Then the interior of K is invariant and:

1. If
◦
K \C is invariant, all evolutions starting from the interior of K reach
◦
K \C in finite time and remain in

◦
K \C, (Permanence Property)

2. If
◦
K \C is a repeller, all evolutions starting from the interior of K

“fluctuate” between
◦
K ∩C and

◦
K \C in the sense that they alternatively

reach and leave
◦
K \C in finite time (Fluctuation Property).

9.2.6 Heteroclines and Homoclines

Definition 9.2.20 [Heteroclinic and Homoclinic Basins] Let B ⊂ K
be a subset regarded as a source, C ⊂ K be a subset regarded as a target.
The connection basin

ClineS(K, (B,C)) := ConnS(K, (Viab←−S (B),ViabS(C)))

of K between the backward viability kernel of B and the forward viability
kernel of C (see Definition 8.5.1, p. 291) is called the heteroclinic basin
viable in K under the evolutionary system S. The viable evolutions passing
through initial states in the hetoroclinic basin are called heteroclines. If
B = C, the heteroclinic basin and heteroclines are called homoclinic basin
and homoclines respectively.

They exhibit the cumulated properties of connection basins (see
Sect. 10.6.2, p. 413) and permanence kernels since

ClineS(K, (B,C)) = Perm←−S (K,B) ∩ PermS(K,C) (9.7)
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We begin by studying an example:

Proposition 9.2.21 [Example of Clines] Assume that B ⊂ K and C ⊂
K are disjoint and that Viab←−S (K,B) ⊂ Int(B) (see Proposition 9.2.5,
p. 325). Then the cline ClineS(K, (B,C)) = ∅ is empty and the permanence
kernel

PermS(K,C) ⊂ Fluct←−S (K,B) (9.8)

is contained in the backward fluctuation basin of B. In other words, through
any x ∈ PermS(K,C) passes at time 0 one evolution fluctuating around B
before 0 and permanent in C after, which is, so to speak, a cline connecting
evolutions fluctuating around B to the viability kernel of C.

Consequently the cline is equal to

ClineS(K, (B,C)) = Fluct←−S (K,B) ∩ PermS(K,C)

“connects evolutions fluctuating around B in the past and arriving in finite
time to the viability kernel of B”.

Proof. Since Perm←−S (K,B) := Viab←−S (B) by Proposition 9.2.5, p. 325, then
ClineS(K, (B,C)) = Viab←−S (B) ∩ PermS(K,C). Let us assume that there
exists some x in this intersection. There exists one backward evolution←−x (·) ∈←−S (x) viable in Viab←−S (B) and one forward evolution −→x (·) ∈ S(x) viable in
K and reaching ViabS(C) in finite time T at some point y. Since ViabS(C)∩
Viab←−S (B) = ∅ because we have assumed that B ∩ C = ∅, then y belongs to
K \ Viab←−S (B) = Fluct←−S (K,B). Therefore, all backward evolutions starting
from y fluctuate around C and cannot reach Viab←−S (B) in finite time. On the

other hand, the backward evolution ←−y (·) ∈
←−−
S(y) defined by

←−y (t) =
{−→x (T − t) if t ∈ [0, T ]
←−x (t− T ) if t ≥ T

starts from y and arrives at finite time T at x ∈ Viab←−S (B). Hence, we have
derived a contradiction. Therefore, the permanent kernel PermS(K,C) of C
is contained in the backward fluctuation Fluct←−S (K,B) basin of B. ��

Next, we consider the case of homoclines of an union of disjoint cells:

Proposition 9.2.22 [Decomposing Clines] Let us consider a finite fam-

ily of closed disjoint subsets Ci and set C :=
⋃

i=1,...,n

Ci. Then the homoclinic

basin of C is the union of the heteroclinic basins between the pairs of disjoint
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subsets Ci and Cj:

ClineS

⎛
⎝K, ⋃

i=1,...,n

Ci,
⋃

i=1,...,n

Ci

⎞
⎠ =

⋃
i, j=1,...,n

ClineS(K, (Ci, Cj)) (9.9)

Proof. Indeed, since the subsets are closed and disjoints, there exist disjoint
open subsets Ui containing the subsets Ci. Therefore, no continuous function
connecting Ci to Cj can be viable in Ci∪Cj since it has to cross the nonempty
open subset (Ui \ Ci) ∪ (Uj \ Cj). Hence

ViabS

⎛
⎝ ⋃
i=1,...,n

Ci

⎞
⎠ =

⋃
i=1,...,n

ViabS (Ci)

is the union of the disjoint viability kernels, so that

PermS

⎛
⎝K, ⋃

i=1,...,n

Ci

⎞
⎠ =

⋃
i=1,...,n

PermS (K,Ci) (9.10)

Consider now the homoclinic basin of the union of the subsets Ci. We
obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ClineS

⎛
⎝K, ⋃

i=1,...,n

Ci,
⋃

i=1,...,n

Ci

⎞
⎠

= Perm←−S

⎛
⎝K, ⋃

i=1,...,n

Ci

⎞
⎠ ∩ PermS

⎛
⎝K, ⋃

j=1,...,n

Cj

⎞
⎠

=

⎛
⎝ ⋃
i=1,...,n

Perm←−S (K,Ci)

⎞
⎠ ∩

⎛
⎝ ⋃
j=1,...,n

PermS (K,Cj)

⎞
⎠

=
⋃

i,j=1,...,n

(
Perm←−S (K,Ci) ∩ PermS (K,Cj)

)

=
⋃

i,j=1,...,n

(ClineS(K, (Ci, Cj))) ��

Hence, we have to study the heteroclinic and homoclinic basins between
the subsets Ci.

The viability kernels and backward viability kernels of compact neighbor-
hoods of equilibria describe their local stability properties. For instance, from
any initial state x of the viability kernel of a compact equilibrium C of an
equilibrium e, for any evolution x(·) ∈ S(x) viable in C, some subsequence
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x(tn) converges to the equilibrium e. Since e is the unique cluster point in a
compact set, this implies that x(t) converges to e. Its trajectory is therefore
viable. The viability kernel of this compact neighborhood of an equilibrium
is regarded as a “local stable manifold” around the equilibrium. Taking the
backward viability kernel, we obtain a “local unstable manifold” around the
equilibrium.

Fig. 9.7 Viability Kernels around Equilibria.

Left: Forward and backward viability kernels of a neighborhood of the
trivial equilibrium O. Right: Forward and backward viability kernels of a
neighborhood of the nontrivial equilibrium e1. They are given by the viability
kernel algorithm, not computed analytically.

9.3 Asymptotic Behavior: Limit Sets, Attractors
and Viability Kernels

9.3.1 Limit Sets and Attractor

The asymptotic behavior of evolutions is rooted in the concept of limit sets
of evolutions:

Definition 9.3.1 [The Limit Set of an Evolution] Let x(·) be a
function from R to X. We say that the (closed) subsets

{
ω(x(·)) :=

⋂
T>0 x([T,∞[) = Limsupt→+∞{x(t)}

α(x(·)) :=
⋂
T>0 x([−∞,−T [) = Limsupt→−∞{x(t)}

(where “Limsup” denotes the Painlevé-Kuratowski upper limit, Defini-
tion 18.4.1, p. 728) of the cluster points when t → +∞ and t → −∞



9.3 Asymptotic Behavior: Limit Sets, Attractors and Viability Kernels 345

are respectively the ω-limit set of x(·) and the α-limit set of the evolution
x(·). We regard ω(·) : C(0,+∞;X)� X as the limit map associating with
any evolution x(·) its ω-limit set ω(x(·)).

Remark. Observe that limit sets of evolutions viable in a compact subset
are not empty. Note also that α(x(·)) = ω(←−x (·)). ��

We shall study successively the inverse images and cores of environments
under the limit map ω : C(0,+∞;X) � X , and next, after introducing
an evolutionary system S : X � C(0,+∞;X), the composition product
A := ω ◦ S of ω and S, the attractor map, as well as the inverse images and
cores under S of the cores and the inverse images of environments under the
limit map. We recover in this way numerous concepts of dynamical systems,
and show that they are closely related to the concepts of permanence kernels
and fluctuation basins, inheriting their properties.

We recall (see Definition 9.2.1, p. 322) that P(K,C) and F(K,C) denotes
the families of evolutions permanent in and fluctuating around a subset C
respectively. We can reformulate the definitions of cluster points and limits
in the following form

Lemma 9.3.2 [Inverse and Core of the Limit Set Map] For any
compact subset E ⊂ X:

• the inverse image ω−1(E) ⊂ C(0,+∞;X) is the set of evolutions x(·)
such that one of its cluster point belongs to E or, equivalently, such that
lim inft→+∞ d(x(t), E) = 0, or, again,

ω−1(E) =
⋂
n ≥ 0

F(X, �BK(E, 1/n))

where BK(E, 1/n) is the ball of radius 1
n around E.

• the core ω�1(E) ⊂ C(0,+∞;X) is the set of evolutions x(·) such
that all its cluster points belong to E, or, equivalently, such that
limt→+∞ d(x(t), E) = 0 or, again,

ω�1(E) =
⋂
n ≥ 0

P(X,BK(E, 1/n))

If E := {e} is a singleton, the core ω�1(e) is the set of evolutions converging
to e.



346 9 Local and Asymptotic Properties of Equilibria

Proof. Indeed, to say that lim inft�→+∞ d(x(t), E) = 0 means that for any
n ≥ 0 and for any t ≥ 0, there exists tn ≥ t such that d(x(tn), E) ≤
1/n, i.e., such that x(tn) ∈ BK(E, 1/n) = �(�(BK(E, 1/n))). By the very
definition of fluctuating evolutions, this means that for any n ≥ 0, the
evolution x(·) is fluctuating around the complement of the ball BK(E, 1/n).
This also means that there exists a subsequence tn → +∞ and yn ∈ E such
that ‖x(tn) − yn‖ = d(x(tn), E) converges to 0. Since E is compact, this
implies that a subsequence (again denoted by) yn converges to some e, which
is also the limit of some subsequence of x(tn), and thus, belongs to ω(E).

On the other hand, to say that limt�→+∞ d(x(t), E) = 0 means that for any
n ≥ 0, there exists T ≥ 0 such that for any t ≥ T , d(x(t), E) ≤ 1/n, i.e.,
such that x(t) ∈ BK(E, 1/n). By the very definition of permanent evolutions,
this means that for any n ≥ 0, the evolution x(·) is permanent in the ball
BK(E, 1/n). Property limt�→+∞ d(x(t), E) = 0 implies that for any e ∈ ω(·),
there exists a subsequence tn → +∞ such that x(tn) converges to e. We have
to prove that e belongs to E. Let yn ∈ E such that ‖x(tn)−yn‖ = d(x(tn), E).
Since it converges to 0, the sequence yn ∈ E converges also to e, which thus
belongs to E. This means that ω(x(·)) ⊂ E. Conversely, if the limit set of
x(·) is contained in E, d(x(tn), E) → 0 for all subsequences tn. This implies
that d(x(t), E) converges to 0. ��

The other important trivial property that we have to single out is that

∀ T ∈ R, ω(κ(−T )x(·)) = ω(x(·)) and ω(
∨
κ (T )x(·)) = α(x(·)) (9.11)

because the cluster points of the evolution t �→ κ(−T )x(t) := x(T + t) are
the same than the ones of x(·) and the cluster points of the map t �→ (

∨
κ

(T )x(t)) := x(T − t) when t �→ +∞ are the same as the ones of x(·) when
t �→ −∞.

This implies that

∀ T ≥ 0, κ(−T )ω−1(E) = ω−1(E) and κ(−T )ω�1(E) = ω�1(E)
(9.12)

The sets ω−1(E) and ω�1(E) are invariant under translation and thus, by
Proposition 2.13.3, p. 95, ω−1(E) is viable and ω�1(E) is invariant under S.

9.3.2 Attraction and Cluster Basins

Let us consider an evolutionary system S : X � C(0,+∞;X) and a nonempty
compact subset E viable under S. We observe that, for any evolution x(·)
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viable in E, its ω-limit set ω(x(·)) ⊂ E is contained in E. This is in particular
the (trivial) case when E := {e} is an equilibrium.

Definition 9.3.3 [Attraction and Cluster Basins] Let S : X �
C(0,+∞;X) be an evolutionary system and SK(x) denote the set of
evolutions starting at x ∈ K viable in K. We consider a nonempty compact
subset E viable under S and we denote by:

• LimS(K,E) := S−1((V(K)∩ω�1(E))) the attraction basin of E viable
in K under S, the subset of initial states x ∈ K such that there exists
an evolution x(·) ∈ S(x) viable in K such that limt→+∞ d(x(t), E) = 0,

• ClustS(K,E) := S�1((V(K)∩ω−1(F ))) the cluster basin of E viable in
K under S, the subset of initial states x ∈ K from which all evolutions
x(·) ∈ S(x) are viable in K and satisfy lim inft→+∞ d(x(t), E) = 0.

We observe that whenever E is viable and compact, then

E ⊂ LimS(K,E) ⊂ ClustS(K,E) (9.13)

We deduce at once the following consequence of Partition Lemma 18.3.4,
p. 721:

Lemma 9.3.4 [Partition of the Invariance Kernels in terms of
Attraction and Cluster Basins] Assume that the environment K :=
K1 ∪∅ K2 is partitioned into two subsets Ki, i = 1, 2. Then its invariance
kernel is partitioned

{
InvS(K) = LimS(K,K1) ∪∅ ClustS(K,K2)
= LimS(K,K2) ∪∅ ClustS(K,K1)

by the attraction basin of K1 and the cluster basin of K2. In particular, if
K is invariant under S, then, for any subset E ⊂ K,

K = LimS(K,E) ∩ ClustS(K,K \ E) (9.14)

Proof. The Partition Lemma 18.3.4, p. 721 implies that

ω�1(K) = ω�1(K1) ∪∅ ω−1(K2)

and therefore, that
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V(K) = V(K) ∩ ω�1(K) = (V(K) ∩ ω�1(K1)) ∪ (V(K) ∩∅ ω−1(K2))

By taking the core of this partition, we deduce that

InvS(K) = S−1(V(K) ∩ ω�1(K1)) ∪∅ S�1(V(K) ∩ ω−1(K2)) ��

Property (9.11), p. 346 implies the viability properties of the limit and
cluster basins:

Proposition 9.3.5 [Viability of Limit Sets] The attraction basin
LimS(X,E) is viable and the cluster basin is invariant under S.

Proof. Indeed, if x belongs to the attraction basin LimS(X,E), there exists
an evolution x(·) ∈ S(x) such that ω(x(·)) ⊂ E, and thus, by property
(9.11), p. 346, such that, for any T ≥ 0, ω(κ(−T )x(·)) ⊂ E. Hence, x(T ) ∈
LimS(X,E) for all T ≥ 0, and thus, the attraction basin is viable. The
proof of the invariance of the cluster basin is analogous. ��

If C is closed, evolutions x(·) viable in C satisfy x(0) ∈ C and ω(x(·)) ⊂ C.
However, neuroscientists have singled out evolutions starting from C, such
that their limit set is contained in C but which are not viable in C. The shape
of their graphs suggests to call such evolutions “spike” evolutions (see [101,
Françoise] for more details):

Definition 9.3.6 [Spike Evolutions] An evolution x(·) such that x(0) ∈
C, ω(x(·)) ⊂ C and such that x(t) /∈ C for some finite time t > 0 is called
a spike evolution.

Lemma 9.3.7 [Spike Evolutions Governed by an Evolutionary
System] Assume that the subset C is compact and viable under S. Then:

• from any initial state x ∈ LimS(K,C) starts at least one evolution viable
in C and converging to C,

• from any initial state x ∈ C∩(LimS(K,C)\ViabS(C)) starts at least one
spike evolution in C, whereas no evolution can be viable in C. However,
some evolutions starting from the viability kernel ViabS(C) may be spike
evolutions in C (semi-permeability property).
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Proof. Starting from x ∈ ViabS(C), one evolution x(·) ∈ S(x) is viable in C,
so that, C being compact, its limit set ω(x(·)) ⊂ C is not empty.

Starting from x ∈ C ∩ (LimS(K,E) \ ViabS(C)), all evolutions leave C
in finite time, and at least one evolution x(·) ∈ S(x) is viable in K, satisfies
limt→+∞ d(x(t), C) = 0. ��

We can also compose the evolutionary system SK : K � C(0,+∞;K) (see
Notation 40, p. 716) with the limit map ω : C(0,+∞;X)� X to obtain the
map AKS : K � K:

Definition 9.3.8 [Attractor Map and The Attractor] We denote by

AKS (x) :=
⋃

x(·)∈SK(x)

ω(x(·)) &
←−AK
S (x) :=

⋃
x(·)∈SK(x)

α(x(·))

the ω-attractor map or simply attractor map and the α-attractor map or
backward attractor of the subset K under S respectively.

Their images

AttrS(K) :=
⋃
x∈K

AKS (x) &
←−−
AttrS(K) :=

⋃
x∈K

←−AK
S (x)

are called the ω-attractor or simply attractor and the α-attractor or
backward attractor of the subset K under S respectively.

Remarks on terminology. The attractor of K under S is sometimes
defined as the closure of the attractor as we defined it.

Usually, a closed viable subset E ⊂ Int(K) is said to be attracting if there
exists a viable neighborhood C ⊂ K of E such that E ⊂ LimS(X,C), i.e.,
such that all evolutions satisfy limt→+∞ d(x(t), E) = 0. A subset is repelling
if it is attracting under the backward system.

We defined here THE attractor as the union of limit sets of evolutions. In
many books and papers, subsets that are both attracting and topologically
transitive (see Definition 9.4.7, p. 358) are called attractors (there may exist
several of them). ��

Remark. We deduce at once from property (9.11), p. 346 that

∀ x(·) ∈ S(x), ∀ T ≥ 0, AKS (x(T )) = AKS (x) (9.15)

i.e., that the attractor map is constant over the trajectories of any evolution
x(·) ∈ S(x).
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Indeed, by Definition 2.8.2, p. 70 of evolutionary systems, for any x(·) ∈
S(x), κ(−T )x(·) ∈ S(x(T )), so that, by applying the limit map ω, we obtain
the above property. ��

The next question we ask is whether one can express the attraction basin
in terms of viability kernels and capture basins, so that we could benefits of
their properties and compute them by the Viability Kernel Algorithms. The
answer is positive:

Proposition 9.3.9 [Viability Characterization of Limit Sets] Let
us consider two subsets K ⊂ X and C ⊂ K. Inclusion PermS(K,C) ⊂
LimS(K,AttrS(C)) is always true. The converse inclusion holds true if we
assume that AttrS(C) ⊂ Int(C) is contained in the interior of C:

LimS(K,AttrS(C)) = PermS(K,C)

Proof. Let x belong to PermS(K,C). There exist an evolution x(·) and a time
T such that x(T ) ∈ ViabS(C). Hence its limit set ω(κ(−T )x(·)) = ω(x(·))
(by property (9.11), p. 346) is contained in AttrS(C). Therefore x belongs to
the attraction basin of the attractor AttrS(C) of C. Conversely, assume that

E := AttrS(C) ⊂
◦
C. Therefore, there exists ε > 0 such that BK(E, ε) ⊂ C. By

Lemma 9.3.2, p. 345, we know that ω�1(E) ⊂ P(K,BK(E, ε)) ⊂ P(K,C).
Therefore, taking the intersection with V(K) and their inverse images under
S, this inclusion implies that LimS(K,E) is contained in PermS(K,C). Hence
the equality. ��

Lemma 9.2.4, p. 324 provides a useful “localization property” of the
attractor of K:

Proposition 9.3.10 [Localization Property of the Attractor] Let us
assume that K is invariant under S. For any subset C ⊂ K,

{
AttrS(K) = AttrS(PermS(K,C)) ∪∅ AttrS(FluctS(K,C))
⊂ ViabS(C) ∪K \ C
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Proof. By Lemma 9.2.4, p. 324:

• either x ∈ FluctS(K,C): Since it is invariant, the limit sets of all
evolutions starting from x are contained in FluctS(K,C), so that AKS (x) ⊂
FluctS(K,C),

• or x ∈ PermS(K,C): Since it is viable, at least one evolution is viable
in the permanence kernel, and the limit sets of all evolutions starting
from x viable in PermS(K,C) are contained in it, or some evolution may
leave the permanence kernel to enter the fluctuation basin, and its limit
set is contained in FluctS(K,C), so that AKS (x) ⊂ AKS (PermS(K,C)) ∪
AKS (FluctS(K,C)). The permanence kernel and fluctuation basin being
disjoint, the union of their attractors is actually a partition of the attractor
of K.

• The inclusion follows from the fact that

AttrS(PermS(K,C)) ⊂ ViabS(K)

and that
AttrS(FluctS(K,C)) ⊂ K \ C

This concludes the proof. ��

9.3.3 Viability Properties of Limit Sets and Attractors

Limit sets provide examples of forward and backward viable subsets:

Theorem 9.3.11 [Viability of Limit Sets] If S is upper semicompact
(see Definition 18.4.3, p. 729), the ω-limit set ω(x(·)) of an evolution x(·) ∈
S(x) is always forward and backward viable under S:

ω(x(·)) = ViabS(ω(x(·))) = Viab←−S (ω(x(·)))

The same statement holds for α-limit sets:

α(x(·)) = ViabS(α(x(·))) = Viab←−S (α(x(·)))

When an evolution has a limit x when t → +∞, the subset {x} is viable,
and thus, x is an equilibrium.

Proof. Let x ∈ ω(x(·)) belong to the limit set of an evolution x(·) ∈ S(x0)
starting at some element x0. It is the limit of a sequence of elements x(tn)
when tn → +∞.

1. We first introduce the functions yn(·) := κ(−tn)(x(·)) defined by yn(t) :=
x(t + tn) belonging to S(x(tn)). Since S is upper semicompact, a
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subsequence (again denoted) yn(·) converges uniformly on compact inter-
vals to an evolution y(·) ∈ S(x). On the other hand, for all t > 0,

y(t) = lim
n→+∞

yn(t) = lim
n→+∞

x(t+ tn) ∈ ω(x(·))

i.e., y(·) is viable in the limit set ω(x(·)).
2. Next, we associate the functions ←−z n(·) :=

∨
κ (tn)x(·) defined by ←−z n(t) :=

x(tn − t) belonging to
←−S (x(tn)). Since

←−S is upper semicompact, a
subsequence (again denoted) ←−z n(·) converges uniformly on compact
intervals to an evolution ←−z (·) ∈ ←−S (x). On the other hand, for all t > 0,

←−z (t) = lim
n→+∞

←−z n(t) = lim
n→+∞

x(tn − t) ∈ ω(x(·))

i.e., ←−z (·) is viable in the limit set ω(x(·)). ��

Theorem 9.3.12 [Properties of the Attractor] Assume that the evo-
lutionary system S is upper semicompact and that K is closed. The
forward and backward attractors of K under S, as well as their closures
are respectively subsets viable and backward viable under the evolutionary
system:

AttrS(K) = ViabS(AttrS(K)) = Viab←−S (AttrS(K))

and

Attr←−S (K) = ViabS(Attr←−S (K)) = Viab←−S (Attr←−S (K))

They are consequently contained in the bilateral viability kernel←−−−−→
ViabS(K) = Viab←−S (K,B) ∩ViabS(K,C) (see Definition 8.3.1, p. 279):

AttrS(K) ∪ Attr←−S (K) ⊂
←−−−−→
ViabS(K)

Furthermore

AttrS(K\Viab←−S (K)) ⊂ ViabS(K) ∩ ∂Viab←−S (K)

Consequently, if Viab←−S (K) ⊂ Int(K), then

AttrS(K) ⊂ Viab←−S (K) ⊂ InvS(K)

Proof. Proposition 9.3.11 stating that the limit subsets of evolutions viable
in K are forward and backward viable and contained in K implies that
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the attractor is contained in the intersection of the forward and backward
viability kernels of K. As an union of viable subsets, it is also viable, and
since S is upper semicompact, its closure are forward and backward viable.

Consider now the case when x ∈ ViabS(K)\Viab←−S (K). Theorem 8.3.2,
p. 280 states that any viable evolution inK is viable in ViabS(K)\Viab←−S (K).
Consequently, the attractor is also contained in the closure of the complement
of the backward viability kernel, and thus, in its boundary.

The last statement follows from Proposition 8.3.3. ��

9.3.4 Nonemptyness of Viability Kernels

We infer from Theorem 9.3.12 that a compact backward invariant subset has
a nonempty viability kernel:

Proposition 9.3.13 [Forward and Backward Viability Kernels of
Compact Subsets] Assume that S is upper semicompact and that K is
compact. Then the viability kernel ViabS(K) is nonempty if and only if the
backward viability kernel Viab←−S (K) is nonempty.

Consequently, if K is a compact subset backward invariant under S,
then the viability kernel ViabS(K) is nonempty and is furthermore both
viable and backward invariant.

Proof. Indeed, if the backward viability kernel Viab←−S (K) is not empty, then
there exists a backward viable evolution viable in Viab←−S (K), the α-limit set
of which is not empty, because K is assumed to be compact, and viable,
thanks to Theorem 9.3.12. Since the α-limit set is also forward viable, this
implies that the viability kernel ViabS(K) is not empty.

In the case when K is both compact and backward invariant, the forward
viability kernel ViabS(K) is not empty. It remains to prove that it is backward
invariant: indeed, let x belong to ViabS(K), x(·) ∈ S(x) an evolution viable
in K, which exists by assumption, and ←−y (·) ∈ ←−S (x) any backward evolution
starting at x. It is viable in ViabS(K) because, otherwise, there would exist
some finite time T such that ←−y (T ) ∈ K \ViabS(K). Since the evolution zT (·)
defined by zT (t) := ←−y (T −t) belongs to S(←−y (T )), we can concatenate it with
x(·) to obtain an evolution starting at ←−y (T ) viable in K, so that ←−y (T ) would
belong to ViabS(K), a contradiction. ��

Remark. When the evolutionary system S := SF is associated with
a differential inclusion x′(t) ∈ F (x), subsets which are both viable and
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backward invariant under SF are “morphological equilibria” of the morpho-
logical equation associated with F , the solution of which is the reachable map
t �→ ReachS(t,K) (Definition 8.4.1, p. 284). They thus play an important
role in the context of morphological equations (see Mathematical Methods of
Game and Economic Theory, [23, Aubin]). ��

9.4 Lyapunov Stability and Sensitivity to Initial
Conditions

9.4.1 Lyapunov Stability

If C is a neighborhood of E such that

E ⊂ D := Int(ViabS(C))

(where D is another smaller neighborhood of E) then from any initial state
x in D, there exists at least one evolution x(·) ∈ S(x) remaining in the
neighborhood C of E. We recognize a property involved in the concept of
Lyapunov stability:

Definition 9.4.1 [Lyapunov Stability] A subset E is stable in the sense
of Lyapunov if for every neighborhood C of E, there exists a neighborhood
D of E such that for every initial state x ∈ D, there exists at least one
evolution x(·) ∈ S(x) viable in the neighborhood C.

Therefore, this Lyapunov stability property can be reformulated in terms
of viability kernels:

Proposition 9.4.2 [Viability Characterization of Lyapunov Stabil-
ity] Let E be viable under an evolutionary system. It is stable in the sense
of Lyapunov if and only if

E ⊂
⋂

C neighborhood of E

Int(ViabS(C))
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9.4.2 The Sensitivity Functions

The sensitive dependence on initial conditions is one prerequisite of chaotic
behavior of evolutions, whatever the meaning given to this polysemous
nowadays fashionable word. This means roughly speaking that solutions
starting from initial conditions close to each other move farther form each
other away with time passing. When the dynamics is singled-valued and
smooth, the basic method goes back to Alexandr Lyapunov again, with the
concept of “Lyapunov exponents”.

However, one can also capture globally and no longer locally this phe-
nomenon through inequalities between evolutions x(·) and y(·) of the form

∀t ≥ 0, ‖x(t)− y(t)‖ ≥ λemt

where m ≥ 0 and λ > 0. This suggests to introduce largest constant λ
providing the function defined by

λ(x, y) := sup
x(·)∈S(x), y(·)∈S(y)

inf
t≥0

e−mt‖x(t)− y(t)‖

regarded as a “sensitivity function”.
Hence the knowledge of the sensitivity function allows us to detect the

initial conditions x such that the set {y | λ(x, y) > 0} is not empty.
Actually, any positive extended function u : X × X �→ R ∪ {+∞} could

be used to measure sensitivity, not only the function (x, y) �→ ‖x− y‖.

Definition 9.4.3 [Sensitivity Function] The strong sensitivity function
λu(x, y) : X ×X �→ R+ ∪ {+∞} associated with a function u is defined by

λu(x, y) := sup
x(·)∈S(x), y(·)∈S(y)

inf
t≥0

e−mtu(x(t), y(t))

and the (weak) sensitivity function ςu(x, y) : X × X �→ R+ ∪ {+∞}
associated with a function u is defined by

ςu(x, y) := sup
x(·)∈S(x), y(·)∈S(y)

sup
t≥0

e−mtu(x(t), y(t))

Therefore, whenever λu(x, y) > 0, and for any ε such that 0 < ε <
λu(x, y), there exist evolutions x(·) ∈ S(x) and y(·) ∈ S(y) such that

∀t ≥ 0, u(x(t), y(t)) ≥ emt(λu(x, y)− ε)

The sensitivity function λu can be characterized in terms of the viability
kernel of the hypograph of the function u under the auxiliary system:
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⎧⎨
⎩

(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(i) y′(t) = f(y(t), v(t)) where v(t) ∈ U(y(t))
(iii) z′(t) = mz(t)

(9.16)

subject to the constraint

∀t ≥ 0, (x(t), y(t), z(t)) ∈ Hyp(u)

Proposition 9.4.4 [Viability Characterization of the Sensitivity
Functions] The strong sensitivity function is related to the viability kernel
of the hypograph Hyp(u) of the function u under the auxiliary system (9.16)
by the following formula

λu(x, y) = sup
(x,y,z)∈Viab(9.16)(Hyp(u))

z

and the weak sensitivity function is related to the capture basin of the
hypograph Hyp(u) of the function u under the auxiliary system (9.16),
p. 356 by the following formula

ςu(x, y) = sup
(x,y,z)∈Capt(9.16)(X×X×R+,Hyp(u))

z

Proof. Indeed, to say that (x, y, z) belongs to the viability kernel of Hyp(u)
under the auxiliary system (9.16) amounts to saying that there exists an
evolution t �→ (x(t), y(t), z(t)) governed by the auxiliary system such that,
for all t ≥ 0, u(t) ∈ U(x(t)), v(t) ∈ U(y(t)) and z(·) = zem·. By definition of
(9.16), we know that for all t ≥ 0, this evolution satisfies also for all t ≥ 0,

u(x(t), y(t)) ≥ z(t) = emtz

Therefore
inf
t≥0

e−mtu(x(t), y(t)) ≥ z

and thus, λu(x, y) ≥ λ := sup(x,y)∈Viab(9.16)(Hyp(u)) z. For proving the
converse inequality, we associate with any ε > 0 evolutions xε(·) ∈ S(x)
and yε(·) ∈ S(y) such that

inf
t≥0

e−mtu(x(t), y(t)) ≥ λu(x, y)− ε

Setting zε(t) := (λu(x, y)−ε)emt, we infer that (xε(·), yε(·), zε(·)) is a solution
to the auxiliary system starting at (z, y, λu(x, y)−ε) viable in the hypograph
of u, and thus, that (z, y, λu(x, y) − ε) belongs to the viability kernel of its
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hypograph. Hence λu(x, y) − ε ≤ λ and letting ε converge to 0, we have
proved the equality.

The proof for the weak sensitivity function is similar: to say that (x, y, z)
belongs to the capture basin of Hyp(u) under the auxiliary system (9.16)
amounts to saying that there exist an evolution t �→ (x(t), y(t), z(t)) governed
by the auxiliary system, and a finite time t� such that, u(t�) ∈ U(x(t�)),
v(t�) ∈ U(y(t�)) and z(·) = zem· belonging to the hypograph of u:

u(x(t�), y(t�)) ≥ z(t�) = emtz

Therefore
sup
t≥0

e−mtu(x(t), y(t)) ≥ z

and thus, ςu(x, y) ≥ λ := sup(x,y)∈Capt(9.16)(Hyp(u)) z. The proof of the
converse inequality is standard. ��

In order to recover some of the concepts of “sensitivity” found in the
literature, we associate with the two-variable sensitivity functions λ and ς
the following one-variable functions:

Definition 9.4.5 [Sensitivity Basins] We introduce the following func-
tions

λ�u(x) := lim inf
y→x

λu(x, y) & ς�u(x) := lim inf
y→x

ςu(x, y)

The subsets

Λu := {x such that λ�u(x) > 0} & Σu := {x such that ς�u(x) > 0}

are called the strong and weak sensitivity basin respectively of the parame-
terized system x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)).

The definition of “liminf” implies the following

Lemma 9.4.6 [Characterization of the Sensitivity Basins] The
strong sensitivity basin Λu (respectively the weak sensitivity basin Σu) is the
set of initial points such that, for any neighborhood U of x, there exists an
initial state y ∈ X from which start evolutions x(·) ∈ S(x) and y(·) ∈ S(y)
such that

∀t ≥ 0, u(x(t), y(t)) ≥ emt
1
2
λ�u(x)

and
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∃ T ≥ 0 such that u(x(T ), y(T )) ≥ emT
1
2
λ�u(x)

respectively.

Sensitivity to initial conditions has been claimed to be common behavior
rather than exception. But one should be careful to distinguish between
sensitivity to initial conditions of deterministic systems and redundancy –
availability of a set of evolutions – met in many systems arising in biology and
social sciences. The situation is quite orthogonal to the chaotic deterministic
pattern, indeed: There are many evolutions, but only those “stable” –
actually, viable – persist in time, are permanent.

That physical systems in fluid dynamics, meteorology, astrophysics,
electrical circuits, etc., exhibit a deterministic chaotic behavior of some of
its evolutions (unpredictable in the sense of sensitive dependence on initial
conditions) is thus an issue different (however, complementary to) the study
of viability properties, although viability techniques may help us to bring
supplementary results to sensitivity analysis on initial conditions.

Remark: The associated Hamilton–Jacobi–Bellman Equation.
The sensitivity function λu(x, y) associated with a function u is the largest
solution to the Hamilton–Jacobi–Bellman partial differential equation

inf
u∈U(x)

(
n∑
i=1

∂v(x, y)
∂xi

fi(x, u)

)
+ inf
v∈U(y)

(
n∑
i=1

∂v(x, y)
∂yi

fi(y, v)

)
+mv(x, y) = 0

smallest than or equal to u. ��

9.4.3 Topologically Transitive Sets and Dense
Trajectories

Definition 9.4.7 [Topologically Transitive Sets] A closed subset K
invariant under an evolutionary system S is said to be topologically
transitive if for any pair of nonempty subsets

◦
C⊂ K and

◦
D⊂ K open

in K (for its relative topology), there exist x ∈
◦
C such that all evolutions

x(·) ∈ S(x) are viable in K and reach
◦
D in finite time.
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In other words, to say that a subset K is topologically transitive amounts
to saying that for any open subset

◦
D⊂ K, AbsS(

◦
K,

◦
D) is dense in K, because,

for any nonempty open subset
◦
C, the intersection

◦
C ∩AbsS(

◦
K,

◦
D) is not

empty. We deduce the following property of topologically transitive subsets:

Proposition 9.4.8 [Existence of Evolutions with Dense Trajecto-
ries] Assume that the evolutionary system is upper semicompact and lower
semicontinuous and that K is closed and topologically transitive. Then:

• there exists an initial state from which the trajectories of all evolutions
are dense in K

• the set of such initial states is itself dense in K.

Proof. Since the evolutionary system S is upper semicompact, Theo-
rem 10.3.12, p. 389 implies that the absorption basins AbsS(

◦
K,

◦
D) are

open. Therefore, if K is topologically transitive, they are also dense in K.
On the other hand, since K is a closed subset of a finite dimensional

vector space, there exists a denumerable subset D := {a1, . . . , an, . . .}
dense in K. Let us introduce the denumerable sequence of dense open

subsets
◦
Dp
n:=

◦
BK

(
an,

1
p

)
. The Baire Category Theorem implies that the

intersection
⋂
n≥0 AbsS(

◦
K,

◦
Dp
n) is dense in K:

K =
⋂
n≥0

AbsS(
◦
K,

◦
Dp
n)

Therefore, for any x in K and any open subset
◦
C of K, there exists x� ∈

C ∩
⋂
n≥0 AbsS(

◦
K,

◦
Dp
n).

It remains to prove that for any evolution x�(·) ∈ S(x�), its trajectory (or
orbit) {x�(t)}t≥0 is dense in K. Indeed, for any y ∈ K and any ε > 0, there

exist p > 2
ε and anp ∈ D := {a1, . . . , an, . . .} such that y ∈ Dp

n :=
◦
B

(
anp ,

1
p

)
.

Therefore, since x� ∈ AbsS(
◦
K,

◦
Dp
n), there exist t� < +∞ such that x�(t�) ∈

Cpn, is such a way that d(y, x�(t�)) ≤ d(y, anp) + d(anp , x
�(t�)) ≤ 2

p ≤ ε.
Hence, the trajectory of the evolution x�(·) ∈ S(x�) is dense in K, and the
set of initial states such that the trajectories of the evolutions starting from
it are dense in K, is itself dense in K. ��
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9.5 Existence of Equilibria

We emphasize that there exists a basic and curious link between viability the-
ory and general equilibrium theory: the Fundamental Equilibrium Theorem
– an equivalent version of the 1910 Brouwer Fixed Point Theorem – states
that viability implies stationarity:

Theorem 9.5.1 [The Fundamental Equilibrium Theorem] Assume
that X is a finite dimensional vector-space and that F : X � X is
Marchaud. If K ⊂ X is viable and convex compact under F , then there
exists an equilibrium of F belonging to K.

Proof. We refer to Optima and Equilibria, [19, Aubin], or Mathematical
Methods of Game and Economic Theory, [17, Aubin] for instance, where one
can find other theorems on the existence of equilibria of set-valued maps. ��

One can derive from the nonemptyness of the viability kernel of K a
comparable statement, where the assumption of the convexity ofK is replaced
by the convexity of the image F (K) of K by F :

Theorem 9.5.2 [Equilibrium Theorem # 2] Assume that X is a finite
dimensional vector-space and that F : X � X is Marchaud. If F (K) is
compact convex and if the viability kernel ViabF (K) of K under F is not
empty, it contains an equilibrium of F .

Proof. Assume that there is no equilibrium. This means that 0 does not
belong to the closed convex subset F (K), so that the Separation Theo-
rem 18.2.4, p. 715 implies the existence of some p ∈ X� and ε > 0 such
that

sup
x∈K,v∈F (x)

〈v,−p〉 = σ(F (K),−p) < −ε

Take any x0 ∈ ViabF (K), which is not empty by assumption, from which
starts one evolution x(·) ∈ S(x) viable in K. We deduce that

∀t ≥ 0, 〈−p, x′(t)〉 ≤ −ε

so that, integrating from 0 to t, we infer that

ε t ≤ 〈p, x(t)− x(0)〉 = 〈p, x(t)− x0〉



9.6 Newton’s Methods for Finding Equilibria 361

But K being bounded, we thus derive a contradiction. ��

9.6 Newton’s Methods for Finding Equilibria

We revisit the famous Newton algorithm with viability concepts and results.
Viewed from this angle, we are able to devise several ways to conceive other
types of Newton methods for approximating solutions x ∈ K to equations

0 = f(x) (or x ∈ K ∩ f−1(0))

or inclusions

0 ∈ F (x) (or x ∈ K ∩ F−1(0))

When X := R and f : R �→ R is differentiable, recall that the Newton
method is the algorithm described by

xn+1 = xn −
f(xn)
f ′(xn)

which can be written in the form

f ′(xn)(xn+1 − xn) = −f(xn) where x0 is given

Written in this form, it can also be defined for differentiable maps f : X �→ X
where X is a finite dimensional vector space. Newton’s method is known to
converge to a solution x̄ to equation f(x) = 0 when the derivatives f ′(x)
exist, satisfy f ′(x) �= 0 (and thus, are invertible) and when the initial point
x0 “is not too far” from this solution.

9.6.1 Behind the Newton Method

This discrete Newton algorithm, the prototype of many further sophisticated
extensions that came later, is the discretization of the continuous version of
Newton’s algorithm given by the differential equation

f ′(x(t))x′(t) = −f(x(t)), where x(0) = x0 is given (9.17)

which makes sense when f ′(y) is invertible, at least in a neighborhood of the
(unknown) equilibrium. We observe that y(t) := f(x(t)) is a solution to the
differential equation y′(t) = f ′(x(t))x′(t) = −y(t) and thus, that it is equal
to y0e

−t, so that the cluster points x� := limtn→+∞ f(x(tn)) of x(t) when
t→ +∞ are equilibria of f because f(x(tn)) = y0e

−tn converges to 0.
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This remark leads us to throw a “graphical glance” at this problem.
Assuming that the derivatives f ′(x) are invertible and setting

Nf (x, y) := −f ′(x)−1y (9.18)

we rewrite the continuous version of the Newton method under the form
⎧⎨
⎩

(i) x′(t) = Nf (x(t), y(t))

(ii) y′(t) = −y(t)
(9.19)

starting at initial states (x0, f(x0)) ∈ Graph(f). By construction, we observe
that

∀(x, y), (Nf (x, y),−y) ∈ TGraph(f)(x(t), y(t))

where TGraph(f)(x, y) denotes the tangent cone to the graph of f at a pair
(x, y) of its graph, since the graph of the differential f ′(x) of f at x is the
tangent space to the graph of f at the point (x, y) where y = f(x) (see Theo-
rem 18.5.4, p. 739). This tangential condition characterizes the fact that the
solutions (x(·), y(·)) governed by the above system of differential equations
are viable in the graph of f thanks to the Nagumo Theorem 11.2.3, p. 444.

Therefore, looking behind and beyond the Newton Method, and letting
aside for the time being the benefits of approximating locally the nonlinear
map f by its derivatives f ′(x), we may note and underline the following
points:

1. to say that x� is an equilibrium of f amounts to saying that (x�, 0) ∈
Graph(f),

2. to say that x(t) converges to the equilibrium x� amounts to saying that,
setting, y(t) = f(x(t)),

(x(t), y(t)) ∈ Graph(f) converges to (x�, 0)

3. y(t) = f(x0)e−t is the solution to the differential equation y′(t) = −y(t)
starting at f(x0) which converges to 0 when t→ +∞.

We see at once how we can generalize this idea for approximating an
equilibrium x� of any set-valued map F : X � Y , i.e., a solution to the
inclusion 0 ∈ F (x�) or an element x� ∈ F−1(0): It is sufficient to build pairs
(x(·), y(·)) of functions such that:

1. the function t �→ (x(t), y(t)) is viable in the graph of F (i.e., y(t) ∈
F (x(t))),

2. the limit when t→ +∞ of y(t) is equal to 0

We obtain in this way a continuous version of Newton’s algorithm, in the
sense that the ω-limit set of x(·) is contained in the set F−1(0) of equilibria
of F whenever the graph of F is closed.
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9.6.2 Building Newton Algorithms

The problem of approximating equilibria of a given set-valued map F : X �
X thus boils down to building differential equations or differential inclusions
governing the evolution of (x(·), y(·)) satisfying the above requirements.

• We can choose at will any differential equation governing the evolution
of y(·) in such a way that y(t) converges to 0 asymptotically (or reaches
it in finite time). Among many other choices that we shall not develop
in this book, the linear equation y′ = −y provides evolutions converging
exponentially to 0,

• Next, build a map N : X × Y � X (hopefully a single-valued map
n) governing the evolution of (x(·), y(·)) through the Newton system of
differential inclusions ⎧⎨

⎩
(i) x′(t) ∈ N(x(t), y(t))

(ii) y′(t) = −y(t)
(9.20)

describing the associated algorithm, generalizing the concept of Newton
algorithm. Solutions (x(·), y(·)) governed by this system have y(t) converg-
ing to 0, so the issue that remains to be settled is to find whether or not
it provides evolutions viable in the graph of F .

We are now facing an alternative for building such a Newton map N:

1. Either, take the set-valued version of the Newton algorithm by introduc-
ing the set-valued map NF defined by

NF (x, y) := D��F (x, y)−1(x,−y) (9.21)

where D��F (x, y) : X � Y is the convexified derivative of the set-valued
map F at (x, y) defined by

T ��Graph(F )
(x, y) =: Graph(D��F (x, y))

where T ��K (x) is the closed convex hull to the tangent cone TK(x) to K at
x (see Definition 18.5.5, p. 740). This is the natural extension of the map
(x, y) �→ Nf (x, y) := −f ′(x)−1y defined by (9.18), p. 362. The continuous
set-valued version of the Newton algorithm (9.20), p. 363 can be written
in the form ⎧⎨

⎩
(i) x′(t) ∈ NF (x(t), y(t))

(ii) y′(t) = −y(t), (x0, y0) ∈ Graph(F )
(9.22)

To justify this claim, we have check that we can apply the Fundamental
Viability Theorem 11.3.4, p. 455, which provides an evolution (x(·), y(·))
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viable in the graph of F , so that the cluster points of its component x(·)
are equilibria of F .
The assumptions of the Fundamental Viability Theorem 11.3.4, p. 455
assumptions require that the set-valued map NF is Marchaud (see
Definition 10.3.2, p. 384) and that the tangential condition:

∀(x, y) ∈ Graph(F ), (NF (x, y)× {−y}) ∩ TGraph(F )(x, y) �= ∅ (9.23)

where T ��Graph(F )
(x, y) denotes the closed convex hull of tangent cone to

the graph of F at a pair (x, y) of its graph.
By the very definition of the derivativeD��F (x, y) of F at (x, y), condition
(9.23), p. 364 can be rewritten in the form

∀(x, y) ∈ Graph(F ), NF (x, y) ∩D��F (x, y)−1(x,−y) �= ∅ (9.24)

2. Or, and more importantly, in order to avoid the difficult problem of
computing the derivative of the set-valued map for practical purposes,
we start with an arbitrary map N : X × Y � Y given independently of
F , but chosen for solving easily system (9.20), p. 363.
The simplest example of set-valued map is the map defined by N(x, y) ≡ B
where B is the unit ball of Y : this example allows us to leave open the
choice of the directions x′(t) with which the state will evolve. This is
the set-valued version of the Montagnes Russes Algorithm (see Sect. 4.5.3,
p. 149).
The drawback of adopting this approach is that there is no reason why,
starting from any initial pair (x0, y0) ∈ Graph(F ), there would exist an
evolution governed by system (9.20), p. 363 viable in the graph of F . Hence
the idea is to replace the set-valued map N by another one, depending both
of N and F , which can be computed by the Viability Kernel Algorithm,
and provide evolutions (x(·), y(·)) viable in the graph of F and converging
to some state (x�, 0) ∈ Graph(F ), i.e., to solution of 0 ∈ F (x�). The
solution is obvious: take the map the graph of which is the viability kernel
of the graph of F under system (9.20), p. 363.

Definition 9.6.1 [The Newton Kernel of a Map] Let F : X � Y
be a set-valued map and N : X × Y � X a set-valued map defining a
Newton type algorithm. The Newton kernel NewN(F ) : X � Y of F by
N is the set-valued map defined by

Graph(NewN(F )) := Viab(9.20)(Graph(F ))

Its domain is called the Newton Basin of the set-valued map F .
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Therefore, we have proven the following:

Proposition 9.6.2 [General Newton Type Algorithms] Let F :
X � Y be a set-valued map and N : X × Y � X a set-valued
map defining a Newton algorithm. Then from any initial state x0 ∈
Dom(NewN(F )) and y0 ∈ NewF (N)(x0) starts at least one evolution
of the Newton algorithm

x′(t) ∈ NewN(F )(x(t), e−ty0)

the cluster points of which are equilibria of F .

The Viability Kernel Algorithm provides the Newton kernel of N asso-
ciated with a Newton map F , as well as the feedback governing the
evolutions (x(·), y(·)) viable in the graph of F . Therefore, the second
component t �→ y0e

−t converges to 0 so that the cluster points of the
first component x(·) are equilibria of F .

Remark. We never used here the fact that F : X � X maps X to itself
(although this is the case of interest in this book since we deal with equilibria
of a differential inclusion). Hence the above results dealing with the Newton
type methods can be extended to the search of solutions to inclusions of the
type y ∈ F (x) when F : X � Y . ��

The next problem is to approximate solutions to system (9.20) of
differential inclusions viable in the graph of F (standard discretizations of
even differential equations generally do not provide viable evolutions, they
have to be modified to provide viable evolutions). We shall not address this
issue in this book, referring to the many monographs and papers dealing with
these issues.

9.7 Stability: The Inverse Set-Valued Map Theorem

9.7.1 The Inverse Set-Valued Map Theorem

The Inverse Function Theorem for single-valued maps in Banach spaces goes
back to Graves and to Lazar Ljusternik in the 1930s. It states that if f is
continuously differentiable at x0 and if f ′(x0) is surjective, then:

1. the equation f(x) = y has a solution for any right-hand side y close enough
to f(x0),
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2. The set-valued map f−1 behaves in a Lipschitz way.

The first statement is an existence theorem: If the equation f(x) = y0 has
at least one solution x0, the equation f(x) = y has still a solution when the
right hand side y ranges over a neighborhood of y0. The second statement is
as important, but different: This is a stability result, expressing that if x0 is
a solution to f(x) = y0, one can find solutions xy to the equation f(x) = y
depending in a continuous way (actually, a Lipschitz way) on the right-hand
side.

This is an abstract version of the celebrated Lax Principle of Peter Lax
stating that convergence of the right hand side and stability implies the
convergence of the solution (actually, in numerical analysis, the map f is
also approximated), proved in the linear case, a consequence of the Banach
Inverse Mapping Theorem.

It had been extended to set-valued maps. This is possible by using the
concept of convexified derivative D��F (x, y) of the set-valued map F at (x, y)
is defined by (see Definition 18.5.5, p. 740):

T ��Graph(F )
(x, y) =: Graph(D��F (x, y))

Theorem 9.7.1 [Inverse Set-Valued Map Theorem] Let F : X � Y
be a set-valued map with closed graph, y0 ∈ Y a right hand side and x0 ∈
F−1(y0) a solution to inclusion y0 ∈ F (x0). Assume that a set-valued map
F satisfies
{

(i) Im(D��F (x0, y0)) = Y (i.e., D��F (x0, y0) is surjective)
(ii) (x, y)� Graph(D��F (x, y)) is lower semicontinuous at (x0, y0)

(9.25)

There exist ν > 0 and η > 0 such that, for any (x, y) ∈
◦
B ((x0, y0), η), and

for any y1 ∈
◦
B (y, η − ‖y − y0‖):

1. there exists a solution x1 ∈ F−1(y1) solution to inclusion y1 ∈ F (x1)
2. satisfying the stability condition

‖x1 − x‖ ≤ ν‖y1 − y‖

We shall deduce this theorem from the Local Viability Theorem 19.4.3,
p. 783.

This stability property appearing in the second statement, weaker than
the Lipschitz property (see Definition 10.3.5, p. 385), has been introduced
in the early 1980s under the name of pseudo-Lipschitzianity of F−1 around
(x0, y0), and is now known and studied under the name of Aubin’s property.
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9.7.2 Metric Regularity

The Banach Inverse Mapping (on the stability of the inverse of the linear
operator) is equivalent to the Banach Closed Graph Theorem. Theorem 9.7.1,
p. 366 extends it to the case of set-valued maps: the sufficient conditions has
been proved in 1982 from the Gérard Lebourg version of Ekeland’s Variational
Principle (see Theorem 18.6.15, p. 751), the necessary condition in 2004 with
the proof given in this book, and, later, with another proof by Asen Dontchev
and Marc Quincampoix (see for instance Applied nonlinear analysis, [26,
Aubin & Ekeland] and Implicit Functions and Solution Mappings, Springer,
[81, Dontchev & Rockafellar] specifically dedicated to inverse theorems and
metric regularity). The link between inverse function theorems and viability
tools goes back to Luc Doyen.

For the sake of simplicity, we shall prove the statement of Theorem 9.7.1,
p. 366 when F−1 is replaced by F :

Theorem 9.7.2 [Viability Characterization of Aubin’s Property]
Let F : X � Y be a set-valued map with closed graph and x0 ∈ Dom(F ).
Let y0 ∈ F (x0) belong to F (x0). If a set-valued map F satisfies

{
(i) Dom(DF (x0, y0)) = X
(ii) (x, y)� Graph(DF (x, y)) is lower semicontinuous at (x0, y0)

(9.26)

then there exist α > 0 and η > 0 such that, for any (x, y) ∈
◦
B ((x0, y0), η),

and for any x1 ∈
◦
B (x, η − ‖x− x0‖):

1. there exists y1 ∈ F (x1)
2. satisfying

‖y1 − y‖ ≤ α‖x1 − x‖

From the Banach Closed Graph Theorem for continuous linear operators
to the above statement, we have first to prove the extension of Banach
theorem to “linear set-valued maps”, called closed convex processes by Terry
Rockafellar, the graph of which are closed convex cones (see Definition 18.3.7,
p. 722). They enjoy most of the properties of continuous linear operators,
including the concept of transposition.

We shall transfer the global continuity properties of a closed convex
process to local continuity properties of any set-valued map F whenever its
“derivative” is a closed convex process, in the same spirit than passing from
the original Banach Closed Graph theorem to the Inverse Function Theorem,
the cornerstone of classical differential calculus and analysis, or, actually, to
its metric regularity formulation. This is possible by using the concept of
convexified derivative D��F (x, y) of the set-valued map F at (x, y) is defined
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by (see Definition 18.5.5, p. 740):

T ��Graph(F )
(x, y) =: Graph(D��F (x, y))

It always exists, and, by construction, is a closed convex process.
The set-valued adaptation of the Closed Graph Theorem was due to

Corneliu Ursescu and Stephen Robinson:

Theorem 9.7.3 [The Robinson–Ursescu Theorem] If the domain of
the closed convex process D��F (x, y) is the whole space X, then it is
Lipschitz: λ(D��F (x, y)) < +∞.

Proof. We provide the proof when the spaces X and Y are finite dimensional
vector spaces. Since the domain of DF (x, y) = X is the whole space X ,
the function u �→ d(0, D��F (x, y)(u)) is finite. Hence X is the union of the
sections

Sn := {u | d(0, D��F (x, y)(u)) ≤ n}

which are closed because u �→ d(0, D��F (x, y)(u)) is lower semicontinuous.
Baire’s Theorem implies that the interior of one of these sections is not
empty, and actually, that there exists a ball ηB of radius η > 0 contained
in Sn because the function u �→ d(0, D��F (x, y)(u)) is convex and positively
homogeneous. Therefore,

∀ u ∈ B, d(0, D��F (x, y)(u)) ≤ n

η

and thus

λ(D��F (x, y)) := sup
‖u‖=1

d(0, D��F (x, y)(u)) ≤ n

η
‖u‖

This means that the inf-norm λ(D��F (x, y)) is finite. ��

The classical concept of Lipschitz (set-valued) map is global, in the sense
that the Lipschitz λ constant does not depend upon the pairs of elements
chosen in the inequality

∀ (xi, yi) ∈ Graph(F ), i = 1, 2, ‖x1 − x2‖ ≤ λ‖y1 − y2‖

where λ := sup
x1 �=x

d(y, F (x1))
‖x1 − x‖ is the Lipschitz constant. This may be too

demanding to require that the Lipschitz constant is independent of all pairs
points (x, y) ∈ Graph(F ), so that we have to suggest a weaker concept strong
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enough for the inverse mapping theorem for set-valued maps to hold true and
to characterize it in terms of “inf-norm” of the derivatives of F .

We set limx→Ky f(x) := limx∈K,x→y f(x).

Definition 9.7.4 [Aubin Constant] Let us associate with any pair
(x, y) ∈ Graph(F )

δF (T ;x, y) = sup
‖x1−x‖≤T & x1 �=x

d(y, F (x1))
‖x1 − x‖ (9.27)

and the function αF defined on the graph of F by

{
αF (x0, y0) := lim sup(x,y) �→Graph(F )

(x0,y0), T→0+ δF (T ;x, y)

:= infη>0 supT≤η& max(‖x−x0‖,‖y−y0‖)≤η δF (T ;x, y)

called the pseudo-Lipschitz modulus or Aubin constant of F at (x0, y0).

This definition is motivated by the following property:

Proposition 9.7.5 [Aubin’s Property] If αF (x0, y0) < +∞, then the
Aubin’s propertyof F at (x0, y0) ∈ Graph(F ) holds true: For any ε > 0,
there exists η > 0 such that

{
∀ x, x1 ∈ B

(
x0,

η

2

)
, ∀ y ∈ F (x) ∩B(y0, η),

d(y, F (x1)) ≤ (αF (x0, y0) + ε)‖x1 − x‖

Proof. Indeed, to say that αF (x0, y0) < +∞ amounts to saying that for any
ε, there exist η such that for any (x, y) ∈ Graph(F ) ∩ B((x0, y0), η) and
T ≤ η,

δF (T ;x, y) := sup
‖x1−x‖≤T & x1 �=x

d(y, F (x1))
‖x1 − x‖ ≤ αF ((x0, y0)) + ε

Therefore, if both x and x1 belong to B
(
x0,

η
2

)
and if y ∈ B(y0, η), then

x1 ∈ B(x, η) and we infer that

d(y, F (x1)) ≤ (αF ((x0, y0)) + ε)‖x1 − x‖ ��
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9.7.3 Local and Pointwise Norms of Graphical
Derivatives

The first step of our study is the proof of the following characterization of
Aubin’s property in terms of convexified derivatives D��F (x, y) of F at points
(x, y) ∈ Graph(F ) in a neighborhood of (x0, y0) (see Definition 18.5.5, p. 740).

Definition 9.7.6 [inf-Norm of Derivatives] Let S := {u ∈ X, ‖u‖=1}
denote the unit sphere. We associate with any pair (x, y) ∈ Graph(F ) the
pointwise inf-norm

λ(D��F (x, y)) := sup
u∈S

d(0, D��F (x, y)(u)) (9.28)

and the local inf-norm λF of DF ��(x0, y0) at (x0, y0) defined by

{
λF (x0, y0) := lim sup(x,y)→Graph(F )

(x0,y0) λ(D��F (x, y))

:= infη>0 supmax(‖x−x0‖,‖y−y0‖)≤η λ(D��F (x, y))

By definition,

λ(D��F (x0, y0)) ≤ lim sup
(x,y)→Graph(F )

(x0,y0)

λ(D��F (x, y)) =: λF (x0, y0)

They are equal under adequate continuity assumptions:

Lemma 9.7.7 [Local and Pointwise inf-Norms] If (x, y) �
Graph(DF (x, y)) is lower semicontinuous at (x0, y0), then

λ(D��F (x0, y0)) = lim sup
(x,y)→Graph(F )

(x0,y0)

λ(D��F (x, y)) ≤ λF (x0, y0)

Proof. Since (x, y) � Graph(DF (x, y)) is lower semicontinuous at (x0, y0),
Theorem 18.4.10, p. 733 implies that DF (x0, y0) = D��F (x0, y0). We infer
that ⎧⎪⎨

⎪⎩
λF (x0, y0) :=
lim sup(x,y)→Graph(F )

(x0,y0) λ(D��F (x, y)) ≤ λ(D��F (x0, y0))
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Indeed, we associate with any u ∈ S an element v0 ∈ DF (x0, y0)(u) =
D��F (x0, y0(u)) achieving ‖v0‖ = d(0, D��F (x0, y0)(u)). Since the graph of
DF is lower semicontinuous at (x0, y0), we can associate with any sequence
(xn, yn) converging to (x0, y0) elements (un, vn) converging to (u, v0). Hence
d(0, D��F (xn, yn)(un)) ≤ ‖vn‖ ≤ ‖v0‖+ ε for n large enough. Consequently,
d(0, D��F (x, y)(u)) is upper semicontinuous at (x0, y0), and so achieves its
supremum over the compact sphere u ∈ S. ��

9.7.4 Norms of Derivatives and Metric Regularity

The first question is to compare the Aubin constant αF (x0, y0) and the inf-
norm λF (x0, y0) of DF ��(x0, y0) at some point (x0, y0).

Theorem 9.7.8 [Differential Characterization of Aubin’s Con-
stant] Assume that the graph of F is closed. Then

αF (x0, y0) = λF (x0, y0)

Consequently, F is Aubin around (x0, y0) ∈ Graph(F ) if and only if
λF (x0, y0) < +∞.

Proof. 1. We assume that if αF (x0, y0) < +∞, then λF (x0, y0) ≤ αF (x0, y0).
By definition of αF (x0, y0), for any ε > 0, there exist η and T ≤ η such
that for any (x, y) ∈ Graph(F ) ∩B((x0, y0), η),

δF (T ;x, y) := sup
‖x1−x‖≤T & x1 �=x

d(y, F (x1))
‖x1 − x‖ ≤ αF ((x0, y0)) + ε

Then, for any u ∈ S and any 0 < t ≤ T , associating elements x1 := x+ tu
and y1 := yt ∈ F (x1), or by associating with x1 and y1 ∈ F (x1) elements

u :=
x1 − x

‖x1 − x‖ , t := ‖x1 − x‖, y1 := y‖x1 − x‖ ∈ F (x(‖x1 − x‖)) = F (x1),

we observe that
d(y, F (x+ tu))

t
=

d(y, F (x1))
‖x1 − x‖

Therefore, for all h ≤ T , d(y, F (x + hu)) ≤ h(δ + ε). This means that
there exists vh ∈ B such that y + (αF (x0, y0) + ε)vh ∈ F (x + hu), a
subsequence vhn ∈ B of which converges to some v ∈ B since the unit
sphere is compact. This implies that (αF (x0, y0) + ε)v ∈ DF (x, y)(u) ⊂
D��F (x, y)(u). Therefore,

d(0, DF ��(x, y)(u)) ≤ ‖(αF (x0, y0) + ε)v‖ ≤ αF (x0, y0) + ε
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from which the desired inequality ensues by letting ε converge to 0.
2. We assume that if λF (x0, y0) < +∞, then αF (x0, y0) ≤ λF (x0, y0).

Indeed, by definition, for any ε > 0, there exist η and Tη ≤ η such that
for any (x, y) ∈ Graph(F ) ∩ B((x0, y0), η) such that, for every u ∈ S and
t ≤ Tη such that d(0, D��F (x, y)(u)) ≤ λη := λF (x0, y0)+ ε. By definition
of the convexified derivatives D��F (x, y) of F at points (x, y) ∈ Graph(F )

{
(x, y) ∈ Graph(F ) ∩B((x0, y0), η), ∀ u ∈ S, ∃ v ∈ ληB such that

(u, v) ∈ T ��Graph(F )
(x, y)

Let us set
⎧⎨
⎩
Fη := Graph(F ) ∩B((x0, y0), η)
Φ(u,λη) := {u} × ληB
T (η) := η

2 max(1,λη)

Therefore, the tangential condition

∀ (x, y) ∈ Fη, Φ(u,λη) ∩ T ��Fη
(x, y) �= ∅

holds true. Local Viability Theorem 19.4.3, p. 783 implies that there exists
τ �→ v(τ) ∈ B such that the evolution

(x(·), y(·)) : t �→
(
x+ tu, y + λη

∫ t

0

v(τ)dτ
)

governed by differential inclusion (x′(t), y′(t)) ∈ Φ(u,λη) is viable in Fη
on the interval [0, T (η)] because B

(
(x, y),

η

2

)
⊂ B((x0, y0), η) whenever

(x, y) ∈ B
(
(x0, y0),

η

2

)
and ‖Φ(u,λη)‖ ≤ max(1, λη). This implies that

{∀ (x, y) ∈ B
(
(x0, y0), η2

)
, ∀ t ≤ T (η), ∀ u ∈ S,

d(y, F (x+ tu))
t

≤ λη := λF (x0, y0) + ε

In other words,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
(x,y)∈B((x0,y0),

η
2 )
δF (T (η); (x, y))

:= sup
(x,y)∈B((x0,y0),

η
2 )

sup
t≤T (η)

sup
u∈S

d(0, DF (x+ tu))
t

≤ sup(x,y)∈Graph(F )∩B((x0,y0),η) λ(D��F (x, y)) ≤ λη := λF (x0, y0) + ε

By letting ε converges to 0, we infer that
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{
αF (x0, y0) := lim sup(x,y)→Graph(F )

(x0,y0), T �→0 δF (T ; (x, y))

≤ lim sup(x,y)→Graph(F )
(x0,y0) λ(D��F (x, y)) =: λF (x0, y0)

This completes the proof. ��

This theorem allows us to connect stability properties described by Aubin’s
property in terms of properties of the (convexified) derivatives of the set-
valued map which appear in the assumptions of Theorems 9.7.2, p. 367 and
9.7.1, p. 366.

Proof. (Theorem 9.7.2, p. 367) For F to enjoy the Aubin’s property
around (x0, y0) ∈ Graph(F ), we have to assume that αF (x0, y0) is finite.
Actually, Theorem 9.7.8, p. 371 implies that αF (x0, y0) = λF (x0, y0) and,
since (x, y)� Graph(DF (x, y)) is lower semicontinuous, Lemma 9.7.7, p. 370
implies that αF (x0, y0) = λ(D��F (x0, y0)) < +∞. This follows from the
assumption that the derivative DF (x, y)(u) �= ∅ for all u ∈ X .

This is a consequence of an extension to the celebrated Banach Closed
Graph Theorem stating that the norm of a linear operator with closed graph
is finite, i.e., that it is continuous, and even, Lipschitz.

Indeed, since (x, y)� Graph(DF (x, y)) := TGraph(F )(x, y) is lower semi-
continuous at (x0, y0), Theorem 18.4.10, p. 733 states that the graph of

DF (x0, y0) = TGraph(F )(x0, y0) = T ��Graph(F )
(x0, y0) = DF ��(x0, y0)

is a closed convex cone closed, whereas the graph of a continuous linear
operator is a closed vector subspace.

The Robinson–Ursescu Theorem 9.7.3, p. 368 states that the Lipschitz
constant of D��F (x0, y0) is the point-wise inf-norm λ(D��F (x0, y0)) :=
supu∈S d(0, DF (x0, y0)(u)).

Therefore, αF (x0, y0) ≤ λ(D��F (x0, y0)) is finite, and thus, F is Aubin
around (x0, y0). ��

Replacing F by its inverse F−1, Theorem 9.7.2 is nothing else than the
1982 Inverse Theorem 9.7.1 for set-valued maps stated in the introduction.



Chapter 10

Viability and Capturability Properties
of Evolutionary Systems

10.1 Introduction

This chapter presents properties proved at the level of evolutionary
systems, whereas Chap. 11, p. 437 focuses on specific results on evolutionary
systems generated by control systems based on the Viability Theorem 11.3.4,
p. 455 and Invariance Theorem 11.3.7, p. 457 involving tangential conditions.
Specific results of the same nature are presented in Sect. 12.3, p. 503 for
impulse systems, in Chap. 11 of the first edition of [18, Aubin] for evolutionary
systems generated by history dependent (or path dependent) systems and in
[23, Aubin] for mutational and morphological systems, which will inherit
properties uncovered in this chapter.

This chapter is mainly devoted to the first and second fundamental
viability characterizations of kernels and basins. The first one, in Sect. 10.2,
p. 377, characterizes them as bilateral fixed points. The second one, in
Sect. 10.5, p. 399, translates these fixed point theorems in terms of viability
properties which will be exploited in Chap. 11, p. 437. The first one states
that the viability kernel is the largest subset viable outside the target and
the second one that it is the smallest isolated subset, and thus, the unique
one satisfying both. This uniqueness theorem plays an important role, in
particular for deriving the uniqueness property of viability episolutions of
Hamilton–Jacobi–Bellman partial differential equations in Chap. 17, p. 681.

For that purpose, we uncover the topological properties of evolutionary
systems in Sect. 10.3, p. 382 for the purpose of proving that under these
topological properties, kernels and basins are closed. We need to define in
Sect. 10.3.1, p. 382 two concepts of semicontinuity of evolutionary systems:
“upper semicompact” evolutionary systems, under which viability properties
hold true, and “lower semicontinuous” evolutionary systems, under which
invariance (or tychastic) properties are satisfied. These assumptions are
realistic, because they are respectively satisfied for systems generated by the
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“Marchaud control systems” for the class of “upper semicompact” evolution-
ary systems and “Lipschitz” ones for “lower semicontinuous” evolutionary
systems.

This allows us to prove that exit and minimal time functions are
semicontinuous in Sect. 10.4, p. 392 and that the optimization problems
defining them are achieved by “persistent and minimal time evolutions.”
Some of these properties are needed for proving the viability characterization
in Sect. 10.5, p. 399, the most useful one of this chapter. It characterizes:

1. subsets viable outside a target by showing that the complement of the
target in the environment is locally viable, a viability concept which can
be characterized further for specific evolutionary systems, or, equivalently,
that its exit set is contained in the target,

2. isolated subsets as subsets backward invariant relatively to the environ-
ment, again a viability concept which can be exploited further. Therefore,
viability kernels being the unique isolated subset viable outside a target,
they are the unique ones satisfying such local viability and backward
invariance properties.

Section 10.6, p. 411 presents such characterizations for invariance kernels and
connection basins.

We pursue by studying in Sect. 10.7, p. 416 under which conditions the
capture basin of a (Painlevé–Kuratowski) limit of targets is the limit of the
capture basins of those targets. This is quite an important property which is
studied in Sect. 10.7.1, p. 416.

The concepts of viability and invariance kernels of environments are
defined as the largest subsets of the environments satisfying either one
of these properties. The question arises whether it is possible to define
the concepts of viability and invariance envelopes of given subsets, which
are the minimal subsets containing an environment which are viable and
invariant respectively. This issue is dealt with in Sect. 10.7.2, p. 420. In the
case of invariance kernels, this envelope is unique: it is the intersection of
invariant subsets containing it. In the case of viability envelopes, we obtain,
under adequate assumptions, the existence of nonempty viability envelopes.
Equilibria are viable singletons which are necessarily minimal. They do not
necessarily exist, except in the case of compact convex environments. For
plain compact environments, minimal viability envelopes are not empty, and
they enjoy a singular property, a weaker property than equilibria, which
are the asymptotic limits of evolutions. Minimal viability envelopes are the
subsets coinciding with the limit sets of their elements, i.e., are made of limit
sets of evolutions instead of limit points (equilibria) which may not exist.

We briefly uncover without proofs the links between invariance of an
environment under a tychastic system and stochastic viability in Sect. 10.10,
p. 433. They share the same underlying philosophy: the viability property
is satisfied by all evolutions of a tychastic system (tychastic viability), by
almost all evolutions under a stochastic system. This is made much more
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precise by using the Strook–Varadhan Theorem, implying, so to speak, that
stochastic viability is a very particular case in comparison to tychastic
viability (or invariance). Hence the results dealing with invariant subsets
can bring another point of view on the mathematical translation of this type
uncertainty: either by stochastic systems, or by tychastic systems.

Exit sets also play a crucial role for regulating viable evolutions with a
finite number of non viable feedbacks (instead of a viable feedback), but
which are, in some sense made precise, “collectively viable”: this is developed
in Sect. 10.8, p. 422 for regulating viable punctuated evolutions satisfying the
“hard” version of the inertia principle.

Section 10.9, p. 427 is devoted to inverse problems of the following
type: assuming that both the dynamics F (λ, (·)), the environment K(λ)
and the target C(λ) depend upon a parameter λ, and given any state x,
what is the set of parameters λ for which x lies in the viability kernel
ViabF (λ,(·))(K(λ), C(λ))?

This is a prototype of a parameter identification problem. It amounts to
inverting the viability kernel map λ � ViabF (λ,(·))(K(λ), C(λ)). For that
purpose, we need to know the graph of this map, since the set-valued map
and its inverse share the same “graphical properties.” It turns out that the
graph of the viability kernel map is itself the viability kernel of an auxiliary
map, implying that both the viability kernel map and its inverse inherits
the properties of viability kernels. When the parameters λ ∈ R are scalar,
under some monotonicity condition, the inverse of this viability kernel map is
strongly related to an extended function associating with any state x the best
parameter λ, as we saw in many examples of Chaps. 4, p. 125 and 6, p. 199.

10.2 Bilateral Fixed Point Characterization of Kernels
and Basins

We begin our investigation of viability kernels and capture basins by
emphasizing simple algebraic properties of utmost importance, due to the
collaboration with Francine Catté, which will be implicitly used all along the
book. We begin by reviewing simple algebraic properties of viability invari-
ance kernels as maps depending on the evolutionary system, environment and
the target.

Lemma 10.2.1 [Monotonicity Properties of Viability and Invari-
ance Kernels] Let us consider the maps (S,K,C) �→ ViabS(K,C) and
(S,K,C) �→ InvS(K,C). Assume that S1 ⊂ S2, K1 ⊂ K2, C1 ⊂ C2. Then

{
(i) ViabS1(K1, C1) ⊂ ViabS2(K2, C2)
(ii) InvS2(K1, C1) ⊂ InvS1(K2, C2).

(10.1)
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The consequences of these simple observations are important:

Lemma 10.2.2 [Union of Targets and Intersection of Environ-
ments] ⎧⎨

⎩
(i) ViabS

(
K,
⋃
i∈I Ci

)
=
⋃
i∈I ViabS(K,Ci)

(ii) InvS
(⋂

i∈I Ki, C
)

=
⋂
i∈I InvS(Ki, C)

(10.2)

Evolutionary systems R ⊂ S satisfying equality InvR(K,C) =
ViabS(K,C) enjoy the following monotonicity property:

Lemma 10.2.3 [Comparison between Invariance Kernels under
Smaller Evolutionary Systems and Viability Kernels of a Larger
System] Let us assume that there exists an evolutionary system R con-
tained in S such that InvR(K,C) = ViabS(K,C). Then, for all evolutionary
systems Q ⊂ R, InvQ(K,C) = ViabS(K,C).

Proof. Indeed, by the monotonicity property with respect to the evolutionary
system, we infer that

InvR(K,C) ⊂ InvQ(K,C) ⊂ ViabQ(K,C) ⊂ ViabS(K,C) = InvR(K,C)

Hence equality InvQ(K,C) = ViabS(K,C) ensues. ��

Next, we need the following properties.

Lemma 10.2.4 [Fundamental Properties of Viable and Capturing
Evolutions] Let S : X � C(0,+∞;X) be an evolutionary system, K ⊂ X
be an environment and C ⊂ K be a target.

1. Every evolution x(·) ∈ S(x) viable in K, forever or until it reaches C in
finite time, is actually viable in the viability kernel ViabS(K,C),

2. Every evolution x(·) ∈ S(x) viable in K forever or which captures the via-
bility kernel ViabS(K,C) in finite time, remains viable in ViabS(K,C)
until it captures also the target C in finite time.
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Fig. 10.1 Illustration of the proof of Lemma 10.2.4, p. 378.

Left: an evolution x(·) viable in K is viable in ViabS(K,C) forever (spiral)
or reaches C at time T . Right: an evolution x(·) viable in K forever or which
captures ViabS(K,C) in finite time remains viable in ViabS(K,C) until it
captures the target at T (dotted trajectory).

Proof. The first statement follows from the translation property. Let us
consider an evolution x(·) ∈ S(x) viable in K, forever or until it reaches C
in finite time T . Therefore, for all t ∈ [0, T [, the translation y(·) := κ(−t)x(·)
of x(·) defined by y(τ) := x(t + τ) is an evolution y(·) ∈ S(x(t)) starting at
x(t) and viable in K until it reaches C at time T − t. Hence x(t) does belong
to ViabS(K,C) for every t ∈ [0, T [.

The second statement follows from the concatenation property because it
can be concatenated with an evolution either remaining in ViabS(K,C) ⊂ K
or reaching the target C in finite time. ��

10.2.1 Bilateral Fixed Point Characterization
of Viability Kernels

We shall start our presentation of kernels and basins properties by a simple
and important algebraic property:

Theorem 10.2.5 [The Fundamental Characterization of Viability
Kernels] Let S : X � C(0,+∞;X) be an evolutionary system, K ⊂ X be
an environment and C ⊂ K be a target. The viability kernel ViabS(K,C) of
K with target C (see Definition 2.10.2, p. 86) is the unique subset between
C and K that is both:
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1. viable outside C (and is the largest subset D ⊂ K viable outside C),
2. isolated in K (and is the smallest subset D ⊃ C isolated in K):

ViabS(K,ViabS(K,C)) = ViabS(K,C) = ViabS(ViabS(K,C), C)
(10.3)

The viability kernel satisfies the properties of both the subsets viable
outside a target and of isolated subsets in a environment, and is the unique
one to do so.

This statement is at the root of uniqueness properties of solutions to
some Hamilton–Jacobi–Bellman partial differential equations whenever the
epigraph of a solution is a viability kernel of the epigraph of a function outside
the epigraph of another function.

Proof. We begin by proving the two following statements:

1. The translation property implies that the viability kernel ViabS(K,C) is
viable outside C:

ViabS(K,C) ⊂ ViabS(K,ViabS(K,C)) ⊂ ViabS(K,C)

Take x0 ∈ ViabS(K,C) and prove that there exists an evolution x(·) ∈
S(x0) starting at x0 viable in ViabS(K,C) until it possibly reaches C.
Indeed, there exists an evolution x(·) ∈ S(x0) viable in K until some
time T ≥ 0 either finite when it reaches C or infinite. Then the first
statement of Lemma 10.2.4, p. 378 implies that x0 belongs to the viability
kernel ViabS(ViabS(K,C), C) of the viability kernel ViabS(K,C) of K
with target C.

2. The concatenation property implies that the viability kernel ViabS(K,C)
is isolated in K:

ViabS(K,ViabS(K,C)) ⊂ ViabS(K,C)

Let x0 belong to ViabS(K,ViabS(K,C)). There exists at least one
evolution x(·) ∈ S(x0) that would either remain in K or reach the viability
kernel ViabS(K,C) in finite time. Lemma 10.2.4, p. 378 implies that
x0 ∈ ViabS(K,C). ��

We now observe that the map (K,C) �→ ViabS(K,C) satisfies
{

(i) C ⊂ ViabS(K,C) ⊂ K
(ii) (K,C) �→ ViabS(K,C) is increasing (10.4)
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in the sense that if K1 ⊂ K2 and C1 ⊂ C2, then ViabS(K1, C1) ⊂
ViabS(K2, C2).

SettingA(K,C) := ViabS(K,C), the statements below follow from general
algebraic Lemma 10.2.6 below.

Lemma 10.2.6 [Uniqueness of Bilateral Fixed Points] Let us con-
sider a map A : (K,C) �→ A(K,C) satisfying

{
(i) C ⊂ A(K,C) ⊂ K
(ii) (K,C) �→ A(K,C) is increasing (10.5)

1. If A(K,C) = A(A(K,C), C), it is the largest fixed point of the map
D �→ A(D,C) between C and K,

2. If A(K,C) = A(K,A(K,C)), it is the smallest fixed point of the map
E �→ A(K,E) between C and K.

Then, any subset D between C and K satisfying

D = A(D,C) and A(K,D) = D

is the unique bilateral fixed point D between C and K of the map A in the
sense that:

A(K,D) = D = A(D,C)

and is equal to A(K,C).

Proof. If D = A(D,C) is a fixed point of D �→ A(D,C), we then deduce that
D = A(D,C) ⊂ A(K,C), so that whenever A(K,C) = A(A(K,C), C), we
deduce that A(K,C) is the largest fixed point of D �→ A(D,C) contained
in K. In the same way, if A(K,A(K,C)) = A(K,C), then A(K,C) is the
smallest fixed points of E �→ A(K,E) containing C. Furthermore, equalities

A(K,D) = D = A(D,C)

imply that D = A(K,C) because the monotonicity property implies that

A(K,C) ⊂ A(K,D) ⊂ D ⊂ A(D,C) ⊂ A(K,C) ��
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10.2.2 Bilateral Fixed Point Characterization
of Invariance Kernels

This existence and uniqueness of a “bilateral fixed point” is shared by the
invariance kernel with target, the capture basin and the absorption basin of a
target that satisfy property (10.5), and thus, the conclusions of Lemma 10.2.6:

Theorem 10.2.7 [Characterization of Kernels and Basins as
Unique Bilateral Fixed Point] Let S : X � C(0,+∞;X) be an
evolutionary system, K ⊂ X be a environment and C ⊂ K be a target.

1. The viability kernel ViabS(K,C) of a subset K with target C ⊂ K is the
unique bilateral fixed point D between C and K of the map (K,C) �→
ViabS(K,C) in the sense that

D = ViabS(K,D) = ViabS(D,C)

2. The invariance kernel InvS(K,C) of a subset K with target C ⊂ K is
the unique bilateral fixed point D between C and K of the map (K,C) �→
InvS(K,C) in the sense that

D = InvS(K,D) = InvS(D,C)

The same properties are shared by the maps (K,C) �→ CaptS(K,C) and
(K,C) �→ AbsS(K,C).

10.3 Topological Properties

We begin this section by introducing adequate semicontinuity concepts
for evolutionary systems in Sect. 10.3.1, p. 382 for uncovering topological
properties of kernels and basins in Sect. 10.3.2, p. 387.

10.3.1 Continuity Properties of Evolutionary Systems

In order to go further in the characterization of viability and invariance
kernels with targets in terms of properties easier to check, we need to bring
in the forefront some continuity requirements on the evolutionary system
S : X � C(0,+∞;X). First, both the state space X and the evolutionary
C(0,+∞;X) have to be complete topological spaces.
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32 [The Evolutionary Space] Assume that the state space X is a
complete metric space. We supply the space C(0,+∞;X) of continuous
evolutions with the “compact topology”: A sequence of continuous evolutions
xn(·) ∈ C(0,+∞;X) converges to the continuous evolution x(·) as n→ +∞
if for every T > 0, the sequence supt∈[0,T ] d(xn(t), x(t)) converges to 0. It
is a complete metrizable space. The Ascoli Theorem states that a subset H
is compact if and only if it is closed, equicontinuous and for any t ∈ R+,
the subset H(t) := {x(t)}x(·)∈H is compact in X.

Stability, a polysemous word, means formally that the solution of a problem
depends “continuously” upon its data. Here, for evolutionary systems, the
data are principally the initial states: In this case, stability means that the
set of solutions depends “continuously” on the initial state. We recall that
a deterministic system S := {s} : X �→ C(0,+∞;X) is continuous at some
x ∈ X if it maps any sequence xn ∈ X converging to x to a sequence s(xn)
converging to s(x).

However, when the evolutionary system S : X � C(0,+∞;X) is no longer
single-valued, there are several ways of describing the convergence of the set
S(xn) to the set S(x). We shall use in this book only two of them, that we
present in the context of evolutionary systems (see Definition 18.4.3, p. 729
and other comments in the Appendix 18, p. 713). We begin with the notion
of upper semicompactness:

Definition 10.3.1 [Upper Semicompactness] Let S : X� C(0,+∞;X)
be an evolutionary system, where both the state space X and the evolutionary
space C(0,+∞;X) are topological spaces. The evolutionary system is said
to be upper semicompact at x if for every sequence xn ∈ X converging to
x and for every sequence xn(·) ∈ S(xn), there exists a subsequence xnp(·)
converging to some x(·) ∈ S(x). It is said to be upper semicompact if it is
upper semicompact at every point x ∈ X where S(x) is not empty.

Before using this property, we need to provide examples of evolutionary
system exhibiting it: this is the case for Marchaud differential inclusions:
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Definition 10.3.2 [Marchaud Set-Valued Maps] We say that F is a
Marchaud map if
⎧⎨
⎩

(i) the graph and the domain of F are nonempty and closed
(ii) the values F (x) of F are convex
(iii) ∃ c > 0 such that ∀x ∈ X, ‖F (x)‖ := supv∈F (x) ‖v‖ ≤ c(‖x‖+ 1)

(10.6)

Fig. 10.2 Marchaud map.

Illustration of a Marchaud map, with convex images, closed graph and linear
growth.

André Marchaud was with Stanislas Zaremba among the firsts to study
what did become known 50 years later differential inclusions:

André Marchaud [1887–1973]. After entering École
Normale Supérieure in 1909, he fought First World War,
worked in ministry of armement and industrial recon-
struction and became professor and Dean at Faculté des
Sciences de Marseille from 1927 to 1938 before being
Recteur of several French Universities. He was a student
of Paul
Montel, was in close relations with Georges Bouligand and

Stanislas Zaremba, and was a mentor of André Lichnerowicz [1915–1998]. His
papers dealt with analysis and differentiability.
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The (difficult) Stability Theorem states that the set of solutions depends
continuously upon the initial states in the upper semicompact sense:

Theorem 10.3.3 [Upper Semicompactness of Marchaud Evolu-
tionary Systems] If F : X � X is Marchaud, the solution map S is
an upper semicompact evolutionary system.

Proof. This a consequence of the Convergence Theorem 19.2.3, p. 771. ��

The other way to take into account the idea of continuity in the case of
evolutionary systems is by introducing the following concept:

Definition 10.3.4 [Lower Semicontinuity of Evolutionary Sys-
tems] Let S : X � C(0,+∞;X) be an evolutionary system, where both the
state space X and the evolutionary space C(0,+∞;X) are topological spaces.
The evolutionary system is said to be lower semicontinuous at x if for every
sequence xn ∈ X converging to x and for every sequence x(·) ∈ S(x)
(thus assumed to be nonempty), there exists a sequence xn(·) ∈ S(xn)
converging to x(·) ∈ S(x). It is said to be lower semicontinuous if it is
lower semicontinuous at every point x ∈ X where S(x) is not empty.

Warning: An evolutionary system can be upper semicompact at x
without being lower semicontinuous and lower semicontinuous at x without
being upper semicompact. If the evolutionary system is deterministic, lower
semicontinuity coincides with continuity and upper semicompactness coin-
cides with “properness” of single-valued maps (in the sense of Bourbaki).
Note also the unfortunate confusions between the semicontinuity of numeri-
cal and extended functions (Definition 18.6.3, p. 744) and the semicontinuity
of set-valued maps (Definition 18.4.3, p. 729).

Recall that a single-valued map f : X �→ Y is said to be λ-Lipschitz if
for any x1, x2 ∈ X , d(f(x1), f(x2)) ≤ λd(x1, x2). In the case of normed
vector spaces, denoting by B the unit ball of the vector space, this inequality
can be translated in the form f(x1) ∈ f(x2) + λ‖x1 − x2‖B. This is this
formulation which is the easiest to adapt to set-valued maps in the case of
(finite) dimensional vector spaces:

Definition 10.3.5 [Lipschitz Maps] A set-valued map F : X � Y is
said to be λ-Lipschitz(or Lipschitz for the constant λ > 0) if
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∀x1, x2, F (x1) ⊂ F (x2) + λ‖x1 − x2‖B

The Lipschitz norm ‖F‖Λ of a map F : x � Y is the smallest Lipschitz
constants of F . The evolutionary system S : X � C(0,+∞;X) associated
with a Lipschitz set-valued map is called a Lipschitz evolutionary system.

The Filippov Theorem 11.3.9, p. 459 implies that Lipschitz systems are
lower semicontinuous:

Theorem 10.3.6 [Lower Semicontinuity of Lipschitz Evolutionary
Systems] If F : X � X is Lipschitz, the associated evolutionary system S
is lower semicontinuous.

Under appropriate topological assumptions, we can prove that inverse
images and cores of closed subsets of evolutions are closed.

Definition 10.3.7 [Closedness of Inverse Images] Let S : X �
C(0,+∞;X) be an upper semicompact evolutionary system. Then for any
subset H ⊂ C(0,+∞;X),

S−1(H) ⊂ S−1(H)

Consequently, the inverse images S−1(H) under S of any closed subset H ⊂
C(0,+∞;X) are closed.

Furthermore, the evolutionary system S maps compact sets K ⊂ X to
compact sets H ⊂ C(0,+∞;X).

Proof. Let us consider a subset H ⊂ C(0,+∞;X), a sequence of elements
xn ∈ S−1(H) converging to some x and prove that x belongs to S−1(H).
Hence there exist elements xn(·) ∈ S(xn)∩H. Since S is upper semicompact,
there exists a subsequence xnp(·) ∈ S(xnp) converging to some x(·) ∈ S(x).
It belongs also to the closure of H, so that x ∈ S−1(H).

Take now any compact subset K ⊂ X . For proving that S(K) is compact,
take any sequence xn(·) ∈ S(xn) where xn ∈ K. Since K is compact, a
subsequence xn′ converges to some x ∈ K and since S is upper semicompact,
a subsequence xn′′(·) ∈ S(xn′′ ) converges to some x(·) ∈ S(x). ��
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Example: Let us consider an upper semicompact evolutionary system S :
X � C(0,+∞;X).
If K ⊂ X is a closed subset, then the set of equilibria of the evolutionary
system that belong to K is closed: Indeed, it is the inverse images S−1(K)
of the set K of stationary evolutions in K, which is closed whenever K is
closed.
In the same way, the set of points through which passes at least one T -
periodic evolution of an upper semicompact evolutionary system is closed,
since it is the inverse images S−1(PT (X)) of the set PT (X) of T -periodic
evolutions, which is closed.
If a function v : X �→ R is continuous, the set of initial states from which
starts at least one evolution of the evolutionary system monotone along the
function v is closed, since it is the inverse images of the set Mv of monotone
evolutions, which is closed.

For cores, we obtain

Theorem 10.3.8 [Closedness of Cores] Let S : X � C(0,+∞;X)
be a lower semicontinous evolutionary system. Then for any subset H ⊂
C(0,+∞;X),

S�1(H) ⊂ S�1(H)

Consequently, the core S�1(H) under S of any closed subset H ⊂
C(0,+∞;X) is closed.

Proof. Let us consider a closed subset H ⊂ C(0,+∞;X), a sequence of
elements xn ∈ S�1(H) converging to some x and prove that x belongs to
S�1(H). We have to prove that any x(·) ∈ S(x) belongs to H. But since S is
lower semicontinuous, there exists a sequence of elements xn(·) ∈ S(xn) ⊂ H
converging to x(·) ∈ H. Therefore S(x) ⊂ H, i.e., x ∈ S�1(H). ��

10.3.2 Topological Properties of Viability Kernels
and Capture Basins

Recall that the set V(K,C) of evolutions viable in K outside C is defined by
(2.5), p. 49:

{
V(K,C) := {x(·) such that ∀t ≥ 0, x(t) ∈ K
or ∃ T ≥ 0 such that x(T ) ∈ C & ∀t ∈ [0, T ], x(t) ∈ K}
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Lemma 10.3.9 [Closedness of the Subset of Viable Evolutions] Let
us consider a environment K ⊂ X and a (possibly empty) target C ⊂ K.
Then

V(K,C) ⊂ V(K,C)

and consequently, if C and K are closed, the set V(K,C) of evolutions that
are viable in K forever or until they reach the target C in finite time is
closed.

Proof. Let us consider a sequence of evolutions xn(·) ∈ V(K,C) converging
to some evolution x(·). We have to prove that x(·) belongs to V(K,C), i.e.,
that it is viable in K forever or until it reaches the target C in finite time.
Indeed:

1. either for any T > 0 and any N > 0, there exist n ≥ N , tn ≥ T and an
evolution xn(·) for which xn(t) ∈ K for every t ∈ [0, tn],

2. or there exist T > 0 and N > 0 such that for any t ≥ T and n ≥ N and
any evolution xn(·), there exists tn ≤ t such that xn(tn) /∈ K.

In the first case, we deduce that for any T > 0, x(T ) ∈ K, so that the
limit x(·) is viable in K forever.

In the second case, all the solutions xn(·) leave K before T . This is
impossible if evolutions xn(·) are viable in K forever. Therefore, since
xn(·) ∈ V(K,C), they have to reach C before leaving K: There exist sn ≤ T
such that

xn(sn) ∈ C & ∀t ∈ [0, sn], xn(t) ∈ K

Then some subsequence sn′ converges to some S ∈ [0, T ]. Therefore, for
any s < S, then s < sn′ for n′ large enough, so that xn′(s) ∈ K. By
taking the limit, we infer that for every s < S, x(s) ∈ K. Furthermore, since
xn(·) converges to x(·) uniformly on the compact interval [0, T ], then xn(sn)
converges to x(S), that belongs to C.

This shows that the limit x(·) belongs to V(K,C). ��

Consequently, the viability kernel of a closed subset with a closed target
under an upper semicompact evolutionary subset is closed:

Theorem 10.3.10 [Closedness of the Viability Kernel] Let S : X �
C(0,+∞;X) be an upper semicompact evolutionary system. Then for any
environment K ⊂ X and any target C ⊂ K,
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ViabS(K,C) ⊂ ViabS(K,C)

Consequently, if C ⊂ K and K are closed, so is the viability kernel
ViabS(K,C) of K with target C. Furthermore, if K\C is a repeller, the
capture basin CaptS(K,C) of C viable in K under S is closed.

Proof. Since the viability kernel ViabS(K,C) := S−1(V(K,C)) is the inverse
image of the subset V(K,C) by Definition 2.10.2, the closedness of the
viability kernel follows from Theorem 10.3.7 and Lemma 10.3.9. ��

Theorem 10.3.8 implies the closedness of the invariance kernels:

Theorem 10.3.11 [Closedness of Invariance Kernels] Let S : X �
C(0,+∞;X) be a lower semicontinuous evolutionary system. Then for any
environment K ⊂ X and any target C ⊂ K,

InvS(K,C) ⊂ InvS(K,C)

Consequently, if C ⊂ K and K are closed, so is the invariance kernel
InvS(K,C) of K with target C.

Therefore, if K\C is a repeller, the absorption basin AbsS(K,C) of C
invariant in K under S is closed.

As for interiors of capture and absorption basins, we obtain the following
statements:

Theorem 10.3.12 [Interiors of Capture and Absorption Basins]
For any environment K ⊂ X and any target C ⊂ K:

• if S : X � C(0,+∞;X) is lower semicontinuous, then

CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K,C))

• if S : X � C(0,+∞;X) is upper semicontinuous, then

AbsS(Int(K), Int(C)) ⊂ Int(AbsS(K,C))

Consequently, if C ⊂ K and K are open, so are the capture basin
CaptS(K,C) and the absorption basin CaptS(K,C) whenever the evolution-
ary system is respectively lower semicontinuous and upper semicompact.
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Proof. Observe that, taking the complements, Lemma 2.12.2 implies that if
S : X � C(0,+∞;X) is lower semicontinuous, then Theorem 10.7.8, p. 420
implies that

CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K,C))

since the complement of an invariance kernel is the capture basin of the
complements and since the complement of a closure is the interior of the
complement, and Theorem 10.3.10, p. 388 imply the similar statement for
absorption basins. ��

For capture basins, we obtain another closedness property based on
backward invariance (see Definition 8.2.4, p. 278):

Proposition 10.3.13 [Closedness of Capture Basins] If the set-valued
map

←−S is lower semicontinuous and if K is backward invariant, then for
any closed subset C ⊂ K,

CaptS(K,C) ⊂ CaptS(K,C) (10.7)

Proof. Let us take x ∈ CaptS(K,C) and an evolution x(·) ∈ S(x) viable in
K until it reaches the target C at time T < +∞ at c := x(T ) ∈ C. Hence
the function t �→ y(t) := x(T − t) is an evolution y(·) ∈ ←−S (c).

Let us consider a sequence of elements cn ∈ C converging to c. Since←−S is lower semicontinuous, there exist evolutions yn(·) ∈
←−S (cn) converging

uniformly over compact intervals to y(·). These evolutions yn(·) are viable in
K, since K is assumed to be backward invariant. The evolutions xn(·) defined
by xn(t) := yn(T − t) satisfy xn(0) = yn(T ) ∈ K, xn(T ) = cn and, for all
t ∈ [0, T ], xn(t) ∈ K. Therefore xn(0) := yn(T ) belongs to CaptS(K,C) and
converges to x := x(0), so that x ∈ CaptS(K,C). ��

As a consequence, we obtain the following topological regularity property
(see Definition 18.2.2, p. 714) of capture basins:

Proposition 10.3.14 [Topological Regularity of Capture Basins] If
the set-valued map S is upper semicompact and the set-valued map

←−S is
lower semicontinuous, if K = Int(K) and C = Int(C), if K \C is a repeller
and if Int(K) is backward invariant, then

CaptS(K,C) = CaptS(Int(K), Int(C)) = Int(CaptS(K,C)) (10.8)
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Proof. Since K = Int(K) and C = Int(C), since
←−S is lower semicontinuous

and since Int(K) is backward invariant, Proposition 10.3.14, p. 390 implies
that

CaptS(K,C) = CaptS(Int(K), Int(C)) ⊂ CaptS(Int(K), Int(C))

Inclusion
CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K,C))

follows from Theorem 10.3.12, p. 389. On the other hand, since S is upper
semicompact and K \ C is a repeller, Theorem 10.3.10, p. 388 implies that

CaptS(Int(K), Int(C)) ⊂ Int(CaptS(K,C)) ⊂ CaptS(K,C)

so that CaptS(K,C) = Int(CaptS(K,C)). ��

We turn now our attention to connectedness properties of viability kernels:

Lemma 10.3.15 [The connectedness Lemma] Assume that the evolu-
tionary system S is upper semicompact. Let K be a closed environment and
C1 ⊂ K and C2 ⊂ K be nonempty closed disjoint targets. If the viability
kernel ViabS(K,C1 ∪ C2) is connected, then the intersection

ViabS(K,C1) ∩ViabS(K,C2)

is closed and not empty. Consequently, if we assume further that K \ C1

and K \ C2 are repellers, we infer that

CaptS(K,C1) ∩ CaptS(K,C2) �= ∅

Proof. This follows from the definition of connectedness since S being
upper semicompact, the viability kernels ViabS(K,C1) and ViabS(K,C2)
are closed, nonempty (they contain their nonempty targets) and cover the
viability kernel with the union of targets :

ViabS(K,C1 ∪ C2) = ViabS(K,C1) ∪ViabS(K,C2)

Since this union is assumed connected, the intersection ViabS(K,C1) ∩
ViabS(K,C2) must be empty (and is closed). ��

Motivating Remark. The intersection

CaptS(K,C1) ∩ CaptS(K,C2) �= ∅
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being the subset of states from which at least one volution reaches one target
in finite time and another one reaches the other target also in finite time, could
be use as a proto-concept of a “watershed”. It is closed when the evolutionary
system is upper semicompact and when the environment and the targets are
closed (see Morphologie Mathématique, [187, Schmitt M. & Mattioli], and
Mathematical Morphology, [166, Najman]).

10.4 Persistent Evolutions and Exit Sets

This section applies the above topological results to the study of exit and
minimal time functions initiated in Sect. 4.3, p. 132. We shall begin by proving
that these functions are respectively upper and lower semicontinuous and
that persistent and minimal time evolutions exist under upper semicompact
evolutionary systems. We next study the exit sets, the subset of states at the
boundary of the environment from which all evolutions leave the environment
immediately. They play an important role in the characterization of local
viability, of transversality.

10.4.1 Persistent and Minimal Time Evolutions

Let us recall the definition of the exit function of K defined by

τK(x(·)) := inf {t ∈ [0,∞[ | x(t) /∈ K} and τ �K(x) := sup
x(·)∈S(x)

τK(x(·))

and of minimal time function �(K,C) defined by

�(K,C)(x(·)) := inf{t ≥ 0 | x(t) ∈ C & ∀s ∈ [0, t], x(s) ∈ K }

and
��

(K,C)(x) := inf
x(·)∈S(x)

�(K,C)(x(·))

We summarize the semi-continuity properties of the exit and minimal time
functions in the following statement:

Theorem 10.4.1 [Semi-Continuity Properties of Exit and Mini-
mal Time Functions] Let us assume that the evolutionary system is upper
semicompact and that the subsets K and C ⊂ K are closed. Then:

1. the hypograph of the exit function τ �K(·) is closed,
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2. the epigraph of the minimal time function ��
(K,C)(·) is closed

This can be translated by saying that the exit function is upper semicon-
tinuous and the minimal time function is lower semicontinuous.

Proof. The first statements follow from Theorems 4.3.6 and 10.3.10. ��

Actually, in several applications, we would like to maximize the exit
functional and minimize the minimal time or minimal time functional. Indeed,
when an initial state x ∈ K does not belong to the viability kernel, all
evolutions x(·) ∈ S(x) leave K in finite time. The question arises to select
the “persistent evolutions” in K which persist to remain in K as long as
possible:

Definition 10.4.2 [Persistent Evolutions] Let us consider an evolu-
tionary system S : X � C(0,+∞;X) and a subset K ⊂ X.

The solutions x�(·) ∈ S(x) which maximize the exit time function

∀x ∈ K, τK(x�(·)) = τ �K(x) := max
x(·)∈S(x)

τK(x(·)) (10.9)

are called persistent evolutions in K (Naturally, when x ∈ ViabS(K),
persistent evolutions starting at x are the viable ones).
We denote by SK�

: K � C(0,+∞;X) the evolutionary system SK� ⊂ S
associating with any x ∈ K the set of persistent evolutions in K.

In a symmetric way, we single out the evolutions which minimize the
minimal time to a target:

Definition 10.4.3 [Minimal Time Evolutions] Let us consider an
evolutionary system S : X � C(0,+∞;X) and subsets K ⊂ X and C ⊂ K.

The evolutions x�(·) ∈ S(x) which minimize the minimal time function

∀x ∈ K, �(K,C)(x�(·)) = ��
(K,C)(x) := min

x(·)∈S(x)
�(K,C)(x(·)) (10.10)

are called minimal time evolutions in K.

Persistent evolutions and minimal time evolutions exist when the evolu-
tionary system is upper semicompact:
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Theorem 10.4.4 [Existence of Persistent and Minimal Time Evo-
lutions] Let K ⊂ X be a closed subset and S : X � C(0,+∞;X) be an
upper semicompact evolutionary system. Then:

1. For any x /∈ ViabS(K), there exists at least one persistent evolution
x�(·) ∈ SK�

(x) ⊂ S(x) viable in K on the interval [0, τ �K(x)].
2. For any x ∈ CaptS(K,C), there exists at least one evolution x�(·) ∈ S(x)

reaching C in minimal time while being viable in K.

Proof. Let t < τ �K(x) and n > 0 such that t < τ �K(x) − 1
n . Hence, by

definition of the supremum, there exists an evolution xn(·) ∈ S(x) such
that τK(xn(·)) ≥ τ �K(x) − 1

n , and thus, such that xn(t) ∈ K. Since the
evolutionary system S is upper semicompact, we can extract a subsequence
of evolutions xn′(·) ∈ S(x) converging to some evolution x�(·) ∈ S(x).
Therefore, we infer that x�(t) belongs to K because K is closed. Since this is
true for any t < τ �K(x) and since the evolution x�(·) is continuous, we infer
that τ �K(x) ≤ τK(x�(·)). We deduce that such an evolution x�(·) ∈ S(x) is
persistent in K because τK(x�(·)) ≤ τ �K(x) by definition.

By definition of T := ��
(K,C)(x), for every ε > 0, there exists N such

that for n ≥ N , there exists an evolution xn(·) ∈ S(xn) and tn ≤ T + ε
such that xn(tn) ∈ C and for every s < tn, xn(s) ∈ K. Since S is upper
semicompact, a subsequence (again denoted by) xn(·) converges uniformly
on compact intervals to some evolution x(·) ∈ S(x). Let us also consider a
subsequence (again denoted by) tn converging to some T � ≤ T +ε. By taking
the limit, we infer that x(T �) belongs to C and that, for any s < T �, x(s)
belongs to K. This implies that

��
(K,C)(x) ≤ �(K,C)(x(·)) ≤ T � ≤ T + ε

We conclude by letting ε converge to 0: The evolution x(·) obtained above
achieves the infimum. ��

We deduce the following characterization of viability kernels and viable-
capture basins:

Proposition 10.4.5 [Sections of Exit and Minimal Time Func-
tions] Let S : X � C(0,+∞;X) be a strict upper semicompact evolutionary
system and C and K be two closed subsets such that C ⊂ K. Then the
viability kernel is characterized by

ViabS(K) = {x ∈ K | τ �K(x) = +∞}
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and the viable-capture basin

CaptS(K,C) = {x ∈ K | ��
(K,C)(x) < +∞}

is the domain of the (constrained) minimal time function ��
(K,C).

Furthermore, for any T ≥ 0, the viability kernel and capture basin tubes
defined in Definition 4.3.1, p. 133 can be characterized by exit and minimal
time functions:

⎧⎪⎪⎨
⎪⎪⎩

ViabS(K)(T ) :=
{
x ∈ K | τ �K(x) ≥ T

}

CaptS(K,C)(T ) :=
{
x ∈ X | ��

(K,C)(x) ≤ T
} (10.11)

Proof. Inclusions
{

ViabS(K) ⊂ {x ∈ K | τ �K(x) = +∞}
CaptS(K,C) ⊂ {x ∈ K | ��

(K,C)(x) < +∞}

as well as ⎧⎪⎪⎨
⎪⎪⎩

ViabS(K)(T ) ⊂
{
x ∈ K | τ �K(x) ≥ T

}

CaptS(K,C)(T ) ⊂
{
x ∈ X | ��

(K,C)(x) ≤ T
}

are obviously always true.
Equalities follow from Theorem 10.4.4 by taking one persistent evolution

x�(·) ∈ S(x) when T ≤ τ �K(x) ≤ +∞, since we deduce that T ≤ τ �K(x) =
τK(x�(·)), so that x(·) is viable in K on the interval [0, T ]. In the same way,
taking one minimal time evolution x�(·) ∈ S(x) when ��

(K,C)(x) ≤ T < +∞,
we deduce that �(K,C)(x�(·)) = ��

(K,C)(x) ≤ T , so that x(·) is viable in K
before it reaches C at T . ��

The viability kernel is in some sense the paradise for viability, which is
lost whenever an environment K is a repeller. Even though there is no viable
evolutions in K, one can however look for an ersatz of viability kernel, which
is the subset of evolutions which survive with the highest life expectancy:

Proposition 10.4.6 [Persistent Kernel] If K is a compact repeller
under a upper semicompact evolutionary system S, then there exists a
nonempty compact subset of initial states which maximize their exit time.
This set can be regarded as a persistent kernel.



396 10 Viability and Capturability Properties of Evolutionary Systems

Proof. By Theorem 10.4.1, p. 392, the exit functional τ �K is upper semicon-
tinuous. Therefore, it achieves its maximum whenever the environment K is
compact. ��

10.4.2 Temporal Window

Let x ∈ K and x(·) ∈ S(x) be a (full) evolution passing through x (see
Sect. 8.2, p. 275). The sum of the exit times τK(−→x (·)) of the forward part
of the evolution and of the exit time τK(←−x (·)) of its backward part can be
regarded as the “temporal window” of the evolution in K. One can observe
that the maximal temporal window is the sum of the exit time function of its
backward time and of its forward part since

sup
x(·)∈S(x)

(τK(←−x (·))+τK (−→x (·))) = sup
←−x (·)∈←−S (x)

(τK(←−x (·)))+ sup
−→x (·)∈S(x)

(τK(−→x (·)))

Any (full) evolution x�(·) ∈ S(x) passing through x ∈ K maximizing
the temporal window is still called persistent. It is the concatenation of the
persistent forward part τK(−→x �(·)) and of its backward part τK(←−x �(·)). The
maximal temporal window of a (full) evolution viable in K is infinite, and
the converse is true whenever the evolutionary system is upper semicompact
(see Proposition 10.4.6, p. 395). If the subset K \ B is a backward repeller
and the subset K \ C is a forward repeller, the bilateral viability kernel is
empty, but the subset of states x ∈ K maximizing their temporal window
function is not empty and can be called the persistent kernel of K.

10.4.3 Exit Sets and Local Viability

We continue the study of local viability initiated in Sect. 2.13, p. 94 by
characterizing it in terms of exit sets:

Definition 10.4.7 [Exit Subsets] Let us consider an evolutionary system
S : X � C(0,+∞;X) and a subset K ⊂ X. The exit subset ExitS(K) is
the (possibly empty) subset of elements x ∈ ∂K which leave K immediately:

ExitS(K) :=
{
x ∈ K such that τ �K(x) = 0

}
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Exit sets characterize viability and local viability of environments. Recall
that Definition 2.13.1, p. 94 states that a subset D is said locally viable under
S if from any initial state x ∈ D, there exists at least one evolution x(·) ∈ S(x)
and a strictly positive Tx(·) > 0 such that x(·) is viable in D on the nonempty
interval [0, Tx(·)[.

Proposition 10.4.8 [Local Viability Kernel] The subset K \ExitS(K)
is the largest locally viable subset of K (and thus, can be regarded as the
“ local viability kernel of K”).

Proof. Let D ⊂ K be locally viable. If an evolution x(·) ∈ S(x) starting from
x ∈ D is locally viable in D, it is clear that τ �K(x) ≥ τ �D(x) ≥ τD(x(·)) > 0, so
that x ∈ K \ExitS(K). Furthermore, the subset K \ExitS(K) itself is locally
viable because to say that x ∈ K \ ExitS(K) means that τ �K(x) > 0. Hence
for any 0 < λ < τ �K(x), there exists x(·) ∈ S(x) such that 0 < λ ≤ τK(x(·)),
i.e., such that x(·) is viable in K on the nonempty interval [0, τK(x(·))]. ��

If an environment K is not viable, the subset K can be covered in the
following way:

K = ViabS(K) ∪AbsS(K,ExitS(K))

because, starting outside the viability kernel of K, all solutions leave K in
finite time through the exit set.

We also observe that K \ (ViabS(K)∪ExitS(K)) is the set of initial states
from which starts at least one evolution locally viable in K, but not viable
in K.

Proposition 10.4.8, p. 397 implies

Proposition 10.4.9 [Locally Viable Subsets] The following statements
are equivalent:

1. the complement K \C of a target C ⊂ K in the environment K is locally
viable

2. ExitS(K) ⊂ C,
3. C ∩ ExitS(K) ⊂ ExitS(C).

In particular, K is locally viable if and only if its exit set ExitS(K) = ∅ is
empty.

Proof. Indeed, K \ C is locally viable if and only if K \ C ⊂ K \ ExitS(K)
is contained in the local viability kernel K \ ExitS(K), i.e., if and only if
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ExitS(K) ⊂ C. On the other hand, since C ∩ ExitS(K) ⊂ ExitS(C). Hence
the three statements are equivalent. ��

There is a close link between the closedness of exit sets and the continuity
of the exit function:

Theorem 10.4.10 [Closedness of Exit Sets and Continuity of
Exit Functions] Let us assume that the evolutionary system is upper
semicompact and that the subset K is closed. Then the epigraph of the exit
function τ �K(·) is closed if and only if the exit subset ExitS(K) is closed.

Proof. Since the exit function is upper semicontinuous, its continuity is
equivalent to its lower semicontinuity, i.e., to the closedness of its epigraph.
The lower semicontinuity of the exit function implies the closedness of the
exit subset

ExitS(K) :=
{
x ∈ K such that τ �K(x) = 0

}

because the lower sections of a lower semicontinuous function are closed. Let
us prove the converse statement. Consider a sequence (xn, yn) of the epigraph
of the exit function converging to some (x, y) and prove that the limit belongs
to its epigraph, i.e., that τ �K(x) ≤ y.

Indeed, since tn := τ �K(xn) ≤ yn ≤ y + 1 when n is large enough,
there exists a subsequence (again denoted by) tn converging to t� ≤ y + 1.
Since the evolutionary system is assumed to be upper semicompact, there
exists a persistent evolution x�n(·) ∈ S(xn) such that tn := τK(x�n(·)).
Furthermore, a subsequence (again denoted by) x�n(·) converges to some
evolution x�(·) ∈ S(x) uniformly on the interval [0, y + 1]. By definition of
the persistent evolution, for all t ∈ [0, tn], x�n(t) ∈ K and xn(tn) ∈ ExitS(K),
which is closed by assumption. We thus infer that for all t ∈ [0, t�], x�(t) ∈ K
and x�(t�) ∈ ExitS(K). This means that t� = τK(x�(·)) and consequently,
that τK(x�(·)) ≤ y. This completes the proof. ��

We single out the important case in which the evolutions leaving K cross
the boundary at a single point:

Definition 10.4.11 [Transverse Sets] Let S be an evolutionary system
and K be a closed subset. We shall say that K is transverse to S if for
every x ∈ K and for every evolution x(·) ∈ S(x) leaving K in finite time,
τK(x(·)) = �∂K(x(·)).
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Transversality of an environment means that all evolutions governed by
an evolutionary system cross the boundary as soon as they reach it to leave
the environment immediately.

We deduce the following consequence:

Proposition 10.4.12 [Continuity of the Exit Function of a Trans-
verse Set] Assume that the evolutionary system S is upper semicompact
and that the subset K is closed and transverse to S. Then the exit function
τ �K is continuous and the exit set ExitS(K) of K is closed.

10.5 Viability Characterizations of Kernels and Basins

We shall review successively the viability characterizations of viable subsets
outside a target, introduce the concept of relative backward invariance for
characterizing isolated systems before proving the second viability character-
izations of viability kernels and capture basins. They enjoy semi-permeable
barrier properties investigated at the end of this section.

10.5.1 Subsets Viable Outside a Target

We now provide a characterization of a subset D viable outside a target C
in terms of local viability of D\C:

Proposition 10.5.1 [Characterization of Viable Subsets Outside a
Target] Assume that S is upper semicompact. Let C ⊂ D and D be closed
subsets. The following conditions are equivalent:

1. D is viable outside C under S (ViabS(D,C) = D by Definition 2.2.3,
p. 49),

2. D \ C is locally viable under S,
3. The exit set of D is contained in the exit set of C: C ∩ ExitS(D) ⊂

ExitS(C)

In particular, a closed subset D is viable under S if and only if its exit
set is empty:

ViabS(D) = D if and only if ExitS(D) = ∅
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Proof.

1. First, assume that ViabS(D,C) = D and derive thatD\C is locally viable.
Take x0 ∈ D\C and prove that there exists an evolution x(·) ∈ S(x0)
starting at x0 viable in D\C on a nonempty interval. Indeed, since
C is closed, there exists η > 0 such that B(x0, η) ∩ C = ∅, so that
x(t) ∈ B(x0, η) ∩D ⊂ D\C on some nonempty interval. This means that
ViabS(D,C)\C is locally viable.

2. Assume that D \ C is locally viable and derive that ViabS(D,C) = D.
Take any x ∈ D \ C and, since the evolutionary system is assumed to
be semicompact, at least one persistent evolution x�(·) ∈ S(x), thanks to
Theorem 10.4.4. Either this persistent evolution is viable forever, and thus
x ∈ ViabS(D) ⊂ ViabS(D,C), or else, it leaves D in finite time τ �D(x) at
x⇒ := x�(τ �D(x)) ∈ ∂D.
Such an element x⇒ belongs to C because, otherwise, since D\C is locally
viable and C is closed, one could associate with x⇒ ∈ D\C another
evolution y(·) ∈ S(x⇒) and T > 0 such that y(τ) ∈ D\C for all τ ∈ [0, T ],
so that τ �D(x⇒) = T > 0, contradicting the fact that x�(·) is a persistent
evolution.

3. The equivalence between the second and third statement follows from
Propositions 10.4.9, p. 397 on exit sets. ��

As a consequence, Proposition 10.5.2, p. 400 and Theorem 10.3.10,
p. 388 (guaranteeing that the viability kernels ViabS(D,C) are closed)
Theorem 2.15.2 imply the following:

Theorem 10.5.2 [Characterization of Viable Subsets Outside a
Target] Assume that S is upper semicompact. Let C ⊂ K and K be closed
subsets.

Then the viability kernel ViabS(K,C) of K with target C under S is:

• either the largest closed subset D ⊂ K containing C such that D\C is
locally viable,

• or, equivalently, the largest closed subset satisfying

C ∩ ExitS(D) ⊂ ExitS(C) ⊂ C ⊂ D ⊂ K (10.12)

Therefore, under these equivalent assumptions (10.12), p. 400, inclusion

D ∩ ExitS(K) ⊂ C ⊂ D (10.13)

holds true. In particular, the viability kernel ViabS(K) of K is the largest
closed viable subset contained in K.
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Remark. We shall see that inclusion (10.13), p. 400 is the “mother of
boundary conditions” when the subsets C, K and D are graphs of set-valued
maps or epigraphs of extended functions. ��

10.5.2 Relative Invariance

We characterize further isolated subsets in terms of backward invariance
properties – discovered by Hélène Frankowska in her investigations of
Hamilton-Jacobi equations associated with value functions of optimal control
problems under state constraints. They play a crucial role for enriching
the Characterization Theorem 10.2.5 stating that the viability kernel of an
environment with a target is the smallest subset containing the target and
isolated in this environment. We already introduced the concept of backward
relative invariance (see Definition 2.15.3, p. 100):

Definition 10.5.3 [Relative Invariance] We shall say that a subset C ⊂
K is (backward) invariant relatively to K under S if for every x ∈ C, all
(backward) evolutions starting from x and viable in K on an interval [0, T [
are viable in C on the same interval [0, T [.

If K is itself (backward) invariant, any subset (backward) invariant
relatively to K is (backward) invariant.

If C ⊂ K is (backward) invariant relatively to K, then C ∩ Int(K) is
(backward) invariant.

Proposition 10.5.4 [Capture Basins of Relatively Invariant Tar-
gets] Let C ⊂ D ⊂ K three subsets of X.

1. If D is backward invariant relatively to K, then CaptS(K,C) =
CaptS(D,C),

2. If C is backward invariant relatively to K, then CaptS(K,C) = C.

Proof. Since CaptS(D,C) ⊂ CaptS(K,C), let us consider an element x ∈
CaptS(K,C), an evolution x(·) viable in K until it reaches C in finite time
T ≥ 0 at z := x(T ) ∈ C. Setting ←−y (t) := x(T − t), we observe that ←−y (·) ∈
←−
S (x(T )), satisfies ←−y (T ) = x ∈ K and is viable in K on the interval [0, T ].
Since D is backward invariant relatively to K, we infer that this evolution
←−y (·) is viable in D on the interval [0, T ], so that x(t) = ←−y (T − t) belongs to
D for all t ∈ [0, T ]. This implies that x belongs to CaptS(D,C).
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Taking C := D, then CaptS(D,C) = C, so that CaptS(K,C) =
CaptS(D,C) = C. ��

Capture basins of targets viable in environments are backward invariants
relatively to this environment:

Proposition 10.5.5 [Relative Backward Invariance of Capture
Basins] The capture basin CaptS(K,C) of a target C viable in the
environment K is backward invariant relatively to K.

Proof. We have to prove that for every x ∈ CaptS(K,C), every backward
evolution ←−y (·) ∈ ←−S (x) viable in K on some interval [0, T ] is actually viable
in CaptS(K,C) on the same interval.

Since x belongs to CaptS(K,C), there exists an evolution z(·) ∈ S(x) and
S ≥ 0 such that z(S) ∈ C and, for all t ∈ [0, S], z(t) ∈ K. We associate with
it the evolution −→x T (·) ∈ S(←−y (T )) defined by

−→x T (t) :=
{←−y (T − t) if t ∈ [0, T ]
−→z (t− T ) if t ∈ [T, T + S]

starting at y(T ) ∈ K. It is viable in K until it reaches C at time T + S.
This means that y(T ) belongs to CaptS(K,C) and this implies that for every
t ∈ [0, T + S], −→x T (t) belongs to the capture basin CaptS(K,C). This is in
particular the case when t ∈ [0, T ]: then ←−y (t) = −→x T (T − t) belongs to the
capture basin. Therefore, the backward evolution ←−y (·) ∈ ←−S (x) is viable in
CaptS(K,C) on the interval [0, T ]. ��

We deduce that a subset C ⊂ K is backward invariant relatively to K if
and only if K is the capture basin of C:

Theorem 10.5.6 [Characterization of Relative Invariance] A sub-
set C ⊂ K is backward invariant relatively to K if and only if
CaptS(K,C) = C.

Proof. First, Proposition 10.5.5, p. 402 implies that whenever CaptS(K,C) =
C, C is backward invariant relatively to K. Conversely, assume that C is
backward invariant relatively to K and we shall derive a contradiction by
assuming that there exists x ∈ CaptS(K,C)\C: in this case, there would
exist a forward evolution denoted −→x (·) ∈ S(x) starting at x and viable in
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K until it reaches C at time T > 0 at c = x(T ). Let ←−z (·) ∈ ←−S (x) be any
backward evolution starting at x and viable in K on some interval [0, T ]. We
associate with it the function ←−y (·) defined by

←−y (t) :=
{−→x (T − t) if t ∈ [0, T ]
←−z (t− T ) if t ≥ T

Then ←−y (·) ∈ ←−S (c) and is viable in K on the interval [0, T ]. Since C is
assumed to be backward invariant relatively to K, then ←−y (t) ∈ C for all
t ∈ [0, T ], and in particular ←−y (T ) = x belongs to C. We have obtained a
contradiction since we assumed that x /∈ C. Therefore CaptS(K,C)\C = ∅,
i.e., CaptS(K,C) = C. ��

As a consequence of Proposition 10.5.6, we obtain:

Proposition 10.5.7 [Backward Invariance of the Complement of
an Invariant Set] A subset C is backward invariant under an evolutionary
system S if and only if its complement �C is invariant under S.

Proof. Applying Proposition 10.5.6 with K := X , we infer that C is
backward invariant if and only if C = CaptS(X,C), which is equivalent,
by Lemma 2.12.2, to the statement that �C = InvS(�C, ∅) =: InvS(�C) is
invariant. ��

10.5.3 Isolated Subsets

The following Lemma is useful because it allows isolated subsets to be also
characterized by viability properties:

Lemma 10.5.8 [Isolated Subsets] Let D and K be two subsets such that
D ⊂ K. Then the following properties are equivalent:

1. D is isolated in K under S: ViabS(K,D) = D,
2. ViabS(K) = ViabS(D) and CaptS(K,D) = D,
3. K\D is a repeller and CaptS(K,D) = D.
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Proof. Assume that D is isolated in K. This amounts to writing that,

1. by definition,

D = ViabS(K,D) = ViabS(K) ∪ CaptS(K,D)

and thus, equivalently, that CaptS(K,D) = D and ViabS(K) ⊂ D. Since
D ⊂ K, inclusion ViabS(K) ⊂ D is equivalent to ViabS(K) = ViabS(D).

2. by formula (2.26),

D = ViabS(K,D) = ViabS(K\D) ∪ CaptS(K,D)

and thus, equivalently, that CaptS(K,D) = D and that ViabS(K\D) ⊂
D. Since D ∩ ViabS(K\D) = ∅, this implies that ViabS(K\D) = ∅.
��

We derive the following characterization:

Theorem 10.5.9 [Characterization of Isolated Subsets] Let us con-
sider a closed subset D ⊂ K. Then D is isolated in K by S if and only
if:

1. D is backward invariant relatively to K,
2. either K\D is a repeller or ViabS(K) = ViabS(D).

We provide now another characterization of isolated subsets involving
complements:

Proposition 10.5.10 [Complement of an Isolated Subset] Let us
assume that K and D ⊂ K are closed.

1. If the evolutionary system S is lower semicontinuous and if D =
CaptS(K,D), then either one of the following equivalent properties:

⎧⎨
⎩

(i) �D = InvS(�D, �K) (�D is invariant outside �K)
(ii) Int(D) = CaptS(Int(K), Int(D))
(iii) Int(D) is backward invariant relatively to Int(K)

(10.14)

hold true.
2. Conversely, if Int(K) is backward invariant and if the set-valued map

←−S
is lower semicontinuous, then any of the equivalent properties (10.14),
p. 404 implies that Int(D) = CaptS(Int(K), Int(D)).
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Proof. Lemma 2.12.2 implies that CaptS(K,D) = D if and only if

�D = InvS(�D, �K)

Since S is assumed to be lower semicontinuous, we deduce from Theo-
rem 10.3.7 that{

�(Int(D)) = �D = InvS(�D, �K)
⊂ InvS(�D, �K) = InvS(�(Int(D)), �(Int(K))) ⊂ �(Int(D))

so that the closure of the complement of D is invariant outside the closure of
the complement of K. Observe that, taking the complements, Lemma 2.12.2
states that this is equivalent to property Int(D) = CaptS(Int(K), Int(D)),
which, by Theorem 10.5.6, p. 402, amounts to saying that the interior of D
is relatively backward invariant relatively to the interior of K.

For proving the converse statement, Proposition 10.3.14, p. 390
states that under the assumptions of the theorem, condition Int(D) =
CaptS(Int(K), Int(D)) implies that

Int(D) ⊂ CaptS(Int(K), Int(D)) ⊂ CaptS(Int(K), Int(D)) = Int(D) ��

10.5.4 The Second Fundamental Characterization
Theorem

Putting together the characterizations of viable subsets and isolated subsets,
we reformulate Theorem 10.2.5 characterizing viability kernels with targets
in the following way:

Theorem 10.5.11 [Viability Characterization of Viability Kernels]
Let us assume that S is upper semicompact and that the subsets C ⊂ K and
K are closed. The viability kernel ViabS(K,C) of a subset K with target C
under S is the unique closed subset satisfying C ⊂ D ⊂ K and

⎧⎨
⎩

(i) D\C is locally viable under S, i.e., D = ViabS(D,C)
(ii) D is backward invariant relatively to K under S,
(iii) K\D is a repeller under S, i.e., ViabS(K \D) = ∅.

(10.15)

We mentioned in Sect. 2.15, p. 98 the specific versions for viability kernels
(Theorem 2.15.4, p. 101) and capture basin (Theorem 2.15.5, p. 101).
However, Theorem 10.5.11 implies that when K\C is a repeller, the above
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theorem implies a characterization of the viable-capture basins in a more
general context:

Theorem 10.5.12 [Characterization of Capture Basins] Let us
assume that S is upper semicompact and that a closed subset C ⊂ K satisfies
property

ViabS(K\C) = ∅ (10.16)

Then the viable-capture basin CaptS(K,C) is the unique closed subset
D satisfying C ⊂ D ⊂ K and

{
(i) D\C is locally viable under S
(ii) D is backward invariant relatively to K under S (10.17)

We deduce from Proposition 10.5.10, p. 404 another characterization of
capture basins that provide existence and uniqueness of viscosity solutions
to some Hamilton–Jacobi–Bellman equations:

Theorem 10.5.13 [“Viscosity” Characterization of Capture
Basins] Assume that the evolutionary system S is both upper semicompact
and lower semicontinuous, that K is closed, that Int(K) �= ∅ is backward
invariant, that ViabS(K\C) = ∅, that Int(K) = K and that Int(C) = C.

Then the capture basin CaptS(K,C) is the unique subset topologically
regular subset D between C and K satisfying

{
(i) D\C is locally viable under S,
(ii) �D is invariant outside �K under S.

(10.18)

Proof. Since ViabS(K\C) = ∅, the viability kernel and the capture basin are
equal. By Theorem 10.2.5, p. 379, the capture basin is the unique subset D
between C and K such that:

1. the largest subset D ⊂ K such that CaptS(D,C) = D,
2. the smallest subset D ⊃ C such that CaptS(K,D) = D.

The evolutionary system being upper semicompact, the first condition
amounts to saying that D\C is locally viable.

By Proposition 10.5.10, p. 404, property CaptS(K,D) = D implies that
�D is invariant outside �K, as well as the other properties (10.14), p. 404.

Conversely, let D satisfy those properties (10.14). Proposition 10.7.6,
p. 419 implies that, under the assumptions of the theorem, the capture basin
CaptS(K,C) is topologically regular whenever K and C are topologically
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regular. Let D satisfy properties (10.18), p. 406. By Proposition 10.5.10,
p. 404, property CaptS(K,D) = D implies that CaptS(K,D) = D.
Therefore, Theorem 10.2.5, p. 379 implies that D = CaptS(K,C). ��

Remark. We shall see that whenever the environment K := Ep(k) and
the target C := Ep(c) are epigraphs of functions k ≤ c, the capture basin
under adequate dynamical system is itself the epigraph of a function v.
Theorem 10.5.13, p. 406 implies that v is a viscosity solution to a Hamilton–
Jacobi–Bellman equation. ��

10.5.5 The Barrier Property

Roughly speaking, an environment exhibits the barrier property if all viable
evolutions starting from its boundary are viable on its boundary, so that no
evolution can enter the interior of this environment: this is a semi-permeability
property of the boundary.

For that purpose, we need to define the concept of boundary:

Definition 10.5.14 [Boundaries] Let C ⊂ K ⊂ X be two subsets of X.
The subsets

∂KC := C ∩K\C &
◦
∂K C := C ∩K\C

are called respectively the boundary and the pre-boundary of the subset C
relatively to K. When K := X, we set

∂C := C ∩ � C &
◦
∂ C := C ∩ � C

In other words, the interior of a setD and its pre-boundary form a partition
of D = Int(D)∪

◦
∂ D. Pre-boundaries are useful because of the following

property:

Lemma 10.5.15 [Pre-boundary of an intersection with an open
set] Let Ω ⊂ X be an open subset and D ⊂ X be a subset. Then

◦
∂ (Ω ∩D) = Ω∩

◦
∂ D

In particular, if C ⊂ D is closed, then
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Int(D) \ C = Int(D \ C) and
◦
∂ (D \ C) =

◦
∂ (D) \ C

Proof. Indeed, D = Int(D)∪
◦
∂ D being a partition of D, we infer that D ∩

Ω = Int(D∩Ω)∪
◦
∂ D∩Ω is still a partition. By definition, D∩Ω = Int(D∩

Ω)∪
◦
∂ (D ∩Ω) is another partition of D ∩Ω. Since Ω is open, Int(D ∩Ω) =

Int(D) ∩ Int(Ω) = Int(D) ∩Ω, so that
◦
∂ (D ∩Ω) = Ω∩

◦
∂ D. ��

Definition 10.5.16 [Barrier Property] Let D ⊂ X be a subset and S be
an evolutionary system. We shall say that D exhibits the barrier property
if its pre-boundary

◦
∂ D is relatively invariant with respect to D itself. In

other words, starting from any x ∈
◦
∂ D, all evolutions viable in D on some

time interval [0, T [ are actually viable in
◦
∂ D on [0, T [.

Remark. The barrier property of an environment is a semi-permeability
property of D, since no evolution can enter the interior of D from the
boundary (whereas evolutions may leave D). This is very important in terms
of interpretation. Viability of a subset D having the barrier property is
indeed a very fragile property, which cannot be restored from the outside,
or equivalently, no solution starting from outside the viability kernel can
cross its boundary from outside. In other words, starting from the pre-
boundary of the environment, love it or leave it... The “barrier property”
played an important role in control theory and the theory of differential
games, because their boundaries could be characterized as solutions of first-
order partial differential equations under (severe) regularity assumptions.
Marc Quincampoix made the link at the end of the 1980s between this
property and the boundary of the viability kernel: every solution starting
from the boundary of the viability kernel can either remain in the boundary
or leave the viability kernel, or equivalently, no solution starting from outside
the viability kernel can cross its boundary. ��

We deduce from Theorem 10.5.6, p. 402 that a subset D exhibits the
barrier property if and only if its interior is backward invariant:
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Proposition 10.5.17 [Backward Invariance of the interior and
Barrier Property] A subset D exhibits the barrier property if and only
if its interior Int(D) is backward invariant.

Proof. Theorem 10.5.6, p. 402 states that the pre-boundary
◦
∂ D ⊂ D is

invariant relatively to D if and only if Capt←−S (D,
◦
∂ D) =

◦
∂ D. Therefore,

from every x ∈ Int(D) = D\
◦
∂ D = D \ Capt←−S (D,

◦
∂ D), all backward

evolutions are viable in Int(D) = D\
◦
∂ D as long as they are viable in

D. Such evolutions always remain in Int(D) because they can never reach

x(t) ∈
◦
∂ D in some finite time t. ��

Viability kernels exhibit the barrier property whenever the evolutionary
system is both upper and lower semicontinuous:

Theorem 10.5.18 [Barrier Property of Boundaries of Viability
Kernels] Assume that K is closed and that the evolutionary system S is
lower semicontinuous. Then the intersection ViabS(K,C) ∩ Int(K) of the
viability kernel of K with the interior of K exhibits the barrier property
and the interior Int(ViabS(K)) of the viability kernel of K is backward
invariant.

If ViabS(K) ⊂ Int(K), then ViabS(K) exhibits the barrier property,
and thus, its interior is backward invariant.

In some occasions, the boundary of the viability kernel can be characterized
as the viability kernel of the complement of a target, and in this case, exhibits
the properties of viability kernels, in particular, can be computed by the
Viability Kernel Algorithm: see Theorem 9.2.18, p. 339.

Actually, Theorem 10.5.18, p. 409 is a consequence of the Barrier
Theorem 10.5.19, p. 409 of viability kernels with nonempty targets:

Theorem 10.5.19 [Barrier Property of Viability Kernels with
Targets] Assume that K and C ⊂ K are closed and that the evolutionary
system S is lower semicontinuous. Then the intersection ViabS(K,C) ∩
Int(K \C) of the viability kernel of K with target C ⊂ K under S with the
interior of K \ C exhibits the barrier property.
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Furthermore, Int(ViabS(K,C)) \ C is backward invariant.
In particular, if ViabS(K,C) ⊂ Int(K \ C), then Int(ViabS(K,C)) \ C
exhibits the barrier property.

Proof. Let us set D := ViabS(K,C). Theorem 10.5.11, p. 405 implies that D
satisfies (10.5.5), p. 410:

⎧⎨
⎩

(i) D\C is locally viable under S
(ii) D is backward invariant relatively to K under S
(iii) K\D is a repeller under S or ViabS(K) = ViabS(D).

and Proposition 10.5.10, p. 404 states that if the evolutionary system S is
lower semicontinuous, then condition D = CaptS(K,D) implies that

�D = InvS(�D, �K) (�D is invariant outside �K)

Lemma 10.5.15, p. 407 states that, since the target C is assumed to be closed,

◦
∂ (Int(K \ C) ∩D) = Int(K \ C)∩

◦
∂ D = (

◦
∂ D ∩ Int(K)) \ C

because the interior of a finite intersection of subsets is the intersection of
their interiors.

Let x belong to Int(K \ C)∩
◦
∂ (ViabS(K,C)). Since x ∈ D :=

ViabS(K,C), there exists at least one evolution belonging to S(x) viable
in K forever or until it reaches C in finite time. Take any such evolution
x(·) ∈ S(x). Since x ∈ �D := InvS(�D, �K), this evolution x(·), as well as
every evolution starting from x, remains viable in �D as long as x(t) ∈
Int(K). Therefore, it remains viable in Int(K \ C)∩

◦
∂ (D) as long as

x(t) ∈ Int(K) \ C = Int(K \ C) (since C is assumed to be closed, thanks
to the second statement of Lemma 10.5.15, p. 407).

Proposition 10.5.17, p. 409 implies that the interior Int(D ∩ (K \ C)) =
Int(D) \ C is backward invariant. ��

Remark. If we assume furthermore that S is upper semicompact, then
the viability kernel with target is closed, so that its pre-boundary coincides
with its boundary. ��
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10.6 Other Viability Characterizations

10.6.1 Characterization of Invariance Kernels

We now investigate the viability property of invariance kernels.

Proposition 10.6.1 [Characterization of Invariant Subsets Out-
side a Target] Assume that S is upper lower semicontinuous. Let C ⊂ K
be closed subsets.

Then the invariance kernel InvS(K,C) of K with target C under S is
the largest closed subset D ⊂ K containing C such that D\C is locally
invariant.

In particular, K is invariant outside C if and only if K\C is locally
invariant.

Proof. First, we have to check that if D ⊃ C is invariant outside C, then D\C
is locally invariant: take x0 ∈ D\C and prove that all evolutions x(·) ∈ S
starting at x0 are viable in D\C on a nonempty interval. Indeed, since C
is closed, there exists η > 0 such that B(x0, η) ∩ C = ∅, so that x(t) ∈
B(x0, η) ∩D ⊂ D\C on some nonempty interval.

In particular, InvS(K,C)\C is locally invariant and the invariance kernel
InvS(K,C) of K with target C under S is closed by Theorem 10.7.8.

Let us prove now that any subset D between C and K such that D\C is
locally invariant is contained in the invariance kernel InvS(K,C) of K with
target C under S.

Since C ⊂ InvS(K,C), let us pick any x in D\C and show that it belongs
to InvS(K,C). Let us take any evolution x(·) ∈ S(x). Either it is viable in
D forever or, if not, leaves D in finite time τD(x(·)) at x := x(τD(x(·))):
there exists a sequence tn ≥ τD(x(·)) converging to τD(x(·)) such that
x(tn) /∈ D. Actually, this element x belongs to C. Otherwise, since D\C is
locally invariant, this evolution remains in D in some nonempty interval
[τD(x(·)), T ], a contradiction. ��

Further characterizations require properties of the invariance kernels in
terms of closed viable or invariant subsets. For instance:

Proposition 10.6.2 [Invariance Kernels] Let us assume that C ⊂ K
and K are closed, that K\C is a repeller and that the evolutionary system S
is both upper semicompact and lower semicontinuous. Then the invariance
kernel InvS(K,C) is a closed subset D between C and K satisfying
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{
(i) D = InvS(D,C)
(ii) �D = CaptS(�D, �K)

(10.19)

Furthermore, condition (10.19)(ii), p. 412 is equivalent to

Int(D) = InvS(Int(K), Int(D)) is invariant in Int(K) outside Int(D).

Proof. Let us consider the invariance kernel D := InvS(K,C). By Theo-
rem 10.2.7, p. 382, it is the unique subset between C and K such that
D = InvS(D,C) and D = InvS(K,D). Thanks to Lemma 2.12.2, the latter
condition is equivalent to

�InvS(K,D) = CaptS(�D, �K)

Since S is upper semicompact and since �C\�K = K\C is a repeller, we
deduce from Theorem 10.3.10 that

�D = CaptS(�D, �K) ⊂ CaptS(�D, �K) ⊂ �D

and thus, that �
◦
D= CaptS(�

◦
D, �

◦
K). By Lemma 2.12.2, this amounts to

saying that Int(D) = InvS(Int(K), Int(D)). ��

Lemma 10.6.3 [Complement of a Separated Subset] Let us assume
that the evolutionary system S is upper semicompact and that a closed subset
D ⊂ K is separated from K. Then Int(K \D)\Int(D) is locally viable under
S. In particular, if C ⊂ K is closed, Int(K)\Int(InvS(K,C)) is locally
viable.

Proof. Let x ∈ Int(K)\Int(D) be given and xn ∈ Int(K)\D converge to x.
Since D = InvS(K,D) is separated by assumption, for any n, there exists
xn(·) ∈ S(xn) such that

Tn := �∂K(xn(·)) ≤ τK(xn(·)) ≤ �D(xn(·))

because xn ∈ K\D and �∂K(xn(·)) ≤ τK(xn(·)) < +∞. Therefore, for any
t < �∂K(xn(·)), xn(t) ∈ Int(K) \D.

Since S is upper semicompact, a subsequence (again denoted by) xn(·)
converges to some x(·) ∈ S(x). Since the functional �∂K is lower semicon-
tinuous, we know that for any t < �∂K(x(·)), we have t < �∂K(xn(·)) for n
large enough. Consequently, xn(t) ∈ �D, and, passing to the limit, we infer
that for any t < �∂K(x(·)), x(t) ∈ � D. This solution is thus locally viable
in Int(K)\Int(D). ��
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The boundary of the invariance kernel is locally viable:

Theorem 10.6.4 [Local Viability of the Boundary of an Invariance
Kernel] If C ⊂ K and K are closed and if S is upper semicompact, then,

for every x ∈ (
◦
∂ (InvS(K,C))∩Int(K))\C, there exists at least one solution

x(·) ∈ S(x) locally viable in

(
◦
∂ (InvS(K,C)) ∩ Int(K)) \ C

Proof. Let x belong to
◦
∂ InvS(K,C) ∩ Int(K \ C). Lemma 10.6.3, p. 412

states there exists an evolution x(·) viable in Int(K) \ (InvS(K,C)) because
the invariance kernel is separated from K. Since x belongs to the invariance
kernel, it is viable in InvS(K,C) until it reaches the target C, and thus viable

in
◦
∂ InvS(K,C) as long as it is viable in the interior of K \ C. ��

10.6.2 Characterization of Connection Basins

The connection basin ConnS(K, (B,C)) of K between B and C (see
Definition 8.5.1, p. 291) can be written

ConnS(K, (B,C))=DetS(K,B)∩CaptS(K,C)=Capt←−S (K,B)∩CaptS(K,C)

because DetS(K,B) := Capt←−S (K,B) thanks to Lemma 8.4.5, p. 287.
We begin by proving a statement analogous to Theorem 10.2.5, p. 379 for

viability kernels:

Theorem 10.6.5 [Characterization of Connection Basins] Let S :
X � C(−∞,∞;X) be an evolutionary system, K ⊂ X be a environment,
and B ⊂ K be a source and C ⊂ K be a target. The connection basin
ConnS(K, (B,C)) is the intersection of the detection and capture basin

ConnS(K, (B,C)) = DetS(K,B) ∩ CaptS(K,C)

The connection basin is the largest subset D ⊂ K of K that is connecting
B to C viable in D, i.e., the largest fixed point of the map D �→
ConnS(D, (B ∩D,C ∩D)) contained in K.

Furthermore, all evolutions connecting B to C viable in K are actually
viable in ConnS(D, (B ∩D,C ∩D)).
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Proof. Let us set D := ConnS(K, (B,C)).
If D = ∅, and since ∅ = ConnS(∅, (B ∩ ∅, C ∩ ∅)), the empty set is a fixed

point of D �→ ConnS(D, (B ∩D,C ∩D)).
Otherwise, we shall prove that

D ⊂ DetS(D,D ∩B) ∩ CaptS(D,D ∩ C)

and thus, sinceD ⊂ DetS(D,D∩B)∩CaptS(D,D∩C) ⊂ ConnS(K, (B,C)) =:
D, that D is a fixed point of the map D �→ ConnS(D, (B ∩D,C ∩D)).

Indeed, let x belong to the connection basin D. By Definition 8.5.1, p. 291,
there exist an evolution x(·) ∈ S(x) passing through x and times

←−
T ≥ 0 and−→

T ≥ 0 such that

∀ t ∈ [−←−T ,+−→T ], x(t) ∈ K, x(
←−
T ) ∈ B and x(

−→
T ) ∈ C

Now, let us consider any such evolution x(·) ∈ S(x) connecting B to C and
viable in K and prove that it is viable in ConnS(D, (B ∩D,C ∩D)).

Let us consider the evolution y(·) := (κ(
←−
T )x(·))(·) ∈ S(x(

←−
T )) defined by

y(t) := x(t−←−T ), viable in K until it reaches the target C in finite time
←−
T +

−→
T

at y(
←−
T +

−→
T ) = x(

−→
T ) ∈ C. This implies that x(

←−
T ) ∈ CaptS(K,C). Since

all evolutions capturing C viable in K are actually viable in CaptS(K,C)
by Lemma 10.2.4, p. 378, this implies that y(·) is viable in CaptS(K,C) on
the interval [0,

←−
T +

−→
T ]. Hence the evolution x(·) = (κ(−←−T )y(·))(·) ∈ S(x) is

viable in CaptS(K,C) on the interval [−←−T ,+−→T ]. We prove in the same way
that the evolution x(·) is viable in DetS(K,B) on the interval [−←−T ,+−→T ].

Therefore, this evolution x(·) is connecting B to C in the connection basin
ConnS(D, (B∩D,C∩D)) itself. Therefore, we deduce that D is a fixed point
D = ConnS(D, (B ∩D,C ∩D)) and the largest one, obviously. ��

Proposition 10.6.6 [Relative Bilateral Invariance of Connection
Basins] The connection basin ConnS(K, (B,C)) between a source B and a
target C viable in the environment K is both forward and backward invariant
relatively to K.

Proof. We have to prove that for every x ∈ ConnS(K, (B,C)), every
evolution x(·) ∈ S(x) connecting B to C, viable in K on some time interval
[S, T ], is actually viable in ConnS(K, (B,C)) on the same interval.

Since x(S) belongs to DetS(K,B), there exist an element b ∈ B, a time
Tb ≥ 0 and an evolution zb(·) ∈ S(b) viable inK until it reaches x(S) = zb(Tb)
at time Tb. Since x(T ) belongs to CaptS(K,C), there exist Tc ≥ 0, an element
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c ∈ C and an evolution zc(·) ∈ S(x(T )) such that zc(Tc) = c ∈ C and, for all
t ∈ [0, S], zc(t) ∈ K. We associate with these evolutions their concatenation
y(·) ∈ S(b) defined by

y(t) :=

⎧⎨
⎩
zb(t) if t ∈ [0, Tb]
x(t+ S − Tb) if t ∈ [Tb, Tb + T − S]
zc(t− Tb + S − T ) if t ∈ [Tb + T − S, Tb + T − S + Tc]

starting at b ∈ B is viable in K until it reaches C at time Tb + S + T + Tc.
This means that b belongs to ConnS(K, (B,C)) and this implies that for every
t ∈ [0, Tb+S+T+Tc], y(t) belongs to the connection basin ConnS(K, (B,C)).
This is in particular the case when t ∈ [S, T ]: then x(t) = y(t + Tb − S)
belongs to the capture basin. Therefore, the evolution x(·) is viable in
ConnS(K, (B,C)) on the same interval [S, T ]. ��

Theorem 10.6.7 [Characterization of Bilateral Relative Invari-
ance] A subset D ⊂ K is bilaterally invariant relatively to K if and only if
ConnS(K, (D,D)) = D.

Proof. First, Proposition 10.6.6, p. 414 implies that whenever ConnS(K, (D,
D)) = D, D is bilaterally invariant relatively to K.

Conversely, assume that D is bilaterally invariant relatively to K
and we shall derive a contradiction by assuming that there exists
x ∈ ConnS(K, (D,D))\D. Indeed, there would exist an evolution x(·) ∈ S(x)
through x, times Tb ≥ 0 and Tc ≥ 0 and elements b ∈ D and c ∈ D such that
x(−Tb) = b, x(Tc) = c and viable in K on the interval [−Tb,+Tc]. Since D
is bilaterally viable and since x(·) is bilaterally viable in K, it is bilaterally
viable in D by assumption. Therefore, for all t ∈ [−Tb,+Tc], x(t) belongs to
D, and in particular, for t = 0: then x(0) = x belongs to D, the contradiction
we were looking for. ��

Theorem 10.6.8 [Characterization of Connection Basins as
Unique Bilateral Fixed Point] Let S : X � C(0,+∞;X) be an
evolutionary system, K ⊂ X be a environment and C ⊂ K be a target.
The connection basin ConnS(K, (D,D)) between subset C and itself is
the unique bilateral fixed point between C and K of the map (L,D) �→
ConnS(L, (D,D)) in the sense that

D = ConnS(D, (C,C)) = ConnS(K, (D,D))
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Proof. Let us consider the map (K,C) �→ A(K,C) := ConnS(K, (C,C)). It
satisfies properties (10.5), p. 381:

{
(i) C ⊂ A(K,C) ⊂ K
(ii) (K,C) is increasing

Theorem 10.6.5, p. 413 states that A(K,C) := ConnS(K, (C,C)) is a fixed
point of L �→ A(L,C) and Theorem 10.6.7, p. 415 that A(K,C) is a fixed
point of D �→ A(K,D). Then A(K,C) is the unique bilateral fixed point of
the map D between C and K of the map A: D = A(D,C) = A(K,D) thanks
to the Uniqueness Lemma 10.2.6, p. 381. ��

10.7 Stability of Viability and Invariance Kernels

In this section we study conditions under which kernels and basins of limit
of a sequence of environments and/or of targets is the limit of these kernels
and basins, and apply these results to the existence of viability envelopes in
Sect. 10.7.2, p. 420.

10.7.1 Kernels and Basins of Limits of Environments

Let us consider a sequence of environments Kn ⊂ X , of targets Cn ⊂ Kn,
and of viability kernels ViabS(Kn, Cn) of Kn with targets Cn under a given
evolutionary system S.

A natural and important question arises whether we can “take the limit”
and compare the limit of the viability kernels and the viability kernels of the
limits.

Answers to such questions require first an adequate concept of limit. Here,
dealing with subsets, the natural concept of limit is the one of the Painlevé–
Kuratowski upper limit of subsets. We recall the Definition 18.4.1, p. 728:

Definition 10.7.1 [Upper Limit of Sets] Let (Kn)n∈N be a sequence of
subsets of a metric space E. We say that the subset

Limsupn→∞Kn :=
{
x ∈ E | lim inf

n→∞
d(x,Kn) = 0

}

is the upper limit of the sequence Kn.

We would like to derive formulas of the type
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Limsupn→+∞ViabS(Kn, Cn) ⊂ ViabS(Limsupn→+∞Kn,Limsupn→+∞Cn)

and analogous formulas for invariance kernels.

10.7.1.1 Upper Limit of Subsets of Viable Evolutions

It is worth recalling that the viability kernel

ViabS(K,C) = S−1(V(K,C))

is the inverse image of the subset V(K,C) ⊂ C(0,+∞;X) of evolutions viable
in K outside C defined by (2.5):

{
V(K,C) := {x(·) such that ∀t ≥ 0, x(t) ∈ K
or ∃ T ≥ 0 such that x(T ) ∈ C & ∀t ∈ [0, T ], x(t) ∈ K}

and that the invariance kernel

InvS(K,C) = S�1(V(K,C))

is the core of the subset V(K,C) ⊂ C(0,+∞;X).
Hence, we begin by studying the upper limits of subsets V(Kn, Cn):

Lemma 10.7.2 [Upper Limit of Subsets of Viable Evolutions] For
any sequence of environments Kn ⊂ X and any target Cn ⊂ Kn,

Limsupn→+∞V(Kn, Cn) ⊂ V(Limsupn→+∞Kn,Limsupn→+∞Cn)

Proof. The proof is a slight generalization of the proof of Lemma 10.3.9,
p. 388. Let us consider a sequence of evolutions xn(·) ∈ V(Kn, Cn)
converging to some evolution x(·). We have to prove that x(·) belongs to
V(Limsupn→+∞Kn,Limsupn→+∞Cn), i.e., that is viable in Limsupn→+∞Kn

forever or until it reaches the target Limsupn→+∞Cn in finite time.
Indeed:

1. either for any T > 0 and any N > 0, there exist n ≥ N , tn ≥ T and an
evolution xn(·) for which xn(t) ∈ Kn for every t ∈ [0, tn],

2. Or there exist T > 0 andN > 0 such that for any n ≥ N and any evolution
xn(·), there exists tn ≤ T such that xn(tn) /∈ Kn.

In the first case, we deduce that for any T > 0, x(T ) ∈ Limsupn→+∞Kn, so
that the limit x(·) is viable in Limsupn→+∞Kn forever. In the second case, all
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the solutions xn(·) leave Kn before T . This is impossible if evolutions xn(·)
are viable in Kn forever. Therefore, since xn(·) ∈ V(Kn, Cn), they have to
reach Cn before leaving Kn: there exists sn ≤ T such that

xn(sn) ∈ Cn & ∀t ∈ [0, sn], xn(t) ∈ Kn

Then a subsequence sn′ converges to some S ∈ [0, T ]. Therefore, for any
s < S, then s < sn′ for n′ large enough, so that xn′(s) ∈ Kn. By taking the
limit, we infer that for every s < S, x(s) ∈ Limsupn→+∞Kn. Furthermore,
since xn(·) converges to x(·) uniformly on the compact interval [0, T ], then
xn(sn) ∈ Cn converges to x(S), which therefore belongs to Limsupn→+∞Cn.

This shows that the limit x(·) belongs to V(Limsupn→+∞Kn,
Limsupn→+∞Cn). ��

10.7.1.2 Upper Limits of Inverse Images and Cores

Stability problems amount to study the upper limits of inverse images
and cores of subsets Hn ⊂ C(0,+∞;X) of evolutions, such as the subsets
V(Kn, Cn) defined by (2.5), p. 49.

Theorem 10.7.3 [Upper Limit of Inverse Images] Let S : X �
C(0,+∞;X) be an upper semicompact evolutionary system. Then for any
sequence of subsets Hn ⊂ C(0,+∞;X),

Limsupn→+∞S−1(Hn) ⊂ S−1(Limsupn→+∞Hn)

Proof. Let x ∈ Limsupn→+∞S−1(Hn) be the limit of a sequence of elements
xn ∈ S−1(Hn). Hence there exist evolutions xn(·) ∈ S(xn) ∈ Hn.
Since S is upper semicompact, there exists a subsequence of evolutions
xn′(·) ∈ S(xn′ ) starting at xn′ and converging to some x(·) ∈ S(x). It
also belongs to the upper limit Limsupn→+∞Hn of the subsets Hn, so that
x ∈ S−1(Limsupn→+∞Hn). ��

For cores, we obtain

Theorem 10.7.4 [Upper Limit of Cores] Let S : X � C(0,+∞;X)
be a lower semicontinous evolutionary system. Then for any sequence of
subsets Hn ⊂ C(0,+∞;X),

Limsupn→+∞S�1(Hn) ⊂ S�1(Limsupn→+∞Hn)
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Proof. Let us consider a sequence of subsets Hn ⊂ C(0,+∞;X) and
a sequence of elements xn ∈ S�1(Hn) converging to some x ∈
Limsupn→+∞S�1(Hn). We have to prove that any x(·) ∈ S(x) belongs
to Limsupn→+∞Hn. Indeed, since S is lower semicontinuous, there exists a
sequence of elements xn(·) ∈ S(xn) ⊂ Hn converging to x(·). Therefore the
evolution x(·) belongs to the upper limit Limsupn→+∞Hn of the subsets
Hn. Since the evolution x(·) was chosen arbitrarily in S(x), we infer that
x ∈ S�1(Limsupn→+∞Hn). ��

10.7.1.3 Upper Limits of Viability and Invariance Kernels

Theorem 10.7.3 and Lemma 10.7.2 imply

Theorem 10.7.5 [Upper Limit of Viability Kernels] Let S : X �
C(0,+∞;X) be an upper semicompact evolutionary system. Then for any
sequence of environments Kn ⊂ X and of targets Cn ⊂ Kn,

Limsupn→+∞ViabS(Kn, Cn) ⊂ ViabS(Limsupn→+∞Kn,Limsupn→+∞Cn)

For capture basins, we obtain another property:

Lemma 10.7.6 [Upper Limit of Capture Basins] If the set-valued map←−S is lower semicontinuous and if K is backward invariant, then for any
closed subset C ⊂ K,

CaptS(Limsupn→+∞Kn,Limsupn→+∞Cn) ⊂ Limsupn→+∞CaptS(Kn, Cn)
(10.20)

Proof. Let us take x ∈ CaptS(Limsupn→+∞Kn,Limsupn→+∞Cn) and an
evolution x(·) ∈ S(x) viable in Limsupn→+∞Kn until it reaches the target
Limsupn→+∞Cn at time T < +∞ at c := x(T ) ∈ Limsupn→+∞Cn. Hence
the function t �→ y(t) := x(T − t) is an evolution y(·) ∈ ←−S (c). Let us
consider a sequence of elements cn ∈ Cn converging to c. Since

←−S is lower
semicontinuous, there exist evolutions yn(·) ∈

←−S (cn) converging uniformly
over compact intervals to y(·). These evolutions yn(·) are viable in Kn,
since Kn is assumed to be backward invariant, so that xn(0) belongs to
CaptS(Kn, Cn). Therefore xn(0) := yn(T ) converges to x := x(0). ��
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Putting together these results, we obtain the following useful theorem on
the stability of capture basins:

Theorem 10.7.7 [Stability Properties of Capture Basins] Let us
consider a sequence of closed subsets Cn satisfying ViabS(K) ⊂ Cn ⊂ K
and

Limn→+∞Cn := Limsupn→+∞Cn = Liminfn→+∞Cn

If the evolutionary system S is upper semicompact and lower semicon-
tinuous and if K is closed and backward invariant under S, then

Limn→+∞CaptS(K,Cn) = CaptS(K,Limn→+∞Cn) (10.21)

For invariance kernels, we deduce from Theorem 10.7.4 and Lemma 10.7.2
the stability theorem:

Lemma 10.7.8 [Upper Limit of Invariance Kernels] Let S : X �
C(0,+∞;X) be a lower semicontinuous evolutionary system. Then for any
sequence of environments Kn ⊂ X and any target Cn ⊂ Kn,

Limsupn→+∞InvS(Kn, Cn) ⊂ InvS(Limsupn→+∞Kn,Limsupn→+∞Cn)

10.7.2 Invariance and Viability Envelopes

Since the intersection of sets that are invariant under an evolutionary system
is still invariant, it is natural to introduce the smallest invariant subset
containing a given set:
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Definition 10.7.9 [Invariance Envelope] We shall say that the smallest
invariant subset containing C is the invariance envelope of C and that the
smallest subset of K containing C invariant outside C is the invariance
envelope of K outside C.

However, an intersection of subsets viable under an evolutionary system is
not necessarily viable. Nevertheless, we may introduce the concept of minimal
subsets viable outside a target:

Definition 10.7.10 [Viability Envelope] Let L be any subset satisfying
C ⊂ L ⊂ ViabS(K,C). A (resp. closed) viability envelope of K with target
C is any (resp. closed) set L� ⊃ L viable outside C such that there is no
strictly smaller subset M ⊃ L viable outside C.

We prove the existence of viability envelopes:

Proposition 10.7.11 [Existence of Viability Envelopes] Let K be a
closed subset viable under an upper semicompact evolutionary system S.
Then any closed subset L ⊂ K is contained into a viability envelopes of L
under S.

Proof. We apply Zorn’s lemma for the inclusion order on the family of
nonempty closed subsets viable under S between L and K. For that purpose,
consider any decreasing family of closed subsets Mi, i ∈ I, viable under S
and their intersection M� :=

⋂
i∈IMi. It is a closed subset viable under S

thanks to the Stability Theorem 10.7.7. Therefore every subset L ⊂ K is
contained in a minimal element for this preorder. ��

When L = ∅, we have to assume that K is compact to guarantee that the
intersection of any decreasing family of nonempty closed subset viable under
S is not empty. In this case, we obtain the following

Proposition 10.7.12 [Non emptiness of Viability Envelopes] Let
K be a nonempty compact subset viable under an upper semicompact
evolutionary system S. Then nonempty minimal closed subsets M viable
under S exist and are made of limit sets of viable evolutions. Actually, they
exhibit the following property:
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∀x ∈M, ∃ x(·) ∈ S(x) | x ∈M = ω(x(·))

where, by Definition 9.3.1, p. 344, ω(x(·)) :=
⋂
T>0 (x([T,∞[)) is the

ω-limit set of x(·).

Proof. Let M ⊂ K be a minimal closed subset viable under S. We can
associate with any x ∈M a viable evolution x(·) ∈ S(x) starting at x. Hence
its limit set ω(x(·)) is contained in M . But limit sets being closed subsets
viable under S by Theorem 9.3.11 andM being minimal, it is equal to ω(x(·)),
so that x ∈ ω(x(·)). ��

10.8 The Hard Version of the Inertia Principle

Exit sets also play a crucial role for regulating viable evolutions with a
finite number of feedbacks instead of the unique feedback, which, whenever
it exists, regulates viable evolutions. However, even when its existence is
guaranteed and when the Viability Kernel Algorithm allows us to compute
it, it is often preferable to use available and well known feedbacks derived
from a long history than computing a new one. Hence, arises the question of
“quantized retroactions” using a subset of the set of all available retroactions
(see Sect. 6.4, p. 207 for fixed degree open loop controls). In this section, we
are investigating under which conditions a given finite subset of available
feedbacks suffices to govern viable evolutions. We have to give a precise
definition of the concept of “amalgams” of feedbacks for producing other
ones, in the same way that a finite number of monomials generates the class of
fixed degree polynomials. Once this operation which governs concatenations
of evolutions defined, we can easily characterize a condition involving the
exit set of the system under each of the finite class of systems. They govern
specific evolutions satisfying the hard version of the inertia principle.

33 [Quantized Controls.] Recent important issues in control theory are
known under the name of “ quantized controls”, where, instead of finding
adequate retroactions for governing evolutions satisfying such and such
properties (viability, capturability, optimality, etc.), we are restricting the
regulation of these evolutions by a smaller class of retroactions generated
in some way by a finite number of feedbacks. Indeed, the regulation map
(see Definition 2.14.3, p. 98) using the entire family of controls u ∈ U(x)
may be too difficult to construct. Quantized control combines only a finite
number of retroactions to regulate viable, capturing or optimal evolutions.
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Chapter 6, p. 199 provided examples of such quantized systems where the
retroactions are open loops controls made of polynomials of fixed degree m.
The regulation by the amalgam of a finite number of given feedbacks provides
another answer to the issue of quantization. Indeed, let us consider control
system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

We introduce a finite family of closed loop feedbacks ũi : x � ũi(x) ∈
U(x) and i ∈ I where I is a finite number of indices. They define a finite
number of evolutionary systems Si associated with differential equations

x′(t) = f(x(t), ũi(x(t)))

Each of these a priori feedbacks is not especially designed to regulate viable
evolutions in an arbitrary set, for instance. A compromise is obtained by
“amalgamating” those closed loop feedbacks for obtaining the following class
of retroactions (see Definition 2.7.2, p. 65):

Recall (Definition 18.3.12, p. 724) that the mark Ξ[s,t]×A := ΞU[s,t]×A :
R ×X � U of a subset [s, t]×A is defined by

Ξ[s,t]×A(τ, x) :=
{
U if (τ, x) ∈ [s, t]×A
∅ if (τ, x) /∈ [s, t]×A

(10.22)

and plays the role of a “characteristic set-valued map of a subset”. Therefore,
for any u ∈ U

u ∩ Ξ[s,t]×A(τ, x) :=
{
{u} if (τ, x) ∈ [s, t]× A
∅ if (τ, x) /∈ [s, t]× A

Definition 10.8.1 [Amalgam of Feedbacks] Let us consider a family
of feedbacks ũi : X � U , a covering X =

⋃
i∈I
Ai of X and an increasing

sequence of instants ti, i = 0, . . . , n. The associated amalgam of these
feedbacks is the retroaction

ũ :=
⋃
i≥0

ũi ∩ Ξ[ti,ti+1[×Ai

defined by

ũ(t, x) := ũi(x) if t ∈ [ti, ti+1[ and x ∈ Ai
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Amalgams of feedbacks play an important role in the regulation of control
and regulated systems.

Proposition 10.5.1, p. 399 characterizes environments viable outside a
target C under an evolutionary system S if and only if ExitS(K) ⊂ C.

What happens if a given environment is not viable under any of the
evolutionary systems Si of a finite family i ∈ I? Is it possible to restore
the viability by letting these evolutionary system cooperate?

To say that K is not viable outside C under Si means that ExitSi(K) ∩
�C �= ∅. However, even though K is not viable under each of the system Si,
it may be possible that amalgated together, the collective condition

⋂
i∈I

ExitSi(K) ⊂ C

weaker than the individual condition ExitS(K) ⊂ C may be enough to
regulate a control system. This happens to be the case, if, for that purpose,
we define the “cooperation” between evolutionary systems Si by “amalga-
mating” them. For control systems, amalgamating feedbacks amounts to
amalgamating the associated evolutionary system.

The examination of the exit sets of each of the evolutionary systems allows
us to answer this important practical question by using the notion of the
amalgam S‡ of the evolutionary systems Si:

Definition 10.8.2 [Amalgam of a Family of Evolutionary Systems]
The amalgamated system S‡ of the evolutionary systems Si associates with
any x ∈ K concatenated evolutions x(·) associated with sequences of indices
ip, p ∈ N, of times τip > 0 and of evolutions xip(·) ∈ Sip(xp) such that,
defining

t0 = 0, tp+1 := tp + τip

the evolution x(·) is defined by

∀ p ≥ 0, ∀ t ∈ [tp, tp+1], x(t) := xip(t− tp) and xip(tp+1) = xp+1

where x0 := x and xp := xip−1(tp), p ≥ 1.

We derive a viability criterion allowing us to check whether a target C ⊂ K
can be captured under the amalgated system:

Theorem 10.8.3 [Viability Under Amalgams of Evolutionary Sys-
tems] Let us consider a finite set I of indices and a family of upper
semicompact evolutionary systems Si. Assume that K is a repeller under
each evolutionary system Si and that
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⋂
i∈I

ExitSi(K) ⊂ C (10.23)

then K is viable outside C under the amalgam S‡ of the evolutionary
systems Si

ViabS‡(K,C) = K

Proof. For simplicity, we set S� := SK� ⊂ S the sub-evolutionary system
generating persistent evolutions (see Definition 10.4.2, p. 393).

Let us set Ei := ExitSi(K). Assumption
⋂
i∈I Ei ⊂ C amounts to saying

that
K \ C =

⋃
i∈I

(K \ Ei)

Therefore, we associate with any x ∈ K \C the set I(x) ⊂ I of indices i such
that

τ
S�

i

K (x) := max
k∈I

τ
S�

k

K (x)

achieving the maximum of the exit times for each evolutionary system S�k.
For each index i ∈ I, and ei ∈ Ei, one can observe that maxj∈I τ

S�
j

K (ei) =

maxj∈I(ei) τ
S�

j

K (ei). We next define the smallest of the largest exit times of
states ranging the exit sets of each evolutionary system S�j :

τ := min
i∈I

sup
ei∈ExitSi

(K)

sup
j∈I(ei)

τ
S�

j

K (ei)

Since the set I of indices is finite, assumption
⋂
i∈I Ei ⊂ C implies that

0 < τ < +∞.
This being said, we can build a concatenated evolution x(·) made of an

increasing sequence of times tp and of “pieces” of persistent evolutions x�ip(·) ∈
Sip(xip) defined by

∀ p ≥ 0, ∀ t ∈ [tp, tp+1], x(t) := x�ip(t− tp) and x(tp+1) = xp+1

which is viable in K forever or until a finite time when it reaches C.
Indeed, we associate with any evolutionary system Si and any xi ∈ K a

persistent evolution x�i(·) ∈ Si(xi), its exit time τ �i > 0 (since we assumed
that K is a repeller under each evolutionary system Si) and an exit state
e�i ∈ Ei := ExitSi(K).

To say that
⋂
i∈I Ei ⊂ C amounts to saying that
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K \ C =
⋃
i∈I

(K \ Ei)

Therefore, starting with any initial state x0 ∈ K \ C, we infer from the
assumption

⋂
i∈I Ei ⊂ C that there exists i0 ∈ I such that x ∈ K \ Ei0 .

Hence, we associate x�i0 (·) ∈ Si0(xi0 ), its exit time τ �i0 > 0 and an exit state
e�i0 ∈ Ei0 . Setting x1 := e�i0 , either x1 ∈ C, and the evolution x(·) := x�i0 (·)
reaches C in finite time 0, or x1 ∈ K \ C, and our assumption implies the
existence of i1 ∈ I such that x ∈ K\Ei1 , so that we can find a x�i1 (·) ∈ Si1(x1),
its exit time τ �i1 > 0 and an exit state e�i1 ∈ Ei1 . And so on, knowing that
e�ip−1

∈ Eip−1 ∈ K \ C, we choose an index ip ∈ I such that xip ∈ K \ Eip
and built recursively evolutions x�ip(·) ∈ Sip(xip), its exit time τ �ip > 0 and

an exit state e�ip ∈ Eip .
We associate with this sequence of evolutions the sequence of times

defined by

t0 = 0, tp+1 := tp + τ �ip

and evolutions

xp(t) := (κ(τ �
ip

)x�
ip

(·))(t) = x�
ip

(t − τ �
ip

) where t ∈ [tp, tp+1] and xp(tp+1) = xp+1

and their concatenation x(·) defined by

∀ p ≥ 0, ∀ t ∈ [tp, tp+1], x(t) := xp(t)

Since the set I of indices is assumed to be finite, then τ > 0, so that the

concatenated evolution is defined on R+ because
+∞∑
p=0

τ �ip = +∞. Hence the

concatenated evolution of persistent evolutions is viable forever or until it
reaches the target C in finite time. ��

We mentioned in Sect. 6.4, p. 207 the concept of the “soft” version of the
inertia principle. Persistent evolutions and Theorem 10.8.3, p. 424 provide
the “hard version” of this principle:

34 [The Hard Inertia Principle] Theorem 10.8.3, p. 424 provides
another answer to the inertia principle (see Sect. 6.4.4, p. 217) without
inertia threshold: When, where and how change the available feedbacks
(among them, constant controls) to maintain the viability of a system.
Starting with a finite set of regulons, the system uses them successively as
long as possible (persistent evolutions), up to the exit time (warning signal)
and its exit set, which is its critical zone (see Definition 6.4.9, p. 216).
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In summary, when the viability is at stakes:

1. The hard version of the inertia principle requires that whenever the
evolution reaches the boundary, then, and not before, the state has to
switch instantaneously to a new initial state and a new feedback has to be
chosen,

2. The soft version of the inertia principle involves an inertia threshold
determining when, at the right time, the kairos, where, in the critical
zone, the regulon only has to evolve and how.

10.9 Parameter Identification: Inverse Viability
and Invariance Maps

When the differential inclusion (or parameterized system) F (λ, ·), the
environment K(λ) and the target C(λ) depend upon a parameter λ ∈ Y
ranging over a finite dimensional vector space Y , a typical example of inverse
problem (see Comment 2, p. 5) is to associate with any state x the subset of
parameters λ such that we know, for instance, that x belongs to the viability
kernel V(λ) := ViabF (λ,·)(K(λ), C(λ)).

The set of such parameters λ is equal to V
−1(x), where V

−1 : X � Y is
the inverse of the set-valued map V : Y �→ X associating with λ the viability
kernel V(λ) := ViabF (λ,·)(K(λ), C(λ)).

In control terminology, the search of those parameters λ such that a given x
belongs to V(λ) := ViabF (λ,·)(K(λ), C(λ)) is called a parameter identification
problem formulated for viability problems. This covers as many examples as
problems which can be formulated in terms of kernels and basins, as the
ones covered in this book. As we shall see, most of the examples covered in
Chaps. 4, p. 125 and 6, p. 199 are examples of inverse viability problems.

10.9.1 Inverse Viability and Invariance

It turns out that for these types of problems, the solution can be obtained
by viability techniques. Whenever we know the graph of a set-valued map,
we know both this map and its inverse (see Definition 18.3.1, p. 719). The
graphs of such maps associating kernels and basins with those parameters are
also kernels and basins of auxiliary environments and targets under auxiliary
systems. Therefore, they inherit their properties, which are then shared by
both the set-valued map and its inverse. This simple remark is quite useful.

Let us consider the parameterized differential inclusion

x′(t) ∈ F (λ, x(t)) (10.24)
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when environments K(λ) and targets C(λ) depend upon a parameter λ ∈ Y
ranging over a finite dimensional vector space Y . We set F (λ, ·) : x� F (λ, x).

The problem is to invert the set-valued maps

V : λ� ViabF (λ,·)(K(λ), C(λ)) and I : λ� InvF (λ,·)(K(λ), C(λ))

For that purpose, we shall characterize the graphs of these maps:

Proposition 10.9.1 [Graph of the Viability Map] The graph of the
map V : λ� ViabF (λ,·)(K(λ), C(λ)) is equal to the viability kernel

Graph(V) = Viab(10.25)(K, C)

of the graph K := Graph(λ � K(λ)) with target C := Graph(λ � C(λ))
under the auxiliary system

{
(i) λ′(t) = 0
(ii) x′(t) ∈ F (λ(t), x(t)) (10.25)

Proof. The proof is easy: to say that (λ, x) belongs to the viability kernel
Viab(10.25)(K, C) amounts to saying that there exists a solution t �→
(λ(t), x(t)) viable in K := Graph(K(·)) of (10.25) until it possibly reaches
C := Graph(C(·)), i.e., since λ(t) = λ and (λ(·), x(·)) ∈ S{0}×F (λ, x) such
that x(t) ∈ K(λ) forever or until it reaches C(λ). This means that (λ, x)
belongs to the graph of the viability map V. ��

In the same way, one can prove the analogous statement for the invariance
map:

Proposition 10.9.2 [Graph of the Invariance Map] The graph of the
map I : λ� InvF (λ,·)(K(λ), C(λ)) is equal to the invariance kernel

Graph(I) = Inv(10.25)(K, C)

of the graph K := Graph(λ � K(λ)) with target C := Graph(λ � C(λ))
under the auxiliary system (10.25), p. 428.

Consequently, the inverses V
−1 and I

−1 of the set-valued maps V and
I associate with any x ∈ X the subsets of parameters λ ∈ Y such that
the pairs (λ, x) belong to the viability and invariance kernels of the graph
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K := Graph(λ � K(λ)) with target C := Graph(λ � C(λ)) under the
auxiliary system (10.25) respectively.

10.9.2 Level Tubes of Extended Functions

When the parameters λ ∈ R are scalars, the set-valued maps λ �
Graph(F (λ, ·)), λ � Graph(K(λ)) and λ � Graph(C(λ)), V : λ � V(λ)
and the viability and invariance maps I : λ � I(λ) are tubes (see Fig. 4.3,
p. 132).

We shall study the monotonicity properties of tubes:

Definition 10.9.3 [Monotone Tubes] A tube is increasing (resp.
decreasing) if whenever μ ≤ ν, then K(μ) ⊂ K(ν) (resp. K(ν) ⊂ K(μ)). A
monotone tube is a tube which is either increasing or decreasing.

The monotonicity properties of the tubes λ� V(λ) and λ� I(λ) depend
upon the monotonicity properties of the tubes λ � Graph(F (λ, ·)), λ �
Graph(K(λ)) and λ� Graph(C(λ)):

Lemma 10.9.4 [Monotonicity of the Viability and Invariance
Maps] The map (F,K,C)� ViabF (K,C) is increasing, the map (K,C)�
InvF (K,C) is increasing and the map F � InvF (K,C) is decreasing.

Recall, a tube is characterized by its graph (see Definition 18.3.1, p. 719):
The graph of the tube K : R � X is the set of pairs (λ, x) such that x
belongs to K(λ):

K := Graph(K) = {(λ, x) ∈ R×X such that x ∈ K(λ)}

Monotonic tubes can be characterized by their epilevel and hypolevel
functions whenever the tubes λ� V(λ) and λ� I(λ) are monotone:

We then introduce the concepts of lower and upper level sets or sections
of an extended function:

Definition 10.9.5 [Levels Sets or Sections of a Function] Let v :
X �→ R be an extended function. The lower level map L≤v associates with
any λ ∈ R the λ-lower section or λ-lower level set
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L≤v (λ) := {x ∈ K such that v(x) ≤ λ}

We define in the same way the strictly lower, exact, upper and strictly
upper level maps L�

v which associate with any λ the λ-level sets

L�
v (λ) := {x ∈ K such that v(x)�λ}

where � denotes respectively the signs <, =, ≥ and >.

We next introduce the concept of level function of a tube:

Definition 10.9.6 [Level Function of a Tube] Let us consider a tube
K : R � X. The epilevel function Λ↑K of the tube K is the extended function
defined by

Λ↑K(x) := inf {λ such that x ∈ K(λ)} = inf
(λ,x)∈Graph(K)

λ (10.26)

and its hypolevel function Λ↓K is the extended function defined by

Λ↓K(x) := sup {λ such that x ∈ K(λ)} = sup
(λ,x)∈Graph(K)

λ (10.27)

We observe that level set map λ� L�
v (λ) is a tube from R to the vector

space X . For instance, the lower level map λ� L≤v (λ) is an increasing tube:

If λ1 ≤ λ2, then L≤v (λ1) ⊂ L≤v (λ2)

and that the upper level map λ� L≥v (λ) is a decreasing tube. Lemma 18.6.3,
p. 744 implies that the level set map L≤v of a lower semicontinuous function
is a closed tube.

We observe at once that the images K(λ) are contained in the λ-lower
level sets:

∀ λ ∈ R, K(λ) ⊂ L≤
Λ↑

K

(λ)

The question arises whether the converse is true: is an increasing tube the
lower level map of an extended function Λ↑K , called the epilevel function of
the tube? This means that we can represent the images K(λ) of the tube in
the form

∀ λ, K(λ) =
{
x such that Λ↑K(x) ≤ λ

}
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This property can be reformulated as K(λ) = L≤
Λ↑

K

(λ), stating that the

inverse of the set-valued map x � K−1(x) of the tube is the map x �
Λ↑K(x) + R+.

The answer is positive for closed monotonic tubes.
The equality between these two subsets is (almost) true for increasing

tubes (a necessary condition) and really true when, furthermore, the tube is
closed:

Proposition 10.9.7 [Inverses of Monotone Tubes and their Level
Functions] Let us assume that the tube K is increasing. Then it is related
to its epilevel function by the relation

∀ λ ∈ R, L<
Λ↑

K

(λ) ⊂ K(λ) ⊂ L≤
Λ↑

K

(λ) (10.28)

Furthermore, if the graph of the tube is closed, then x ∈ K(λ) if and only
if Λ↑K(x) ≤ λ, i.e.,

∀ λ ∈ R, K(λ) = L≤
Λ↑

K

(λ) =: {x | Λ↑K(x) ≤ λ} (10.29)

Proof. By the very definition of the infimum, to say that Λ↑K(x) =
inf(λ,x)∈Graph(K) λ amounts to saying that for any λ > Λ↑K(x), there exists
(μ, x) ∈ Graph(K) such that μ ≤ λ. To say that x ∈ L<

Λ↑
K

(λ) means

λ > Λ↑K(x). Hence there exists (μ, x) ∈ Graph(K), and there exist μ ≤ λ
and x ∈ K(μ). Since the tube K is decreasing, we deduce that x ∈ K(λ).
The first inclusion is thus proved, the other one being always obviously true.

If the graph of K is closed, then letting λ > Λ↑K(x) converge to Λ↑K(x) and
knowing that (λ, x) belongs to Graph(K), we deduce (Λ↑K(x), x) belongs to
the graph of K, and thus, that x ∈ K(Λ↑K(x)). ��

The counterpart statement holds true for decreasing tubes and their
hypolevel functions: If a tube is decreasing, then

∀ λ ∈ R, L>
λ↓

K

(λ) ⊂ K(λ) ⊂ L≥
Λ↓

K

(λ) (10.30)

and if it is closed
∀ λ ∈ R, K(λ) = L≥

Λ↓
K

(λ) (10.31)

In this case, when the graph of the tube is closed, (10.29) and (10.31) can
be written in terms of epigraphs and hypographs (see Definition 4.2.2, p. 131)
in the form
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Graph(K−1) = Ep(Λ↑K) (10.32)

and
Graph(K−1) = Hyp(Λ↓K) (10.33)

respectively.

In the scalar case, Theorem 10.9.7, p. 431 implies that these tubes are
characterized by their epilevel or hypolevel functions (see Definition 10.9.6,
p. 430). For instance, the epilevel function of the viability tube is defined by
Λ↑

V
(x) := inf(λ,x)∈Graph(V) λ whenever this map is increasing. In this case, if

the graph of the viability tube is closed,

V(λ) =
{
x such that Λ↑

V
(x) ≤ λ

}

If the tube is decreasing, the hypolevel function defined by Λ↓
V
(x) :=

sup(λ,x)∈Graph(V) λ characterizes the tube in the sense that

V(λ) =
{
x such that Λ↓

V
(x) ≥ λ

}

whenever the tube is closed.
For instance, for the viability map, we derive the following statement from

Proposition 10.9.1, p. 428:

Proposition 10.9.8 [Level Functions of the Viability Tube] Let us
assume that the tubes λ �→ Graph(F (λ, ·)), λ �→ K(λ) and λ �→ C(λ) are
increasing. Then the tube V is characterized by its epilevel function

Λ↑
V
(x) := inf

(λ,x)∈Graph(V)
λ := inf

(λ,x)∈Viab(10.25)(K,C)
λ (10.34)

If λ �→ Graph(F (λ, ·)), λ �→ K(λ) and λ �→ C(λ) are increasing, the
tube V is characterized by its hypolevel function

Λ↓
V
(x) := sup

(λ,x)∈Graph(V)

λ = sup
(λ,x)∈Viab(10.25)(K,C)

λ (10.35)

The counterpart statement holds true for the invariance tubes.
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10.10 Stochastic and Tychastic Viability

The invariance kernel is an example of the core S�1(H) of a subset H ⊂
C(0,∞; Rd) for H = K(K,C) being the set of evolutions viable in K reaching
the target C in finite time.

Let us consider random events ω ∈ Ω, where (Ω,F ,P) is a probability
space, instead of tyches v(·) ranging over the values V (x(·)) of a tychastic
map V (see (2.23), p. 89).

A stochastic system is a specific parameterized evolutionary system
described by a map X : (x, ω) ∈ R

d × Ω �→ X(x, ω) ∈ C(0,∞; Rd)
(usually denoted by t �→ X

x
ω in the stochastic literature) where C(0,∞; Rd)

is the space of continuous evolutions. In other words, it defines evolutions
t �→ X(x, ω)(t) := X

x
ω(t) ∈ R

d starting at x at time 0 and parameterized
by random events ω ∈ Ω satisfying technical requirements (measurability,
filtration, etc.) that are not relevant to involve at this stage of the exposition.
The initial state x being fixed, the random variable ω �→ X(x, ω) := X

x
ω(·) ∈

C(0,+∞; Rd) is called a stochastic process. A subset H ⊂ C(0,∞; Rd) of
evolutions sharing a given property being chosen, it is natural, as we did for
tychastic systems, to introduce the stochastic core of H under the stochastic
system: it is the subset of initial states x from which starts a stochastic
process ω �→ X(x, ω) such that for almost all ω ∈ Ω, X(x, ω) ∈ H:

StocX(H) := {x ∈ R
d | for almost all ω ∈ Ω, X(x, ω) := X

x
ω(·) ∈ H}

(10.36)
Regarding a stochastic process as a set-valued map X associating with any

state x the family X(x) := {X(x, ω)}ω∈Ω, the definitions of stochastic cores
(10.36) of subsets of evolution properties are similar in spirit to definition:

S�1(H) := {x ∈ R
d | for all v(·) ∈ Q(x(·)), xv(·)(·) ∈ H}

under a tychastic system

x′(t) = f(x(t), v(t)) where v(t) ∈ Q(x(t))

Furthermore, the parameters ω are constant in the stochastic case, whereas
the tychastic uncertainty v(·) is dynamic in nature and involves a state
dependence, two more realistic assumptions in the domain of life sciences.

There is however a deeper similarity that we mention briefly. When the
stochastic system (x, ω) �→ X(x, ω) is derived from a stochastic differential
equation, the Strook-Varadhan Support Theorem (see [201, Stroock &Varad-
han]) states that there exists a tychastic system (x, v) �→ S(x, v) such that,
whenever H is closed, the stochastic core of H under the stochastic system
X and its tychastic core under the associated tychastic system S coincide:

StocX(H) = S�1(H)
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To be more specific, let X(x, ω) denote the solution to the stochastic
differential equation

dx = γ(x)dt+ σ(x)dW (t)

starting at x, where W (t) ranges over R
c, the drift γ : R

d �→ R
d and the

diffusion σ : R
d �→ L(Rc,Rd) are smooth and bounded maps. Let us associate

with them the Stratonovitch drift γ̂ defined by γ̂(x) := γ(x) − 1
2σ
′(x)σ(x).

The Stratonovitch stochastic integral is an alternative to the Ito integral,
and easier to manipulate. Unlike the Ito calculus, Stratonovich integrals are
defined such that the chain rule of ordinary calculus holds. It is possible to
convert Ito stochastic differential equations to Stratonovich ones.

Then, the associated tychastic system is

x′(t) = γ̂(x(t)) + σ(x(t))v(t) where v(t) ∈ R
c (10.37)

where the tychastic map is constant and equal to R
c.

Consequently, the tychastic system associated with a stochastic one by the
Strook–Varadhan Support Theorem is very restricted: there are no bounds
at all on the tyches, whereas general tychastic systems allow the tyches to
range over subsets Q(x) depending upon the state x, describing so to speak a
state-dependent uncertainty:

x′(t) = γ̂(x(t)) + σ(x(t))v(t) where v(t) ∈ Q(x(t))

This state-dependent uncertainty, unfortunately absent in the mathematical
representation of uncertainty in the framework of stochastic processes, is of
utmost importance for describing uncertainty in problems dealing with living
beings.

When H is a Borelian of C(0,∞; Rd), we denote by PX(x,·) the law of the
random variable X(x, ·) defined by

PX(x,·)(H) := P({ω | X(x, ω) ∈ H}) (10.38)

Therefore, we can reformulate the definition of the stochastic core of a set H
of evolutions in the form

StocX(H) = {x ∈ R
d | PX(x,·)(H) = 1} (10.39)

In other words, the stochastic core of H is the set of initial states x such
that the subset H has probability one under the law of the stochastic process
ω �→ X(x, ω) ∈ C(0,+∞; Rd) (if H is closed, H is called the support of the law
PX(x,·)). The Strook–Varadhan Support Theorem states that under regularity
assumptions, this support is the core of H under the tychastic system
(10.37). It furthermore provides a characterization of stochastic viability in
terms of tangent cones and general curvatures of the environments (see the
contributions of Giuseppe da Prato, Halim Doss, Hélène Frankowska and
Jerzy Zabczyk among many other).
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These remarks further justify our choice of privileging tychastic systems
because, as far as the properties of initial states of evolution are concerned,
stochastic systems are just (very) particular cases of tychastic systems.



Chapter 11

Regulation of Control Systems

11.1 Introduction

This chapter is devoted to viability properties specific to evolutionary
systems generated by control systems of the form

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

These systems share all the properties gathered in Chap. 10, p. 375 regarding
the viability characterization of viability kernels of environments and capture
basins of a target viable in an environment.

It is specifically dedicated to the tangential characterizations of viability
and invariance properties.

1. The tangential characterizations are presented in Sect. 11.2, p. 440.
2. The main Viability and Invariance Theorems 11.3.4, p. 455 and 11.3.7,

p. 457 are quoted in Sect. 11.3, p. 453 (we do not reproduce the proof
of Filippov Theorem 11.3.9, p.459, which is by now available in many
monographs).

3. The rest of this chapter is devoted to the study or the regulation map.
Indeed, we need to go one step further: not only study the properties
of these viability kernels and capture basin, but how to regulate the
evolutions which are viable in the environment forever or until they reach
the target.
Therefore, in the framework of control systems (f, U), we investigate how
it is possible to carve in the set-valued map U a sub-map RK ⊂ U , the
regulation map. We built from the knowledge of

• the set-valued map U and the right hand side (x, u) ∈ Graph(U) �→
f(x, u) ∈ X of the control system (f, U)

• the environment K and the target C ⊂ K

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 11,
c© Springer-Verlag Berlin Heidelberg 2011
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in such a way that viable evolutions are governed by the new regulated
system

x′(t) = f(x(t), u(t)) where u(t) ∈ RK(x(t))

on the viability kernel with target.
Observe that this regulation map is the “mother of all viable feedbacks”
rK : x �→ rK(x) ∈ RK(x) governing the evolution of viable evolutions
through the dynamical system

x′(t) = f(x(t), rK(x(t)))

Hence, instead of “guessing” what kind of feedback ũ : x �→ ũ(x) should
be used without being sure it would drive viable evolutions (for instance,
affine feedbacks), the knowledge of the regulation map allows us to find
all the viable ones.
However, given an arbitrary feedback ũ the viability kernel under system

x′(t) = f(x(t), ũ(x(t)))

provides a measure of the “safety” of ũ for governing evolutions viable
in this environment, by comparing it with the viability kernel under the
initial control system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

Now that the ultimate objective of this chapter is fixed, we provide a third
type of characterization of viability kernels and capture basins in terms of
the regulation map.
In the discrete case, Lemma 2.14.3, p. 98 provides the clue. Indeed, to be
of value, the task of finding the viability kernel should be done without
checking the existence of viable solutions for each initial state (“shooting
methods”). Even for deterministic discrete systems, as we saw in Sect. 2.14,
p. 96, these methods provide at best an approximation of the viability
kernel instead of the viability kernel itself. This has already been mentioned
in Sect. 2.9.3, p. 75.
As was mentioned in Box 14, p. 98, the idea is to check whether some
conditions relating the geometry of the environment K and the right hand
side of the differential inclusion are satisfied. This is a much easier task.
This idea turns out to be quite intuitive: at each point on the boundary of
the environment, where the viability of the system is at stake, there should
exist a velocity which in some sense is tangent to the environment for
allowing the solution to bounce back in the environment and remain inside
it. This is, in essence, what the Viability Theorem 11.3.4, p. 455 states.

• For that purpose, Sect. 11.2, p. 440 provides a rigorous definition (see
Definition 11.2.1, p. 442) of tangency to any closed subset, even non
convex, even nonsmooth.
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• This allows us to compute in Sect. 11.3.2, p. 454 the regulation map

∀x ∈ K, RK(x) := {u ∈ U(x) such that f(x, u) ∈ TK(x)}

in terms of subsets TK(x) of tangent velocities to K at x.
• The main Viability and Invariance Theorems 11.3.4, p. 455 and 11.3.7,

p. 457 are couched in terms of the regulation map: in essence, and under
adequate conditions,
– an environment is viable if and only if

∀x ∈ K, RK(x) �= ∅

– an environment is invariant if and only if

∀x ∈ K, RK(x) := U(x)

• Since we know how to characterize viability and invariance properties
in terms of the regulation map, we use them conjointly with the
characterizations of viability kernels and capture basin obtained at the
level of evolutionary systems. This leads us to characterize viability
kernels as the unique subsets D between C and K satisfying the
Frankowska property defined by (11.19), p. 462.

• When the right hand side of a control system (f, U) does not depend
upon the state, but uniquely on the controls, and under convexity
assumption, it is possible to give a very simple formula of the capture
basin (see Definition 4.3.1, p. 133). It turns out that for a certain class of
Hamilton–Jacobi partial differential equations approached by viability
techniques as we shall do in Chap. 17, p. 681, we obtain the famous
Lax–Hopf “explicit” analytical formula for computing solutions to these
partial differential equations. This is presented in Sect. 11.5, p. 465.

• The tangential characterizations are enriched in Sect. 11.6, p. 475 by
providing an equivalent Hamiltonian formulation of the Frankowska
property. It involves the concept of Hamiltonian associated with a
control system (f, U). We shall introduce a property of a Hamiltonian,
which, in dynamic economic theory, is related to the Walras law.
This is the reason we use this term to denote it. The Walras law
allows us to provide an elegant characterization of the regulation map
as well as a criterion to guarantee that it has nonempty values, in
other words, a useful viability criterion. The dual formulation of the
Frankowska property, when applied to epigraphs of functions, provides
right away the concept of Barron–Jensen/Frankowska solutions to
Hamilton–Jacobi–Bellman partial differential equations.

4. The regulation map being computed and characterized, and knowing
that all feedbacks governing viable evolutions are necessarily contained
in the regulation map (such single-valued maps are called selections),
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the question arises to built such feedbacks, both static and dynamic.
Section 11.7, p. 480 summarizes some of the results presented and proved
in Chap. 6 of the first edition of Viability Theory [18, Aubin].

11.2 Tangential Conditions for Viability and Invariance

As mentioned in the introduction of this chapter, we have to choose a
mathematical implementation of the concept of tangency inherited from
Pierre de Fermat.

Pierre de Fermat [1601–1665]. The author of Maxima
et minima (1638) and the founder of differential and
integral calculus, called tangents “touchantes”, by oppo-
sition to “sécantes”. He defined and computed tangents

to several curves (parabola, ellipses, cycloid, etc,) by using his “Fermat
Rule” for determining minima, maxima and inflexion points. This was the
starting point of the differential calculus developed by Gottfried Leibniz and
Isaac Newton. René Descartes, who called the Councillor of the King in the
Parliament of Toulouse the “conseiller des Minimis”, and who discovered
analytical geometry independently of Fermat, called them contingentes,
coming from the Latin contingere, to touch on all sides. Descartes, who
thought that his rival was inadequate as a mathematician and a thinker,
reluctantly admitted his misjudgment and eventually wrote Fermat “... seeing
the last method that you use for finding tangents to curved lines, I can reply
to it in no other way than to say that it is very good and that, if you had
explained it in this manner at the outset, I would have not contradicted
it at all”. From a more friendly side, Blaise Pascal, who shared with him
the creation of the mathematical theory of probability, wrote him that “he
had a particular veneration to those who bear the name of the first man
of the world”. His achievements in number theory overshadowed his other
contributions. He was on top of that a poet, a linguist,... and made his living
as a lawyer.

It is impossible to restrict ourselves to environments that are smooth
manifolds without boundaries because viability theory deals with questions
raised when the evolutions reach their boundaries in order to remain viable.
The simplest example of a constrained environment, K := R+ ⊂ X := R,
would thereby be ruled out, as well as environments defined by inequality
constraints instead of equality constraints (as for balls, that possess distinct
boundaries, the spheres, which do not posses boundaries). Furthermore, we
are no longer free of choosing environments and targets, some of them being
provided as results of other problems (such as viability kernels and capture
basins of other sets).
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So, we need to “implement” the concept of a direction v “tangent” to any
subset K at x ∈ K, which should mean that starting from x in the direction
v, “we do not go too far” from K.

To convert this intuition into a rigorous mathematical definition, we shall
choose from among the many ways there are to translate what it means to be
“not too far” the one independently suggested in the beginning of the 1930s
by Georges Bouligand and Francesco Severi.

Georges Bouligand [1889–1979]. Orphan of his father
when he was six years old, he succeeded through the French
Education System of this time to have the highest rank
when graduating at École Polytechnique in 1909, but chose
to enter École Normale Supérieure, where he started to
work with Jacques Hadamard in hydrodynamics. He was
“half of the mathematical faculty” at the university of
Poitiers from 1920–1938, when he was appointed to the
Faculté des Sciences de Paris. He authored around ten

books, including his Introduction à la Géométrie infinitésimale directe and
books on mathematical philosophy and epistemology. Norbert Wiener wrote
in Ex-Prodigy “... because I had recently seen a series of articles by Lebesgue
and a young mathematician named Georges Bouligand, which were getting
uncomfortably near to the complete solution of the problem in which I was
interested, and which would eliminate the problem [Generalized Dirichlet
problem] from the literature... This incident was the start of a friendship
between Bouligand and myself which has lasted to the present day”. Gustave
Choquet, whose thesis’ title was Application des propriétés descriptives
de la fonction contingent, concluded 20 years after his death a Bouligand
bibliographical notice with these words: “But above all, Bouligand’s name
will remain attached to his contingent and paratingent (1932). Surely, these
had ancestors: Severi in 1927–1928 had defined analogous notions for studying
algebraic manifolds, but did not pass this particular case... The success
of these tools had been and still is considerable; for instance... they are
indispensable to set-valued analysis. This is the most beautiful application of
the interior idea that Bouligand has attempted to describe in his philosophical
essays. His eighth child, Yves Bouligand, is a biologist, working in a field
where the tools forged by his father could be used.

Actually, Francesco Severi discovered few months earlier the concepts of
semitangenti and of corde improprie to a set at a point of its closure which
are equivalent to the concepts of contingentes and paratingentes.

35 Francesco Severi’s Semitangenti. Severi explains for the second
time that he had discovered these concepts developed by Bouligand in “suo
interessante libro recente” and comments: (It obviously escaped to the
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eminent geometer that his own research started later than mine. But I
will not reprimand him, because I too cannot follow with care the literature
and I rather read an article or a book after having thought for myself about
the argument.)

This important statement deserves to be quoted.

Francesco Severi [1879–1961]. Orphan of his father
when he was nine years old, he studied at Turin University
to become a geometer under the influence of Corrado
Segre, under the supervision of whom he obtained his
doctoral degree in 1900. He next pursued his investigations
in algebraic geometry, with Castelnuovo and Enriques.
He carried wonderful mathematical achievements despite

numerous other activities, including political ones. He founded in 1939
in Roma the Istituto Nazionale di Alta Matematica which now bears his
name.

Definition 11.2.1 [Tangent (Contingent) Cone to a Subset] Let
K ⊂ X be a subset and x ∈ K an element of K. A direction v is contingent
(or, more simply, “tangent”) to K at x ∈ K if it is a limit of a sequence of
directions vn such that x+ hnvn belongs to K for some sequence hn → 0+.
The collection of such contingent directions constitutes a closed cone TK(x),
called the contingent cone to K at x, or more simply, tangent cone.

We refer to Definition 18.4.8, p. 732 for an equivalent formulation in terms

of Painlevé–Kuratowski limits of “set difference quotients”
K − x

h
.

Since, by definition of the interior of a subset, any element x ∈ Int(K) can
be surrounded by a ball B(x, η) ⊂ K with η > 0, then

∀ x ∈ Int(K), TK(x) = X (11.1)

so that the non trivial properties of the tangent cone happen on the boundary
∂K := K \ Int(K) of the subset K.

Except if K is a smooth manifold, the set of tangent vectors is no longer
a vector-space, but this discomfort is compensated by advances in set-valued
analysis providing a calculus of tangent cones allowing us to compute them.
Closed convex set are sleek : this means that the set-valued map x� TK(x)
is lower semicontinuous: in this case, TK(x) is a closed convex cone.
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Tangent cones allow us to “differentiate” viable evolutions: Indeed, we
observe readily the following property.

Lemma 11.2.2 [Derivatives of Viable Evolutions] Let x(·) : t ∈
R+ �→ x(t) ∈ X be a differentiable evolution viable in K on an open interval
I: ∀t ∈ I, x(t) ∈ K. Then

∀t ∈ I, x′(t) ∈ TK(x(t))

Proof. Indeed, since x(s) ∈ K for s in a neighborhood of t, then x(t + h) =
x(t)+hx′(t)+hε(h) ∈ K where ε(h) → 0 when h→ 0. Hence x′(t) ∈ TK(x(t))
by Definition 11.2.1, p. 442. ��

These simple observations suggest us that the concept of tangent cone
plays a crucial role for characterizing viability and invariance properties when
the state space X := R

d is a finite-dimensional space.

11.2.1 The Nagumo Theorem

The Viability Theorem 11.3.4, p. 455 has a long history. It began in the case
of differential equations in 1942 with the Japanese mathematician Nagumo
in a paper written in German (who however did not relate its tangential
condition to the Bouligand–Severi tangent cone). The Nagumo Theorem has
been rediscovered many times since.

Mitio Nagumo [1905-]. Mitio Nagumo provided a crite-
rion for uniqueness of a solution to differential equations,
known as the Nagumo condition, in his very first paper
written when he was 21. He then visited Götingen from
1932 to 1934, a visit which influenced his mathematical
work since. His first papers were written in German, and

after, in Esperanto, a language he was trying to promote. He then spent 32
years of his research life at Osaka, where he founded the “Nagumo School”
then to Sophia University in Tokyo until he retired at 70. He founded with
Hukuara a private journal in Japanese in which all contributors introduced
new ideas without referees. Besides his important contributions in the fields
of ordinary and partial differential equations, Nagumo contributed to clarify
the Leray–Schauder theory, as well as many related fields. as early as 1935, for
example, he proposed the basic ideas of Banach algebras, in a paper written...
in Japanese. (See Collected papers, [165, Nagumo]).
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It is convenient to place on a same footing open and closed subsets: in finite
dimensional vector spaces, they are both locally compact subsets : Recall that
K is locally compact if for any x ∈ K, there exists r > 0 such that the ball
BK(x, r) := K ∩ (x+ rB) is compact.

Theorem 11.2.3 [The Nagumo Theorem] Let us assume that
{

(i) K is locally compact
(ii) f is continuous from K to X (11.2)

Then K is locally viable under f if and only if the tangential condition

∀ x ∈ K, f(x) ∈ TK(x)

holds true.

Since the tangent cone to an open subset is equal to the whole space
(see (11.1)), an open subset satisfies the tangential condition whatever the
map. So, it enjoys the viability property because any open subset of a finite
dimensional vector-space is locally compact. The Peano Existence Theorem
is then a consequence of Theorem 11.2.3, p. 444:

Theorem 11.2.4 [The Peano Theorem] Let Ω be an open subset of a
finite dimensional vector-space X and f : Ω �→ X be a continuous map.

Then, for every x0 ∈ Ω, there exists T > 0 such that the differential
equation x′(t) = f(x(t)) has a solution viable in Ω on the interval [0, T ]
starting at x0.

We shall extend the Nagumo Theorem to the case of differential inclusions
x′(t) ∈ F (x(t)). In this case, the tangential condition

∀ x ∈ K, f(x) ∈ TK(x)

splits in two:

∀ x ∈ K,

{
(i) F (x) ∩ TK(x) �= ∅ (Viability Tangential Condition)
(ii) F (x) ⊂ TK(x) (Invariance Tangential Condition)
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Actually, we shall improve these conditions, but for that purpose, we need a
technical tool, amounting to integrate differential inequalities involving lower
semicontinuous functions. This technical lemma can actually be derived from
the Nagumo Theorem.

11.2.2 Integrating Differential Inequalities

The Nagumo Theorem allows us to extend to the class of lower semi-
continuous (and thus, non necessarily differentiable) functions the classical
integration of the differential inequality

∀ t ∈ [0, T [, ϕ′(t) ≤ α′(t)ϕ(t) + β(t)

implying

∀ t ∈ [0, T [, ϕ(t) ≤ eα(t)

(
ϕ(0) +

∫ t

0

e−α(s)β(s)ds
)

where α is continuously differentiable and β is continuous.
This is an easy and important technical tool, that we shall need not only

for differentiable functions ϕ, but also for lower semicontinuous functions.
If ϕ : R �→ R ∪ {+∞}, we define its epiderivative by its epigraph (see

Definition 4.2.2, p. 131): The epigraph of the epiderivative D↑ϕ(t)(·) is equal
to the tangent cone to the epigraph of ϕ at (t, ϕ(t)):

Ep(D↑ϕ(t)) = TEp(ϕ)(t, ϕ(t))

(see Definition 18.6.9, p. 747 and Proposition 18.6.10, p. 748).

Proposition 11.2.5 [Integration of Linear Differential Inequali-
ties] Let α be continuously differentiable and vanishing at 0, β be continu-
ous. Let us consider a lower semicontinuous function ϕ : R �→ R ∪ {+∞}
satisfying,

∀ t ∈ [0, T [, D↑ϕ(t)(1) ≤ α′(t)ϕ(t) + β(t)

Therefore, an upper bound on the growth of ϕ is estimated in the following
way:

∃ S ∈]0, T [, such that ∀ t ∈ [0, S], ϕ(t) ≤ eα(t)

(
ϕ(0) +

∫ t

0

e−α(s)β(s)ds
)
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This proposition follows from a more general one, when we replace the
function α′(t)y + β(t) by a general continuous function f(t, y). We assume
for simplicity that for any y ∈ R+, there exists a unique solution Sf (y)(·) to
the differential equation y′(t) = f(t, y(t)) satisfying y(0) = y. This is the case
when f(t, y) := α′(t)y + β(t) because, in this case,

Sf (y)(t) = eα(t)

(
y +

∫ t

0

e−α(s)β(s)ds
)

Theorem 11.2.6 [Integration of Differential Inequalities] Let us
assume that for any y ≥ 0, there exists a unique solution Sf (y)(·) to the
differential equation y′(t) = f(t, y(t)) satisfying y(0) = y. Let us consider a
lower semicontinuous function ϕ : R �→ R ∪ {+∞} satisfying,

∀ t ∈ [0, T [, D↑ϕ(t)(1) ≤ f(t, ϕ(t))

Therefore, ϕ is estimated in the following way:

∃ S ∈]0, T [, such that ∀ t ∈ [0, S], ϕ(t) ≤ Sf (ϕ(0))(t) (11.3)

Proof. This statement follows from the Nagumo Theorem 11.2.3, p. 444 in
the case when X := R

2 and when the differential equation is (11.4)
{

(i) τ ′(t) = 1
(ii) y′(t) = f(τ(t), y(t)) (11.4)

The solution of this differential equation starting at (0, y) is t �→
(t,Sf (y)(t)).

By Lemma 18.6.3, p. 744, to say that ϕ is lower semicontinuous amounts
to saying that its epigraph Ep(ϕ) ⊂ R

2 is closed. The product [0, T [×R is
locally compact, so is the intersection K := Ep(ϕ) ∩ ([0, T [×R). We observe
that, thanks to the statement

Ep(D↑ϕ(t)) = TEp(ϕ)(t, ϕ(t))

characterizing epiderivatives, condition

∀ t ∈ [0, T [, D↑ϕ(t)(1) ≤ f(t, ϕ(t))

is equivalent to

∀ t ∈ [0, T [, (1, f(t, ϕ(t))) ∈ TEp(ϕ)(t, ϕ(t))



11.2 Tangential Conditions for Viability and Invariance 447

Conversely, this inequality implies that Ep(ϕ) is viable under (11.4), p. 446,
i.e., that

∀ t ∈ [0, T [, ∀ y ≥ ϕ(t), (1, f(t, ϕ(t))) ∈ TEp(ϕ)(t, y)

This is true for y = ϕ(t) by definition, and follows from Lemma 18.6.18,
p. 753 when y > ϕ(t) because 1 belongs to the domain of D↑ϕ(t).

In other words, the assumption

∀ t ∈ [0, T [, D↑ϕ(t)(1) ≤ f(t, ϕ(t))

is equivalent to
∀ (t, y) ∈ K, (1, f(t, y)) ∈ TK(t, y)

Hence the Nagumo Theorem 11.2.3, p. 444 implies that starting from
(0, ϕ(0)), the solution t �→ (t,Sf (y)(t)) is viable in K := Ep(ϕ)∩([0, T [×R) on
some nonempty interval [0, S], i.e., that for any t ∈ [0, S], ϕ(t) ≤ Sf (ϕ(0))(t)
and that S < T . ��

11.2.3 Characterization of the Viability Tangential
Condition

Tangent cones are not necessarily convex. However, we point out that TK(x) is
convex when K is convex (or, more generally, when K is sleek i.e., the tangent
cone map TK(·) is lower semicontinuous. See Definition 18.4.8). As it turns
out for characterizing viability and invariance, we shall be able to replace the
tangent cones by their convexified tangent cone T ��K (·) (see Definition 18.4.8,
p. 732).

Then the lack of convexity of the tangent cone can be, under adequate
assumption, compensated using the convexified tangent cone T ��K (·) in the
viability tangential condition:

Theorem 11.2.7 [Viability Tangential Conditions] Let K ⊂ X be a
nonempty closed subset of a finite dimensional vector space. Let x0 belong
to K. Assume that the set-valued map F : K � X is upper semicontinuous
(see Definition 18.4.3, p. 729) with convex compact values. Then the two
following properties are equivalent:

⎧⎪⎨
⎪⎩

(i) ∀x ∈ K∩
◦
B (x0, α), F (x) ∩ TK(x) �= ∅

(ii) ∀x ∈ K∩
◦
B (x0, α), F (x) ∩ T ��K (x) �= ∅

(11.5)
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(where
◦
B (x0, α) denotes the open ball).

Furthermore, assume that K is compact and that

∀x ∈ K, F (x) ∩ T ��K (x) �= ∅

Then, for all ε > 0, and for any “graphical approximation” Fε (in the
sense that Graph(Fε) ⊂ Graph(F ) + ε(B ×B)) of F , then

∃ η(ε) > 0 such that ∀x ∈ K, ∀h ∈ [0, η(ε)] , (x+ hFε(x))∩K �= ∅ (11.6)

Remark. Property (19.18) means that the discrete explicit schemes x�
x+hFε(x) associated with the graphical approximation Fε of F are viable in
K uniformly with respect to the discretization step h on compact sets. It is
very useful for approximating solutions of differential inclusion x′(t) ∈ F (x)
viable in K (see Chap. 19, p.769). ��

Remark. This theorem has been announced in 1985 by Guseinov,
Subbotin and Ushakov. Hélène Frankowska provided a proof in 1990 which
was reproduced in the first edition of Viability Theory, [18, Aubin]. We use
here a simpler proof designed by Hélène Frankowska which appeared in 2000.
��

Proof. Since (11.5)(i) implies (11.5)(ii), assume that (11.5)(ii) holds true. Fix
any pair of elements x, y ∈ K. Since the vector space X is finite dimensional
and since the subsets K and F (y) are closed, there exist vt ∈ F (y) and xt ∈ K
achieving the minimum in

ϕ(x,y)(t) := d(x+ tF (y),K) = ‖x+ tvt − xt‖

Since x ∈ K, we infer that

‖x+ tvt − xt‖ = d(x+ tF (y),K) ≤ ‖x+ tvt − x‖ = t‖vt‖

from which we obtain inequality
{
‖x− xt‖ ≤ ‖x+ tvt − xt‖+ t‖vt‖
≤ ‖x+ tvt − x‖+ t‖vt‖ = 2t‖vt‖ ≤ 2t‖F (y)‖ (11.7)

Choose now any u ∈ F (y) and any w ∈ TK(xt).
Observe that for any u ∈ F (y), tvt + hu ∈ tF (y) + hF (y) ⊂ (t + h)F (y)

because F (y) is convex. Recall that for all w ∈ TK(xt), there exists a sequence
e(hn) converging to 0 such that xt + hnw + hne(hn) ∈ K. Therefore
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ϕ(x,y)(t+hn)−ϕ(x,y)(t)
hn

≤ ‖x+ tvt−xt + hn(u−w−e(hn))‖ − ‖x+ tvt − xt‖
hn

Recalling that D↑‖x‖(u) ≤
〈

x

‖x‖ , u
〉

, dividing by hn and passing to the

limit, we infer that for all u ∈ F (y) and w ∈ TK(xt),

D↑ϕ(x,y)(t)(1) ≤
〈
u− w,

x+ tvt − xt
‖x+ tvt − xt‖

〉
≤ ‖u− w‖

and, consequently, that, this inequality holds true for all u ∈ F (y) and w ∈
T ��K (xt). Therefore, we have proved that

D↑ϕ(x,y)(t)(1) ≤ d(F (y), TK(xt)) (11.8)

Furthermore, F being upper semicontinuous, we can associate with any
y ∈ K and ε > 0 an η(ε, y) ≤ ε such that

∀z ∈ B(y, η(ε, y)), F (z) ⊂ F (y) + εB

Let x0 belong to K mentioned in Theorem 11.2.7, p.447. By taking
y = x ∈

◦
B (x0, α) and z := xt, we deduce from (11.7) that whenever

t ≤ min(η(ε, x), α − ‖x0 − x‖)
2‖F (x)‖ , then

‖x− xt‖ < min(η(ε, x), α − ‖x0 − x‖) & ‖x0 − xt‖ < α

and thus, that F (xt) ⊂ F (x) + εB.
Assumption (11.5)(ii) implies that there exists wt ∈ F (xt) ∩ T ��K (xt), so

that there exists ut ∈ F (y) such that ‖ut − wt‖ ≤ ε. Therefore, inequality

(11.8) implies that ∀t ∈
[
0,

min(η(ε, x), α − ‖x0 − x‖)
2‖F (x)‖

]
,

D↑ϕ(x,x)(t)(1) ≤ d(F (x), TK(xt))

≤ ‖ut − wt‖ ≤ ε

The function ϕ(x,y)(·) being lower semicontinuous, Proposition 11.2.5, p. 445

implies that ∀t ∈
[
0,

min(η(ε, x), α − ‖x0 − x‖)
2‖F (x)‖

]
,

ϕ(x,x)(t) = d (x+ tF (x),K) = ‖x+ tvt − xt‖ ≤ tε

which can be written in the form
d (x+ tF (x),K)

t
=
∥∥∥∥vt − xt − x

t

∥∥∥∥ ≤ ε.

Since ‖vt‖ ≤ ‖F (x)‖, the sequence
xt − x

t
is bounded, so that a subsequence
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vtn :=
xtn − x

tn
converges to some v ∈ F (x). But since the subsequence vtn

belongs to
K − x

tn
and converges to v, we infer that v also belongs to the

tangent cone TK(x).

For proving the second statement, let us fix ε > 0, take any y ∈ K and
the associated η(ε, y) and derive that

⎧⎪⎨
⎪⎩
∀t ∈

[
0, η(ε,y)

4‖F (y)‖

]
, ∀x ∈ K ∩B

(
y, η(ε,y)2

)
,

D↑ϕ(x,y)(t)(1) ≤ d(F (y), T ��K (xt)) ≤ ‖ut − wt‖ ≤ ε

(11.9)

Indeed, if ‖x− y‖ ≤ η(ε, y)
2

, we associate with it vt ∈ F (y) and xt ∈ K

achieving the minimum in

ϕ(x,y)(t) := d(x+ tF (y),K) = ‖x+ tvt − xt‖

as in the first part of the proof. Then there exists wt ∈ F (xt) ∩ T ��K (xt) by
assumption (11.5)(ii).

Property (11.7) implies that ‖x− xt‖ ≤ 2t‖F (y)‖ ≤ η(ε, y)
2

whenever

t ≤ η(ε, y)
4‖F (y)‖ , so that ‖y − xt‖ ≤ ‖x− y‖+ ‖x− xt‖ ≤ η(ε, y) because

‖x− y‖ ≤ η(ε, y)
2

. Since F is upper semicontinuous, we deduce that there

exists ut ∈ F (y) such that ‖ut − wt‖ ≤ ε, so that (11.9) holds true.
Since ϕ(x,y)(·) is lower semicontinuous, Proposition 11.2.5, p. 445 implies

that

∀t∈
[
0,

η(ε, y)
4‖F (y)‖

]
, ∀x∈K ∩B

(
y,
η(ε, y)

2

)
, d (x+ tF (y),K)=ϕ(x,y)(t) ≤ εt

The subset K being compact, it can be covered by a finite number of balls
B
(
yj ,

η(ε,yj)
2

)
. Setting η(ε) := minj

η(ε,yj)
4‖F (yj)‖ > 0, we infer that

{
∀ε > 0, ∃ η(ε) > 0 such that ∀x ∈ K, ∃ yj ∈ B

(
x,

η(ε,yj)
2

)
such that

∀t ≤ η(ε), d (x+ tF (yj),K) = ϕ(x,y)(t) ≤ εt

This means that there exist some vj ∈ F (yj) and zj ∈ K such that ‖zj −
x− tvj‖ ≤ εt. On the other hand,
(
x,
zj − x

t

)
= (yj , vj) +

(
x− yj,

zj − x

t
− vj

)
∈ Graph(F ) + ε(B ×B)
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Consequently, taking any set-valued map Fε such that Graph(Fε) ⊂
Graph(F ) + ε(B ×B), we have proved (19.18):

∃ η(ε) > 0 such that ∀x ∈ K, ∀h ∈ [0, η(ε)] , (x+ hFε(x)) ∩K �= ∅

This completes the proof. ��

11.2.4 Characterization of the Invariance Tangential
Condition

We characterize in the same way the invariance tangential condition by
replacing the tangent cone by its convex hull:

Theorem 11.2.8 [Invariance Tangential Conditions] Let K ⊂ X be
a nonempty closed subset of a finite dimensional vector space. Assume that
the set-valued map F : K � X is Lipschitz on K with bounded values F (x)
(see Definition 10.3.5, p. 385).

Let x0 belong to K and α > 0. Then the two following properties are
equivalent: ⎧⎪⎨

⎪⎩
(i) ∀x ∈ K∩

◦
B (x0, α), F (x) ⊂ TK(x)

(ii) ∀x ∈ K∩
◦
B (x0, α), F (x) ⊂ T ��K (x)

(11.10)

Furthermore, if F is locally bounded (i.e., bounded on a neighborhood
of each element), if K is compact and if

∀x ∈ K, F (x) ⊂ T ��K (x) �= ∅

then, for all ε > 0,

∃ η(ε) > 0 such that ∀x ∈ K, ∀h ∈ [0, η(ε)] , x+ hF (x) ⊂ K + εhB �= ∅
(11.11)

Remark. Property (11.11) means that the discrete explicit schemes
x� x+ hF (x) associated with F are invariant in approximations K + εhB
uniformly with respect to the discretization step h on compact sets. ��

Proof. Assume that (11.10)(ii) holds true. We associate with any v ∈ F (x)
the function

ϕ(x,v)(t) := d(x+ tv,K) = ‖x+ tv − xt‖

where xt ∈ K achieves the minimum. Recall that for all w ∈ TK(xt), there
exists a sequence e(hn) converging to 0 such that such that x + hnw +
hne(hn) ∈ K. Therefore
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⎧⎪⎨
⎪⎩
ϕ(x,v)(t+ hn)− ϕ(x,v)(t)

hn

≤ ‖x+ tv + hn(v − w)− xt − hne(hn)‖ − ‖x+ tv − xt‖
hn

Taking the limit, we infer that

D↑ϕ(x,v)(t)(1) ≤
〈
v − w,

x+ tv − xt
‖x+ tv − xt‖

〉

and thus, that this inequality holds true for all w ∈ T ��K (xt).
Furthermore, we can associate with any v ∈ F (x) an element ut ∈ F (x+tv)

such that ‖v − ut‖ = d(v, F (x + tv)) and, F being Lipschitz, we associate
with ut ∈ F (x+ tv) an element wt ∈ F (xt) ⊂ T ��K (xt) such that ‖ut−wt‖ ≤
λ‖x+ tv − xt‖, where λ denotes the Lipschitz constant of F , so that

〈
ut − wt,

x+ tv − xt
‖x+ tv − xt‖

〉
≤ λ‖x+ tv − xt‖ = λϕ(x,v)(t)

Therefore,

D↑ϕ(x,v)(t)(1) ≤
〈
v − wt,

x+ tv − xt
‖x+ tv − xt‖

〉
≤ λϕ(x,v)(t) + d(v, F (x+ tv))

Since ϕ(x,v) is lower semicontinuous, Proposition 11.2.5, p. 445 implies that

∀t ≥ 0, ϕ(x,v)(t) ≤ eλt

(
ϕ(x,v)(0) +

∫ t

0

e−λs sup
v∈F (x)

d(v, F (x + sv))ds

)

Therefore, for every x ∈ K and any v ∈ F (x), ϕ(x,v)(0) = 0, so that, for any
v ∈ F (x),
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∀t ≥ 0,

∥∥∥∥v − xt − x

t

∥∥∥∥ ≤ sup
s∈[0,t]

sup
v∈F (x)

d(v, F (x + sv))
∫ t

0

eλ(t−τ)dτ

= sup
s∈[0,t]

sup
v∈F (x)

d(v, F (x+ sv))
eλt − 1
λt

Actually, since F is Lipschitz with bounded images,

sup
s∈[0,t]

sup
v∈F (x)

d(v, F (x + sv)) ≤ tλ‖F (x)‖

so that, setting η(ε,x) :=
1
λ

log
(
ε+ ‖F (x)‖
‖F (x)‖

)
, for any v ∈ F (x), for any

t ∈
[
0, η(ε,x)

]
,
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∥∥∥∥v − xt − x

t

∥∥∥∥ ≤ (eλt − 1)‖F (x)‖ ≤ (eλη(ε,x) − 1)‖F (x)‖ = ε

We infer that for any ε > 0, there exists η(ε,x) such that, for all t ∈[
0, η(ε,x)

]
, for all v ∈ F (x), x+ tv ∈ xt + tεB ⊂ K + tεB. In other words,

∀t ∈
[
0, η(ε,x)

]
, x+ tF (x) ⊂ K + tεB

Furthermore,
∥∥v − xt−x

t

∥∥ converges to 0 with t. Since xt ∈ K, we infer that
v belongs also to the tangent cone TK(x).

Since F is locally bounded means that for any x ∈ K, there exists α(ε,x)

such that
sup

y∈B(x,α(ε,x))

‖F (y)‖ ≤ M(x) < +∞

we infer that, setting T(ε,x) :=
1
λ

log
(
ε+M(x)
M(x)

)
,

∀t ∈
[
0, T(ε,x)

]
, ∀y ∈ B(x, α(ε,x)) ∩K, y + tF (y) ⊂ K + tεB

Consequently, if K is compact, it can be covered by a finite number n
of balls B(xi, α(ε,xi)) ∩K. Therefore, setting η(ε) := min

i=1,...,n
T(ε,x)i

, we infer

that for any ε > 0, there exists η(ε) such that

∀h ∈ [0, ηε] , ∀x ∈ K, x+ hF (x) ⊂ K + εhB

This completes the proof. ��

11.3 Fundamental Viability and Invariance Theorems
for Control Systems

11.3.1 The Regulation Map for Control Systems

The Regulation Map translates tangential conditions given in Theo-
rems 11.2.7, p. 447 and 11.2.8, p. 451 to the case of control systems (f, U)
defined by

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (11.12)

We introduce:

Definition 11.3.1 [The Regulation Map] We associate with the dynam-
ical system described by (f, U) and with the constraints described by K the
(set-valued) regulation map RK : it maps any state x ∈ K to the (possibly
empty) subset RK(x) consisting of controls u ∈ U(x) which are viable in
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the sense that f(x, u) is tangent to K at x

RK(x) := {u ∈ U(x) | f(x, u) ∈ T ��K (x)}

We translate the tangential conditions given in Theorems 11.2.7, p. 447
and 11.2.8, p. 451 for differential inclusions in terms of control systems:

Lemma 11.3.2 [Regulation Map and Tangential Conditions] The
viability tangential condition (11.5), p. 447 amounts to saying that

∀x ∈ K\C, RK(x) �= ∅

and the invariance tangential condition (11.10), p. 451 amounts to saying
that

∀x ∈ K\C, RK(x) = U(x)

11.3.2 The Fundamental Viability Theorem

Results on properties satisfied by at least one evolution governed by control
system (f, U)

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

(such as local viability, capturability, intertemporal optimality, etc.), hold
true for the class of Marchaud set-valued maps and control systems:

Definition 11.3.3 [Marchaud Control Systems] We say that the con-
trol system (f, U) is Marchaud if

• the set-valued map U : X � U is Marchaud,
• f : X × U �→ X is continuous and affine with respect to the control,
• f and U satisfy the growth condition

∀(x, u) ∈ Graph(U), ‖f(x, u)‖ ≤ c(‖x‖+ ‖u‖+ 1)

Therefore, a Marchaud control system (f, U) provides a Marchaud evolu-
tionary system.

We state the Viability Theorem:
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Theorem 11.3.4 [The Fundamental Viability Theorem for Control
Systems] Let K ⊂ X and C ⊂ K be two closed subsets. Assume that the
system (f, U) is Marchaud. Then the two following statements are equivalent

1. K = ViabS(K,C) is viable outside C under control system (f, U),
2. The regulation map

∀x ∈ K\C, RK(x) �= ∅ (11.13)

has nonempty values on the complement of the target in the environment.

In this case, every evolution x(·) ∈ S(x) viable in K outside C is regulated
by the system

x′(t) = f(x(t), u(t)) where u(t) ∈ RK(x(t)) (11.14)

In other words, the set-valued map U involved in the original system (f, U)
(11.12), p. 453 is replaced by the regulation map RK .
Furthermore, the regulation map RK has convex compact values.

Proof. The proof is given in Sect. 19.4.4, p.785. ��

Note that when the control system (f, U) where f(x, u) = u is actually dif-
ferential inclusion x′(t) ∈ F (x(t)), this theorem boils down to Theorem 2.15.7,
p. 103 of the viability survival kit 2.15, p. 98.

The first independent investigations of differential inclusions began in
the early 1930s with papers by Stanislas Zaremba and André Marchaud,
collaborators of George Bouligand.

Stanislaw Zaremba [1863–1942]. His doctoral thesis
“Sur un problème concernant l’état calorifique d’un corp
homogène indéfini” was presented in 1889 Zaremba made
many contacts with mathematicians of the French school,
in particular with Paul Painlevé, Henri Poincaré and
Hadamard. He returned to Kraków in 1900. In 1930,
Hadamard wrote: “The profound generalization due to
him has recently transformed the foundations of potential
theory and immediately became the starting point of

research by young mathematicians of the French school.” In particular, he
invited Georges Bouligand in Krakow in 1925 to deliver lectures which became
known as the famous “Leçons de Cracovie”.
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Theorem 11.3.4, p.455 is derived from Theorem 19.4.3, p.783 couched in
terms of differential inclusions stated and proved in Sect. 19, p.769.

The viability Theorem 11.3.4, p. 455 allows us to derive the existence of
solutions to implicit differential inclusions:

Theorem 11.3.5 [Implicit Differential inclusions] Assume that a set-
valued map Φ : X ×X � Y has a closed graph, that there exists a constant
c > 0 that for every x ∈ X, d(0, Φ(x, v)) ≤ c(‖x‖ + 1), that the graph of
v �→ Φ(x, v) is convex and that there exists v ∈ TK(x)∩c(‖x‖+1)B such that
0 ∈ Φ(x, v). Then, for any x0 ∈ K, there exists a solution x(·) to implicit
differential inclusion 0 ∈ Φ(x(t), x′(t)) satisfying x(0) = x0 and viable in
K.

Proof. We associate with Φ the set-valued map F : X � X defined by

F (x) := {v such that d(0, Φ(x, v)) = 0}

By assumption, ‖F (x)‖ ≤ c(‖x‖+ 1) and F (x) ∩ TK(x) �= ∅. The images are
convex because the function v �→ d(0, Φ(x, v)) is convex whenever the graph
of v � Φ(x, v) is convex process, i.e., satisfy inclusions

∑
i αiΦ (x, vi) ⊂

Φ (x,
∑

i αivi). They imply that

d

(
0, Φ

(
x,
∑
i

αivi

))
≤ d

(
0,
∑
i

αiΦ (x, vi)

)
≤
∑
i

αid (0, Φ (x, vi))

Hence, if vi ∈ F (x), then Φ (x, vi) = 0, so that d

(
0, Φ

(
x,
∑
i

αivi

))
= 0

and thus,
∑
i

αivi ∈ F (x).

The graph of F is closed: Let (xn, un) ∈ Graph(F ) converge to (x, u). Let
zn ∈ Φ(xn, un) such that ‖zn‖ = d(0, Φ(xn, un)) ≤ c(‖xn‖ + 1) ≤ c(‖x‖ + 2)
for n large enough. A subsequence (again denoted by) zn converges to
some z ∈ Φ(x, u) (since the graph of Φ is assumed to be closed) satisfying
d(0, Φ(x, u)) ≤ ‖z‖. Consequently, inequalities −c(‖xn‖ + 1) ≤ −‖zn‖ =
−d(0, Φ(xn, un)) imply, by taking the limit, inequalities −c(‖x‖ + 1) ≤
−‖z‖ ≤ −d(0, Φ(x, u)). Hence (x, u) ∈ Graph(F ).

Therefore, the Viability Theorem 11.3.4, p. 455 implies that from x ∈ K
starts a solution t �→ x(t) to the differential inclusion x′(t) ∈ F (x(t)) which
can be written d(0, Φ(x(t), x′(t))) = 0, i.e., 0 ∈ Φ(x(t), x′(t)). ��
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11.3.3 The Fundamental Invariance Theorem

The context when a given property on one evolutionary system hold true for
all evolutions under

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

we regarded the above system as a tychastic system and no longer as a control
system, where we have to choose at least one control governing an evolution
satisfying the required property.

This is the case for properties such as local invariance and absorption,
for instance. We saw in Chap. 10, p. 375 that, at the level of evolutionary
systems, these properties hold true whenever the evolutionary system is
lower semicontinuous. This is the case for Lipschitz tychastic systems, which
generate Lipschitz differential inclusions (see Definition 10.3.5, p. 385). By
Theorem 10.3.6, p. 386 the lower semicontinuity of Lipschitz semicontinuous
evolutionary systems ensues.

Definition 11.3.6 [Lipschitz Control Systems] We say that the control
system (f, U) is Lipschitz if

• the set-valued map U : X � U is Lipschitz,
• f : X × U �→ X is Lipschitz with respect to the control.

The Invariance Theorem states that K is invariant under a tychastic
system if and only if all velocities are tangent to K, i.e., by Lemma 11.3.2,
p.454, if and only if the regulation map coincides with the set-valued map U :

Theorem 11.3.7 [The Fundamental Invariance Theorem] Let K ⊂
X and C ⊂ K be two closed subsets. Assume that the system (f, U) is
Lipschitz with bounded values.

Then the two following statements are equivalent

1. K is invariant outside C under (f, U)
2. The regulation map coincides with the set-valued map U on K \ C:

∀x ∈ K\C, RK(x) = U(x) (11.15)

In particular, when the target C is empty, K is invariant under (f, U) if
and only if the above condition (11.10) holds true for any x ∈ K.
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The Invariance Theorem has been proved by Frank Clarke in Optimization
and nonsmooth analysis, [63, Clarke]. We shall prove separately the sufficient
and necessary conditions in the framework of the differential inclusion x′(t) ∈
F (x(t)) generated by the control system, defined by F (x) := f(x, U(x)).

Proposition 11.3.8 [Sufficient Conditions for Invariance] Assume
that F is Lipschitz. Then condition

∀x ∈ K\C, F (x) ⊂ T ��K (x)

implies that K is invariant outside C under F .

Proof. Let us assume that F (y) ⊂ T ��K (y) in a neighborhood of x ∈ K \ C
and let x(·) ∈ S(x0) be any solution to differential inclusion x′(t) ∈ F (x(t))
starting at x0 in a neighborhood of x and defined on some interval [0, T ]. Let
t be a point such that both x′(t) exists and x′(t) belongs to F (x(t)). Then
there exists ε(h) converging to 0 with h such that

x(t+ h) = x(t) + hx′(t) + hε(h)

Introduce
ϕ(t) := d(x(t),K) = ‖x(t)− xt‖

where xt ∈ K achieves the minimum. Recall that for all w ∈ TK(xt), there
exists a sequence e(hn) converging to 0 such that such that xt + hnw +
hne(hn) ∈ K. Therefore

ϕ(t+ hn)− ϕ(t)
hn

≤ ‖x(t) + hn(x′(t)− w)− xt − hne(hn)‖ − ‖x(t)− xt‖
hn

Taking the limit, we infer that

∀ w ∈ TK(xt), D↑ϕ(t)(1) ≤
〈
x′(t)− w,

x(t) − xt
‖x(t)− xt‖

〉

and thus, that this inequality also holds true for all w ∈ T ��K (xt).
Since F is Lipschitz, there exists a constant λ ∈ R and wt ∈ F (xt) ⊂

T ��K (xt) such that ‖x′(t)− wt‖ ≤ λ‖x(t) − xt‖. Therefore

D↑ϕ(t)(1) ≤
〈
x′(t)− wt,

x(t)− xt
‖x(t)− xt‖

〉
≤ λ‖x(t)− xt‖ = λϕ(t)

Then ϕ is a lower semicontinuous solution to D↑ϕ(t)(1) ≤ λϕ(t) and thus, by
Proposition 11.2.5, p. 445, satisfies inequality ϕ(t) ≤ ϕ(0)eλt. Since ϕ(0) = 0,
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we deduce that ϕ(t) = 0 for all t ∈ [0, T ], and therefore that x(t) is viable in
K on [0, T ]. ��

A necessary condition requires the existence of a solution to a differential
inclusion starting from both an initial state and initial velocity. For that
purpose, we need the Filippov Theorem stating that a Lipschitz set-valued
map with closed values satisfies the Filippov property:

Theorem 11.3.9 [Filippov Theorem] Lipschitz maps F : X � X with
constant λ ∈ R+ and closed values satisfy the λ-Filippov property : If
for any evolution ξ(·) such that t → d(ξ′(t), F (ξ(t))) is integrable for the
measure e−λsds, there exists a solution x(·) ∈ SF (x) to differential inclusion
x′(t) ∈ F (x(t)) such that, for all t ≥ 0, the Filippov inequality: ∀t ≥ 0,

‖x(t)− ξ(t)‖ ≤ eλt
(
‖x− ξ(0)‖+

∫ t

0

d(ξ′(s), F (ξ(s)))e−λsds
)

(11.16)

holds true.

Proof. We do not provide the proof of this important, but classical result,
which can be found in Differential Inclusions, [25, Aubin & Cellina]. ��

36 Alexei Fyodorovich Filippov [1923-]. Professor at the department
of differential equations in the faculty of mechanics and mathematics. He
fought in the Great Patriotic War and was awarded several medals. He
won the M.V.Lomonosov Prize for being a brilliant lecturer and for having
written important monographs and texts. Together with the Krakow school,
he proved the main results dealing with differential inclusion.

The Filippov Theorem implies readily

Proposition 11.3.10 Let F be a Lipschitz map. Then, for any velocity
v0 ∈ F (x0), there exists a solution x(·) ∈ SF (x0) satisfying x′(0) = v0.

Proof. The Filippov property applied to the evolution ξ(t) := x0+tv0 implies
that there exists an evolution x(·) ∈ S(x0) to differential inclusion x′(t) ∈
F (x(t)) starting at x0 and satisfying the Filippov inequality
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∀t ≥ 0, ‖x(t)− ξ(t)‖ ≤ eλt
(
‖x− ξ(0)‖+

∫ t

0

d(ξ′(s), F (ξ(s)))e−λsds
)

(11.17)
which boils down to

‖x(t)− x0 − tv0‖ ≤
∫ t

0

d(v0, F (x0 + sv0))eλ(t−s)ds ≤ t‖v0‖(eλt − 1)

Dividing by t > 0, we obtain
∥∥∥∥x(t) − x0

t
− v0

∥∥∥∥ ≤ ‖v0‖(eλt − 1)

and letting t converge to 0+, we infer x′(0) = v0. ��

This proposition implies the following necessary condition:

Proposition 11.3.11 [Necessary Conditions for Invariance]
Assume that for any (x0, v0) ∈ Graph(F ), there exists a solution
x(·) ∈ SF (x0) satisfying x′(0) = v0. If K is invariant outside C under F ,
then

∀x ∈ K\C, F (x) ⊂ TK(x)

Proof. Let x0 ∈ K\C. We have to prove that any v0 ∈ F (x0) is tangent to K
at x0. By assumption, for all x0 and v0 ∈ F (x0), there exists a solution x(·) to
the differential inclusion x′(t) ∈ F (x(t)) satisfying x(0) = x0 and x′(0) = v0

viable in K \C. Hence v0, being the limit of
x(tn)− x0

tn
∈ K − x0

tn
, it belongs

to TK(x0). It follows that F (x0) is contained in TK(x0). ��

11.4 Regulation Maps of Kernels and Basins

We shall use those fundamental Viability and Invariance theorems, together
with the viability characterizations of viability and invariance, for character-
izing viability kernel and capture basins in terms of the regulation map.

Proposition 11.4.1 [Characterization of Viability Kernels with
Target] Let us assume that the control system (f, U) is Marchaud, that
the environment K ⊂ X and the target C ⊂ K are closed subsets. Then the
viability kernel ViabS(K,C) is the largest closed subset D satisfying

• C ⊂ D ⊂ K,
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• K \D is a repeller
• and

∀x ∈ D\C, RD(x) := {u ∈ U(x) | f(x, u) ∈ T ��D (x)} �= ∅

In this case,

C ∩ ExitS(K) ⊂ C ∩ ExitS(D) ⊂ ExitS(C) ⊂ C ⊂ D ⊂ K (11.18)

Furthermore, for every x ∈ D,

1. there exists at least one evolution x(·) ∈ S(x) viable in D forever or until
it reaches the target C in finite time

2. and all evolutions x(·) ∈ S(x) viable in D forever or until they reach the
target C in finite time are governed by the differential inclusion

x′(t) = f(x(t), u(t)) where u(t) ∈ RD(x(t))

Invariance kernels are also characterized in terms of tangential conditions:

Proposition 11.4.2 [Characterization of Invariance Kernels]
Assume that (f, U)is Lipschitz and that K and C ⊂ K are closed. Then
the invariance kernel InvF (K,C) of K with target C under control system
(f, U) is the largest closed subset D between C and K such that

∀x ∈ D\C, U(x) = RD(x)

These fundamental theorems characterizing viability kernels and capture
basins justify a further study of the regulation map and equivalent ways
to characterize it. Actually, using Proposition 11.4.2, p. 461, we can go
one step further and characterize viability kernels and capture basins in
terms of Frankowska Property, stated in two equivalent forms: the tangential
formulation, expressed in terms of tangent cones, and its dual version,
expressed in terms of normal cones in Sect. 11.6, p. 475. This property was
discovered by Hélène Frankowska in a series of papers at the end of the
1980s and the beginning of the 1990s in the framework of her epigraphical
approach of optimal control theory. It happens that they are true at the level
of differential inclusions, and thus, useful in other contexts than intertemporal
optimization.

Applied to the case of viability kernels and capture basins of epigraphs
of functions (see Chaps. 13, p.523, and 17, p. 681), the tangential version
is at the origin of theorems stating that value functions in optimal control
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theory are generalized “episolutions” to Hamilton–Jacobi partial differential
equation introduced in the early 1990. Using the dual version, we recover
an extension to lower semicontinuous solutions to Hamilton–Jacobi–Bellman
of the concept of viscosity solutions (proposed in 1983 by Michael Crandall
and Pierre-Louis Lions for continuous solutions), discovered independently
by Emmanuel Barron and Robert Jensen with partial differential techniques
and Hélène Frankowska with viability techniques.

We begin with the case of tangential characterization. For that purpose,
we introduce the backward regulation map:

Definition 11.4.3 [Backward Regulation Map] The backward regula-
tion map

←−
RK is defined by

←−
RK(x) := {u ∈ U(x) such that − f(x, u) ∈ TK(x)}

Definition 11.4.4 [Frankowska Property] Let us consider three subsets
C ⊂ D ⊂ K (where the target C may be empty) and a set-valued map
(f, U).

The set-valued map F : K � X satisfies the Frankowska property on
D with respect to (K,C) if

⎧⎪⎨
⎪⎩

(i) ∀ x ∈ D \ C, RD(x) �= ∅
(ii) ∀ x ∈ D∩

◦
K, U(x) =

←−
RD(x)

(iii) ∀ x ∈ D ∩ ∂K, ←−RK(x) =
←−
RD(x)

(11.19)

Observe that if K is backward invariant, condition (11.19) boils down to
condition {

(i) ∀ x ∈ D \ C, RD(x) �= ∅
(ii) ∀ x ∈ D, U(x) =

←−
RD(x)

(11.20)

Note that whenever K \C is a repeller, so are the subsets K \D whenever
D ⊃ C, because ViabF (K \D) ⊂ ViabF (K \ C) = ∅.

Frankowska property (11.19), p. 462 implies that

∀ x ∈ D ∩ (
◦
K \C), RD(x) �= ∅ and U(x) =

←−
RD(x)

The Viability and Invariance Theorems imply that
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Theorem 11.4.5 [Frankowska Characterization of Viability Ker-
nels] Let us assume that (f, U) is both Marchaud and Lipschitz (see
Definition 10.3.5, p. 385), and that the subset K is closed. The viability
kernel ViabF (K) of a subset K under S is the unique closed subset
satisfying

• C ⊂ D ⊂ K,
• K \D is a repeller
• and the Frankowska property (11.19), p. 462.

Furthermore, inclusions (11.18), p. 461

C ∩ ExitS(K) ⊂ C ∩ ExitS(D) ⊂ ExitS(C) ⊂ C ⊂ D ⊂ K

hold true.

For capture basins, we obtain

Theorem 11.4.6 [Characterization of Capture Basins] Let us
assume that (f, U) is Marchaud and Lipschitz and that the environment
K ⊂ X and the target C ⊂ K are closed subsets such that K \ C is a
repeller (ViabF (K\C) = ∅). Then the viable-capture basin CaptF (K,C) is
the unique closed subset D satisfying

• C ⊂ D ⊂ K,
• and the Frankowska property (11.19), p. 462.

In this case, inclusions (11.18), p. 461 hold true.

It may be useful to translate Theorem 10.5.13, p. 406 in terms of tangential
conditions to the complement of the subset D, which happen to imply the
existence and uniqueness of continuous value viscosity solutions to Hamilton–
Jacobi partial differential equation.

Definition 11.4.7 [Viscosity Property] Let us consider control system
(f, U) and two subsets C ⊂ K and K. We shall say that a subset D between
C and K satisfies the viscosity property with respect to (f, U) if

{
(i) ∀x ∈ D\C, RD(x) �= ∅
(ii) ∀x ∈ Int(K)\Int(D), U(x) = R�D(x) (11.21)
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The Fundamental Viability Theorem 11.3.4, p. 455, Invariance Theo-
rem 11.3.7, p. 457 and Theorem 10.5.13, p. 406 imply the following “viscosity
characterization” of capture basins:

Proposition 11.4.8 [The Viscosity Property of Viable-Capture
Basins] Let us assume that the control system (f, U) is Marchaud and
Lipschitz, that C ⊂ K and K are closed, that Int(K) �= ∅ is backward
invariant, that ViabF (K\C) = ∅, that Int(K) = K and that Int(C) = C.

Then the capture basin CaptF (K,C) of the target C viable in K is
the unique topologically regular subset D between C and K satisfying the
viscosity property (11.21).

In the absence of constraints, we obtain the following

Corollary 11.4.9 [The Viscosity Property of Capture Basins] Let
us assume that the control system (f, U) is Marchaud and Lipschitz, that
AbsF (C) = X and that Int(C) = C.

Then the capture basin CaptF (K,C) of the target C is the unique
topologically regular subset D containing C and satisfying the viscosity
property (11.21).

Invariance kernels are also characterized in terms of viscosity condition:

Proposition 11.4.10 [Viscosity Characterization of Invariance
Kernels] Assume that the system (f, U) is both Marchaud and Lipschitz.
Then the invariance kernel satisfies the two following tangential conditions

{
(i) ∀x ∈ D\C, U(x) = RD(x)
(ii) ∀ x ∈ Int(K) \ Int(D), R�D(x) �= ∅ (11.22)

Proof. The first property follows from Invariance Theorem 11.3.7, p. 457 and
Proposition 10.6.1, p. 411, stating that the invariance kernel is the largest
closed subset such that D \ C is locally invariant. The second property is
derived from Viability Theorem 11.3.4, p. 455 and Proposition 10.6.2, p. 411,
stating that �D = CaptF (�D, �K), and thus, that �D \ Int(K) is locally
viable. ��
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11.5 Lax–Hopf Formula for Capture Basins

11.5.1 P -Convex and Exhaustive Sets

Viability Theorems require the differential inclusion to be Marchaud, and
thus, in particular, that the differential inclusion has convex values. Many
examples, among the most important ones, do not satisfy these convexity
properties. However, one can “correct” the lack of convexity by, up to the
Minkowski addition of a closed convex cone P to the images of the set-valued
map, obtain a new set-valued map with convex values, for which Viability
Theorem 11.3.4, p. 455 applies. Therefore, the main task remains to check the
relations between viability kernels with targets under the first non-Marchaud
differential inclusion and the corrected one.

Proceeding further, for differential inclusions with constant right hand
side, one can prove a Lax–Hopf formula expressing capture and absorption
basins in terms of simple Minkowski sums and differences. In this case, we
obtain more interesting consequences.

Why the Lax–Hopf formula? Because, when we shall apply viability
techniques in the epigraphical and graphical approaches to first-order partial
differential equations, the Lax–Hopf formula for capture basins provides the
Lax–Hopf formula for the solutions to these partial differential equations
which enjoy this property.

In this section, we shall introduce a closed convex cone P ⊂ X of the state
space. When X is a vector space, a closed convex cone induces a preordering
�P defined by

x �P y if and only if x− y ∈ P

Definition 11.5.1 [P -exhaustive Sets] Let P be a closed convex cone.
For any subset C ⊂ X, the subset C + P is regarded as the P -exhaustive
envelope of C. A subset C is said to be P -exhaustive if C = C + P , P -
convex if its P - exhaustive envelope is convex, P -closed if its P - exhaustive
envelope is closed, etc. Observe that C = C + {0}, so that we recover the
usual concepts by using the trivial cone P := {0}. We associate with a cone
P the preorder relation C1 ⊂P C2 if C1 + P ⊂ C2 + P and the associated
equivalence relation C1 ≡P C2 if C1 + P = C2 + P .

In optimization theory, the boundary ∂(C + P ) of the P -exhaustive
envelope of C is called the Pareto subset of C of Pareto minima with respect
to the preorder relation �P induced by the closed convex cone.

Recall that the Minkowski difference B � A is the subset of elements x
such that x+A ⊂ B (see Definition 4.6.3, p. 154). Therefore



466 11 Regulation of Control Systems

C is P -exhaustive if and only if P ⊂ C � C

We single out some obvious property

• If P is a convex cone and C is a convex subset, then its P -exhaustive
envelope is convex;

• If P is a closed cone and C is a compact subset, then its P -exhaustive
envelope is closed.

If H is a closed subset, we denote by

R+H =
⋃
λ≥0

λH the cone spanned by the subset H

Lemma 11.5.2 Let H be a compact convex subset and P a closed convex
cone. If co(H) ∩ P = ∅, then

R+co(H)− P = R+(co(H − P )) is closed (11.23)

Consequently, if G := H − P is closed and convex, then

R+co(H)− P = R+G (11.24)

Proof. First, we observe that R+co(H) − P = R+co(H − P ) because P
is a closed convex cone. The subset H being assumed to be compact, its
convex hull co(H) = co(H) is also compact. We have to prove that if
co(H) ∩ P = ∅, then R+(co(H) − P ) is closed. For that purpose, let us
take a sequence λn > 0, xn ∈ co(H) and pn ∈ P and such that the sequence
yn := λnxn − pn ∈ co(H) − P converges to some y. Since xn ranges over
a compact subset, a subsequence (again denoted by) xn converges to some
x ∈ co(H). Next, let us prove that the sequence λn is bounded. If not, there
would exist a subsequence (again denoted by) λn going to +∞. Dividing
by λn, we infer that xn =

yn
λn

+ qn where qn :=
pn
λn

∈ P because P is a

cone. Since
yn
λn

converges to 0, we infer that qn converges to q = x ∈ P ,

because P is closed. Hence x ∈ co(H) ∩ P , which is impossible. Therefore,
the sequence λn being bounded, there exists a subsequence (again denoted
by) λn converging to some λ ≥ 0. Consequently, pn = λnxn−yn converges to
some p = λx− y ∈ P , so that y belongs to co(H)− P , which is then closed.
��

Remark. By taking P := {0} and assuming that H is a compact convex
subset which does not contain {0}, the cone R+H spanned by H is a closed
convex cone. Such a subset H is called a sole of the closed convex cone R+H .
��
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There are many examples of P exhaustive subsets, among which we
mention the following ones:

Examples:

1. The main example of a P -convex map G is obtained when a :=
(ai)i=1,...,n ∈ {−1, 0,+1}n is a sign vector and where P := R

n
a is the

closed convex cone of vectors x := (xi)i=1,...,n such that xi ≥ 0 if ai = 1,
xi ≤ 0 if ai = −1 and xi = 0 if ai = 0 and when G(u) := {gi(u)}
is the single-valued map where the components gi are convex if ai = 1,
concave if ai = −1 and affine if ai = 0. It is easy to check in this case, the
single-valued map u � G(u) is R

n
a -convex. Furthermore, it is R

n
a -closed

whenever the components gi are lower semicontinuous if ai = 1, upper
semicontinuous if ai = −1 and continuous if ai = 0.

2. This is for instance the case for epigraphs Ep(c) ⊂ X × R of extended
functions c : X �→ R ∪ {+∞} satisfying

Ep(c) = Ep(c) + {0} × R+

for the cone P := {0}×R+. This property is at the root of the epigraphical
approach to a large class of Hamilton–Jacobi–Bellman equations and
conservation laws (see Chaps. 14, p. 563 and 17, p. 681), and in particular,
of Lax–Hopf formulas of solutions to some Hamilton–Jacobi–Bellman
equations;

3. We shall see that an extended function c : X �→ R ∪ {+∞} is decreasing
with respect to a closed convex cone P if and only if

Ep(c) = Ep(c) + P × R+

(see Proposition 14.6.1, p.592).
4. To say that an extended function c is λ-Lipschitz amounts to saying that,

denoting by vλ the function defined by vλ(x) := λ‖x‖,

Ep(c) = Ep(c) + Ep(vλ)

for the cone P := Ep(vλ).
5. If v : X �→ R ∪ {+∞} is a positively homogenous lower semicontinuous

convex function, then its epigraph Ep(v) is a closed convex cone. By
definition, the inf-convolution c % v is defined by

Ep(c % v) := Ep(c) + Ep(v)

Under some adequate assumptions, the function c % v is equal to

c % v(x) := inf
x=y+z, y∈X, z∈X

c(y) + v(z)

Hence a function c is Ep(v)-exhaustive if and only if c = c % v.
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Definition 11.5.3 [Q × P -Exhaustive and P -Valued Maps] Let us
consider a set-valued map F : X � Y , a closed convex cone Q ⊂ X and a
closed convex cone P ⊂ Y .

The set-valued map F is said to be Q × P -exhaustive if Graph(F ) =
Graph(F )+Q×P and said to be P -valued if for any x ∈ Dom(F ), F (x) =
F (x) + P .

Observe that a P -valued map is {0} × P -set-valued map and that the
set-valued map G defined by Graph(H) := Graph(F ) +Q× P satisfies

H(x) =
⋃

p∈P, q∈Q
(F (x− q) + p)

More generally, if F : X � Y and G : X � Y are set-valued maps from X
to Y , we denote by F % G the set-valued map defined by Graph(F % G) :=
Graph(F ) + Graph(G) satisfying

F % G(x) =
⋃

x=y+z, y∈X, z∈X
(F (y) +G(z)) =

⋃
y∈X

(F (x− y) +G(y))

Observe that the union of two P -exhaustive subsets is P -exhaustive and
that the sum C + A of an arbitrary subset A with a P -exhaustive subset C
is P -exhaustive. This means that the family E(P ) of P -exhaustive subsets
C ⊂ K forms a Max-Plus ring where the “scalars” are an arbitrary subset,
where the union plays the role of the sum in vector spaces and the sum of a
P -exhaustive subset and of an arbitrary A plays the role of the multiplication
by the scalars.

A map Φ : E(P ) �→ E(P ) is called a Max-Plus morphism if
{

(i) Φ(C1 ∪ C2) = Φ(C1) ∪ Φ(C2)
(ii) Φ(C +A) = Φ(C) +A

It turns out that the Lax–Hopf formula implies that, for constant set-
valued maps H such that H − P is closed and convex, the map C �→
CaptH(K,C) is a Max-Plus morphism on the ring of P -exhaustive subsets
(see Theorem 11.5.6, p.471 below). This algebraic result will play an
important role in the analysis of the Moskowitz partial differential equation
studied in Chap. 14, p. 563.

11.5.2 Lax–Hopf Formulas

For constant differential inclusions x′(t) ∈ G, we can obtain simple formulas
of the capture basins CaptG(K,C) whenG is a closed convex subset, and even
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for non convex right hand sides G such that their −P -exhaustive envelopes
are closed and convex. This allows us to deduce properties of capture basins
under −P -convex and −P -closed constant maps: their capture basins of P
exhaustive targets are also P -exhaustive.

Theorem 11.5.4 [Lax–Hopf Formula for Capture Basins] Assume
that the target C is contained in the environment K. The capture basin
satisfies the inclusion

CaptF (K,C) ⊂ K ∩ (C − R+co(Im(F ))) (11.25)

If the set-valued map F (x) := G is constant, then

K ∩ (C − R+G) ⊂ CaptG(co(K), C) (11.26)

Consequently, if K is a closed convex subset, C ⊂ K is closed and G is
a constant set-valued map with a closed convex image G, then the capture
basin enjoys the Lax–Hopf formula

CaptG(K,C) = K ∩ (C − R+G) (11.27)

Proof. First, let us consider an element x ∈ CaptF (K,C). Then x belongs to
K and there exist a solution x(·) to the differential inclusion x′(t) ∈ F (x(t))
and T ≥ 0 such that x(T ) ∈ C and ∀ t ∈ [0, T ], x(t) ∈ K.

Hence

x(T )− x

T
∈ 1

T

∫ T

0

F (x(t))dt ⊂ 1
T

∫ T

0

Im(F )dt = co(Im(F )) (11.28)

This implies that

x = x(T )− T
x(T )− x

T
∈ C − T co(Im(F )) ⊂ C − R+co(Im(F ))

On the other hand, if the set-valued map F (x) ≡ G is constant, let us take
x ∈ co(K)∩(C−R+G). Hence, there exist g ∈ G, T ≥ 0 and ξ ∈ C such that
x = ξ−Tg. The evolution x(·) : t �→ x(t) := x+ tg is a solution to differential
equation x′(t) = g ∈ G starting at x ∈ K and satisfying x(T ) := x+Tg = ξ ∈
C. It is viable in co(K). Indeed, since x ∈ K and since ξ = x+Tg ∈ C ⊂ K,

then x(t) := x+ tg =
(

1− t

T

)
x+

t

T
(x+ Tg) ∈ co(K). This means that x

belongs to the capture basin CaptF (co(K), C).
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The last statement follows from inclusions (11.25), p. 469 and (11.26), p.
469 when K is assumed convex and the constant set-valued map G is closed
and convex. ��

We infer from these definitions the following consequence of Lax–Hopf
formula (11.27), p. 469 on exhaustivity.

Theorem 11.5.5 [Lax–Hopf Formula for the Sum of Two Targets]
Let P be a closed convex cone contained in K. Assume that H is a compact
subset which does not contain 0 and satisfies co(H) ∩ P = ∅. Then, for
any target C ⊂ K,

CaptH(K,C)+P ⊂ Captco(H−P )(K+P,C+P ) ⊂ CaptH(K+P,C+P )

Consequently, if G := H − P is closed and convex, if the closed convex
environment K and the closed target C are P -exhaustive, then

CaptH(K,C) = Captco(H−P )(K,C) = CaptH(K,C) + P (11.29)

Proof. Formula (11.25), p. 469 of Theorem 11.5.4, p.469 implies that
{

CaptH(K,C) + P ⊂ K ∩ (C − R+co(H)) + P
⊂ (K + P ) ∩ (C − (R+co(H)− P ))

By formula (11.23), p. 466 of Lemma 11.5.2, p.466, we infer that R+co(H)−
P = R+co(H − P ), and thus, by formula (11.27), p. 469, that

CaptH(K,C)+P ⊂ (K+P )∩(C−R+co(H−P )) = Captco(H−P )(K+P,C)

On the other hand, by formula (11.26), p. 469, we obtain
{

Captco(H−P )(K + P,C) = (K + P ) ∩ (C − R+(H − P ))
= (K + P ) ∩ (C + P − R+(H)) ⊂ CaptH(K + P,C + P )

We thus derived inclusions

CaptH(K,C) + P ⊂ Captco(H−P )(K + P,C) ⊂ CaptH(K + P,C + P )

Consequently, if K = K + P and C = C + P are convex, then

CaptH(K,C) ⊂ CaptH(K,C)+P ⊂ Captco(H−P )(K,C) ⊂ CaptH(K,C)

which implies equation (11.29), p. 470 holds true. ��
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Theorem 11.5.6 [Max-Plus Morphism] Let P be a closed convex cone
contained in K. Assume that the −P -exhaustive envelope H − P of a
constant subset H is closed and convex and that the environment K and
target C ⊂ K are P -exhaustive. Then the map A �→ CaptH(K,A) satisfies

{
(i) CaptH (K,A ∪B) = CaptH(K,A) ∪ CaptH(K,B)
(ii) CaptH (K,C + A) = CaptH(K,C) +A

(11.30)

Proof. The first statement is provided by the first statement of Lemma 10.2,
p.378. The second one follows from the Lax–Hopf formula. Observe first that
if C is P -exhaustive, then, for any subset A, C +A is P -exhaustive because
(C + A) + P = (C + P ) +A = C +A. Therefore, formula (11.29), p. 470 of
Theorem 11.5.5, p.470 implies that

CaptH(K,C +A) = CaptH−P (K,C +A)

Since H − P is closed and convex by assumption, formula (11.27), p. 469
implies that

{
CaptH−P (K,C +A) = (C +A)− R+(H − P )
= (C − R+(H − P )) +A = CaptH−P (K,C) +A

and thus, by (11.29), p. 470 again, that

CaptH(K,C +A) = CaptH(K,C) +A ��

As a first example, we derive the following result:

Corollary 11.5.7 [Lax–Hopf Formula for Capture Basins] Assume
that U is a closed convex subset of a vector space and the components gi of
a single-valued map g : U �→ X are

• convex and lower semicontinuous if ai = 1,
• concave and upper semicontinuous if ai = −1
• affine and continuous if ai = 0,

that U is convex and that the target C satisfies C = C − R
n
a . Then the

capture basin under control system x′(t) = g(u(t)) is equal to

Captg(C) = C − R+g(U)
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11.5.3 Viability Kernels Under P -Valued
Micro–Macro Systems

Let M(x, u) ∈ L(Y, Y ) is a linear operator from Y to itself depending on (x, u)
and a lagrangian l : (x, u) �→ l(x, u) ∈ R ∪ {+∞}. We restrict our attention
to micro–macro systems affine with respect to the macroscopic variable:

{
(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(ii) y′(t) = M(x(t), u(t))y(t) − l(x(t), u(t)) (11.31)

Even if we assume that the Lagrangian l is convex with respect to u, the
right hand-side of system (11.31), p. 472 is not a Marchaud set-valued map,
for which Viability Theorem 11.3.4, p. 455 is proven to be true. We can correct
the lack of convexity of the right hand side of the macrosystem by subtracting
a closed convex cone P making the right hand side of the corrected system a
Marchaud one. We thus propose to consider corrected macrosystems of the
following form:

{
(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(ii) y′(t) ∈ M(x(t), u(t))y(t) − l(x(t), u(t))− P

(11.32)

Let us introduce two set-valued maps K : X � Y and C : X � Y , where
C ⊂ K.

Theorem 11.5.8 [Viability Kernels of Exhaustive Maps] Let us
consider a Marchaud control microsystem

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (11.33)

a closed convex cone P assumed to be viable under linear operators
M(x, u) ∈ L(Y, Y ) bounded and depending continuously on (x, u) ∈
Graph(U) and two closed set-valued map K and C where C ⊂ K. If
the microsystem (11.33), p. 472 is Marchaud, if the Lagrangian l is lower
semicontinuous and if the images of (11.32), p. 472 are closed and convex,
then the P -envelope of the viability kernel of K with target C is closed. Let
us define the set-valued map D by

Graph(D) := Viab(11.31)(Graph(K),Graph(C))

If the set-valued maps K and C are closed and P -valued (K(x) = K(x)+P
and C(x) = C(x)+P ), so is the set-valued map D: it is closed and D(x) =
D(x) + P .
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Proof. Actually, we shall prove that the P -envelope of the viability kernel of
the graph of K with target equal to the graph of C is equal to the viability
kernel of the P -envelope of the graph of K with target equal to the P -envelope
of the target map C:

⎧⎨
⎩

Viab(11.31)(Graph(K) + {0} × P,Graph(C) + {0} × P )
:= Viab(11.32)(Graph(K),Graph(C)) + {0} × P
= Viab(11.31)(Graph(K) + {0} × P,Graph(C) + {0} × P )

(11.34)

It follows from Lemma 11.5.9, p.473 below because
{

Viab(11.31)(Graph(K) + {0} × P,Graph(C) + {0} × P )
⊂ Viab(11.32)(Graph(K),Graph(C)) + {0} × P

and because the micro–macro system (11.32), p. 472 is Marchaud. This
implies that the viability kernel under this map is closed. Furthermore, when
K and C are P -valued, we infer that

⎧⎨
⎩

Viab(11.31)(Graph(K),Graph(C)) + {0} × P
= Viab(11.32)(Graph(K),Graph(C))
= Viab(11.31)(Graph(K),Graph(C))

(11.35)

It remains to prove Lemma 11.5.9, p.473 ��

Lemma 11.5.9 [Viability Kernels of Exhaustive Maps] Let us con-
sider the Marchaud microsystem (11.33), p. 472:

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

a closed convex cone P assumed to be viable under linear operators
M(x, u) ∈ L(Y, Y ) for all (x, u) ∈ Graph(U). Then

{
Viab(11.32)(Graph(K),Graph(C)) + {0} × P
⊂ Viab(11.31)(Graph(K) + {0} × P,Graph(C) + {0} × P ) (11.36)

Proof. (Lemma 11.5.9) Let us pick any x and a solution (x(·), u(·)) to the
microcontrol system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

starting at x.
For simplifying notations, we denote by S(t, s) := e

∫
t
s

M(x(τ),u(τ))dτ the
linear semi-group associated with the time dependent linear operator t �→
M(x(t), u(t)). Any solution z(·) to the affine differential equation
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z′(t) = M(x(t), u(t))z(t)− l(x(t), u(t))

starting at some ζ can be written

z(t) = S(t, 0)ζ −
∫ t

0

S(t, τ)l(x(τ), u(τ))dτ

Let us consider a pair (x, z) ∈ Viab(11.32)(Graph(K),Graph(C)) and an
element π ∈ P . Setting y := z + π, we have to check that (x, y) belongs to
Viab(11.31)(Graph(K)+{0}×P,Graph(C)+{0}×P ). There exist a function
t �→ p(t) ∈ P , some time t� ≤ +∞ and the macro evolution

z(t) = S(t, 0)z −
∫ t

0

S(t, τ)l(x(τ), u(τ))dτ −
∫ t

0

S(t, τ)p(τ)dτ

such that (x(t�), y(t�)) belongs to the target Graph(C) if t� < +∞ is finite
and such that, for all t < t�, (x(t), y(t)) ∈ Graph(K).

Since P is viable under the time dependent linear operator t �→
M(x(t), u(t)) by assumption, we associate with π the solution S(t, 0)π
which is viable in P .

Therefore, the evolution y(·) defined by
⎧⎨
⎩
y(t) := z(t) + S(t, 0)π

= S(t, 0)(z + π)−
∫ t

0

S(t, τ)l(x(τ), u(τ))dτ −
∫ t

0

S(t, τ)p(τ)dτ

is a solution to the affine system (11.32)(ii), p. 472 starting at z + π.
Since (x(t), z(t)) is viable in Graph(K) forever or until it reaches the target
Graph(C) at finite time t� and since S(t, 0)π is viable in P , we infer that
(x(t), y(t)) is viable in Graph(K) + {0} × P forever or until it reaches the
target Graph(C) + {0} × P at finite time t�. Therefore, the function

⎧⎪⎪⎨
⎪⎪⎩

(
x(t), S(t, 0)(z + π)−

∫ t

0

S(t, τ)l(x(τ), u(τ))dτ
)

=
(
x(t), y(t) +

∫ t

0

S(t, τ)p(τ)dτ
)

is a solution of the micro–macro system (11.31), p. 472 starting at (x, y),
viable in Graph(K) + {0} × P + {0} × P = Graph(K) + {0} × P forever or
until it reaches the target Graph(C)+{0}×P+{0}×P = Graph(C)+{0}×P
at finite time t�. ��
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11.6 Hamiltonian Characterization of the Regulation
Map

The dual formulation of the Frankowska property involves duality between

• the finite dimensional vector space X and its dual X� := L(X,R) trough
duality pairing 〈p, x〉 := p(x) on X� ×X ,

• tangent cones TK(x) and T ��K (x) and “normal cones” defined by

NK(x) := TK(x)� := {p ∈ X� such that ∀ v ∈ TK(x), 〈p, v〉 ≤ 0}

to K at x,
• the dynamics (f, U) of a control system and its Hamiltonian we are about

to define:

Definition 11.6.1 [Hamiltonian of a Control System] We associate
with the control system (f, U) the Hamiltonian h : X ×X� �→ R ∪ {+∞}
and the boundary Hamiltonian hK : ∂K ×X� �→ R ∪ {+∞} defined by

{
∀ x ∈

◦
K, ∀ p ∈ X�, h(x, p) := infu∈U(x) 〈p, f(x, u)〉

∀ x ∈ K, ∀ p ∈ X�, hK(x, p) := inf
v∈←−RK(x)

〈p, f(x, v)〉 (11.37)

where
←−
RK is the backward regulation map (see Definition 11.4.3, p.462).

We say that the Hamiltonian h satisfies the Walras law on a subset
D ⊂ K at x ∈ D if

∀ p ∈ ND(x), h(x, p) ≤ 0

and that p� ∈ ND(x) is a Walras normal to D at x if

h(x, p�) = sup
p∈ND(x)

h(x, p) = 0

The Hamiltonian satisfies the Walras law on D if it satisfies it at every
state x ∈ D.

Note that h(x, p) = hK(x, p) whenever x ∈
◦
K:= Int(K).

The function p �→ h(x, p) is concave, positively homogeneous and upper
semicontinuous, as the infimum of continuous affine functions. The Fenchel
Theorem 18.7.3, p. 756 states that, conversely, any concave, positively homo-
geneous and upper semicontinuous Hamiltonian p �→ h(x, p) is associated
with the set-valued map F : x �→ F (x) defined by

F (x) := {v ∈ X such that ∀ p ∈ X�, h(x, p) ≤ 〈p, v〉}
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When h(x, p) = infu∈U(x) 〈p, f(x, u)〉, we obtain F (x) = f(x, U(x)), as
expected.

Formulas on support functions of convex analysis imply that whenever
0 ∈ Int(F (x) + TK(x)), the boundary Hamiltonian is equal to

hK(x, p) = sup
q∈NK(x)

inf
u∈U(x)

〈p− q, u〉 = sup
q∈NK(x)

h(x, p− q)

Theorem 11.6.2 [Walrasian Characterization of the Regulation
Map] Let us assume that the control system (f, U) is Marchaud. Then
the regulation map RD(x) at x is not empty if and only if the Hamiltonian
satisfies the Walras law on D at x. In this case, setting

R−(x, p) := {u ∈ U(x) such that 〈p, f(x, u)〉 ≤ 0} (11.38)

the regulation map can be written in the form

∀ x ∈ D, RD(x) =
⋂

p∈ND(x)

R−(x, p) (11.39)

Proof. • Assume that some u� ∈ RD(x). Then, f(x, u�) ∈ T ��D (x), so that,
for all p ∈ ND(x), 〈p, f(x, u�)〉 ≤ 0. In other words,

sup
p∈ND(x)

hK(x, p) = inf
u∈U(x)

sup
p∈ND(x)

〈p, f(x, u�)〉 ≤ 0

so that the Hamiltonian satisfies the Walras law on D at x and

RD(x) ⊂
⋂

p∈ND(x)

R−(x, p)

• Assume that the Hamiltonian satisfies the Walras law on D at x.
Let us consider the function (u, p) �→ 〈p, f(x, u)〉 defined on the product
U(x)×ND(x) of the compact convex subset U(x) and the convex (closed
cone) ND(x). This function is continuous and affine (or, possibly, convex)
with respect to u and concave with respect to p. Therefore, the Lopsided
Minimax Theorem 18.7.1, p. 755 implies the existence of some u� ∈ U(x)
such that{

infu∈U(x) supp∈ND(x) 〈p, f(x, u)〉 = supp∈ND(x) 〈p, f(x, u�)〉
= supp∈ND(x) infu∈U(x) 〈p, f(x, u)〉 = supp∈ND(x) hK(x, p) (11.40)
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This implies that there exists u� ∈ U(x) such that

sup
p∈ND(x)

〈p, f(x, u�)〉 = sup
p∈ND(x)

hK(x, p) ≤ 0

since the Hamiltonian satisfies the Walras law. Consequently, we derive

the opposite inclusion u� ∈
⋂

p∈ND(x)

R−(x, p).

It remains to observe that every u� ∈
⋂

p∈ND(x)

R−(x, p) implies that

f(x, u�) ∈ T ��D (x). We have proved that u� ∈ RD(x).
This concludes the proof of the dual characterization of the regulation

map. ��
The Minimax Theorem 18.7.1, p. 755 provides sufficient conditions for the

regulation map to be nonempty:

Theorem 11.6.3 [Walras Law and Viability] Let us assume that the
control system (f, U) is Marchaud and that the normal cone ND(x) is
spanned by a compact convex subset SD(x) which does not contain 0 (such
a cone is called a sole of the cone).
If the Hamiltonian satisfies the Walras law on D at x ∈ D, there exist a
control u� ∈ RD(x) and a Walras normal p� ∈ ND(x) such that

h(x, p�) = 〈p�, f(x, u�)〉 = 0 (11.41)

Proof. Since SD(x) and U(x) are convex compact subsets and since the
function (u, p) �→ 〈p, f(x, u)〉 is linear with respect to p and affine with
respect to u (because, (f, U) is Marchaud), the Von Neuman Minimax
Theorem 18.7.1, p. 755 implies that there exists a minimax (u�, p�) ∈
U(x)× SD(x), i.e., which satisfies

inf
u∈U(x)

sup
p∈SD(x)

〈p, f(x, u)〉 = 〈p�, f(x, u�)〉 = sup
p∈SD(x)

h(x, p)

Since the Hamiltonian h satisfies the Walras law, we deduce that
supp∈SD(x) 〈p, f(x, u�)〉 ≤ h(x, p�) = 〈p�, f(x, u�)〉 ≤ 0, and thus, that

〈p�, f(x, u�)〉 = sup
p∈SD(x)

〈p�, f(x, u�)〉 ≤ 0

Since SD(x) spans the normal cone ND(x), we infer that all p ∈ ND(x),
〈p, f(x, u�)〉 ≤ 0. This implies that f(x, u�) ∈ T ��D (x) and that
〈p�, f(x, u�)〉 = 0. We have proved that u� ∈ RD(x) and that p� ∈ ND(x) is
a Walras normal. ��
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Remark. The name “Walras law” we proposed is motivated by economic
theory after Léon Walras. This is the fundamental assumption under which
a Walras equilibrium does exist in the static general equilibrium theory and,
in its dynamic formulation, the fundamental assumption under which viable
economic evolutions do exist (see Dynamic Economic Theory [22, Aubin]).

In this framework, the state x is, roughly speaking, a “commodity” and
elements p ∈ X� are regarded as “prices”. In this case, prices are taken as
controls u := p ∈ X� ranging the dual of the state space and the dynamics
are of the form

x′(t) := f(x(t), p(t)) where p(t) ∈ P (x(t))

where the right hand side f(x, p) denotes the (instantaneous) algebraic
transaction of commodity x at price p.

The Walras law requires

∀ p ∈ X�, 〈p, f(x, p)〉 ≤ 0

It means that for any price, the value of the transaction is always negative,
i.e., than the value of the new acquired commodity is smaller than or equal
to the value of the old one.

Since

h(x, p) := inf
q∈←−RK(x)

〈p, f(x, q)〉 ≤ 〈p, f(x, p)〉 ≤ 0

the Hamiltonian satisfies the Walras law in the sense of Definition 11.6.1,
p. 475 for any subset D such that, for any x ∈ D, for any p ∈ ND(x),
h(x, p) ≤ 0.

It is not surprising that sufficient conditions implying the existence of a
Walras equilibrium, such as the celebrated Walras law, also implies that the
regulation map is nonempty. ��

We also can formulate the Frankowska property (11.19), p. 462 in terms
of normal cones:

Definition 11.6.4 [Dual Frankowska Property] A Hamiltonian satis-
fies the dual Frankowska property on D with respect to (K,C) if

{
(i) ∀x ∈ D ∩ (

◦
K \C), ∀ p ∈ ND(x), h(x, p) = 0

(ii) ∀x ∈ D ∩ ∂K, ∀ p ∈ ND(x), hK(x, p) ≥ 0
(11.42)

Therefore, in all forthcoming statements, one can replace “Frankowska
property” (11.19), p. 462 by “dual Frankowska property” (11.6.4), p. 478.
This will be used only for defining Barron–Jensen/Frankowska viscosity solu-
tions of Hamilton–Jacobi–Bellman partial differential equations in Chap. 17,
p. 681.
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Lemma 11.6.5 [Equivalence between Frankowska Property and its
Dual Form] Frankowska property (11.19), p. 462 is equivalent to the dual
Frankowska property (11.42), p. 478.

Proof. Indeed, Frankowska property (11.19), p. 462 is equivalent to property
{

(i) ∀ x ∈ D \ C, RD(x) �= ∅
(ii) ∀ x ∈ D, ←−

RD(x) =
←−
RD(x)

(11.43)

It remains to prove that it is equivalent to
{

(i) ∀ x ∈ D \ C, ∀ p ∈ ND(x), h(x, p) ≤ 0
(ii) ∀ x ∈ D, ∀ p ∈ ND(x), hK(x, p) ≥ 0

The equivalence between (i) and (11.43)(i), p. 479 follows from Theo-
rem 11.6.2, p. 476. To say that

←−
RK(x) =

←−
RD(x) means that for all

u ∈ ←−
RK(x), −f(x, u) ∈ T ��D (x). The later condition means that for any

p ∈ ND(x) and for any u ∈ ←−
RK(x), 〈p, f(x, u)〉 ≥ 0, or, equivalently, that

hK(x, p) := inf
u∈←−RK(x)

〈p, f(x, u)〉 ≥ 0. Since condition (ii) splits into two
conditions {

(i) ∀ x ∈ D ∈
◦
K, ∀ p ∈ ND(x), h(x, p) ≥ 0

(ii) ∀ x ∈ D ∩ ∂K, ∀ p ∈ ND(x), hK(x, p) ≥ 0

we infer that the Frankowska and the dual Frankowska properties are
equivalent. ��

The “dual” version of the tangential characterization of viability kernels
provided by Theorem 11.4.5, p. 463 is stated in this the following terms:

Theorem 11.6.6 [Dual Characterization of Viability Kernels] Let
us assume that the control system (f, U) is Marchaud and Lipschitz and
that the subset K is closed. The viability kernel ViabF (K,C) of a subset K
under S is the unique closed subset satisfying

• C ⊂ D ⊂ K,
• K \D is a repeller
• and the dual Frankowska property (11.42), p. 478.
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The dual characterization of capture basins reads

Theorem 11.6.7 [Dual Characterization of Capture Basins] Let us
assume that (f, U)is Marchaud and Lipschitz, that the environment K ⊂ X
and the target C ⊂ K are closed subsets such that K \ C is a repeller
(ViabF (K \ C) = ∅).

Then the viable-capture basin CaptF (K,C) is the unique closed subset
satisfying

• C ⊂ D ⊂ K,
• and the dual Frankowska property (11.42), p. 478.

11.7 Deriving Viable Feedbacks

11.7.1 Static Viable Feedbacks

Unfortunately, the graph of the regulation map is generally not closed, so that
system (11.14) is not Marchaud. However, reasonable assumptions imply that
the regulation map is lower semicontinuous.

Viability Theorem 11.3.4, p. 455 states that K is viable outside C if and
only if the regulation map satisfies

∀x ∈ K\C, RK(x) �= ∅

Hence, the tangential condition for invariance is satisfied by the system
(f,RK) defined by (11.14). However, this does not imply that K is invariant
outside C, despite the fact that by construction, all velocities of this new
system are tangent to K. For K to be invariant outside C under the system
(f,RK), a sufficient condition provided by the Invariance Theorem 11.3.7,
p. 457 is that both f and the regulation map RK are Lipschitz.

Counter-Example: Even in the case of differential equations x′ = f(x)
where f is continuous and satisfies the tangential condition f(x) ∈ TK(x) for
all x ∈ K and where K is a closed subset, for any initial state x from which
start several solutions, at leat one is viable in K, but not all, despite the fact
that the tangential condition is satisfied. ��

Regulating or controlling the system means looking for a subset of controls
which provide solutions satisfying viability/capturability properties (which
are the issues tackled here).
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A (static) feedback r : x ∈ K\C �→ r(x) ∈ U(x) is said to be viable in
K outside C if K is viable outside C under the differential equation x′ =
f(x, r(x)).

The most celebrated examples of linear feedbacks in linear control theory
designed to control a system have no reason to be viable for an arbitrary
environment K, and, according to the environment K, the viable feedbacks
are not necessarily linear.

However, Viability Theorem 11.3.4, p. 455 implies that a feedback r is
viable in K\C if and only if r is a selection of the regulation map RK in the
sense that

∀x ∈ K\C, r(x) ∈ RK(x) (11.44)

Hence, the method for designing viable feedbacks governing evolutions
viable in K outside C amounts to finding selections r(x) of the regulation
map RK(x). One can design “factories” for designing selections (see Chap. 6
of the first edition of [18, Aubin], for instance) of set-valued maps.

Ideally, a feedback should be continuous to guarantee the existence of a
solution to the differential equation x′ = f(x, r(x)). In this case, the Viability
Theorem 11.3.4, p. 455 states that K is viable outside C under the differential
equation x′ = f(x, r(x)).

The problem is to find continuous selections of the regulation map RK :

Definition 11.7.1 [Selections] A selection of a set-valued map U : X �
U is a single-valued map ũ : x �→ ũ(x) such that

∀x, ũ(x) ∈ U(x)

But this is not always possible. However, the Michael Selection Theorem
states that if RK is lower semicontinuous with closed convex images, then
there exists a continuous selection of RK , and thus, of a continuous viable
feedback. However, the Michael Selection Theorem is not constructive in the
sense that it does not tell how to find such a continuous selection.

The question arises whether one can find constructive selections of the
regulation map. The simplest example is the minimal selection r◦ of RK
associating with any x ∈ K\C the control r◦(x) ∈ RK(x) with minimal norm
(which exists whenever the image RK(x) is closed and convex thanks to the
Projection Theorem). This holds true for Marchaud systems, but the problem
is that this constructive selection is not necessarily continuous. However, the
Falcone-Saint-Pierre Theorem states that despite this lack of continuity, this
feedback still provides viable evolutions, under the very same assumptions
than the ones of the Michael Selection Theorem:
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Definition 11.7.2 [Slow Feedback] We posit the assumptions of Theo-
rem 11.3.4. The slow feedback r◦K ∈ RK is the selection with minimal
norm of the regulation map RK . The system

x′(t) = f(x(t), r◦K(x(t)))

governs the evolution of slow solutions.
If the regulation map RK is lower semicontinuous on K\C, for every

initial state x ∈ K\C, there exists a slow evolution governed by the
differential equation x′ = f(x, r◦(x)) viable in K outside C.

Slow feedbacks are a particular case of selection procedures of the
regulation map:

Definition 11.7.3 [Selection Procedure] A selection procedure of a set-
valued map F : X � Y is a set-valued map SF : X � Y satisfying

{
(i) ∀x ∈ Dom(F ), S(F (x)) := SF (x) ∩ F (x) �= ∅
(ii) the graph of SF is closed

The set-valued map S(F ) : x� S(F (x)) is called the selection of F .

We provide sufficient conditions implying that a selection procedure of a
regulation map governing viable evolutions:

Theorem 11.7.4 [Selection Procedures of a Regulation Map]
Assume that the control system is Marchaud and K \ C is locally viable.
Let SRK be a selection of the regulation map RK . Suppose that the values
of SRK are convex. Then, for any initial state x0 ∈ K, there exists an
evolution starting at x0 viable in K until it reaches C which is regulated by
the selection S(RK) of the regulation map RK , in the sense that

u(t) ∈ S(RK)(x(t)) := RK(x(t)) ∩ SRK (x(t))

Proof. Since the convex selection procedure SRK has a closed graph and
convex values, we can replace the original control system by the control
system {

(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) ∩ SRK (x(t)) (11.45)
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which satisfies also the assumptions of the Viability Theorem. It remains to
check that K is still viable under this new system. But by construction, we
know that for all x ∈ K, there exists u ∈ S(RK)(x), which belongs to the
intersection U(x)∩ SRK (x) and which is such that f(x, u) belongs to TK(x).

Hence the new control system enjoys the viability property, so that, for
all initial states x0 ∈ K, there exist a viable solution and a viable control to
control system (11.45) which, for almost all t ≥ 0, are related by

{
(i) u(t) ∈ U(x(t)) ∩ SRK (x(t))
(ii) f(x(t), u(t)) ∈ TK(x(t))

Therefore, u(t) belongs to the intersection of RK(x(t)) and SRK (x(t)), i.e.,
to the selection S(RK)(x(t)) of the regulation map RK . ��

The selection procedure S◦F of a closed convex valued set-valued map F
defined by

S◦F (x) := {y ∈ Y | ‖y‖ ≤ d(0, F (x))}

provides slow evolutions, so that Theorem 11.7.2, p.482 ensues.
We can easily provide other examples of selection procedures through

optimization thanks to the Maximum Theorem.

11.7.2 Dynamic Viable Feedbacks

Consider parameterized system (2.10):

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

We slightly generalize the concept of metasystem (see Definition 6.4.6, p. 211)
associated with the simple differential inclusion u′(t) ∈ B(0, c) by replacing
it by any differential inclusion u′(t) ∈ G(x(t), u(t)). We join it to the initial
differential equation (2.10)(i) to form a more balanced auxiliary system

{
(i) x′(t) = f(x(t), u(t))
(ii) u′(t) ∈ G(x(t), u(t))

of differential inclusions. The output-input regulation (2.10)(ii) becomes a
viability constraint of the new system.

Definition 11.7.5 [General Metasystem] The metasystem associated
with the control system (f, U) and a set-valued map G : X × U � U is the
system {

(i) x′(t) = f(x(t), u(t))
(ii) u′(t) ∈ G(x(t), u(t)) (11.46)
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subjected to the viability constraint

∀t ≥ 0, (x(t), u(t)) ∈ Graph(U)

The set-valued map UG : X � U defined by

Graph(UG) := Viab(f,G)(Graph(U))

is called the G-regulation map and the set-valued map RG : X × U � U
defined by

RG(x, u) := {v ∈ G(x, u) | (f(x, u), v) ∈ TGraph(UG)(x, u)}

is called the metaregulation map.

Therefore, we know that this “metaregulation map” RG regulates the
evolutions (x(·), u(·)) viable in the graph of UG.

Theorem 11.7.6 [The Metaregulation Map] Assume that f is contin-
uous, that G is Marchaud and that the graph of U is closed. Then the
evolutions of the state-control pairs are governed by the system of differential
inclusions {

(i) x′(t) = f(x(t), u(t))
(ii) u′(t) ∈ RG(x(t), u(t))

and the metaregulation map RG has nonempty closed convex images
RG(x, u).

Among the dynamic feedbacks, the heavy ones are noteworthy:

Theorem 11.7.7 [Heavy Feedback] Under the assumptions of Theo-
rem 11.7.6, the heavy feedback g◦U ∈ RG is the selection with minimal
norm of the metaregulation map RG. The system of differential equations

{
(i) x′(t) = f(x(t), u(t))
(ii) u′(t) = g◦U (x(t), u(t))

governs the evolution of heavy solutions, i.e., evolutions with minimal
velocity.

If the regulation map RG is lower semicontinuous on Graph(UG), for
every initial state-control pair (x, u) ∈ Graph(UG), there exists a heavy
evolution.



Chapter 12

Restoring Viability

12.1 Introduction

There is no reason why an arbitrary subset K should be viable under a
given control system. The introduction of the concept of viability kernel does
not exhaust the problem of restoring viability by keeping the same dynamics
of the control system and “shrinking” the environment to its viability kernel.
We devote this chapter to two other methods for restoring viability without
changing the environment. We want to:

1. Change initial dynamics by introducing regulons that are “viability
multipliers”;

2. Change the initial conditions by introducing a reset map Φ mapping any
state of K to a (possibly empty) set Φ(x) ⊂ X of new “initialized states”
whenever the evolution reaches the domain of the reset map (impulse
control).

12.2 Viability Multipliers

12.2.1 Definition of Viability Multipliers

Consider the case in which a subset K is not viable under a differential
equation x′(t) ∈ F (x(t)). Denoting by TK(x) the tangent (contingent) cone to
K at x ∈ K and by T ��K (x) its closed convex hull (see Definition 18.4.8, p.732),
the Viability Theorem 11.3.4, p.455 tells us that when F is a Marchaud map,
the necessary and sufficient tangential condition F (x) ∩ T ��K (x) �= ∅ which
can be written in the form

0 ∈ F (x)− T ��K (x)

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 12,
c© Springer-Verlag Berlin Heidelberg 2011
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is not satisfied for at least one state x ∈ K.
The question arises whether we can correct the dynamics F in such a way

that K becomes viable under the new one.
The first idea that jumps to the mind is to introduce viability multipliers

p ∈ F (x)−T ��K (x) measuring the “viability discrepancy” between the set F (x)
of velocities and the (closed convex hull) of the cone of tangent directions to
K at x.

Definition 12.2.1 [Viability Discrepancy and Viability Multipli-
ers] The viability discrepancy is the function c◦ : X �→ R+ defined by

c◦(x) := d(F (x), T ��K (x)) := inf
u∈F (x),v∈T��

K (x)
‖u− v‖

Elements
p(t) ∈ F (x(t)) − T ��K (x(t)) (12.1)

are called viability multipliers measuring the viability discrepancy.

They are used to correct the following differential inclusion x′(t) ∈ F (x(t))
under which K is not viable by replacing it by the control system

x′(t) ∈ F (x(t)) − p(t) where p(t) ∈ F (x(t)) − T ��K (x(t))

Actually, we can restrict the choice of viability multipliers by requiring
that the evolution is regulated by “viability multipliers” p(t) ∈ P (x(t)) where
P : X � X is a set-valued map intersecting the viability gap:

∀x ∈ K, P (x) ∩ (F (x) − T ��K (x)) �= ∅

Therefore, we regulate viable evolutions by correcting the initial dynamics
through “viability multipliers” measuring the “viability discrepancy” in the
following way: {

(i) x′(t) ∈ F (x(t)) − p(t)
(ii) p(t) ∈ P (x(t)) (12.2)

The Viability Theorem implies that when F and P are Marchaud, K is
viable under this corrected control system (12.2).

The question arises how to find examples of such set-valued maps P .

12.2.2 Viability Multipliers with Minimal Norm

The first class of examples is to take balls P (x) := c(x)B centered at 0 of
radius c(x). The function c(·) must be upper semicontinuous for the set-valued
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map c(·)B to be continuous, larger than or equal to d(F (x), T ��K (x)) so that

∀x ∈ K, c(x)B ∩ (F (x)− T ��K (x)) �= ∅

and smaller than d(0, F (x)) for avoiding to find only equilibria.
In particular, the question arises whether we can “minimize the viability

discrepancy” by singling out the viability multiplier p◦(x) of minimal norm:

‖p◦(x)‖ = inf
v∈F (x), u∈T��

K (x)
‖v − u‖

which exists whenever F (x) is convex and compact thanks to the Projection
Theorem 18.4.17: there exist v◦(x) ∈ F (x) and u◦(x) ∈ T ��K (x) such that
p◦(x) = v◦(x)− u◦(x), where

u◦(x) := ΠT��
K (x)(v◦(x))

is the projection1 of the velocity v◦(x) onto the (closed convex hull of) the
tangent cone to K at x.

The solutions to the control system

x′(t) ∈ F (x(t)) − p◦(x(t)) (12.3)

are called slow evolutions of the corrected system (12.2).
Even though control system (12.3) was built to meet the tangential

conditions of the Viability Theorem 11.3.4, p.455, we observe that it
looses the minimal continuity requirements sufficient (but not necessary) for
guaranteeing the existence of a solution to (12.3). However, when K is closed
and convex2 and when F is Marchaud and lower semicontinuous, one can
prove that slow solutions do exist.

This is the case in particular when F (x) := {f(x)} is a continuous single-
valued map. We observe that when K is closed and convex, control system
(12.3) can be written in the form of “variational inequalities”:

∀y ∈ K, 〈x′(t)− f(x(t)), x(t) − y〉 ≥ 0 (12.4)

because, in this case, NK(x) = {p ∈ X�|∀y ∈ K, 〈p, y − x〉 ≤ 0} (see Theo-
rem 12.2.3 below).

Remark. This is under the form (12.4) that variational inequalities were
introduced in unilateral mechanics at the beginning of the 1960s by Jean-
Jacques Moreau, Guido Stampacchia and Jacques-Louis Lions for taking into
account viability constraints (in the case of partial differential equations).

1 Projecting the velocities of F (x) onto T ��
K (x) is not the only possibility. We could use

any selector (x, K) �→ r(x, K) ∈ K and replace v ∈ F (x) by r(v, T ��
K (x)). We just focus

our attention on the projector of best approximation onto a closed convex subset because
it is a universal choice.
2 And more generally, “sleek” (see Definition 18.4.8, p.732).
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This was the starting point of a new field in mathematics and mechanics (see
[144–146, Lions J.-L.], [36, Bensoussan & Lions J.L.], [3, Alart, Maisonneuve
& Rockafellar]). The links with planning methods in economics started with
Claude Henry in the middle of the 1970s, and later, the issue was taken up
by Bernard Cornet. ��

12.2.3 Viability Multipliers and Variational
Inequalities

Let K ⊂ X be a closed subset and F : X � X be a Marchaud map
defining the dynamics of the differential inclusion x′(t) ∈ F (x(t)). Let

c := sup
x∈K

‖F (x)‖
‖x‖+ 1

, which is finite since we assumed F to be Marchaud and

B� denote the unit ball of the dual space. We observe that

∀x ∈ K, d(F (x), T ��K (x)) ≤ d(F (x), TK(x)) ≤ d(0, F (x)) ≤ c(‖x‖ + 1)

Therefore, the set-valued map

RK(x) := (F (x) − T ��K (x)) ∩ c(x)B�

is empty if c(x) < d(F (x), T ��K (x)) and does not contain 0 if c(x) < d(0, F (x)).
The set-valued map RK is then a good candidate to be a regulation map:

Theorem 12.2.2 [Correction by Viability Multipliers] Let K ⊂ X be
a closed subset and F : X � X be a Marchaud map defining the dynamics
of the differential inclusion x′(t) ∈ F (x(t)).

For any upper semicontinuous function c : K �→ R+ satisfying

∀x ∈ K, d(F (x), TK(x)) ≤ c(x) ≤ c(‖x‖+ 1)

K is viable under the differential inclusion
{

(i) x′(t) ∈ F (x(t)) − p(t)
(ii) ‖p(t)‖� ≤ c(x(t)) (12.5)

corrected by viability multipliers p(t) ∈ RK(x(t)) where RK(x) := (F (x)−
T ��K (x)) ∩ c(x)B� defines the regulation map.

Proof. The set-valued map G : X � X defined by G(x) := F (x)− c(x)B� is
also Marchaud.
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Solutions to the differential inclusion x′(t) ∈ G(x(t)) are obviously solu-
tions to corrected differential inclusion (12.5) where the viability multipliers
are required to be bounded by c(x).

Viability Theorem 11.3.4, p.455 states that K is viable under G if and
only if G(x) ∩ T ��K (x) �= ∅. We shall prove this last point by showing that
the velocity associated with the viability multiplier p◦(x) with the smallest
viability discrepancy belongs to the closed convex hull of the tangent cone
TK(x).

Indeed, since F (x) is convex and compact, the subset F (x) − T ��K (x) is
closed and convex. The Moreau Projection Theorem 18.4.17 implies the
existence of unique elements v◦(x) ∈ F (x) and u◦(x) ∈ T ��K (x) such that
p◦(x) := v◦(x)− u◦(x) satisfies

‖p◦(x)‖� = ‖v◦(x) − u◦(x)‖ = inf
v∈F (x), u∈T��

K (x)
‖v − u‖ = d(F (x), T ��K (x))

(12.6)
This implies in particular that u◦(x) := ΠT��

K (x)v
◦(x) because

‖v◦(x) − u◦(x)‖ = inf
u∈T��

K (x)
‖v◦(x) − u‖ (12.7)

Therefore the Moreau Theorem 18.4.17 implies that the viability multi-
plier p◦(x) minimizing the viability discrepancy is the projection p◦(x) =
ΠNK(x)(v◦(x)) onto the normal cone NK(x) of v◦(x).

Hence

‖p◦(x)‖� ≤ d(F (x), (T ��K (x))) ≤ c(x)

so that the viability multiplier minimizing the viability discrepancy satisfies

p◦(x) ∈ NK(x) ∩ c(x)B� (12.8)

Therefore u◦(x) = v◦(x)−p◦(x) belongs to G(x)∩T ��K (x). The assumptions of
the Viability 11.3.4, p.455 (stated in the survival kit 2.15, p. 98) are satisfied,
and we have proved that K is viable under the corrected differential inclusion
(12.5). ��

The follow up question is to know whether K remains viable under the
corrected differential inclusion (12.5) when the viability multiplier is required
to obey further constraint.

A natural (at least, classical) one is to require that the viability multipliers
q(t) belong to NK(x(t)) at each instant: in this case, the corrected differential
inclusion is called a variational inequalities:

Theorem 12.2.3 [Variational Inequalities] Let F : X � X be a
Marchaud map. We assume that K is closed and sleek. Then K is viable
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under variational inequalities
{

(i) x′(t) ∈ F (x(t)) − p(t)
(ii) p(t) ∈ NK(x(t)) (12.9)

When K is assumed to be convex, control system (12.9) can be written in
the form

sup
v∈F (x)

inf
y∈K

〈x′(t)− v, x(t)− y〉 ≥ 0

and when F (x) := {f(x)} is single-valued, it boils down to variational
inequalities (12.4).

Proof. Recall that K is sleek if and only if the graph of the normal cone
map x � NK(x) is closed, and that in this case, the tangent cones TK(x)
are convex. The set-valued map G◦ defined by G◦(x) := F (x) − (NK(x) ∩
c(‖x‖+ 1)B�) is also Marchaud.

We have proved in (12.8) that the viability multiplier p◦(x) belongs to
NK(x) ∩ c(‖x‖ + 1)B� in such a way that the associated velocity u◦(x) =
v◦(x) − p◦(x) belongs to G◦(x) ∩ TK(x). Therefore K is viable under G◦

thanks to Viability Theorem 11.3.4, p.455.
It remains to observe that the solutions to differential inclusion x′(t) ∈

G◦(x(t)) are solutions to the variational inequalities (12.9). ��

Remark. We could have minimized (v, u) ∈ F (x) × TK(x) �→ d(v − u)
where d : X �→ R+ is any inf-compact lower semicontinuous convex function
replacing the Hilbertian norm we used above and obtain velocities v◦(c) ∈
F (x) and directions u◦(x) ∈ TK(x) such that:

d(v◦(x) − u◦(x)) := inf
v∈F (x), u∈TK(x)

d(v − u) (12.10)

Since d(v◦(x)−u◦(x)) := infu∈TK(x) d(v◦(x)−u), we deduce that there exists
a Lagrange multiplier p◦(x) ∈ ∂d(v◦(x) − u◦(x)) ∈ NTK (x), thus satisfying
v◦(x) − u◦(x) ∈ ∂d�(p◦). The same proof implies that whenever K is sleek,
K is viable under the differential inclusion{

(i) x′(t) ∈ F (x(t)) − ∂d�(p(t))
(ii) p′(t) ∈ NK(x(t))

This generalization does not change much the fundamental nature of the
correction. ��
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12.2.4 Slow Evolutions of Variational Inequalities

We obtain slow evolutions of both the variational inequalities and the
projected differential inclusion whenK is sleek and F is lower semicontinuous:

Theorem 12.2.4 [Slow Solutions of Variational inequalities] Let
K ⊂ X be a closed sleek subset and F : X � X be a Marchaud and
lower semicontinuous. Then K is viable under the evolutions of variational
inequalities with smallest viability discrepancies

{
(i) x′(t) ∈ F (x(t)) − p(t)
(ii) p(t) ∈ NK(x(t)) ∩ d(F (x(t)), TK(x(t)))B�

(12.11)

(the solutions of which are called slow evolutions).

Proof. Since the set-valued maps x � F (x) and x � TK(x) are both lower
semicontinuous, we infer that the set-valued map x � d(F (x), TK(x))B� is
upper semicontinuous. Since F is Marchaud, so is the set-valued map G◦◦ :
X � X defined by G◦◦(x) := F (x)− (NK(x) ∩ d(F (x), TK(x))B�).

We have proved in (12.8) that the viability multiplier p◦(x) belongs to
NK(x)∩d(F (x), TK (x))B� in such a way that the associated velocity u◦(x) =
v◦(x) − p◦(x) belongs to G◦(x) ∩ TK(x).

Then Viability Theorem 11.3.4, p.455 implies that K is viable under G◦◦:
From any initial state x ∈ K starts a solution to x′(t) ∈ G◦◦(x(t)) which is a
slow solution to (12.11). ��

12.2.5 Case of Explicit Constraints

We now investigate the case when the environment K := h−1(M) is more
explicitly defined through a continuously differentiable map h : X �→ Y and
a subset M ⊂ Y of another finite dimensional vector space Y :

K := {x ∈ X such that h(x) ∈M}

In this case, when the tangent and normal cones to M ⊂ Y are simpler
to compute, the tangent and normal cones to K can be couched in terms of
tangent and normal cones to M and of the map h.

Theorem 12.2.5 [Tangent and Normal Cones to Environments]
Let M ⊂ Y be a closed convex subset and h : X �→ Y a continuously differ-
entiable map satisfying either one of the following equivalent formulations
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of the transversality condition:

∀x ∈ K, Im(h′(x)) − TM (h(x)) := Y or ker(h′(x)�) ∩NM (h(x)) = {0}

Then the tangent and normal cones to K at x ∈ K are given by the formulas
{

(i) TK(x) = h′(x)−1(TM (h(x)))
(ii) NK(x) = h′(x)�(NM (h(x))) (12.12)

For this purpose, we need other results outside the scope of this book that
we are about to describe.

When maps h′(x) are surjective, or, equivalently, when their transposes
h′(x)� : Y � �→ Y � are injective, the linear operators h′(x)h′(x)� : Y � �→ Y are
symmetric and invertible. We denote by h′(x)+ its orthogonal right inverse
(see Proposition 18.4.18, p.736). We supply the dual Y � on the space Y with
the norm ‖q‖h′(x)�

:= ‖h′(x)�q‖ depending upon each x ∈ K. If N ⊂ Y � is a
closed convex cone, we denote by Πh′(x)�

N the projector of best approximation
onto N when Y � is supplied with the norm ‖q‖h′(x)�

.
Theorem 12.2.2, p.488 becomes:

Theorem 12.2.6 [Corrected Differential Equations under Explicit
Constraints] Assume that f is continuous with linear growth and that
K = h−1(M) where M ⊂ Y is a closed sleek subset where h : X �→ Y is a
continuously differentiable map satisfying

∀x ∈ K, h′(x) is surjective & sup
x∈K

‖h′(x)+‖ < +∞ (12.13)

Then K is viable under the corrected system

x′(t) = f(x(t))− h′(x(t))�q(t)

where the viability multipliers q(t) obey the regulation law

for almost all t ≥ 0, q(t) ∈ RM (x(t))

where the regulation map RM is defined by

RM (x) := (h′(x)h′(x)�)−1(h′(x)f(x) − TM (h(x)))

Actually, K is viable under the variational inequalities
{

(i) x′(t) = f(x(t)) − h′(x(t))�q(t)
(ii) q(t) ∈ NM (h(x(t)))
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In particular, these variational inequalities have slow evolutions
{

(i) x′(t) = f(x(t)) − h′(x(t))�q(t)
(ii) q(t) ∈ r◦M (x(t)) (12.14)

where the feedback map r◦M : X �→ Y � is defined by

∀x ∈ K, r◦M (x) := Π
h′(x)�

NM(h(x))(h
′(x)h′(x)�)−1h′(x)f(x)

When K = h−1(M), it may be wiser to try other regulons q(t) ∈ Y � than
the specific regulon q(t) := r◦M (x(t)):

Definition 12.2.7 [Explicit Viability Multipliers] When K =
h−1(M), the specific regulon q(t) := r◦M (x(t)) are called explicit viability
multipliers.

In summary, we were able to associate with a differential equation under
which a subset K := h−1(M) is not viable a specific type of control systems,
where the regulons are explicit viability multipliers, under which K is viable.

Remark: why viability multipliers. Explicit viability multipliers q(t) ∈
Y � play a analogous role to Lagrange multipliers in optimization under
constraints.

Indeed, when X := R
n, Y := R

m, f(x) := (f1(x), . . . , fn(x)) and h(x) :=
(h1(x), . . . , hm(x)), this control system can be written more explicitly under
the form

x′j(t) = fj(x(t)) +
m∑
k=1

∂hk(x(t))
∂xj

qk(t), j = 1, . . . ,m

We recall that the minimization of a function x �→ J(x) over K is equivalent
to the minimization without constraints of the function

x �→ J(x) +
m∑
k=1

∂hk(x)
∂xj

qk

for an appropriate “Lagrange multiplier” q ∈ Y �.
These Lagrange and explicit viability multipliers associated to constraints

of the form h(x) ∈ M share the same interpretations. In economics, for
instance, Lagrange multipliers are often regarded as (shadow) prices in opti-
mization or equilibrium models. Therefore, explicit viability multipliers enjoy
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the same status as prices, slowing down consumption to meet scarcity
constraints, boosting production to guarantee given outputs, etc. ��

12.2.6 Meta Variational Inequalities

The viability multipliers governed by variational inequalities x′(t) ∈ F (x(t))−
NK(x(t)) vanish on the interior of the environment K and may be dis-
continuous on its boundary. For obtaining (absolutely) continuous viability
multipliers, we shall use the same idea than the one motivating the
introduction of metasystems and heavy evolutions (see Chap. 6, p.199).

Starting with a differential inclusion x′(t) ∈ F (x(t)) and an environment
K, we introduce a set-valued map P : K � X� (or a set-valued map P :
X � X� and take K := Dom(P )). We consider the heavy system

{
(i) x′(t) ∈ F (x(t))
(ii) p′(t) = 0

constrained by the metaconstraint

∀t ≥ 0, p(t) ∈ P (x(t))

We recall that the derivative DP (x, p) : X � X� is defined by

Graph(DP (x, p)) := TGraph(P )(x, p)

and that its co-derivative DP (x, p)� : X � X� by

r ∈ DP (x, p)�(q) if and only if (r,−q) ∈ NGraph(P )(x, p)

We also recall that the set-valued map P is said to be sleek if and only if
its graph is sleek (see Definition 18.4.8, p.732).

Theorem 12.2.3 implies the following statement

Theorem 12.2.8 [Meta Variational Inequalities] Let F : X � X be a
Marchaud map. We assume that P : X � X� is closed and sleek. Then the
graph Graph(P ) of the set-valued map P is viable under meta variational
inequalities

{
(i) x′(t) ∈ F (x(t))−DP (x(t), p(t))�(q(t))
(ii) p′(t) = q(t) where q(t) ranges over X� (12.15)
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Therefore, heavy evolutions, minimizing the norm of the derivatives p′(t) =
q(t) of the regulons p(t), amounts here to minimize the norm of the elements
q(t) ∈ DP (x(t), p(t))�

−1
(F (x(t))−TK(x(t))), instead minimizing the norm

of the elements p(t) ∈ F (x(t)) − TK(x(t)) as for the slow evolutions.

Proof. Theorem 12.2.3 implies that the variational inequalities associated to
{

(i) x′(t) ∈ F (x(t))
(ii) p′(t) = 0

on the graph of P can be written

(x′(t), p′(t)) ∈ F (x)× {0} −NGraph(P )(x(t), p(t))

In other words, there exist (r(t),−q(t)) ∈ NGraph(P )(x(t), p(t)) such that
(x′(t), p′(t)) ∈ F (x(t))×{0}+(−r(t), q(t)), i.e., such that x′(t) ∈ F (x(t))−r(t)
and p′(t) = q(t). It is enough to remark that r(t) ∈ DP (x(t), p(t))�(q(t)). ��

12.2.7 Viability Multipliers for Bilateral Constraints

Let us consider a system of n differential equations (instead of inclusions for
simplifying the exposition)

∀ i = 1, . . . , n, ∀ t ≥ 0, x′i(t) = fi(x(t)) (12.16)

subjected to bilateral constraints

∀ t ≥ 0, Σ(x(t)) := (σi,j(x(t)))i,j ∈ M ⊂ L(Rn,Rn) (12.17)

where M is a subset of matrices (σi,j(x(t)))i,j of linear operators.
Naturally, these bilateral constraints are not necessarily viable, so that we

correct this system by explicit viability multipliers:

Theorem 12.2.9 [Viability Matrices] Bilateral constraints (12.17),
p. 495, are viable under a corrected system regulated by viability matrices
W (t) :=

(
wi,j(t)

)
i,j

:

∀ i = 1, . . . , n, ∀ t ≥ 0, x′i(t) = fi(x(t)) −
n∑

k,l=1

∂σk,l(x(t))
∂xi(t)

wk,l(t)

(12.18)
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The regulation map maps state variables x to non empty subsets RM(x)
of viability matrices satisfying
⎛
⎝ n∑
i,p,q=1

∂σk,l(x)
∂xi

∂σp,q(x)
∂xi

wp,q

⎞
⎠
k,l

∈ TM(Σ(x)) −Σ′(x)(f(x)) (12.19)

where TM(W ) ⊂ L(Rn,Rn) is the tangent cone to M at W ∈ L(Rn,Rn)
and NM(W ) := T �M(W ) its normal cone.

For example, we consider n vehicles i. Safety regulations (as in aeronautics)
require that the positions xi ∈ X := R

d (d = 2, 4) must mutually
be kept apart at a minimal distance: the entries of the matrix of bilat-

eral constraints are defined by σi,j(x) :=
1
2
‖xi − xj‖2. We observe that

∂

∂xi
σi,j(x)(u) = 〈xi − xj , ui〉, or, equivalently, that

⎧⎪⎨
⎪⎩
∂σk,l(x)
∂xi

(uk) = 0 if i �= k, l

∂σk,l(x)
∂xk

(uk) = 〈xk − xl, uk〉 ,
∂σk,l(x)
∂xl

(ul) = −〈xk − xl, ul〉

Taking a given matrix U := (ui,j(x(t)))i,j and the set of matrices with

larger or equal entries M := U + R
n2

, the environment K := Σ−1(M) is the
subset of mutually safe positions defined by

∀ i, j = 1, . . . , n, ‖xi − xj‖ ≥ ui,j

Consequently, the corrected system (12.18), p. 495 can be written in the form

∀ i = 1, . . . , n, ∀ t ≥ 0, x′i(t) = fi(x(t))−
n∑
j=1

(wi,j(t)−wj,i(t))(xi(t)−xj(t))

(12.20)
Instead of taking for viability multipliers the coefficients wi,j ∈ R of an

arbitrary matrix W , it is enough to take the coefficients qi,j := wi,j −wj,i of
the Q satisfying Q� = −Q i.e., qi,j = −qj,i. In this case, we obtain

∀ i = 1, . . . , n, ∀ t ≥ 0, x′i(t) = fi(x(t))−
n∑
j=1

qi,j(t)(xi(t)−xj(t)) (12.21)
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12.2.8 Connectionnist Complexity

As the simplest example of connectionnist complexity, we assume that
disconnected or autonomous systems are given in the form of a system of
differential equations

∀ i = 1, . . . , n, x′i(t) = fi(xi(t))

We also postulate that the state of the system must comply to collective
viability constraints of the form

∀ t ≥ 0, h(x1(t), . . . , xn(t)) ∈ M

where M is a subset of Y := R
m.

Since the nature of the constraints is collective and the dynamics are
autonomous, the viability property requiring that from any initial state
satisfying the constraints starts at least one solution obeying them forever is
generally not met.

We have seen in Sect. 12.2.5, p.491 how to correct this system by viability
multipliers pi(t)

∀ i = 1, . . . , n, x′i(t) = fi(xi(t)) − pi(t)

Another method consists in connecting the components of the original
dynamics through connecting matrices W := (wji )i,j ∈ L(X,X):

∀ i = 1, . . . , n, x′i(t) =
n∑
j=1

wji (t)fj(xj(t))

Definition 12.2.10 [Complexity Index] If W ∈ L(X,X) is a connection
matrix, we regard the norm ‖W − I‖L(X,X) as the complexity index of the
connection matrix W . For a given class R of connection matrices, we denote
by W ◦ ∈ R the simplest – least complex – matrix W ◦ defined by

‖W ◦ − I‖ = min
W∈R

‖W − I‖ (12.22)

We shall prove that in this context, the connection matrix which minimizes
this connectionnist complexity index over the set of viability matrices is
associated with the regulation mechanism driving slow viable evolutions, i.e.,
that the least complex connection matrix governs slow evolutions.

This further justifies the decentralizing role of prices in economic decentral-
ization mechanisms when the viability multipliers are regarded as (shadow
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prices): the decentralization by viable prices with minimum norm coincides
with the regulation by simplest viable connection matrices.

The natural framework to study these connection matrices is tensor
algebra of matrices because the connection matrix which minimizes the
connectionnist complexity index happens to involve the tensor product of the
dynamics and the regulons. In this presentation, we refer to Neural networks
and qualitative physics: a viability approach, [21, Aubin], and mention only
the following notations.

Let X := Rn, Y := Rp be finite dimensional vector spaces. If p ∈ X� and
y ∈ X , we denote by p⊗ y ∈ L(X,Y ) the linear operator defined by

p⊗ y : x �→ (p⊗ y)(x) := 〈p, x〉 y (12.23)

It is called the tensor product of p ∈ X� and y ∈ X . The transpose (p⊗ y)�

of p⊗ y is the operator y ⊗ p ∈ L(Y �, X�) is equal to

(y ⊗ p)(q) := 〈q, y〉 p

More generally, if x ∈ X and B ∈ L(Y, Z), we denote by x ⊗ B ∈
L(L(X,Y ), Z) the operator defined

W ∈ L(X,Y ) �→ (x⊗B)(W ) := BWx ∈ Z

By taking Z := R and B := q ∈ Y � := L(Y,R), we deduce that x ⊗ q ∈
L(X�, Y �) is the tensor product

x⊗ q : p ∈ X� := X �→ (x⊗ q)(p) := 〈p, x〉q

the matrix of which is made of entries (x ⊗ q)ji = xiq
j . Since x ⊗ q belongs

to L(X�, Y �), we observe that for any W ∈ L(X,Y ),

〈x⊗ q,W 〉 := 〈q,Wx〉 = := 〈W �q, x〉

In particular, if W := p⊗ y

〈x⊗ q, p⊗ y〉 := 〈p, x〉 〈q, y〉

Let f : X �→ X describe the continuous dynamics of the system, h : X �→ Y
represent the constraint map and M ⊂ Y the closed environment.

We shall compare:

1. the regulation obtained by subtracting prices to the original dynamical
behavior

x′(t) = f(x(t))− p(t)

2. the regulation by connecting the agents of the original dynamics through
connecting matrices W ∈ L(X,X):

x′(t) = W (t)f(x(t))
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We first observe the following link between regulons and connection matrices:

Proposition 12.2.11 [Connection Matrix Associated with a Via-
bility Multiplier] Let us associate with p(·) the connection matrix Wp(·)(·)
defined by the formula

Wp(·)(t) := I− f(x(t))
‖f(x(t))‖2

⊗ p(t) (12.24)

the entries of which are equal to

wij(t) = δij −
fi(x(t))
‖f(x(t))‖2

pj(t)

The solutions to the differential equations x′(t) = f(x(t)) − p(t) and
x′(t) = Wp(·)(t)f(xp(·)(t)) coincide.

Proof. Indeed, we observe that

Wp(·)(t)f(x(t)) = f(x(t)) − 〈f(x(t)), f(x(t))〉
‖f(x(t))‖2

p(t) = f(x(t)) − p(t)

so that the two differential equations x′(t) = W (t)f(x(t)) and x′(t) =
f(x(t))− p(t) are the same. ��

We introduce the new regulation map

OM (x) := {W ∈ L(X,X) | h′(x)Wf(x) ∈ TM (h(x))}

the connection matrices W regulating viable solutions to x′ = Wf(x) are
given by the regulation law

W (t) ∈ OM (x(t))

We observe that whenever the regulons p(·) ∈ RM (x(·)) obey the regulation
law, the associated connection matrix Wp(·) ∈ OM (x(·)) because the equation

h′(x(t))W (x(t))f(x(t)) = h′(x(t))(f(x(t)) − p(t)) ∈ TM (h(x))

holds true.
The problem of minimal complexity is then to find connection matrices

W ◦(x) ∈ OM (x) as close as possible to the identity matrix I:

Theorem 12.2.12 [Viable Simplest Connection Matrices] Let us
assume that the map f is continuous and bounded and that the constraint
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map h is continuously differentiable and satisfies the uniform surjectivity
condition:

∀ x ∈ K, h′(x) is surjective & sup
x∈K

‖h′(x)+‖
‖f(x)‖ < +∞ (12.25)

Let M ⊂ Y be a closed convex (or more generally, sleek) subset. Then
the environment K := h−1(M) is viable under the connected system x′ =
Wf(x) if and only if for every x ∈ K, the image OM (x) of the regulation
map is not empty.

The solution with minimal complexity subjected to the viability con-
straints

∀ t ≥ 0, h(x(t)) ∈ M

is governed by the differential equation

x′(t) = W ◦(x(t))f(x(t))

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W ◦(x) = 1− f(x)
‖f(x)‖2

⊗ h′(x)+
(
1−Π

h′(x)
TM (h(x))

)
h′(x)f(x)

= 1− f(x)
‖f(x)‖2

⊗ h′(x)�πh
′(x)�

NM (h(x))(h
′(x)h′(x)�)−1h′(x)f(x)

(12.26)
Furthermore, the slow viable solutions regulated by x′ = f(x) − p and
the viable solutions to the connected system x′ = Wf(x) under minimal
complexity coincide.

Proof. We can apply the same proof as the one of Theorem 12.2.6 where the
connected system is a control system x′ = Wf(x) and where the role of the
regulon p is played by the connection matrix W .

Using the definition of tensor products (f(x)⊗h′(x))W := h′(x)Wf(x) of
linear operators, the regulation map can be written in the form:

OM (x) := {W ∈ L(X,X) | (f(x) ⊗ h′(x))W ∈ TM (h(x))}

so that viable solutions are regulated by the regulation law

(f(x(t)) ⊗ h′(x(t)))W (t) ∈ TM (h(x))

Since the map f(x) ⊗ h′(Wx) is surjective from the space L(X,X) of
connection matrices to the space Y , we observe that
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‖(f(x)⊗ h′(x))+‖ =
‖h′(x)+‖
‖f(x)‖

so that the assumptions of Theorem 12.2.6, p.492 are satisfied. Hence the
regulation map OM is lower semicontinuous with closed continuous images.

Therefore, the viable connection matrices closest to the identity matrix I
are the solutions W ◦ minimizing the distance ‖W − I‖ among the connection
matrices satisfying the above constraints.

We infer from Theorem 2.5.6 of Neural networks and qualitative physics: a
viability approach, [21, Aubin], that since the map f(x)⊗h′(Wx) is surjective
from the space L(X,X) of connection matrices to the space Y , the solution
is given by formula (12.26).

Therefore, we derive from Theorem 6.6.3 of [18, Aubin] the existence of a
viable solutions to the differential inclusion x′ = W ◦(x)f(x). ��

12.2.9 Hierarchical Viability

Hierarchical systems involve a finite number of n states xi ∈ Xi and n − 1
linear operators W i−1

i cooperating for transforming the state x1 into a final
state xn := Wn−1

n · · ·W i−1
i . . .W 1

2 x1 subjected to viability constraints.
They describe for instance a production process associating with the input

x1 the intermediate outputs x2 := W 1
2 x1, which itself produces an output

x3 := W 1
2 x2, and so on, until the final output xn := Wn−1

n · · ·W i−1
i . . .W 1

2 x1

which must belong to the production set Mn.
Hierarchical systems are particular cases of Lamarckian systems where

the hierarchical constraint are replaced by a network of constraints, more
difficult and fastidious to describe but not to prove. Such systems appear in
many economic, biological and engineering systems. This study only opens
the gates for future investigations.

Let us consider n vector spaces Xi := R
ni , elements xi ∈ Xi and n − 1

connection matrices W i
i+1 ∈ L(Xi, Xi+1).

The constraints are of the form⎧⎪⎨
⎪⎩
K :=

{
(x1, (W i

i+1)i=1,...,n−1) ∈ X1 ×
n−1∏
i=1

L(Xi, Xi+1)

such that Wn−1
n · · ·W i−1

i . . .W 1
2 x1 ∈ Mn ⊂ Xn

} (12.27)

The evolution without constraints of the commodities and the operators
is governed by dynamical systems of the form

⎧⎪⎨
⎪⎩

(i) x′i(t) = fi(xi(t))

(ii)
d

dt
W i
i+1(t) = αii+1(W

i
i+1(t))
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where the functions αii+1 govern the evolutions of the matrices t �→W i
i+1(t).

Theorem 12.2.13 [Hierarchical Viability] The constraints

∀ t ≥ 0, Wn−1
n (t) · · ·W i−1

i (t) . . .W 1
2 (t)x1(t) ∈ Mn

are viable under the regulated system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′1(t) = f1(x1(t)) +W 1
2 (t)�(t)p1(t) (i = 1)

x′i(t) = fi(xi(t)) − pi−1(t) +W i
i+1(t)

�pi(t) (i = 1, . . . , n− 1)

x′n(t) = fn(xn(t))− pn−1(t) (i = n)

d

dt
W i
i+1(t) = αii+1(W

i
i+1(t)) + xi(t)⊗ pi(t) (i = 1, . . . , n− 1)

involving viability multipliers pi(t) ∈ X�
i (intermediate “shadow price”).

The dynamics of the matrices W i
i+1(t) are corrected by the tensor product

of xi(t) and pi(t).

In other words, at each level i of the hierarchical organization, the
dynamics governing the evolution xi(·) of the state involves both a viability
multiplier pi(·) at the same level and viability multiplier pi−1(·) at the level
i− 1, a message which makes sense.

The specialists of artificial neural networks will recognize that the
evolution of each connection matrix W i

i+1 is corrected by the tensor product
xi(t)⊗ pi(t) of the state and of the viability multiplier at level i, which is an
example of a Hebbian law (see for instance The Organization of Behavior,
[114, Hebb] and Neural networks and qualitative physics: a viability approach
[21, Aubin] for the links between tensor products and Hebbian laws).

Proof. We introduce

1. the product spaces

X :=
n∏
i=1

Xi ×
n−1∏
i=1

L(Xi, Xi+1) and Y :=
n∏
i=1

Xi

of sequences (x1, . . . , xn,W
1
2 , . . . ,W

n−1
n ) and (y1, . . . , yn)

2. the (bilinear) operator h : X �→ Y defined by

h(x,W ):=h(x1, . . . , xn,W
1
2 , . . . ,W

n−1
n ):=((W i

i+1xi − xi+1)i=1,...,n−1, xn)

3. the set of constraints
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M := {0}(n−1) ×Mn ⊂ Y

where Mn ⊂ Xn is defined in (12.2.13), p.502.

We observe that the environment K defined by (12.27), p.501, is equal to

K = {(x,W ) ∈ X such that h(x,W ) ∈ M ⊂ Y}

The directional derivative h′(x,W ) is the linear operator mapping every pair
(u, U) to h′(x,W )(u, U) defined by

h′(x,W )(u, U) = ((U ii+1xi +W i
i+1ui − ui+1)i=1,...,n−1, un)

Its transpose h′(x,W )� map every pair p := (p1, . . . , pn) to h′(x,W )�p
equal to

h′(x,W )�p = [(W 1�

2 p1, (W i�

i+1p
i − pi−1)i=2,...,n−1, p

n), (xi ⊗ pi)i=1,≤,n−1]

Hence Theorem 12.2.13, p.502 follows from Theorem 12.2.6, p.492. ��

Remark. This result has been extended to more complex situations, in
the context of cooperative games, for instance, where coalitions S ⊂ N :=
{1, . . . , n} are involved and where linear connectionnist operators W i

i+1 are
replace by multilinear operators WS associated with coalitions S. ��

12.3 Impulse and Hybrid Systems

12.3.1 Runs of Impulse Systems

As mentioned in the introduction of this chapter, there is no reason why an
arbitrary subset K should be viable under a control system

{
(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t))

or a differential inclusion x′ ∈ F (x) or actually its evolutionary system S(x).
One way to restore viability is to change instantaneously the initial condi-

tions when viability is at stakes or when other requirement is asked by using
a reset map Φ mapping any state of K to a (possibly empty) set Φ(x) ⊂ X
of new (reinitialized) “reset states”. Hence an impulse differential inclusion
(and in particular, an impulse control system) is described by a pair (F,Φ),
where the set-valued map F : X � X mapping the state space X := R

n

to itself governs the continuous evolution components x(·) of the system in
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K and where Φ, the reset map, governs the discrete impulses to new “initial
conditions” when the continuous evolution is doomed to leave K.

Such a hybrid evolution, mixing continuous evolution “punctuated” by
discontinuous impulses at impulse times is called in the “hybrid system” lit-
erature a “run” or an “execution”, and could be called a punctuated evolution.

Many examples coming from different fields of knowledge fit this frame-
work:

1. multiple-phase economic dynamics in economics, as it was proposed by
the economist Richard Day back to 1995,

2. stock management in production theory,
3. viability theory, for implementing the extreme version of the “inertia

principle”,
4. and in particular, evolutions with punctuated equilibria, as proposed by

Niels Eldredge and Stephen J. Gould in 1972 for describing biological
evolution,

5. propagation of the nervous influx along axones of neurons triggering
spikes in neurosciences and biological neuron networks proposed in 1907
by Lapicque3 (“Integrate-and-Fire” models),

6. “threshold” impulse control, when “controls jump” when the threshold
is about to be trespassed,

7. issues dealing with “qualitative physics” in artificial intelligence (AI)
and/or “comparative statics” in economics,

8. in logics, where connections are made between impulse differential
inclusions and the μ-calculus,

9. in manufacturing and economic production systems, when the jumps are
governed by Markov processes instead of set-valued maps,

10. and, above all, in automatic control theory where a fast growing literature
deals with hybrid “systems”.

Hybrid systems are described by a family of control systems and by a
family of viability (or state) constraints indexed by parameters e called
“locations”. Starting with an initial condition in a set associated with an
initial location, the control system associated with the initial location governs
the evolution of the state in this set for some time until some impulse time
resets the system by imposing a new location, and thus, a new control system,
a new environment and a new initial condition. One can show that they fit
in the above class of impulse systems in a simple and natural way. The use of
viability techniques for dealing with impulse systems was trigged by Shankar
Sastry, John Lygeros, Claire Tomlin, Marc Quimcampoix, Nicolas Seube, Éva
Cruck, Georges Pappas and the authors. This section presents some of these
results.

We identify C(0, 0;X) with X and we define “runs” in the following way:

3 Instead of the continuous time Hodgkin–Huxley type of systems of differential equations
inspired by the propagation of electrical current which are the subject of an abundant
literature.
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Definition 12.3.1 [Runs] We say that a (finite or infinite) sequence

−→x (·) := (τn, xn(·))n≥0 ∈
∏
n≥0

R+ × C(0, τn;X)

is a run (or an execution or a punctuated evolution) −→x (·) made of two
finite or infinite sequences of

1. cadences τ(−→x (·)) := {τn}n;
2. motives xn(·) ∈ C(0, τn;X).

We associate with a run −→x (·)

1. its impulse set T (−→x (·)) := {tn}n≥0 of sequences of impulse times tn+1 :=
tn + τn, t0 = 0

2. its development defined by

∀n ≥ 0, −→x (tn) := xn(0) & ∀t ∈ [tn−1, tn[, −→x (t) := xn(t− tn)

We say that the sequence of xn := xn(0) ∈ X is the sequence of
reinitialized reset states of the run −→x (·).

A run −→x (·) is said to be viable in K on an interval I ⊂ R+ if for any
t ∈ I, −→x (t) ∈ K.

Naturally, if τn = 0, i.e., if tn+1 = tn, we identify the motive xn(·) with the
reset state xn(·) ≡ xn ∈ C(0, 0;X) ≡ X , so that runs can be continuous-time
evolutions, sequences (discrete time evolutions), or hybrids of them.

Definition 12.3.2 [Particular Ends of a Run] A run −→x (·) :=
(τn, xn(·))n≥0 is said to be

1. discrete if there exists N < +∞ such that for all n ≥ N , τn = 0 (the run
ends with a sequence),

2. finite if the sequence of cadences is finite, i.e., there exists N < +∞ such
that the Nth motive xN (·) is taken on [0,+∞[ and we set τN+1 = +∞
(the run ends with a continuous-time evolution). The run is said to be
infinite if its sequence of cadences is infinite.

A run is said to be proper if it is neither discrete nor finite.

If t /∈ T (−→x (·)) is not an impulse time of the run −→x (·), then we can set
−→x (t) = x(t) without ambiguity. At impulse time tn ∈ T (−→x (·)), we defined
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−→x (tn) := xn(0). But we also need to define the value of the run just before
it “jumps” at impulse time:

Definition 12.3.3 [Jumps of a Run] If tn ∈ T (−→x (·)) is an impulse time
of the run −→x (·), we define the state of the evolution just before impulse time
tn by

−→x (−tn) :=
{

limτ �→tn− x(τ) if tn > tn−1

xn−1(0) := −→x (−tn−1) if tn = tn−1

We associate with a run −→x (·) its sequence of jumps s(−→x (·)) :=
(sn(−→x (·)))n≥1 defined by

sn(−→x (·)) := xn(0)− xn−1(τn−1) = −→x (tn)− −→x (−tn)

We now adapt to runs the integral representation x(t) = x0 +
∫ t
0
x′(τ)dτ

of an evolution:

Proposition 12.3.4 [Integral Representation of a Run] Assume that
the motives xn(·) of a run −→x (·) are differentiable on the intervals ]0, τn[ for
all n such that the cadence τn > 0 is positive. Therefore,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) ∀ n ≥ 0, ∀t ∈ [tn−1, tn[,

−→x (t) = x0 +
n−1∑
k=1

sk(−→x (·)) +
∫ t

0

x′(τ)dτ when tn−1 < tn

(ii) xn := −→x (tn) = x0 +
n∑
k=1

sk(−→x (·)) +
∫ tn

0

x′(τ)dτ

Proof. We prove this statement recursively. It is obvious for j = 0. We assume
that we have constructed the viable run −→x (·) on the interval [0, tn[ through
the jumping times 0 ≤ t1 ≤ · · · tn−1 ≤ tn ≤ · · · satisfying for all j =
1, . . . n− 1

∀t ∈ [tj−1, tj ], −→x (t) = x0 +
j−1∑
k=1

sk(−→x (·)) +
∫ t

0

x′(τ)dτ

At time tn, we take a motive xn(·) that can be written

∀t ∈ [0, τn], xn(t) = xn(0) +
∫ t

0

x′n(τ)dτ = −→x (−tn) + sn(−→x (·)) +
∫ t

tn

x′(τ)dτ
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Taking into account the induction assumption

−→x (−tn) = x0 +
n−1∑
k=1

sk(−→x (·)) +
∫ tn

0

x′(τ)dτ

we infer that for any t ∈ [tn, tn+1],

−→x (t) = x0 +
n∑
k=1

sk(−→x (·)) +
∫ t

0

x′(τ)dτ

This completes the proof. ��

12.3.2 Impulse Evolutionary Systems

Consider the control system (2.10):
{

(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t))

with state-dependent constraints on the controls, generating the evolutionary
system denoted by S associating with any initial state x the subset S(x) of
solutions x(·) to (2.10) starting at x.

Definition 12.3.5 [Reset Map] We introduce a set-valued map Φ : X �
X, regarded as a reset map governing the resetting of the initial conditions.

The subset
IngressΦ(K) := K ∩ Φ−1(K) (12.28)

is called the ingress set of K under Φ and the subset

EgressΦ(K) := K\Φ−1(K) = K ∩ Φ�1(�K) = K\IngressΦ(K) (12.29)

is called the egress set of K under Φ.
The graphical restriction Φ|KK := Φ ∩ ΞK

K : K � K of Φ to K × K
defined by

Φ|KK(x) :=
{
Φ(x) ∩K if x ∈ IngressΦ(K) := K ∩ Φ−1(K)
∅ if x ∈ EgressΦ(K) := K\Φ−1(K)

(see Definition 18.3.13, p.725). Its graph is equal

Graph(Φ|KK) = Graph(Φ) ∩ (K ×K)

The IngressΦ(K) := K ∩Φ−1(K) is the domain of the graphical restric-
tion to K of the reset map Φ. It is known under various names, such as
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the transition set, stopping set or guard in the control literature. The
discrete egress set EgressΦ(K) := K\Φ−1(K) of K under Φ is called
the continuation set in optimal impulse control theory. The image of the
graphical restriction is equal to K ∩ Φ(K).

In other words, the ingress set is the set of elements subjected to be
mapped “impulsively” in the environment. The “egress set” is the set on
states from which starts continuous time evolution.

Remark: Extension of Reset Maps. In some problems, the reset map
Φ : G � K is given as a set-valued map from a subset G ⊂ K of K to K.
This particular situation fits the general framework since Φ coincides with
the graphical restriction Φ = Φ|KK defined by

Φ|GG(x) :=
{
Φ(x) if x ∈ G
∅ if x /∈ G

and thus, IngressΦ(K) = G and EgressΦ(K) = K\G. ��

An impulse evolutionary system is associated with an evolutionary system
S governing the continuous-time components of a run and a reset map Φ
governing its discrete components in the following way:

Definition 12.3.6 [Impulse Evolutionary Systems] Let Φ : X � X be
the reset map and S : X � C(0,∞;X) the evolutionary system associated
with a control system. We associate with any initial state x ∈ X the subset
R(x) := R(S,Φ)(x) of runs −→x (·) satisfying

∀n ≥ 0,
{

(i) xn(·) ∈ S(xn(0)) or (xn(0), xn(·)) ∈ Graph(S)
(ii) xn+1(0) ∈ Φ(xn(τn)) or (xn(τn), xn+1(0)) ∈ Graph(Φ)

(12.30)
Such a run is called a solution to the impulse evolutionary system

starting at x.
The set-valued map R : X �

∏
n≥0 R+ × C(0, τn;X) is called the

impulse evolutionary system associated with the pair (S, Φ).
A subset K is said to be viable outside a target C ⊂ K under the

impulse evolutionary system R is from every x ∈ K starts at least one run
−→x (·) ∈ R(·) viable in K forever or until it reaches the target C in finite
time.

This definition, convenient for the mathematical treatment of impulse
systems, is equivalent to its explicit formulation:
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Lemma 12.3.7 [Equivalent Formulation of Solutions to Impulse
Differential Inclusions] Let R := R(S,Φ) be an impulse evolutionary
system and consider a subset K ⊂ X. A run −→x (·) ∈ R(S,Φ)(x) is a solution
to the impulse evolutionary system if and only if for every n ≥ 0, the impulse
times are given by tn+1 := tn + τn, t0 = 0,

{−→x (tn) ∈ Φ(−→x (−tn))
∀t ∈ [tn, tn+1[, −→x (t) := x(·) starts at impulse time tn at −→x (tn)

Such a solution can also be written in the form
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) ∀ n ≥ 0, ∀t ∈ [tn−1, tn[,

−→x (t) ∈ x0 +
n−1∑
k=0

(Φ− 1)(−→x (−tk)) +
∫ t

0

F (x(τ))dτ

(ii) −→x (tn) ∈ x0 +
n∑
k=0

(Φ− 1)(−→x (−tk)) +
∫ tn

0

F (x(τ))dτ

We begin our study by characterizing subsets viable under an impulse
evolutionary system in terms of viability kernels under its continuous-time
component S and its discrete-time component Φ:

Theorem 12.3.8 [Characterization of Impulse Viability] Let R :=
R(S,Φ) be an impulse evolutionary system and two subsets K ⊂ X and
C ⊂ K. We set

IngressΦ(K,C) := C ∪ (K ∩ Φ−1(K))

A subset K ⊂ X is viable outside the target C under the impulse
evolutionary system R if and only if K is viable outside IngressΦ(K,C)
under the evolutionary system S:

K = ViabS(K, IngressΦ(K,C))

If
K = CaptS(K, IngressΦ(K,C))

then from any initial state x starts at least one run −→x (·) ∈ R(x) with
finite cadences viable in K until it reaches the target C in finite time. This
happens whenever K\IngressΦ(K,C) is a repeller.
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Proof. Indeed:

1. If K is viable outside C under the impulse evolutionary system, then,
from any initial state x ∈ K starts a run −→x (·) ∈ R(x) viable in K
forever or until some finite time t� when −→x (t�) ∈ C. Either −→x (·) :=
x(·) ∈ S(x) is an evolution, and thus x belongs to the viability kernel
ViabS(K,C) under the evolutionary system S, or there exist a motive
x0(·) ∈ S(x), a cadence τ0 ≥ 0 such that either x(τ0) ∈ C or there
exists a reset state x1 ∈ Φ(x0(−τ0)) such that both x0(t) ∈ K for
t ∈ [0, τ0] and x1 ∈ K. But this means that x belongs to the capture
basin CaptS(K, IngressΦ(K,C)) of IngressΦ(K,C). Hence x belongs to
ViabS(K, IngressΦ(K,C)) = ViabS(K) ∪ CaptS(K, IngressΦ(K,C)).

2. Conversely, assume that K = ViabS(K, IngressΦ(K,C)) and fix any initial
state x ∈ K. Then there exists an evolution x0(·) ∈ S(x) either viable
in K forever or until it reaches the target C in finite time, which is the
unique motive of a run viable inK outside C, or viable in K until it reaches
the target IngressΦ(K,C) at some state x0(τ0) ∈ C∪(K∩Φ−1(K)) at time
τ0 ≥ 0. Hence either x0(τ0) ∈ C, and the run reaches C in finite time, or
there exists an element x1 ∈ Φ(x0(τ0)) ∩ K which is a reset state. We
then proceed by induction to construct a run −→x (·) := (τn, xn(·))n ∈ R(x)
viable in K outside C. ��

12.3.3 Hybrid Control Systems and Differential
Inclusions

“Hybrid control systems”, as they are called by engineers, or “multiple-phase
dynamical economies”, as they are called by economists, or “integrate and
fire models” of neurobiology may be regarded as auxiliary impulse differential
inclusions.

Definition 12.3.9 [Hybrid Differential Inclusions] A hybrid differen-
tial inclusion (K,F, Φ) is defined by:

1. a finite dimensional vector space E of states e called locations or events
in the control literature,

2. a set-valued map K : E � X associating with any location e a (possibly
empty) subset K(e) ⊂ X,

3. a set-valued map F : Graph(K) � X with which we associate the
differential inclusion x′(t) ∈ F (e, x(t)),

4. a reset map Φ : Graph(K)� E ×X.

A hybrid differential inclusion is called a qualitative differential inclusion
if the reset map is defined by Φ(e, x) := ΦE(e, x) × {x} where ΦE(e, x) :
E ×X � E.
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A run −→x (·) := (τn, en, xn(·))n ∈
∏
n≥0 R+×E×C(0, τn, X) is a solution

to such a hybrid differential inclusion if for every n,

1. the motives xn(·) are solutions to differential inclusion x′n(t) ∈
F (en, xn(t)) viable in K(en) on the interval [0, τn],

2. (en, xn(0)) ∈ Φ(en−1, xn−1(τn−1))

Hybrid systems are particular cases of impulse differential inclusions in
the following sense:

Lemma 12.3.10 [Links between Hybrid and Impulse Systems] A
run −→x (·) := (τn, en, xn(·))n is a solution of the hybrid differential inclusions
(K,F, Φ) if and only if (−→e (·),−→x (·)) := (τn, (en(·), xn(·)))n where en :=
e(τn) is a run of the auxiliary system of impulse differential inclusions
R(G,Φ) where G : E × X � E × X defined by G(e, x) := {0} × F (e, x)
governs the differential inclusion

{
(i) e′(t) = 0
(ii) x′(t) ∈ F (e(t), x(t))

viable in Graph(K).

Proof. Indeed the motives en(·) = en of the locations remaining constant in
the intervals [tn−1, tn[ since their velocities are equal to 0. ��

Theorem 12.3.8 implies a characterization of existence of runs of hybrid
differential inclusions:

Theorem 12.3.11 [Existence Theorem of Solutions to Impulse
Differential Inclusions] Let (K,F, Φ) be a hybrid differential inclusion.
Consider the set-valued map K1 : E � X defined by

Graph(K1) := IngressΦ(Graph(K))

Then the hybrid differential inclusion has a solution for every initial
state if and only if

∀e ∈ E, K(e) is viable under the differential inclusion
x′(t) ∈ F (e, x(t)) outside K1(e)

Remark. If Φ(e, x) := ΦE(e, x) × ΦX(x), the set-valued map K1 can be
written in the form
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∀e ∈ E, K1(e) = K(e) ∩ Φ−1
X (K(ΦE(e, x)))

In particular,

1. Φ(e, x) := ΦE(e)× ΦX(x), then

∀e ∈ E, K1(e) = K(e) ∩ Φ−1
X (K(ΦE(e)))

2. if Φ(e, x) := ΦE(e, x)×{x} defines the reset map of a qualitative differential
inclusion, the set-valued map K1 is defined by

∀e ∈ E, K1(e) = K(e) ∩K(ΦE(e, x))

3. if Φ(e, x) := ΦE(e)×{x} defines the reset map of a qualitative differential
inclusion, the set-valued map K1 is defined by

∀e ∈ E, K1(e) = K(e) ∩K(ΦE(e))

We also observe that

Viab{0}×F (Graph(K)) = Graph(e� ViabF (e,·)(K(e)))

and that the graph of K is a repeller if and only if for every e, the set K(e)
is a repeller under F (e, ·). ��

12.3.4 Substratum of an Impulse System

The sequence of reset states of viable runs of an impulse evolutionary system
is governed by a backward dynamical systems:

Lemma 12.3.12 [Underlying Backward Discrete System] The
sequence (xn)n∈{0,...,N} is the sequence of reset states xn := xn(0) of a run
−→x (·) := (τn, xn(·))n≥0 of an impulse evolutionary systemR := R(S,Φ) viable
in K outside C if and only if it satisfies the backward discrete dynamical
system

xn ∈ CaptS(K,K ∩ Φ−1(xn+1))

1. for every n ≥ 0 when the run is infinite and viable in K,
2. or until some N ≥ 0 when xN ∈ ViabS(K,C).

Proof. Consider a run −→x (·) := (τn, xn(·))n viable in K outside a target C.
For every n ≥ 0, the initial state of the motive is xn(0) := xn and the motive
xn(·) belongs to S(xn(0)). Either xn(0) ∈ ViabS(K,C) and it is viable in K
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forever or until it reaches C in finite time, and thus, belongs to the viability
kernel ViabS(K,C) or it satisfies the end-point condition −→x (τn) ∈ Φ−1(xn+1)
thanks to (12.30), p.508. This means that the motive xn(·) is viable in K\C
on the interval [0, τn], i.e., that xn ∈ CaptS(K,K ∩ Φ−1(xn+1)).

Conversely, this condition implies the existence of an impulse times τn and
of motives xn(·) satisfying the requirement of a run governed by R and viable
in K. ��

This suggests to introduce the inverse of the set-valued map y �
CaptS(K,K ∩ Φ−1(y)):

Definition 12.3.13 [The Reinitialization Map] The inverse I :=
I(S,Φ) : K � K of the map y � CaptS(K,K ∩ Φ−1(y)) is called the
reinitialization map of the impulse evolutionary system restricted to K.

Thanks to Lemma 12.3.12, we propose another characterization of the
viability kernel of a subset K outside a target C under an impulse
evolutionary system in terms of the reinitialization map:

Proposition 12.3.14 [Role of the Reinitialization Map] Let R :=
R(S,Φ) be an impulse evolutionary system. A subset K ⊂ X is viable outside
C under the impulse evolutionary system R if and only if K is viable outside
ViabS(K,C) under the reinitialization map I(S,Φ):

K = ViabI(S,Φ)(K,ViabS(K,C))

Therefore the behavior of a run is “summarized” by the reinitialization
map I(S,Φ). It is a discrete dynamical system governing the sequence of reset
states of infinite runs of the impulse evolutionary system viable in K forever
or until it reaches the viability kernel ViabS(K,C) of K with target C under
the continuous-time evolutionary system, when the last motive of the run is
viable forever or reaches the target C in finite time. In other words,

1. either I(S,Φ)(xn)∩ViabS(K,C) = ∅, and then I(S,Φ)(xn) is the set of new
reset states xn+1 ∈ Φ(xn(τn))∩K when xn(·) ∈ S(xn) ranges over the set
of evolutions starting at xn ∈ K viable in K until they reach Φ−1(K) at
time τn ≥ 0 at xn(τn) ∈ Φ−1(K),

2. or there exists xN+1 ∈ I(S,Φ)(xN ) ∩ ViabS(K,C), and thus a motive
xN (·) ∈ S(xN ) such that xN+1 ∈ Φ(xN )(τN ) ∩ K. From xN+1 starts a
motive xN+1(·) ∈ S(xN ) which is viable in K forever or until it reaches
the target C.
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It is then important to characterize the reinitialization map: For that
purpose, we introduce the auxiliary system

{
(i) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(ii) y′(t) = 0 (12.31)

Proposition 12.3.15 [Viability Characterization of the Reinitial-
ization Map] The graph of the initialization map I := I(S,Φ) is the capture
basin of Graph(Φ|KK) viable in K × K under the auxiliary evolutionary
system (12.31):

Graph(I(S,Φ)) = Capt(12.31)
(
K ×K,Graph(Φ|KK)

)

Hence the graph of the reinitialization map inherits the properties of capture
basins.

Proof. Indeed, to say (x, y) belongs to the viability kernel Capt(12.31)
(
K×K,

Graph(Φ|KK)
)

means that there exist an evolution x(·) ∈ S(x) and t� ≥ 0 such
that {

(i) ∀t ∈ [0, t�], (x(t), y) ∈ K ×K
(ii) (x(t�), y) ∈ Graph(Φ|KK)

i.e., if and only if {
(i) ∀t ∈ [0, t�[, x(t) ∈ K
(ii) y ∈ Φ(x(t�)) ∩K

This is equivalent to say that y ∈ I(S,Φ)(x). ��

The sequence of successive reset conditions xn of a viable run x(·) of the
impulse evolutionary system (S, Φ) – constituting the “discrete component
of the run” – is governed by the discrete system xn ∈ I(S,Φ)(xn−1) ∩ K
starting at x0. The knowledge of the sequence of initialized states xn allows
us to reconstitute the “continuous component” of the run governed by the
evolutionary system starting at each reset state xn. This reconstruction needs
more information, such as the sequence of cadences, which often is the main
information on the run that is needed.

We denote by

(t, x) �→ ϑKS (t, x) :=
⋃

x(·)∈SK(x)

{x(t)} and ϑKS (t, C) :=
⋃
x∈C

ϑKS (t, x)

the reachable maps of x ∈ K and C ⊂ K respectively.
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Definition 12.3.16 [The Substratum of an Impulse Evolutionary
System] Let R(S,Φ) be an impulsive evolutionary system. The substratum
of the impulse evolutionary system on K is the set-valued map Γ := Γ(S,Φ) :
R+ ×K � K associating with any (t, x) the subset

Γ(S,Φ)(t, x) = Φ(ϑKS (t, x) ∩ Φ−1(K)) ∩K

of the elements y ∈ Φ(c) ∩ K where c ∈ K ∩ Φ−1(K) ranges over the set
of elements at which arrives at time t at least one evolution x(·) ∈ S(x)
starting at x and viable in K until it reaches c ∈ Φ−1(K). The set-valued
map T(S,Φ) defined by

T(S,Φ)(x) := {τ ≥ 0 such that Γ(S,Φ)(τ, x) �= ∅}

is called the cadence map of the impulse evolutionary system on K.

The reinitialization map is linked to the substratum and the cadence map
by the formula:

I(S,Φ)(x) =
⋃

t∈T(S,Φ)(x)

Γ(S,Φ)(t, x)

Proposition 12.3.17 [Construction of Runs with the Substratum]
Let R(S,Φ) be an impulse evolutionary system defined on a subset K.
Knowing the substratum Γ(S,Φ) of R(S,Φ), and thus the cadence map
T(S,Φ) and the reinitialization map I(S,Φ), we can reconstruct a viable run
−→x (·) ∈ R(S,Φ)(x) of the impulse evolutionary system through the following
algorithm: Given the cadence τn and the initial state xn, we take

1. the next cadence τn+1 ∈ T(S,Φ)(xn),
2. the next reset state xn+1 ∈ Γ(S,Φ)(τn+1, xn) ⊂ I(S,Φ)(xn),
3. the next motive xn(·) := x(· + tn) ∈ S(xn) satisfying xn(0) = xn and

xn(τn+1) ∈ Φ−1(xn+1).

Proof. Take any run −→x (·) associated with a sequence T (−→x (·)) := {tn} of
impulse times starting at x0 ∈ K and viable in K. Then the sequence −→x :
n→ −→x (tn) is a solution of the discrete dynamical system Γ(S,Φ)(tn+1−tn, xn),
obviously viable in K.

Conversely, assume that the substratum Γ(S,Φ) is known. The above
method of constructing a run starting at time 0 and state x0 ∈ K provides a
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run −→x (·) associated with the sequence T (−→x (·)) := {tn} of impulse times of
the impulse differential inclusion (S, Φ) viable in K. ��

For characterizing the graph of the substratum Γ(S,Φ), we need the
auxiliary system

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))
(iii) y′(t) = 0

(12.32)

the evolutionary system of which being the set-valued map associating with
(T, x, y) the evolution t �→ (T − t, x(T ), y) where x(·) ∈ S(x).

Proposition 12.3.18 [Viability Characterization of the Substra-
tum] The graph of the substratum Γ(S,Φ) of R(S,Φ) is the capture basin
of R+ ×K ×K with target {0} ×Graph(Φ|KK):

Graph(Γ(S,Φ)) = Capt(12.32)
(
R+ ×K ×K, {0} ×Graph(Φ|KK)

)

Proof. Indeed, to say (τ, x, y) belongs to the capture basin Capt(12.32)
(
R+×

K ×K, {0} ×Graph(Φ|KK)
)
, means that there exists an solution x(·) ∈ S(x)

and t� ≥ 0 such that
{

(i) ∀t ∈ [0, t�], (τ − t, x(t), y) ∈ R+ ×K
(ii) (τ − t�, x(t�), y) ∈ {0} ×Graph(Φ|KK)

i.e., if and only if t� = τ and
{

(i) ∀t ∈ [0, τ [, x(t) ∈ K
(ii) y ∈ Φ(x(τ)) ∩K

This is equivalent to say that y ∈ Γ(S,Φ)(τ, x). ��

12.3.5 Impulse Viability Kernels

We now associate with an impulse evolutionary system viability kernels of
targets in the following way:

Definition 12.3.19 [Impulse Viability Kernel] Let K and C ⊂ K be
two subsets. The impulse viability kernel ImpViab(S,Φ)(K,C) of K under
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the impulse evolutionary system (S, Φ) is the subset of initial states x ∈ K
from which starts at least one run viable in K forever or until a finite time
until it reaches the target C.

Theorem 12.3.20 [Fundamental Characterization of Impulse Via-
bility Kernels] The impulse viability kernel ImpViab(S,Φ)(K,C) of K with
a target C ⊂ K is

1. the largest subset D satisfying C ⊂ D ⊂ K and

D ⊂ ImpViab(S,Φ)(D,C)

2. the smallest subset D satisfying C ⊂ D ⊂ K and

ImpViab(S,Φ)(K,D) ⊂ D

3. the unique subset D satisfying C ⊂ D ⊂ K and

D = ImpViab(S,Φ)(K,D) = ImpViab(S,Φ)(D,C)

The same holds true for the impulse capture basins.

Proof. We prove that
{

(i) ImpViab(S,Φ)(K,C) ⊂ ImpViab(S,Φ)(ImpViab(S,Φ)(K,C), C)
(ii) ImpViab(S,Φ)(K, ImpViab(S,Φ)(K,C)) ⊂ ImpViab(S,Φ)(K,C)

and then, derive that the impulse viability kernel is the unique “bilateral
fixed point” D described in the Theorem.

1. For proving the first inclusion, take x0 ∈ ImpViab(S,Φ)(K,C) and prove
that there exists a run −→x (·) ∈ R(S,Φ)(x0) starting at x0 viable in
ImpViab(S,Φ)(K,C) forever or until it reaches C in finite time. Indeed,
there exists a run −→x (·) ∈ R(S,Φ)(x0) viable in K forever or until some
finite time T ≥ 0 when it reaches C. Then for all t ∈ [0, T [, the run −→y (·)
defined by −→y (τ) := −→x (t + τ) is a run −→y (·) ∈ R(S,Φ)(−→x (t)) starting at
−→x (t) and viable in K forever or until it reaches C at time T − t. Hence
−→x (t) does belong to ImpViab(S,Φ)(K,C) for every t ∈ [0, T ].

2. For proving the second inclusion, let x belong to ImpViab(S,Φ)(K,
ImpViab(S,Φ)(K,C)). There exists at least one run −→x (·) ∈ R(S,Φ)(x)
viable in K forever or until it reaches the impulse viability kernel
ImpViab(S,Φ)(K,C) in finite time. In the latter case, it thus can be
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concatenated with a run remaining in ImpViab(S,Φ)(K,C) ⊂ K forever
or until it reaches the target C in finite time. This implies that x ∈
ImpViab(S,Φ)(K,C).

The map (K,C) �→ ImpViab(S,Φ)(K,C) satisfies the property

C ⊂ ImpViab(S,Φ)(K,C) ⊂ K

and is increasing in the sense that

If C1 ⊂ C2 & K1 ⊂ K2, then ImpViab(S,Φ)(K1, C1) ⊂ ImpViab(S,Φ)(K2, C2)

Therefore Lemma 10.2.6 implies that the impulse viability kernel
ImpViab(S,Φ)(K,C) is the unique bilateral fixed point between C and K
of the map (K,C) �→ ImpViab(S,Φ)(K,C). ��

12.3.6 Stability Properties

We now prove that the set of solutions to an impulse evolutionary system
depends continuously upon the initial states “in the upper semicompact
sense”:

Theorem 12.3.21 [Upper Semicompactness of Impulse Evolution-
ary Systems] Let us assume that the subset K is closed, that F is
Marchaud, that the graph of Φ is closed, that K ∩ Φ(K) is compact and
that

ViabS(K) ∩ Φ(K) = ∅

holds true. Then the solution map RK
(F,Φ) is upper semicompact on

K\ViabS(K): If xε0 converges to x0 and if −→x ε(·) ∈ R(S,Φ)(xε0) is a solution
to the impulse evolutionary system starting at xε0, a subsequence (again
denoted by) −→x ε(·) converges to a run −→x (·) ∈ R(S,Φ)(x0).

Proof. Let us consider a sequence of initial states xε0 ∈ K\ViabS(K)
converging to x0 ∈ K\ViabS(K) and a sequence of runs

−→x ε(·) = {(τεn, xεn)}n≥0 ∈ R(S,Φ)(xε0)

viable in K.
We can identify the graph G of the solution map R(F,Φ) to a subset

G ⊂ K × (R+ ×Graph(S))N
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We supply it with the product topology. Under our assumptions, for any
compact subset L of K, Theorem 10.3.3 implies that the graph of S|L is
compact. Let T := supx∈K∩Φ(K) τ

�

(K,IngressΦ(K))
(x) which is finite since the

exit time function is upper semicompact and since K ∩ Φ(K) is compact.
Hence the graph GL of the restriction R(F,Φ)|L to L of the solution map

R(F,Φ) satisfies
GL ⊂ L× ([0, T ]×Graph(S|L))N

which is a product of compacts. By the Tychonoff Theorem, it is itself a
compact subset.

Therefore, a subsequence (again denoted by) {(τεn, xεn(·))}n≥0 converges to
some sequence {(τn, xn(·))}n≥0. This means that for every n ≥ 0, τεn converges
to τn ∈ [0, T ] and (xεn(0), xεn(·)) ∈ Graph(S) to some (xn, xn(·)) ∈ Graph(S)
Consequently, the sequences xεn(τεn) converge xn(τn) and thus, since the graph
of the reset map Φ is closed, inclusions

∀n ≥ 0, (xεn+1(0), xεn(τ
ε
n)) ∈ Graph(Φ)

imply that
∀n ≥ 0, (xn+1(0), xn(τn)) ∈ Graph(Φ)

The sequence (τn, xn(·))n≥0 defines a run −→x (·) ∈ R(S,Φ)(x) of the impulse
evolutionary system viable in K. ��

12.3.7 Cadenced Runs

The analogue of equilibria for usual evolutionary systems are “cadenced
runs”, that are discontinuous periodic evolutions:

Definition 12.3.22 [Cadenced Runs] A run

−→x (·) := (τn, xn(·))n≥0 ∈
∏
n≥0

R+ × C(0, τn;X)

is said to be cadenced if the cadences and the motives are constant: for every
n ≥ 0, τn = τ and xn(·) = x(·)

If the cadence τ of a cadenced run is equal to 0, then x is an equilibrium
of the reset map Φ.

The following asymptotic property of a run implies the existence of a
cadenced run:
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Theorem 12.3.23 [Existence of a Cadenced Runs] Assume that F is
Marchaud, that the graph of the reset map Φ is closed, that ViabS(K) = ∅
and that K is compact. Let −→x (·) := (τn, xn(·))n≥0 ∈ R(x) be a run viable
in K associated with a sequence T (x(·)) of impulse times tn viable in K.

If the sequence of reset states −→x (tn) of the run −→x (·) converges to some
x, then a subsequence of the motives xn(·) converges to the motive x(·) of
a cadenced run starting at x and viable in K.

Proof. Assume that the sequence xn := −→x (tn) converges to some x ∈ Φ(K).
The motive xn(·) belongs to S(xn) and satisfies xn(τn+1) ∈ Φ−1(−→x (tn+1)).

Since K is a repeller by assumption and since the exit time function is
upper semicontinuous, all the cadences τn := tn− tn−1 are bounded by finite
time T := maxx∈K τ �K(x) < +∞.

By Theorem 10.3.3, a subsequence xnp(·) of motives converges uniformly
on the compact interval [0, T ] to some evolution x(·) ∈ S(x) starting
at x. Another subsequence of cadences τnpq +1 converges to some τ ∈
[0, T ]. Hence xnpq

(τnpq +1) converges to x(τ ). Since xnpq
(τnpq +1) belongs to

Φ−1(x(tnpq +1)), since x(tnpq +1) converges also to x by assumption and since
the graph of the reset map Φ is closed, we infer that x(τ ) belongs to Φ−1(x).
Hence a subsequence of the motives xn(·) := −→x (· + tn) of the run −→x (·)
converges to the motive x(·) of a cadenced run starting at x of cadence τ . ��
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First-Order Partial Differential
Equations



Chapter 13

Viability Solutions to Hamilton–Jacobi
Equations

13.1 Introduction

This chapter presents the viability approach to a class of Hamilton–Jacobi
equations. We assume not only that the solution depends on time, but on
“structured” or “causal” variables. They include age-structured Hamilton–
Jacobi–McKendrick equations, useful in population dynamics as well as
in transport management (the age variable being replaced by the travel
time), as well as Hamilton–Jacobi–Cournot equation, where the “structured”
or “causal” variable is the initial state of the underlying control system.
Chapters 14, p. 563 and 15, p. 603 apply the results of this chapter to
transportation management, finance and economics.

They also are a particular case of Hamilton–Jacobi–Bellman equations
of optimal control problems and more generally, intertemporal optimization
problems, studied in Chap. 14, p. 563. We already presented in Chap. 4,
p. 125 examples of such control problems: minimal time and exit functions,
minimal length functions, Lyapunov functions, safety and transgression
functions, etc., are value functions. We illustrated the “viability approach”
showing that the epigraphs of these functions are the viability kernels or
capture basins of epigraphical environments and targets under an adequately
defined “characteristic system” (see the epigraphical miracle mentioned in
Sect. 4.12.2, p. 172). We only alluded to the fact that they were solutions to
Hamilton–Jacobi–Bellman equations.

In this chapter, we start instead with a class of Hamilton–Jacobi equations
the Hamiltonian of which is convex with respect to the gradient of the solution.
We shall prove that their “solution” is the value function of an intertemporal
optimization of evolutions governed by a hidden underlying control system,
where:

1. the hidden controls, called “celerities”, range over the state space,

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 13,
c© Springer-Verlag Berlin Heidelberg 2011
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2. the optimality criterion involves the Lagrangian associated with the
Hamiltonian by the Fenchel Transform,

3. the evolutions are governed by a specific class of “epigraphical control
system” involving the epigraph of the Lagrangian,

4. the map regulating optimal evolutions is associated with the gradient of
the solution.

Which solution? We define the concept of “viability solution” solving at
once all the above related problems. They are “constructive solutions”, in the
sense that their epigraph is defined as the viability kernel or capture basin of
an epigraphical environment and target. They inherit their properties which
are enough to “translate” in the language of partial differential equations and
control theory.

13.2 From Duality to Trinity

Let t ≥ 0 denotes the time, x ∈ X := R
n the state variable and d ∈ D ⊂ R

m

the causal variable or structuring variable of the system.
We introduce:

1. a causal map ϕ : d ∈ R
m �→ ϕ(d) := (ϕi(d))i=1,...,d ∈ R

d depending
only on the causal variable d (assumed single-valued for simplicity of the
presentation),

2. a Hamiltonian function

(d, x, p) ∈ R
m × R

n × R
n �→ l�(d, x; p) ∈ R ∪ {+∞}

convex with respect to the “costate” variable p ∈ R
n,

3. a viability constraint function (d, x) �→ k(d, x) ∈ R ∪ {+∞} such that
k(d, x) < +∞ implies that d ∈ D,

4. an internal condition function (d, x) �→ c(d, x) ∈ R ∪ {+∞} such that

k(d, x) ≤ c(d, x)

The terminology is motivated by the asymmetric role played by the two
variables d and x, since ϕ only depends on the causal variable d whereas the
Hamiltonian l� may depend on both causal and state variables. Hijacking the
terminology used in population dynamics, we say that the causal variables
structure the system.

1. The Macroscopic Approach

The macroscopic description of the system requires us to look for the viable
solution V to the structured Hamilton–Jacobi equation
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m∑
i=1

〈
∂V (d, x)
∂di

, ϕi(d)
〉

+ l�
(
d, x;

∂V (d, x)
∂x

)
= 0 (13.1)

satisfying inequalities

k(d, x) ≤ V (d, x) ≤ c(d, x) (13.2)

Examples of Structured Hamilton–Jacobi Equations

(a) Hamilton–Jacobi equations. By taking d := t ∈ D := R+ describing time
and ϕ(t) = 1, we obtain the usual Hamilton–Jacobi partial differential
equation

∂V (t, x)
∂t

+ l�
(
t, x;

∂V (t, x)
∂x

)
= 0

(b) Hamilton–Jacobi–McKendrick equations. By taking d := (t, a) ∈ D :=
R

2
+ describing time and age (in population dynamics) or travel time

(in traffic problems for instance) and taking ϕ(t, a) = (1, 1), we obtain
Hamilton–Jacobi–McKendrick partial differential equations

∂V (t, a, x)
∂t

+
∂V (t, a, x)

∂a
+ l�

(
t, a, x;

∂V (t, a, x)
∂x

)
= 0

(c) Taking d := (t, b) and ϕ(t, b) := (1, ψ(t, b)), we obtain the following
partial differential equation

∂V (t, b, x)
∂t

+
〈
∂V (t, b, x)

∂b
, ψ(t, b)

〉
+ l�

(
t, b, x;

∂V (t, b, x)
∂x

)
= 0

(d) Hamilton–Jacobi–Cournot equations. We introduce an other causal vari-
able χ and set ψ(d, χ) := (ϕ(d), 0), independent of the first causal variable
χ. we obtain structured Hamilton–Jacobi partial differential equations

m∑
i=1

〈
∂V (d, x)
∂di

, ϕi(d)
〉

+ l�
(
d, x;

∂V (d, χ, x)
∂x

)
= 0

structured also by constant parameters χ. They are solutions to the same
partial differential equation (13.1), p. 525, but are subjected to conditions

k(d, χ, x) ≤ V (d, χ, x) ≤ c(d, χ, x)

depending on χ.
An important example is provided by Hamilton–Jacobi–Cournot partial
differential equations parameterized by specific parameters χ ∈ R

n

regarded as initial conditions and requiring that c(d, χ, x) = +∞
whenever x �= χ (see Definition 8.4.8, p. 288) and Sect. 13.8, p. 551. ��
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Examples of Internal and Viability Functions

(a) An internal condition function c : (d, x) �→ c(d, x) ∈ R ∪ {+∞} becomes
a boundary condition function if c(d, x) = +∞ whenever d ∈ Int(D).

(b) Consider the case when the environment in which ranges the state
variable x is described by viability environments K(d) ⊂ X of the state
variable depending on the structural variable d. This constraint is taken
into consideration by requiring that the constraint function k satisfies
k(d, x) = +∞ for all x /∈ K(d) (since this implies automatically that
V (t, x) = +∞ whenever d /∈ K(d)).

Here, we define the concept of “viability solution” which always exists and
can be computed by viability algorithms. This is a constructive approach
allowing us to derive some known and new properties of the viability
solution from the tools of viability theory (dealing with sets instead of
functions). Regarding functions as their epigraphs, we bypass the regular-
ity issues to arrive directly to the concept of Barron–Jensen/Frankowska
viscosity solutions. We above all take into account viability constraints
and extend classical boundary conditions to other “internal” conditions.

2. The Variational Approach

The link between Hamilton–Jacobi equations and the associated vari-
ational problem relies on the Legendre–Fenchel transform (d, x, u) �→
l(d, x;u) of the Hamiltonian defined by

l(d, x;u) := sup
p

[〈p, u〉 − l�(d, x; p)]

the Lagrangian. We denote by

F (d, x) := {u such that ((d, x;u) +∞} (13.3)

the domain of the Lagrangian (. It defines a set-valued map F : (d, x) �
F (d, x) which will be the right hand side of the differential inclusion
governing the evolutions of the microsystem.
Optimal evolutions achieve the minimum in the variational principle

V (d, x) := inf
x(·)

(
c(d(0), x(0)) +

∫ t�

0

l(d(t), x(t), x′(t))dt

)
(13.4)

among all viable evolutions x(·) starting at initial time 0 and arriving at
x at terminal time t� ≤ t when d(t�) = d. The function V is called the
“valuation function” (and not the classical value function which depends
upon current time t whereas the valuation function depends upon the
terminal time).



13.3 Statement of the Problem 527

They satisfy the dynamic programming equation: ∀ t ∈ [0, t�],

V (d, x) = V (d(t), x(t)) +
∫ t�

t

l(d(τ), x(τ), x′(τ))dτ (13.5)

3. The Microscopic Approach

The main purpose of this study is not only to prove that the viability
solution is the unique solution to this partial differential equation in an
adequate generalized (weak) sense, but also to uncover a hidden dual
microscopic equivalent problem allowing us to characterize and compute
from the solution V the retroaction map (d, x)� R(d, x) governing optimal
evolutions of the state through the microscopic regulation of structured-
viable evolutions (d(·), x(·)) satisfying, for any given d ∈ D and x and for
some t� ≥ 0,{

(i) d(t�) = d and x(t�) = x (terminal condition)
(ii) ∀ t ∈ [0, t�], x′(t) ∈ R(d(t), x(t)) (retroaction law)

(13.6)

In other words, the macroscopic problem (looking for a macroscopic
function V ) and microscopic problem (looking for the regulation of
evolutions x(·)) are “dual”.

4. The Viability Solution

The links between the microscopic, macroscopic and variational
approaches are due to a “matchmaker”, the “viability solution”, which

(a) coincides with the viable solution to the macroscopic structured
Hamilton–Jacobi partial differential equation (13.1), p. 525, satisfying
the boundary condition (13.2), p. 525,

(b) provides the retroaction law microsystem (13.6), p. 527 governing optimal
viable evolutions of the state variable to a any given terminal state in
optimal time,

(c) Is equal to the valuation function (13.4), p. 526, of the associated
intertemporal optimization problem.

13.3 Statement of the Problem

13.3.1 Lagrangian and Hamiltonian

Recall that the epigraph of an extended function v : X �→ R ∪ {+∞} is the
set of pairs (x, y) ∈ X×R such that v(x) ≤ y. An extended function is called
lower semicontinuous if its epigraph is closed.
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Macroscopic Hamilton–
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Fig. 13.1 From duality to trinity. This diagram describes the three problems under
investigation: the macroscopic approach through first-order partial differential equations,
the microscopic version dealing with the regulation of an underlying control system
and the intertemporal optimization problem. The links relating optimization problems
to Hamilton–Jacobi–Bellman equations and the regulation of control systems has been
extensively studied. The tools of viability theory allow us to show that the viability solution
solves these three problems at once.

The Lagrangian l : (d, x;u) ∈ R
m × R

n × R
n �→ l(d, x;u) ∈ R ∪ {+∞} is

assumed once and for all to be a nontrivial lower semicontinuous function
convex with respect to u: l(d, x; ·) : u ∈ x �→ l(d, x;u) ∈ R ∪ {+∞} is convex.
Here, x is regarded as the state and u as a celerity. For instance, u is a
velocity (in mechanics), a transaction (in economics and finance) or a celerity
in general systems.

We also introduce the costate or dual variable p ∈ R
n�

the dual of R
n and

the duality product 〈p, u〉 := p(u). For instance, p is regarded as a force, a
price or a density, and the duality product 〈p, u〉 is a power, a value or a flux
respectively.

The conjugate function l�(d, x; ·) is defined on costate variables by

∀ p ∈ R
n, l�(d, x; p) := sup

u
[〈p, u〉 − l(d, x;u)]

The conjugate function l�(d, x; ·) is always a non trivial lower semicontin-
uous convex function satisfying the Fenchel inequality

〈p, u〉 ≤ l(d, x;u) + l�(d, x; p)

The biconjugate satisfies l��(d, x;u) ≤ l(d, x;u). The main result of convex
analysis states that l��(d, x; ·) = l(d, x; ·) if and only if l(d, x; ·) is convex,
lower semicontinuous and nontrivial.

The Legendre property of the Fenchel transform l(d, x; ·) �→ l�(d, x; ·)
implies that the subdifferentials

∂ul(d, x;u) := ∂ul(d, x; (·)(u))
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and
∂pl�(d, x; p) := ∂pl�(d, x; (·)(p))

of the lower semicontinuous convex functions l and l� are defined by the
following equivalent conditions:

⎧⎨
⎩

(i) 〈p, u〉 = l(d, x;u) + l�(d, x; p)
(ii) p ∈ ∂ul(d, x;u)
(iii) u ∈ ∂pl�(d, x; p)

(13.7)

The two equalities (13.7)(ii) and (iii) describe the Legendre property: the
inverse of the subdifferential map u� ∂ul(d, x;u) is the subdifferential map
p� ∂pl�(d, x; p).

If the functions l or l� are differentiable in the classical sense, then
⎧⎪⎪⎨
⎪⎪⎩
∂ul(d, x;u) =

{
∂

∂u
l(d, x;u)

}

∂pl�(d, x; p) =
{
∂

∂p
l�(d, x; p)

}

At this point, we have to make assumptions under which viability
properties hold true. In our specific settings, we need to make assumptions
either on the Lagrangian l or on the Hamiltonian l� to fit the Marchaud
requirement.

Definition 13.3.1 [Marchaud Functions] We shall say that

1. a Lagrangian (d, x, u) �→ l(d, x;u) ∈ R ∪ {+∞} is Marchaud if it is
a lower semicontinuous function convex with respect to u and if there
exists a finite positive constant c > 0 such that
{

Dom(l(d, x; ·)) ⊂ c(‖x‖ + ‖d‖+ 1)B and is closed
∀ u ∈ Dom(l(d, x; ·)), 0 ≤ l(d, x;u) ≤ c(‖x‖+ ‖d‖+ 1) (13.8)

2. a Hamiltonian (d, x; p) �→ l�(d, x; p) ∈ R ∪ {+∞} is Marchaud if it is
convex and lower semicontinuous with respect to u, upper semicontinuous
with respect to (d, x) and if there exist finite positive constants c and c0
such that, for all p ∈ R

n,
{
σDom(l)(d, x; p)− c(‖x‖+ ‖d‖+ 1)
≤ l�(d, x; p) ≤ c(‖x‖+ ‖d‖+ 1)‖p‖�

where σK(·) denotes the support function of K (see Definition 18.2.3,
p. 715).
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Lemma 18.7.4, p. 757 states that the Lagrangian l is Marchaud if the
Hamiltonian l� is Marchaud. If the Lagrangian is Marchaud and continuous
with respect to (d, x), then the Hamiltonian is Marchaud.

13.3.2 The Viability Solution

Knowing the Hamiltonian l�, the viability constraint function k and the
internal condition function c, we define the structured Hamilton–Jacobi
problem:

Definition 13.3.2 [Structured Hamilton–Jacobi Problem] A func-
tion (d, x) �→ V (d, x) is said to be a solution to the structured Hamilton–
Jacobi equation if

〈
∂V (d, x)

∂d
, ϕ(d)

〉
+ l�

(
d, x;

∂V (d, x)
∂x

)
= 0 (13.9)

and a solution to the structured Hamilton–Jacobi problem if, furthermore,
it satisfies the conditions

k(d, x) ≤ V (d, x) ≤ c(d, x) (13.10)

We introduce the structured characteristic system defined by
{

(i) δ′(t) = −ϕ(δ(t))
(ii) (ξ′(t), η′(t)) ∈ −Ep(l(δ(t), ξ(t); ·)) (13.11)

The characterization of the solution to the structured Hamilton–Jacobi
problem states that its epigraph is the viable-capture basin of the epigraph
of c, viable in the epigraph of k, under the structured characteristic system
defined by (13.11), p. 530.

Definition 13.3.3 [Viability Solution] The viability solution V to struc-
tured Hamilton–Jacobi problem 13.3.2, p. 530 is defined by

V (d, x) := inf
(d,x,y)∈Capt(13.10)(Ep(k),Ep(c))

y (13.12)

It may seem strange at first glance to solve a well known partial differential
equation by a solution of an auxiliary and seemingly artificial viability
problem.



13.4 Variational Principle 531

Defining (lower semicontinuous) functions through their (closed) epigraphs
allows us to treat the functions l, k, c and the viability solution V as subsets,
bypassing and avoiding the pointwise characterization of partial differential
equations familiar in classical analysis.

But this also allows us to just apply results surveyed and summarized in
the “viability survival kit” (Sect. 2.15, p. 98) and proved in Chaps. 10, p. 375
and 11, p. 437 based on the fundamental viability and invariance theorems
at the simpler level of set-valued analysis (with much less notations).

Above all, viable-capture basins and their regulation maps can be com-
puted numerically by software using viability algorithms.

The translation of the properties of viable-capture basins in terms of
structured problems provides without technical difficulties the properties we
shall uncover.

The definition of the viability solution does not involve the concept
of derivatives, a strange way for defining solutions to partial differential
equations. Actually, it is known that the solution to the structured Hamilton–
Jacobi is not differentiable. The lack of regularity happens whenever viability
constraints are involved: in this case, the most we can expect is that the
solution is only lower semicontinuous. However, it is possible to give a
meaning to lower semicontinuous solutions to structured Hamilton–Jacobi
equation (13.9), p. 530, by weakening the concepts of gradients in the sense
of nonsmooth analysis. The viability solutions then becomes a “solution” to
this partial differential equation in the sense of Barron–Jensen/Frankowska
viscosity solution (Theorem 13.10.3, p. 560).

13.4 Variational Principle

13.4.1 Lagrangian Microsystems

We shall assume that the causal map ϕ is Lipschitz (or more generally,
monotone) for guaranteeing the uniqueness of the solution δ(·) to differential
equation

δ′(t) = −ϕ(δ(t))

starting from any given initial state d ∈ D.
We further assume that the subset D is closed and is a repeller under −ϕ

in the sense that for any d ∈ D, the evolution δ(·) leaves D in finite time

τ �(d) := inf
δ(t)∈�D

t

at δ(τ �(d)) ∈ ∂D.
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This is the case for usual Hamilton–Jacobi equations when d := t ∈ D :=
R+ and ϕ(t) = 1: in this case τ �D(t) = t, as well as for the Hamilton–Jacobi–
McKendrick equations when d := (t, a) ∈ D := R

2
+ and ϕ(t, a) = (1, 1): in

this case τ �D(t, a) = a if t ≥ a ≥ 0 and τ �D(t, a) = t if a ≥ t ≥ 0.
In summary, whenever we mention d, we attach to it either the unique

evolution t �→ δ(t) governed by δ′(t) = −ϕ(δ(t)) starting from d at initial time
0 or the unique evolution t �→ d(t) := δ(t� − t) governed by d′(t) = ϕ(d(t))
and arriving at d at time t�, without mentioning it explicitly.

We associate with the Lagrangian, the causal map and the viability con-
straint function k the microsystem governing viable evolutions of the state:

Definition 13.4.1 [Microsystem] We denote by

F (d, x) := {u such that l(d, x;u) < +∞} (13.13)

the domain of the Lagrangian l and by Ak(t�; d, x) the set of evolutions x(·)
governed by the system

x′(t) ∈ F (d(t), x(t)) (13.14)

“viable” in the sense that

sup
t∈[0,t�]

k(d(t), x(t)) < +∞

and arriving at x at time t� when d(t�) = d.
When the function k is associated with a viability environment d � K(d)
by its indicator (see Definition 18.6.1, p. 743)

k(d, x) := ψK(d)(x) = ψGraph(K)(d, x)

then the viable evolutions are the ones satisfying

∀ t ∈ [0, t�], x(t) ∈ K(d(t))

13.4.2 The Variational Principle

13.4.2.1 Case of Boundary-Value Problems

We first assume (for simplicity of the formula) that the internal condition is
actually a boundary condition: c(d, x) = +∞ whenever d ∈ Int(D).
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The valuation function of the intertemporal optimization problem is
defined by

U(d, x) := inf
x(·)∈Ak(τ�(d);d,x)

(
c(d(0), x(0)) +

∫ τ�(d)

0

l(d(t), x(t), x′(t))dt

)

(13.15)

Theorem 13.4.2 [The Viability Solution Solves the Variational
Problem] The viability solution V defined by (13.12), p. 530:

U(d, x) = V (d, x) := inf
(d,x,y)∈Capt(13.10)(Ep(k),Ep(c))

y

is equal the valuation function U of the variational problem (13.15), p. 533.

13.4.2.2 General Case

In the general case, the statement of the intertemporal optimization problem
is more intricate and requires further notations:

Theorem 13.4.3 [The Viability Solution Solves the Variational
Problem] We associate with the function c the functional Jc defined by

⎧⎨
⎩

Jc(t�;x(·))(d, x)

:= c(d(0), x(0)) +
∫ t�

0

l(d(τ), x(τ), x′(τ))dτ

with the function k the functional Ik defined by
⎧⎪⎨
⎪⎩

Ik(t�;x(·))(d, x) :=

sup
s∈[0,t�]

(
k(d(s), x(s)) +

∫ t�

s

l(d(τ), x(τ), x′(τ))dτ

)

and with both functions k and c the functionals defined by
{

L(k,c)(t�;x(·))(d, x) := max(Ik(t�;x(·))(d, x),Jc(t�;x(·))(d, x))
M(k,c)(t�; d, x) := infx(·)∈Ak(t�;d,x) L(k,c)(t�;x(·))(d, x)



534 13 Viability Solutions to Hamilton–Jacobi Equations

Hence the viability solution V is equal the valuation function U of the
variational problem defined by

{
U(d, x) = inft�∈[0,τ�(d)] M(k,c)(t�; d, x)
= inft�∈[0,τ�(d)] infx(·)∈Ak(t�;d,x) L(k,c)(t�;x(·))(d, x)

(13.16)

Proof. By Definition 2.10.2, p. 86 of viable-capture basins, to say that (d, x, y)
belongs to the viable-capture basin Capt(13.10)(Ep(k), Ep(c)) means that
there exist some t� ≥ 0 and a measurable function υ(·) : [0, t�] �→ Dom(l)
such that

t ∈ [0, t�] �→ (δ(t), ξ(t), η(t)) ∈ R
m × R

n × R
n

is a solution to (13.11)
⎧⎨
⎩

(i) δ′(t) = −ψ(δ(t))
(ii) ξ′(t) = −υ(t)
(iii) η′(t) = −l(δ(t), ξ(t); υ(t))

starting at x viable in the epigraph of k until time t� ≤ τ �(d) when it belongs
to the epigraph of the function c, where

⎧⎪⎪⎨
⎪⎪⎩

(i) ξ(t) := x−
∫ t

0

υ(τ)dτ

(ii) η(t) ≤ η0(t) := y −
∫ t

0

l(δ(τ), ξ(τ), υ(τ))dτ

This implies that t� ≤ τ �(d), that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) c
(
δ(t�), ξ(t�)

)
≤ η(t�) ≤ y −

∫ t�

0

l(δ(τ), ξ(τ), υ(τ))dτ = η0(t�)

(ii) ∀ s ∈ [0, t�],

k(δ(s), ξ(s)) ≤ η(s) ≤ y −
∫ s

0

l(δ(τ), ξ(τ), υ(τ))dτ = η0(s)

(13.17)
In the particular case of boundary conditions when c(d, x) = +∞ whenever
d ∈ Int(D), we obtain t� = τ �(d).
We introduce the set-valued map F defined by F defined by

F(d, x) := Ep(I(d, x; ·)) ∩ [(c(‖x‖+ ‖d‖+ 1)B × [−c(‖x‖+ ‖d‖+ 1), 0])]
(13.18)

which has nonempty values.
Introducing the system

{
(i) δ′(t) = −ϕ(δ(t))
(ii) (ξ′(t), η′(t)) ∈ −F(δ(t), ξ(t)) (13.19)
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this implies that Capt(13.10)(Ep(k), Ep(c)) ⊂ Capt(13.17)(Ep(k), Ep(c)). Since
Graph(l) ⊂ Ep(l), the converse is true, so that equality

Capt(13.10)(Ep(k), Ep(c)) = Capt(13.17)(Ep(k), Ep(c)) (13.20)

ensues.
Inequalities (13.17), p. 534 imply that

sup
s∈[0,t�]

(
k (δ(s), ξ(s)) +

∫ s

0

l(δ(τ), ξ(τ), υ(τ))dτ
)

≤ y

The target condition implies that

c
(
δ(t�), ξ(t�)

)
+
∫ t�

0

l(δ(τ), ξ(τ), υ(τ))dτ ≤ y

Let us set

←−
J c(t�; υ(·))(d, x):= c(δ(t�), ξ(t�)) +

∫ t�

0

l(δ(τ), ξ(τ), υ(τ))dτ

and ⎧⎪⎨
⎪⎩
←−
I k(t�; υ(·))(d, x) :=

sup
s∈[0,t�]

(
k(δ(s), ξ(s)) +

∫ s

0

l(δ(τ), ξ(τ), υ(τ))dτ
)

We posit
{←−

L (k,c)(t�; υ(·))(d, x)
:= max(

←−
I k(t�;x(·), υ(·))(d, x),←−J c(t�; υ(·))(d, x))

We have proved that the viability and capturability conditions imply that
there exist t� ∈ [0, τ �(d)] and υ(·) such that

←−
L (k,c)(t�; υ(·))(d, x) ≤ y (13.21)

Therefore, setting

U(d, x) := inf
(t�;υ(·))

←−
L (k,c)(t�; υ(·))(d, x)

the viability solution V (d, x) := inf
(d,x,y)∈Capt(13.10)(Ep(k),Ep(c))

y defined by

(13.12), p. 530, satisfies inequality U(d, x) ≤ V (d, x).

For proving the opposite inequality, take any ε > 0. Then there exist υε(·)
and t�ε ∈ [0, τ �(d)] such that

←−
L (k,c)(t�ε; (ξε(·), υε(·)))(d, x) ≤ U(d, x) + ε
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Setting

ξε(t) := x−
∫ t

0

υε(τ)dτ and

ηε(t) := U(d, x)−
∫ t

0

l(δ(τ), ξε(τ), υε(τ))dτ − ε

we observe that (δ(·), xε(·), ηε(·)) is a solution to (13.11), p. 530 starting at
(d, x, U(d, x) − ε), reaching the epigraph of c at time t�ε and viable in Ep(k)
on [0, t�ε]. Therefore (d, x, U(d, x) − ε) belongs to Capt(13.10)(Ep(k), Ep(c)),
and thus U(d, x)− ε ≥ V (d, x).

Letting ε converge to 0 implies that U(d, x) ≥ V (d, x) so that equality
ensues.

Finally, setting d(t) := δ(t� − t), x(t) := ξ(t�− t), y(t) := η(t� − t), u(t) :=
υ(t� − t), L(k,c)(t�;x(·))(d, x) :=

←−
L (k,c)(t�; υ(·))(d, x), etc., we deduce that

x(·) ∈ Ak(t�; d, x) is a solution arriving at x at time t� and starting from
x(0) = ξ(t�) at time t�. Since x′(t) = −ξ′(t� − t) = υ(t� − t) = u(t), we infer
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc(t�;x(·))(d, x)

:= c(d(0), x(0)) +
∫ t�

0

l(d(τ), x(τ), x′(τ))dτ

Ik(t�;x(·))(d, x) :=

sup
s∈[0,t�]

(
k(d(s), x(s)) +

∫ t�

t�−s
l(d(τ), x(τ), x′(τ))dτ

)

Hence we have proved that

V (d, x) = inf
t�∈[0,τ�(d)]

inf
x(·)∈Ak(t�;d,x)

L(k,c)(t�;x(·))(d, x)

is the valuation function of the intertemporal optimization problem. ��

Remark. Theorem 13.4.2, p. 533, follows from Theorem 13.4.3, p. 533
because assumption c(d, x) = +∞ whenever d ∈ Int(D) implies that t� =
τ �(d). ��

Theorem 13.4.4 [Continuity Properties of the Viability Solution]
Assume that the Lagrangian is Marchaud. Then the viability solution V
defined by (13.12), p. 530, is lower semicontinuous and its epigraph is equal
to the viable-capture basin:

Ep(V ) = Capt(13.10)(Ep(k), Ep(c))
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Proof. Recalling inequality (13.8), p. 529 involved in the definition of
Marchaud Lagrangian, we introduce the set-valued map F defined by (13.18),
p. 534, which has nonempty values and the system (13.19), p. 534:

{
(i) δ′(t) = −ϕ(δ(t))
(ii) (ξ′(t), η′(t)) ∈ −F(δ(t), ξ(t))

1. Inclusions Graph(l) ⊂ F ⊂ Ep(l) imply
{

Capt(13.10)(Ep(k), Ep(c)) ⊂ Capt(13.17)(Ep(k), Ep(c))
⊂ Capt(13.10)(Ep(k), Ep(c))

and equality (13.20), p. 535 implies that Capt(13.10)(Ep(k), Ep(c)) =
Capt(13.10)(Ep(k), Ep(c)).
Hence, these three viable-capture basins coincide:

{
Capt(13.10)(Ep(k), Ep(c)) = Capt(13.17)(Ep(k), Ep(c))
= Capt(13.10)(Ep(k), Ep(c)) (13.22)

2. The differential inclusion (13.19), p. 534 is Marchaud. Indeed, the graph of
(d, x)� Ep(l(d, x; ·)) is closed because it is the epigraph of the Lagrangian
l is lower semicontinuous. Its values are convex since the Lagrangian is
convex with respect to u. The set-valued map F being its intersection
with (d, x)� c(‖x‖+‖d‖+1)B× [−c(‖x‖+‖d‖+1), 0] has linear growth.
Consequently, the intersection F has a closed graph, convex values and
linear growth, i.e., is a Marchaud set-valued map (see Definition 10.3.2,
p. 384).

3. Hence Viability Theorem 2.15.5, p. 101 implies that the viable-capture
basin Capt(13.10)(Ep(k), Ep(c)) is closed. This implies in particular that
(d, x, V (d, x)) belongs to this viable-capture basin, which, then, coincides
with the epigraph of V . Being closed, the viability solution is lower
semicontinuous. ��

A voluminous literature is devoted to regularity theorems providing
sufficient conditions for the viability solution to be continuous, Lipschitz,
semi-concave, differentiable in such and such sense.

This study does not deal with the regularity properties of the viability solu-
tions, but focuses on the existence of optimal evolutions and on microsystem
regulating them.
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13.5 Viability Implies Optimality

We now deduce from the viability theorems that there exists an optimal solu-
tion to the variational problem, actually, that all viable evolutions are optimal
and satisfy the dynamic programming equations under viability constraints.

13.5.1 Optimal Evolutions

Theorem 13.5.1 [Viable and Optimal evolutions] Assume that the
Lagrangian is Marchaud. For any (d, x) ∈ Dom(V ), there exist t� ∈
[0, τ �(d)] such that d(t�) = d and one evolution x(·) ∈ Ak(t�; d, x) such
that

V (d, x) = L(k,c)(t�;x(·))(d, x)

achieves the minimum in the intertemporal optimization problem.

Proof. Consider any solution t �→ (δ(t), ξ(t), η(t)) to the system (13.11)
starting at (d, x, V (d, x)) viable in Ep(k) until it reaches Ep(c) at some finite
time t�. At least one of such evolutions does exist since (d, x, V (d, x)) belongs
to viable-capture basin Capt(13.10)(Ep(k), Ep(c)) thanks to Theorem 13.4.4,
p. 536.

It is associated with a control υ(·) satisfying

η(t) ≤ η0(t) := V (d, x) −
∫ t

0

l(δ(τ), ξ(τ), υ(τ))dτ

Inequality (13.21), p. 535, with y = V (d, x), implies that

←−
L (k,c)(t�; υ(·))(d, x) ≤ V (d, x)

and thus that (t�; υ(·)) is optimal.
Therefore, setting d(t) := δ(t� − t), x(t) := ξ(t� − t), etc., we infer that

there exist t� and (d(·), x(·)) ∈ Ak(t�; d, x) such that

V (d, x) =
←−
L (k,c)(t�; υ(·))(d, x) = L(k,c)(t�;x(·))(d, x)

achieves the minimum in the intertemporal optimization problem. ��

Summary. Denoting by

T(k,c)(d, x) := inf
{
t ∈ [0, τ �(d)] such that V (d, x) = M(k,c)(t; d, x)

}
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the initial time map and by

Ok(t�; d, x) :=
{
x(·) such that L(k,c)(t�;x(·))(d, x) := M(k,c)(t; d, x)

}

the optimal map, then the search of optimal evolutions splits into two steps:

1. Take t� := T(k,c)(d, x).
2. Choose any evolution x(·) ∈ Ok(t�; d, x)

For boundary condition functions c such that c(d, x) = +∞ whenever d ∈
Int(D), then t� := τ �(d). ��

13.5.2 Dynamic Programming under Viability
Constraints

Optimal evolutions satisfy the dynamic programming principle:

Theorem 13.5.2 [Dynamic Programming under Viability Con-
straints] We assume that the Lagrangian l is Marchaud and that the
function k is continuous in its domain. Consider an optimal evolution
x(·) ∈ Ak(t�; d, x). Let κ ∈ [0, t�] be the first time when

k(d(κ), x(κ)) +
∫ t�

κ

l(d(τ), x(τ), x′(τ))dτ = V (d, x) (13.23)

Set κ� := min(t�, κ). Then x(·) satisfies the dynamic programming
equation:

∀ t ∈ [κ�, t�], V (d(t), x(t)) +
∫ t�

t

l(d(τ), x(τ), x′(τ))dτ = V (d, x) (13.24)

In particular, in the case without constraints k(d, x) = −∞, κ� = 0 and the
dynamic programming equation holds on the interval [0, t�].

Proof. By Theorem 2.15.2, p. 99, we know that the viable-capture basin
Capt(13.10)(Ep(k), Ep(c)) of the epigraph of c under the auxiliary system
(13.11), p. 530 is the unique bilateral fixed point

Capt(13.10)(Ep(V ), Ep(c)) = Ep(V ) = Capt(13.10)(Ep(k), Ep(V ))
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1. Let (d, x, V (d, x)) belong to the viable-capture basin Capt(13.10)(Ep(V ),
Ep(c)) = Ep(V ) of the epigraph of c under the auxiliary system (13.11),
p. 530. There exist t� ∈ [0, τ �(d)] and υ(·) such that

t �→ (δ(t), ξ(t), υ(t))

is viable in the epigraph of V until it reaches the epigraph of c at time t�.
Then the proof of Theorem 13.4.3, p. 533 implies that

∀s ∈ [0, t�], V (δ(s), ξ(s)) +
∫ s

0

l(δ(τ), ξ(τ), υ(τ))dτ ≤ V (d, x) (13.25)

2. We shall deduce the opposite inequality from the second fixed point
property Ep(V ) = Capt(13.10)(Ep(k), Ep(V )). The assumption that D
is a repeller under −ϕ implies that Ep(k) is also a repeller under
structured characteristic system (13.11), p. 530, and thus Ep(V ) =
Viab(13.10)(Ep(k), Ep(V )). Hence

�(Capt(13.10)(Ep(k), Ep(V ))) = Abs(13.10)(�Ep(V ), �Ep(k))

We set

�Ep(V ) := {(d, x, y) such that y < V (d, x)} =:
◦

Hyp (V )

For any ε > 0, (d, x, V (d, x) − ε) does not belong to Ep(V ) =
Capt(13.10)(Ep(k), Ep(V )), so that

(d, x, V (d, x) − ε) ∈ Abs(13.10)(
◦

Hyp (V ),
◦

Hyp (k))

Therefore, for any υ(·), there exists κε ≤ τ �(d) such that (δ(κε), ξ(κε),
η(κε)) reaches Ep(k) and leaves it before eventually reaching Ep(c). Hence
κε is defined by

k(δ(κε), ξ(κε)) +
∫ κε

0

l(δ(τ), ξ(τ), υ(τ))dτ = V (d, x) − ε

and, consequently,

∀ s ∈ [0, κε], V (d, x)− ε ≤ V (δ(s), ξ(s)) +
∫ s

0

l(δ(τ), ξ(τ), υ(τ))dτ

Since κε ≤ τ �(d) < +∞, a subsequence (again denoted by) κε converges
to some κ ≤ τ �(d) when ε → 0+. The function k being continuous by
assumption, we deduce that

k(δ(κ), ξ(κ)) +
∫ κ

0

l(δ(τ), ξ(τ), υ(τ))dτ = V (d, x)
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and that,

∀ s ∈ [0, κ], V (d, x) ≤ V (δ(s), ξ(s)) +
∫ s

0

l(d(τ), ξ(τ), υ(τ))dτ (13.26)

This inequality holds in particular for the above viable evolution
(δ(·), ξ(·), η(·)) on the interval [0, t�] so that inequalities (13.25), p. 540
and (13.26), p. 541 imply equality

∀ s ∈ [0,min(κ, t�)], V (d, x) = V (δ(s), ξ(s)) +
∫ s

0

l(d(τ), ξ(τ), υ(τ))dτ

ensues.

We derive the conclusion (13.24), p. 539 by setting x(t) := ξ(t� − t) and
κ := t� − κ satisfying (13.23), p. 539. ��

13.6 Regulation of Optimal Evolutions

It is not enough to know the existence of optimal evolutions: the question
arises whether we can compute it. For that purpose, we shall carve in the set-
valued map (d, x) �→ F (d, x) governing the evolution x(·) through differential
inclusion x′(t) ∈ F (d(t), x(t)) a regulation map (d, x) �→ RV (d, x) ⊂
F (d, x) piloting optimal viable evolutions by differential inclusion x′(t) ∈
RV (d(t), x(t)) until it reaches the terminal state x at optimal time t�.

The regulation map is characterized by the viability solution by a formula
which uses the fact that the viability solution V is also the solution of the
structured Hamilton–Jacobi inequality, which holds true for a Marchaud
Lagrangian.

When V is any differentiable function, the regulation map associated with
it is defined by:

RV (d, x) :=

⎧⎨
⎩
υ ∈ F (d, x) such that〈
∂V (d, x)

∂d
, ϕ(d)

〉
+
〈
∂V (d, x)

∂x
, υ

〉
− l(d, x; υ) ≥ 0

⎫⎬
⎭

Remark: Lax–Oleinik Formula. Observe that if the Lagrangian l is
Marchaud and if the function V satisfies the Hamilton–Jacobi inequality

〈
∂V (d, x)

∂d
, ϕ(d)

〉
+ l
(
d, x;

V (d, x)
dx

)
≥ 0

then the Legendre property (13.7), p. 529 of the Fenchel transform implies
the generalized Lax–Oleinik formula
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∂l
(
d, x;

V (d, x)
dx

)
∈ RV (d, x)

Indeed, if we assume further that RV (d, x) = {r(d, x)} is a singleton and
that the Lagrangian is differentiable with respect to u, this implies that

∂V (d, x)
∂x

=
d

du
l (d, x; r(d, x))

which is the Lax–Oleinik formula. General formulas (13.68), p. 561 relating
the regulation map associated with the viability solution and its partial
derivatives (or subdifferentials) with respect to state x are obtained under
(much) stronger assumptions. They are consequences of the proof that the
viability solution is the unique Barron–Jensen/Frankowska viscosity solution
of the Hamilton–Jacobi. We postpone it to Sect. 13.10, p. 557 since we do not
need this purely mathematical result for studying the regulation of optimal
viable evolutions. ��

When V is no longer differentiable, we consider its epiderivative
D��
↑ V (d, x) of V defined

Ep(D��
↑ V (d, x)) := T ��Ep(V )(d, x, V (d, x))

which is a directional derivative (δ, υ) �→ D��
↑ V (d, x)(δ, υ) ∈ R ∪ {−∞} ∪

{+∞} convex and lower semicontinuous instead of being linear (and contin-
uous).

Definition 13.6.1 [Regulation Map Associated with a Function]
The regulation map RV associated with a function V is defined by

{
RV (d, x) :={
υ ∈ F (d, x) such that D��

↑ V (d, x)(−ϕ(d),−υ) + l(d, x;u) ≤ 0
}

(13.27)

We begin by proving that the regulation map associated with the viability
solution has nonempty values:

Theorem 13.6.2 [Regulation Map of the Viability Solution] If the
Lagrangian (d, p, υ) � l(d, x; υ) is Marchaud, then the viability solution V
defined by (13.12), p. 530 is the smallest lower semicontinuous function
satisfying conditions (13.10), p. 530 and
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inf
υ∈F (d,x)

(
D��
↑ V (d, x)(−ϕ(d),−υ) + l(d, x; υ)

)
≤ 0

is the contingent solution (introduced by Hélène Frankowska) such that,
whenever V (d, x) < c(d, x), the value RV (d, x) of the regulation map
associated with the viability solution V is not empty.

Proof. Since the Hamiltonian is Marchaud, so is the Lagrangian. Actually,
the theorem remains true under the weaker assumption that the Lagrangian
l is Marchaud. So is the set-valued map F defined by (13.18), p. 534 and, by
(13.22), p. 537, the viable-capture basin Ep(V ) := Capt(13.10)(Ep(k), Ep(c)) is
equal to Capt(13.17)(Ep(k), Ep(c)) = Capt(13.10)(Ep(k), Ep(c)). It is then the
largest closed subset between Ep(c) and Ep(k), locally viable in Ep(V )\Ep(c)
thanks to Viability Theorem 11.4.6, p. 463, which also states that, whenever
(d, x, V (d, x)) ∈ Ep(V ) \ Ep(c), i.e., whenever V (d, x) < c(d, x), there exists
some υ ∈ Dom(l(d, x; ·)) such that

(−ϕ(d),−υ,−l(d, x; υ)) ∈ TEp(V )(d, x, V (d, x))

Definition 2.15.6, p. 102 of the regulation map R for general differential
inclusions and Definition 13.6.1, p. 542 imply that such υ belongs to RV (d, x).
��

Optimal evolutions do exist thanks to Theorem 13.4.3, p. 533. The question
asked is how to regulate them. The first answer is provided by

Theorem 13.6.3 [Regulation of Optimal Evolutions] If the
Lagrangian (d, p, υ) � l(d, x; υ) is Marchaud, viable optimal evolutions
x(·) ∈ Ok(t�; d, x) when t� ∈ T(k,c)(d, x) is the optimal time are regulated
by differential inclusion

∀ t ∈ [0, t�[, x′(t) ∈ RV (d(t), x(t))

and satisfy the terminal condition

d(t�) = d and x(t�) = x

Proof. The proof of Theorem 13.5.1, p. 538 states that evolutions t �→
(δ(t), ξ(t), η(t)) starting from (d, x, V (d, x)) ∈ Ep(V ) viable in Ep(k) until
they reach Ep(c) at time t� are optimal and regulated by

∀ t ∈ [0, t�], υ(t) ∈ R(δ(t), ξ(t))
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thanks to Viability Theorem 11.4.6, p. 463. By setting d(t) := δ(t� − t),
x(t) := ξ(t� − t) and x′(t) := υ(t� − t), this is equivalent to saying that
optimal viable evolutions x(·) ∈ Ok(t�; d, x) are regulated by the differential
inclusion

x′(t) ∈ RV (d(t), x(t))

and satisfy the terminal condition d(t�) = d and x(t�) = x. ��

We also know that

c(d(0), x(0)) +
∫ t�

0

l(d(τ), x(τ), x′(τ))dτ ≤ V (d, x)

The initial causal variable d(0) := δ(t�) being known, the initial state x(0)
may be derived from the above formula which requires the knowledge of the
evolution x(·) arriving at x and regulated by the regulation map R.

13.7 Aggregation of Hamiltonians

13.7.1 Aggregation

For simplicity, we consider problems without viability constraints. We
introduce j = 1, . . . , J copies of the state space Y := R

n and the product

space X :=
J∏
j=1

R
n = R

Jn.

For each j = 1, . . . , n, we introduce:

1. a lower semicontinuous convex Hamiltonian l�j : D × Y �→ R ∪ {+∞};
2. a function cj : D × Y �→ R ∪ {+∞}

with which we associate the solutions to the decentralized Hamilton–Jacobi
problems

⎧⎨
⎩
〈
∂Vj(d, xj)

∂d
, ϕ(d)

〉
+ l�j

(
d,
∂Vj(d, xj)

∂xj

)
= 0 on R

m × R
q

satisfying Vj(d, xj) ≤ cj(d, xj)
(13.28)

We are now looking for the solution W : D × Y �→ R ∪ {+∞} to the
centralized Hamilton–Jacobi problem
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⎧⎪⎨
⎪⎩

〈
∂W (d, y)

∂d
, ϕ(d)

〉
+

J∑
j=1

l�j

(
d,
∂W (d, y)

∂y

)
= 0 on D × R

n

satisfying W (d, y) ≤ c(d, y)

(13.29)

The link between the solution W of the centralized problem and solutions
Vj to decentralized Hamilton–Jacobi problems is provided by the operation of
inf-convolution (see Definition 18.8.1, p. 762): The inf-convolution �J

j=1vj :
X �→ R ∪ {+∞} of functions vj is defined by

Ep(�J
j=1vj) :=

J∑
j=1

Ep(vj) (Minkowski sum of subsets) (13.30)

Lemma 18.8.3, p. 763 states that whenever

0 ∈ Int

⎛
⎝{(p, . . . , p)p∈Y �}+

J∏
j=1

Dom(v�j )

⎞
⎠

holds true, then there exist J elements xj ∈ Xj such that

J∑
j=1

xj = x and v(x) =
J∑
j=1

vj(xj) (13.31)

In the case of two functions, we obtain

(u % v)(y) = inf
z

(u(z) + v(y − z))

from which the name of the operation is derived (when infy is replaced by
∫
y

for the usual convolution in analysis).
We consider the inf-convolutions of the functions cj and Vj :

c(d, y) := �J
j=1cj(y) and W (d, y) := �J

j=1Vj(y) (13.32)

The natural question is to know whether, whenever the function c is the
inf-convolution of the functions ci, the solution W (d, y) of the centralized
Hamilton–Jacobi problem (13.29), p. 544, is the inf-convolution of the
solutions Vj(d, xj) of the decentralized Hamilton–Jacobi problem (13.29),
p. 544.

The answer is positive under adequate assumptions.
More important is the second conclusion relating the regulation maps of

the centralized and decentralized regulation maps RW (d, y) and RVj (d, xj).
We shall prove that a centralized control v belongs to the centralized
regulation map RW (d, y) at y if and only if there exist decentralized states xj
and controls uj belonging to the regulation maps RVj (d, xj) at xj satisfying
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J∑
j=1

xj = y and
J∑
j=1

uj = v (13.33)

Therefore, for any (d, y), an evolution of the centralized associated problem
y(·) ∈ A(t�(d); d, y) regulated by y′(t) ∈ RW (d(t), y(t)) can be written in the
form

y(t) =
J∑
j=1

xj(t)

where the decentralized (optimal) evolutions xj(·) ∈ Aj(t�(d); d, xj) regulated
by x′j(t) ∈ RVj (d(t), xj(t)).

These results are quite intricate and it is both convenient and useful to
cover other problems to deduce them from an abstract problem by setting

A : x = (x1, . . . , xJ) ∈ R
q := R

Jn �→ Ax :=
J∑
j=1

xj ∈ R
n

and

m�(d; q) =
J∑
j=1

l�j (d; q) and m(d; v) = �J
j=1lj(d; v)

13.7.2 Composition of a Hamiltonian
by a Linear Operator

Consider then the more general problem for arbitrary state space R
q, with

(much) higher dimension q ≥ n and a linear operator A ∈ L(Rq,Rn), the
transpose of which is and its transpose A� ∈ L(Rn,Rq).

We shall assume throughout this section that the Hamiltonian (d, p) �→
l�(d; p) and the Lagrangian (d, u) �→ l(d;u) do not depend upon the state
variable x.

Definition 13.7.1 [Composition of a Hamiltonian by a Linear
Operator] Let us consider a Hamiltonian (d, p) �→ l�(d; p) and linear
operator A ∈ L(Rq,Rn). The composed Hamiltonian m� : (d, q) ∈ R

m×R
n

�→ m�(d, q) ∈ R ∪ {+∞} of l� by A� is defined by

m�(d, q) := l�(d,A�q)

and we denote by m(d, y) := l�� its biconjugate.
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We also introduce two internal condition functions:

1. c : (d, x) ∈ R
m × R

q �→ c(d, x) ∈ R ∪ {+∞}
2. b : (d, y) ∈ R

m × R
n �→ b(d, y) ∈ R ∪ {+∞}

related by
b(d, y) := inf

Ax=y
c(d, x)

Theorem 18.2.5, p. 715 states that the assumptions: there exists a constant
c < +∞ such that

{
(i) ∀ (d, u) ∈ Dom(l), ∀ν ∈ R

n, ∃ μ ∈ Dom(D↑l(d, u)) ∩ c‖ν‖ and Aν = μ
(ii) ∀ (d, x) ∈ Dom(c), ∀ν ∈ R

n, ∃ μ ∈ Dom(D↑c(d, x)) ∩ c‖ν‖ and Aν = μ
(13.34)

imply that the infimum is achieved in formulas
⎧⎨
⎩

(i) m(d, v) = minAu=v l(d, u)
is the conjugate function of m�(d, p) := l�(d,A�q)

(ii) b(d, y) = minAx=y c(d, x)

Theorem 13.7.2 [Link between Solutions of the Hamilton–Jacobi
Equations] We consider the two structured Hamilton–Jacobi problems

⎧⎨
⎩
〈
∂V (d, x)

∂d
, ϕ(d)

〉
+ l�

(
d,
∂V (d, x)

∂x

)
= 0 on R

m × R
q

satisfying V (d, x) ≤ c(d, x)
(13.35)

and

⎧⎨
⎩
〈
∂W (d, y)

∂d
, ϕ(d)

〉
+ l�

(
d,A�

∂W (d, y)
∂y

)
= 0 on R

m × R
n

satisfying W (d, y) ≤ b(d, y)
(13.36)

Assume furthermore that the constraint qualification assumptions (13.34),
p. 547 hold true. Then their viability solutions are related by formula

W (d, y) = inf
Ax=y

V (d, x) (13.37)

Proof. Let us consider the operator (1× A× 1) : (d, x, λ) ∈ D ×X × R+ �→
(d,Ax, λ) ∈ D × Y × R+ and the two following characteristic systems
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{
(i) δ′(t) = −ϕ(δ(t))
(ii) (η′(t), ζ′(t)) ∈ −Ep(m(δ(t); ·)) = −(I×A× I)Ep(l(δ(t); ·))

(13.38)
governing the evolution of η(t) ∈ R

n and
{

(i) δ′(t) = −ϕ(δ(t))
(ii) (ξ′(t), ζ′(t)) ∈ −Ep(l(δ(t); ·)) (13.39)

governing the evolution of ξ(t) ∈ R
q. We introduce the viable-capture basins

defining the epigraphs of the viability solutions

{
(i) Capt(13.37)(Ep(b)) = Ep(W ) where Ep(b) = (I×A× I)Ep(c)
(ii) Capt(13.38)(Ep(c)) = Ep(V )

(13.40)
We shall prove that

(I×A×I)Capt(13.38)(Ep(c))=Capt(13.37)((I×A×I)Ep(c))=Capt(13.37)(Ep(b))

1. Proof of inequality W (d,Ax) ≤ V (d, x). This inequality is always true.
Take any (d, x, V (d, x)) ∈ Capt(13.37)(Ep(c)). There exist t �→ ν(t) and
t� ≥ 0 such that

c

(
δ(t�), x−

∫ t�

0

ν(t)dt

)
+
∫ t�

0

l(δ(t); ν(t))dt ≤ V (d, x)

Since b(d,Ax) ≤ c(d, x) and m(d,Aν) ≤ l(d, ν), we infer that, setting
μ(t) := Aν(t),

b

(
δ(t�), Ax−

∫ t�

0

μ(t)dt

)
+
∫ t�

0

m(δ(t);μ(t))dt ≤ V (d, x)

and thus, that (d,Ax, V (d, x)) belongs to Capt(13.37)(Ep(b)) = Ep(W ).
This implies that W (d,Ax) ≤ V (d, x) and that

(I×A× I)Capt(13.38)(Ep(c)) ⊂ Capt(13.37)((I×A× I)Ep(c))

2. Proof of inequality: ∀ y, ∃ x such that Ax = y and V (d, x) ≤ W (d, y).
Take any (d, y,W (d, y)) ∈ Capt(13.38)(Ep(b)). There exist an integrable
function t �→ μ(t) and t� ≥ 0 such that

b

(
δ(t�), x−

∫ t�

0

μ(t)dt

)
+
∫ t�

0

m(δ(t);μ(t))dt ≤ W (d, y)

Theorem 18.4.14, p. 734 and assumption (13.34)(i), p. 547 imply that the
subset
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Φ(d, v) := {u such that Au = v and l(d;u) ≤ m(d; v)}

is not empty and the set-valued map Φ has a closed graph. The Measurable
Selection Theorem (see for instance Theorem 8.1.13, p. 308 of Set-
Valued Analysis, [27, Aubin & Frankowska]) implies that we can associate
with the measurable function μ(·) a measurable function ν(·) such that,
for almost all t, ν(t) ∈ Φ(δ(t), μ(t)). Furthermore, Theorem 18.4.14,
p. 734 and assumption (13.34)(ii), p. 547 imply that we can associate

with y −
∫ t�

0

μ(t)dt an element z such that Az = y −
∫ t�

0

μ(t)dt and

c(z) = y −
∫ t�

0

μ(t)dt. Setting x := z +
∫ t�

0

ν(t)dt, we have proved that
⎧⎨
⎩

c
(
δ(t�), x−

∫ t�
0
ν(t)dt

)
+
∫ t�
0

l(δ(t); ν(t))dt

= b
(
δ(t�), y −

∫ t�
0
μ(t)dt

)
+
∫ t�
0

l(δ(t);μ(t))dt ≤ W (d, y)

Therefore, (d, y,W (d, y)) = (I×A× I)(d, x,W (d, y)) where (d, x,W (d, y))
belongs to Capt(13.38)(Ep(c)) = Ep(W ). Consequently, (d, y,W (d, y)) ∈
(I×A× I)Ep(V ), and thus, V (d, x) ≤W (d, y) and

Capt(13.37)((I×A× I)Ep(c)) ⊂ (I×A× I)Capt(13.38)(Ep(c))

These two inequalities imply that V (d, x) ≤ W (d, y) = W (d,Ax) ≤ V (d, x),
so that

W (d, y) = min
Ax=y

V (d, x)

and Capt(13.37)(I×A× I)(Ep(c)) = (I×A× I)Capt(13.38)(Ep(c)). ��

We now compare the two regulation maps:

Theorem 13.7.3 [Links between the Regulation Maps] We posit the
assumptions of Theorem 13.7.2, p. 547. Consider the two regulation maps

RW (d, y) :=

⎧⎨
⎩
μ ∈ Dom(m(d, y; ·)) such that〈
∂W (d, y)

∂d
, ϕ(d)

〉
+
〈
∂W (d, y)

∂y
, μ

〉
−m(d, y;μ) ≥ 0

⎫⎬
⎭

and

RV (d, x) :=

⎧⎨
⎩
ν ∈ Dom(l(d, x; ·)) such that〈
∂V (d, x)

∂d
, ϕ(d)

〉
+
〈
∂V (d, x)

∂x
, ν

〉
− l(d, x; ν) ≥ 0

⎫⎬
⎭
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Inclusion ARV (d, x) ⊂ RV (d,Ax) always holds true. If we assume that the
solution V satisfies

{
(i) ∀(d, u) ∈ Dom(l), ∀ν ∈ R

n, ∃μ ∈ Dom(D↑l(d, u)) ∩ c‖ν‖ and Aν = μ
(ii) ∀(d, x) ∈ Dom(V ), ∀ν ∈ R

n, ∃μ ∈ Dom(D↑V (d, x)) ∩ c‖ν‖ and Aν = μ
(13.41)

equality

∃ x satisfying Ax = y and RW (d, y) = ARV (d;x) (13.42)

ensues.

Proof. 1. Proof of inclusion ARV (d, x) ⊂ RW (d,Ax). Let us consider ν ∈
RV (d, x). This means that

(−ϕ(d),−ν,−l(d; ν)) ∈ TEp(V )(d, x, V (d, x))

Therefore,
⎧⎨
⎩

(−ϕ(d),−Aν,−l(d; ν)) = (I×A× I)(−ϕ(d),−ν,−l(d; ν))
∈ (I×A× I)TEp(V )(d, x, V (d, x)) ⊂ T(I×A×I)Ep(V )(d,Ax, V (d, x))
= TEp(W )(d, y, V (d, x))

Since by Proposition 6.1.4, p. 226 of Set-Valued Analysis, [27, Aubin &
Frankowska], TEp(W )(d, y, V (d, x)) = Dom(D↑W (d, y)) × R if W (d, y) <
V (d, x) and TEp(W )(d, x, V (d, x)) = TEp(W )(d, y,W (d, y)) if W (d, y) =
V (d, x), we infer that Aν belongs to RW (d,Ax).

2. Proof of inclusion ∀ y, ∃ x such that Ax− y and RW (d, y) ⊂ ARV (d, x).
Let us consider μ ∈ RW (d, y), i.e., satisfying

(−ϕ(d),−μ,−m(d;μ)) ∈ TEp(W )(d, y,W (d, y))

Theorem 18.4.14, p. 734 and assumption (13.41)(ii), p. 550 imply that
there exist x such that Ax = y and V (d, x) = W (d, y).
By applying Theorem 18.4.14, p. 734 for the linear operator I × A × I

and the subset Ep(V ), we infer that assumption (13.41)(ii), p. 550 implies
equality

(I×A× I)TEp(V )(d, x, V (d, x)) = T(I×A×I)Ep(V )(d,Ax, V (d, x)) (13.43)

holds true. Then, there exist ν such that Aν = μ and l(d, ν) = m(d, μ).
Consequently,
{

(−ϕ(d),−μ,−m(d;μ)) = (I×A× I)(−ϕ(d),−ν,−l(d; ν))
∈ (I×A× I)TEp(W )(d, y,W (d, y)) = (I×A× I)TEp(W )(d, x, V (d, x))
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Therefore,

(−ϕ(d),−ν,−l(d; ν)) ∈ TEp(V )(d, x, V (d, x))

and we infer that ν belongs to RV (d, x). ��

13.8 Hamilton–Jacobi–Cournot Equations

The question whether we can obtain beforehand the initial states x(0) and the
specific regulation maps R̃(d, x(0), x) (depending upon x(0)) driving optimal
viable evolutions x(·) arriving at terminal state x at optimal time t� (see
Definition 8.4.8, p. 288). This would avoid computing initial states x(0) by
solving the variational problem or, equivalently, avoid the regulation of all
optimal evolutions from the terminal state through the regulation map RV
as in Theorem 13.6.3, p. 543.

For computing the formerly missing initial conditions, we just introduce
an auxiliary parameter χ ∈ R

n which plays the role of candidate to be an
initial condition. We then extend internal and viability conditions k̃ and c̃
by setting

{
(i) k̃(d, χ, x) := k(d, x)
(ii) c̃(d, x, x) := c(d, x) and c̃(d, χ, x) := +∞ χ �= x

(13.44)

The answer is obtained by computing the viability solution Ṽ (d, χ, x) to
the Hamilton–Jacobi–Cournot partial differential equation

〈
∂Ṽ (d, χ, x)

∂d
, ϕ(d)

〉
+ l�

(
d, x;

∂Ṽ (d, χ, x)
∂x

)
= 0 (13.45)

satisfying
k̃(d, χ, x) ≤ Ṽ (d, χ, x) ≤ c̃(d, χ, x) (13.46)

We associate with the viability solution Ṽ of the Hamilton–Jacobi–Cournot
equation:

1. the Cournot regulation map RṼ defined by
{
RṼ (d, χ, x) ={
υ ∈ F (d, x) such that D��

↑ Ṽ (d, χ, x)(−ϕ(d), 0,−υ) + l(d, x) ≤ 0
}

2. the Cournot map CṼ defined by

CṼ (d, x) :=
{
χ such that Ṽ (d, χ, x) <∞

}
(13.47)
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Theorem 13.8.1 [Regulation of Optimal Evolutions from Cournot
Initial States] We posit the assumptions of Theorem 13.10.2, p. 557. For
any initial state χ ∈ CṼ (d, x) provided by the Cournot map, there exists at
least one optimal viable optimal evolution x(·) ∈ Ok(t�; d, χ, x) where t� ∈
T(k,c)(d, x) starting from initial conditions x(0) = χ, arriving at x = x(t�)
at optimal t� when d(t�) = d.

It is regulated by differential inclusion

∀ t ∈ [0, t�[, x′(t) ∈ RṼ (d(t), χ, x(t))

Proof. Let us consider the viability solution (d, χ, x) �→ Ṽ (d, χ, x) and the
associated regulation map RṼ .

Its epigraph is the viable-capture basin of Ep(c̃) viable in Ep(k̃) under the
characteristic system

⎧⎨
⎩

(i) δ′(t) = −ϕ(δ(t))
(ii) χ′(t) = 0
(iii) (ξ′(t), η′(t)) ∈ −Ep(l(δ(t), ξ(t); ·))

(13.48)

There exist at least some time t� and one evolution t �→ (δ(t), χ, ξ(t), η(t))
starting from (d, x, χ, V (d, x)) ∈ Ep(Ṽ ) viable in Ep(k̃) until it reaches Ep(c̃)
at some time t�. The viability condition implies that t� ≤ τ �(d) and that

sup
s∈[0,t�]

(
k (δ(s), ξ(s)) +

∫ s

0

l(δ(τ), ξ(τ), υ(τ))dτ
)

≤ Ṽ (d, χ, x)

so that ←−
I k(t�; υ(·))(d, x) ≤ Ṽ (d, χ, x)

and the target condition that

c̃
(
δ(t�), χ, ξ(t�)

)
+
∫ t�

0

l(δ(τ), ξ(τ), υ(τ))dτ ≤ Ṽ (d, χ, x) < +∞

Since c̃(d, χ, x) := +∞ whenever χ �= x, we infer that χ = ξ(t�), that
χ ∈ CṼ (d, x) and that

c(δ(t�), χ) +
∫ t�

0

l(δ(τ), ξ(τ), υ(τ))dτ ≤ Ṽ (d, χ, x) < +∞

Setting
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⎧⎪⎪⎨
⎪⎪⎩

←−
J c(t�; υ(·))(d, χ, x)

:= c(δ(t�), χ) +
∫ t�

0

l(δ(τ), ξ(τ), υ(τ))dτ if ξ(t�) = χ

and +∞ otherwise

we infer that ←−
J c(t�; υ(·))(d, χ, x) ≤ Ṽ (d, χ, x)

and thus that, setting
{←−

L (k,c)(t�; υ(·))(d, χ, x)
:= max(

←−
I k(t�;x(·), υ(·))(d, x),←−J c(t�; υ(·))(d, χ, x))

we have proved that

←−
L (k,c)(t�; υ(·))(d, χ, x) ≤ Ṽ (d, χ, x)

The proof of Theorem 13.4.3, p. 533 implies that

Ṽ (d, χ, x) = inf
(t�;υ(·))

←−
L (k,c)(t�; υ(·))(d, χ, x)

and that the viable evolution is regulated by

υ(t) ∈ RṼ (δ(t), χ, ξ(t))

where, under assumptions of Theorem 13.10.2, p. 557, the regulation map
RṼ is equal to

RṼ (d, χ, x)=
{
υ ∈ F (d, x)such that D��

↑ Ṽ (d, χ, x)(−ϕ(d), 0,−υ)+l(d, x)≤0
}

By setting d(t) := δ(t� − t), x(t) := ξ(t� − t) and x′(t) := υ(t� − t),
this is equivalent to saying that an optimal viable evolution starting from
χ ∈ CṼ (d, x) is regulated by

υ(t) ∈ RṼ (δ(t), χ, ξ(t))

and satisfy the terminal condition d(t�) = d and x(t�) = x and initial
condition x(0) = χ.

Hence, for each initial condition χ ∈ CṼ (d, x), there exists an optimal
viable evolution starting at χ and arriving at x in optimal time t�. ��

Consequently, for any pair (d, x), if

1. CṼ (d, x) = {χ} is a singleton, then there exists one optimal viable
evolution starting at χ and regulated by x′(t) ∈ RṼ (d(t), χ, x(t)) until
it arrives at x at time t�,
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2. CṼ (d, x) = ∅, and no optimal evolution arrive at x,
3. CṼ (d, x) contains several initial states χ. From all χ ∈ CṼ (d, x) start

optimal viable evolutions regulated by x′(t) ∈ RṼ (d(t), χ, x(t)) until they
collide at x at time t�.

This is the property which motivates the terminology of Cournot map,
since Antoine Cournot (1801–1877) suggested to capture one aspect of
uncertainty or chance as the collision of several independent causal series.

13.9 Lax–Hopf Formula

Theorem 13.9.1 [Lax–Hopf Formula] We assume that both ϕ and l
do not depend upon d and x. Let us assume that the function c is lower
semicontinuous and that the functions k and l are convex and lower
semicontinuous. Then the viability solution V is equal to the Lax–Hopf value
function

V (d, x) = max

(
k(d, x), inf

t�≥0
inf

u∈Dom(l)

(
c(d − t�ϕ, x− t�u) + t�l(u)

))

(13.49)
which is the marginal function of a static minimization theorem.

The regulation map is the set of elements u ∈ Dom(l) minimizing this
function:

{
RV (d, x) = {u ∈ Dom(l) such that
V (d, x) = max

(
k(d, x),

(
c(d− τ �(d)ϕ, x − τ �(d)u) + τ �(d)l(u)

))}
(13.50)

If the viability solution V and the Lagrangian l are differentiable and if
u := r(d, x) ∈ RV (d, x) is the unique minimizer, Lax–Oleinik formula holds

∂V

∂x
=

d

du
l(d, x; r(d, x)) (13.51)

For boundary value problems without constraints, the formula boils down
to

V (d, x) = inf
u∈Dom(l)

(
c(d− τ �(d)ϕ, x − τ �(d)u) + τ �(d)l(u)

)
(13.52)

Proof. Since the epigraph of k is convex and since both the map ϕ and
Lagrangian l do not depend on (d, x), differential inclusion
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{
(i) δ′(t) = −ϕ
(ii) (ξ′(t), η′(t)) ∈ −Ep(l(·)) (13.53)

can be written in the form

(δ′(t), ξ′(t), η′(t)) ∈ G := {−ϕ} × −Ep(l(·))

where G is a constant closed convex subset. Lax–Hopf Formula (11.27), p. 469
of Theorem 11.5.4, p. 469 states that if the environment Ep(k) is closed and
convex, the target C ⊂ K is closed and G is a closed convex subset, then the
viable-capture basin enjoys the Lax–Hopf formula

CaptG(Ep(k), Ep(c)) = Ep(k) ∩ (Ep(c) − R+G)

Hence, the epigraph of the valuation function V , defined as the viable-capture
basin Capt(13.52)(Ep(k), Ep(c)) under the differential inclusion (13.53), is
equal to

{
Capt(13.52)(Ep(k), Ep(c)) = CaptG(Ep(k), Ep(c))
= Ep(k) ∩

(
Ep(c) −

⋃
λ≥0 λ({ϕ} × Ep(l))

) (13.54)

Therefore (d, x, y) belongs the viable-capture basin if k(d, x) ≤ y and if
there exist (δ�, ξ�, η�) ∈ Ep(c), t� > 0 and u ∈ Dom(l) such that

c(d − t�, x− t�u) = c(δ�, ξ�) ≤ η ≤ y − t�l(u)

This means that

max
(
k(d, x), inf

t�
inf
u

(
c(t− t�ϕ, x− t�u) + t�l(u)

))
= V (d, x)

which is the Lax–Hopf formula we were looking for. ��

We associate with the internal condition function (d, x) �→ c(d, x) ∈ R ∪
{+∞} the domain map d� C(d) defined by

C(d) := {x such that c(d, x) < +∞} (13.55)

The question arises to know precisely the domains Dom(V (t, ·)) of the
traffic profiles, i.e., the set of states x such that V (t, x) < +∞: we shall prove
that it is couched in terms of the domain map C:

Theorem 13.9.2 [Domain of the Viability Solution] We posit the
assumptions of Theorem 13.9.1, p. 554. For any d ∈ D, the domains of
the function V (d, ·) associated with the internal condition c are equal to
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Dom(V (d, ·)) =
⋃

s∈[0,τ�(d)], u∈Dom(l)

(C(d − sϕ) + su) (13.56)

If we assume furthermore that C satisfies

∀ s ∈ [0, τ �(d)], C(d− sϕ) ⊂ C(d− τ �(d)ϕ) + (τ �(d)− s)Dom(l) (13.57)

then

Dom(V (d, ·)) = C(d− τ �(d)ϕ) + τ �(d)Dom(l) (13.58)

Proof. For any x ∈ Dom(V (d, ·)) and any ε > 0, there exist s ∈ [0, τ �(d)],
u ∈ Dom(l) such that

c(d − sϕ, x− su) + sl(u) ≤ V (d, x) + ε < +∞

so that x− su ∈ C(d− sϕ), and thus,

Dom(V (d, ·)) ⊂ C(d− sϕ) + su ⊂
⋃

s∈[0,τ�(d)], u∈Dom(l)

(C(d − sϕ) + su)

Conversely, let us take x ∈
⋃

s∈[0,τ�(d)], u∈Dom(l)

(C(d− sϕ) + su), and thus,

take s ∈ [0, τ �(d)] and u ∈ Dom(l) such that x ∈ C(d− sϕ) + su. Therefore,
c(d− sϕ, x− su) < +∞ is finite and

V (d, x) ≤ c(d − sϕ, x− su) + sl(u) < +∞

so that x ∈ Dom(V )(d, ·).
As a particular case, for s := τ �(d)

C(d− τ �(d)ϕ) + τ �(d)Dom(l) ⊂ Dom(V (t, ·))

Assume now that the tube C satisfies (14.22), p. 584. Take any x ∈
Dom(V (d, ·)), with which we associate s ∈ [0, τ �(d)], ξ ∈ C(d − sϕ) and
u ∈ Dom(l) such that x = ξ + su thanks to (14.21), p. 584. Therefore

ξ ∈ C(d− sϕ) ⊂ C(d− τ �(d)ϕ) + (τ �(d)− s)Dom(l)

so that there exists v ∈ Dom(l) such that ξ ∈ C(d−sϕ)+(τ �(d)−s)v. Hence
x ∈ C(d − sϕ) + su + (τ �(d) − s)v. Since Dom(l) is convex and since u and
v belong to it and τ �(d) − s ≥ 0, then su + (τ �(d) − s)v = τ �(d)w where
w ∈ Dom(l). Hence x belongs to C(d− sϕ) + τ �(d)Dom(l) and thus,
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Dom(V (d, ·)) ⊂ C(d− τ �(d)ϕ) + τ �(d)Dom(l)

This completes the characterization of the domain of the traffic solution. ��

13.10 Barron–Jensen/Frankowska Viscosity Solution

This (technical) section is devoted to the proof that the viability solution
defined through a viable-capture basin is actually the unique solution to
the structured Hamilton-Jacobi equation. This is done by translating the
Frankowska property characterizing a viable-capture basin of a target at the
level of differential inclusions in terms of gradients (or subdifferential) of the
viability solutions.

For simplicity of the exposition, we begin with the assumption that the
viability solution is differentiable, first in the case classical case without via-
bility constraint, easier to formulate, next, under viability constraint, before
dropping the differentiability assumption and proving that the viability solu-
tion is the Barron–Jensen/Frankowska Viscosity Solution (Theorem 13.10.3,
p. 560).

Proposition 13.10.1 [Hamilton–Jacobi Equation without Viability
Constraints] We assume, for simplicity, that the viability solution is
differentiable. We posit the following assumptions:

1. the Lagrangian is Marchaud,
2. ϕ, (d, x, υ) �→ l(d, x; υ) and the set-valued map (d, x) � F (d, x) are

Lipschitz.

Then the viability solution is the unique function V solution to the
Hamilton–Jacobi equation (13.9), p. 530

if V (d, x) < c(d, x), then
〈
∂V (d, x)

∂d
, ϕ(d)

〉
+ l�

(
d, x;

∂V (d, x)
∂x

)
= 0

satisfying conditions V (d, x) ≤ c(d, x).
The regulation map satisfies

if V (d, x) < c(d, x), then RV (d, x) ⊂ ∂pl�
(
d, x;

∂V (d, x)
∂x

)

This is a consequence of the following theorem with state constraints:
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Theorem 13.10.2 [Hamilton–Jacobi Equation with Viability Con-
straints] We assume, for simplicity, that the viability solution is differen-
tiable. We posit the following assumptions:

1. the Lagrangian is Marchaud,
2. ϕ, (d, x, υ) �→ l(d, x; υ) and the set-valued map (d, x) � F (d, x) are

Lipschitz
3. the viability constraint function k is differentiable and satisfies

〈
∂k(d, x)
∂d

, ϕ(d)
〉

+ l�
(
d, x;

∂k(d, x)
∂x

)
≤ 0

Then the viability solution is the unique function V satisfying conditions
(13.10), p. 530

k(d, x) ≤ V (d, x) ≤ c(d, x)

and solution to the Hamilton–Jacobi equation (13.9), p. 530 in the sense
that ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) if k(d, x) < V (d, x) < c(d, x), then〈
∂V (d, x)

∂d
, ϕ(d)

〉
+ l�

(
d, x;

∂V (d, x)
∂x

)
= 0

(ii) if k(d, x) = V (d, x) ≤ c(d, x), then〈
∂V (d, x)

∂d
, ϕ(d)

〉
+ l�

(
d, x;

∂V (d, x)
∂x

)
≤ 0

(13.59)

When k(d, x) < V (d, x), the regulation map satisfies

if k(d, x) < V (d, x) < c(d, x), then RV (d, x) ⊂ ∂pl�
(
d, x;

∂V (d, x)
∂x

)

(13.60)
This formula can be written

if k(d, x) < V (d, x) < c(d, x), then
∂V (d, x)

∂x
∈

⋂
u∈RV (d,x)

∂ul (d, x;u)

(13.61)
and regarded as an extension of the Lax–Oleinik formula to this general
case.

Proof. Actually, we shall derive the equality in formula (13.59), p. 558 from
two inequalities, the first one valid when the Lagrangian is Marchaud, the
second one under the Lipschitz conditions.

1. Since the Lagrangian is Marchaud, so is the set-valued map F defined
by (13.18), p. 534 and, by (13.22), p. 537, the viable-capture basin
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Ep(V ) := Capt(13.10)(Ep(k), Ep(c)) is equal to Capt(13.17)(Ep(k), Ep(c)) =
Capt(13.10)(Ep(k), Ep(c)).
It is then the largest closed subset between Ep(c) and Ep(k), locally viable
in Ep(V ) \ Ep(c) thanks to the Viability Theorem 11.4.6, p. 463, which
also states that, whenever (d, x, V (d, x)) ∈ Ep(V ) \ Ep(c), i.e., whenever
V (d, x) < c(d, x), there exists some υ ∈ Dom(l) such that

(−ϕ(d),−υ,−l(d, x; υ)) ∈ TEp(V )(d, x, V (d, x))

Recall that NEp(V )(d, x, V (d, x)) := T �Ep(V )(d, x, V (d, x)) and that the
subdifferential ∂V (d, x) is the set of (pd, px) such that (pd, px,−1) ∈
NEp(V )(d, x, V (d, x)).
Therefore, we infer that

∀ υ ∈ RV (d, x), ∀ (pd, px) ∈ ∂V (d, x), 0 ≤ 〈pd, ϕ(d)〉 + 〈px, υ〉 − l(d, x; υ)
(13.62)

and thus, that, by taking the supremum over F (d, x) := Dom(l(d, x; ·)),

∀ (pd, px) ∈ ∂V (d, x), 0 ≤ 〈pd, ϕ(d)〉+ l� (d, x; px) (13.63)

2. Since (d, x, υ) �→ l(d, x; υ) and the set-valued map (d, x)� F (d, x) are Lip-
schitz. it is easy to observe that the set-valued map (d, x)� Ep(l(d, x; ·))
is Lipschitz. The viable-capture basin Ep(V ) := Capt(13.10)(Ep(k), Ep(c))
is the smallest closed subset between Ep(c) and Ep(k) backward invariant
relatively to Ep(k).
If we assume that Ep(k) is itself backward invariant, then Ep(V ) is also
backward invariant. It remains to translate properties of the Invariance
Theorem 11.4.6, p. 463 in terms of subdifferentials.
Backward invariance of the epigraph Ep(V ) means that whenever
(d, x, V (d, x)) ∈ Ep(V ), then

∀υ∈F (d, x), ∀(pd, px)∈∂V (d, x), (ϕ(d), υ, l(d, x; υ))∈TEp(V )(d, x, V (d, x))

This amounts to saying that

∀ υ ∈ F (d, x), ∀ (pd, px) ∈ ∂V (d, x), 〈pd, ϕ(d)〉+ 〈px, u〉 − l(d, x;u) ≤ 0

and thus, that

∀ (pd, px) ∈ ∂V (d, x), 〈pd, ϕ(d)〉 + l�(d, x; px) ≤ 0 (13.64)

In the same way, the epigraph of k is backward invariant if

∀ (qd, qx) ∈ ∂k(d, x), 〈qd, ϕ(d)〉 + l� (d, x; qx) ≤ 0
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If k(d, x) < V (d, x) < c(d, x), inequality (13.63), p. 559 and (13.64), p. 559
imply that the viability solution satisfies

∀ (pd, px) ∈ ∂V (d, x), 〈pd, ϕ(d)〉 + l� (d, x; px) = 0 (13.65)

Taking into account that 〈pd, ϕ(d)〉 = −l�(d, x; px) in inequality (13.62),
p. 559, we infer that

∀ υ ∈ RV (d, x), ∀ (pd, px) ∈ ∂V (d, x), 0 ≤ 〈px, υ〉−l� (d, x; px)−l(d, x; υ)

The Legendre property (13.7), p. 529 of the Fenchel transform implies that
this is equivalent to saying that υ ∈ ∂pl�(d, x; px) or that px ∈ ∂lu(d, x;u).
Consequently:

RV (d, x) ⊂
⋂

(pd,px)∈∂V (d,x)

∂pl�(d, x; px)

or, equivalently,
⋃

(pd,px)∈∂V (d,x)

px ⊂
⋂

u∈RV (d,x)

∂ul(d, x;u)

Assuming that V is differentiable, we have proved the formulas (13.59),
p. 558 and (13.60), p. 558 and, consequently, that the viability solution is the
unique solution to the structured Hamilton–Jacobi equation. ��

Under the assumptions of Theorem 13.10.2, p. 557, when the viability
solution V is not differentiable, it is still the unique solution satisfying (13.65),
p. 559:

∀ (pd, px) ∈ ∂V (d, x), 〈pd, ϕ(d)〉 + l� (d, x; px) = 0

Theorem 13.10.3 [Barron–Jensen/Frankowska Viscosity Solu-
tion] We posit the following assumptions:

1. the Lagrangian is Marchaud,
2. ϕ, (d, x, υ) �→ l(d, x; υ) and the set-valued map (d, x) � F (d, x) are

Lipschitz
3. The viability constraint function k satisfies

∀ (qd, qx) ∈ ∂k(d, x), 〈qd, ϕ(d)〉 + l� (d, x; qx) ≤ 0 (13.66)

Then the viability solution is the unique function V satisfying conditions
(13.10), p. 530

k(d, x) ≤ V (d, x) ≤ c(d, x)

and solution to the Hamilton–Jacobi equation (13.9), p. 530 in the sense
that
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⎧⎪⎪⎨
⎪⎪⎩

(i) if k(d, x) < V (d, x) < c(d, x), then
∀ (pd, px) ∈ ∂V (d, x), 〈pd, ϕ(d)〉+ l�(d, x; px) = 0

(ii) if k(d, x) = V (d, x) ≤ c(d, x), then
∀ (pd, px) ∈ ∂V (d, x), 〈pd, ϕ(d)〉+ l�(d, x; px) ≤ 0

(13.67)

which is the very definition of a Barron–Jensen/Frankowska viscosity
solution for lower semicontinuous functions.
Furthermore, when k(d, x) < V (d, x), the regulation map and the subdiffer-
ential of the viability solution with respect to x are related by

⎧⎨
⎩
RV (d, x) ⊂

⋂
(pd,px)∈∂V (d,x) ∂pl

�(d, x; px)
or, equivalently,⋃

(pd,px)∈∂V (d,x){px} ⊂
⋂
u∈RV (d,x) ∂ul(d, x;u)

(13.68)

Remark. The theorem holds true by dropping assumption (13.66), p.
560, but the conclusion translating the property that the epigraph of the
viability solution is backward invariant relatively to the epigraph of k when
V (d, x) = k(d, x) is quite technical and ugly:

{
if k(d, x) = V (d, x) ≤ c(d, x), then ∀ (pd, px) ∈ ∂V (d, x),
inf(qd,qx)∈∂k(d,x)(〈pd − qd, ϕ(d)〉+ l�(d, x; px − qx)) ≤ 0 (13.69)

��



Chapter 14

Regulation of Traffic

14.1 Introduction

The advent of techniques to measure velocities of probe vehicles using GPS
technology, for instance, complementing or replacing fixed sensing infras-
tructures such as density sensors of the road traffic sensors, motivates the
revision of conceptual, mathematical algorithms and software based models
used by the transportation engineering community. Bruce Greenshields used
in 1933 photographic measurement methods for the first time to describe a
phenomenological law described by a quadratic relation between vehicles and
their density and flows, called the fundamental diagram.
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Fig. 14.1 Original 1933 Greenshields’ Fundamental Diagrams. The two first
diagrams are the historical Greenshields’ diagrams.

Later, in the middle of the years 1950, Lighthill, Whitham and Richards,
proposed a partial differential equation (conservation law) with concave flow
function, the solution of which is the density of traffic at each time and at
each position (see Chap. 16, p. 631).
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Fig. 14.2 Fundamental Diagram. The fundamental diagram displays the physical
relation between densities (abscissa) and the flow (ordinate). It increases from zero density

to congestion density, and next decreases until jam density. The figure provides an empirical
example of fundamental diagram.

This attempt to characterize the behavior of congested traffic became the
seminal model for numerous highway traffic flow studies available in the traffic
engineering literature today.

Thirty five years later, Gordon Newell introduced the concept of “cumu-
lative number” of vehicles passing at given position after a given time on a
one-dimensional road, since density was the prevalent concept at the time.
He acknowledged that Karl Moskowitz, an engineer from the California
Department of Transportation who did not bother to publish, used this
concept for some time to investigate properties of traffic.

It is thus convenient to call this specific Hamilton–Jacobi equation the
“Moskowitz equation”. Since data from the sensors can be written as Cauchy
or Dirichlet boundary conditions, they were sufficient to determine a solution
by classical methods.

Next, J.C. Luke and Newell discovered that these cumulative number
functions are solutions to this Moskowitz equation and a variational principle.
Daganzo, who took over these equations for studying them mathematically
in 2004, wrote: “Luke (1973) and Newell (1993) proposed the minimum
operation as a way of selecting the unique and correct value at every point
in space-time without proving it. It should be remembered in this respect that
a “correct”, i.e., physically meaningful, solution of the problem [...]. He also
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wrote in another paper that “The least cost to reach a point is the vehicle
number”.

The “congestion variational principle” discovered by these authors states
that the solution to the Moskowitz equation is the value function of an
optimal control problem minimizing an underlying (and hidden) congestion
functional. This suggests to regard this solution as a congestion function to
stress this property. The minimal congestion evolutions are referred to as
“kinematic waves” in the traffic engineering literature: we shall call them
minimal congestion evolutions to underline their role. Also, we provide and
characterize the minimal congestion regulation map, which is the set of
(optimal) “controls” that minimal congestion evolutions must use to be
“consistent” with the congestion function.

We give the name “celerity” to such a control and explain its role:
this celerity is a form of “macroscopic velocity” attached to the road at
each time and each position providing the optimal velocity that vehicles
should follow for minimizing congestion, but not to a “microscopic velocity”
attached to an arbitrary vehicle (the celerity is not the aggregated velocity
commonly used in traffic flow engineering, which shares also a macroscopic
property). The celerity is derived from the knowledge of the fundamental
diagram and the traffic conditions. However, the celerity becomes the velocity
of the optimal evolution (wave) of a vehicle at this time and at this
position: using at this time and this position this celerity as the velocity,
the minimal congestion regulation map provides the kinematic differential
equation governing the evolution of this minimal congestion evolution. The
celerity informs each driver to use the macroscopic celerity as the microscopic
velocity allowing each driver. The celerity provided in a centralized way by
the minimal congestion regulation map is used in a decentralized way as
vehicle velocities to govern minimal congestion evolutions consistent with
the minimal congestion function.

The issue became radically different when the traffic conditions are no
longer classical boundary conditions, but are given along trajectories of probe
vehicles in the interior of the domain: they are called “Lagrangian” conditions.

The Lagrangian data situation is even more complicated because the
density measurements by fixed sensors have to be replaced by measurements
of the velocities of vehicles provided by sensors only on subsets of their
trajectories.

However, the other mathematical information obtained with the nature of
the Lagrangian data involved is the Fenchel transform (see Definition 18.7.2,
p.756) of the fundamental diagram. It is a convex decreasing function
mapping maximum celerity to zero flow and null celerity to maximum flow.
Its graph can be considered as a dual “celerity diagram”, the fundamental
diagram being regarded as a “density diagram”.

The partial derivatives with respect to time and positions of the congestion
function are interpreted respectively as the flow (or flux) of the traffic
and its density. Hence the congestion function can be interpreted either as
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the Moskowitz–Newell cumulated number function, since it also measures
the cumulated number of vehicles ahead of position x at time t, or the
number of vehicles at position x before the time t, or the congestion of a
given evolution on an interval, as well as many other interpretations, as we
shall see in Lemma 14.2.2, p.567.

In this Chapter, we present both what could be called the density paradigm
and the celerity paradigm.

The density paradigm is convenient whenever traffic is measured by
densities, and naturally yields a congestion function as a solution to the
Moskowitz partial differential equation, with initial and boundary conditions.

The celerity paradigm is mandatory whenever traffic is measured by
celerities (traffic velocities), and naturally yields the congestion function as
the value function of an optimal control problem on the evolutions and its
velocities.

These two are equivalent, but these two dual approaches provide different
sets of results. Viability theory and viability algorithms provide at the same
time, and for free, both the macroscopic or centralized congestion function and
the minimal congestion regulation map. Consequently, it dictates the optimal
evolutions of each vehicle minimizing congestion.

In a nutshell, the viability approach provides the following results:

1. knowing the celerity diagram, calculated either through an empirical
fundamental density diagram or directly through an empirical celerity
diagram,

2. knowing the evolution of a finite number of probe vehicles,
3. the viability algorithms provide the minimal congestion regulation map,

indicating to each vehicle, passing at given time through a given position,
the velocity they must choose for minimizing congestion.

Knowing this minimal congestion regulation map, it is possible to recon-
struct minimal congestion evolutions of vehicles, to compute their trajecto-
ries, to calculate their travel time, etc.

14.2 The Transportation Problem and its Viability
Solution

We consider a single lane road where vehicles cannot pass each other. It is
represented by an interval [γ, γ]. We can also choose ]−∞,+∞[.

Definition 14.2.1 [Traffic Function, Density and Flux] A differen-
tiable congestion function V : (t, x) �→ V (t, x) is a function where the first
derivatives with respect to time and to position are respectively regarded as
a flow (or a flow) and a density:
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flow =
∂V (t, x)

∂t
and density = −∂V (t, x)

∂x

When the congestion function is not differentiable, one can still define
generalized gradients (pt, px) ∈ ∂−V (t, x) representing pairs of flows and
densities at (t, x). For any time t, the function V (t, ·) : x �→ V (t, x) is
called the traffic profile at time t.

Thus the congestion function has different physical interpretations:

Lemma 14.2.2 [Physical Interpretations of the Congestion Func-
tion] Knowing a congestion function (t, x) �→ V (t, x), assumed to be
differentiable for simplicity, we infer that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (t, x) − V (t, γ) := −
∫ γ

x

∂V (t, ξ)
∂x

dξ

is the incremental congestion on the interval [x, γ] at time t
representing the “cumulated vehicle count” after position x”

V (t, x) − V (d, x) :=
∫ t

d

∂V (τ, x)
∂t

dτ

is the incremental congestion on the interval [d, t] at position x

V (t, x) − V (d, ξ(d)) :=
∫ t

d

dV (τ, ξ(τ))
dt

dτ

is the incremental congestion on the interval [d, t]
along an evolution ξ(·) arriving at x at time t: ξ(t) = x

Congestion functions are decreasing functions of position and increasing
functions of time, because, the shorter the time and the farther the distance,
the smaller the number of cumulated vehicles, since they cannot pass each
other.

Actually, we shall impose two types of conditions on the congestion
function, a phenomenological law proposed by Greenshields, on one hand,
and conditions on the congestion functions provided by several types of
sensors (Eulerian for fixed sensors, Lagrangian for mobile ones). Instead of
the conservation law (see Chap. 16, p.631) proposed by Lighthill, Whitham
and Richards in the 1950s under the name of “LWR partial differential
equation” providing the traffic density, we study here its Hamilton–Jacobi
version providing the traffic congestion suggested by Moskowitz:

1. The “Fundamental Diagram” Lighthill, Whitham and Richards con-
servation law and Moskowitz’s Hamilton–Jacobi equation assume that at

(t, x), the traffic density −∂V (t, x)
∂x

and the flow
∂V (t, x)

∂t
of the congestion

function are related by the “fundamental diagram”.
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Definition 14.2.3 [The Fundamental Diagram] The fundamental
density diagram of transportation engineering is the graph Graph(h) of
a density-flow function h associating with each density a flow. This
graph is, in practice, empirically measured. The function h is the
“Hamiltonian” governing the evolution of the congestion function through
the Moskowitz partial differential equation

∂V (t, x)
∂t

= h
(
−∂V (t, x)

∂x

)

2. Traffic Conditions
Traffic conditions are prescribed by functions c : (t, x) �→ c(t, x) ∈ R+ ∪
{+∞}, with which we associate the traffic domain map t � C(t), which
is the set-valued map defined by

C(t) := {x such that c(t, x) < +∞} (14.1)

because the subset C(t) is the domain of the traffic profile x �→ c(t, x)
(which is thus finite for all x ∈ C(t)).
Traffic conditions require that

∀ x ∈ C(t), V (t, x) ≤ c(t, x) (14.2)

These general traffic conditions cover the following classical and less
classical examples:

a. Dirichlet boundary conditions defined on the boundary of the domain.
In this case, we set c(0, x) := γ0(x) and c(t, x) = +∞ whenever t > 0.
Hence C(0) = Dom(γ0) and C(t) = ∅,

b. Eulerian conditions measuring at each time the cumulative number of
vehicles at fixed locations,

c. Lagrangian “mobile” conditions measuring few vehicle evolutions t �→
γi(t) during some time intervals ]τ i, τ i] (by tracking probe vehicles).
In the case of a finite number of Lagrangian conditions, C(t) =⋃
i such that τi≤t≤τi

{γi(t)} and the traffic condition c(t, γi(t)) is defined
on the graphs (t, γi(t))t≥0 of the evolution of each vehicle i.

The traffic condition c is assumed to be decreasing with position and
increasing with time. It can be used for labelling vehicles in a given position
at a given time.
For initial conditions, the profile x �→ c(0, x), regarded as a cumulative
number count after x, is a decreasing function which is usually for labelling
vehicles and track their future.
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For a fixed position x, the function t �→ c(t, x) measures the congestion of
a vehicle at position x before time t provides a complementary label of a
vehicle at position x departing at time t.

Definition 14.2.4 [Canonical Labelling of a Probe Vehicle]
Knowing

a. the evolution t �→ γ(t) of a probe vehicle on an interval [d, T ] where
t ≥ d ≥ 0 and its velocity t �→ γ′(t);

b. a traffic condition (t, x) �→ c(t, x) assumed to be decreasing with
position and increasing with time,

c. the Lagrangian l defining the celerity diagram,

the traffic function (t, x) �→ cγ(·)(t, x) assigned to the evolution of the
probe vehicle γ(·) on the interval [d, T ] by the formula
{

cγ(·)(t, γ(t)) := c(d, γ(d)) + max
(
0,
∫ t
d l(γ′(τ)dτ)

)
if x = γ(t)

+∞ if x �= γ(t)
(14.3)

provides a Lagrangian traffic condition decreasing with position and
increasing with time assigned to the probe vehicle.

This definition is in accordance with Daganzo’s quotation “The least cost
to reach a point is the vehicle number”.
We shall deduce from Theorem 14.4.2, p.581 that the viability solution
(see Definition 14.4.1, p.580) that the congestion function Vγ(·) associated
with the traffic condition cγ(·) satisfies the Lagrangian condition

∀ t ∈ [d, T ], Vγ(·)(t, γ(t)) = cγ(·)(t, γ(t))

We observe that

a. if T = d, i.e., if the position γ(d) of the probe vehicle is observed only
at departure time d, then

cγ(·)(d, γ(d)) = c(d, γ(d))

b. If the probe vehicle is stationary for t ≥ d, then

cγ(·)(t, γ(d)) = c(d, γ(d)) + δt

where δ = l(0) is the maximal flow.
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3. The Moskowitz Problem

Definition 14.2.5 [The Moskowitz Problem] The complete model
takes into account the two above requirements on the congestion function
V : ⎧⎨

⎩
(i) ∀ t > 0, ∀ x /∈ C(t), h

(
−∂V (t, x)

∂x

)
=

∂V (t, x)
∂t

(ii) ∀ t > 0, ∀ x ∈ C(t), V (t, x) ≤ c(t, x)
(14.4)

Even though some hard work for translating viability theorems in terms
of partial differential equation is needed, the link between the concept of
solution to the Moskowitz problem and capture basins allows us to prove the
following properties of the congestion function V . We shall prove that the
congestion function is a solution to the Moskowitz problem (14.4), p. 570
in a weak sense (viability solution) and “provides” the minimal congestion
regulation map. Next, we shall prove that the congestion function V satisfies
the following properties

• It is lower semicontinuous and is given by the Lax–Hopf formula (Theo-
rem 14.4.3, p.583);

• It is the value function of a variational problem (Theorem 14.4.2, p.581);

In addition, the following properties hold:

• There exist minimal congestion evolutions satisfying the dynamic pro-
gramming equations (Theorem 14.4.4, p.583);

• The domain of the congestion function V is characterized by an explicit
formula (Theorem 14.4.5, p.584);

• The congestion function associated with a traffic condition which is the
minimum of a finite family of traffic conditions is the minimum of the con-
gestion functions associated with each traffic condition (Theorem 14.7.1,
p.595);

• If the traffic condition is decreasing in position and increasing in time,
so is the congestion function V . If the traffic evolutions involved in
the Lagrangian conditions are increasing, so are the minimal congestion
evolutions (Theorem 14.7.2, p.596).

For Cauchy and Lagrangian traffic conditions, the congestion function V
can be expressed analytically and estimated below and above. Furthermore,
the viability algorithms allow us to compute the congestion function and to
regulate optimal evolutions.
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14.3 Density and Celerity Flux Functions

In the Moskowitz framework, the Hamiltonian h : R �→ R is the concave
density flow function the graph of which is called the “fundamental diagram”.
We shall classify them according to characteristic parameters (ν�, ν�, ω, δ)
where

• at null density p = 0, the flow is equal to h(0) = 0 and the celerity
h′(0) := ν� ≥ 0, or, in the non differentiable case, ν� ∈ ∂+h(0),

• at jam density p = ω, the flow is again equal to 0 and the celerity h′(ω) :=
−ν� where ν� ≥ 0, or, in the non differentiable case, −ν� ∈ ∂+h(ω),

• the maximal flow δ := maxp∈[0,ω] h(p).

The interval [β�, β�] where h(p) = δ of densities on which the flow functions
reaches its maximum is called the critical density interval. If β� = β�, then
the common value is denoted by β := β� = β� and called the critical density.

Definition 14.3.1 [Flux Function] We associate with scalars ν� ≥
0, ν� ≥ 0, ω > 0 and δ > 0 the class of flow functions h : R �→ R

associated with those parameters which is any concave function h satisfying
⎧⎨
⎩

h(p) := ν�p if p ∈]−∞, 0]
h(p) ∈ [0, δ] if p ∈ [0, ω]
h(p) := ν�(ω − p) if p ∈ [ω,+∞[

(14.5)

and {
(i) h(0) = 0 and h′(0) = ν�

(ii) h(ω) = 0 and h′(ω) = −ν� (14.6)

For solving the Moskowitz problem by viability techniques, we add to the
concepts of density and flow the concept of “celerity”. It has the dimension
(in the physical sense) of a velocity, measuring, so to speak, the macroscopic
velocity of the traffic. Here, the density and celerity are regarded as “dual
variables”. Their product, a flow, plays the role of duality product, as in
mechanics, where position and velocity are dual variable the duality product
of which is the power, or, in economics, commodity and price are dual variable
the duality product of which is the value of the commodity.

Definition 14.3.2 [The Celerity Diagram] The celerity diagram is the
celerity-flow function l defined by
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∀ u, l(u) := sup
p

[h(p)− 〈p, u〉] (14.7)

Its graph Graph(l) is called the fundamental celerity diagram.

Fig. 14.3 Fundamental density Diagram.

Illustration of the concept of celerity, here, the derivative of the Hamiltonian,
for densities at density equal to 0, to A, at critical density β and at jam
density ω. The supremum δ of the Hamiltonian is the maximal flow.

We recall that the introduction of the celerity function is “mathematically”
natural in the framework of duality theory in mechanics, in economics and
in convex analysis (see Sect. 18.7, p. 755). The Fenchel Theorem 18.7.3,
p.756, states that there exists a bijective correspondence between lower
semicontinuous convex functions defined on a vector space and their
conjugate functions defined on the dual. Here, there is a slight adaptation
to perform, since the Hamiltonian h is concave and the Lagrangian l is
convex. But the adaptation to this situation, tedious as it is, poses no
problem: the following statements adapt the ones of Sect. 18.7, p. 755 to our
specific case: conjugate functions are defined in Definition 18.7.2, p.756 and
subdifferential in Definition 18.7.5, p.758. Fenchel Theorem 18.7.3, p.756 and
Theorem 18.7.7, p.759 on the Legendre property of subdifferential of convex
functions and their conjugate imply

Lemma 14.3.3 [Celerity and Density Flux Functions] Assume
that the Hamiltonian h is concave and upper semicontinuous. Then its
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Lagrangian l defined by (14.7), p. 572

∀ u, l(u) := sup
p∈Dom(h)

[h(p)− 〈p, u〉]

is lower semicontinuous and convex. The Hamiltonian is related to the
Lagrangian by the relation

∀ p, h(p) = inf
u∈Dom(l)

[l(u) + 〈p, u〉] = −l�(−p) (14.8)

so that the Fenchel inequality

∀ u, ∀ p, 〈p, u〉 ≤ l(u)− h(−p)

always holds true. Furthermore, u achieves the minimum in the minimiza-
tion problem h(p) = l(u)+〈p, u〉 if and only if u ∈ ∂+h(−p) and p achieves
the maximum in l(u) := h(p)− 〈p, u〉 if and only if p ∈ ∂−l(u). The three
following statements are thus equivalent:

⎧⎨
⎩

(i) 〈p, u〉 ≥ l(u)− h(−p)
(ii) u ∈ ∂+h(−p)
(iii) p ∈ ∂−l(u)

(14.9)

Moreover, whenever hi is upper semicontinuous and concave (or li is lower
semicontinuous and convex), i = 1, 2, then

h1 ≤ h2 if and only if l1 ≤ l2

Proof. This lemma is a consequence of Theorems 18.7.3, p.756 and 18.7.7,
p.759. ��

Therefore, since h(p) = −l�(−p), the traffic solution V enjoys all the
property of the solutions to Hamilton–Jacobi equations investigated in
Chap. 13, p.523, when the causal variable is the time t ∈ R+.

Before “translating” them in this framework, we investigate the properties
of these density and celerity flow functions.
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Examples of Density and Celerity Flux Functions

Before proving the properties of the density and flow functions summarized
in Proposition 14.3.5, p.578, we need to single out two main classes of
examples of flow functions, one empirical, made of (non differentiable)
trapezoidal density flow functions, the other, theoretical, the Greenshields
quadratic one, less realistic but more commonly used because of its simple
analytical properties.

1. Trapezoidal Flux and Celerity Functions.
In this example, we fix the following data: the celerities ν� ≥ 0 and ν� ≥ 0,

the jam density ω, and a maximal flow 0 ≤ δ ≤ δ where δ :=
ων�ν�

(ν� + ν�)
.

Fig. 14.4 Fundamental Trapezoidal and Greenshields Diagrams.

Left: This diagram displays the graphs of the trapezoidal, triangular, jam
density and infinite congestion flow functions and other flow functions
h(α�,α�,ω,δ) between the jam and triangular celerity functions. Right: The
Greenshields fundamental diagram and its “trapezoidal envelope” are
displayed.

Proposition 14.3.4 [Trapezoidal Flux and Celerity Functions]
Let us consider the trapezoidal density flow function h(ν�,ν�,ω,δ) defined
by

h(ν�,ν�,ω,δ)(p) :=

⎧⎨
⎩
ν�p if p ≤ β�

δ if p ∈ [β�, β�]
ν�(ω − p) if p ≥ β�

(14.10)

Its lower and upper critical densities are defined by

β� :=
δ

ν�
and β� :=

ν�ω − δ

ν�
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The trapezoidal celerity flow function l(ν�,ν�,ω,δ) associated with the
trapezoidal flow function is equal to

l(ν�,ν�,ω,δ)(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ

ν�
(ν� − u) if u ∈ [0, ν�]

δ − ων� − δ

ν�
u if u ∈ [−ν�, 0]

+∞ if u /∈ [−ν�, ν�]

(14.11)

It is piecewise affine (affine on [−ν�, 0] and [0,+ν�]) and satisfies
l(+ν�) = 0, l(0) = δ and l(−ν�) = ων�.

Fig. 14.5 Celerity Functions of Trapezoidal and Greenshields Diagrams.

This diagram displays the graphs of the trapezoidal, triangular, jam
density and increasing triangular congestion flow functions l(ν�,ν�,ω,δ).
Abscissas denote the celerity, ordinates the flow.
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Proof. For simplicity, we set h(p) := h(ν�,ν�,ω,δ)(p) and l(u) :=

l(ν�,ν�,ω,δ)(u). Remembering the values of the critical densities β� =
δ

ν�

and β� =
ν�ω − δ

ν�
, the definition of the celerity function implies that

{
l(u) := supp [h(p)− 〈p, u〉] = max

(
supp≤β�

[〈
p, ν� − u

〉]
,(

supp∈[β�,β�] [δ 〈p, u〉]
)
,
(
supp≥β�

[〈
p, ν� + u

〉]
+ ων�

))

Then, we infer that

a. the first term is infinite if ν�−u < 0 and equal to β�(ν�−u)=
δ

ν�
(ν� − u)

in the opposite case when u ≤ ν�,
b. the second term is equal

• if u ≥ 0, to δ − uβ� =
δ

ν�
(ν� − u)

• if u ≤ 0, to δ� + uβ� = δ − ων� − δ

ν�
u

c. the third term is infinite if u+ ν� < 0 and equal to β�(ν� − u) + ων� =

δ − ων� − δ

ν�
u in the opposite case when u ≥ −ν�.

We then deduce formula (14.11), p. 575. ��

We single out several particular cases:

a. Triangular Flux Function.

It is obtained when we choose the maximal flow δ :=
ων�ν�

(ν� + ν�)
. In this

case, lower and upper critical densities collapse to the critical density

β :=
ων�

(ν� + ν�)
and we recover the triangular flow function as the largest

trapezoidal flow:

h(ν�,ν�,ω,δ)(p) =
{
ν�p if p ≤ β

ν�(ω − p) if p ≥ β

the conjugate function of which is defined by

∀ u ∈ [−ν�,+ν�], l(ν�,ν�,ω,δ)(u) =
ων�

(ν� + ν�)
(ν� − u)

b. Increasing Congestion Triangular Flux Functions.
They are obtained when ω := +∞, ν� = 0, and thus defined by
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h(ν�,0,+∞,δ)(p) :=

⎧⎪⎨
⎪⎩
ν�p if p ∈]−∞,

δ

ν�
[

δ if p ∈ [
δ

ν�
,+∞]

the celerity function of which is defined by

∀ u ∈ [0, ν�], l(ν�,0,+∞,δ)(u) =
δ

ν�
(ν� − u)

c. Symmetrical Trapezoidal Flux Functions.
They are examples of the trapezoidal functions associated with a celerity
ν:

h(ν,ν,ω,δ)(p) =

⎧⎨
⎩
νp if p ≤ δ

ν

δ if p ∈ [ δν , ω −
δ
ν ]

ν(ω − p) if p ≥ ω − δ
ν

(14.12)

the celerity function of which being equal to

l(ν,ν,ω,δ)(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ

ν
(ν − u) if u ∈ [−0, ν]

δ − ων + δ

ν
u if u ∈ [−ν, 0]

+∞ if u /∈ [−ν,+ν]

Hence l(ν,ν,ω,δ)(ν) = 0, l(ν,ν,ω,δ)(0) = δ and l(ν,ν,ω,δ)(−ν) = νω.
d. Jam Flux Function.

It is the other extreme case when we take δ := 0, where all densities are
jam densities, i.e., the lower and upper critical densities are the bounds
of the density interval β� = 0 and β� = ω. We obtain the jam flow
function:

∀ p ∈ [0, ω], h(ν�,ν�,ω,0)(p) = 0

the celerity function of which is defined by

∀ u ∈ [−ν�,+ν�], l(ν�,ν�,ω,0)(u) = max(0,−ωu)

The particular case δ :=
ων

4
allows us to compare this particular symmet-

ric trapezoidal function with the quadratic flow function introduced by
Greenshields :

2. Greenshields Flux Function.
It is defined by

h(p) =

⎧⎪⎨
⎪⎩
νp if p ≤ 0
ν

ω
p(ω − p) if p ∈ [0, ω]

ν(ω − p) if p ≥ ω

The Greenshields flow h reaches its maximum at critical density β :=
ω

2
and is equal to δ := νω

4 . Its celerity function is equal to
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l(u) =

{ ω

4ν
(ν − u)2 if u ∈ [−ν,+ν]
+∞ if u /∈ [−ν,+ν]

Hence l(−ν) = 0, l(0) = ων
4 and l(−ν) = νω (compare with the

corresponding trapezoidal function defined by (14.12), p. 577). ��

The density and celerity flow functions l associated with the parameters
ν� ≥ 0, ν� ≥ 0, ω > 0, δ > 0 share common properties:

Proposition 14.3.5 [Celerity Functions] Let h be a concave density
flow function associated with the parameters ν� > 0, ν� ≥ 0, ω > 0, δ ≤ δ.
Then the associated convex celerity flow function l satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ l(u) ≤ ων�

(ν� + ν�)
(ν� − u) if u ∈ [0, ν�]

−ωu ≤ l(u) ≤ ων�

(ν� + ν�)
(ν� − u) if u ∈ [−ν�, 0]

+∞ otherwise

Therefore the function u �→ l(u) is decreasing (on its domain), satisfies

0 = l(ν�) ≤ max(0,−ωu) ≤ l(u) ≤ ων�

(ν� + ν�)
(ν� − u) ≤ l(−ν�) = ων�

and the function u �→ l(u)
|u| is decreasing on the interval [0, ν�[, increasing

on the interval [−ν�, 0[, and, consequently, satisfies
⎧⎪⎪⎨
⎪⎪⎩

0 =
l(ν�)
ν�

≤ l(u)
|u| if 0 < u ≤ ν�

ω =
l(−ν�)
ν�

≤ l(u)
|u| if −ν� ≤ u < 0

Furthermore, l(0) = supp h(p) = δ is the maximal flow and its subdifferen-
tial ∂l(0) is its critical interval.

Proof. Proposition 14.3.4, p. 574 implies that the lower and upper bounds
on h satisfy

h(ν�,ν�,ω,0)(p) ≤ h(p) ≤ h(ν�,ν�,ω,δ)(p)

We infer from the definition that
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max(0,−ωu) = l(ν�,ν�,ω,0)(u) ≤ l(u) ≤ l(ν�,ν�,ω,δ)(u) =
ων�

(ν� + ν�)
(ν�−u)

by (14.11), p. 575 with δ := 0 and δ := δ respectively.
Since h(0) = 0 and ν� = h′(0) (or ν� ∈ ∂+h(0)), we deduce from

Lemma 14.3.3, p.572 that for all u,
〈
0, ν�

〉
= h(0) − l(ν�) ≥ h(0) − l(u),

which boils down to 0 = l(ν�) = infu l(u). In the case when ω > 0 and ν� > 0
are strictly positive and finite, conditions h(ω) = 0 and −ν� = h′(ω) (or
−ν� ∈ ∂+h(ω)) imply that

〈
−ν�, ω

〉
= h(ω)− l(−ν�) and ∀ u ∈ [−ν�, ν�], 〈ω, u〉 ≥ h(ω)− l(u) = −l(u)

which can be written

ν�ω = l(−ν�) and ∀ u ∈ [−ν�, ν�], −ωu ≤ l(u)

Since 0 = l(ν�) ≤ l(u) and since l is convex, we deduce that l is decreasing:
take any u ∈ [−ν�, ν�] andw := αu+(1−α)ν� ∈ [u, ν�] for α ∈ [0, 1]. Therefore
l(w) ≤ αl(u) + (1− α)l(ν�) = αl(u) ≤ l(u). Hence, if w ≥ u, l(w) ≤ l(u).

Since l is positive, then, for any u ∈ [0, ν�[, we observe that

0 =
l(ν�)
ν�

≤ l(u)
|u| . On the other hand, for any u ∈] − ν�, 0], we deduce from

inequalities −ωu ≤ l(u) that, by dividing by |u| > 0, ω =
l(−ν�)
ν�

≤ l(u)
|u|

since u ≤ 0.

It is actually easy to check that the function u �→ l(u)
|u| is decreasing on the

interval [0, ν�[ and increasing on the interval [−ν�, 0[. ��

14.4 The Viability Traffic Function

The celerity function plays the role of a Lagrangian, as the fundamental
diagram played the role of an Hamiltonian, in the sense that we associate
with partial differential equation (14.4)(i), p. 570 and the celerity function l
the characteristic system

{
(i) τ ′(t) = −1
(ii) (x′(t), y′(t)) ∈ −Ep(l) (14.13)

controlled by celerities u(·).
We take for environment K := R+ × [γ, γ]× R and for target C := Ep(c)

for finite roads or K := R+ × R+ × R.
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Definition 14.4.1 [Congestion Function as Viability Solution to
the Moskowitz Problem] Let us consider the epigraph Ep(c) of the traffic
condition c. The congestion function (associated with the traffic condition
c) V (or Vc when the reference to the traffic condition is useful) to the
Moskowitz problem (14.4), p. 570 defined by the following formula

V (T, x) := inf
(T,x,y)∈Capt(14.13)(R+×R×R,Ep(c))

y (14.14)

is called the congestion function.

We shall recall that the congestion function, when it is differentiable, is
a solution to the Moskowitz equation satisfying the traffic conditions. Oth-
erwise, when it is not differentiable, but only lower semicontinuous, we can
give a meaning to a solution as a solution in the Barron–Jensen/Frankowska
sense, using for that purpose subdifferential of lower semicontinuous functions
defined in non-smooth analysis. This is not important for two reasons: all
other properties of congestion functions that are proven in this Chapter
are derived directly from the properties of capture basins without using
the concept of derivatives, usual or generalized. Derivatives are used only
in the last section, for constructing the minimal congestion regulation
map providing the kinematic differential inclusion governing the evolutions
minimizing the congestion.

Making the above definition explicit, one can prove that the viability
congestion function satisfies the congestion variational principle for the
Moskowitz problem (14.4), p. 570.

We regard d ∈ [0, T ] as a departure time, the associated travel time being
equal to s := T−d. We consider the family A(d, T ;x) of absolutely continuous
traffic evolutions ξ(·) starting at departure time d at ξ(d) ∈ C(d) and arriving
at time T at x. We assign to such a traffic evolution two “traffic values”:

• the departure traffic value c(d, ξ(d)) at the state ξ(d) at departure time d,

• the cumulated celerity traffic value
∫ T

d

l(ξ′(τ))dτ on the celerity ξ′(·) of

the evolution ξ(·) ∈ A(d, T ;x) on the interval [d, T ].

We associate with each departure time d ∈ [0, T ] the minimal travel traffic
value over the traffic evolutions ξ(·) ∈ A(d, T ;x) defined on the travel interval
[d, T ], defined by
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J(d, T ;x) := inf
ξ(·)∈A(d,T ;x)

(∫ T

d

l(ξ′(τ))dτ + c(d, ξ(d))

)

Fig. 14.6 Viability Solution.

The figure illustrates Definition 14.4.1, p.580 of the viability solution for
a Lagrangian condition t �→ c(t, γ(t)) defined on a nominal t �→ γ(t) in
the case when ν� = 0. Its epigraph is the capture basin of the epigraph of
the Lagrangian condition under system (14.13), p. 579, which is mentioned
in the figure. The point (T, x, y) + (−1,−u,−l(u)) is represented as well

as the element

(
T − t�, x−

∫ t�

0

u(τ)dτ, y −
∫ t�

0

l(u(τ))dτ

)
∈ Ep(c) where

an evolution reaches the epigraph of the Lagrangian condition. By taking
y := V (T, x) and changing the direction of the arrow, we obtain an evolution
starting from the Lagrangian condition and minimizing the cumulated
congestion. The domain t � [γ(0), γ(0) + tν�] of the viability solution is
represented.

Theorem 14.4.2 [Congestion Variational Principle] The viability
congestion function V (t, x) to the traffic problem (14.4), p. 570 minimizes
the travel traffic value with respect to departure time d and evolutions
ξ(·) ∈ A(d, T ;x):

{
V (T, x) = infd∈[0,T ] J(d, T ;x)
= infd∈[0,T ] infξ(·)∈A(d,T ;x)

(∫ T
d l(ξ′(τ))dτ + c(d, ξ(d))

) (14.15)

Alternatively, one can formulate this variational principle in terms of the
celerity u(·) instead of traffic evolutions ξ(·) ∈ A(d, T ;x): V (T, x) =
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inf
u(·)∈L1(0,T ;Dom(l)), t�∈[0,T ]

(∫ t�

0

l(u(τ))dτ + c

(
T − t�, x−

∫ t�

0

u(τ)dτ

))

(14.16)

Fig. 14.7 Optimal Evolutions.

The figure displays an optimal evolution minimizing the intertemporal
optimization arriving at a given position at a given time. The 3D curve
represents the graph of the traffic (or congestion) function V (t, x). Knowing
the arrival time and position, at departure time, the regulation rule of the
microsystem provides the initial position and the velocities of the optimal
evolution, and thus, the departure position.

Proof. This is a consequence of Theorem 13.4.2, p.533 when h(p) := −l�(−p)
and when the structuring variable is the time d = −t ∈ R+. ��

For proving that there exists a minimal congestion evolution achieving the
minimum in the congestion function, we need to prove that the congestion
function is lower semicontinuous, i.e., that the capture basin Capt(14.13)(R+×
R×R, Ep(c)) characterizing it is closed. This will be easier to prove thanks to
the Lax–Hop formula, which also provides a simpler formula of the congestion
function.

The independence of the Hamiltonian h(p) on (t, x) and the convexity
of the celerity function imply the Lax–Hopf formula for partial differential
equations.
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Theorem 14.4.3 [The Lax–Hopf Formula for the Viability Traffic
Function] Assume that the Hamiltonian h is a flow function defined in
Definition 14.3.1, p.571. Then the viability congestion function is lower
semicontinuous and is given by the following formula:

V (T, x) = inf
d∈[0,T ]

inf
ξ∈C(d)

[
c (d, ξ) + (T − d)l

(
x− ξ

T − d

)]
(14.17)

which can be written in the following form:

V (T, x) = inf
s∈[0,T ]

inf
u∈Dom(l)

[c (T − s, x− su) + sl(u)] (14.18)

Proof. This is a consequence of Theorem 13.9.1, p.554 when h(p) := −l�(−p)
and when the structuring variable is the time d = −t ∈ R+. ��

The traffic solution satisfies the dynamic programming equation:

Theorem 14.4.4 [The Dynamic Programming Equation] Assume
that the Hamiltonian h is a flow function defined in Definition 14.3.1, p.571.
There exists an optimal departure date d� reaching the minimum in

V (T, x) = J(d�, T ;x) = inf
d∈[0,T ]

J(d, T ;x)

and a minimal congestion evolution ξ�(·) := ξ�(T,x)(·) ∈ A(d�, T ;x)(·)
achieving the minimum

V (T, x) = J(d�, T ;x) = c(d�, ξ�(d�)) +
∫ T

d�

l(ξ�
′
(τ)dτ (14.19)

Such optimal date and evolution satisfy the dynamic optimality property

∀ s ∈ [d�, T ], V (T, x) = V (s, ξ�(s)) +
∫ T

s

l(ξ�
′
(τ)dτ (14.20)

Furthermore, on minimal congestion evolutions ξ�(·),

the function t : [d�, T ] �→ V (t, ξ�(t)) is increasing

Proof. This is a consequence of Theorem 13.5.2, p.539. ��
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The question arises to know precisely the domains Dom(V (t, ·)) of the
traffic profiles, i.e., the set of states x such that V (t, x) < +∞: we shall prove
that it is couched in terms of the set-valued map C:

Theorem 14.4.5 [Domain of the Viability Traffic Function] Assume
that the Hamiltonian h is a flow function defined in Definition 14.3.1, p.571.
For any t ≥ 0, the domains of the traffic profiles V (t, ·) associated with the
traffic condition c are equal to

Dom(V (t, ·)) =
⋃

s∈[0,t], u∈Dom(l)

(C(t− s) + su) (14.21)

If we assume furthermore that C satisfies

∀ t ≥ 0, C(t) ⊂ C(0) + tDom(l) (14.22)

then
Dom(V (t, ·)) = C(0) + tDom(l) (14.23)

Proof. This statement follows from Theorem 13.9.2, p.555. ��

14.5 Analytical Properties of the Viability Traffic
Functions

We derive from properties of the density flow functions associated with
parameters ν� ≥ 0, ν� ≥ 0, ω > 0, δ > 0 exposed in Proposition 14.3.5,
p. 578 the following statements:

• lower and upper estimates of the viability congestion function to the
Moskowitz problem (14.4), p. 570,

• the domains of the traffic profiles x �→ V (t, x), which are proven to be
equal to C(0)+t[−ν�, ν�] whenever we assume that for every t ≥ 0, C(t) ⊂
C(0) + t[−ν�, ν�]

expressed only in terms of the traffic condition c, its associated set-valued
map C and the four characteristic parameters ν� ≥ 0, ν� ≥ 0, ω > 0 and δ>0.
They are consequently valid for any density flow function h associated
those parameters. The Lax–Hopf formula provides a simpler formula of the
congestion function, but we may need more information about the upper
and lower bounds of the traffic conditions, which are more precise forms of
“Theorems of Maximum” in the partial differential equation literature.
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Proposition 14.5.1 [Estimates of the Moskowitz Function] Let us
associate with the function c and parameters ν� ≥ 0, ν� ≥ 0, ω > 0 and
δ > 0 the following subset

E(t, x) :=
{
(s, u) ∈ [0, t]× [−ν�,+ν�] such that x ∈ C(t− s) + su

}
(14.24)

Hence the viability congestion function to Moskowitz traffic problem (14.4),
p. 570 is given by

V (t, x) := inf
(s,u)∈E(t,x)

[c(t− s, x− su) + sl(u)] (14.25)

Let us set

c(t, x) := inf
(s,u)∈E(t,x)

(c(t− s, x− su) + max(0,−sωu))

and

c(t, x) := inf
(s,u)∈E(t,x)

(
c(t− s, x− su) + s

ων�

(ν� + ν�)
(ν� − u)

)

Then, the viability congestion function V satisfies the estimates

c(t, x) ≤ V (t, x) ≤ c(t, x) (14.26)

Proof. Since the celerity flow function l satisfies

max(0,−ωu) ≤ l(u) ≤ ων�

(ν� + ν�)
(u− ν�)

thanks to Proposition 14.3.5, p. 578, then inequality c(t, x) ≤ V (t, x) ≤
c(t, x) is straightforward from Lax–Hopf formula. ��

Remark. Observe that

1. the lower estimate

inf
(s,u)∈E(t,x)

c(t− s, x− su) ≤ c(t, x)

holds,
2. the lower estimate c is the solution to the Moskowitz problem (14.4), p. 570

when the Hamiltonian is the jam flow function h defined by:

∀ p ∈ [0, ω], h(ν�,ν�,ω,0)(p) = 0
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the conjugate function of which is defined by

∀ u ∈ [−ν�,+ν�], l(ν�,ν�,ω,0)(u) = max(0,−ωu)

3. the upper estimate c is the solution to the Moskowitz problem (14.4),
p. 570 when the Hamiltonian h is the triangular density flow function

h(ν�,ν�,ω,δ)(p) =
{
ν�p if p ≤ β

ν�(ω − p) if p ≥ β

the conjugate function of which is the celerity flow function defined by

∀ u ∈ [−ν�,+ν�], l(ν�,ν�,ω,δ)(u) =
ων�

(ν� + ν�)
(uν� − u)

4. by taking the values 0, −ν� and ν�, we obtain the further estimate

c(t, x) ≤ min

⎡
⎢⎢⎢⎢⎣

inf
(s,ν�)∈E(t,x)

c(t− s, x− sν�),

inf
(s,0)∈E(t,x)

c(t− s, x) + s
ων�ν�

(ν� + ν�)
inf

(s,−ν�)∈E(t,x)

(
c(t− s, x+ sν�) + sων�

) ,

⎤
⎥⎥⎥⎥⎦��

14.5.1 Cauchy Initial Conditions

The Cauchy initial condition requires that at initial time t = 0, the initial
traffic profile γ0(·) : x �→ γ0(x) ∈ R ∪ {+∞} is given. We thus require that

∀ x ∈ R, V (0, x) ≤ γ0(x)

(actually, we shall prove that in this case, these inequalities are equalities). We
extend the Cauchy traffic condition by setting c(0, x) := γ0(x) and c(t, x) =
+∞ whenever t > 0. In this case, C(0) = Dom(γ0) and C(t) = ∅ otherwise.

Proposition 14.5.2 [Cauchy Initial Conditions] The viability conges-
tion function to the Moskowitz problem(14.4), p. 570 with Cauchy condition
γ0(·) satisfies initial condition

∀ x ∈ R, V (0, x) = γ0(x)

The domains of its traffic profiles are equal to

∀ t ≥ 0, Dom(V (t, ·)) = Dom(γ0) + t[−ν�, ν�]
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The viability congestion function is equal to

V (t, x) = inf
u∈[−ν�,ν�]

(γ0(x− tu) + tl(u))

and satisfies the estimates

{
infu∈[−ν�,ν�] (γ0(x− tu) + tmax(0,−ωu)) ≤ V (t, x)

≤ infu∈[−ν�,ν�]

(
γ0(x− tu) + t ων�

(ν�+ν�)
(ν� − u)

) (14.27)

Proof. The Cauchy condition is obviously a Moskowitz one because, 0
belonging to [−ν�, ν�], condition

∀ t > 0, C(t) = ∅ ⊂ C(0) + t[−ν�, ν�]

hold. Then the domains of the associated traffic profiles are equal to

∀ t ≥ 0, Dom(V )(t, ·) = C(0) + t[−ν�, ν�] = Dom(γ0) + t[−ν�, ν�]

thanks to Theorem 14.4.5, p. 584. The estimates follow from Proposi-
tion 14.5.1, p. 585. ��

14.5.2 Lagrangian Traffic Conditions

Lagrangian traffic conditions are associated with:

1. the trajectory of an increasing “nominal” evolution t �→ γ(t) of a given
probe vehicle,

2. A Lagrangian condition t �→ c(t, γ(t)) defined on this trajectory.

Eulerian conditions are particular cases of Lagrangian conditions whenever
the traffic condition is constant (γ(t) = γ for all t ≥ 0).

Definition 14.5.3 [Lagrangian Traffic Conditions on Nominal
Evolution] We say that a traffic evolution t �→ γ(t) is consistent with
the celerities ν� and ν� if it satisfies the“speed limit”

∀ t ≥ 0, γ′(t) ∈ [−ν�,+ν�[ (14.28)

Lagrangian traffic conditions c(t, γ(t)) are defined on (the graph of) the
nominal trajectory. The viability congestion function to the Moskowitz
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problem (14.4), p. 570 associated with any Lagrangian traffic condition
requires that

∀ t ≥ 0, V (t, γ(t)) ≤ c(t, γ(t))

We begin by providing elementary properties of nominal evolutions:

Lemma 14.5.4 [Properties of Consistent Evolutions] A nominal
evolution is consistent with the celerities ν� and ν� if and only if

∀ t ≥ 0, ∀ s ∈ [0, t], −sν� ≤ γ(t)− γ(t− s) ≤ sν�

In this case, the associated tube C(t) := {γ(t)} is a Moskowitz tube, so that
the domain of the viability congestion function is equal to

∀ t ≥ 0, Dom(V (t, ·)) = [γ(0)− tν�, γ(0) + tν�]

Proof. Indeed, the speed limit (14.28), p. 587 is obviously equivalent to

∀ t ≥ 0, ∀ s ∈ [0, t], −sν� ≤ γ(t)− γ(t− s) ≤ sν�

from which we infer, taking s = t in the above formula that

∀ t ≥ 0, γ(0)− tν� ≤ γ(t) ≤ γ(0) + tν�

i.e., that

C(t) := {γ(t)} ⊂ γ(0) + t[−ν�, ν�] = C(0) + t[−ν�, ν�]. ��

The subset E(t, x) defined by (14.24), p. 585 is equal to

E(t, x) :=
{

(s, u) ∈ [0, t]× [−ν�,+ν�] such that u =
x− γ(t− s)

s

}

Proposition 14.5.5 [Lagrangian Conditions] Assume that the nominal
evolution is consistent with the celerities ν� and ν�. Then the viability
congestion function to partial differential equation (14.4), p. 570 associated
with Lagrangian traffic condition t �→ c(t, γ(t)) is defined by
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V (t, x) = inf
s∈[0,t]

[
c(t− s, γ(t− s)) + sl

(
x− γ(t− s)

s

)]
(14.29)

and satisfies the estimates
{

infs∈[0,t] (c(t− s, γ(t− s)) + max(0, ω(γ(t− s)− x))) ≤ V (t, x)
≤ infs∈[0,t]

(
c(t− s, γ(t− s)) + ων�

(ν�+ν�)
(sν� + γ(t− s)− x)

)
(14.30)

Proof. To say that (s, u) ∈ E(t, x) amounts to saying that E(t, x) is the graph

of the map s �→ x− γ(t− s)
s

. Since the Lagrangian traffic condition is defined

only on the graph of the nominal evolution, we deduce that c(t− s, x− su) is

finite if and only if (s, u) ∈ E(t, x), in which case u :=
x− γ(t− s)

s
, so that

general formula (14.25), p. 585 boils down to

V (t, x) = inf
s∈[0,t]

[
c(t− s, γ(t− s)) + sl

(
x− γ(t− s)

s

)]

Proposition 14.5.1, p. 585 implies the other statements. ��

In order to make the general formula more operational, the question

arises whether the celerity map s �→ x− γ(t− s)
s

from [0, t] to [−ν�,+ν�]
is surjective. Precisely,

Proposition 14.5.6 [Surjectivity of the Celerity Map] Assume that
the nominal evolution is consistent with the celerities ν� and ν�. Then the

celerity map s �→ x− γ(t− s)
s

from [0, t] to [−ν�,+ν�] is surjective:

1. when x ∈ [γ(t), γ(0) + tν�], for any u ∈
[
x− γ(0)

t
, ν�
]
, there exists s ∈

[0, t] such that u =
x− γ(t− s)

s
. In particular, there always exists s� such

that ν� =
x− γ(t− s�)

s�
so that V (t, x) ≤ c(t− s�, γ(t− s�)).

2. when x ∈ [γ(0) − tν�, γ(t)], for any u ∈
[
−ν�, x− γ(0)

t

]
, there exists

s ∈ [0, t] such that u =
x− γ(t− s)

s
. In particular, there exists s� such

that −ν� =
x− γ(t− s�)

s�
so that V (t, x) ≤ c(t − s�, γ(t− s�)) + s�ων�.
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Proof. We have to prove that for any u ∈ [−ν�,+ν�], the subsets

e(t, x)−1(u) := {s ∈ [0, t] such that x− su = γ(t− s)}

are not empty. We introduce the subsets

e(t, x)−1
≤ (u) := {s ∈ [0, t] such that x− su ≤ γ(t− s)}

and
e(t, x)−1

≥ (u) := {s ∈ [0, t] such that x− su ≥ γ(t− s)}

so that e(t, x)−1(u) = e(t, x)−1
≤ (u) ∩ e(t, x)−1

≥ (u). Since intervals are con-
nected, this intersection is not empty whenever these subsets are closed, non
empty and cover the interval. They are closed since the evolution t �→ γ(t) is
continuous, and they obviously cover the interval [0, t]. It remains to prove
that they are not empty.

1. Case when u ∈
[
γ(t)− γ(0)

t
, ν�
]

and x ∈ [γ(t), γ(0) + tu]. Since x ≥ γ(t),

then 0 ∈ e(t, x)−1
≥ (u) because x−0u ≥ γ(t−0), and since x ≤ γ(0)+tu, t ∈

e(t, x)−1
≤ (u). Therefore, there exists s ∈ [0, t] such that u =

x− γ(t− s)
s

.

2. Case when u ∈
[
−ν�, γ(t)− γ(0)

t

]
and x ∈ [γ(0)+tu, γ(t)]. Since x ≤ γ(t),

then 0 ∈ e(t, x)−1
≤ (u) because x − 0u ≤ γ(t− 0), and since x ≥ γ(0) + tu,

t ∈ e(t, x)−1
≥ (u). There exists s ∈ [0, t] such that u =

x− γ(t− s)
s

.

This completes the proof. ��

14.5.3 Combined Traffic Conditions

We have listed particular traffic conditions, the Cauchy conditions, as well as
the Dirichlet, Eulerian and Lagrangian conditions.

We now turn our attention to the combination of Cauchy and several
Lagrangian conditions: the traffic conditions involve

• a Cauchy condition c0 such that c0(0, x) = γ0(x) and c0(t, x) = +∞
whenever t > 0

• and/or Lagrangian conditions ci(t, γi(t)) satisfying ci(t, x) = +∞ when-
ever x �= γi(t), i ∈ I.

We assume that these conditions satisfy

∀ i ∈ I, γ′i(t) ∈ [−ν�,+ν�] (14.31)
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We introduce the combined traffic condition

c(t, x) := min [γ0(x), ci(t, x)]

The domain C(t) := Dom(c(t, ·)) of its profile is equal to

C(t) =

⎧⎨
⎩

Dom(γ0) if t = 0⋃
i∈I
{γi(t)} if t > 0

The Min Inf-Convolution Morphism Theorem 14.7.1, p.595 implies

Proposition 14.5.7 [The Min-Morphism Property] Let us denote by

• V0 the viability congestion function associated with the Cauchy condi-
tion c0,

• Vi the congestion function associated with the Lagrangian conditions ci
• Vc the congestion function associated with the combined condition c.

Then

Vc(t, x) = min[V0(t, x), Vi(t, x)]

and is defined on Dom(Vc(t, ·)) = Dom(γ0) + t[−ν�, ν�]. It satisfies traffic
condition

Vc(t, x) = min [V0(t, x), Vi(t, x)] ≤ c(t, x) := min [γ0(x), ci(t, x)]

We deduce the following result:

Theorem 14.5.8 [Departure Tube of Combined Traffic Conditions]
Let us consider the departure tubes Di(t) associated with the traffic
conditions ci and the departure tube D(t) of the combined traffic condition c.
Let us set I(t, x) := {i ∈ I such that ci(t, x) = c(t, x)}. Then

∀ t ≥ 0, D(t) ⊂
⋂

i∈I(t,x)
Di(t)

Proof. Let x ∈ D(t). Then there exists i ∈ I(t, x) such that ci(t, x) = c(t, x)
and j such that Vj(t, x) = V (t, x). Therefore

Vi(t, x) ≤ ci(t, x) = c(t, x) = Vj(t, x) ≤ Vi(t, x)

and thus, Vi(t, x) = ci, i.e., x ∈ Di(t). ��
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14.6 Decreasing Envelopes of Functions

Since congestion functions must be increasing in time and decreasing in posi-
tion for obvious “physical” reasons, one must study under which conditions
this property is true. Using the epigraphical approach, we have to provide an
epigraphical characterization of decreasing functions.

This can be done in the framework of inf-convolution operators by specific
functions (see Definition 18.8.1, p.762 and Lemmas 18.8.3, p.763 and 18.34,
p.763).

There are many examples of “inf-convolution” operators u �→ v % u by a
function v.

Examples: One interesting example is provided by the function x �→
v(x) := λ‖x‖ because a function u is λ-Lipschitz if and only if u = v % u.
The function v % u defined by

(v % u)(x) := inf
y

(u(y) + λ‖x− y‖)

can be regarded as the λ-Lipschitz envelope of u.
The classical Moreau–Yosida transform is the inf-convolution of a function

with the quadratic function defined v(x) := 1
λ‖x‖2:

(v % u)(x) := inf
y

(
u(y) +

1
λ
‖x− y‖2

)

It is used as a regularization procedure for approximating lower semicontin-
uous convex function by smooth ones.

We turn our attention to the example motivated by the monotonic
properties of congestion functions. ��

Let us consider a closed convex cone P ⊂ X . It defines an order relation
by setting y ≥ x if and only if y ∈ x+ P .

On the other hand, let us associate with the cone P its indicator function
ψP defined by ψP (x) = 0 if x ∈ P and ψP (x) = +∞ otherwise. Therefore,
Ep(ψP ) = P × R+. Consequently,

Ep(ψP % u) = Ep(u) + P × R+

Proposition 14.6.1 [Epigraphical Characterization of Decreasing
Functions] Let us consider an extended function u : x ∈ X �→ u(x) ∈R ∪
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{+∞} and P ⊂ X a closed convex cone. The two following statements are
equivalent:

• u is decreasing in the sense that for any y ∈ x+ P , then u(y) ≤ u(x)
• The epigraph of the function u satisfies

Ep(u) + P × R+ = Ep(u)

In this case, Dom(u) = Dom(u)+P (see Figs. 14.8, p.597 and 14.9, p.598).

Proof. We observe first that inequality u(y) ≤ u(x) is equivalent to say that
(y,u(x)) ∈ Ep(u).

1. Assume that u is decreasing. Since P × R+ is a cone, inclusion Ep(u) ⊂
Ep(u) + P × R+ is always true. For proving the converse inclusion, take
any y ∈ Dom(u), p ∈ P , λ ≥ 0 and set x := y + p ≥ y. Hence

(x,u(x)) + (p, λ) = (y,u(x)) + (0, λ) ∈ Ep(u) + {0} × R+ = Ep(u)

because (y,u(x)) ∈ Ep(u). Therefore, Dom(u) + P ⊂ Dom(u), and thus,
is equal to it.

2. Conversely, assume that Ep(u) + P × R+ ⊂ Ep(u) holds true, take any
p ∈ P , y := x+ p ≥ x and derive that u(y) ≤ u(x). Indeed,

(y,u(x)) = (x,u(x)) + (p, 0) ∈ Ep(u) + P × R+ ⊂ Ep(u)

so that (y,u(x)) ∈ Ep(u), i.e., u(y) ≤ u(x). ��

Definition 14.6.2 [Decreasing Envelope of an Extended Function]
Let us consider an extended function u : x ∈ X �→ u(x) ∈ R ∪ {+∞} and
P ⊂ X a closed convex cone. The function u↘ defined by

Ep(u↘) := Ep(u) + P × R+

is called the P -decreasing envelope of the function u (or simply decreasing
envelope if there is no ambiguity).

In the same way, the two satements

• u is increasing is the sense that for any y ∈ x+ P , then u(y) ≥ u(x)
• The epigraph of the function u satisfies

Ep(u)− P × R+ = Ep(u)
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are equivalent and the function u↗ defined by

Ep(u↗) := Ep(u)− P × R+

is called its increasing envelope.

Lemma 14.6.3 [Properties of Decreasing Envelopes] The decreasing
envelope u↗ of u is larger than or equal to

inf
p∈P

u(x− p) ≤ u↘(x) and Dom(u↘) ⊂ Dom(u) + P

Equality

inf
p∈P

u(x− p) = u↘(x) and Dom(u↘) = Dom(u) + P (14.32)

holds true whenever u is lower semicontinuous and inf-compact (see
Definition 18.6.2, p.743).

For any family {ui}i∈I of extended functions, the decreasing envelope
of the infimum is the infimum of their decreasing envelopes:

(inf
i∈I

ui)↘ = inf
i∈I

ui↘ (14.33)

Proof. To say that (x,u↘(x)) belongs to the epigraph of u↘ means that
there exists (y,u(y)) ∈ Ep(u), p ∈ P and λ ≥ 0 such that (x,u↘(x)) =
(y,u(y)) + (p, λ), i.e., such that u↘(x) = u(y) + λ = u(x− p) + λ, i.e., such
that there exists p ∈ P satisfying u(x− p) ≤ u↘(x) and thus

w(x) := inf
p∈P

u(x− p) ≤ u↘(x)

Therefore, if x ∈ Dom(u↘), there exists some p ∈ P such that u(x−p) < +∞,
i.e., x− p ∈ Dom(u). Hence Dom(u↘) ⊂ Dom(u) + P .

Conversely, there exists p ∈ P such that u(x− p) = w(x), since u is
assumed to be lower semicontinuous and inf-compact. Consequently,

{
(x,w(x)) = (x− p+ p,u(x− p))
= (x − p,u(x− p)) + (p, 0) ∈ Ep(u) + P × R+ =: Ep(u↘)

so that w(x) ≥ u↘(x), and thus, w(x) = u↘(x).
Let us consider a family of extended functions ui and their infimum

uI := infi∈I ui. Property (14.33), p. 594 follows from the fact that

Ep(uI) =
⋃
i∈I

Ep(ui) by Lemma 18.2.7, p.718 and that



14.7 The Min-Inf Convolution Morphism Property and Decreasing Traffic Functions 595

(⋃
i∈I

Ep(ui)
)

+ P × R+ =
⋃
i∈I

(Ep(ui) + (P × R+))

by distributivity property (18.1), p. 714 of the Max-Plus algebra of subsets.
��

14.7 The Min-Inf Convolution Morphism Property
and Decreasing Traffic Functions

Theorem 11.5.6, p.471 using the Lax–Hopf formula, once translated in
terms of epigraphs, implies very useful properties on congestion func-
tions. The epigraph of the minimum u := mini∈I ui being obviously

the union Ep(u) =
⋃
i∈I

Ep(ui) of their epigraphs and the epigraph of their

inf-convolution u := �i∈Iui being the sum Ep(u) =
∑
i∈I

Ep(ui) of their

epigraphs, we obtain

Theorem 14.7.1 [The Min Inf-Convolution Morphism] Assume that
the Hamiltonian h is a flow function defined in Definition 14.3.1, p.571. Let
us consider a finite family of traffic conditions ci, i ∈ I. We denote their
viability congestion functions by Vci .

1. The viability congestion function associated to the infimum mini(ci) is
the infimum of the viability congestion functions associated with traffic
condition ci:

Vmini(ci) = min
i

(Vci )

This allows us to study the contribution of each traffic condition whenever
the traffic condition is their infimum.

2. The viability congestion function associated with the inf-convolution �ici
of traffic conditions defined by

Ep(�ici) :=
∑
i

Ep(ci)

is the inf-convolution of the viability congestion functions associated with
traffic condition ci:

V�i(ci) = �i(Vci )
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Proof. These formulas are consequences of Theorem 11.5.6, p.471 stating that
the capture basin is a Max Plus morphism.

1. We recall that

Ep(cminI
) =

⋃
i∈I

Ep(ci)

Since the union of the epigraphs of functions ui is the epigraph of their
infimum, we deduce that if a finite number of traffic conditions ci are
given and denoting their viability congestion functions by Vci

, we infer
that Vmini(ci) = mini(Vci).

2. Since the sum of the epigraphs of functions ui is the epigraph of their
inf-convolution �iui defined by

�iui(x) := inf∑
i xi=x

∑
i

ui(xi)

we deduce that if a finite number of traffic conditions ci are given and
denoting their viability congestion functions by Vci

, we infer that V�i(ci) =
�i(Vci

).

This completes the proof. ��

We deduce that if the traffic condition is increasing in time and decreasing
in position, so is its associated traffic evolution.

Let us denote by P := R− × R+ the order relation under which a traffic
solution is decreasing: (t, x) � (s, y) if and only if t ≤ s and y ≥ x. Therefore,
the congestion function V is decreasing along this preorder if and only if
Ep(V ) = Ep(V ) + P × R+, i.e., if x1 ≤ x2 and t1 ≥ t2, then V (t2, x2) ≤
V (t1, x1). Its decreasing envelope is defined by

V↘(t, x) = inf
s≥t, y≤x

V (s, y)

and its epigraph is equal to Ep(V↘) := Ep(V ) + P × R+.

Theorem 14.7.2 [Monotonicity Property of the Traffic Function
and its Optimal Viability Traffic Functions] Assume that the
Hamiltonian h is a flow function defined in Definition 14.3.1, p.571.
Let P := −R+ × R+ × R+, c : t ∈ R+ �→ R ∪ {+∞} be a lower
semicontinuous traffic condition, c↘ its decreasing envelope, and Vc and
Vc↘ the viability congestion functions associated with the traffic conditions
c and c↘. Therefore, the viability congestion function Vc↘ associated with
the P -decreasing envelope c↘ of the traffic condition c is the P -decreasing
envelope (Vc)↘ of the viability congestion function associated with the traffic
condition c:



14.7 The Min-Inf Convolution Morphism Property and Decreasing Traffic Functions 597

(Vc)↘ = Vc↘ (14.34)

Consequently, the viability congestion function Vc↘ associated with the P -
decreasing envelope c↘ is decreasing in position and increasing in time.
Furthermore, the minimal congestion evolutions ξ�(·) are increasing in time.
Their velocities ξ�

′
(t) ∈ ∂+h(t, ξ�(t)) are nonnegative, the associated den-

sities −∂V
∂x

(t, ξ�(t)) belong to the interval [0, β�] and the flow
∂V

∂t
(t, ξ�(t))

range over the interval [0, δ]. The velocities are equal to 0 on the critical
interval [β�, β�].

Proof. This a consequence of the second statement of Theorem 14.7.1, p.595
by taking c1 ≡ c and c2 := ψR+×R+

, the indicator of R+ × R+. Then c1 ≡
c2 = c↘ and Vc↘ = Vc�c2 = (Vc)↘. ��

The question which arises deals with the construction of decreasing traffic
condition in position.

Fig. 14.8 Trajectory of a Traffic Condition and Domain of the Traffic Function.

This figure displays the trajectory of the traffic condition γ from time d to
some time e. The domain of the congestion function is the Minkowski sum of
the trajectory and the domain [−ν�, ν�], which is represented in this figure.
The value of the congestion function is infinite outside of it. Note that it is
not decreasing in position and increasing in time.
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Equation (14.32), p. 594 of Lemma 14.6.3, p.594 implies that the domain
Dom(c↘) =: Graph(C↘) satisfies

Dom(c↘) = Dom(c) + R− × R+

When the domain of c is made of a single traffic condition γ(·) : t ∈
[τ �γ , τ

�
γ [�→ γ(t), we infer that the domain of c can be regarded as the epigraph

of the function γ↗(·)

Ep(γ↗) := Ep(γ) + R− × R+

Hence,

γ↗(t) := inf
s≥t

γ(s)

Its domain is the interval [0, τ �γ [, it is equal to γ(t) := infs≥t γ(s) on the
interval [0, τ �γ ], to γ(t) := infs≥t γ(s) on the interval [τ �γ , τ

�
γ [ and, if τ �γ < +∞,

to +∞ whenever t > τ �γ .

Fig. 14.9 Increasing Envelopes of a Traffic Condition and Domain of the
Increasing Traffic Function.

We represent here the decreasing envelope of the trajectory described in
Fig. 14.8, p.597: this envelope is obtained by “adding”a branch to the
trajectory between the initial time 0 and the departure time d equal to
the constant value c(d, ξ(d)). The traffic solution obtained with this envelope
is decreasing in position and increasing in time.
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In the case when γ is increasing on its domain [τ �γ , τ
�
γ [, extended to +∞

elsewhere, we obtain the simple formula

∀ t ∈ [0, τ �γ [, γ↗(t) := max(γ(τ �γ), γ(t))

14.8 The Traffic Regulation Map

For simplicity, we assume that the hamiltonian h and the traffic solutions
are differentiable. The conclusions hold in the general case by weakening the
concepts of derivatives (see Chap. 17, p. 681 on Hamilton–Jacobi–Bellman
partial differential equations, of which the Moskowitz equation is a particular
case), where these questions are solved in the general case.

Another reason to bypass this general study is that the viability algorithms
for computing the congestion function and the minimal congestion regulation
map do not use at all the mathematical consideration below.

Since the viable evolutions (t, ξ(t), V (t, ξ(t))) are viable on the graph
of the traffic map V , we derive that they satisfy the tangential condition
(1, ξ′(t), l(ξ′(t))) ∈ TGraph(V )

(t, ξ(t), V (t, ξ(t))).
Hence, we define the regulation map in the following way:

Definition 14.8.1 [The Traffic Regulation Map] The minimal conges-
tion regulation map is defined by
{
R(t, x) :={
u ∈ Dom(l) | (−1,−u,−l(u)) ∈ TGraph(V )(t, x, V (t, x))

} (14.35)

Viability Theorem 11.3.4, p.455 implies the following consequence:

Theorem 14.8.2 [Regulation of Optimal Traffic Evolutions]
Assume that the Hamiltonian h is a flow function defined in
Definition 14.3.1, p.571. Minimal congestion evolution ξ�(·) ∈ A(d�, T ;x)
where V (d�, ξ�(d�)) = c(d�, ξ�(d�)) are governed by differential inclusion
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ξ�
′
(t) ∈ R(t, ξ�(t)) starting at ξ�(d�) at time d� (14.36)

Optimal evolutions satisfy

dV (t, ξ�(t))
dt

= l(ξ�
′
(t)) ≥ 0

It would be enough to end the analysis of the congestion function here.
However, the question arises to characterize further the regulation map in
the case when the function V is differentiable. In this case, the tangent cone
to the graph is the graph of the derivative:

TGraph(V )(t, x, V (t, x)) = Graph(DV (t, x))

where DV (t, x) : (ν, u) �→ ∂V (t, x)
∂t

ν +
〈
∂V (t, x)

∂t
, u

〉
.

Proposition 14.8.3 [Traffic Regulation Map under Differentia-
bility Assumptions] Assume that the Hamiltonian and the congestion
function are differentiable. Then

R(t, x) :=
dh
dp

(
−∂V (t, x)

∂x

)

is the slope of the tangent to the Hamiltonian at density −∂V (t, x)
∂x

.

Sketch of the proof. Indeed, to say that

(−1,−u,−l(u)) ∈ TGraph(V )(t, x, V (t, x)) = Graph(DV (t, x))

means that

∂V (t, x)
∂t

−
〈
∂V (t, x)
∂x

, u

〉
= −l(u)

Since V is the solution to the Moskowitz partial differential equation, this
can be written

h
(
−∂V (t, x)

∂x

)
−
〈
∂V (t, x)
∂x

, u

〉
= −l(u)
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By formula (14.9), p. 573 of Lemma 14.3.3, p.572, we infer that this is

equivalent to say that u =
dh
dp

(
−∂V (t, x)

∂x

)
or that

∂V (t, x)
∂x

∈ ∂l(−u). ��

14.9 From Density to Celerity: Shifting Paradigms

The congestion function being the value function of an optimal control
problem, the role of density is played by celerities and the fundamental
(density) diagram replaced by the celerity diagram. Consequently,

• The dynamic programming equation (14.19), p. 583 states that along a
minimal congestion evolution ξ(·),

V (T, x) = c(d�, ξ�(d�)) +
∫ T

d�

l(ξ�
′
(τ)dτ)

This suggests to interpret Vl(d; t, ξ(·)) :=
∫ t

d

l(ξ′(τ)dτ) as the congestion

function of a minimal congestion evolution ξ(·) ∈ A(d; t, x) between d
and t. The congestion variational principe states that at optimal departure
date d�, given the “label” c(d�, ξ�) of the traffic condition on the departure
graph, the congestion function at (t, x) is the sum of this label and of the
minimal congestion along the evolution ξ(·) ∈ A(d�; t, x).
This would allow the computation of the congestion function and the
minimal congestion regulation map, giving a complete answer to the
management of traffic under minimal congestion directly from measures
of celerities attached to the road and from measures of the velocities of the
probe vehicles.
Hence a meaningful physical interpretation of the congestion function, as it
was advocated by Luke, Newell and Daganzo, is to regard it as a congestion
function along an minimal congestion evolution.

• We also observed that the Hamiltonian h does not appear in the formula
giving the congestion function, but only its Lagrangian l. The motivation
for introducing the Hamiltonian (and to derive the Lagrangian) was due
to the fact that, since Greenshields (following vehicles with trucks) and,
nowadays, with fixed sensors, the fundamental diagram can be empirically
determined and traffic conditions were only Cauchy, Dirichlet or Eulerian
boundary conditions.

• Also, the computation of the minimal congestion regulation map and its
use to pilot the evolution of minimal congestion evolutions involve only
the Lagrangian, and not the Hamiltonian.
Hence the question arises to investigate whether the use of aerial recordings
could provide empirical measures of the Lagrangian data.
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• The use of probe vehicles could provide Lagrangian conditions on given tra-
jectories by attaching to them their congestion labels (see Definition 14.2.4,
p.569): knowing the velocity of a vehicle along its evolution, the Lagrangian
condition c could measure the congestion along it

cγ(·)(t, γ(t)) :=
{

c(d, γ(d)) if t ∈ [0, d]
c(d, γ(d)) +

∫ t
d
l(γ′(τ)dτ) if t ≥ d

(14.37)

This would allow the computation of the congestion function and the
minimal congestion regulation map, giving a complete answer to the
management of traffic under minimal congestion directly from measures
of celerities attached to the road and from measures of the velocities of the
probe vehicles.



Chapter 15

Illustrations in Finance and Economics

15.1 Introduction

This chapter describes two problems motivated by financial mathematics
(implicit evaluation of the volatility of portfolios) and of economic theory
(bridging the gap between micro and macro economics). These are selected
examples chosen for their intrinsic interest and for illustrating how viability
concepts and theorems can be used to solve these questions. The focus of this
chapter is not the place to expose and develop more examples.

The two questions of interest require the solution of first-order partial
differential equations studied in more detail in Chaps. 13, p.523 and 17,
p. 681. However, we made all efforts to make these sections self-contained,
by assuming that the solutions are differentiable for sketching proofs which
are provided in full detail in the previous chapters.

1. Illustrations in Finance. Section 15.2, p. 605 deals with one very specific,
yet, important, problem in mathematical finance, the search for volatility.
We focus our analysis on this topic because it does not require a detailed
knowledge of financial mathematics. We tried to make its reading easier
by minimizing the knowledge of financial mathematics and providing just
the necessary definitions of this field. Mathematically, our investigation
requires only some results on invariant absorption basins (see Defini-
tion 2.11.2, p.89) and convex analysis summarized in Sect. 18.7, p.755.
There are two basic approaches of the determination of the value of a
portfolio confronted to financial constraints and objectives:

(a) The direct approach. A “model”, described by a partial differential
equation the solution of which is the valuation function of the portfolio,
is given and based on the knowledge of the volatility (stochastic or
tychastic) of the uncertain evolution of the asset returns for providing
a whole set of potential evolutions of prices (see Box 1, p.5);
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(b) the inverse approach. Unfortunately, the volatility cannot be
measured, so that the value functions given by these partial differential
equations are not supported by empirical values observed on the
market. Consequently, the question arises whether one can derive
the knowledge of the volatility from empirical relations satisfied by
portfolios (see Box 2, p.5): this question has been dealt with by many
authors under the name of implicit or inverse volatility, mostly in the
stochastic framework. We propose an answer to this problem in the
tychastic framework by assuming known empirical relations between
the value of the portfolio, the flow it generates and the prices of the
shares, from which we deduce the (tychastic) volatility, allowing the
manager to compute its portfolio at each instant from the knowledge
of the actual asset return (or price).

Section 15.2, p. 605 attempts to uncover the links between those two
approaches.

2. Illustrations in Economics.
Section 15.3, p. 620 deals with links between micro-economic and macroe-
conomic approaches of a dynamical economic problem.
Again, we choose the simplest case by assuming the existence of only one
economic agent (a representative of many different agents) acting on the
evolution of commodities (the case of n agents can be studied by using
the tools of Sect. 13.7, p.544). The invisible hand (or a more visible central
banker) is supposed to watch, regulate or control the evolution of some
global “economic value” from which prices are derived.
In both microeconomic and macroeconomic cases, commodities are con-
strained to satisfy viability (scarcity) constraints, which makes the problem
difficult to solve.
There are two approaches to this same problem:

(a) From micro-economy to macro-economy. By that, we mean that the
behavior of the“micro-economic agent” is assumed to be known. The
agent makes transactions (velocities of the evolution of commodities),
based on his knowledge of
• the monetary rate or the global economy.
• a cost function allowing him to compute the cumulated cost of his

transaction at each instant.
The behavior of the agent is the minimization of the (actualized)
cumulated cost. The minimal value is regarded as the “microeconomic”
value, depending on the current time and the commodity transaction
at this time.

(b) From macro-economy to micro-economy. By that, we mean that the
“macroeconomic agent” knows at each instant and for each commodity
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a “macroeconomic” value (a monetary value) of the economy, from
which he derives the flows and the prices (which are the first
derivatives, one with respect to time, the other one, the derivative with
respect to commodity, with a minus sign). We assume that either the
invisible hand observes a relation between the value, the flows and the
prices (the price map), or a central banker imposes such a relation.

The question arises to know under which conditions the microeconomic
and macro economic values are equal, and to extract the relations between
the microeconomic and macroeconomic agents. Knowing the transactions
and the interest rates of the microeconomic agent, the macro economic
agent deduces the macroeconomic value and the price.
Knowing the macroeconomic economic value and the price, the microe-
conomic agent derives what is the interest rate of the economy and how
his transactions depend on the commodity, the price and the interest rate,
obeying an emerging financial Walras law.
The best has been made for this section to be self-contained. It uses some
results on viability kernels (see Definition 2.10.2, p.86) and convex analysis
summarized in Sect. 18.7, p. 755.

15.2 Uncovering Implicit Volatility in Macroscopic
Portfolio Properties

Economic theory is dedicated to the analysis and the computation of supply
and demand adjustment laws, among which the Walras tâtonnement, in
the hope of explaining the mechanisms of price formation (see for instance
Dynamic economic theory: a viability approach [22, Aubin]). In the last analy-
sis, the choice of the prices is made by the invisible hand of the “Market”, the
new deity in which many economists and investors believe. Their worshippers
may not realize that He may listen to their prayers, but that He is reacting
to their actions in a carefully hidden way. Unfortunately, economic theory
does not provide explicit or computable pricing mechanisms of assets and
underlying, the commodities of the financial markets constituting portfolios.

In most financial scenarios, investors take into account their ignorance of
the pricing mechanism. They assume instead that prices evolve under uncer-
tainty, and that they can master this uncertainty. They still share the belief
that the “Market knows best” how to regulate the prices, above all without
human or political regulations. The question became to known how to master
this uncertainty. For that, many of them trade the Adam Smith invisible hand
against a Brownian movement, since it seems that this unfortunate hand is
shaking like a particle on the surface of a liquid. It should then be enough to
assume average returns and volatilities to be known for managing portfolios.
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We accept the same attitude, but we exchange the Adam Smith invisible
hand against tychastic uncertainty instead of a stochastic one on the
formation of asset prices for deriving management rules of the portfolio.

Our analysis starts with the observation that we do know the variables on
which uncertainty bears: the future risky returns unknown at the investment
date when the initial investment must be computed. We also know all
the potential (contingent) ways to manage a portfolio by determining the
exposure (the risky component) of the portfolio. We know from experience
that it is possible to restore viability when the liability is reached, by
borrowing, instantly (through an impulse), an authorized loan to pay off
the forthcoming ruin.

Hence, we choose here a tychastic approach to this problem instead of
the stochastic one covered in so many articles and books. We just mention
few facts on too well known stochastic uncertainty, we next proceed to
comment the much less familiar aspect of uncertainty: tychastic uncertainty
(see Sect. 10.10, p.433).

1. Stochastic uncertainty on the returns is described by a space Ω, a filtration
F , a Brownian process W (t), a drift γ(x) and a volatility σ(x): dR(t) =
γ(x(t))dt + σ(x(t))dW (t). The set Ω is not described explicitly (one can
always choose the space of all evolutions). Only the drift and volatility are
assumed to be explicitly known.

(a) The random events are not explicitly identified (the famous ω ∈ Ω
does not appear in the notations!).

(b) Stochastic uncertainty does not study the “package of evolutions”
(depending on ω ∈ Ω), but functionals over this package, such as
the different moments and their statistical consequences (averages,
variance, etc.) used as evaluation of risk.

(c) Most properties are valid for “almost all” constant ω.

2. In this chapter, tyches are returns of the underlying on which the investor
has no influence. The uncertainty is described by the tychastic map defined
by

R(t) :=
{
R ∈ R such that R ≥ R�(t)

}

where R�(t) are the lower bounds on returns (instead of assuming that
dR(t) = γ(x(t))dt+ σ(x(t))dW (t)).

(a) Tyches are identified (returns of the underlying, for example) which
can then be used in dynamic management systems when they are
actually observed and known at each date during the evolution.

(b) For this reason, the results are computed in the worst case (eradication
of risk instead of its statistical evaluation, as in robust control).

(c) Required properties are valid for “all” evolutions of tyches t �→ R(t) ∈
R(t).

This section uses notations familiar in mathematical finance.
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15.2.1 Managing a Portfolio under Unknown Volatility

For simplicity, we assume the return r0 of a non risky asset known (a
government bond, for instance), and we consider only one risky asset. The
price of one share of this asset, called simply the price, is denoted by S ∈ R+.

The velocity of a price evolution S(t) is governed by its return r(t) :=
S′(t)
S(t)

.

Unfortunately, the evolution of the return is unknown: it is provided by an
adequate law of supply and demand dictated by the invisible hand of a deity
named “Market” who keeps its secret.

Definition 15.2.1 [Portfolio Valuation] We denote by T the exercise
time, which is the horizon at which a decision to buy or sell is exercised.
The portfolio valuation function (T, S) �→ V (T, S) associates with each
exercise time T and initial price S (which is known) the portfolio valuation
V (T, S): it is the amount of an investment in capital at initial time needed
to guarantee that its value at exercise time T under the unknown price
S(T ) satisfies some prescribed constraints and objectives characterizing a
“financial product”. At any current (or spot) time t ∈ [0, T ], V (T − t, S(t))
is the value at time t of the portfolio in terms of the receding exercise time
T − t (also called time to maturity) and the present price S(t).

The simplest example of constraint is to ask the portfolio valuation to
be positive and the value at exercise time to be larger or equal to a given
amount. Financial experts have invented hundreds of them.

There are two basic approaches:

1. From Micro to Macro: the Direct Approach. In the direct approach,
where a “model” of the uncertain evolution of the interest return is given,
there are several categories of them, among which:

(a) a tychastic one, based on the simple assumption that the returns,
regarded as tyches (Definition 2.5.2, p.59), are ranging over an interval
called the tychastic domain, the length of which is interpreted as a
tychastic volatility;

(b) a stochastic one, based on stochastic differential equations involving a
coefficient regarded as a volatility (see Sect. 10.10, p.433).

In both cases, stochastic and tychastic volatilities are unknown, since there
is no available “volatilitometer”.
In both cases, it is proven that the portfolio valuation (T, S) �→ V (T, S) is a
solution to a partial differential equation, a linear second-order partial dif-
ferential equation (among them, the Black and Scholes partial differential
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equation) in the stochastic case, a nonlinear first-order Hamilton–Jacobi
partial differential equation in the tychastic case.

2. From Macro to Micro: the Inverse or Implicit Approach.
The fact is that the valuation functions given by these partial differential
equations are not supported by empirical values V (T, S) observed on the
market, in particular due to the lack of knowledge of the stochastic or
tychastic volatilities. Hence the question arises whether one can determine
stochastic or tychastic volatilities from empirical observations, and thus,
compute the value function. We investigate this problem in the tychastic
case, using convex analysis and viability techniques on the basis of the
following assumption: there exists an empirical relation between two
sensitivity parameters explained below, the traduction of which is a first-
order partial differential equation. The solution to this problem is then
obtained through the invariant absorption basin of an adequate target
(see Definition 2.11.2, p.89).

15.2.2 Implicit Portfolio Problem

Risk management indicators measuring the sensitivity of the portfolio valua-
tion1 (T, S) �→ V (T, S) with respect to some parameters are currently used in
mathematical finance because they have meaningful financial interpretations:
they are called the Greeks, since some of them where denoted by Greek letters.

This macroscopic approach using only the exercise time T and the price
S as variables on which the portfolio value depends, we use the following
sensitivity parameters2:

Definition 15.2.2 [The “Greeks”] We shall use the following sensitivity
measures of a portfolio valuation:

1. The partial derivatives Θ(T, S) :=
∂V (T, S)

∂T
with respect to the exercise

time is the Greek Theta.

1 In short, we may use portfolio valuation instead of portfolio valuation function. This
choice or terminology underlines the fact that it is not the value function in the sense of
control theory, since the time T is a horizon and not the current time t, but a “portfolio
valuation function”: See Box 38, p.684.
2 They require a priori the assumption that the portfolio value is sufficiently differentiable,
as we shall do for the clarity of the exposition, but non-smooth analysis and the concept of
viscosity solutions allow us to extend this definitions for continuous functions (see Chap. 17,
p. 681 on Hamilton–Jacobi–Bellman partial differential equations).
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2. The partial derivatives Δ(T, S) :=
∂V (T, S)

∂S
with respect to the price of

the share is the Greek Delta. The Delta is regarded as the number of
shares of the portfolio.

3. The product E(T, S) := −SΔ(T, S) = −S∂V (T, S)
∂S

is the Greek Epsilon,
also called the exposition of the portfolio. The exposition, being the risky
value of the portfolio, allows the manager to deduce the number of shares
when he knows the price of the asset (or, in some markets, to make the
price by selling or buying a number of shares).

Observe that the evolution of the portfolio value along time is governed
by

dV (T − t, S(t))
dt

= −r(t)E(T − t, S(t))−Θ(T − t, S(t)) (15.1)

which involves the “Theta” Θ, the exposition E and the return r(t). We shall
assume three types of conditions on the portfolio value function (T, S) �→
V (T, S) that a portfolio value function should satisfy:

We denote by r0 the return of the riskiness asset.

1. The Exposition Map and Equation
The macroscopic approach to the evaluation of a portfolio assumes that
an empirical relation Θ = a(E) between the Theta and the exposition
Epsilon is available. The function a : E �→ a(E) is exposition map.
Therefore, knowing the exposition map a, the value of the portfolio is
a solution to the Hamilton–Jacobi partial differential equation

∂V (T, S)
∂T

= a
(
−S∂V (T, S)

∂S

)
− r0V (T, S)

2. Value Requirement described by an extended function c : (T, S) �→
c(T, S) ∈ R ∪ {+∞}, requiring that

∀ T ≥ 0, ∀ S ≥ 0, V (T, S) ≤ c(T, S)

The standard example3 is given by

c(0, S) := max(0, S − SK) and ∀ T > 0, c(T, S) := +∞

where SK is regarded as a striking price.4

In this case, condition V (T, S) ≤ c(T, S) boils down to inequality
V (0, S) ≤ c(0, S).

3 Example of portfolio replicating an European options.
4 The striking price SK is positive for portfolios replicating options and equal to 0 for
standard portfolios with constraint and objective functions independent of the price S.
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3. Value Constraint described by an extended function k : (T, S) �→
k(T, S) ∈ R ∪ {+∞}, satisfying k(T, S) ≤ c(T, S), requiring that

∀ T ≥ 0, ∀ S ≥ 0, k(T, S) ≤ V (T, S)

The function k is often called the floor (representing the flow of liabilities).
The case “without constraints” is actually the case when k(T, S) = 0,
since the value of the portfolio must be positive. However, one can ask
more stringent condition, such as

k(T, S) := max(0, SeρT − SK)

where ρ is a “guaranteed return” (the case when ρ = 0 boils down5 to
k(T, S) := max(0, S − SK)).

This is not the place to develop more examples. For simplicity, however,
we shall assume that ∀ T > 0, c(T, S) := +∞.

Definition 15.2.3 [The Implicit Problem of Portfolio Evaluation]
Given the exposition map a : E �→ a(E), the constraint function k and
the objective function c, the implicit portfolio problem is to find a portfolio
value function (T, S) �→ V (T, S) satisfying

⎧⎪⎪⎨
⎪⎪⎩

∀ T ≥ 0, ∀ S ≥ 0,

(i)
∂V (T, S)

∂T
= a

(
−S ∂V (T, S)

∂S

)
− r0V (T, S)

(ii) k(T, S) ≤ V (T, S) ≤ c(T, S)

(15.2)

If the exposition map a is convex and bounded below with derivatives
lying in a compact interval A, we shall prove the following properties

1. There exists a solution to the implicit portfolio problem, called the viability
portfolio value (Theorem 15.2.8, p.615).

2. There exists a tychastic domain A concealed in the exposition map a over
which range the returns, the measure of it being the tychastic volatility.

3. There exists a utility function u : r �→ u(r) such that the portfolio value
function is also the supremum over the returns r ∈ A of an intertemporal
criterion involving the utility functions u and the constraint and objective
functions k and c.

4. The partial derivative of the portfolio value function with respect to prices
(the Delta in finance terminology) provides the number of shares of the
portfolio.

5 For portfolios replicating American options.
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5. The portfolio value V (T, S) provides a measure of risk that is explained
in Theorem 15.2.10, p.619: above V (T, S), there exists a management rule
of the portfolio such that, whatever the return in the tychastic domain,
the value of the portfolio always satisfies the constraint and objective
inequalities, and strictly below V (T, S), whatever the management rule
used, there exists at least on return function r(·) such that one of the
constraints or objective inequalities is violated.

15.2.3 Emergence of the Tychastic Domain
and the Cost Function

Expositions E and returns r are dual variables in the sense that their product
has the dimension of a flow, because

rE = −∂V (T, S)
∂S

Sr = −∂V (T, S)
∂S

dS

dt

is the product of the velocity of S and −Δ(T, S), regarded as a number of
shares of the risky asset. This is an invitation to involve the duality properties
of convex analysis when the exposition map a is convex (see Sect. 18.7, p. 755).

Definition 15.2.4 [Exposition and Return Functions]
We associate with the exposition map the utility function u defined on

returns r of the risky asset by

∀ r, u(r) := inf
E

[a(E) + Er] (15.3)

The domain Dom(u) of the utility function plays the role of the tychastic
domain concealed in the exposition map a. The measure of this domain is
called the implicit tychastic volatility.

The utility function is obviously an upper semicontinuous concave function
measuring the utility of returns. The definition of a tychastic domain and
volatility is justified by the forthcoming results.

The following statements adapt the ones of Sect. 18.7, p. 755 to our
specific case: conjugate functions are defined in Definition 18.7.2, p.756 and
subdifferential in Definition 18.7.5, p.758. Fenchel Theorem 18.7.3, p.756 and
Theorem 18.7.7, p.759 on the Legendre property of subdifferential of convex
functions and their conjugate imply
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Lemma 15.2.5 [Utility Function and Exposition Map] Assume that
the exposition map a is convex and lower semicontinuous. Then its utility
function u defined by (15.3), p. 611

∀ r, u(r) := inf
E∈Dom(a)

[a(E) + Er]

is upper semicontinuous and concave. The exposition map is related to the
utility function by the relation

∀ E, a(E) = sup
r∈Dom(u)

[u(r) − Er] (15.4)

so that the Fenchel inequality

∀ E, ∀ r, Er ≥ u(r) − a(E)

always holds. Furthermore, r achieves the maximum a(E) = u(r) + Er
if and only if r ∈ ∂−a(E) and E achieves the minimum u(r) := a(E) −
Er if and only if E ∈ ∂+Eu(r). The three following statements are thus
equivalent: ⎧⎨

⎩
(i) Er = u(r)− a(E)
(ii) −r ∈ ∂−a(E)
(iii) E ∈ ∂+u(r)

(15.5)

The domain Dom(u) is an interval which plays the role of a concealed
tychastic domain. When it is bounded, it is denoted by [−ν�,+ν�]:

Dom(u) ⊂ [−ν�,+ν�]

Hence the implicit tychastic versatility is bounded above by ν� − ν� and
u(0) = δ := infE a(E). Whenever ai is lower semicontinuous and (or ui is
upper semicontinuous and concave), i = 1, 2, then

a1 ≤ a2 if and only if u1 ≤ u2

15.2.4 The Viability Portfolio Value

We characterize the smallest solution to the implicit portfolio problem (15.2),
p. 610, called the viability portfolio value, through an invariant absorption
basin of an adequate target (see Definition 2.11.2, p.89) under a characteristic
tychastic system involving the utility function u and its domain, the concealed
tychastic domain:
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⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) S′(t) = r(t)S(t)
(iii) y′(t) = r0y(t)− u(r(t))

where r(t) ∈ Dom(u)

(15.6)

controlled by returns r(·). We take for environmentK := Ep(k) and for target
C := Ep(c).

Definition 15.2.6 [Viability Portfolio Valuation] Let us consider the
epigraphs Ep(k) and Ep(c) of the constraint function k and the objective
function c. The viability portfolio valuation V associated with the functions
k and c to problem (15.2), p. 610 is defined by the following formula

V (T, x) := inf
(T,x,y)∈Abs(15.6)(Ep(k),Ep(c))

y (15.7)

We shall recall that the viability portfolio valuation function, when it is
differentiable, is a solution to the exposition equation satisfying the constraint
and objective conditions. Otherwise, when it is not differentiable, but only
continuous, we can give a meaning of a solution in the viscosity sense, using
for that purpose subdifferential and superdifferential of continuous functions
defined in non-smooth analysis. It is not that important for two reasons: all
other properties of viability portfolio valuation functions that are proven in
Sect. 15.2, p. 605 are derived directly from the properties of absorption basins
without using the concept of derivatives, usual or generalized. Derivatives are
used only in the last section, for checking that the viability portfolio function
is indeed a solution to the exposition partial differential equation.

We prove that the viability valuation of the portfolio satisfies the portfolio
variational principle.

We set

R(t) :=
∫ t

0

r(τ)dτ

We introduce:

• the objective function e−r0tc(0, SeR(t)) on the state SeR(t) at initial time t,

• the cumulated utility
∫ t

0

e−r0τu(r(τ))dτ on the return r(·).

Theorem 15.2.7 [Portfolio Variational Principle] We associate with
the constraint and objective functions the following functionals on interest
returns:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i) Jc(T, S)(r(·)) :=

(
e−r0T c(0, SeR(T )) +

∫ T

0

e−r0τu(r(τ))dτ

)

(ii) Ik(T, S)(r(·)) :=

sup
t∈[0,T ]

(
e−r0tk(T − t, SeR(t)) +

∫ t

0

e−r0τu(r(τ))dτ
)

(iii) L(k,c)(T, S)(r(·)) := max(Jc(T, S)(r(·)), Ik(T, S)(r(·)))
(15.8)

The viability portfolio valuation V (k, c)(t, x) to the implicit portfolio prob-
lem (15.2), p. 610 satisfies the portfolio variational principle:

V(k,c)(T, S) = sup
r(·)∈L1(0,T ;Dom(u))

L(k,c)(T, S)(r(·)) (15.9)

In the case when k(·, S) = 0, it takes the simpler form:

Vc(T, S) = sup
r(·)∈L1(0,T ;Dom(u))

(
e−r0T c(0, SeR(T )) +

∫ T

0

e−r0τu(r(τ))dτ

)

(15.10)

Proof. By definition of the absorption basin, to say that (T, S, y) belongs to
the absorption basin Abs(15.6)(Ep(k), Ep(c)) means that for all measurable
functions r(·) : [0, T ] �→ Dom(u), there exists some t� ≥ 0 such that the
solution

t �→
(
T − t, SeR(t), er0t

(
y −

∫ t

0

e−r0τu(r(τ))dτ
))

of the characteristic system (15.6), p. 613:

• reaches the target Ep(c) at time t�,
• is viable in the environment Ep(k) for all t ∈ [0, t�].

The objective condition implies that

y −
∫ t�

0

e−r0τu(r(τ))dτ ≥ e−r0t
�

c
(
T − t�, SeR(t�)

)

Since we assumed that ∀ t > 0, c(t, S) = +∞, we infer that T − t� = 0 and
that

y −
∫ T

0

e−r0τu(r(τ))dτ ≥ e−r0T c
(
0, SeR(T )

)
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i.e., that Jc(T, S)(r(·)) ≤ y. On the other hand, since the solution is viable
in Ep(k) on [0, t�] = [0, T ] thanks to the constraint condition, we deduce that
for any t ∈ [0, T ],

y −
∫ t

0

e−r0τu(r(τ))dτ ≥ e−r0tk
(
T − t, SeR(t)

)

i.e., that Ik(T, S)(r(·))≤ y. These two inequalities imply that L(k,c)(T, S)
(r(·)) ≤ y, and thus, by taking the supremum U(T, S) := supr(·) L(k,c)(T, S)
(r(·)) over interest returns r(·), that U(T, S) ≤ y. Taking the infimum over
the (T, S, y) ranging over the absorption basin, we proved that U(T, S) ≤
V (T, S).

Assume now that U(T, S) < V(k,c)(T, S), i.e., that (T, S, U(T, S)) does
not belong to the absorption basin Abs(15.6)(Ep(k), Ep(c)). Then there exists

an evolution
(
T − t, SeR(t), er0t

(
y −

∫ t

0

e−r0τu(r(τ))dτ
))

which is viable

in the complement of Ep(c) forever or until it leaves Ep(k). Consequently,
either

U(T, S) < e−r0T c
(
0, SeR(T )

)
+
∫ T

0

e−r0τu(r(τ))dτ ≤ U(T, S)

or there exists some t� ∈ [0, T ] such that

U(T, S) < e−r0t
�

k
(
T − t�, SeR(t�)

)
+
∫ t�

0

e−r0τu(r(τ))dτ ≤ U(T, S)

In both cases, we obtained the contradiction U(T, S) < U(T, S). ��

15.2.5 Managing the Portfolio

Theorem 15.2.8 [The Viability Portfolio Valuation Solves the
Implicit Portfolio Problem] Assume that the utility function u is
concave and Lipschitz on its bounded domain. If the viability portfolio
valuation function is differentiable, then it is the smallest solution to the
implicit portfolio problem (15.2), p. 610:

⎧⎪⎪⎨
⎪⎪⎩

∀ T ≥ 0, ∀ S ≥ 0,

(i)
∂V (T, S)

∂T
= a

(
−S∂V (T, S)

∂S

)
− r0V (T, S)

(ii) k(T, S) ≤ V (T, S) ≤ c(T, S)
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Furthermore, along an actual evolution of prices S(t) such that

their returns r(t) :=
S′(t)
S(t)

∈ Dom(u) range over the tychastic domain,

−∂V (T − t, S(t))
∂S

= −Δ(T − t, S(t)) provides the number of shares of the
portfolio.

Proof. Recall first that when a function V is continuous, then �Ep(V ) =
Hyp(V ). Recall also the characterizations of the tangent cones to the epigraph
and hypograph of V when it is differentiable:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) TEp(V )(T, S, V (T, S))

= {(θ, ξ, η) such that
∂V (T, S)

∂T
θ +

∂V (T, S)
∂S

ξ − η ≤ 0}
(ii) THyp(V )(T, S, V (T, S))

= {(θ, ξ, η) such that
∂V (T, S)

∂T
θ +

∂V (T, S)
∂S

ξ − η ≥ 0}

(15.11)

Since R+ × R × R is a repeller under any system of the form
(−1, f(S, r), g(S, r)), the epigraph of k is a repeller and the invariance
kernel with target coincides with the absorption basin by Lemma 2.12.5,
p.94. Inclusions

Ep(k) ⊂ Ep(V ) ⊂ Ep(c)

imply inequalities

∀ T, S ≥ 0, k(T, S) ≤ V (T, S) ≤ c(T, S)

It remains to translate Proposition 11.4.10, p.464 on viscosity characteriza-
tion of invariance kernels with targets for checking that the viability portfolio
valuation function is a solution to the exposition partial differential equation
(15.2)(i), p. 610: formula (11.22), p. 464 states that
⎧⎪⎪⎨
⎪⎪⎩

(i) ∀(T, S, V (T, S)) ∈ Ep(V )\Ep(c), ∀ r ∈ Dom(u)
(−1, rS, r0V (T, S)− u(r)) ∈ TEp(V )(T, S, V (T, S))

(ii) ∀(T, S, V (T, S)) ∈ Int(Ep(k) ∩Hyp(V )), ∃ r ∈ Dom(u) such that
(−1, rS, r0V (T, S)− u(r)) ∈ THyp(V )(T, S, V (T, S))

In the first case, we infer that

∀ r ∈ Dom(u), −∂V
∂T

+
∂V

∂S
rS + u(r) ≤ r0V (T, S)
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By taking the supremum with respect to r ∈ Dom(u), we obtain inequality

−∂V
∂T

+ a
(
−S∂V

∂S

)
≤ r0V (T, S),

In the second case, we deduce that

∃ r ∈ Dom(u), −∂V
∂T

−
(
−∂V
∂S

S

)
r + u(r) ≥ r0V (T, S)

Indeed, the Fenchel inequality can be written in the form

rS
∂V

∂S
+ u(r) ≤ a

(
−S∂V

∂S

)

Both inequalities imply that −∂V
∂T

+ a
(
−S∂V

∂S

)
≥ r0V (T, S).

This amounts to saying that the viability portfolio valuation is a solution
to the implicit portfolio problem. ��

We thus proved that when the utility function and the exposition map are
related by

u(r) := inf
E∈Dom(a)

[a(E) + Er] or a(E) = sup
r∈Dom(u)

[u(r) − Er]

the implicit portfolio value function coincides with the valuation function of
the tychastic problem.

Knowing the portfolio value V (T − t, S(t)) at time t where the portfolio is
given as an implicit portfolio valuation, the macroscopic approach allows the
manager to derive its exposition E(T − t, S(t)) and the number of shares of
the risky asset, but not utility of the unknown returns r(t).

Knowing at each instant the utility function and the returns of the
assets, the microscopic approach allows the manager to compute cumulated
discounted utility of the known returns r(t), but not the exposition E(T −
t, S(t)).

The problem arises whether these two dual approaches are equivalent
and allow the manager to derive the concealed returns from the known
exposition (macroscopic approach) or to derive the unknown exposition from
the observation of the return (microscopic approach).

Theorem 15.2.9 [The Two Ways of Managing a Portfolio] Denote
by S(t) the effective price of the share at time t known to the manager. We
obtain the inequality

V (T, S)−
∫ t

0

e−r0τu(r(τ))dτ ≥ e−r0tV (T − t, S(t))
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Furthermore, the two strategies are equivalent:

• the macroscopic approach: the manager knows the portfolio value
V (T, S) through the exposition map a and the exposition E(T − t, S(t))
at each time t. Then consistent returns r(t) are given by the rule

r(t) ∈ −∂+a(E(T − t, S(t))) (15.12)

so that the cumulated discounted utility
∫ t

0

e−r0τu(r(τ))dτ can be com-

puted.
• the microscopic approach: the manager does not have a direct access

to the portfolio valuation function, but observes at each time t ∈ [0, T ]
the return r(t). He can also manage his portfolio by the management rule

∀ t ∈ [0, T ], E(T − t, S(t)) ∈ ∂+u(r(t))

These two decision rules are equivalent and, when they are used, we obtain
the equality

V (T, S)−
∫ t

0

e−r0τu(r(τ))dτ = e−r0tV (T − t, S(t))

Proof. 1. We begin by proving the inequality. By Theorem 10.2.7, p.382, we
know that

Abs(15.6)(Ep(k), Ep(c)) = Abs(15.6)(Ep(k), Ep(V ))

This implies that for any r(·) ∈ Dom(u), the evolution
(
T − t, SeR(t), er0t

(
V (T, S)−

∫ t

0

e−r0τu(r(τ))dτ
))

is viable in Ep(V ) until it reaches the target Ep(c) at time T . Therefore

∀ t ∈ [0, T ], V (T, S)−
∫ t

0

e−r0τu(r(τ))dτ ≥ e−r0tV (T − t, S(t))

2. Let us set
⎧⎨
⎩
y(t) := er0t

(
V (T, S)−

∫ t

0

e−r0τu(r(τ))dτ
)

z(t) := V (T − t, S(t))
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The two functions satisfy y(0) = z(0) = V (T, S) and the above inequality
means that y(t) ≥ z(t) on [0, T ].
Assume that we take the either one of the equivalent decision rules:

⎧⎨
⎩

(i) (E(T − t, S(t))) ∈ ∂+u(r(t))
or, equivalently

(ii) r(t) ∈ −∂−a(E(T − t, S(t)))

For proving the equality y(t) = z(t) on [0, T ], it is enough to check that
they are the solutions of the same differential equation. It is easy to observe
that y′(t) = r0y(t)− u(r(t)) (starting at V (T, S) at time 0).
On the other hand, let us consider the macroscopic solution V (T, S) to the
implicit portfolio problem, and in particular, partial differential equation
(15.2), p. 610:

∂V (T, S)
∂T

= a
(
−S∂V (T, S)

∂S

)
− r0V (T, S)

and consider the exposition E(T, S) := −S∂V (T, S)
∂S

.

The function z(t) := V (T − t, S(t)) starts at V (T, S) and satisfies the
differential equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z′(t) = −∂V (T − t, S(t))
∂T

+
∂V (T − t, S(t))

∂S
S′(t)

= −∂V (T − t, S(t))
∂T

− r(t)E(T − t, S(t))

= −a(E(T − t, S(t))) + r0V (T − t, S(t))− r(t)E(T − t, S(t))

i.e., z′(t) = r0z(t)− a(E(T − t, S(t)))− r(t)E(T − t, S(t)).
By taking the management rule (E(T − t, S(t))) ∈ ∂+u(r(t)), or,
equivalently, the return r(t) ∈ −∂−a(E(T − t, S(t))), we infer that
z′(t) = r0z(t)− u(r(t)) by Fenchel equality (15.17), p.624, characterizing
subdifferentials. This implies that the two functions y(·) and z(·) are equal.
��

We conclude by observing that the proof of Theorem 15.3.9, p.626 implies
two properties which justify the use of the viability portfolio valuation as a
measure of risk:

Theorem 15.2.10 [Measuring Risk with Viability Portfolio Valua-
tions] The viability portfolio valuation plays the role of a (non probabilistic)
measure of risk of violating either the constraint inequality or the objective
inequality:
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1. if the investment exceeds the viability portfolio valuation V (T, S): what-
ever the realization of an evolution of returns r(t) ∈ Dom(u) in the
tychastic domain, the valuation of the portfolio managed by decision
rule ∀ t ∈ [0, T ], E(T − t, S(t)) ∈ ∂+u(r(t)) always satisfies both the
constraint and objective properties.

2. if the investment is strictly less than the viability portfolio valuation
V (T, S): whatever the management rule chosen, one of the constraint and
objective properties is violated by the completion of at least one evolution
of returns r(t) ∈ Dom(u).

15.3 Bridging the Micro–Macro Economic
Information Divide

15.3.1 Two Stories for the Same Problem

We throw away thousands of variables to keep only:

• the initial date is equal to 0, t ≥ 0 denotes the current (evolving present)
date and s ≥ t the (evolving) future dates;

• the “economic value” m ≥ 0 or y ≥ 0, to avoid using the polysemous word
“money” overloaded with so many interpretations and functions;

• the commodity x := (x1, . . . , xh, . . . , xl) ∈ X := R
l (regarded as a basket

of goods), the commodity space, the components xh of which denoting the
quantity of units of good labelled h;

• the price p := (p1, . . . , ph, . . . , pl) ∈ X� := R
l� := L(Rl,R), a linear map

associating with each commodity its value 〈p, x〉 :=
l∑

h=1

phxh, where ph

denotes the value of the unit of commodity h (called the price of h in
usual language);

• the transaction v or x′(t) at time t of the evolving commodity t �→ x(t);

• the transaction value〈p, x′(t)〉 :=
l∑

h=1

phx
′
h(t).

• interest rates r(t) with which we associate

R(t) :=
∫ t

0

r(τ)dτ
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We assume here, for simplicity of notations and clarity of exposition, that
there exists only one economic agent transforming commodities, the case of
several agents being a more or less cumbersome conceptually straightforward
task.

Definition 15.3.1 [Scarcity and Viability Constraints] The scarcity
(of available commodities) and viability (for the agent) are described by a
time-dependent economic cost function k : (t, x) �→ k(t, x) ∈ R+ ∪ {+∞}.
Setting

K(t) := {x ∈ X such that k(t, x) = 0}

and
K̂(t) := {x ∈ X such that k(t, x) < +∞}

the function k can be interpreted as the cost of violating constraint x ∈ K(t)
by paying a penalty 0 < k(t, x) < +∞ whenever x ∈ K̂(t) \ K(t) and an
infinite (or death) penalty when x /∈ K̂(t).
In the classical case, k(t, x) = 0 whenever x ∈ K(t) and k(t, x) = +∞
whenever x /∈ K(t), these two environments K(t) and K̂(t) coincide.

1. From Micro-Economy to Macro-Economy: the Direct Approach.
We denote by O(t, x) the subset of all (almost everywhere) differentiable
commodity evolutions starting at departure time t with commodity x. We
assume once and for all that the interest rates r(·) are integrable.
The micro–macro approach assumed known a transaction cost function:

Definition 15.3.2 [Transaction Cost Function] A transaction cost
function l : (v, r) ∈ X × R �→ l(v, r) ∈ R+ ∪ {+∞} associates with any
transaction v ∈ X and any interest rate r its transaction cost l(v, r).
We associate with the constraint function k the microeconomic value
function

⎧⎨
⎩
V (t, x) := infx(·)∈O(t,x), r(·)

sup
s≥t

eR(t)

(
e−R(s)k(s, x(s)) +

∫ s

t

e−R(τ)l(x′(τ), r(τ))dτ
)

(15.13)

which is the smallest value actualized at time t of the future largest sum
of the cumulated transaction cost and constraint violation cost.
Denoting by OK(·)(t, x) the subset of evolutions x(·) ∈ O(t, x) viable in
the tube K(·) in the sense that ∀ s ≥ t, x(s) ∈ K(s), the microeconomic
value function takes a simpler form when k(t, x) = 0 whenever x ∈ K(t)
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and +∞ outside:

V (t, x) := inf
x(·)∈OK(·)(t,x), r(·)

eR(t)

∫ +∞

t

e−R(τ)l(x′(τ), r(τ))dτ (15.14)

The function l is assumed to be independent of time t and commodity x
only for simplicity of the presentation.
The microeconomic approach ignores prices and deals only with transac-
tions and interest rates.
Consequently, starting only with time-dependent constraint violation
cost and transaction costs, we derived a microeconomic value function
describing the behavior of the agent.

2. From Macro-Economy to Micro-Economy: the Inverse Approach.
We introduce the macroeconomic value function V : (t, x) �→ V (t, x)
associating with time t and commodity x an economic value V (t, x).
In the macroeconomic approach, we assume that the economic value
function is indirectly accessible through its first-order derivatives:

• the first-order partial derivative y(t, x) :=
∂V (t, x)

∂t
, regarded as a value

flow (or flow) for any fixed commodity x, the economic value being
regarded as a stock of value flows,

• the first-order partial derivative
∂V (t, x)
∂x

, related to the price by the

relation p(t, x) := −∂V (t, x)
∂x

The question arises to investigate whether the macroeconomic value
function can be directly or empirically obtained through econometric
measurements of a relation between economic value flows y = h(p,m)
depending on prices p and macroeconomic values m.
Knowing such relation h, the economic value function can be recovered by
solving the first-order Hamilton–Jacobi partial differential equation

∂V (t, x)
∂t

= h
(
−∂V (t, x)

∂x
, V (t, x)

)
(15.15)

We also require that the economic value function satisfies the constraint
violation cost

∀ t ≥ 0 and ∀ x ∈ K̂(t), k(t, x) ≤ V (t, x)

Definition 15.3.3 [The Price Map] The map h : X� × R �→ R is
regarded as the price map mapping prices p and macroeconomic values
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m into value flows h(p,m). The macroeconomic value function is defined
as the solution to partial differential equation with constraints

⎧⎪⎪⎨
⎪⎪⎩

∀ t ≥ 0 and x ∈ K̂(t),

(i)
∂V (t, x)

∂t
= h

(
−∂V (t, x)

∂x
, V (t, x)

)

(ii) k(t, x) ≤ V (t, x)

(15.16)

The macroeconomic approach ignores transactions and deals only with
prices.

3. Bridging the Micro–Macro Economic Divide. Both approaches aim
at computing an economic value function V , the microeconomic one
through the intertemporal minimization of the sum of constraint violation
cost and cumulated transaction cost, the macroeconomic one by solving
a partial differential equation relating prices to economic value flows
satisfying a constraint requirement.
The question arises to investigate under which conditions bearing on the
transaction cost function l and on the price map h these two approaches
provide the same economic value. We shall answer it by using tools of
convex analysis and viability theory.

We assume that both the transaction cost function l : X×R �→ R∪{+∞}
and the transaction map h : X� ×R �→ R ∪ {+∞} are lower semicontinuous
and convex. For relating them, we need to refer to Sect. 18.7, p. 755 for the
Fenchel’s Definition 18.7.3, p.756 of conjugate functions and Definition 18.7.5,
p.758 for the definition of subdifferentials. Fenchel Theorem 18.7.3, p.756 and
Theorem 18.7.7, p.759 on the Legendre property of subdifferential of convex
functions and their conjugate adapted to our case imply:

Lemma 15.3.4 [Conjugate Transaction Cost Function and Price
Map] Assume that the transaction cost function l : X × R �→ R ∪ {+∞}
is convex and lower semicontinuous. Then the following conditions are
equivalent:
⎧⎪⎪⎨
⎪⎪⎩

(i) l�(−p, y) = supv∈X, r∈R
[ry − 〈p, v〉 − l(v, r)]

(ii) l(v, r) = supp∈X�,y∈R
[ry − 〈p, v〉 − l�(−p, y)]

(iii) the transaction cost function l is convex and lower semicontinuous
(iv) the price map l� is convex and lower semicontinuous

They satisfy the Fenchel inequality

∀ v ∈ X, p ∈ X�, r ∈ R, y ∈ R, ry − 〈p, v〉 ≤ l(v, r) + l�(−p, y)
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The three following statements are thus equivalent:
⎧⎨
⎩

(i) ry − 〈p, v〉 ≥ l(v, r) + l�(−p, y)
(ii) (−p, y) ∈ ∂−l(v, r)
(iii) (v, r) ∈ ∂−l�(−p, y)

(15.17)

We shall relate price maps and transaction cost function for bridging the
micro–macro divide:

Definition 15.3.5 [Consistent Price Map and Transaction Cost
Function] A price map h is consistent with a transaction cost function
l if h(p, r) := l�(p, r) is the conjugate function of l.

15.3.2 The Viability Economic Value

We introduce a third concept of economic value, called the viability economic
value, defined through the viability kernel under a characteristic control
system involving the cost function l:

⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = +1
(ii) x′(t) = v(t)
(iii) y′(t) = r(t)y(t) − l(v(t), r(t))

where (v(t), r(t)) ∈ Dom(l)

(15.18)

controlled by transaction-rate pairs (v(·), r). We take for environment K :=
Ep(k).

Definition 15.3.6 [Viability Economic Value] Let us consider the
epigraph Ep(k) of the constraint function k. The viability economic value
V is defined by the following formula

V (t, x) := inf
(t,x,y)∈Viab(15.18)(Ep(k))

y (15.19)

Making the above definition explicit, one can prove that the viability
economic value coincides with the microeconomic value through the economic
variational principle.
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Theorem 15.3.7 [Equality between Viability and Micro-Economic
Values] The viability economic value V (t, x) to the economic value problem
(15.16), p. 623 coincides with the microeconomic value:

⎧⎨
⎩
V (t, x) := infx(·)∈O(t,x), r(·) sups≥t eR(t)(
e−R(s)k(s, x(s)) +

∫ s

t

e−R(τ)l(x′(τ), r(τ))dτ
)

(15.20)

Proof. Observe that a solution y(·) of equation (15.18)(iii), p. 624 starting at

y is given by y(r) = eR(r)

(
y −

∫ r

0

e−R(τ)l(v(τ), r(τ))dτ
)

.

By definition of viability kernels, to say that (t, x, y) belongs to the viability
kernel Viab(15.18)(Ep(k)) means that there exists an integrable function
(v(·), r(·)) ∈ Dom(l) such that the solution
(
t+ r, ξ(r), η(r) := e

∫ r
0 ρ(τ)dτ

(
−
∫ r

0

e−
∫ τ
0 ρ(s)dsl(ν(τ), ρ(τ))dτ

))
∈ Ep(k)

is viable in the environment Ep(k) for all t ≥ 0. Therefore

e
∫ r
0 ρ(τ)dτ

(
y −

∫ r

0

e−
∫ τ
0 ρ(s)dsl(ν(τ), ρ(τ))dτ

)
≥ k(t+ r, ξ(r))

Setting x(r) := ξ(r− t), y(r) := η(r− t), r(r) := ρ(r− t) and v(r) := ν(r− t),
we observe that x(·) ∈ O(t, x), so that the above inequality reads

∀ s ≥ t, e−R(t)y −
∫ s

t

e−R(τ)l(v(τ), r(τ))dτ ≥ e−R(s)k(s, ξ(s))

Taking the supremum over s ≥ t and the infimum over evolutions x(·) ∈
O(t, x) and interest rates r(·) in the above inequality implies that

{
U(t, x) := infx(·)∈O(t,x), r(·) sups≥t
eR(t)

(
e−R(s)k(s, x(s)) +

∫ s
t e
−R(τ)l(x′(τ), r(τ))dτ

)
≤ y

Taking the infimum with respect to the y such that (t, x, y) belongs to
the viability kernel, the definition of the viability economic value implies
inequality U(t, x) ≤ V (t, x).

For proving the opposite equality, assume for a while that U(t, x) < V (t, x)
and choose any z such that U(t, x) ≤ z < V (t, x). Therefore, (t, x, z) does
not belong to the viability kernel Viab(15.18)(Ep(k)). Hence every evolution
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(t+ τ, ξ(τ), ζ(τ)) := (t+ τ, x(t+ τ), z(τ + t))

satisfying x(t) = ξ(0) = x and z(t) = ζ(0) = z leaves the environment Ep(k)
at a finite time τ �:

z(τ � + t) < k(τ � + t, x(t+ τ �))

Translating this inequality and setting s� := t+ τ �, we obtain
{
U(t, x) ≤ z < eR(t)

(
e−R(s�)k(s�, x(s�)) +

∫ s�

t e−R(τ)l(x′(τ), r(τ))dτ
)

≤ U(t, x)

Hence, we derived a contradiction, so that U(t, x) = V (t, x). ��

Definition 15.3.8 [The Regulation Map] Assume that the price map
h is convex and lower semicontinuous, satisfies h(0) = 0 and satisfies the
following inequalities: there exist ξ ∈ X and constants β and x > 0 such
that

〈p, ξ〉 − β ≤ h(p,m) ≤ c(‖p‖+ |m|+ 1)

Assume also for simplicity that viability economic value function is differ-
entiable. The economic regulation map R is defined by

⎧⎨
⎩
R(t, x) := {(v, r) ∈ Dom(l) such that
∂V (t, x)

∂t
+
∂V (t, x)
∂x

v − rV (t, x) + l(v, r) ≤ 0
}

(15.21)

We prove that the viability economic value function, when it is differ-
entiable, is a solution to the Hamilton–Jacobi equation (15.22), p. 627,
satisfying the constraint and objective conditions. Otherwise, when it is
not differentiable, but only lower semicontinuous, we can give a meaning
of a solution in the Barron-Jensen/Frankowska sense, using for that purpose
subdifferential and superdifferential of lower semicontinuous functions defined
in non-smooth analysis (see Chaps. 17, p. 681 and 18, p. 713).

Theorem 15.3.9 [Equality between Viability and Macro-Economic
Values] Assume that the transaction cost is a nonnegative, convex and
lower semicontinuous. The viability economic value function (t, x) �→
V (t, x) is the smallest lower semicontinuous function satisfying
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⎧⎪⎪⎨
⎪⎪⎩

∀ t ≥ 0 and x ∈ K̂(t),

(i)
∂V (t, x)

∂t
≤ h

(
−∂V (t, x)

∂x
, V (t, x)

)

(ii) k(t, x) ≤ V (t, x)

(15.22)

and

∂−h
(
−∂V (t, x)

∂x
, V (t, x)

)
⊂ R(t, x)

Furthermore, if the transaction cost function is Lipschitz, it is the unique
solution satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀ (t, x) ∈ Int(Dom(k)) such that V (t, x) > k(t, x),
∂V (t, x)

∂t
= h

(
−∂V (t, x)

∂x
, V (t, x)

)

∀ (t, x) ∈ ∂Dom(k) such that V (t, x) = k(t, x),
∂V (t, x)

∂t
≥ h

(
−∂V (t, x)

∂x
, V (t, x)

)

and

∂−h
(
−∂V (t, x)

∂x
, V (t, x)

)
= R(t, x)

Therefore, the viability economic value coincides with the macroeconomic
value.

Proof. Inclusion
Ep(k) ⊂ Ep(V )

implies inequalities

∀ t, x ≥ 0, k(t, x) ≤ V (t, x)

Recall the characterization of the tangent cones to the epigraph when it
is differentiable:

TEp(V )(t, x, V (t, x)) = {(θ, ξ, η) such that
∂V (t, x)

∂t
θ +

∂V (t, x)
∂x

ξ − η ≤ 0}

By Proposition 11.4.1, p.460, the epigraph Ep(V ) of the viability economic
value is the smallest subset contained in Ep(k) such that

{
∀ (t, x, V (t, x)), ∃ (v, r) ∈ Dom(l) such that
(+1, v, rV (t, x)− l(v, r)) ∈ TEp(V )(t, x, V (t, x)) (15.23)

Assume for simplicity that the viability economic value function is
differentiable. Then (v, r) belongs to R(t, x) if and only if
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{∀ (t, x, V (t, x)), ∃ (v, r) ∈ Dom(l) such that
∂V (t, x)

∂t
+
∂V (t, x)
∂x

v − rV (t, x) + l(v, r) ≤ 0

This means that, by (15.21), p. 626, for any (t, x) ∈ Dom(V ), the value
R(t, x) of the regulation map is not empty.

By Lemma 15.3.4, p.623, this implies that
⎧⎪⎪⎨
⎪⎪⎩

∂V (t, x)
∂t

≤ sup
(v,r)∈Dom(l)

(
rV (t, x)− ∂V (t, x)

∂x
v − l(v, r)

)

≤ h
(
−∂V (t, x)

∂x
, V (t, x)

)

Hence
∂V (t, x)

∂t
≤ h

(
−∂V (t, x)

∂x
, V (t, x)

)
and, furthermore, we observe

that

∂−h
(
−∂V (t, x)

∂x
, V (t, x)

)
⊂ R(t, x)

If we assume moreover that l is Lipschitz and that the constraint function is
continuous in the interior of its domain, we infer from Theorem 11.4.5, p.463
that the epigraph enjoys the Frankowska property

{∀ (t, x) ∈ Int(Dom(k)) such that V (t, x) > k(t, x), ∀ (v, r) ∈ Dom(l)

−∂V (t, x)
∂t

− ∂V (t, x)
∂x

v + rV (t, x) − l(v, r) ≤ 0

and that,

{∀ (t, x) ∈ ∂Dom(k) such that V (t, x) = k(t, x), ∀ (v, r) ∈ Dom(l)

−∂k(t, x)
∂t

− ∂k(t, x)
∂x

v + rk(t, x) − l(v, r) ≤ 0

We infer that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀ (t, x) ∈ Int(Dom(K)) such that V (t, x) > k(t, x)

−∂V (t, x)
∂t

+ sup
(v,r)∈Dom(l)

(
rV (t, x)− ∂V (t, x)

∂x
v − l(v, r)

)

= h
(
∂V (t, x)
∂x

, V (t, x)
)
≤ 0

and that
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀ (t, x) ∈ ∂Dom(k) such that V (t, x) = k(t, x),

−∂k(t, x)
∂t

+ sup
(v,r)∈Dom(l)

(
rk(t, x) − ∂k(t, x)

∂x
v − l(v, r)

)

= h
(
∂k(t, x)
∂x

, V (t, x)
)
≤ 0

Therefore, in the interior of the domain of k, h
(
−∂V (t, x)

∂x
, V (t, x)

)
=

∂V (t, x)
∂t

, and on the boundary, when V (t, x) = k(t, x), then h
(
−∂V (t, x)

∂x
,

V (t, x)) ≤ ∂V (t, x)
∂t

. Theorem 11.6.6, p.479 states that the viability economic
value function is the unique solution to the partial differential equation
(15.16)(i), p. 623, and furthermore, that

∀ (t, x) ∈ Int(Dom(k)), ∂−h
(
−∂V (t, x)

∂x
, V (t, x)

)
= R(t, x)

This completes the proof of the theorem. ��

Theorem 15.3.10 [The Macro-Micro and Micro–Macro Regula-
tion Maps] We introduce the two following regulation maps:

1. From Macro to Micro: the subdifferential map

∂h : (p, y) ∈ X� × R �→ ∂h(p, y) ⊂ X × R

associates with any price p and any macroeconomic value y the pairs
(x′, r) ∈ ∂h(p, y) made of a transaction x′ and of a interest rate r at
the microeconomic level. Knowing the economic value V (t, x) and the

price p(t, x) :=
∂V (t, x)
∂x

, then the underlying economic agent knows how

to determine his/her transaction x′(t) and the interest rate allowing
him/her to compute the transaction cost:

(x′(t), r(t)) ∈ ∂h (p(t, x), V (t, x(t)))

2. From Micro to Macro: the subdifferential map

∂l : (v, r) ∈ X × R �→ ∂l(v, r) ⊂ X × R

associates with any transaction v and any interest rate r the pairs (p, y) ∈
∂l(v, r) made of a price p and of a macroeconomic value y. Knowing the
transaction x′(t) and the interest rate r(t), the invisible hand (or the
central banker) knows how to determine the economic value V (t, x(t))

and the price p(t, x) := −∂V (t, x(t))
∂x

:
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(p(t, x), V (t, x(t))) ∈ ∂l(x′(t), r(t))

The emerging Walras law states that the difference between the value of the
transaction and the transaction cost is equal to the difference between the
value flow generated by the transaction and the discounted macroeconomic
value holds true:

〈p(t, x), x′(t)〉 − l(x′(t), r(t)) = h(p(t, x), V (t, x)) − rV (t, x)

Proof. The Legendre property described in Lemma 15.17, p.624 states that
these two regulation maps are inverse:

(x′(t), r(t)) ∈ ∂h (p(t, x), V (t, x(t)))

if and only if
(
−∂V (t, x)

∂x
, V (t, x(t))

)
∈ ∂l(x′(t), r(t))

The Fenchel equality implies that, setting p(t, x) := −∂V (t, x)
∂x

, regarded as
the price,

〈p(t, x), x′(t)〉 − l(x′(t), r(t)) = h(p(t, x), V (t, x)) − rV (t, x)

which can be regarded as the Walras law. ��



Chapter 16

Viability Solutions to Conservation
Laws

16.1 Introduction

Several chapters (Chaps. 13, p.523, 14, p. 563, 17, p. 681, and Sects. 15, p. and
603) are devoted to first-order Hamilton–Jacobi–Bellman partial differential
equations. This chapter presents a viability approach to another class of
partial differential equations, conservation laws. We restrict our study to the
Burgers equation (the canonical example of conservation laws) in Sect. 16.2,
p.631 for illustrating this approach. We also include in this chapter the short
Sect. 16.3, p.674 on a generalization of the Invariant Manifold Theorem to
control problems which plays an important role in control theory. It is an
addendum to Chap. 8 of the first edition of Viability Theory [18, Aubin]
(1991) which is not repeated in this second edition.

16.2 Viability Solutions to Conservation Laws

We first introduce the Burgers equation:

Definition 16.2.1 [Burgers Partial Differential Equation] The first-
order partial differential equation

∂U(t, x)
∂t

+
∂U(t, x)
∂x

U(t, x) = 0 (16.1)

is called the Burgers equation.

This partial differential equation is often used in fluid mechanics as an
approximate form of the one dimensional Navier-Stokes equation, and is

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 16,
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useful in dealing with nonstationary waves in a fluid. Being the simplest
example of nonlinear hyperbolic conservation law, we restrict our study to it,
although the viability approach allows us to treat more general cases.

We begin our study by imposing the traditional Cauchy/Dirichlet condi-
tions (or initial/boundary value conditions)

{
(i) ∀ x ≥ ξ, U(0, x) = U0(x) where x� U0(x) is given
(ii) ∀ t ≥ 0, U(t, ξ) = Γξ(t) where t� Γξ(t) is given (16.2)

to the solutions to the Burgers equation on the environment defined by the
time constraints t ≥ 0 and space constraints x ≥ ξ.

We add later in this chapter other conditions (additional intermediate
Eulerian conditions, Lagrangian (mobile) conditions, etc.) on the solutions
and assume that they satisfy other viability constraints. Section (16.2.10),
p. 667 briefly presents the extension of the study to the controlled Burgers
inclusion, when the 0 right hand side of the Burgers equation is replaced by a
set-valued map, and when viability and Lagrangian conditions are described
by general set-valued maps.

The specific feature of solutions to Burgers partial differential equation
and other conservation laws is the set-valued character of their solutions.
Problems without single-valued solutions, for instance when shocks are
involved, are known since the work of Riemann. A considerable literature
deals with many different ways to give a meaning to the solution to
partial differential equation, involving by definition derivatives, whenever
the solution is not necessarily differentiable, not even single-valued. Most
of the approaches propose distributions as candidates for non differentiable
solutions, since distributions are always differentiable, at the risk of loosing
their pointwise character (see Sect. 18.9, p.765), despite the fact that the
pointwise character could be a “physical requirement”. In this chapter, we
propose a novel approach suggesting set-valued maps instead of distributions
as candidates for the concept of solution to partial differential equations
such as the Burgers equation, since they are always differentiable too (see
Sect. 18.5, p.738). Being novel, this other interpretation of set-valued solution
requires more work and is very promising since it enables us to leverage other
properties of viability theory. The viability approach to Burgers equation
is still at its infancy and promises future breakthroughs. This is just the
beginning of an unknown story.

We shall provide three solutions at once: the viability solution, the partial
differential equation generalized solution and the tracking solution, and prove
that they coincide (as in Sect. 13.2, p.524 in the case of Hamilton–Jacobi
equations). We obtain in this way three equivalent interpretations of the
same concept.
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1. The viability solution.
We set K := [ξ,+∞[. Constraints corresponding to Cauchy/Dirichlet
problem are described by the set-valued map Ψ : R

2 � R defined by

Ψ(t, x) :=
{

R if x ≥ ξ and t ≥ 0
∅ if x < ξ or t < 0 (16.3)

the graph of which is Graph(Ψ) := R+ ×K × R.
We impose two conditions on the boundary ∂(Graph(Ψ)) := ({0} ×K ×
R) ∪ (R+ ∪ {ξ} × R):

• The Cauchy or initial condition U0 : X � U0(x) ⊂ R, that is extended
for t > 0 by introducing the set-valued map (t, x) � U+

0 (t, x) defined
by

U+
0 (t, x) := U0(x) if t = 0 and U+

0 (t, x) := ∅ otherwise

• The Dirichlet or boundary condition t �→ Γξ(t) at the lower bound ξ
of [ξ,+∞[. We extend this (set-valued) map by the set-valued map
Γ+
ξ : R+ ×X � X defined by:

Γ+
ξ (t, x) :=

{
Γξ(t) if x = ξ
∅ if x �= ξ

We take these two conditions into account by introducing the set-valued
map Φ ⊂ Ψ defined by

Φ(t, x) := U+
0 (t, x) ∪ Γξ(t, x) defined on ({0} ×K) ∪ (R+ ∪ {ξ})

Definition 16.2.2 [Viability Solution to the Cauchy/Dirichlet
Burgers Equation] Let us introduce the “characteristic system”

⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −y(t)
(iii) y′(t) = 0

(16.4)

We shall say that the set-valued map U : R+ × R+ � R defined by

Graph(U) := Capt(16.4)(Graph(Ψ),Graph(Φ)) (16.5)

is the viability solution to the Cauchy/Dirichlet Burgers problem.

This definition should not look strange and artificial for the reader
of this book by now familiar with the concept of capture basin (see
Definition 2.10.2, p.86). For partial differential equation specialists, the
characteristic system (16.4), p. 633 associated with the Burgers equations
is quite classical, the solutions of which are called the characteristics, their
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favorite tools. In some sense, one can say that the viability solution defined
through a capture basin “encapsulates” the method of characteristics
which underlies the concept of capture basin under the characteristic
system.
The graph of the viability solution being a capture basin, it inherits the
properties of capture basins presented in this book. What remains to be
done is to translate properties of capture basins in terms of set-valued maps
and their derivatives. The only difficulty is due to the fact the notations
become more and more intricate.

2. The viability solution is equal to the unique set-valued solution with closed
graph to the Burgers partial differential equation with Cauchy/Dirichlet
conditions in the Frankowska sense, when derivatives are the graphical
derivatives of set-valued maps (coinciding with the usual derivative when-
ever the map is single-valued and differentiable). Graphical (set-valued)
derivatives replace “weak derivatives” taken in spaces of distributions for
giving a meaning to non differentiable solutions to the Burgers equation
(see Sect. 18.9, p. 765 for a brief account of the differences between the
two approaches, where “generalized derivatives” are either set-valued or
distributions.) Non continuous single-valued maps which are solutions
to the Burgers equation are not necessarily pointwise selections of the
viability solution, but measures or distributions.

3. The viability solution coincides with the tracking solution to the Burgers
problem, providing another property of the viability solution. In this
“tracking approach”, T ≥ 0 denotes the (evolving) horizon and t ∈ [0, T ]
the current time.
We are looking for a set-valued map U : R+ × X � Y providing the
velocities y ∈ U(T, x) such that there exists an evolution y(·) of velocities
y(t) satisfying {

(i) y(T ) = y
(ii) ∀t ∈ [0, T ], y(t) ∈ U (t, x(t))

Condition (ii) amounts to saying that the velocities “track” the state at
each time.
The problem is to find such a set-valued map U when the evolu-
tion of velocities y(t) := x′(t) is governed by a differential equa-
tion y′(t) = g(t, x(t), y(t)) or even, a differential inclusion y′(t) ∈
G(t, x(t), y(t)) or a control problem. This amounts to saying that the
evolution of the states x(t) is governed by a second-order differential
equation x′′(t) = g(t, x(t), x′(t)) or a second-order differential inclusion
x′′(t) ∈ G(t, x(t), x′(t)). The particular case when g = 0 provides the
Burgers tracking problem.
For simplicity of the exposition, we take K = X in this section.

Definition 16.2.3 [Burgers Tracking Problem] Given the initial
condition U0, a set-valued map U : R+ × X � X is a solution to the
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Burgers tracking problem if it satisfies the Burgers tracking property:
any y ∈ U(T, x) satisfies

x(T ) = x and ∀t ∈ [0, T ], y ∈ U (t, x(t)) (16.6)

16.2.1 Viability Solution as Solution to Burgers
Equation

Recall that D��U(t, x, y) denotes the convexified derivative of the set-valued
map U at a point (t, x, y) of its graph (see Definition 18.5.5, p.740): it is
defined by

T ��Graph(F )
(x, y) =: Graph(D��F (x, y))

where T ��K (x) is the closed convex hull to the tangent cone TK(x) to K at x.

Theorem 16.2.4 [The Viability Solution is a Solution to Burgers
Equation] Assume that the graphs of U0 and Γξ are closed. The viability
solution to the Burgers problem is the unique solution U with closed graph
to the Burgers partial differential equation (16.1), p. 631, in the sense that

⎧⎨
⎩

∀ t > 0, ∀ x > ξ, ∀ y ∈ U(t, x),
(i) 0 ∈ D��U(t, x, y)(−1,−y)
(ii) 0 ∈ D��U(t, x, y)(+1,+y)

(16.7)

satisfying the Cauchy/Dirichlet conditions
{

(i) ∀ x ≥ ξ, U(0, x) = U0(x)
(ii) ∀ t ≥ 0, U(t, ξ) ∩ Int(R+) ⊂ Γξ(t) ⊂ U(t, ξ) (16.8)

and, when x = ξ, the further requirement

∀ t ≥ 0, ∀ y ∈ U(t, ξ) ∩ R+, 0 ∈ D��U(t, ξ, y)(+1,+y) (16.9)

Whenever the viability solution U is single-valued and differentiable at
some point (t, x), setting then inclusions (16.7), p. 635 boil down to

∀ t > 0, ∀ x > ξ, 0 =
∂U(t, x)

∂t
+
∂U(t, x)
∂x

U(t, x) (16.10)
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Proof. Since the graph of the viability solution to the Cauchy/Dirichlet
Burgers problem is the capture basin of the graph of Φ viable in the graph
of Ψ and since the graph of Ψ is a repeller because equation (16.4)(i), p.
633 of the characteristic system implies that all solutions (T − t, x(t), y(t))
violate the constraint T − t ≥ 0, Theorem 11.4.6, p.463, implies that the
graph of the viability solution is the unique subset satisfying the inclusions

Graph(Φ) ⊂ Graph(U) ⊂ Graph(Ψ)

the tangential conditions

∀ t > 0, x > ξ, (−1,−y, 0) ∈ T ��Graph(U)
(t, x, y) =: Graph(D��U(t, x))

and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) ∀ t > 0, x > ξ, y ∈ U(t, x), then
(+1,+y, 0) ∈ T ��Graph(U)

(t, x, y) =: Graph(D��U(t, x))

(ii) ∀ t > 0, y ∈ U(t, ξ) such that (+1,+y, 0) ∈ T ��Graph(Ψ)
(t, ξ, y),

then (+1,+y, 0) ∈ T ��Graph(U)
(t, ξ, y)

This first inclusion means that U is the largest solution to inclusion
(16.7)(i), p. 635, the second one that U is the smallest solution satisfying
(16.7)(i), p. 635 and that whenever x = ξ

∀ y ≥ 0, (+1,+y, 0) ∈ T ��Graph(U)
(t, ξ, y)

i.e., that, at the boundary, only the weaker boundary requirement

∀ t ≥ 0, ∀ y ∈ U(t, ξ) ∩ R+, 0 ∈ D��U(t, ξ, y)(+1,+y)

is needed.
Moreover, inclusion Graph(U) ⊂ Graph(Ψ) implies that viability con-

straints U(t, x) ⊂ Ψ(t, x) are satisfied and inclusions Graph(Φ) ⊂ Graph(U)
that {

(i) ∀ x ≥ ξ, U0(x) ⊂ U(0, x)
(ii) ∀ t ≥ 0, Γξ(t) ⊂ U(t, ξ)

By inclusions (11.18), p. 461 of Theorem 11.4.6, p.463, stating that

Graph(U) ∩ Exit(16.4)(Graph(Ψ)) ⊂ Graph(Φ)

we obtain the Cauchy/Dirichlet conditions. It is enough to observe that for
any t ≥ 0, x ≥ ξ,

{
(i) ∀ y ∈ R, (0, x, y) ∈ Exit(16.4)(Graph(Ψ))
(ii) ∀ y > 0, (t, ξ, y) ∈ Exit(16.4)(Graph(Ψ))



16.2 Viability Solutions to Conservation Laws 637

This is obvious for t = 0 since the first equation τ ′(t) = −1 of (16.4)(i), p.
633 implies that (0, x, y) violates the constraint t = 0. For x = ξ, the second
equation x′(t) = −y(t) := y of (16.4)(i), p. 633 implies that (0, x, y) violates
the constraint x = ξ whenever y > 0. Therefore for t = 0, U(0, x) ⊂ Φ(0, x) =

U0(x) and for x = ξ, U(t, ξ)∩
◦

R+⊂ Φ(t, ξ) = Γξ(t) ⊂ U(t, ξ). ��

16.2.2 Viability and Tracking Solutions

Since the solutions starting from single-valued initial conditions may become
set-valued, and since they can be regarded as initial conditions for future
times, we are led to assume that initial conditions may be taken in the class
of set-valued maps. Theorem 16.2.5 states that the viability solution is the
unique solution (in the Barron–Jensen/Frankowska sense) to the Burgers
tracking problem.

Theorem 16.2.5 [Viability Solution as the Unique Solution to
the Burgers Tracking Problem] The viability solution U (see Defini-
tion 16.2.2, p.633) is the unique solution V to the Cauchy Burgers tracking
problem.

Furthermore, U(t, x) is the set of fixed points y ∈ U0(x − ty) of the
map y � U0(x− ty).

The viability solution satisfies the “maximum principle”:

∀(t, x) ∈ R+ ×X, sup
y∈U(t,x)

|y| ≤ sup
x∈X

sup
y∈U0(x)

|y|

or, more precisely

∀(t, x) ∈ R+ ×X, U(t, x) ⊂ Im(U0)

Fig. 16.1 Illustration of the definition of Graph(U).

Graph(U) is the capture basin Capt(16.4)(R+ × R × R,Graph(U+
0 )) of the

graph of the set-valued map U+
0 under the characteristic system (16.4).
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Proof. Even though this formula is a particular case of a general one (see
Theorem 16.2.26), it is worth providing the direct proof of this very simple
example.

Indeed, to say that (T, x, y) belongs to the capture basin Capt(16.4)(R+ ×
R×R,Graph(U+

0 )) amounts to saying that there exists a finite time t� such
that:

1. the value (T − t�, x − yt�, y) of the solution to characteristic differential
equation (16.4) at time t� belongs to the graph of the set-valued map U+

0 ,
2. for all t ∈ [0, t�], (T − t, x− ty, y) belongs R+ × R× R.

The first condition means that T − t� = 0 and that (x − yT, y) belongs
to the graph of U0, i.e., that y ∈ U0(x − yT ). The second condition means
that t ∈ [0, T ], y(t) ∈ U(t, x + (t − T )y), i.e., the tracking property on
[0, T ]. Actually, in the absence of viability constraints, it satisfies the tracking
property

∀t ≥ 0, y ∈ V(t, x + (t− T )y)

Furthermore, we have proved that U(T, x) is the set of fixed points of the
map y � U0(x− Ty).

When T = 0, we infer that y ∈ U0(x), and thus, that U(0, x) ⊂ U0(x).
By construction, U0(x) ⊂ U(0, x), so that the initial condition is satisfied.

Theorem 10.2.5 states that the graph of the viability solution is actually
the unique graph of a set-valued map V between U+

0 and R+×R×R satisfying
{

Graph(V) = Capt(16.4)(Graph(V),Graph(U+
0 ))

= Capt(16.4)(Graph(R+ × R× R),Graph(V))

The first condition means that for any t ∈ [0, T ], y belongs to V(T − t, x−
yt). By the change of variable s := T − t, this means that for any s ∈ [0, T ],
y ∈ V(s, x+ (s− T )y).

The second condition means that for all t ≥ T , y ∈ V(t, x+(t−T )y). If not,
there would exist some t� > T such that (t�, x+(t�−T )y, y) does not belong
to the graph of V. Hence (t�, x + (t� − T )y, y) ∈ R+ × R × R \ Graph(V)
and, by construction, (t�, x + (t� − T )y, y) ∈ Capt(16.4)(Graph(R+ × R ×
R),Graph(V)) = Graph(V), a contradiction.

Hence these two conditions mean that V satisfies both the Burgers tracking
property (16.6) and the initial condition U0. ��

Remark: Fixed Point Theorems. The above formula requires fixed-
point theorems to guarantee the non-emptiness of U(T, x). The Brouwer
Fixed Point Theorem states that if the image Im(U0) ⊂ [a, b] is bounded
and if U0 is single-valued and continuous, then there exists a fixed point on
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the compact interval [a, b]. If U0 is set-valued map, if its graph is closed, if
image Im(U0) ⊂ [a, b] is bounded and if the images are convex, the Kakutani
Fixed Point Theorem, an extension of the Brouwer Fixed Point Theorem to
set-valued maps, also guarantees the existence of a fixed point of the set-
valued map y � U0(x − Ty). The Banach–Picard Contraction Theorem
implies existence and uniqueness of a fixed point of y � U0(x−Ty) if U0 is
single-valued and Lipschitz with constant λ and if T < 1

λ (because the map
y �→ U0(x − Ty) is Lipschitz with constant Tλ < 1). ��

.
5

.
q

.
5

.
5

.
4.5

.
4.5

.
4.5

.
4

.
4

.
4

.
3.5

.
3.5

.
3.5

.
3

.
3

.
3

.
2.5

.
2.5

.
2.5

.
2

.
2 .

2

.
1.5

.
1.5

.
1.5

.
1

.
1

.
1

.
0.5

.
0.5

.
0.5

.
0.
0

.
0
t

Fig. 16.2 Graph of the Viability Solution starting from a set-valued map initial
condition.

The solution to the initial value problem to the Burgers partial differential

equation
∂U(t, x)

∂t
+
∂U(t, x)
∂x

U(t, x) = 0 can be set-valued. Its graph is a

viability kernel, which can be computed with the viability kernel algorithm.

Consequently, even when the initial condition U0 is single-valued, the
subset U(T, x) of fixed points may be set-valued for several values of T and x.
The following cases do appear:

1. U(t, x) = {y} (singleton)
2. U(t, x) = {y1, . . . , yp} (finite number of branches)
3. U(t, x) = S where S is an interval (shock)
4. U(t, x) = ∅ (the solution ceases to exist)

(see Fig. 16.4 and Sect. 16.2.3 later).
These phenomena (shocks, several branches, singularity of solutions)

are well known from the physicists’ community. Paraphrasing Antony
Jameson,“shocks are not a problem of the solution, they are a feature”:
shocks in fluids have been observed since the advent of supersonic testing
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facilities, and traffic jam shock waves in highways since urbanization triggered
a demand exceeding highway capacity. One of the key questions which
occupied scientists for decades has been to understand which of the numerous
mathematical solutions represents the physical phenomena observed in
nature.

Note that it is even possible to compute the inverse of the set-valued map
x �→ U(t, x) knowing the inverse y � U−1

0 (y) of the initial condition x� U0

(which can be any set-valued map):

Proposition 16.2.6 [Inverse of the Viability Solution] The inverse
y �→ U−1(t, y) of the solution map t �→ U(t, x) is given by

U−1(t, y) = U−1
0 (y) + ty

and thus, is defined explicitly and no longer in terms of fixed points. It is
single-valued whenever the inverse of the initial condition is single-valued.

One of the first concerns with the Burgers tracking problem is to know
under which initial conditions the solution is single-valued or the regions
where the evolution is single-valued:

Proposition 16.2.7 [Single-Valuedness of the Viability Solution to
Burgers Equation] Assume that the initial condition U0 : R � R is
monotone (increasing) in the sense that there exists a constant c ∈ R

(positive or negative) such that

∀(x1, x2), ∀y1 ∈ U0(x1), ∀ y2 ∈ U0(x2), (y1 − y2)(x1 − x2) ≥ c(x1 − x2)2

Then the solution U(·, ·) to the Burgers equation starting at U0 is
single-valued whenever t ≥ 0 if c ≥ 0 and 0 ≤ t < 1

|c| if c < 0.

Proof. Since U(t, x) is the set of fixed points y ∈ U0(x−yt), we deduce from
the monotonicity condition on U0 that whenever yi ∈ U(t, x), i = 1, 2, then

{
−t‖y1 − y2‖2 = (y1 − y2)((x− y1t)− (x− y2t))
≥ c‖(x− y1t)− (x− y2t)‖ = ct2‖y1 − y2‖2

so that
0 ≥ t(ct+ 1)‖y1 − y2‖2

This implies that y1 = y2 whenever t ≥ 0 and ct+ 1 > 0. ��
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The viability solution benefits of all other properties of capture basins.
For instance, the capture basin of a union of targets being (obviously) the
union of the capture basins of each of the targets by Lemma 10.2.2, the
map associating with any initial condition U0i(x) the solution Ui(t, x) is a
morphism1 with respect to the union (of set-valued maps):

Proposition 16.2.8 [Morphism Property of the Viability Solution]
Let Ui(t, x) denote the solution to the Burgers equation satisfying the initial
condition Ui(0, x) = U0i(x). Then

if U0(x) :=
⋃
i∈I

U0i(x), then U(t, x) =
⋃
i∈I

Ui(t, x)

In other words, one could say that the solution depends “unionly” on the
initial conditions, instead of linearly. But this morphism property is as useful
as the linearity property of solutions to linear systems.

We shall also derive from the stability properties of capture basins that
the solution to the Burgers equations depends continuously on the initial
conditions for an adequate concept of convergence: Since the initial conditions
and the solutions may be set-valued maps, this stability property has a
meaning when the convergence of the set-valued maps is defined by the
convergence of their graphs (graphical convergence).

16.2.3 Piecewise Cauchy Conditions

Piecewise initial conditions are a standard case studies of the Burgers
equation, as in the famous Riemann problem. Piecewise constant maps are
of the form

U0(x) =
n∑
i=0

βiχAi(x)

or piecewise linear maps of the form

U0(x) =
n∑
i=0

(αix+ βi)χAi(x)

where the functions χAi are the characteristic functions of the n+1 intervals
Ai associated with a finite sequence δ1 < . . . < δn by formulas

1 The group structure (+, 0) of the vector space is replaced by the lattice structure (∪, ∅)
on the subsets of the vector space, for which the maps associating an initial condition the
solution of the semi-linear equation is a lattice-morphism.
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⎧⎨
⎩
A0 := [ξ, δ1[
Ai := [δi, δi+1[ , i = 1, . . . , n− 1
An := [δn,+∞[

These intervals form a partition of K := [ξ,+∞[ and the initial condition is
single-valued.

The Burgers equation being nonlinear, we cannot express the values of the
solution U(t, x) as the sum of the values of solutions Ui(t, x) satisfying the
initial conditions (αix+ βi)χAi(x).

However, we may use the remarkable morphism property stated in
Proposition 16.2.8 to compute the solutions starting at the very same initial
condition, but rewritten in the form of the amalgam (see Definition 18.3.14,
p. 725) of affine functions x �→ αix+ βi on the partitions by subsets Ai

U0(x) =
n⋃
i=0

(αix+ βi)ΞAi(x)

where the mark ΞA of A plays the set-valued role of a the characteristic
functions of the interval A defined by

ΞA(x) := Ξ(A;x) :=
{

1 if x ∈ A
∅ if x /∈ A

(see Definition 18.3.12, p. 724).
If F : X � Y is a set-valued map, we denote by FΞA := F ∩ΞA : X � Y

the set-valued map defined by

F (x)ΞA(x) := F (x)Ξ(A;x) :=
{
F (x) if x ∈ A
∅ if x /∈ A

(See Definition 18.3.13, p. 725)
In particular, the shock at a point σ of magnitude S ⊂ Y is described by

SΞσ := S ∩ Ξσ and associates with any x the subset S when x = σ and the
empty set otherwise (in other words, S : x � S is regarded as a constant
set-valued map).

Therefore, it is sufficient to compute the solutions Ui(t, x) to the Burgers
equation starting at (αix+βi)ΞAi(x) or at shocks SΞσ to obtain the solution
starting at U0.

Observe that whenever one can approximate an initial condition by
piecewise constant (or even better, linear) set-valued maps, we shall be able
to approximate the solution of the Burgers equation by solutions starting at
these approximate solutions that can be explicitly computed.

We shall use this formula in simple cases:

Lemma 16.2.9 [Elementary Building Block]

1. If U0 := 0ΞA, then, U(t, x) = 0Ξ(A;x).
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2. If U0 := βΞA, then U(t, x) = βΞ(A+ βt;x).
3. If U0 := (αx + β)ΞA(x), then

• If t �= − 1
α , then U(t, x) :=

(
αx+ β

1 + αt

)
Ξ((1 + αt)A+ βt;x)

• If t = − 1
α , then there exists a shock of size αA + β at −β

α
:

U
(
− 1
α
, x

)
:= (αA+ β)Ξ

(
−β
α

;x
)

.

The location of the shock does not depend on A, but only on the
coefficients α and β.

4. If U0(x) = SΞσ(x) is a shock of size S at x = σ, then

U(t, x) =
(
x− σ

t

)
Ξ (tS + σ;x).

Now, combining these examples, we obtain

Fig. 16.3 Illustration of the construction of the building blocks solutions
presented in Lemma 16.2.9.

Left: Case in which α > 0, no shock appears. Middle: Case in which α < 0, a
shock appears at time t = − 1

α , at x = − β
α . Right: Solution emanating from

a shock initially located at x = σ, and of magnitude S.

Proposition 16.2.10 [Viability Solution to Burgers Equation for
Piecewise Cauchy Conditions] The viability solution to the Burgers
problem satisfying the Cauchy condition
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U(0, x) =
⋃
i∈I

(αix+ βi)ΞAi(x)

is equal to:

• Case when t �= − 1
αi

for all i ∈ I,

U(t, x) =
⋃
i∈I

(
αix+ βi
1 + αit

)
Ξ ((1 + αit)Ai + tβi;x) (16.11)

The cardinal of the set I(t, x) := {i ∈ I such that x ∈ (1 + αit)Ai + tβi}
denotes the number of elements of U(t, x) and plays the role of a
“ valuemeter”, i.e. it measures the degree of set-valuedness of the solu-
tion, which is the count of I(t, x).

U(t, x) =
{
αix+ βi
1 + αit

}
i∈I(t,x)

• Case when αi < 0 and t = − 1
αi

for some i ∈ I: we obtain shocks:

U
(
− 1
αi
, x

)
= (αiAi + βi)Ξ

(
−βi
αi

;x
)

at points −βi
αi

of size αiAi + βi, which plays the role of a “ valuemeter”

in case of shocks because we can write

U
(
− 1
αi
,−βi

αi

)
= αiAi + βi

Proof. This is the consequence of formulas of Lemma 16.2.9 providing
the viability solution for elementary Cauchy conditions and the morphism
property stated in Proposition 16.2.8, p.641. ��

Examples: We now provide examples of more specific (and classical)
Cauchy conditions by applying Proposition 16.2.10 and the particular
solutions already provided:

In particular, we obtain the following “building blocks” for constructing
solutions to the Burgers equation with piecewise linear Cauchy conditions:

1. O-Marks:
⎧⎨
⎩

if U0 := 0Ξ]−∞,0] then U(t, x) = 0Ξ(]−∞, 0] ;x)
if U0 := 0Ξ[0,∞[ then U(t, x) = 0Ξ([0,+∞[ ;x)
if U0 := 0Ξ]−∞,1] then U(t, x) = 0Ξ(]−∞, 1] ;x)
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2. Marks:
⎧⎪⎪⎨
⎪⎪⎩

if U0 := Ξ]−∞,0] then U(t, x) = Ξ(]−∞, t] ;x)
if U0 := Ξ[0,∞[ then U(t, x) = Ξ([t,+∞[ ;x)
if U0 := Ξ[1∞[ then U(t, x) = Ξ([t+ 1,+∞[ ;x)

3. Affine Maps

• Increasing Linear Maps

if U0 := xΞ[0,1] then U(t, x) =
x

1 + t
Ξ([0, 1 + t];x)

• Decreasing Linear Maps and Emergence of Shocks

If U0(x) = (1−x)Ξ[0,1], then U(t, x) =

⎧⎨
⎩

1−x
1−t if t ≤ x < 1
[0, 1] if x = 1 & t = 1 (shock)
x−1
t−1 if 1 < x ≤ t

4. Shocks

if U0 := [0, 1]Ξ{1} then U(t, x) =
(
x− 1
t

)
Ξ([1, 1 + t];x)

By combining them, we obtain

1. If the Cauchy condition U0 := ξA = ΞA ∪ 0Ξ�(A) is the mark of A defined
by

U0(x) :=
{

1 if x ∈ A
0 if x /∈ A

the solution U is given by

U(t, x)=Ξ(A+t;x)∪0Ξ(�(A);x)=

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ A ∩ (A+ t)
0 if x ∈ �(A ∪ (A+t))=�A\A+t
{0, 1} if x ∈ (A+t) \A
∅ if x ∈ A \ (A+t)

2. If the Cauchy condition is U0 := Ξ]−∞,0] ∪ 0Ξ[0,+∞[ defined by

U0(x) :=
{

1 if x ≤ 0
0 if x ≥ 0

(Riemann Problem), then the viability solution is given by the formula:

U(t, x) = Ξ([−∞, t] ;x) ∪ 0Ξ([0,+∞[ ;x) =

⎧⎨
⎩

1 if x ≤ 0
{0, 1} if 0 ≤ x ≤ t
0 if x ≥ t
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and the viability solution is set-valued: its images contains two points for
x ∈ [0, t]. (see Fig. 16.4).

3. If the Cauchy condition is U0 = 0Ξ]−∞,0] ∪ Ξ[0,+∞[ defined by

U0(x) :=
{

0 if x ≤ 0
1 if x ≥ 0

then the viability solution becomes

U(t, x) = Ξ(]−∞, 0];x) ∪ Ξ([0,+∞[;x) =

⎧⎨
⎩

0 if x ≤ 0
∅ if 0 ≤ x ≤ t
1 if x ≥ t

and the viability solution is set-valued: its images are empty for x ∈ [0, t]
(see Fig. 16.4).

Fig. 16.4 Viability solution of the Burgers problem.

From left to right: Column 1: Set-valued solution for the Riemann
problem. The solution becomes instantaneously set-valued, due to a
higher velocity of propagation of the x ≤ 0 portion of the solution.
Column 2: Set-valued solution of the opposite Cauchy condition. Note
that the solution is set-valued, because on the interval x ∈ [0, t], it
is empty. Column 3: Single valued solution obtained from an initial
set-valued condition, for the same Cauchy condition as for the middle
column. This solution coincides with the usual entropy solution of Burgers
equation. Column 4: Set-valued solution obtained from an initial set-
valued condition, for the inverted Cauchy condition of Column 3. The
Cauchy condition is set-valued and remains set-valued.
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4. If the Cauchy condition is U0 := 0Ξ]−∞,1] ∪ [0, 1]Ξ1 ∪ Ξ[1,+∞[ describing
a shock at time 0 at x = 1, given by

U0(x) =

⎧⎨
⎩

0 if x ≤ 1
[0, 1] if x = 1
1 if x ≥ 1

we obtain

U(t, x) = Ξ(]−∞, 1];x) ∪
(
x− 1
t

)
Ξ([1, 1 + t];x) ∪ Ξ([1 + t,+∞[;x)

=

⎧⎨
⎩

0 if x ≤ 1
x−1
t if 1 ≤ x ≤ 1 + t

1 if x ≥ 1 + t

The initial shock dissolves to an increasing linear function. This phe-
nomenon is sometimes called self similar expansion wave, and is known
in the field of fluid mechanics as expansion fan or centered rarefaction.

5. If the Cauchy condition is U0 = 0Ξ]−∞,0] ∪ xΞ[0,1] ∪ Ξ[1,+∞[, given by

U0(x) =

⎧⎨
⎩

0 if x ≤ 0
x if x ∈ [0, 1]
1 if x ≥ 1

then the solution U is given by

U(t, x) = Ξ(]−∞, 0];x) ∪
(

x

1 + t

)
Ξ([0, 1 + t];x) ∪ Ξ([1 + t,+∞[;x)

=

⎧⎨
⎩

0 if x ≤ 0
x

1+t if 0 ≤ x ≤ 1 + t

1 if x ≥ 1 + t

It is single-valued as a function of x for all t ≥ 0 (see Fig. 16.4). The single
valuedness of the viability solution is due to the increasing property of the
initial value, a consequence of the general statement Proposition 16.2.7.

6. If the Cauchy condition is U0 := Ξ]−∞,0]∪ (1−x)Ξ[0,1]∪0Ξ[1,+∞[ is given
by

U0(x) =

⎧⎨
⎩

1 if x ≤ 0
1− x if x ∈ [0, 1]
0 if x ≥ 1

Then one can check that the solution U is given by
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U(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if x < min(t, 1)
1−x
1−t if min(t, 1) ≤ x < 1 (single-valued)
[0, 1] if x = 1 & t = 1 (shock){
0, 1, x−1

t−1

}
if 1 < x ≤ max(t, 1) (Z-shape)

0 if x ≥ max(t, 1)

As a function of x, the solution has a Z-shape after the shock that happened
at t = 1 and x = 1. This is due to the fact that the Cauchy condition U0

is no longer increasing, and that it is single-valued on some finite time
interval.

16.2.4 Dirichlet Boundary Conditions

Instead of taking X := R, it might be useful to only consider K := [ξ,+∞[.
This could represent a half infinite shock tube (for which we are interested
in the propagation of shocks emanating from an end and travelling far from
the end).

Fig. 16.5 Intersection of characteristic lines and initial/boundary condition
axis.

Illustration of the condition T > x1−ξ
y1

.
Left: When this condition is met, there exists a fixed point satisfying the
Burgers problem: the point (T, x1) can “hit” the t = 0 axis with a line
of slope y1, at a point (x1 − y1T, 0). Otherwise, the set of fixed point has
empty values. Right: Illustration of the same fact with Dirichlet boundary
conditions: now a point (T, x2) with corresponding y2 “hits” the boundary
of the domain at (ξ, T − x2−ξ

y2
): the set of fixed points is not empty anymore

because of the Dirichlet boundary conditions
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Fig. 16.6 Cauchy Problem with Constraints on Spatial Variables.

Left: The viability solution is the capture basin of the graph of the Cauchy
condition U0(x) := 2Ξ([0, 1];x) ∪ 2(2 − x)Ξ([1, 2];x) ∪ 0Ξ([2, 5];x). It has

empty values if T >
x− ξ

y
. Right: The domain of U to the Cauchy problem,

which is no longer equal to R+ × K because of the presence of space
constraints.

Setting

Ψξ(t, x) :=
{

R if x ≥ ξ and t ≥ 0
∅ if x < ξ or t < 0

the viability solution defined by

Graph(U) := Capt(16.4)(Graph(Ψξ),Graph(U+
0 ))

is still the unique solution to the Cauchy problem for the Burgers problem,
satisfying both the Burgers tracking property

∀t ≥ 0, ∀x ∈ [ξ,+∞[ , y ∈ V (t, x+ (t− T )y)

and the Cauchy condition V(0, x) = U0(x). The values U(T, x) are made of
the fixed points

y ∈ U0(x − Ty) ∩
]
−∞,

x− ξ

T

]

because x − Ty must be larger than of equal to ξ. Such fixed points may

no longer exist, and they never exist if T >
x− ξ

y
. See Figs. 16.5, p. 648 and

16.8, p. 651 for an illustration.
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Fig. 16.7 Boundary-Value Problem in the case of Constraints on Spatial
Variables.

The viability solution is the capture basin of the graph of the Dirichlet

boundary condition Γ0(t) := 2Ξ([0, 2]; t). It has empty values if T <
x− ξ

y
.

Right: The domain of U to the Cauchy problem, which is no longer equal to
R+ ×K because of the absence of Cauchy condition.

For compensating for such empty values, we may “add” (in the union
sense) to the initial data U0 other data, such as boundary-value data. Indeed,
x(t) ∈ K := [ξ,+∞[ at some time t come either from some initial state x at
time 0 or from the lower bound ξ of [ξ,+∞[ at a later time. We take this
new fact into account by introducing the sets Γξ(t) of velocities of states x(t)
arriving at time t at the lower bound ξ of [ξ,+∞[. We extend this (set-valued)
map by the set-valued map Γξ : R+ ×X � X defined by:

Γξ(t, x) :=
{
Γξ(t) if x = ξ
∅ if x �= ξ
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Fig. 16.8 Illustration of the definition of Graph(U).

Graph(U) is the capture basin Graph(Uξ) := Capt(16.4)(Graph(Ψξ),
Graph(Γξ)) of the Cauchy condition by the augmented dynamics of the
characteristic system (16.4).

Definition 16.2.11 [Burgers Problem under Dirichlet Boundary
Conditions] Given the Dirichlet boundary condition Γξ : R+ × K � Y ,
a set-valued map V : R+ × K � Y is a solution to the boundary-value
problem for the Burgers problem if it satisfies

1. the Burgers tracking property:

∀t ≥ max
(

0, T − x− ξ

y

)
, ∀x ∈ X, y ∈ U (t, x+ (t− T )y)

2. the Dirichlet boundary condition: U(t, ξ) := Γξ(t),

We now prove the existence and the uniqueness of a solution to this
problem:

Theorem 16.2.12 [Viability Solution of the Dirichlet Burgers
Problem] Assume that K := [ξ,+∞]. The viability solution defined by

Graph(Uξ) := Capt(16.4)(Graph(Ψξ),Graph(Γξ)) (16.12)

is the unique solution of the Burgers problem 16.2.11 with Dirichlet
boundary conditions.

Furthermore, Uξ(T, x) is the set of fixed point of the map
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y � Γξ

(
T − x− ξ

y

)
∩
[
x− ξ

T
,+∞

[

where T ≥ x− ξ

y
(It is always empty when T <

x− ξ

y
). See Fig. 16.7 for

an illustration.
It satisfies the “maximum principle”

∀(t, x) ∈ R+ ×K, sup
y∈Uξ(t,x)

|y| ≤ sup
t∈R+

sup
y∈Γξ(t)

|y|

or, more precisely

∀(t, x) ∈ R+ ×K, Uξ(t, x) ⊂ Im(Γξ)

Proof. The proof is analogous to the one of Theorem 16.2.5. To say that
(T, x, y) belongs to the capture basin

Capt(16.4)(Graph(Ψξ),Graph(Γξ)) =: Graph(Uξ)

amount to saying that there exists a finite time t�(T, x, y) such that

1. the value (T−t�(T, x, y), x−yt�(T, x, y), y) of the solution to characteristic
differential equation (16.4) at time t�(T, x, y) belongs to the graph of the
set-valued map Γξ

2. for all t ∈ [0, t�(T, x, y)], (T − t, x− ty, y) belongs to the graph of Ψξ

The first condition means that x − yt�(T, x, y) = ξ and that (T −
t�(T, x, y), ξ, y) belongs to the graph of Γξ, i.e., that y ∈ Γξ(T − t�(T, x, y)).

It is sufficient to note that this amounts to saying that t�(T, x, y) =
x− ξ

y

and T ≥ t�(T, x, y) =
x− ξ

y
, or, equivalently, that y ≥ x− ξ

T
. In particular,

we observe that y ≥ 0.
The second condition means that for all t ∈ [0, t�(T, x, y)], x− yt ≥ ξ, i.e.,

that t ≤ t�(T, x, y) =
x− ξ

y
.

Therefore, we have proved that Uξ(T, x) is the set of fixed points of the
set-valued map

y � Γξ

(
T − x− ξ

y

)
∩
[
x− ξ

T
,+∞

[

Since Graph(Γξ) ⊂ Graph(Uξ), we know that Γξ(T ) ⊂ Uξ(T, ξ). They
are equal, because, if y ∈ Uξ(T, ξ), then (T, ξ, y) belongs to the capture
basin: Indeed, (T − t�(T, ξ, y), ξ − t�(T, ξ, y)y, y) ∈ Graph(Γξ), and thus,
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ξ−t�(T, ξ, y)y ≥ ξ. Since y > 0, we infer that t�(T, ξ, y) = 0 so that y ∈ Γξ(T ).
Hence the Dirichlet boundary condition is satisfied.

Theorem 10.2.5 states that the graph of the viability solution is actually
the unique graph of a set-valued map V between Γξ and Ψξ satisfying

{
Graph(V) = Capt(16.4)(Graph(V),Graph(Γξ))
Capt(16.4)(Graph(Ψξ),Graph(V))

The first condition means that for any t ∈ [0, t�(T, x, y)], y belongs to
V(T − t, x− yt).

By the change of variable s := T − t, this means that for any s ∈ [T −
t�(T, x, y), T ], y ∈ V(s, x+ (s− T )y).

The second condition means that for all t ≥ T , y ∈ V(t, x + (t − T )y).
Indeed, for any t ≥ T , we observe that (t, x + (t − T )y, y) belongs to the
graph of Ψξ since x+(t−T )y = ξ+ t

T (x− ξ) ≥ 0. On the other hand, setting
t� := t−T ≥ 0, we see that (T, x, y) = (t− t�, x+(t−T )y− t�y, y) belongs to
the graph of V. This implies that (t, x+ (t− T )y, y) belongs to the capture
basin Capt(16.4)(Graph(Ψξ),Graph(V)), equal to the graph of V.

Hence these two conditions mean that V is a solution to the Burgers
problem (16.2.11) with Dirichlet boundary conditions. ��

16.2.5 Piecewise Dirichlet Conditions

Lemma 16.2.13 [Viability Solution when Dirichlet Boundary
Conditions which are Marks] Let us consider an interval K :=
[ξ,+∞[⊂ X := R. Let us provide a Dirichlet boundary condition described
by

Γξ(t) = δξΞ(Δξ; t)

where Δξ ⊂ R+ a time interval. If T ≥ x− ξ

δξ
, then the viability solution is

equal to

∀T ≥ x− ξ

δξ
, Uξ(T, x) = δξΞ

(
Δξ +

x− ξ

δξ
; t
)

Proof. Theorem 16.2.12 implies that Uξ(T, x) is the set of fixed points

y ∈ δξΞ
(
Δξ;T −

x− ξ

y

)
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means that y = δξ, that t�(T, x, y) := x−ξ
δξ

and that T − x− ξ

δξ
∈ Δξ, i.e.,

T ∈ Δξ + x−ξ
δξ

.

This means that δξΞ
(
Δξ + x−ξ

δξ
; t
)

is the set of fixed points y ∈

δξΞ
(
Δξ;T − x−ξ

δξ
; t
)
. ��

Therefore, as we did in the case of Cauchy condition, we can approximate
a Dirichlet boundary condition Γξ by a piecewise constant Dirichlet boundary
condition:

Proposition 16.2.14 [Viability Solution to Burgers Equation for
Piecewise Constant Dirichlet Boundary Conditions] The viability
solution to the Burgers tracking property satisfying the Dirichlet boundary
condition

Γξ(t) =
⋃
j∈J

δjΞΔj (t)

where Δj ⊂ R+ are time intervals, is equal to:

Uξ(t, x) =
⋃
j∈J

δjΞ

(
Δj +

x− ξ

δj
; t
)

which can be written in the form

U(t, x) = {δj}j∈J(t,x)

where J(t, x) :=
{
j ∈ J such that t ∈ Δj + x−ξ

δj

}
, the cardinal of which

plays the role of a “ valuemeter”.

16.2.6 Cauchy/Dirichlet Condition

Now, thanks to the Lemma 10.2.2 stating that the capture basin of a union
of targets is the union of the capture basins, we can mix the initial and
the Dirichlet boundary condition by taking the unions of the solution UU0

associated with the Cauchy condition U0 (which may have empty values)
and of the solution Uξ associated with the Dirichlet boundary condition Γξ.

Let us consider the viability Solution (16.5), p. 633 to the Cauchy/Dirichlet
Burgers equation defined by

Graph(U) := Capt(16.4)(Graph(Ψξ),Graph(U+
0 ∪ Γξ))
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Definition 16.2.15 [Viability Solution to the Cauchy/Dirichlet
Burgers Tracking Problem] A map U is a solution to the
Cauchy/Dirichlet Burgers problem if it satisfies

1. the Burgers tracking property:

∀t ≥ max
(

0, T − x− ξ

y

)
, ∀x ∈ X, y ∈ U (t, x+ (t− T )y)

2. the Cauchy condition U(0, x) := U0(x),
3. the Dirichlet boundary condition U(t, ξ) := Γξ(t),

.q .q

x

.t .t

.t

.q

Fig. 16.9 Viability Kernel and Cauchy/Dirichlet Evolution.

Thanks to the morphism property of the viability solution (the solution of a
union of condition is the union of the solutions), the viability solution of the
Cauchy/Dirichlet Burgers problem ( lower center) is the union of the solution
of the Cauchy problem (upper left) and of the solution to the boundary-value
problem (upper right), as illustrated by this numerical example
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Fig. 16.10 Cauchy/Dirichlet Problem in the case of Constraints on Spatial
Variables.

The viability solution is the capture basin of the union of the graph of the
Cauchy condition U0 := 2Ξ([0, 1];x)∪ 2(2− x)Ξ([1, 2];x) ∪ 0Ξ([2, 5];x) and
of the graph of the Dirichlet boundary condition Γ0(t) := 2Ξ([0, 2]; t).

Fig. 16.11 Example of viability solution to the Burgers equation.

with initial data U0(x) := max(0.5, 2(1 − (x − 3)2))Ξ([0, 3];x) ∪
max(1, 2(1−(x−3)2))Ξ([3, 5];x) ∪min(1, (x−7)2)Ξ(5, 7[];x)∪max(0.2, (x−
7)2)Ξ([7, 10];x) and Dirichlet boundary condition Γ0(t) := 0.5Ξ([0, 2]; t).
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Theorem 16.2.16 [Viability Solution for Cauchy/Dirichlet Condi-
tions] Assume that K := [ξ,+∞] and that U0(ξ) = Γξ(0, ξ). The viability
solution U defined by (16.5) is the unique solution to the Cauchy/Dirichlet
Burgers problem satisfying both the Burgers tracking property

∀t ≥ max
(

0, T − x− ξ

y

)
, ∀x ∈ [ξ,+∞[ , y ∈ U (t, x+ (t− T )y)

and the initial and Dirichlet boundary conditions
{

(i) ∀x ≥ ξ, U(0, x) = U0(x)
(ii) ∀t ≥ 0, U(t, ξ) = Γξ(t)

It is the union (t, x) � U(t, x) := UU0 (t, x) ∪ Uξ(t, x) of the viability
solutions UU0 (t, x) associated with the initial datum U0 and the viability
solution Uξ(t, x) associated with the boundary datum Γξ.

Furthermore, U(T, x) is the set of velocities y satisfying
{
y ∈ U0(x− Ty) if T ≤ x−ξ

y

y ∈ Γξ

(
T − x−ξ

y

)
if T ≥ x−ξ

y

It satisfies the “maximum principle”

∀(t, x) ∈ R+ ×K, Uξ(t, x) ⊂ Im(U0) ∪ Im(Γξ)

Proof. It is enough to observe that the graph of the U is the capture basin

Graph(U) := Capt(16.4)(Graph(Ψξ),Graph(U+
0 ∪ Γξ)) (16.13)

which is the union of the capture basins of the targets Graph(U+
0 ) and

Graph(Γξ). ��

16.2.6.1 Example of Non-Strict Dirichlet Boundary Condition

Figure 16.10 provided an example of a “well-posed” intial/boundary value-
problem. We may consider an intermediate situation between this well-posed
case and the case of an initial value problem without Dirichlet boundary
condition as in Fig. 16.6 by taking for Dirichlet boundary condition a non-
strict set-valued map: See for instance Fig. 16.12.
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Fig. 16.12 Example of a Non-Strict Dirichlet Boundary Condition.

The Dirichlet boundary condition is defined by the map Γ0(t) :=
Ξ([0, 0.5]; t) ∪ 1.5Ξ([1, 2]; t) equal to 1 on [0, 0.5], to 1.5 on [1, 2] and to
the empty set otherwise.

The viability solution of such a non-strict Cauchy/Dirichlet problem may
have non-empty values: See Fig. 16.13 for example.

Fig. 16.13 Non-Strict Boundary-Value Problem in the case of constraints on
spatial variables.

The viability solution is the capture basin of the union of graphs of the
Cauchy condition U0 := 2Ξ([0, 1];x) ∪ 2(2 − x)Ξ([1, 2];x) ∪ 0Ξ([2, 5];x)
and of the graph of the Dirichlet boundary condition defined by the map
Γ0(t) := Ξ([0, 0.5]; t) ∪ 1.5Ξ([1, 2]; t). It still has empty values in a subset of

the area T <
x− ξ

y
, but has also non empty values thanks to the contribution

of the Dirichlet boundary condition, either equal to a singleton or to a subset
of two elements. Right: The domain of U is not equal to R+ ×K.
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16.2.7 Additional Eulerian Conditions

Fig. 16.14 Illustration of the definition of Graph(U).

Graph(U) is the capture basin Graph(U) := Capt(16.4)(Graph(Ψξ),
Graph(U+

0 ∪
⋃n
i=0 Γξi)) of the initial and Eulerian boundary conditions

by the augmented dynamics of the characteristic system (16.4). Note the
additional chunk of intermediate data added at ξi in this Figure, and the
corresponding added chunk of U.

The morphism property shown earlier enables the construction of viability
solutions obtained from Cauchy conditions “added at arbitrary locations
along the x axis”. Traditionally, in a partial differential equation setting,
Cauchy conditions and boundary conditions are prescribed (so called Cauchy-
Dirichlet problem). With the present method, we can add Eulerian conditions,
which are Dirichlet conditions, not at the boundary, but in the interior of
the domain. They constitute further conditions to take into account in the
propagation of the solution. We denote by ξi > ξ such locations. At each
instant t, we add the Eulerian condition Γξi(t, ξi) := Γξi(t). We extend this
map by setting Γξi(t, x) = ∅ whenever x > ξi.
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Fig. 16.15 Example of an Additional Intermediate Eulerian Condition.

Γ1(t) := Ξ([0, 0.5]; t) ∪ 1.5Ξ([1, 2]; t) alone on the left and with Cauchy
condition U0 := 2Ξ([0, 1];x)∪ 2(2−x)Ξ([1, 2];x)∪ 0Ξ([2, 5];x) on the right.

Fig. 16.16 Example of Additional Eulerian Conditions.

Union of a boundary condition Γ0(t) := Ξ([0, 0.5]; t) ∪ 1.5Ξ([1, 2]; t) and of
the additional intermediate condition Γ1(t) := Ξ([0, 0.5]; t) ∪ 1.5Ξ([1, 2]; t)
alone on the left and with Cauchy condition U0 := 2Ξ([0, 1];x) ∪ 2(2 −
x)Ξ([1, 2];x) ∪ 0Ξ([2, 5];x) on the right.

A slight modification of the proof of Theorem 16.2.12 implies the existence
of an unique viability solution to the Burgers problem with an additional
Eulerian conditions:

Lemma 16.2.17 [Viability Solution for Eulerian conditions]
Assume that K := [ξ,+∞]. The viability solution defined by
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Graph(Uξi) := Capt(16.4)(Graph(Ψξ),Graph(Γξi)) (16.14)

is the unique solution satisfying both the Burgers tracking property

∀t ≥ max
(

0, T − x− ξ

y

)
, ∀x ∈ X, y ∈ U (t, x+ (t− T )y)

and the additional intermediate condition at ξi

∀t ≥ 0 U(t, ξi) = Γξi(t, ξi)

Furthermore, Uξi(T, x) is the set of fixed points of the map

y � Γξi

(
T − x− ξi

y
, ξi

)
∩
[
x− ξi
T

,+∞
[

where T ≥ x− ξi
y

.

Now, thanks again to the Lemma 10.2.2 stating that the capture basin of
a union of targets is the union of the capture basins, we deduce that this
problem still has a unique solution:

Theorem 16.2.18 [Viability Solution of for Eulerian Conditions]
Let us consider the sequence ξ =: ξ0 < ξ1 < · · · < xn. Given the Cauchy
condition U0 and the additional Eulerian conditions Γξi , i = 0, 1, . . . , n, the
union U of the viability solution UU0 associated with the Cauchy condition
U0 and of the viability solutions Uξi associated with the Eulerian conditions
Γξi is the unique solution to the Burgers problem satisfying: If x ∈ [ξi, ξi+1[,
then U(T, x) is the set of velocities y such that:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ U0(x− Ty) if T ∈
[
0,
x− ξi
y

[

y ∈ U0(x− Ty) ∪ Γξi

(
T − x− ξi

y
, ξi

)
if T ∈

[
x− ξi
y

,
x− ξi−1

y

[

...
...

...

y ∈ U0(x− Ty) ∪
i⋃

j=1

Γξj

(
T − x− ξj

y
, ξj

)
if T ∈

[
x− ξ1
y

,
x− ξ0
y

[

y ∈
i⋃

j=0

Γξj

(
T − x− ξj

y
, ξj

)
if T ≥ x− ξ0

y
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Proof. It is enough to observe that the graph of the U is the capture basin

Graph(U) := Capt(16.4)

(
Graph(Ψξ),Graph

(
U+

0 ∪
n⋃
i=0

Γξi

))
(16.15)

which is the union of the capture basins of the targets Graph(U+
0 ) and

Graph(Γξi). ��

16.2.8 Viability Constraints

It is quite useful to be able to impose constraints not only on state variables,
as we did in the preceding sections, but also on the values U(t, x) of the
Burgers problem. We thus require that the solution of the Cauchy/Dirichlet
Burgers problem also satisfies the viability constraint

∀t ≥ 0, ∀x ∈ X, U(t, x) ⊂ [a(t, x), b(t, x)]

remains in an interval [a(t, x), b(t, x)] where a : R+×R �→ R and b : R+×R �→
R are two given functions satisfying a(t, x) ≤ b(t, x) for all (t, x) ∈ R+ × R.

This does not complicate the problem at all: It is enough to introduce the
new set-valued map Ψξ;(a,b) defined by

Ψξ;(a,b)(t, x) :=
{

[a(t, x), b(t, x)] if x ≥ ξ
∅ if x < ξ

Definition 16.2.19 [Viability Solution to the Cauchy/Dirichlet
Burgers Problem Under Viability Constraints] A set-valued map U is
said to be a solution to the Cauchy/Dirichlet Burgers problem with viability
constraints if it satisfies

1. the Burgers tracking property: ∀y ∈ U(T, x), ∀s ≥ T such that ∀t ∈
[T, s], y ∈ Ψξ,(a,b)(t, x+ (t− T )y), then

∀t ∈
[
max

(
0, T − x− ξ

y

)
, s

]
, ∀x ∈ X, y ∈ U (t, x+ (t− T )y)

2. the Cauchy condition U(0, x) := U0(x),
3. the boundary condition U(t, ξ) := Γξ(t),
4. the viability constraints U(t, x) ⊂ [a(t, x), b(t, x)].

We shall say that the set-valued map U : R+ × R+ � R defined by
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Graph(U) := Capt(16.4)(Graph(Ψξ;(a,b)),Graph(U+
0 ∪ Γξ)) (16.16)

is the viability solution to the Cauchy/Dirichlet Burgers Problem.

The viability solution is still the unique solution to the Burgers problem
with constraints:

Theorem 16.2.20 [Existence and Uniqueness of the Viability
Solution Under Viability Constraint] Let us set

{
a�(T, x, y) := supt∈[0,min(T, x−ξ

y )] a(T − t, x− ty)

b�(T, x, y) := inft∈[0,min(T, x−ξ
y )] b(T − t, x− ty)

The viability solution U is the unique solution V to the Cauchy Burgers
problem under constraints U(t, x) ⊂ [a(t, x), b(t, x)]. The value U(T, x) of
this unique solution is the set of fixed points

y ∈

⎧⎪⎨
⎪⎩

U0(x− Ty) ∩
[
a�(T, x, y), b�(T, x, y)

]
if T ≤ x− ξ

y

Γξ

(
T − x−ξ

y

)
∩
[
a�(T, x, y), b�(T, x, y)

]
if T ≥ x− ξ

y

Proof. The proof is analogous to the proofs of Theorems 16.2.5 and 16.2.12
and is a consequence of the general Theorem 16.2.26: We mention only the
modification.

To say that (T, x, y) belongs to the capture basin

Capt(16.4)(Graph(Ψξ;(a,b)),Graph(U+
0 ∪ Γξ)) =: Graph(U)

amounts to saying that there exists a finite time t�(T, x, y) such that

1. the value (T−t�(T, x, y), x−yt�(T, x, y), y) of the solution to characteristic
differential equation (16.4) at time t�(T, x, y) ∈ [0, T ] belongs to the graph
of the set-valued map U+

0 ∪ Γξ,
2. for all t ∈ [0, t�(T, x, y)], (T − t, x− ty, y) belongs to the graph of Ψξ;(a,b)

The first condition means that t�(T, x, y) = min
(
T, x−ξy

)
and thus, that

y ∈ U0(x− Ty) if T ≤ x−ξ
y and y ∈ Γξ

(
T − x−ξ

y

)
otherwise.

The second condition means that for all t ∈ [0, t�(T, x, y)] =[
0,min

(
T, x−ξy

)]
, a(T − t, x − ty) ≤ y ≤ b(T − t, x − ty), or, equivalently,
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that

sup
t∈[0,min(T, x−ξ

y )]
a(T − t, x− ty) ≤ y ≤ inf

t∈[0,min(T, x−ξ
y )]

b(T − t, x− ty)

The rest of the proof remains the same. ��

Fig. 16.17 Dirichlet Boundary Conditions, Viability Constraints for the
Burgers Problem.

Illustration of the set of constraints for the Burgers problem with mobile
boundary conditions and viability constraints. The mobile boundary are
represented by the vertical surfaces ξ(t) and η(t). The constraints a(t, x) and
b(t, x) are also shown. The viability solution of the Burgers problem is now
contained within this set.

16.2.9 Lagrangian Conditions

Lagrangian conditions are “mobile value conditions” defined not only for
fixed positions ξi, but on mobile trajectories of evolutions t �→ ξ(t). This is in
contrast of “Eulerian conditions” which are constant (static) conditions. For
simplicity, we analyze this question for two space and Lagrangian conditions
only: we require instead that the evolution of x(t) must satisfy at each instant
inequalities

ξ(t) ≤ x(t) ≤ η(t)

We thus introduce two Lagrangian (set-valued) maps

Γξ(t) := Γξ(t, ξ(t)) & Γη(t) := Γη(t, η(t))

which we extend to set-valued maps Γξ : R+×X � X and Γη : R+×X � X
satisfying
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Γξ(t, x) := ∅ if x �= ξ(t) & Γη(t, x) := ∅ if x �= η(t)

We also require that the solution satisfies the viability constraint

∀t ≥ 0, ∀x ∈ X, U(t, x) ⊂ [a(t, x), b(t, x)]

For investigating this new case, we introduce the new set-valued map
Ψ(ξ,η;a,b)

Ψ(ξ,η;a,b)(t, x) :=
{

[a(t, x), b(t, x)] if x ∈ [ξ(t), η(t)]
∅ if x /∈ [ξ(t), η(t)]

Definition 16.2.21 [Viability Solution to the for Lagrangian Con-
ditions under Viability Constraints] Let us denote by tξ(T, x, y) the

smallest fixed-point of the map t �→ x− ξ(T − t)
y

, by tη(T, x, y) the smallest

fixed-point of the map t �→ x− η(T − t)
y

. A set-valued map U is said to be

a solution to the Cauchy Burgers problem with two Lagrangian conditions
if it satisfies

1. the Burgers tracking property: ∀y ∈ U(T, x), ∀s ≥ T such that ∀t ∈
[max (0, T − tξ(T, x, y), T − tη(T, x, y)) , s], then

∀x ∈ X, y ∈ U (t, x+ (t− T )y)

2. the Cauchy condition U(0, x) := U0(x),
3. the Lagrangian conditions U(t, ξ(t)) := Γξ(t) and U(t, η(t)) := Γη(t),
4. the viability constraints U(t, x) ⊂ [a(t, x), b(t, x)].

We shall say that the set-valued map U : R+ × R+ � R defined by

Graph(U) := Capt(16.4)(Graph(Ψ(ξ,η;a,b)),Graph(U+
0 ∪ Γξ ∪ Γη)) (16.17)

is the viability solution to the Cauchy Burgers problem with Lagrangian
conditions.

The viability solution is still the unique solution to the Burgers problem
with constraints:

Theorem 16.2.22 [Viability Solution for Lagrangian Conditions]
Let us denote by tξ(T, x, y) the smallest fixed-point of the map
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t �→ x− ξ(T − t)
y

, by tη(T, x, y) the smallest fixed-point of the map

t �→ x− η(T − t)
y

. We now set

{
a�(T, x, y) := supt∈[0,min(T,tξ(T,x,y),tη(T,x,y))] a(T − t, x− ty)
b�(T, x, y) := inft∈[0,min(T,tξ(T,x,y),tη(T,x,y))] b(T − t, x− ty)

The viability solution U is the unique solution to the Cauchy Burgers
problem for Lagrangian conditions and viability constraints U(t, x) ⊂
[a(t, x), b(t, x)]. The value U(T, x) of this unique solution is the set of fixed
points

y ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0(x− Ty) ∩
[
a�(T, x, y), b�(T, x, y)

]
if T = min (T, tξ(T, x, y), tη(T, x, y))

Γξ (T − tξ(T, x, y)) ∩
[
a�(T, x, y), b�(T, x, y)

]
if tξ(T, x, y) = min (T, tξ(T, x, y), tη(T, x, y))

Γη (T − tη(T, x, y)) ∩
[
a�(T, x, y), b�(T, x, y)

]
if tη(T, x, y) = min (T, tξ(T, x, y), tη(T, x, y))

Proof. The proof is analogous to the proofs of Theorem 16.2.20: We mention
only the modification.

To say that (T, x, y) belongs to the capture basin

Capt(16.4)(Graph(Ψ(ξ,η;a,b)),Graph(U+
0 ∪ Γξ ∪ Γη)) =: Graph(U)

amount to saying that there exists a finite time t�(T, x, y) such that

1. the value (T−t�(T, x, y), x−yt�(T, x, y), y) of the solution to characteristic
differential equation (16.4) at time t�(T, x, y) ∈ [0, T ] belongs to the graph
of the set-valued map U+

0 ∪ Γξ ∪ Γη,
2. for all t ∈ [0, t�(T, x, y)], (T − t, x− ty, y) belongs to the graph of Ψ(ξ,η;a,b)

The first condition means that t�(T, x, y) = min (T, tξ(T, x, y), tη(T, x, y))
and thus, that y ∈ U0(x−Ty) if T = tξ(T, x, y), that y ∈ Γξ (T − tξ(T, x, y))
if tξ(T, x, y) = min (T, tξ(T, x, y), tη(T, x, y)) and that y ∈ Γη (T − tξ(T, x, y))
if tη(T, x, y) = min (T, tξ(T, x, y), tη(T, x, y)).

The second condition means that for all t ∈ [0, t�(T, x, y)] =
[0,min (T, tξ(T, x, y), tη(T, x, y))], a(T − t, x − ty) ≤ y ≤ b(T − t, x− ty), or,
equivalently, that

{
supt∈[0,min(T,tξ(T,x,y),tη(T,x,y))] a(T − t, x− ty) ≤ y

≤ inft∈[0,min(T,tξ(T,x,y),tη(T,x,y))] b(T − t, x− ty)
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The rest of the proof remains the same. ��

16.2.10 Regulating the Burgers Controlled Problem

As mentioned before, it is restrictive to assume that the velocities remain
constant, i.e., that their acceleration is equal to 0. Even prescribing a right
hand side x′′(t) = g(t, x(t), x′(t)) for defining the acceleration may not be
sufficient for studying control problems, since we might have to regulate
(control, pilot) the evolution of the states x(t).

Therefore, instead of taking the velocities constant, we may leave the choice
of the accelerations x′′(·) “open” in some closed convex set G(t, x(t), x′(t)),
i.e., regard the acceleration x′′(t) =: u(t) as a control ranging in the subset
G(t, x(t), x′(t)) depending upon the time, the state and the velocity. This
allows us to regulate (or to pilot, to control) the velocity of the states by
introducing controls.

Hence, we have to define tracking problems for the second-order differential
inclusion x′′(t) ∈ G(t, x(t), x′(t)).

Fig. 16.18 Viability Solution to the Controlled Burgers Equation.
∂U(t,x)
∂t + ∂U(t,x)

∂x U(t, x) = u where u ∈ [−c,+c] for 2 values of c = 0.2 & 0.4
with Cauchy condition equal to U0 := 2Ξ([0, 1];x) ∪ 2(2 − x)Ξ([1, 2];x) ∪
0Ξ([2, 5];x) and boundary condition equal to Γ0(t) := Ξ([0, 0.5]; t) ∪
1.5Ξ([1, 2]; t). It still has the familiar Z-shape, but with “thick” values.
They are “split” for c = 0.2 for the sake of clarity.

We define a viability solution to such a tracking problem in the following
way:
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Definition 16.2.23 [Viability Solution to a Controlled Problem] Let
us consider two set-valued maps Ψ and Φ ⊂ Ψ from R+ × R to R and a
second-order differential inclusion x′′(t) ∈ G(t, x(t), x′(t)).

Introduce the “characteristic system of a differential inclusion”
⎧⎨
⎩

(i) τ ′(t) = −1
(ii) x′(t) = −y(t)
(ii) y′(t) ∈ −G(τ(t), x(t), y(t))

(16.18)

The set-valued map U(Ψ,Φ) : R+ ×K � Y defined by

Graph(U(Ψ,Φ)) := Capt(16.18)(Graph(Ψ),Graph(Φ)) (16.19)

is called the viability solution to the controlled Burgers problem.

16.2.10.1 Viability Solution to Burgers Partial
Differential Inclusions

Recall that D��U(t, x, y) denotes the convexified derivative of the set-valued
map U at a point (t, x, y) of its graph (see Definition 18.5.5, p.740).

Let us associate with the set-valued map Ψ the map Ψ⇒ defined by

Graph(Ψ⇒) := Exit(16.18)(Graph(Ψ))

Theorem 16.2.24 [The Viability Solution is a Solution to Burgers
Inclusion] Assume that the set-valued map G is Marchaud. The viability
solution to the Burgers problem is the largest solution U with closed graph
to the Burgers partial differential equation (16.18), p. 668, in the sense that

∀ y ∈ U(t, x) \ Φ(t, x), D��U(t, x, y)(−1,−y) ∩G(t, x, y) �= ∅ (16.20)

satisfying
Φ(t, x) ⊂ U(t, x) ⊂ Ψ(t, x)

It satisfies moreover

U(t, x) ∩ Ψ⇒(t, x) ⊂ Φ(t, x) ⊂ U(t, x) (16.21)

The regulation map RU is then equal to
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∀ y ∈ U(t, x) \ Φ(t, x), RU(t, x, y) = D��U(t, x, y)(−1,−y) ∩G(t, x, y)
(16.22)

If we assume moreover that the set-valued map G is Lipschitz, then the
viability solution is the unique solution to

∀ y ∈ U(t, x, y)∩D��Ψ(t, x, y)(+1,+y), G(t, x, y) ⊂ D��U(t, x, y)(+1,+y)
(16.23)

Remark: “Boundary Conditions”. Inclusion U(t, x) ∩ Ψ⇒(t, x) ⊂
Φ(t, x) (see inclusions (11.18), p. 461 of Theorem 11.4.1, p.460) is the “mother
of all conditions” concealed in the set-valued map Φ, as we saw in the proof
of Theorem 16.2.4, p.635 for the Cauchy/Burgers condition. ��

Remark: Required Properties of the Constraint Map Ψ . To be
applied in concrete examples of constraints depicted by the set-valued map
Ψ , Theorem 16.2.24, p.668 requires the following information on Ψ :

• the knowledge or the exit set of the graph of Ψ (for characterizing further
conditions relating U(t, x) and Φ(t, x) ⊂ U(t, x));

• the knowledge of the derivative D��Ψ(t, x, y) of the set-valued map Ψ (for
obtaining uniqueness of the solution in the class of set-valued maps with
closed graphs) instead of knowing only that it is largest solution satisfying
(16.22), p. 668. ��

Proof. (Theorem 16.2.24, p.668). It is exactly the same than the proof of
Theorem 16.2.4, p.635. We thus sketch it.

Theorem 11.4.1, p.460 states that the graph of the viability solution U
allows us to compute the regulation map RU. It associates with any triple
(t, x, y) the set of controls v ∈ G(t, x, y) such that

(−1,−y,−v) ∈ T ��Graph(U)
(t, x, y) =: Graph(D��U(t, x, y))

which can be written in the form v ∈ D��U(t, x, y)(−1,−y) ∩G(t, x, y).
The viability solution is thus the largest closed set-valued map between Φ

and Ψ satisfying D��U(t, x, y)(−1,−y) ∩G(t, x, y) �= ∅ and

Φ(t, x) ⊂ U(t, x) ⊂ Ψ(t, x)

Furthermore

∀ y ∈ U(t, x, y) \ Φ(t, x), RU(t, x, y) �= ∅

and is equal to D��U(t, x, y)(−1,−y) ∩G(t, x, y).
Formula (10.12), p. 400 of Theorem 10.5.2, p.400 implies that

Graph(U) ∩ Exit(16.18)(Graph(Ψ)) ⊂ Graph(Φ)
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which means that
U(t, x) ∩ Ψ⇒(t, x) ⊂ Φ(t, x)

If furthermore G is Lipschitz, Theorem 11.4.6, p.463 implies that the viability
solution is the unique closed graph set-valued map satisfying
{

(i) ∀ y ∈ U(t, x, y) \ Φ(t, x), RU(t, x, y) = D��U(t, x, y)(−1,−y)
(ii) ∀y∈U(t, x, y)∩D��Ψ(t, x, y)(+1,+y), G(t, x, y)⊂D��U(t, x, y)(+1,+y)

This completes the proof. ��

16.2.10.2 Viability Solution to Controlled Burgers
Tracking Problem

Definition 16.2.25 [Controlled Burgers Tracking Property] Let us
consider two set-valued maps Ψ and Φ ⊂ Ψ from R+×R to R and a second-
order differential inclusion x′′(t) ∈ G(t, x(t), x′(t)). We shall say that a
set-valued map V : R+ ×R� R satisfies the tracking property if for every
y ∈ V(T, x),

1. there exists a solution x(·) to x′′(t) ∈ G(t, x(t), x′(t)) and a time s� ∈
[0, T ] such that

⎧⎨
⎩

(i) x(T ) = x and x′(T ) = y
(ii) x′(s�) ∈ Φ(s�, x(s�))
(iii) ∀t ∈ [s�, T ] , x′(t) ∈ V(t, x(t))

2. all solutions x(·) to x′′(t) ∈ G(t, x(t), x′(t)) such that
{

(i) x(T ) = x and x′(T ) = y
(ii) for all t ∈ [T, s], x′(t) ∈ Ψ(t, x(t))

satisfy
for all t ∈ [T, s], x′(t) ∈ V(t, x(t))

The viability solution is still the unique solution to the Burgers tracking
problem with constraints:

Theorem 16.2.26 [Viability Solution to a general Burgers Prob-
lem] Let us consider two set-valued maps Ψ : R+ × X � X and Φ :
R+ ×X � X contained in Ψ . Assume that for all y ∈ Ψ(T, x) and for all
t ≥ T , y ∈ Ψ(t, x+ (t− T )y). The viability solution U(Ψ,Φ) : R+ ×R+ � R
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is the unique solution to the Burgers problem associated with (Ψ, Φ).
Furthermore, U(T, x) is the set of fixed points

y ∈ Φ(T − t�(T, x, y), x− t�(T, x, y)y) ∩
⋂

t∈[0,t�(T,x,y)]

Ψ(T − t, x− ty)

where t�(T, x, y) is the first instant t when (T−t, x−ty, y) reaches the graph
of Φ.

Proof. To say that (T, x, y) belongs to the capture basin

Capt(16.4)(Graph(Ψ),Graph(Φ)) =: Graph(U)

amounts to saying that there exists a finite time t�(T, x, y) such that

1. the value (T−t�(T, x, y), x−yt�(T, x, y), y) of the solution to characteristic
differential equation (16.4) at time t�(T, x, y) ∈ [0, T ] belongs to the graph
of the set-valued map Φ.

2. for all t ∈ [0, t�(T, x, y)], (T − t, x− ty, y) belongs to the graph of Ψ .

The first condition means that y ∈ Φ(T − t�(T, x, y)).
The second condition means that for all t ∈ [0, t�(T, x, y)], y ∈

Ψ(T−t, x−ty).
Therefore, we have proved that U(T, x) is the set of fixed points of the

set-valued map

y � Φ(T − t�(T, x, y), x− t�(T, x, y)y) ∩
⋂

t∈[0,t�(T,x,y)]

Ψ(T − t, x− ty)

Theorem 10.2.5 states that the graph of the viability solution is actually
the unique graph of a set-valued map V between Φ and Ψ satisfying

{
Graph(V) = Capt(16.4)(Graph(V),Graph(Φ))
= Capt(16.4)(Graph(Ψ),Graph(V))

The first condition means that for any t ∈ [0, t�(T, x, y)], y belongs to
V(T − t, x − yt). By the change of variable s := T − t, this means that for
any s ∈ [T − t�(T, x, y), T ], y ∈ V(s, x+ (s− T )y).

Let s > T such that ∀t ∈ [T, s], y ∈ Ψ(t, x + (t − T )y). Then the second
condition implies that

∀t ∈ [T, s], y ∈ V (t, x+ (t− T )y)



672 16 Viability Solutions to Conservation Laws

Indeed, it is sufficient to check that (t, x + (t − T )y, y) belongs to the
capture basin Capt(16.4)(Graph(Ψ),Graph(V)) of the graph of V. This is the
case because, for the finite time t� := t− T ≥ 0,

(t− t�, x+ (t− T )y − t�y, y) = (T, x, y) ∈ Graph(V)

Therefore (t, x + (t − T )y, y) belongs to Capt(16.4)(Graph(Ψ)),Graph(V) =
Graph(V) and thus

y ∈ V (t, x+ (t− T )y)

Hence these two conditions mean that V is a solution to the Burgers problem
associated with the data (Φ, Ψ). ��

16.2.10.3 Example

We exploit this result in the case of Cauchy condition U0 without boundary
constraints and by restricting our analysis to the case when G(t, x, y) ≡
[−1,+1] for saving notations. We obtain the following formulas:

Proposition 16.2.27 [Example: Case of Cauchy Conditions]
Let us consider the case when

1. the right hand side G(t, x, y) ≡ [−1,+1] is the constant unit interval
[−1,+1],

2. there is no constraint: Ψ(t, x) ≡ R,
3. the set-valued map U+

0 is associated to an initial datum U0 : R� R.

Then y ∈ U(T, x) if and only if there exists an open loop control t �→
u(t) ∈ [−1,+1] such that

y ∈ U0

(
x− Ty +

∫ T

0

(T − s)u(s)ds

)
+
∫ T

0

u(s)ds

Furthermore, U is the unique set-valued map V satisfying the Cauchy
condition V(0, x) = U0(x) such that y ∈ V(T, x) if and only if

1. there exists an open loop control t �→ u(t) ∈ [−1,+1] such that, ∀t ∈
[0, T ],

y −
∫ T

t

u(T − τ)dτ ∈ V

(
t, x+ (t− T )y +

∫ T

t

(τ − s)u(T − τ)dτ

)
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2. for all open loop controls t �→ v(t) ∈ [−1,+1], ∀t ≥ T,

y −
∫ T

t

v(T − τ)dτ ∈ V

(
t, x+ (t− T )y +

∫ T

t

(τ − t)v(T − τ)dτ

)

Proof. Indeed, to say that (T, x, y) belongs to

Graph(U(Ψ,U+
0 )) := Capt(16.18)(Graph(Ψ),Graph(U+

0 ))

amounts to saying that there exists a backward evolution (x(·), y(·)) to system
(16.18) starting at (x, y) such that (x(T ), y(T )) belongs to the graph of U0.
Such solution can be written

⎧⎪⎪⎨
⎪⎪⎩
y(t) = y −

∫ t

0

u(s)ds

x(t) = x−
∫ t

0

y(s)ds = x− ty +
∫ t

0

(t− s)u(s)ds

where t �→ u(t) ∈ [−1,+1] is an open loop control and since

∫ t

0

∫ s

0

u(τ)dsdτ =
∫ t

0

u(τ)dτ
(∫ t

τ

ds

)
=
∫ t

0

(t− τ)u(τ)dτ

Taking t = T , we obtain

y ∈ U0

(
x− Ty +

∫ T

0

(T − s)u(s)ds

)
+
∫ T

0

u(s)ds

Theorem 10.2.5 states that the graph of the viability solution is actually
the unique graph of a set-valued map V between U+

0 and R+×R×R satisfying

Graph(V) = Capt(16.18)(Graph(V), {0} ×Graph(U0))
= Capt(16.18)(Graph(R+ × R× R),Graph(V))

The first condition means that for any t ∈ [0, T ], y(t) belongs to V(T −
t, x(t)). This means that

∀t ∈ [0, T ], y −
∫ t

0

u(s)ds ∈ V
(
T − t, x− ty +

∫ t

0

(t− s)u(s)ds
)

By the change of variable s := T − t and v(s) := u(T − s), this means that
for any s ∈ [0, T ],
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∀s ∈ [0, T ], y −
∫ T

s

v(τ)dτ ∈ V

(
s, x+ (s− T )y +

∫ T

s

(τ − s)v(τ)dτ

)

The second condition amounts to saying that for all t ≥ T and for all open
loop controls t �→ u(t) ∈ [−1,+1],

∀s ≥ T, y −
∫ T

s

v(τ)dτ ∈ V

(
s, x+ (s− T )y +

∫ T

s

(τ − s)v(τ)dτ

)

If not, there would exist some t� > T such that

y −
∫ T

t�
u(T − τ)dτ ∈ V

(
t�, x+ (t� − T )y +

∫ T

t�
(τ − s)u(T − τ)dτ

)

belongs to R+ × R× R \Graph(V). But, by construction,

y −
∫ T

t�
u(T − τ)dτ ∈ V

(
t�, x+ (t� − T )y +

∫ T

t�
(τ − s)u(T − τ)dτ

)

belongs to Capt(16.18)(Graph(R+ × R × R),Graph(V)) = Graph(V), a
contradiction. ��

Proposition 16.2.28 [Example: Case of Marks] Let us consider the
case when

1. the right hand side G(t, x, y) ≡ [−1,+1] is the constant unit interval
[−1,+1],

2. there is no constraint: ∀ t ≥ 0, ∀ x ∈ R, Ψ(t, x) ≡ R,
3. the set-valued map U+

0 is associated to an initial datum U0 : R� R,
4. U0(x) := βΞ(A;x).

Then the solution is given by U(T, x) =

{(
β +

∫ T

0

u(s)ds

)
Ξ

(
A+ Tβ +

∫ T

0

su(s)ds;x

)}

u(·)∈L1(0,T ;[−1,+1])
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16.3 The Invariant Manifold Theorem

The idea behind the Invariant Manifold approach is the reduction of a system
{

(i) x′(t) = f(x(t))
(ii) y′(t) = g(x(t), y(t))

to one of them by looking for a map U : X �→ Y tracking the solution x(·)
of the first system by y(t) := U(x(t)), solution to the second system. This
means that

∀ t ≥ 0, (x(t), y(t)) ∈ Graph(U)

or, in other words, that the graph of the map U is invariant under the above
system. Hence the name of invariant (or center) manifold for denoting the
graph of this map.

Jacques Hadamard was the first to prove the existence of an invariant
manifold for systems

{
(i) x′(t) = f(x(t))
(ii) y′(t) = −My(t) + g(x(t))

showing that the invariant manifold was the graph of the solution to the
partial differential equation

∀x, 0 =
dU(x)
dx

f(x) − g(x,U(x))

It is given by the explicit analytical formula

U(x) := −
∫ +∞

0

e−Mtg(ϑf (t, x))dt

where ϑf (t, x) is the flow (or reachable map) generated by f (see Defini-
tion 8.4.1, p.284), whenever the largest eigenvalue

λ := inf
‖x‖=1

〈Mx, x〉

of the matrix M is large enough for the above integral to exist.
The situation is more complex for nonlinear problems, a manifold of (local)

invariant manifold theorems were proved.
In Sect. 8.3 of the first edition of Viability Theory [18, Aubin] (1991), the

invariant manifold theorem was extended to control systems
⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = −My(t) + g(x(t), u(t))

where u(t) ∈ U(x(t))
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It was proved that under growth conditions involving the largest eigenvalue
of M , there exists a unique solution to the partial differential inclusion

∀x, ∀y ∈ U(x), ∃ u ∈ U(x) | 0 ∈ dU(x)
dx

f(x, u) +My − g(x, u)

For further details and results, see Chap. 8 of the first edition of Viability
Theory [18, Aubin] (1991).

We only present here a theorem due to Hélène Frankowska extending the
Hadamard Invariant Manilfold Theorem to nonlinear control systems

⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = g(x(t), y(t), u(t))

where u(t) ∈ U(x(t))
(16.24)

subjected to adequate growth conditions.

Theorem 16.3.1 [Strictness of the Viability Solution under
Growth Conditions] Assume that the dynamics of the controlled system

⎧⎨
⎩

(i) x′(t) = f(x(t), u(t))
(ii) y′(t) = g(x(t), y(t), u(t))

where u(t) ∈ U(x(t))
(16.25)

are Marchaud maps satisfying the two following growth conditions:
⎧⎪⎨
⎪⎩

(i) sup
x∈X

sup
u∈U(x)

‖f(x, u)‖ ≤ c(‖x‖+ 1)

(ii) sup
(x,y)∈X×Y

sup
u∈U(x)

〈g(x, y, u), y〉
‖y‖ ≤ −λ‖y‖+ d(‖x‖ + 1)α

(16.26)

If λ > cα, then there exists a solution U : X � Y with nonempty
values to the tracking problem satisfying the growth condition

∀x ∈ X, ‖U(x)‖ ≤ d

λ− cα
(‖x‖+ 1)α (16.27)

the graph of which is both backward viable and invariant under (16.25).
It the is largest closed set-valued map satisfying growth conditions (16.27),
p.676 and solution to the partial differential inclusion

∀x, ∀y ∈ U(x), ∃ u ∈ U(x) | 0 ∈ dU(x)
dx

f(x, u)− g(x, y, u)

This statement is a consequence of the following result:
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Theorem 16.3.2 [Non-Emptiness of the Values of the Viability
Solution under Constraints]

Let Ψ : X � Y be a closed set-valued map. Assume that the dynamics
of the controlled system (16.25) are Marchaud maps satisfying growth
conditions⎧⎪⎪⎨

⎪⎪⎩

(i) sup
(x,y)∈Graph(Ψ)

sup
u∈U(x)

‖f(x, u)‖ ≤ c(‖x‖+ 1)

(ii) sup
(x,y)∈Graph(Ψ)

sup
u∈U(x)

〈g(x, y, u), y〉
‖y‖ ≤ −λ‖y‖+ d(‖x‖+ 1)α

and that

1. the graph Graph(Ψ) of Ψ is invariant under (16.25),
2. the domain Dom(Ψ) of Ψ is backward viable under (16.25),
3. the growth of Ψ is polynomial:

∀x ∈ Dom(Ψ), ‖Ψ(x)‖ ≤ b(‖x‖+ 1)β

Let U : X � Y be the viability solution to the tracking problem under
(16.25) defined by

Graph(U) := Viab(16.29)(Graph(Ψ)) (16.28)

where ⎧⎨
⎩

(i) x′(t) = −f(x(t), u(t))
(ii) y′(t) = −g(x(t), y(t), u(t))

where u(t) ∈ U(x(t))
(16.29)

If λ > cmax(α, β), then Dom(U) = Dom(Ψ): for every x ∈ Dom(Ψ),
U(x) �= ∅. Furthermore, the graph of U is both backward viable and
invariant under (16.25).

Proof. Nothing guarantees that the values of the viability solution U are
not empty. We shall derive non emptiness of the values U(x) for every x ∈
Dom(Ψ) satisfying the assumptions of the theorem.

Let x0 ∈ Dom(Ψ) and x(·) be a solution starting from x0 to differential
inclusion x′(t) = −f(x(t), u(t)) where u(t) ∈ U(x(t)), viable in the domain of
Ψ (which exists since the system is Marchaud and Dom(Ψ) backward viable).
The growth condition on f implies that

‖x(t)‖ ≤ (‖x0‖+ 1)ect − 1

Let Tn be a sequence converging to ∞, yn ∈ Ψ(x(Tn)) be chosen in
Ψ(x(Tn)) and yn(·) be the solutions to
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y′n(t) = −g(x(t), yn(t), u(t)) & yn(Tn) = yn

Setting −→x n(t) := x(Tn − t) and −→y n(t) := yn(Tn − t), we see that the
pair (−→x n(·),−→y n(·)) is a solution to the control system (16.25) starting
from (x(Tn), yn) ∈ Graph(Ψ). Since this graph is assumed to be backward
invariant, we infer that for any t ≥ 0, −→y n(t) ∈ Ψ(−→x n(t)), i.e., that

∀Tn ≥ t, yn(t) = −→y n(Tn − t) ∈ Ψ(−→x n(Tn − t)) = Ψ(x(t))

The growth condition on g implies that

d

dt
(eλt‖−→y n(t)‖)=eλt

(〈
−→y ′n(t),

−→y n(t)
‖−→y n(t)‖

〉
+λ‖−→y n(t)‖

)
≤eλtd(‖x(Tn−t)‖+1)α

so that, integrating from 0 to Tn − t ≥ 0, we obtain

eλ(Tn−t)‖−→y n(Tn − t)‖ ≤ ‖−→y n(0)‖+ d

∫ Tn−t

0

eλτ (‖x(Tn − τ)‖+ 1)αdτ

Since −→y n(0) = yn ∈ Ψ(x(Tn)), we infer that

‖−→y n(0)‖ ≤ b(‖x(Tn)‖+ 1)β ≤ b(‖x0‖+ 1)βecβTn

On the other hand,

‖x(Tn − τ)‖ + 1 ≤ ec(Tn−t−τ)(‖x(t)‖ + 1)

so that

‖−→y n(Tn−t)‖≤e−(λ−cβ)Tneλtb(‖x0‖+1)β+d(‖x(t)‖+1)α

∫ Tn−t

0
e−(λ−cα)(Tn−t−τ)dτ

and thus, that

‖−→y n(Tn−t)‖≤e−(λ−cβ)Tneλtb(‖x0‖+1)β+
d(‖x(t)‖+1)α

λ−c

(
1−e−(λ−cα)(Tn−t)

)

or, for every Tn ≥ t,

‖yn(t)‖ ≤ e−(λ−cβ)Tneλtb(‖x0‖+ 1)β +
d(‖x(t)‖ + 1)α

λ− cα

(
1− e−(λ−c)(Tn−t)

)

In particular, for t = 0, we obtain inequality

‖yn(0)‖ ≤ e−(λ−cβ)Tnb(‖x0‖+ 1)β +
d(‖x0‖+ 1)α

λ− cα

(
1− e−(λ−cα)Tn

)

Since λ > cmax(α, β), we infer that yn(0) is bounded, and thus, that a
subsequence (again denoted by) converges to some y�0 .
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Therefore, control system (16.29) being Marchaud, a subsequence (again
denoted by) (x(·), yn(·)) converges to a solution (x(·), y(·)) to control system
(16.29) starting at (x0, y

�
0) and satisfying for every t ≥ 0, y(t) ∈ Ψ(x(t)). This

proves that (x0, y
�
0) belongs to the viability kernel of the graph of Ψ under

control system (16.29), i.e., to the graph of the viability solution U. Hence
we have proved that U(·) is not empty. ��

When the set-valued map Ψ is not imposed, we can associate with
the growth conditions an appropriate set-valued map Ψ that satisfies the
assumptions of Theorem 16.3.2:

Proof. (Theorem 16.3.1, p.676). We apply Theorem 16.3.2 to the set-valued
map Ψ : X � Y defined by

Ψ(x) :=
{
y ∈ Y | ‖y‖ ≤ d

λ− cα
(‖x‖+ 1)α

}

We have to prove that the graph of Ψ is invariant, i.e., that its complement
is backward invariant under thanks to Theorem 10.5.7. ��

If not, there would exist y0 /∈ Ψ(x0) and a solution (x(·), y(·)) to the
system (16.29) starting from (x0, y0) reaching the graph of Ψ at time t∗.
Since y′(t) = −g(x(t), y(t), u(t)), we deduce that

d

dt
(e−λt‖y(t)‖) = e−λt

(〈
y′(t),

y(t)
‖y(t)‖

〉
− λ‖y(t)‖

)
≥ −e−λtd(‖x(t)‖+1)α

Integrating from 0 to t this inequality, we obtain

e−λt‖y(t)‖ − ‖y0‖ ≥ −d
∫ t

0

e−λτ (‖x(τ)‖ + 1)αdτ

and thus
⎧⎪⎨
⎪⎩
‖y0‖ ≤ e−λt‖y(t)‖+ d(‖x0‖+ 1)α

∫ t

0

e−(λ−cα)τdτ

≤ e−λt‖y(t)‖+
d

λ− cα
(‖x0‖+ 1)α

(
1− e−(λ−cα)t

)

Therefore, since (x(t∗), y(t∗)) belongs to Graph(Ψ), we can use the estimate

y(t∗) ≤ d

λ− cα
(‖x(t∗)‖+ 1)α ≤ d

λ− cα
(‖x0‖+ 1)αecαt and obtain:

‖y0‖ ≤
d

λ− cα
(‖x0‖+ 1)α < ‖y0‖

that is the contradiction we were looking for.
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Furthermore, the tangential conditions imply that the set-valued map U is
the largest closed set-valued map satisfying growth conditions (16.27), p.676
and solution to the partial differential inclusion

∀x, ∀y ∈ U(x), ∃ u ∈ U(x) | 0 ∈ dU(x)
dx

f(x, u)− g(x, y, u) ��



Chapter 17

Viability Solutions
to Hamilton–Jacobi–Bellman
Equations

17.1 Introduction

We summarized the main results of the Hamilton–Jacobi–Bellman strategy
to study intertemporal optimization in the “optimal control survival kit”,
Sect. 4.11, p. 168. Chapters 4, p. 125 and 14, p. 563 and Sects. 15.2, p. 605
and 15.3, p. 620 provided many examples of value functions of a series of
optimization problems over state-control pairs solutions to control systems
which were characterized in terms of viability kernels and capture basins of
auxiliary systems, which we referred to as viability episolutions.

The purpose of this chapter is to study classes of intertemporal optimiza-
tion problems summarized in Sect. 17.6, p.708 covering these particular cases
and numerous other ones.

This allows us to use the Viability and Invariance Theorems 11.3.4, p. 455
and 11.3.7, p. 457 to derive that theses value functions are “generalized”
solutions to Hamilton–Jacobi–Bellman partial differential equation. This
is what Hélène Frankowska discovered and uncovered at the end of the
1980s. This chapter summarizes her results by answering formally these
questions. Unfortunately, these results become more and more technical to
take into account the lack of differentiability of solutions to partial differential
equations, due to the respect of viability constraints. The question arises to
give a mathematical sense to the derivative of non-differentiable functions,
known under the generic name of weak derivatives, graphical and epigraphical
derivatives, subdifferentials, superdifferentials and generalized gradients, an
example of permanent revolutions of earlier definitions of the concept of
derivative which started with Pierre de Fermat, summarized in Sect. 18.9,
p. 765.

However, the ideas behind these concepts are very simple: we just translate
in terms of value functions and partial differential equation the previous
Viability and Invariance Theorems and the Frankowska property (11.19,
p. 462), as well as other results gathered in this book.

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 17,
c© Springer-Verlag Berlin Heidelberg 2011
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But translation is not always easy, as at least one of the French speaking
authors of this book knows too well. This will be the case here, since we
shall have to pass from tangent and normal cones to generalized derivatives
(actually, epiderivatives) and generalized gradients of a lower semicontinuous
extended function, which is not differentiable in the usual sense. This requires
the formalism of nonsmooth analysis summarized in Chap. 18, p. 713.

17.2 Viability Solutions to Hamilton–Jacobi–Bellman
Problems

Hence, in this chapter, we shall prove that:

1. value functions of optimal control problems are solutions to associated
Hamilton–Jacobi–Bellman partial differential equations,

2. solutions to Hamilton–Jacobi–Bellman partial differential equations of a
certain class are value functions of an underlying optimal control problem,
playing the role of representation formulas.

The first problem is an issue in control theory, the second one is a
topic of partial differential equation analysis, using their specific tool box.
These two problems are actually two faces of a viability problem (actually, a
capturability one) of an auxiliary control system we are about to describe, the
stone allowing us to “kill” the two problems, i.e., to solve a class of optimal
control problems and a class of Hamilton–Jacobi–Bellman partial differential
equations.

For this purpose, we will place all these problems under the same umbrella,
which takes the form of the general auxiliary systems described by four
functions:

37 [The Gang of Four Functions.] The auxiliary system and hence,
the class of optimal control problems and Hamilton–Jacobi–Bellman partial
differential equations, is described by the control system

(S) : x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (17.1)

where we assume that
∀ x ∈ K, U(x) �= ∅

and the four extended functions:

1. the Lagrangian l : X × U �→ R+, assigning to each state-control pair
(x, u) its transient cost l(x, u),

2. the discount rate m : X × U �→ R+, assigning to each state-control pair
(x, u) its discount rate m(x, u) which may depend upon the state x and
controlled by u,
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3. the constraint function k : R+ ×X �→ R ∪ {+∞}
4. c : R+×X �→ R∪ {+∞}, the target function, regarded as a spot cost in

control theory or a target condition (Cauchy function, Dirichlet boundary
condition, etc.) in partial differential equations.

The main example is the case k(t, x) := ψK(x) where ψK is the indicator of
K (see Definition 18.6.1, p. 743), which is a cost function defined by ψK(x) :=
0 when x ∈ K and ψK(x) := +∞ otherwise. It is used to enforce that the state
variable x belongs to K. The constraint u ∈ U(x) can also be represented by
taking for function k(t, x) := ψGraph(U)(x, u) the indicator of its graph. The
absence of viability constraints is obtained by taking k(t, x) ≡ −∞.

Hence the auxiliary viability/capturability problem is made of

1. the auxiliary control system (17.2)
⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = m(x(t), u(t))y(t) − l(x(t), u(t))

where u(t) ∈ U(x(t))

(17.2)

2. the environment K := Ep(k) and the target C := Ep(c).

Definition 17.2.1 [Viability Solutions of Hamilton–Jacobi–
Bellman] Let us consider the auxiliary control system (17.2), p. 683
and the extended functions k and c. The four viability solutions to the
Hamilton–Jacobi–Bellman problem are defined in terms of capture basins
and absorption basins of epigraphs and hypographs defined respectively by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W inf
(k,c)(T, x) := inf(T,x,y)∈Capt(17.2)(Ep(k),Ep(c)) y

W sup
(k↓,c↓) := sup(T,x,y)∈Capt(17.2)(Hyp(k↓),Hyp(c↓)) y

W sup
(k,c)(T, x) := inf(T,x,y)∈Abs(17.2)(Ep(k),Ep(c)) y

W inf
(k↓,c↓)(T, x) := sup(T,x,y)∈Abs(17.2)(Hyp(k↓),Hyp(c↓)) y

(17.3)

Viability Solutions W inf
(k,c) and W sup

(k,c) are called episolutions and viabil-
ity solutions W inf

(k↓,c↓) and W sup
(k↓,c↓) are called hyposolutions.

Each of those viability solutions is
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1. the value function of an optimization problem of a functional depending
on the four functions (l,m,k, c) (see Definition 37, p. 682), which are
described in Theorem 17.6.1, p.708, at the end of this chapter;

2. the “generalized” solution to
⎧⎪⎪⎨
⎪⎪⎩

(i) ∀ t ≥ 0, x ∈ ΩV
(k,c)(t),

∂V (t, x)
∂t

+ h
(
x, V (t, x),

∂V (t, x)
∂x

)
= 0

(ii) ∀ (t, x) ∈ R+ ×X, V (t, x) ≤ c(t, x)
(iii) ∀ (t, x) ∈ R+ ×X, k(t, x) ≤ V (t, x)

(17.4)
where

ΩV
(k,c)(t) := {x ∈ ∈ X such that k(t, x) ≤ V (t, x) < c(t, x)}

and
h : X ×X × R �→ R ∪ {+∞} is the Hamiltonian defined in terms of the
four functions of the gang.
Condition (17.4)(ii), p. 684 subsumes Cauchy conditions, Dirichlet con-
ditions or Lagrangian conditions, according to the choice of the target
function c. For instance, taking c(t, x) := +∞ whenever t > 0 and
c(0, x) := U0(x), it will be easy to show that condition (17.4)(ii), p. 684
is the Cauchy condition V (0, x) = U0(x). Inequality (17.4)(iii), p. 684
describes viability constraints.

Since the proofs are very similar (exchanging epigraphs and hypographs
one hand, capture basins and absorption basins on the other one), we shall
study in detail the viability solution

W inf
(k,c)(T, x) := inf

(T,x,y)∈Capt(17.2)(Ep(k),Ep(c))
y (17.5)

38 [Why Using Backward Time] The use of backward time governed
by differential equation τ ′(t) = −1 in the first component of the auxiliary
system is justified by the following property: the environment K := Ep(k) is
a backward invariant repeller under the auxiliary system (17.2), p. 683. The
second reason will be clarified in Definition 17.3.3, p. 688 of the valuation
function V (T, x): the time involved in the solution V (T, x) is no longer the
current time t ∈ [0, T ], but the horizon T before which the current time
t belongs. Hence the slight modification of the classical concept of value
function V (t, x) depending upon the current time t ∈ [0, T ].
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17.3 Valuation Functions and Viability Solutions

17.3.1 A Class of Intertemporal Functionals

We introduce a set-valued map U : X � U and positive extended functions
k (constraint function) and c (objective function) satisfying

∀(t, x) ∈ R+ ×X, 0 ≤ k(t, x) ≤ c(t, x) ≤ +∞

We set

m̂(t) :=
∫ t

0

m(x(τ), u(τ))dτ

without mentioning explicitly the dependence on (x(·), u(·)) for simplifying
notations.

We associate with any extended function v : R+ ×X ×U �→ R+ ∪ {+∞},
any t ∈ [0, T ] and any (x(·), u(·)) ∈ S(x) the functional

⎧⎪⎪⎨
⎪⎪⎩

Jv(t; (x(·), u(·)))(T, x)

:= e−m̂(t)v(T − t, x(t), u(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

The function c : R+ × C �→ R ∪ {+∞} is used for imposing target
conditions. The function k is used for imposing viability constraints.

We define the maximal cost up to the current time t by:

Ik(t; (x(·), u(·)))(T, x) := sup
s∈[0,t]

Jk(s; (x(·), u(·)))(T, x)

We next integrate this cumulated cost together with the cost
Jc(t; (x(s), u(s)))(T, x) associated with the target function c by introducing
the new cost functions

L(k,c)(t; (x(·),u(·)))(T, x):= max(Ik(t;x(·),u(·))(T, x),Jc(t; (x(·), u(·)))(T, x))

Finally, we set

V(k,c)(x(·), u(·))(T, x) := inf
t∈[0,T ]

L(k,c)(t; (x(·), u(·)))(T, x)

This is the class of criteria that we shall minimize in this chapter.
Note that if k1 ≤ k2 and c1 ≤ c2, then V(k1,c1) ≤ V(k2,c2).

Example 1. For that purpose, we denote by 0 the function defined by

0(t, x) =
{

0 if t ≥ 0,
+∞ t < 0
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and by u∞ the function defined by

u∞(t, x) :=
{

u(x) if t = 0
+∞ if t �= 0 (17.6)

Proposition 17.3.1 [Three Examples of Intertemporal Functionals]
Assume that l ≥ 0. Then the functional

(x(·), u(·)) �→ V(k,c)(x(·), u(·))(T, x)

takes the following forms for the various choices of pairs (k, c) associated
with a given time-independent function u:

⎧⎨
⎩

(i) V(0,u∞)((x(·), u(·)))(T, x) = Ju(T ; (x(·), u(·))(x))
(ii) V(0,u)((x(·), u(·)))(T, x) = inft∈[0,T ] Ju(t; (x(·), u(·)))(x)
(iii) V(u,u∞)((x(·), u(·)))(T, x) = supt∈[0,T ] Ju(t; (x(·), u(·)))(x)

Proof. 1. Case when k = 0 and l ≥ 0: We obtain

L(0,c)(t; (x(·), u(·)))(T, x) = Jc(t; (x(·), u(·)))(T, x) (17.7)

Indeed, we observe that taking k = 0, then

J0(t; (x(·), u(·)))(T, x) =
∫ t

0

e
∫ τ
0 m(x(s),u(s))dsl(x(τ), u(τ))dτ

so that,

I0(t; (x(·), u(·)))(T, x) = sup
s∈[0,t]

∫ s

0

e
∫

τ
0 m(x(σ),u(σ))dσl(x(τ), u(τ))dτ

If l ≥ 0, we infer that

I0(t; (x(·), u(·)))(T, x) =
∫ t

0

e
∫ τ
0 m(x(s),u(s))dsl(x(τ), u(τ))dτ

Therefore, for any positive cost function c, we have L(0,c) = Jc.
Taking c := u∞, we obtain

Ju∞(t; (x(·), u(·)))(T, x) :=
{

Ju(T ; (x(·), u(·)))(x) if t = T
+∞ if t ∈ [0, T [

since c(t, x) := u∞(t, x) that takes infinite values for t > 0.
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Therefore,

a. when k(t, x) := 0(t, x) and c(t, x) := u∞(t, x), the two above remarks
imply that

V(0,u∞)((x(·), u(·)))(T, x) = Ju(T ; (x(·), u(·)))(x)

b. when k(t, x) := 0(t, x) and c(t, x) := u(x), we obtain

V(0,u)((x(·), u(·)))(T, x) = inf
t∈[0,T ]

Ju(t; (x(·), u(·)))(x)

2. Case when c := k∞ where

k∞(t, x) :=
{

k(0, x) if t = 0
+∞ if t > 0

We prove that

L(k,k∞)(t; (x(·), u(·)))(T, x) :=
{

Ik(T ; (x(·), u(·)))(T, x) if t = T
+∞ if t ∈ [0, T [

(17.8)
so that

V(k,k∞)(x(·), u(·))(T, x) = Ik(T ;x(·), u(·))(T ; (x(·), u(·)))(T, x)

= sup
t∈[0,T ]

Jk(t;x(·), u(·))(T, x)
(17.9)

Indeed, we see that Jk∞(t; (x(·), u(·)))(T, x) = +∞ if t < T and
Jk∞(T ; (x(·), u(·)))(T, x) = Jk(T ; (x(·), u(·)))(T, x).
In particular, when k(t, x) := u(x) and c(t, x) := u∞(t, x), we obtain

V(u,u∞)((x(·), u(·)))(T, x) = sup
t∈[0,T ]

Ju(t; (x(·), u(·)))(x) ��

17.3.2 Valuation Functions and Viability Solutions

In summary, we have introduced the following functionals:

Definition 17.3.2 [A Class of Functionals to minimize] Given two
functions k : R+ ×X × U �→ R ∪ {+∞} and c : R+ ×X �→ R ∪ {+∞}, we
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set
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc(t; (x(·), u(·)))(T, x)

:= e−m̂(t)c(T − t, x(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

Ik(t; (x(·), u(·)))(T, x) :=

sup
s∈[0,t]

(
e−m̂(s)k(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

L(k,c)(t; (x(·), u(·)))(T, x)
:= max(Ik(t;x(·), u(·))(T, x),Jc(t; (x(·), u(·)))(T, x))

V(k,c)(x(·), u(·))(T, x) := inf
t∈[0,T ]

L(k,c)(t; (x(·), u(·)))(T, x)

(17.10)

We shall minimize the functional V(k,c)(x(·), u(·))(T, x) over the state-
control pairs solutions to a control system:

Definition 17.3.3 [The Valuation Function] Let us consider the con-
trol system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (17.11)

In this section, we denote by S := S(17.11) the evolutionary system generated
by control system (17.11): it associates with any initial state x the set
S(x) := S(17.11)(x) of state-control pairs (x(·), u(·)) governed by control
system (17.11) starting from the initial state x at time 0, instead of the set
of evolutions of the states x(·).

The valuation function V inf
(k,c) for the minimization of the intertemporal

control problem is defined by

V inf
(k,c)(T, x) := inf

(x(·),u(·))∈S(x)
inf

t∈[0,T ]
L(k,c)(t;x(·), u(·))(T, x) (17.12)

When viability constraints are absent, the valuation function boils down
to the simpler expression

⎧⎨
⎩
V inf
c (T, x) :=

inf
(x(·),u(·))∈S(x)

inf
t∈[0,T ]

(
e−m̂(t)c(T − t, x(t)) +

∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

(17.13)
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We use here the term valuation function instead of the classical value
function used in control theory, because, in our case, the valuation function
depends upon the horizon T whereas the value function depends of the current
time t ∈ [0, T ] (see Comment 38, p. 684). We do not present this study in
this volume of the book.

The first result links viability episolutions to valuation functions:

Theorem 17.3.4 [Viability Characterization of Valuation Func-
tions] Let us assume that the extended functions k and c are nontrivial.
Then the valuation function V inf

(k,c) and the viability episolution W inf
(k,c)

coincide:

W inf
(k,c)(T, x) = V inf

(k,c)(T, x) := inf
(T,x,y)∈Capt(17.2)(Ep(k),Ep(c))

y (17.14)

Proof. Let us set K := Ep(k) and C := Ep(c).
We begin by observing that a solution (τ(·), x(·), y(·)) to control system

(17.2) starting from (T, x, y) is given by t �→ (T − t, x(t), em̂(t)(y − z(t)))
where

z(t) :=
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

because solutions to (17.2)(iii) are given explicitly by the formula

y(t) := em̂(t)

(
y −

∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

Therefore, to say that (T, x, y) belongs to Capt(17.2)(Ep(k), Ep(c)) amounts to
saying that there exists a solution (τ(·), x(·), y(·)) to the characteristic control
system (17.2) starting from (T, x, y) and t� ≥ 0 such that (t−t�, x(t�), y(t�))
belongs to the target Ep(c), i.e., such that

c (T − t�, x(t�)) ≤ y(t�) := em̂(t�)(y − z(t�))

and it is viable in Ep(k). It implies that t� ∈ [0, T ].
Recalling the definition of the functional Jc, this his can be written in the

form

Jc(t�; (x(·), u(·))) = e−m̂(t�)c (T − t�, x(t�)) + z(t�) ≤ y

On the other hand, since (T−t, x(t), y(t)) is a solution to the auxiliary system
(17.2) viable in the epigraph of k, we know that ∀ s ∈ [0, t�], (T−s, x(s), y(s))
satisfies k(t− s, x(s)) ≤ y(s), i.e.,
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∀ s ∈ [0, t�], k(t − s, x(s)) ≤ e−m̂(s)(y − z(s))

which can be written in the form

Ik(t;x(·), u(·))(T, x) = sup
s∈[0,t�]

(
e−m̂(s)k(T − s, x(s)) + z(s)

)
≤ y

This implies that

L(k,c)(t�; (x(·), u(·))) ≤ y

and thus, by taking the infimum over t� ∈ [0, T ], we obtain

V(k,c)(x(·), u(·))(T, x) ≤ y (17.15)

and next, by taking the infimum over the pairs (x(·), u(·)) ∈ S(x), that

V inf
(k,c)(T, x) ≤ y

Therefore, taking the infimum over y ∈ R such that (T, x, y) ∈
Capt(17.2)(Ep(k), Ep(c)), we have proved that V inf

(k,c)(T, x) ≤W inf
(k,c)(T, x).

For proving the converse inequality, we associate with every ε > 0 a state-
control pair (xε(·), uε(·)) ∈ S(x) and a time tε ∈ [0, t] such that,

L(k,c)(t; (xε(·), uε(·)))(T, x) ≤ V inf
(k,c)(T, x) + ε

Therefore, setting

yε(t) := em̂(t)(V inf
(k,c)(T, x) + ε− zε(t))

where

zε(t) :=
∫ t

0

e−m̂(τ)l(xε(τ), uε(τ))dτ

We observe that the function s �→ (t− s, xε(s), yε(s)) starts from
(t, x, V inf

(k,c)(T, x) + ε), is a solution to the auxiliary micro–macro control
system (17.2), satisfying k(t− s, xε(s), uε(s)) ≤ yε(s) for s ≤ tε and reaching
the target C := Ep(c) at time tε.

This implies that (T, x, V inf
(k,c)(T, x) + ε) belongs to the capture basin

Capt(17.2)(R+×K×R, Ep(c)), and thus, that W inf
(k,c)(T, x) ≤ V inf

(k,c)(T, x)+ε.
Letting ε converge to 0 provides the converse inequality. ��

Comment 38, p. 684 mentioned that backward time was used for parame-
terizing the time T as the horizon instead of the current time t. This motivates
the fact than instead of considering evolutions x(·) ∈ ←−S (x) := S(17.11)(x)
starting from x at time 0, we could use its backward shift evolution that we
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shall denote by ξ(t) :=
∨
κ (T )(x(·))(t) := x(T − t) arriving at x at horizon

time T (see Definition 8.2.2, p.276).

Definition 17.3.5 [Evolution Arriving to a State at Horizon Time]
Let d ∈ [0, T ] be regarded as a departure time. We denote by A(d, T ;x) :=
A(17.11)(d, T ;x) the set of evolutions ξ(·) governed by control system
(17.11), p. 688 defined on the interval [d, T ] and arriving at time T at x.

Hence, a simple change of variables d = T − t allows us to reformulate the
valuation function as the minimal value of the intertemporal value function
on evolutions ξ ∈ A(d, T ;x) We set

m̂(t) :=
∫ T

t

m(ξ(τ), u(τ))d(τ)

without mentioning explicitly the dependence on (ξ(·), u(·)) for simplifying
notations.

We associate with any extended function v : R+ ×X ×U �→ R+ ∪ {+∞},
any t ≥ 0 and any (x(·), u(·)) ∈ S(x) the functional

⎧⎪⎪⎨
⎪⎪⎩

Jv(d; (ξ(·), u(·)))(T, x)

:= e−m̂(d)v(t, ξ(t), u(t)) +
∫ T

d

e−m̂(τ)l(ξ(τ), u(τ))dτ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc(d; (ξ(·), u(·)))(T, x)

:= e−m̂(t)c(d, ξ(d)) +
∫ T

d

e−m̂(τ)l(ξ(τ), u(τ))dτ

Ik(d; (ξ(·), u(·)))(T, x) :=

sup
s∈[d,T ]

(
e−m̂(s)k(s, ξ(s)) +

∫ T

s

e−m̂(τ)l(ξ(τ), u(τ))dτ

)

L(k,c)(d; (ξ(·), u(·)))(T, x)
:= max(Ik(d; ξ(·), u(·))(T, x),Jc(d; (ξ(·), u(·)))(T, x))

(17.16)

V inf
(k,c)(T, x) := inf

d∈[0,T ]
inf

(ξ(·),u(·))∈A(d,T ;x)
L(k,c)(d; ξ(·), u(·))(T, x) (17.17)
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17.3.3 Existence of Optimal Evolution

We shall prove in this section the valuation functional is lower semicontinuous
and achieves its minimum:

Theorem 17.3.6 [Existence of Optimal Evolutions] Let us assume
that:

1. the control system x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) is
Marchaud,

2. the function u �→ m(x, u) is concave and the function u �→ l(x, u) and
(t, x, u) �→ k(t, x) are convex,

3. the functions (x, u) �→ m(x, u) is upper semicontinuous and (x, u) �→
l(x, u), (t, x) �→ c(t, x) and (t, x) �→ k(t, x) are lower semicontinuous,

4. the functions l and m are positive and the suprema m� :=
sup(x,u)∈Graph(U) m(x, u) and l� := sup(x,u)∈Graph(U) l(x, u) are finite.

(17.18)

The viability episolution is lower semicontinuous and its epigraph

Ep(V inf
(k,c)) = Capt(17.2)(K, C)

is equal to its capture basin Capt(17.2)(K, C) of the epigraph of c under the
auxiliary system (17.2), p. 683. Furthermore,

1. there exists at least one optimal evolution minimizing the valuation
functional V inf

(k,c);
2. optimal evolutions x(·) are the components of the evolutions t �→ (T −

t, x(t), y(t)) governed by auxiliary system (17.2), p. 683 starting at
(T, x, V inf

(k,c)(T, x)) and viable until the first time t� when

e−m̂(t�)c(T − t�, x(t�)) +
∫ t�

0

e−m̂(τ)l(x(τ), u(τ))dτ = V inf
(k,c)(T, x)

This result can be derived from Theorem 11.5.8, p.472. However, for
deriving it directly from viability theorems, we have to check that the
auxiliary control system (17.2) is Marchaud. It is the actually differential
inclusion

(τ ′(t), x′(t), y′(t)) ∈ F0(τ(t), x(t), y(t))

where

F0(τ, x, y) := {(−1, f(x, u),m(x, u)y − l(x, u))}u∈U(x) (17.19)
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The values of this set-valued map are not necessarily convex or closed if we
assume only that the function m is upper semicontinuous and concave in u
and l is lower semicontinuous and convex in u.

But, by subtracting positive controls on the third component of the set
valued map, we obtain the set-valued map

F∞(τ, x, y) := {(−1, f(x, u),m(x, u)y − l(x, u)− π)}u∈U(x), π≥0 (17.20)

and the associated differential inclusion

(τ ′(t), x′(t), y′(t)) ∈ F∞(τ(t), x(t), y(t))

We shall prove that this the graph of this set-valued map is closed and that
its values are convex, but it is not bounded.

In order to obtain a Marchaud map, we set a finite bound

0 ≤ π ≤ α(x, u, y) := m(x, u)y − l(x, u) +m�y + l�

on the new control π. We set

F (τ, x, y) := {(−1, f(x, u),m(x, u)y − l(x, u)− π)}(u∈U(x),π∈[0,α(x,u,y)])

(17.21)
and differential inclusion

(τ ′(t), x′(t), y′(t)) ∈ F (τ(t), x(t), y(t))

We shall prove that the set-valued map F is Marchaud and that the capture
basins of the target Ep(c) under these three differential inclusions are equal.

Lemma 17.3.7 [Marchaud Auxiliary Systems] We posit the assump-
tions (17.18), p. 692 of Theorem 17.3.6, p. 692. Then the set-valued map
F is Marchaud and its growth is linear:

‖F (τ, x, y)‖ ≤ max(1, c(‖x‖+ 1),m�y + l�)

Remark. Actually, we shall prove that the growth of F0 is linear, that F
is Marchaud and the graph of F∞ is closed and that its values are convex.
��

Proof. We shall check successively that:

1. The growth of F is linear:

‖F (τ, x, y)‖ ≤ max(1, c(‖x‖+ 1),m�y + l�)
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Indeed, the first component of (τ, x, y) is bounded by 1, the second one
by c(‖x‖+ 1) since the control system is assumed to be Marchaud and we
observe that the functions l and m being strictly positive by assumption,
that −(m�y + l�) ≤ m(x, u)y − l(x, u)− π ≤ m�y ≤ m�y + l�.

2. The values F∞(τ, x, y) of the set-valued map F∞ are convex : Indeed, for

convex weight λi ≥ 0 such that
∑

λi = 1, we can write
{∑

λi(−1, f(x, ui),m(x, ui)y − l(x, ui)− πi)
= (−1, f(x, u),m(x, u)y − l(x, u)− π)

where u :=
∑

λiui and

π :=
∑

λiπi +
∑

λi(l(x, ui)−m(x, ui)y) + m(x, u)y − l(x, u)

Hence π because u �→ m(x, u)y − l(x, u) is concave by assumption and it
is easy to check that π ≤ m(x, u)y − l(x, u) +m�y + l�.

3. The graph of the set-valued map F is closed: Indeed, let us consider a
sequence of elements ((τn, xn, yn), (−1, f(x, un), λn)) where un ∈ U(xn),
belonging to the graph of F converging to ((τ, x, y), (−1, v, λ)) where λn :=
m(xn, un)y− l(xn, un)− πn and where πn ≥ 0. Since the set-valued map
U is Marchaud and since xn converges to x, a subsequence (again denoted
by) of un converges to some u ∈ U(x). Since f is continuous, we infer
that v = f(x, u). Since the function (τ, x, y, u) �→ (m(x, u)y − l(x, u)) is
upper semicontinuous by assumption, m(xn, un)yn − l(xn, un) converges
to some μ ≤ m(x, u)y− l(x, u). Let us set � := m(x, u)y− l(x, u)−μ ≥ 0.
Therefore πn converges to μ − λ = m(x, u)y − l(x, u) − � − λ. In other
words, setting π := π +�, we find that λ = m(x, u)y − l(x, u)− π where
it is easy to check that 0 ≤ π ≤ m(x, u)y − l(x, u) +m�y + l�. Hence

((τ, x, y), (−1, v, λ)) = ((τ, x, y), (−1, f(x, u),m(x, u)y − l(x, u)− π))

belongs to the graph of F . This implies it is closed.

Hence, we have proved that the graph of the set-valued map F is Marchaud.
��

We now check that we can replace the set-valued map F0 by the Marchaud
map F or the map F∞ without changing the capture basin, and thus, the
viability episolution:

Lemma 17.3.8 [Equality between Capture Basins] The capture basins
of the epigraph of the function c by systems (17.2), (17.21) and (17.20)
coincide:
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Capt(17.2)(K, Ep(c)) = Capt(21)(K, C) = Capt(17.20)(K, C)

Furthermore,

Capt(21)(K, C) = Capt(21)(K, C)− {0} × {0} × R+

Proof. Inclusions

Capt(17.2)(K, Ep(c)) ⊂ Capt(21)(K, C) ⊂ Capt(17.20)(K, C)

are obvious.
For proving that

Capt(17.20)(K, C) ⊂ Capt(17.2)(K, C)

let us consider an element (T, x, y) ∈ Capt(17.20)(R+×K×R, Ep(c)) and show
that it belongs to Capt(17.2)(R+×K×R, Ep(c)). We begin by observing that
a solution (τ(·), x(·), y(·)) to the control system (17.20) starting from (T, x, y)
is given by t �→ (T − t, x(t), em̂(t)(y − z(t)−�(t))) where

z(t) :=
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ and �(t) :=
∫ t

0

e−m̂(τ)π(τ)dτ ≥ 0

Therefore, the proof of Theorem 17.3.4, p. 689 where we replace z(t) by
z(t) +�(t) states that it implies that there exists t� ∈ [0, t] such that

c (T − t�, x(t�)) ≤ y(t�) ≤ em̂(t�)(y − z(t�)−�(t�)) ≤ em̂(t�)(y − z(t�))

and that

∀ s ∈ [0, t�], k(t− s, x(s)) ≤ e−m̂(s)(y − z(s)−�(t�)) ≤ e−m̂(s)(y − z(s))

This means that (T, x, y) ∈ Capt(17.2)(R+×K×R, Ep(c)), so that, the three
capture basins coincide.

We also observe that whenever (T, x, y) ∈ Capt(17.20)(K, C) and y ≤ z,
inequalities

{
c (T − t�, x(t�)) ≤ y(t�) ≤ em̂(t�)(y − z(t�)−�(t�))
≤ em̂(t�)(y − z(t�)) ≤ em̂(t�)(z − z(t�))

and that{
∀ s ∈ [0, t�], k(t− s, x(s)) ≤ e−m̂(s)(y − z(s)−�(t�))
≤ e−m̂(s)(y − z(s)) ≤ e−m̂(s)(z − z(s))
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imply that for any z ≥ y, (T, x, z) ∈ Capt(17.20)(R+ ×K × R, Ep(c)). The
proof is completed. ��

Proof. (Theorem 17.3.6, p. 692). Since F is a Marchaud control system, the
capture basin of a target is closed whenever the target C and the environment
K are closed and the complement of the target in the environment is a closed
backward repeller: This is the case thanks to Comment 38, p. 684. Since we
have proved that

Capt(17.2)(K, C) = Capt(17.2)(K, C)− {0} × {0} × R+

we infer that Capt(17.2)(K, C) is an epigraph, and thus, the epigraph of
the viability episolution. Since it is closed because the auxiliary system
is Marchaud, the valuation functional is lower semicontinuous, and, in
particular, y := V inf

(k,c)(T, x), we infer that by taking y := V inf
(k,c)(T, x),

the triple (T, x, V inf
(k,c)(T, x)) belongs to the capture basin Capt(17.2)(K, C)

of the epigraph of c under the auxiliary system (17.2), p. 683. In the
proof of Theorem 17.3.4, p. 689, we have proved that any evolution t �→
(T − t, x(t), y(t)) starting from (T, x, V inf

(k,c)(T, x)) satisfies inequality (17.15),
p. 690 stating that

V(k,c)(x(·), u(·))(T, x) ≤ V inf
(k,c)(T, x)

Since
V inf

(k,c)(T, x) := inf
(x(·),u(·))∈S(x)

V(k,c)(x(·), u(·))(T, x)

by definition (17.12), p. 688 of the valuation functional, we infer that the
state-control pair is optimal. ��

17.3.4 Dynamic Programming Equation

We did not yet exploit the bilateral fixed point characterization of capture
basins, which happens to imply the celebrated Isaac–Bellman dynamic
programming equation.

Theorem 17.3.9 [Dynamic Programming Equation] We posit the
assumptions of Theorem 17.3.6, p. 692. Optimal evolutions x(·) satisfy
dynamic programming equation

e−m̂(s)V inf
(k,c)(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ = V inf
(k,c)(T, x)

(17.22)
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for all s ∈ [0, t�] where t� is the first time when

e−m̂(t�)c(T − t�, x(t�)) +
∫ t�

0

e−m̂(τ)l(x(τ), u(τ))dτ = V inf
(k,c)(T, x)

Proof. By Theorem 2.15.5, p. 101, we know that the capture basin
Capt(17.2)(K, C) of the epigraph of c under the auxiliary system (17.2),
p. 683 is the bilateral fixed point

Capt(17.2)(Ep(V inf
(k,c)), C) = Ep(V inf

(k,c)) = Capt(17.2)(K, Ep(V inf
(k,c)))

Let (T, x, V inf
(k,c)(T, x)) belong to the capture basin Capt(17.2)(Ep(V inf

(k,c)), C)
of the epigraph of c under the auxiliary system (17.2), p. 683. The proof
of Theorem 17.3.4, p. 689 implies that there exist a state-control pair
(x(·), u(·)) ∈ S(x) and t� such that,

e−m̂(t�)c(T − t�, x(t�)) +
∫ t�

0

e−m̂(τ)l(x(τ), u(τ))dτ ≤ V inf
(k,c)(T, x)

and such that, for every s ∈ [0, t�],

e−m̂(s)V inf
(k,c)(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ ≤ V inf
(k,c)(T, x)

We shall deduce the opposite inequality from the second fixed point
property, implying actually that

⎧⎨
⎩
V inf

(k,c)(T, x) ≤ inf(x(·),u(·))∈S(x) infs∈[0,t](
e−m̂(s)V inf

(k,c)(T − s, x(s)) +
∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

(17.23)

Indeed, for any z < V inf
(k,c)(T, x), the triple (T, x, z) does not belong to

Ep(V inf
(k,c)) = Capt(17.2)(K, Ep(V inf

(k,c))). This means that, by Lemma 2.12.2,
p. 92,

(T, x, z) ∈ Inv(17.2)(
◦

Hyp (V inf
(k,c)), �K)

because

�Ep(V inf
(k,c)) := {(T, x, y) such that y < V inf

(k,c)(T, x)} =:
◦

Hyp (V inf
(k,c))
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Therefore, for any (x(·), u(·)) ∈ S(x) and for any s ∈ [0, T ],

e−m̂(t)

(
z −

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

< V inf
(k,c)(T, x)

and thus,

z < e−m̂(s)V inf
(k,c)(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ

Letting z converge to V inf
(k,c)(T, x), we obtain

V inf
(k,c)(T, x) ≤ e−m̂(s)V inf

(k,c)(T − s, x(s)) +
∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ

In particular, taking for evolution the optimal one and t := t�, we obtain
equation (17.22), p. 696.

On the other hand, taking the infimum over state-control pairs
(x(·), u(·)) ∈ S(x) and t ∈ [0, T ], we obtain (17.23), p. 697. ��

17.4 Solutions to Hamilton–Jacobi Equation
and Viability Solutions

17.4.1 Contingent Solution to the Hamilton–Jacobi
Equation

We set:

ΩV
(k,c)(t) := {x ∈ X such that k(t, x) ≤ V (t, x) < c(t, x)} (17.24)

Recall that the convexified epiderivative D��
↑ u(x) of the extended function

u at x ∈ Dom(u) is defined by

Ep(D��
↑ u(x)) := T ��Ep(u)(x,u(x))

where T ��K (x) is the closed convex hull to the tangent cone TK(x) to K
at x (see Definition 18.6.12, p. 749). The convexified epiderivative u �→
D��
↑ u(x)(u) is a lower semicontinuous convex function.
Let us associate with the extended function k the extended function k⇒

defined by
Ep(k⇒) := Exit(17.2)(Ep(k))
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Theorem 17.4.1 [Contingent Frankowska Solution] We posit the
assumptions (17.18), p. 692 of Lemma 17.3.7, p. 693. The viability episolu-
tion V (see Definition 17.2.1, p. 683) is the smallest lower semicontinuous
solution greater than or equal to c and satisfying: ∀ t ≥ 0, ∀ x ∈ ΩV

(k,c)(t),

inf
u∈U(x)

(
D��
↑ V (t, x)(−1, f(x, u)) + l(x, u)−m(x, u)V (t, x)

)
≤ 0 (17.25)

the constraint and target k(t, x) ≤ V (t, x) and the target conditions

k(t, x) ≤ V (t, x) ≤ c(t, x) (17.26)

Furthermore, it satisfies

V (t, x) ≤ c(t, x) ≤ max(V (t, x),k⇒(t, x))

If the system is Lipschitz, then V is the largest lower semicontinuous
solution smaller than or equal to c satisfying: ∀ t ≥ 0, ∀ x ∈ X,

sup
u∈U(x)

(
D��
↑ V (t, x)(1,−f(x, u)) + m(x, u)V (t, x)− l(x, u)

)
≤ 0 (17.27)

We need the Lemma 18.6.18, p. 753 on tangent cones to epigraphs for
proving Theorem 17.4.1:

Proof. It is divided in two parts:

1. First, we observe that Ep(V )\Ep(c) is the set of (t, x, y) such that V (t, x) ≤
y < c(t, x) and is non empty if and only if x ∈ ΩV

(k,c)(t). It is a repeller
since K is a repeller by Comment 38, p. 684.

Since the auxiliary system is Marchaud by Lemma 17.3.7, p. 693, the first
statement of Theorem 11.4.6, p. 463 states that the capture basin is the
largest closed subset between the epigraph of c and R+×X×R such that
∀t ≥ 0, ∀x ∈ ΩV

(k,c)(t), ∀ y such that V (t, x) ≤ y < c(t, x),

∃u ∈ U(x) such that (−1, f(x, u),m(x, u)y − l(x, u)) ∈ T ��Ep(V )(t, x, y)

If y = V (t, x), then

T ��Ep(V )(t, x, V (t, x)) =: Ep(D��
↑ V (t, x))

so that we infer that there exists u ∈ U(x)
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D��
↑ V (t, x)(−1, f(x, u)) ≤ m(x, u)y − l(x, u)

from which inequality (17.25)

inf
u∈U(x)

(D↑V (t, x)(−1, f(x, u)) + l(x, u)−m(x, u)V (t, x)) ≤ 0

ensues.

Conversely, since D��
↑ V (t, x)(−1, ·) is lower semicontinuous and U(x) is

compact, inequality (17.25) implies the existence of u ∈ U(x) such that

(−1, f(x, u),m(x, u)y − l(x, u)) ∈ T ��Ep(V )(t, x, V (t, x))

When y > V (t, x), then Lemma 18.6.18, p. 753 implies that

(−1, f(x, u),m(x, u)y − l(x, u)) ∈ T ��Ep(V )(t, x, y)

because (−1, f(x, u)) belongs to the domain of D��
↑ V (t, x).

2. For proving inequality c(t, x) ≤ max(V (t, x),k⇒(t, x)), we deduce from
formula (11.18), p. 461 of Theorem 11.4.1, p.460 that

Ep(V ) ∩ Exit(17.2)(Ep(k)) ⊂ Ep(c)

which means that

Ep(max(V,k⇒)) = Ep(V ) ∩ Ep(k⇒) ⊂ Ep(c)

3. Since the environment K is backward invariant thanks to Comment 38,
p. 684, then the second statement of Theorem 11.4.6, p. 463 implies that
the capture basin is the smallest closed subset containing the epigraph of
c such that Ep(V ) is backward invariant, and thus satisfy: ∀ (t, x, y) ∈
Ep(V ), ∀ u ∈ U(x),

(−1, f(x, u),m(x, u)y − l(x, u)) ∈ T ��Ep(V )(t, x, y)

If y = V (t, x), then so that we infer that for all u ∈ U(x)

D��
↑ V (t, x)(1,−f(x, u)) ≤ l(x, u)−m(x, u)y

from which we derive inequality (17.27). Conversely, since for all u ∈ U(x),
(1,−f(x, u)) belongs to the domain of D↑V (t, x), we derive that

(1,−f(x, u), l(x, u)−m(x, u)y) ∈ T ��Ep(V )(t, x, y)

holds whenever y ≥ V (t, x) thanks to Lemma 18.6.18, p. 753. ��



17.4 Solutions to Hamilton–Jacobi Equation and Viability Solutions 701

17.4.2 Barron–Jensen/Frankowska Solution
to the Hamilton–Jacobi Equation

Instead of characterizing capture basins in terms of tangent cones and
translating them in terms of contingent Frankowska episolutions, we translate
them in the equivalent formulation of Barron–Jensen/Frankowska solutions, a
weaker concept of viscosity solutions requiring only the lower semicontinuity
of the solution instead of its continuity. For simplicity of the exposition at this
stage, we still involve the domain K ⊂ X by assuming that k(t, x) := +∞
whenever x /∈ K.

We introduce the Hamiltonian

h(t, x, y, p) := sup
u∈U(x)

(m(x, u)y − l(x, u)− 〈p, f(x, u)〉)

Definition 17.4.2 [Barron–Jensen/Frankowska Solutions] The
Barron–Jensen/Frankowska solution V is a lower semicontinuous function
satisfying inequalities

k(t, x) ≤ V (t, x) ≤ c(t, x)

and

⎧⎪⎪⎨
⎪⎪⎩

(i) ∀t > 0, ∀x ∈ ΩV
(k,c)(t), ∀(pt, px) ∈ ∂V (t, x),

pt + h(t, x, V (t, x), px) ≥ 0
(ii) ∀t > 0, ∀x ∈ ΩV

(k,c)(t),
∀(pt, px) ∈ (Dom(D��

↑ V (t, x)))−, pt + σ(−f(x, U(x)), px) ≥ 0
(17.28)

The main theorem of this chapter is to prove that the viability episolution
(see Definition 17.2.1, p. 683) is the unique Barron–Jensen/Frankowska
solution:

Theorem 17.4.3 [Barron–Jensen/Frankowska Solution] We posit
the assumptions (17.18), p. 692 of Lemma 17.3.7, p. 693. The viability
episolution V is the smallest lower semicontinuous solution greater than
or equal to c and satisfying
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⎧⎪⎪⎨
⎪⎪⎩

(i) ∀t > 0, ∀x ∈ ΩV
(k,c)(t), ∀(pt, px) ∈ ∂V (t, x),

pt + h(t, x, V (t, x), px) ≥ 0
(ii) ∀t > 0, ∀x ∈ ΩV

(k,c)(t),
∀(pt, px) ∈ (Dom(D��

↑ V (t, x)))−, pt + σ(−f(x, U(x)), px) ≥ 0
(17.29)

the constraint functions k(t, x) ≤ V (t, x) and the target conditions V (t, x) ≤
c(t, x).
If the system is Lipschitz, then V is the largest lower semicontinuous
solution smaller than or equal to c satisfying

⎧⎪⎪⎨
⎪⎪⎩

(i) ∀t ≥ 0, ∀x ∈ X, ∀(pt, px) ∈ ∂V (t, x),
pt + h(t, x, V (t, x), px) ≤ 0

(ii) ∀t ≥ 0, ∀x ∈ ΩV
(k,c)(t), ∀(pt, px) ∈ (Dom(D��

↑ V (t, x)))−,
pt + σ(−f(x, U(x)), px) ≤ 0

(17.30)

and thus, the unique lower semicontinuous Barron–Jensen/Frankowska
solution, which satisfies also inequalities

V (t, x) ≤ c(t, x) ≤ max(V (t, x),k⇒(t, x))

Observe that under the Lipschitz assumptions, the viability episolution
satisfies

⎧⎨
⎩

∀t > 0, ∀x ∈ ΩV
(k,c)(t),

(i) ∀(pt, px) ∈ ∂V (t, x), pt + h(t, x, V (t, x), px) = 0
(ii) ∀(pt, px) ∈ (Dom(D��

↑ V (t, x)))−, pt + σ(−f(x, U(x)), px) = 0
(17.31)

Proof. As the proof of Theorem 17.4.1, p. 699, it is divided in two parts:

1. Since the auxiliary system is Marchaud by Lemma 17.3.7, p. 693, the
first statement of Theorem 11.6.7, p. 480 states that ∀t ≥ 0, ∀x ∈
ΩV(k,c)(t), ∀ y|V (t, x) ≤ y < c(t, x), there exists u ∈ U(x) such that
∀ (pt, px) ∈ ∂V (t, x)

{
〈(pt, px,−λ), (−1, f(x, u),m(x, u)y − l(x, u))〉
= −pt + 〈px, f(x, u)〉+ λ(l(x, u)−m(x, u)y) ≤ 0 (17.32)

By Lemma 18.6.18, if y = V (t, x), (pt, px,−λ) ∈ NEp(V )(t, x, y) means
that either λ > 0, and that, taking λ = 1, (pt, px) ∈ ∂V (t, x) or
that λ = 0, and that (pt, px) ∈ (Dom(D��

↑ V (t, x)))−. If y > V (t, x),
(pt, px,−λ) ∈ NEp(V )(t, x, y) also means that λ = 0, and that (pt, px) ∈
(Dom(D��

↑ V (t, x)))−.
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Consequently, condition (17.32), p. 702 can be written in the following
form:

• Case when y = V (t, x) and λ = 1:
{
∀t > 0, ∀x ∈ ΩV

(k,c)(t), ∀ (pt, px) ∈ ∂V (t, x), then
−pt ≤ 〈−px, f(x, u)〉 − l(x, u) + m(x, u)y ≤ h(t, x, y, px)

Hence

∀ (pt, px) ∈ ∂V (t, x), pt + h(t, x, V (t, x), px) ≥ 0

• Case when y ≥ V (t, x) and λ = 0:

⎧⎨
⎩
∀t > 0, ∀x ∈ ΩV

(k,c)(t), ∀ (pt, px) ∈ (Dom(D��
↑ V (t, x)))−, then

−pt − supu∈U(x) 〈px,−f(x, u)〉
= −pt − σ(−f(x, U(x)), px) ≤ 0

(Recall that this condition disappears whenever the viability episolution
V is epidifferentiable, and, in particular, when the episolution is
Lipschitz).

2. Since the environment is backward invariant and the auxiliary system,
is Lipschitz, the second statement of Theorem 11.6.7, p. 480 states that
∀ u ∈ U(x),

⎧⎨
⎩
∀ (pt, px,−λ) ∈ NEp(V )(t, x, y),
〈(pt, px,−λ), (1,−f(x, u), l(x, u)−m(x, u)y)〉
= pt + 〈−px, f(x, u)〉+ λ(m(x, u)y − l(x, u)) ≤ 0

(17.33)

This implies that λ ≥ 0.
Consequently, condition (17.33), p. 703 can be written in the following
form:

• Case when y = V (t, x) and λ = 1:
⎧⎨
⎩
∀t > 0, ∀x ∈ X, ∀ (pt, px) ∈ ∂V (t, x), then
pt + supx∈U(x)(〈−px, f(x, u)〉+ m(x, u)y − l(x, u))
= pt + h(t, x, y, px) ≤ 0

• Case when y ≥ V (t, x) and λ = 0:

{
∀t > 0, ∀x ∈ X, ∀ (pt, px) ∈ (Dom(D��

↑ V (t, x)))−, then
pt + supu∈U(x) 〈px,−f(x, u)〉 = pt + σ(−f(x, U(x)), px) ≤ 0 ��
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17.4.3 The Regulation Map of Optimal Evolutions

The associated regulation map R for regulating viable evolutions of the
auxiliary system is defined by: ∀ t > 0, x ∈ ΩV

(k,c)(t),

R̂(t, x, y) := {u | (−1, f(x, u),m(x, u))y − l(x, u) ∈ T ��Ep(V )(t, x, V (t, x))}

(see Definition 2.15.6, p. 102). The partial derivative ∂xV (t, x) with respect
to x is the subset of elements px such that there exists pt satisfying (pt, px) ∈
∂V (t, x).

Definition 17.4.4 [The Regulation Map] The regulation map is the set-
valued map

(t, x)� R(t, x) := R̂(t, x, V (t, x))

17.5 Other Intertemporal Optimization Problems

17.5.1 Maximization Problems

Replacing epigraphs of functions k and c by hypographs of functions k↓ and
c↓ provides the maximization over the state-control pairs of the functional
V �(k↓,c↓)(x(·), u(·))(T, x) we are about to define and to characterize in terms
of capture basin. Hence, this value functional exhibits all the properties of
the capture basin, that we leave as an exercise to translate, as we did for
the valuation functional V(k,c)(x(·), u(·))(T, x) (that we could have written
in the form V �(k↑,c↑)(x(·), u(·))(T, x) to stress the symmetry between these
two examples). We just provide the proof of the viability characterization in
terms of capture basins.

Definition 17.5.1 [A Class of Functionals to Maximize] Given two
functions k↓ : R+ ×X × U �→ R ∪ {−∞} and c↓ : R+ ×X �→ R ∪ {−∞},
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we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc↓(t; (x(·), u(·)))(T, x)

:= e−m̂(t)c↓(T − t, x(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

I�k↓(t; (x(·), u(·)))(T, x) :=

inf
s∈[0,t]

(
e−m̂(s)k↓(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

L�(k↓,c)(t; (x(·), u(·)))(T, x)
:= min(Ik↓(t;x(·), u(·))(T, x),Jc↓ (t; (x(·), u(·)))(T, x))

V �(k↓,c↓)(x(·), u(·))(T, x) := sup
t∈[0,T ]

L(k↓,c↓)(t; (x(·), u(·)))(T, x)

(17.34)

We associate the valuation functional

V sup
(k↓,c↓)(T, x) := sup

(x(·),u(·))∈S(x)

V �(k↓,c↓)(x(·), u(·))(T, x) (17.35)

Let us consider the new auxiliary control system
⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = m(x(t))y(t) − l(x(t), u(t))

where u(t) ∈ U(x(t))

(17.36)

Hence

V sup
(k↓,c↓)(T, x) := sup

(T,x,y)∈Capt(17.36)(Ep(k),Hyp(c↓))

y

17.5.2 Two Other Classes of Optimization Problems

Until now, we have characterized the valuation functionals V(k,c) and V sup
(k↓,c↓)

by capture basins of the epigraph and the hypograph of the function k, which
inherited the properties of capture basins, that we have entirely made explicit
in the case of the valuation functional V(k,c) and left as an exercise for the
valuation functional V sup

(k↓,c↓).
In this section, we shall introduce two more valuation functionals, V sup

(k,c)

and V inf
(k↓,c↓), which are characterized by absorption basins, which inherit
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the properties of absorption basins, the translation of which in terms of
solutions of Hamilton–Jacobi–Bellman partial differential equation we leave
as exercises.

We consider the functionals defined by (17.10), p. 688:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc(t; (x(·), u(·)))(T, x)

:= e−m̂(t)c(T − t, x(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

Ik(t; (x(·), u(·)))(T, x) :=

sup
s∈[0,t]

(
e−m̂(s)k(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

L(k,c)(t; (x(·), u(·)))(T, x)
:= max(Ik(t;x(·), u(·))(T, x),Jc(t; (x(·), u(·)))(T, x))

V(k,c)(x(·), u(·))(T, x) := inf
t∈[0,T ]

L(k,c)(t; (x(·), u(·)))(T, x)

and the valuation functional

V sup
(k,c)(T, x) := sup

(x(·),u(·))∈S(x)

V(k,c)(x(·), u(·))(T, x) (17.37)

Let us consider the auxiliary system (17.2), p. 683:
⎧⎪⎪⎨
⎪⎪⎩

(i) τ ′(t) = −1
(ii) x′(t) = f(x(t), u(t))
(iii) y′(t) = m(x(t))y(t)− l(x(t), u(t))

where u(t) ∈ U(x(t)), and k(t, x(t), u(t)) ≤ y(t)

Theorem 17.5.2 [ViabilityCharacterizationof Valuation Func-
tions] The valuation function V sup

(k,c) satisfies

V sup
(k,c)(T, x) := inf

(T,x,y)∈Abs(17.2)(Ep(k),Ep(c))
y

Proof. Inequality

V sup
(k,c)(T, x) ≤ inf

(T,x,y)∈Abs(17.2)(Ep(k),Ep(c))
y

is straightforward. It is proven in the same way than the first inequality in the
proof of Theorem 17.3.4, p. 689 (where, at the end, we replace the infimum
inf by the supremum sup).
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For proving the opposite inequality, we take any z < U(T, x) :=
inf(T,x,y)∈Abs(17.2)(Ep(k),Ep(c)) y which we let converge to U(T, x). Since the
triple (T, x, z) does not belong to Abs(17.2)(K, Ep(c)), Lemma 2.12.2, p. 92
implies that

(T, x, z) ∈ Capt(17.2)(
◦

Hyp (c), �K)

because

�Ep(c) := {(T, x, y) such that y < c(T, x) =:
◦

Hyp (c)}

Therefore, there exists (x(·), u(·)) ∈ S(x) such that for any t ∈ [0, T ], such
that

e−m̂(t)

(
z −

∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

< c(T − t, x(t))

and thus,

z ≤ e−m̂(t)c(T − t, x(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

Letting z converge to U(T, x), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(T, x) ≤ inf
s∈[0,T ]

(
e−m̂(s)c(T − st, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

≤ sup
(x(·),u(·))∈S(x)

inf
s∈[0,T ]

(
e−m̂(s)c(T−st, x(s))+

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

= sup
(x(·),u(·))∈S(x)

inf
t∈[0,T ]

Jc(t; (x(·), u(·)))(T, x)

≤ sup(x(·),u(·))∈S(x) V(k,c)(x(·), u(·))(T, x) = V sup
(k,c)(T, x)

Hence we have proved the viability characterization of V sup
(k,c)(T, x) by

absorption basins. ��

Replacing epigraphs by hypographs, we minimize valuation functionals
(x(·), u(·)) �→ V �(k↓,c↓)(x(·), u(·))(T, x):

V inf
(k↓,c↓)(T, x) := inf

(x(·),u(·))∈S(x)
sup
t∈[0,T ]

L(k↓,c↓)(t;x(·), u(·))(T, x) (17.38)
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17.6 Summary: Valuation Functions of Four Classes
of Intertemporal Optimization Problems

In conclusion, we have studied four classes of optimization problems associ-
ated with:

1. the Lagrangian l : X×U �→ R+, assigning to each state-control pair (x, u)
its transient cost l(x, u),

2. the discount rate m : X × U �→ R+, assigning to each state-control pair
(x, u) its discount rate m(x, u) which may depend upon the state x and
controlled by u,

3. the constraint function k : R+ ×X �→ R ∪ {+∞}
4. c : R+ ×X �→ R ∪ {+∞}, the target function, regarded as a spot cost in

control theory or a target condition (Cauchy function, Dirichlet boundary
condition, etc.) in partial differential equations.

Recall that we set
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc(t; (x(·), u(·)))(T, x)

:= e−m̂(t)c(T − t, x(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

Ik(t; (x(·), u(·)))(T, x) :=

sup
s∈[0,t]

(
e−m̂(s)k(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

L(k,c)(t; (x(·), u(·)))(T, x)
:= max(Ik(t;x(·), u(·))(T, x),Jc(t; (x(·), u(·)))(T, x))

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jc↓(t; (x(·), u(·)))(T, x)

:= e−m̂(t)c↓(T − t, x(t)) +
∫ t

0

e−m̂(τ)l(x(τ), u(τ))dτ

I�k↓(t; (x(·), u(·)))(T, x) :=

inf
s∈[0,t]

(
e−m̂(s)k↓(T − s, x(s)) +

∫ s

0

e−m̂(τ)l(x(τ), u(τ))dτ
)

L�(k↓,c)(t; (x(·), u(·)))(T, x)
:= min(Ik↓(t;x(·), u(·))(T, x),Jc↓ (t; (x(·), u(·)))(T, x))

Theorem 17.6.1 [Valuation Functions of Four classes of
Intertemporal Optimization Problems] Under assumptions of
Theorems 17.3.4, p.689 and 17.5.2, p.706, the four viability episolutions
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and hyposolutions defined in Definition 17.2.1, p.683 are equal to the four
following valuation functions of intertemporal optimization problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V inf
(k,c)(T, x) := inf(x(·),u(·))∈S(x) inft∈[0,T ] L(k,c)(t; (x(·), u(·)))(T, x)

= inf(T,x,y)∈Capt(17.2)(Ep(k),Ep(c)) y

V sup
(k↓,c↓) := sup(x(·),u(·))∈S(x) supt∈[0,T ] L(k↓,c↓)(t; (x(·), u(·)))(T, x)

= sup(T,x,y)∈Capt(17.2)(Hyp(k↓),Hyp(c↓)) y

V sup
(k,c)(T, x) := sup(x(·),u(·))∈S(x) inf t∈[0,T ] L(k,c)(t; (x(·), u(·)))(T, x)

= inf(T,x,y)∈Abs(17.2)(Ep(k),Ep(c)) y

V inf
(k↓,c↓)(T, x) := inf(x(·),u(·))∈S(x) supt∈[0,T ] L(k↓,c↓)(t; (x(·), u(·)))(T, x)

= sup(T,x,y)∈Abs(17.2)(Hyp(k↓),Hyp(c↓)) y

(17.39)

Consequently, the valuation functions of these four classes of intertemporal
optimization problems inherit the properties of capture and absorption basins
proved in this book and “translated” in this chapter.
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Chapter 18

Set-Valued Analysis at a Glance

18.1 Introduction

The purpose of this chapter is to present a short introduction to the main
concepts of Set-Valued Analysis used throughout this book, and regarded
here as a “Toolbox” for viability theory, optimal control, differential games
and their applications to mathematical economics and finance.

There is no need to justify here the introduction of set-valued maps which
goes back, in mathematical economics, for instance, to the celebrated Gérard
Debreu’s Theory of Value [76, Debreu]. However, a differential calculus of
these set-valued maps has been designed and efficiently exploited in the
1980s actually, for the very purpose of differentiating regulation maps in
viability theory and control, in order to give a meaning to heavy solutions
which is what is summarized in these notes. More details can be found in
the monographs on convex analysis, to Optima and Equilibria, [19, Aubin]
for optimization and convex analysis, to Set-Valued Analysis, [27, Aubin &
Frankowska], for instance, and to the exhaustive book Variational Analysis,
[178, Rockafellar & Wets], among many other ones on these topics. One can
find in [23, Aubin] another approach to a differential calculus of set-valued
maps, called the mutational calculus, which is also appropriate to define
differential equations (called mutational equations) governing the evolution of
subsets. We also summarize some results in convex analysis used in Chaps. 15,
p. 603 and 14, p. 563.

18.2 Notations

In this book, we use the definition of positive, negative, increasing and
decreasing in the sense of positive or null, negative or null, increasing or
constant and decreasing or constant. Otherwise, we add the adjective strictly.

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 18,
c© Springer-Verlag Berlin Heidelberg 2011
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The reason why we do not use the words non negative, non strictly positive,
non decreasing and non increasing is that, if a function is (strictly) positive,
a non (strictly) positive function is a function which is negative or null for at
least one point, and not for all points!

Definition 18.2.1 [Notations: Spaces and Hyperspaces] Usually,
(finite dimensional vector) spaces are denoted by X, Y , Z or U , X, etc.
when needed. Infinite dimensional spaces are usually denoted by script
capital letters, such as C(0,+∞, X). Notation P(X) (or 2X) denotes the
hyperspace (or power space) of subsets A ⊂ X.

For a set K ⊂ X , we set

�K := Kc := X\K = the complement of K

and
K\B := K ∩ �B the complement of B in K

We denote by K or cl(K) the closure of K, by
◦
K or Int(K) its interior,

by
K̂ := X\Int(K) = �K

the complement of the interior of K.

Definition 18.2.2 [Topological Regularity] A subset K is said to be
topological regular if it is the closure of its interior: K = Int(K).

When X is vector space, and if A ⊂ X and B ⊂ X , we set

A+B :=
⋃
b∈B

(A+ b) and A�B :=
⋂
b∈B

(A− b)

the sum and the Minkowski difference of the subset A and B.
Note that the distributivity property

(⋃
i∈I

Ai

)
+B =

⋃
i∈I

(Ai +B) (18.1)

The unit ball ofX is denoted by B (or BX if the space must be mentioned).
We denote by

dK(x) := d(x,K) := inf
y∈K

‖x− y‖
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the distance from x to K, where we set d(x, ∅) := +∞. The ball of radius
r > 0 around K in X is denoted by

BX(K, r) := {x ∈ X | d(x,K) ≤ r} = K + rBX

When there is no ambiguity, we set

B(K, r) := BX(K, r)

The balls B(K, r) are neighborhoods of K. When K is compact, each
neighborhood of K contains such a ball around K.

When X is a Banach space (or any topological vector space), we denote
by X� := L(X,R) the (topological) dual, i.e., the space of continuous linear
functions p : x �→ p(x) =: 〈p, x〉 ∈ R and by X�� its bidual. Recall than when
X := R

n is a finite dimensional vector space, all the norms are equivalent
and all linear operators from a finite dimensional vector space to another are
continuous.

Definition 18.2.3 [Support Functions and Barrier Cones] Let us
consider a subset K ⊂ R

n. Its support function is defined by

σ(K, p) := sup
x∈K

〈p, x〉

The barrier cone of K is defined by K� := {p ∈ X� | σK(p) < +∞} =
Dom(σK) and its polar cone by K� := {p ∈ X� | σK(p) ≤ 0}.
If B := {x such that ‖x‖ ≤ 1}, the dual norm is defined by ‖p‖� := σ(B, p).

We recall one (among many equivalent) statement of the Separation
Theorem:

Theorem 18.2.4 [Separation Theorem] Let us consider a subset K ⊂
R
n. Then its closed convex hull co(K) is defined by an infinite number of

linear inequality constraints:

co(K) = {x such that, ∀ p ∈ X�, 〈p, x〉 ≤ σ(K, p)}

We quote a simple but important closedness criterion:

Theorem 18.2.5 [Closed Image Theorem] Let A ∈ L(X1, X2). If K ⊂
X1 is closed, condition
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Im(A�) +K� = X�
1 (18.2)

implies that A(K) is closed and that the subsets K ∩A−1(x2) are compact.

Proof. Assume that Axn := yn converges to y. Since any p ∈ X�
1 = A�q + r

where q ∈ X�
2 and r ∈ K� = Dom(σK), we infer that

{
〈p, xn〉 ≤ 〈q, Axn〉+ 〈r, xn〉
≤ 〈q, yn〉+ σK(r) < +∞

Hence xn is bounded, and thus relatively compact, and converges to some
x, so that A(K) is closed. ��

Notations for maps and functions follow as possible the following rules:

39 [Notations: Maps and Functions] Set-valued maps are usually
denoted by F , G, H, U , etc., and their single valued counterparts by f ,
g, h, u. Tubes are denoted by K : t � K(t). Numerical and extended
functions are defined by a, b, c, k, l, u, v, etc. In order to be consistent
with traditional notations in control theory, we use the notations V , W for
value and valuation functions.

The basic notation for an evolutionary system is the set-valued map
S : X � C(0,+∞;X). We keep the same notation for systems S : X �
C(−∞,+∞;X) governing evolutions from R to X .

When the evolutionary system is generated by a system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

and when we need to use explicitly the controls, we set

40 [Notations: Evolutionary Systems] We set:

• in Chap. 4, p. 125,
{
P(x) := {(x(·), u(·)) such that x(0) = x
and x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) }

• in Chap. 6, p. 199,

P(x, u) := {(x(·), u(·)) such that x(·) ∈ S(x) and u(0) = u}

• in Chap. 8, p. 273,
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{
S(y, z) := {x(·) ∈ S(y) such that ∃ t� < +∞ satisfying x(t�) = z}
P(y, z) := {(x(·), u(·)) such that x(·) ∈ S(y, z)}

• in Sect. 8.10, p. 309, for time dependent dynamics,

S(T, x) := {x(·) such that x(T ) = x}

so that S(0, x) = S(x).

As a rule,

• whenever we mention that the evolutions are viable in a subset K (or a
tube K : t� K(t)), we use the superscript K : for example, SK , PK , etc.

• whenever we split an evolution x(·) in forward −→x (·) and backward
←−x (·) components, we use the same symbols for every concept asso-
ciated with the forward–backward decomposition: for instance,

←−S ,
←−P ,←−−

ViabS(K,C) = Viab←−S (K,C), etc.

We recall the definition of infimum and supremum and some of their
elementary properties:

Definition 18.2.6 [Infima] Let A ⊂ R be a subset of R. Then inf(A) ∈
R ∪ {−∞} is the element of A satisfying

{
(i) ∀ x ∈ A, inf(A) ≤ x
(ii) ∀ λ > inf(A), ∃ xλ ∈ A such that xλ ≤ λ

(18.3)

We set by convention

inf(∅) := +∞ and inf(X) := −∞

If we know in advance that inf (A) > −∞, then, by taking ε := λ − inf (A),
condition (18.2.6), p. 717 boils down to

{
(i) ∀ x ∈ A, inf(A) ≤ x
(ii) ∀ ε > 0, ∃ xε ∈ A such that xε ≤ inf(A) + ε

If v : X �→ R ∪ {+∞} is a nontrivial extended function, the infimum
infx∈K v(x) := inf (v(K)) ∈ R∪{−∞} is the infimum of the image v(K) ⊂
R ∪ {+∞}.

We recall the following formulas on infimum of functions on unions of sets:
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Lemma 18.2.7 [Infima on Unions] Let f : X �→ R ∪ {+∞}. Then

inf
x∈
⋃n

i=1Ai

f(x) = inf
i=1,...,n

inf
x∈Ai

f(x)

Proof. Let us set A :=
n⋃
i=1

Ai. Since Ai ⊂ A, then infx∈A f(x) ≤ infx∈Ai f(x),

so that infx∈A f(x) ≤ infi=1,...,n infx∈Ai f(x).
Conversely, for any ε > 0, there exist i ∈ {1, . . . , n} and xε ∈ Ai

such that f(xε) ≤ infx∈A f(x) + ε. Therefore infi=1,...,n infxi∈Ai f(xi) ≤
f(xε) ≤ infx∈A f(x) + ε, so that, by letting ε converge to 0, we infer that
infi=1,...,n infx∈Ai f(x) ≤ infx∈A f(x). ��

Let us point out the following

Lemma 18.2.8 [Infimum of Unions and Intersections] Consider a
family Ai ⊂ R+ of subsets of R+. Then

inf

(⋃
i∈I

(Ai + R+)

)
= inf

i∈I
(inf Ai)

and

inf

(⋂
i∈I

(Ai + R+)

)
= sup

i∈I
(inf Ai)

Proof. The first statement is obvious. Let us prove the second one, set a :=
inf
(⋂

i∈I(Ai + R+)
)

and b := supi∈I inf Ai. For proving that b ≤ a, let ε > 0
be chosen. By definition of a, for any i ∈ I, there exists ai ∈ Ai such that ai ≤
a+ ε. In other words, for any i ∈ I, inf Ai ≤ a+ ε, i.e., b := supi∈I inf Ai ≤
a+ ε.

Conversely, for establishing that b ≥ a, by definition of b, for any i ∈ I,
there exists ai ∈ Ai such that ai ≤ b + ε, i.e., such that b + ε ∈ Ai + R+.
Therefore b+ ε belongs to

⋂
i∈I (Ai + R+). Hence b+ ε ≥ a and thus, a = b.

��
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18.3 Set-Valued Maps

Set-valued maps and their graphs have been introduced in the very first
Box 3, p. 12 of this book. We provide a more elaborate definition:

Definition 18.3.1 [Set-Valued Map] A set-valued map F : X � Y
associates with any x ∈ X a subset F (x) ⊂ Y (which may be the empty set
∅). The symbol “�” denotes set-valued maps whereas the classical symbol
“ �→” denotes single-valued maps.
The graph Graph(F ) of a set-valued map F is the set of pairs (x, y) ∈ X×Y
satisfying y ∈ F (x). Its domain Dom(F ) is the subset of elements x ∈ X

such that F (x) is not empty and its image Im(F ) =
⋃
x∈X

F (x) is the union

of the values F (x) of F when x ranges over X. The inverse F−1 of F is
the set-valued map from Y to X defined by

x ∈ F−1(y) ⇐⇒ y ∈ F (x) ⇐⇒ (x, y) ∈ Graph(F )

We add few other concepts and state some more statements of properties,
referring to [27, Aubin & Frankowska] or [174, Rockafellar & Wets] for
additional results, their proofs and a bibliography. We add few other
definitions and state some more properties.

Definition 18.3.2 [Direct Images and Focuses] Let F : X � Y be
a set-valued map. Let P(X) and P(Y ) denote the hyperspaces of subsets
A ⊂ X and B ⊂ Y . There are three ways to extend F : X � Y into
(single-valued) maps from P(X) to P(Y ):

1. through extension (or (canonical) extension) (again denoted by) F :
P(X) �→ P(Y ) of F defined by:

∀ A ∈ P(X), F (A) :=
⋃
x∈A

F (x) = {y | A ∩ F−1(y) �= ∅} ∈ P(Y )

where F (A) is called the image of A under F ,
2. through the focus F̂ : P(X) �→ P(Y ) of F defined by:

∀ A ∈ P(X), F̂ (A) :=
⋂
x∈A

F (x) = {y | A ⊂ F−1(y)} ∈ P(Y )

where F̂ (A) i is called the focus of A by F .
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Their inverse are defined by

Definition 18.3.3 [Inverse Images, Focuses and Cores] Let F : X �
Y be a set-valued map, P(X) and P(Y ) their hyperspaces.

1. The canonical inverse extension F−1 : P(Y ) �→ P(X) of F−1 is defined
by:

∀ B ∈ P(Y ), F−1(B) :=
⋃
y∈B

F−1(y) = {x | B∩F (x) �= ∅} ∈ P(Y )

where F−1(B) is called the inverse image of B under F .
2. The inverse focus F̂−1 : P(Y ) �→ P(X) of F is defined by:

∀ B ∈ P(Y ), F̂−1(B) :=
⋂
y∈B

F−1(y) = {x | B ⊂ F (x)} ∈ P(X)

where F̂−1(B) is called the inverse focus of B by F .
3. The core (or (inverse) core) F�1 : P(Y ) �→ P(X) of F is defined by

∀ B ∈ P(Y ), F�1(B) := {x | F (x) ⊂ B}

where F�1(B) is called the core of B by F .

We observe that

∀y ∈ Im(F ), F̂−1({y}) = F�1({y}) = F−1(y)

Fig. 18.1 Inverse Image and Core.

Illustration of the core and the inverse of a set valued map.
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The following “partition property” of cores plays an important role:

Lemma 18.3.4 [The Partition Lemma] Let us consider a partition of
K = B1∪∅B2 by two disjoint subsets Bi ⊂ Y . This means that K = B1∪B2

and that B1 ∩B2 = ∅.
If F : X � Y is a set-valued map, then

F�1(K) = F−1(B1) ∪ F�1(B2) and F−1(B1) ∩ F�1(B2) = ∅

is a partition of the core of K by the inverse image of B1 and the core of
B2. It implies formula

F (�A) = �
(
(F−1)�1(A)

)
& F−1(�B) = �F�1(B)

Proof. To say that x ∈ F�1(K) means that F (x) ⊂ K = B1 ∪ B2. Since
B1 ∩B2 = ∅, this can happen only if F (x)∩B1 �= ∅ or if F (x) ⊂ B2, but not
at the same time. ��

We review some other obvious properties:

Lemma 18.3.5 [Monotonicity] The three extensions satisfy the following
properties:

1. The images and inverse images are increasing: If A1 ⊂ A2, then F (A1) ⊂
F (A2) and if B1 ⊂ B2, then F−1(B1) ⊂ F−1(B2) and transform unions
into unions:

F

(⋃
i∈I

Ai

)
=
⋃
i∈I

F (Ai) & F−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

F−1(Bi)

2. The focus and inverse focus are decreasing: If A1 ⊂ A2, then F̂ (A2) ⊂
F̂ (A1) and if B1 ⊂ B2, then F̂−1(B2) ⊂ F̂−1(B1) and transform unions
into intersections:

F̂

(⋃
i∈I

Ai

)
=
⋂
i∈I

F̂ (Ai) & F̂−1

(⋃
i∈I

Bi

)
=
⋂
i∈I

F̂−1(Bi)

3. The core is increasing: if B1 ⊂ B2, then F�1(B1) ⊂ F�1(B1) and
transforms intersections into intersections:

F�1

(⋂
i∈I

Bi

)
=
⋂
i∈I

F�1(Bi)
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18.3.1 Graphical Approach

We summarize here several conventions used all over this book:

Definition 18.3.6 [Graphical Operations on Set-Valued Maps] Let
P be a property of a subset (for instance, closed, convex, etc.) Since we
do emphasize the interpretation of a set-valued map as a graph (instead of
a map from a set to another one), we shall say as a general rule that a
set-valued map satisfies property P if and only if its graph satisfies it.

If 	 denotes an operation mapping sets to sets (complement, closure,
etc.), we denote by 	(F ) the set-valued map defined “graphically” from
F : X � Y by

Graph(	(F )) := 	(Graph(F ))

The set-valued map �F : X � Y is defined by (�F )(x) := �F (x) because

Graph(�(F )) := �(Graph(F ))

For instance:

Definition 18.3.7 [Closed and/or Convex Maps] A set-valued map
F is said to be closed if its graph is closed, convex if its graph is convex
and a process if its graph is a cone. Closed convex processes are set-valued
maps the graphs of which are closed convex cones, the set-valued analogues
of continuous linear operator, with which they share a large number of
properties.

Another graphical property is the concept of selection or extension:

Definition 18.3.8 [Selection] Let E and F be two set-valued maps from
X to Y . We say that E is a selection of F , or that E ⊂ F is contained in
F , or that F is an extension of E , if the graph of E is contained in the
graph of F :

E ⊂ F ⇐⇒ Graph(E) ⊂ Graph(F )

or, equivalently, if for any x ∈ X, E(x) ⊂ F (x), or, in the same way, if for
any y ∈ Y , E−1(y) ⊂ F−1(y).
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Another important graphical operation is the composition of set-valued
maps:

Lemma 18.3.9 [Composition of Maps] Let us consider set-valued maps
Φ : X � X and Ψ : Y � Y . We associate with a set-valued map F : X � Y
the set-valued map

(Φ
 Ψ)(F ) : X � Y

“graphically” defined by

Graph((Φ
 Ψ)(F )) = (Φ× Ψ)(Graph(F ))

It is equal to the composition product

(Φ
 Ψ)(F ) = Ψ ◦ F ◦ Φ−1 : x� Ψ(F (Φ−1(x)))

of the set-valued maps Φ−1, F and Ψ .

We also obtain the following graphical characterization of focus and inverse
focus:

Lemma 18.3.10 [Graphical Characterization of Focus] The follow-
ing statements are equivalent:

⎧⎨
⎩

(i) A ⊂ F̂−1(B)
(ii) B ⊂ F̂ (A)
(iii) A×B ⊂ Graph(F )

(18.4)

Graphical operations have to be distinguished from the “setwise” (as we
say “pointwise”) operations on the values (and not, the graphs) of the set-
valued maps:

Definition 18.3.11 [Operations on Values of Set-Valued Maps] If
the images of a set-valued map F are closed, convex, bounded, compact,
and so on, we say that F is closed-valued, convex-valued, bounded-valued,
compact-valued, and so on. When � : Y × Y �→ Y denotes an operation
on subsets, we use the same notation for the operation on set-valued maps,
which is defined by
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F1�F2 : x � F1(x)�F2(x)

We define in that way F1 ∩ F2, F1 ∪ F2, F1 + F2 (in vector spaces), etc.

18.3.2 Amalgams of Set-Valued Maps

Amalgams of feedbacks (see Definition 10.8.1, p. 423) and concatenations
of evolutions (see Definition 2.8.1, p. 69) provide examples of amalgams of
set-valued maps.

Definition 18.3.12 [Characteristic Set-Valued Maps or Marks] We
associate with any pair of subsets A ⊂ X and B ⊂ Y the set-valued map
ΞB
A : X � Y the graph Graph(ΞB

A ) := A × B of which is the product of
subsets A and B, and thus defined by:

ΞB
A (x) :=

{
B if x ∈ A
∅ if x /∈ A (18.5)

The set-valued map ΞB
A : X � Y is called the mark of the product

A×B.

When B := Y , we set ΞA := ΞY
A , so that ΞA(x) = Y if x ∈ A and

ΞA(x) = ∅ if x /∈ A (they play the role of characteristic functions χA of
the subset A, assigning to every x the value 1 if its belongs to A and of 0
otherwise). This is the reason why these set-valued maps ΞB

A can be called
of marks of the product A × B. If the notation of A is too long, we set
ΞB(A;x) := ΞB

A (x).
Obviously,

(ΞB
A )−1 = ΞA

B

and
(Φ
 Ψ)ΞB

A = Ξ
Ψ(B)
Φ(A)
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Fig. 18.2 Graph of the set-valued map F := ΞB
A .

Definition 18.3.13 [Graphical Restriction] When F : X � Y is a set-
valued map from X to Y , the intersection F ∩ ΞB

A is called the graphical
restriction of F to A×B since Graph(F ∩ ΞB

A ) = Graph(F ) ∩A×B:

(F ∩ ΞB
A )(x) :=

{
F (x) ∩B if x ∈ A
∅ if x /∈ A

If B := Y , we also use the classical notation F |A := F ∩ΞA.

Therefore (F ∩ ΞB
A )−1 = F−1 ∩ ΞA

B is equal to

(F ∩ ΞB
A )−1(y) :=

{
F−1(y) ∩A if y ∈ B
∅ if y /∈ B

Definition 18.3.14 [Amalgam of Set-Valued Maps] Let us consider a
family {Fi}i∈I of set-valued maps Fi : X � Y and a family {Ai ×Bi}i∈I
of subsets Ai×Bi ⊂ X ×Y . The amalgam of set-valued maps {Fi}i∈I over
the family {Ai ×Bi}i∈I is the set-valued map

⋃
i∈I

Fi ∩ΞBi

Ai
defined by

(⋃
i∈I

Fi ∩ ΞBi

Ai

)
(x)=

⋃
i∈I(x)

Fi(x)∩Bi where I(x) := {i ∈ I such that x ∈ Ai}
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We note that

Graph

(⋃
i∈I

Fi ∩ ΞBi

Ai

)
=
⋃
i∈I

(Graph(Fi) ∩ (Ai ×Bi))

18.3.2.1 Amalgams of Single-Valued Functions

When Y is a vector space, when Bi := Y for all i ∈ I, when the subsets
Ai ⊂ X form a partition of X and when the maps fi := Fi are single-
valued, we recover the simple functions of integration theory and of its many
applications:

⋃
i∈I

(fi ∩ΞAi) (x) =
∑
i∈I

χAi(x)fi(x)

where χAi denotes the characteristic function of the subset Ai.
If the subsets Ai do not form a partition, the above formula does not make

sense any longer : if all the subsets I(x) := {i ∈ I such that x ∈ Ai} are
finite, for example,

⋃
i∈I (fi ∩ ΞAi) is a set-valued map associating with any

x the finite set
⋃
i∈I(x) fi(x) whereas

∑
i∈I χAi(x)fi is a function associating

with any x the number
∑

i∈I(x) fi(x) of elements of this set.

Remark.
By using characteristic maps (marks) ΞY

A instead of characteristic func-
tions, the addition of numbers of elements of a set is replaced by the union
of the subsets and the neutral element 0 by the empty set ∅. The extension
by 0 of functions is replaced by the extension of a set-valued map by empty
set. In this case, this extension of a single-valued map is a set-valued map
because the empty set is a set. It also replaces the value +∞ used to extend
an extended function in convex and nonsmooth analysis. ��

18.3.2.2 Concatenations of Evolutions

Concatenations of evolutions are specific amalgams of evolutions xi(·) ∈
C(−∞,+∞;X).

Recall that the translation κ(T )x(·) of an evolution x(·) is defined by
(κ(T )x(·))(t) := x(t − T ). This is a translation to the right if T is positive
and to the left if T is negative.

Consider a sequence of evolutions xi(·) : R+ �→ X and a strictly increasing
sequence of instants ti, i ∈ N. We set t−1 := −∞. If the sequence ti, i =
0, . . . , N is finite, we set tN+1 := +∞. The duration τi := ti+1 − ti, i ≥ 0 is
called cadence. In the case of a finite sequence. The last cadence τN = +∞ is
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infinite. If the family of cadences is given, we recover the sequence of instants
by formula ti+1 := ti + τi. An infinite sequence of instants ti (or of cadences
τi) is a Zeno sequence if it converges to a finite number T .

Definition 18.3.15 [Concatenation of Evolutions] The amalgam

x0(·)♦t1x1(·) · · · ♦tixi(·) · · · :=
⋃
i≥0

(κ(ti)xi(·)) ∩ Ξ[ti,ti+1] (18.6)

is called the concatenation of evolutions xi(·) over the increasing sequence
ti. It is given explicitly by is defined by

∀ i ≥ 0, t ∈]ti, ti+1], x(t) := xi(t− ti)

In particular, the concatenation

(x(·) �T y(·))(t) :=
{
x(t) if t ∈ [0, T ]
y(t− T ) if t ≥ T

of two evolutions is equal to

x(·) �T y(·) = x(·) ∩ Ξ[0,T [ ∪ κ(T )y(·) ∩ Ξ]T,+∞]

(See Definition 2.8.1, p. 69).
We observe that when A ⊂ R is an interval, then

κ(T )ΞA = ΞT+A

and thus, that

κ(T )

(⋃
i∈I

xi(·) ∩ Ξ]ti,ti+1](·)
)

=

(⋃
i∈I

κ(T )xi(·) ∩ Ξ]ti+T,ti+1+T ](·)
)

18.4 Limits of Sets

18.4.1 Upper and Lower Limits

Limits of sets have been introduced by Paul Painlevé in 1902 before the
formalization of metric spaces by Fréchet in 1906, and thus, without the
concept of topology. They have been popularized by Kuratowski in his famous
book Topologie and thus, often called Kuratowski lower and upper limits of
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sequences of sets. They are defined without the concept of a topology on the
hyperspace P(E) derived from a topology on the underlying set E.

Definition 18.4.1 [Limits of Sets] Let (Kn)n∈N be a sequence of subsets
of a metric space E. We say that the subset

Limsupn→∞Kn :=
{
x ∈ E | lim inf

n→∞
d(x,Kn) = 0

}

is the Painlevé–Kuratowski upper limit of the sequence Kn and that the
subset

Liminfn→∞Kn := {x ∈ E | limn→∞d(x,Kn) = 0}

is its Painlevé–Kuratowski lower limit. A subset K is said to be the
Painlevé–Kuratowski limit or the set limit of the sequence Kn if

K = Liminfn→+∞Kn = Limsupn→+∞Kn =: Limn→+∞Kn

Lower and upper limits are obviously closed. We also see at once that

Liminfn→+∞Kn ⊂ Limsupn→+∞Kn

and that the upper limits and lower limits of the subsets Kn and of their
closures Kn do coincide, since d(x,Kn) = d(x,Kn).

Any decreasing sequence of subsetsKn has a limit, which is the intersection
of their closures:

if Kn ⊂ Km when n ≥ m, then Limn→+∞Kn =
⋂
n≥0

Kn

An upper limit may be empty (no subsequence of elements xn ∈ Kn has a
cluster point).

Concerning sequences of singleta {xn}, the set limit, when it exists, is
either empty (the sequence of elements xn is not converging), or is a singleton
made of the limit of the sequence.

It is easy to check that:

Proposition 18.4.2 [Limits of Subsets] If (Kn)n∈N is a sequence of
subsets of a metric space, then Liminfn→∞Kn is the set of limits of
sequences xn ∈ Kn and Limsupn→∞Kn is the set of cluster points
of sequences xn ∈ Kn, i.e., of limits of subsequences xn′ ∈ Kn′ .
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In other words, upper limits are “thick” cluster points and lower limits are
“thick” limits.

18.4.2 Upper Semicompact and Upper and Lower
Semi-Continuous Maps

Definition 18.4.3 [Upper and Lower Semicontinous Maps] Let us
consider a set-valued map F : X � Y .

• Lower semicontinuous at x ∈ Dom(F ) if and only if for any y ∈ F (x) and
for any sequence of elements xn ∈ Dom(F ) converging to x, there exists
a sequence of elements yn ∈ F (xn) converging to y. It is said to be lower
semicontinuous if it is lower semicontinuous at every point x ∈ Dom(F ).

• Upper semicompact at x if for every sequence xn ∈ Dom(F ) converging
to x and for every sequence yn ∈ F (xn), there exists a subsequence ynp

converging to some y ∈ F (x). It is said to be upper semicompact if it is
upper semicompact at every point x ∈ Dom(F ).

• Upper semicontinuous at x if for every ε > 0 there exists an η(ε, x) ≤ ε
such that

∀y ∈ B(x, η(ε, y)), F (y) ⊂ F (x) + εB

Examples The set-valued map F1 defined by

F1(x) :=
{

[−1,+1] if x �= 0
{0} if x = 0

is lower semicontinuous at zero but not upper semicompact at zero.
The set-valued map F2 : R� R defined by

F2(x) :=
{
{0} if x �= 0
[−1,+1] if x = 0

is upper semicompact at zero but not lower semicontinuous at zero. ��
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�

�

0
• �

�

0

lower s.c. & not upper s.k. upper s.k. & not lower s.c.

Fig. 18.3 Semicontinuous and Noncontinuous Maps.

“lower s.c. stands for lower semicontinuous and “upper s.k.” for upper
semicompact.

The connections between semi-continuity of set-valued maps and set limits
are given by

Proposition 18.4.4 [Semicontinuity and Set Limits] A point (x, y)
belongs to the closure of the graph of a set-valued map F : X � Y if and
only if

y ∈ Limsupx′→xF (x′)

and F is lower semicontinuous at x ∈ Dom(F ) if and only if

F (x) ⊂ Liminfx′→xF (x′)

Any upper semicompact map is closed (its graph is closed) and the converse
statement is true if the images of the set-valued map remain in a compact
subset.

Terminological Remarks. This proposition led several authors to call
upper semicontinuous maps the ones which are closed in our terminology.
Since upper semicontinuity is polysemous, Terry Rockafellar proposed to call
outer semicontinuous at some point x the set-valued maps satisfying

Limsupx′→xF (x′) ⊂ F (x)

in such a way that a set-valued map is outer semicontinuous if and only if is
closed. Inner semicontinuity is synonymous of lower semicontinuity. ��

Lemma 18.4.5 [Truncation of a Set-Valued Map] Let F : X � Y be
a closed set-valued map and r : X �→ R be a bounded upper semicontinuous
function. If the dimension of Y is finite, then the set-valued map Fr : X � Y
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defined by
Fr(x) := F (x) ∩ r(x)B (18.7)

is upper semicompact.

The following stability statements are of current use:

Definition 18.4.6 [Marginal Functions] Consider a set-valued map F :
X � Y and a function u : Graph(F ) �→ R. We associate with them the
marginal function v� : X �→ R defined by

v�(x) := sup
y∈F (x)

u(x, y)

We deduce the continuity properties of the marginal maps.

Theorem 18.4.7 [Maximum Theorem] Let metric spaces X, Y , a set-
valued map F : X � Y and a function u : Graph(F ) �→ R be given.

1. If u is lower semicontinuous and F is lower semicontinuous, so is the
marginal function v�.

2. If u is upper semicontinuous and F is upper semicontinuous, so is the
marginal function v�.

Proof. See the proof of Theorem 1.4.16 of Set-Valued Analysis, [27, Aubin &
Frankowska]. ��

If a set-valued map F is lower semicontinuous (resp. upper semicompact),
then the function (x, y) �→ d(y, F (x)) is upper semicontinuous (resp. lower
semicontinuous).

18.4.3 Tangent Cones

Tangential characterizations
{

(i) ∀ x ∈ K \ C, F (x) ∩ T ��K (x) �= ∅
(ii) ∀ x ∈ K \ C, F (x) ⊂ T ��K (x)

of viability and invariance properties studied in Chap. 11, p. 437 involve
tangent cones:
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Definition 18.4.8 [Tangent and Convexified Tangent Cones] Let
K ⊂ X be a subset of a normed vector space X and x ∈ K. Since the
tangent cone TK(x) is the set of elements v such that there exists a sequence
of elements hn > 0 converging to 0 and a sequence of vn ∈ X converging to
v satisfying

∀n ≥ 0, x+ hnvn ∈ K

we deduce that the tangent cone TK(x) is the upper limit of the subsets
(K − x)/h (regarded as “set differential quotients”)

TK(x) := Limsuph→0+

K − x

h

We denote by
T ��K (x) := co(TK(x))

its closed convex hull, called the convexified tangent cone.

Therefore TK(x) is always a closed cone of “tangent directions”. It is a
vector subspace whenever K is a smooth manifold.

�

�0

Subset K such that TK(0) = X.

Fig. 18.4 Contingent cone at a boundary point may be the entire space.

�

�

0 • •a
b

Fig. 18.5 The Graph of T[a,b](·)
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The tangent cone T[a,b](x) = R if a < x < b, T[a,b](a) = R+ and T[a,b](b) =
R−. The graph of the tangent cone is locally compact around (a, 0) and (b, 0).

Definition 18.4.9 [Sleek Subsets] A subset K is said to be sleek at x ∈ K
if TK(·) is lower semicontinuous at this point.

Tangent cones to sleek subsets are convex:

Theorem 18.4.10 [Convexity of Tangent Cones to Convex and
Sleek Subsets] If K is sleek at x, then the tangent cone TK(x) is a closed
convex cone.

Proof. See the proof of Theorem 4.1.10 of Set-Valued Analysis, [27, Aubin
& Frankowska]. ��

For convex subsets K, the tangent cone coincides with the closed cone
spanned by K − x:

Proposition 18.4.11 [Tangent Cones to Convex Subsets] Let us
assume that K is convex. Then K is sleek and the tangent cone TK(x)
to K at x is equal

TK(x) =
⋃
h>0

K − x

h

Terminological Remarks. As mentioned in Chap. 11, p. 437, tangent
cones have long been called contingent cones or Bouligand tangent cones. The
two decades 1960–1980s saw the eclosion of many other definitions bearing the
names of as many authors, including the Clarke tangent cone, which is always
convex (which explains its popularity), to the price of often being trivial
(i.e., reduced to {0}). It happens that the fundamental theorems (Viability
Theorem 11.3.4, p. 455 and the Inverse Function Theorem 9.7.1, p. 366
among them) do not use Clarke tangent cones, but simply the contingent
ones. Theorem 18.4.10, p. 733 stating that the tangent cones to sleek subsets
of finite dimensional vector space coincide with Clarke tangent cones as well
as Theorem 11.2.7, p. 447 do not require the convexity of the tangent cones.
��
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18.4.4 Polar Cones

In Convex Analysis, vector subspaces are replaced by cones (where subtraction
is forbidden) and orthogonal subspaces by “polar cones”:

Definition 18.4.12 [Polar Cones] We associate with any subset P ⊂ X
of a finite dimensional vector space X its polar cone P � ⊂ X� defined by

p ∈ P � if and only if ∀v ∈ P, 〈p, v〉 ≤ 0

The polar cone is usually denoted P � := P− to underline the choice of the
inequality. When P is a vector subspace, then P � = P⊥ is the orthogonal
space of P .

The Bipolar Theorem characterizes the closed convex cone spanned by a
subset:

Theorem 18.4.13 [Bipolar Theorem] The polar P � of a subset P ⊂ X
is a closed convex cone and its bipolar cone is the cone P ��. The bipolar
cone P �� = co(P ) coincides with the closed convex cone spanned by a subset
P . Consequently, P is a closed convex cone if and only if P �� = P .

See the proof of Theorem 2.4.3 of Set-Valued Analysis, [27, Aubin &
Frankowska]. ��

We recall the characterization of the tangent cone to the image by a linear
operator:

Theorem 18.4.14 [Tangent Cone to Image] Let A ∈ L(X,Y ) be a
linear operator, K ⊂ X and x0 ∈ K. Then

ATK(x) ⊂ TA(K)(Ax)

If we assume that for some x0 ∈ K, there exist constants c > 0 and α ∈ [0, 1[
such that, for any x ∈ K ∩B(x0, η),

∀ v ∈ Y, ∃ u ∈ TK(x) ∩ ‖u‖B such that ‖Au− v‖ ≤ α‖u‖ (18.8)

then equality
ATK(x) = TA(K)(Ax)

holds true.
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Proof. The first inclusion is obvious and for proving the converse, we take
v ∈ TA(K)(Ax). Then, there exist hn > 0 converging to 0 and vn converging
to v such that Ax + hnvn ∈ A(K). Then Constrained Inverse Function
Theorem 3.4.5, p. 96 of Set-Valued Analysis, [27, Aubin & Frankowska] states
that assumption (18.8), p. 734 implies that there exist constants γ > 0 and
λ > 0 such that, for any (x,Ax) ∈ (K ×A(K)) ∩B((x0, Ax0), γ),

∃ ξ ∈ K such that Aξ = Ax+ hnvn and ‖ξ − x‖ ≤ λhn‖vn‖

Setting un :=
ξ − x

hn
, we infer that Aun = vn and that ‖un‖ ≤ λ‖vn‖ ≤ ‖v‖+1

for n large enough. Since the dimension of X is finite, this implies that there
exists a subsequence (again denoted by) un converging to some u belonging
to TK(x) ∩ λ‖v‖B satisfying Au = v. ��

18.4.5 Projectors

Definition 18.4.15 [Projector] Let K ⊂ X be a closed subset. The subset
ΠK(y) denotes the set of best approximations of y by elements of K:

ΠK(y) := {x ∈ Ksuch that ‖y − x‖ = inf
v∈K

‖y − v‖}

We shall say that the set-valued map ΠK is the projector (of best
approximation) onto K.

When the subset K is closed and convex, the projector is a single-valued
map:

Theorem 18.4.16 [The Projection Theorem] Let K ⊂ X be a closed
convex set of a finite dimensional vector space X supplied with a norm
derived from the Euclidian scalar product 〈·, ·〉 for instance. Then the
projector ΠK is single-valued and is characterized by

x = ΠK(y) if and only if x ∈ K and ∀z ∈ K, 〈x− y, x− z〉 ≤ 0

The Moreau Theorem extends to the closed convex cones the Projection
Theorem:
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Theorem 18.4.17 [The Moreau Projection Theorem] Let X be a
finite dimensional vector space (a Hilbert space for a scalar product,
identified with its dual), P ⊂ X be a closed convex cone.

Let us consider the projector ΠP onto a closed convex cone P and the
projector ΠP� onto its polar cone P �. Then the two following properties are
equivalent:

∀x ∈ X,
{

(i) x = v + p where v ∈ P, p ∈ P � & 〈p, v〉 = 0
(ii) v = ΠP (x) and p = ΠP�(x) (18.9)

Furthermore, the projectors satisfy

∀x ∈ X, ‖ΠP (x)‖ ≤ ‖x‖& ∀p ∈ X�, ‖ΠP�(p)‖� ≤ ‖p‖�

We refer to Neural networks and qualitative physics [21, Aubin] for the
definition and properties of orthogonal right inverses of a surjective linear
operator:

Proposition 18.4.18 [Orthogonal Right Inverse] Let us consider a
surjective linear operator A ∈ L(X,Y ) (for any y ∈ Y , the problem Ax = y
has at least a solution). We may select the solution x with minimal norm,
i.e., a solution to the minimization problem with linear equality constraints

Ax = y & ‖x‖ = min
Ax=y

‖x‖

The solution to this problem is given by the formula

x = A�(AA�)−1y

The operator A+ := A�(AA�)−1 is called the orthogonal right inverse of A.
We can supply the space Y with the final scalar product

((y1, y2))A :=
〈
A+y1, A

+y2

〉

and its associated final norm

‖y‖A := inf
Ax=y

‖x‖

The orthogonal right inverse allows us to provide explicit formulas for
quadratic minimization problems:
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Proposition 18.4.19 [Orthogonal Right Inverse of a Subset]
Assume that A ∈ L(X,Y ) is surjective and that M ⊂ Y is closed and
convex. Denote by ΠA

M the orthogonal projector on M when Y is supplied
with the scalar product ((y1, y2))A. Let u ∈ X and v ∈ Y be given. Then the
unique solution x to the minimization problem

inf
Ax∈M+v

‖x− u‖

is equal to
x = u−A+(1−ΠA

M )(Au − v)

When M ⊂ Y is a closed convex cone, the solution can also be written
in the form

x = u−A�ΠA�

M�(AA�)−1(Au− v)

For a proof, see Chap. 2 of Neural networks and qualitative physics: a
viability approach, [21, Aubin].

18.4.6 Normals

For smooth subsets, the tangent space is a vector space and its orthogonal
space is the normal space. For convex cones, vector subspaces are replaced
by cones and orthogonal subspaces by “polar cones”:

Definition 18.4.20 [Normal Cones] We denote by

P � := {p ∈ X� such that ∀ x ∈ P, 〈p, x〉 ≤ 0}

the polar cone of P . The polar cone NK(x) := (TK(x))� is called the normal
cone to K at x. The convexified tangent cone is defined by T ��K = N�

K(x)

Terminological Remarks. The normal cone is also called the Bouli-
gand normal cone, or the contingent normal cone, or also, the sub-normal
cone and more recently, the regular normal cone by Terry Rockafellar and
Wets. In this book, only (regular) normals are used, so that we shall drop
the adjective “regular”. ��

Therefore, the tangential conditions characterizing viability and invariance
properties are equivalent to the following normal conditions:

{
(i) ∀ x ∈ K \ C, ∀ p ∈ NK(x), σ(F (x),−p) ≥ 0
(ii) ∀ x ∈ K \ C, ∀ p ∈ NK(x), σ(F (x), p) ≤ 0
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of viability and invariance properties studied in Chap. 11, p. 437 involving
tangent cones.

18.5 Graphical Analysis

18.5.1 Graphical Convergence of Maps

Pointwise, compact and uniform convergence of sequences of set-valued maps
are ill adapted, whereas, being characterized by their graphs, convergence of
graphs may, and indeed, does, provide convenient results:

Definition 18.5.1 [Graphical Convergence] Let us consider a sequence
of set-valued maps Fn : X � Y . The set-valued map F � := Lim�

n→+∞Fn
from X to Y defined by

Graph(Lim�
n→+∞Fn) := Limsupn→∞Graph(Fn)

is called the (graphical) upper limit of the set-valued maps Fn.

Even for single-valued maps, this is a weaker convergence than the
pointwise convergence:

Proposition 18.5.2 [Graphical and Pointwise Convergence]

1. If fn : X �→ Y converges pointwise to f , then, for every x ∈ X, f(x) ∈
f �(x). If the sequence {fn}n≥0 is equicontinuous, then f �(x) = {f(x)}.

2. Let Ω ⊂ R
n be an open subset. If a sequence fn ∈ Lp(Ω) converges to f

in Lp(Ω), then

for almost all x ∈ Ω, f(x) ∈ f �(x)

3. If a sequence fn ∈ Lp(Ω) converges weakly to f in Lp(Ω), then

for almost all x ∈ Ω, f(x) ∈ cof �(x)
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18.5.2 Derivatives of Set-Valued Maps

Let F : X � Y be a set-valued map. Graphical derivatives of set-valued maps
have been introduced at the end of the 1970s in the framework of viability
theory (see for instance Applied nonlinear analysis, [26, Aubin & Ekeland],
and Set-valued analysis, [27, Aubin & Frankowska]).

We introduce the differential quotients

u � ∇hF (x, y)(u) :=
F (x + hu)− y

h

of a set-valued map F : X � Y at (x, y) ∈ Graph(F ).
Following Gottfried Leibniz, we propose the following definition of deriva-

tive of a set-valued map as a limit of its differential quotients, but for the
graphical limit:

Definition 18.5.3 [Derivative of a Set-Valued Map] The (contingent
graphical) derivative DF (x, y) of F at (x, y) ∈ Graph(F ) is the graphical
upper limit of differential quotients:

DF (x, y) := Lim�
h→0+∇hF (x, y) (18.10)

A set-valued map F is said to be differentiable at (x, y) if Dom(DF (x, y)) =
X.

In other words, v belongs toDF (x, y)(u) if and only if there exist sequences
hn → 0+, un → u and vn → v such that ∀n ≥ 0, y + hnvn ∈ F (x+ hnun).

It is easy to check that a Lipschitz set-valued map is differentiable.
In particular, if f : X �→ Y is a single valued function, we set Df(x) =

Df(x, f(x)).
On the other hand, Pierre de Fermat introduced, before Gottfried Leibniz,

the concept of derivatives, stating that the graph of the differential f ′(x) of f
at x is the tangent space to the graph of f at the point (x, y) where y = f(x).
We deduce the fundamental formula on the graph of the contingent derivative
stating their equivalence:

Theorem 18.5.4 [Fermat Formulation of Derivatives] The graph of
the contingent derivative of a set-valued map is the tangent cone to its graph:
for all (x, y) ∈ Graph(F ),

Graph(DF (x, y)) = TGraph(F )(x, y) (18.11)
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Proof. Indeed, we know that the tangent cone

TGraph(F )
(x, y) = Limsuph→0+

Graph(F )− (x, y)
h

is the upper limit of the differential quotients Graph(F )−(x,y)
h when h→ 0+.

It is enough to observe that

Graph(∇hF (x, y)) =
Graph(F )− (x, y)

h

and to take the upper limit to conclude. ��

Definition 18.5.5 [Convexified Derivative] The convexified derivative
D��F (x, y) of the set-valued map F at (x, y) is defined by

T ��Graph(F )
(x, y) =: Graph(D��F (x, y))

where T ��K (x) is the closed convex hull to the tangent cone TK(x) to K at
x.

The co-derivative D�F (x, y) : Y � � X� defined by

∀ q ∈ Y �, p ∈ D�F (x, y)(q) if and only if (p,−q) ∈ NGraph(F )(x, y)

We can easily compute the derivative of the inverse of a set-valued map F
(or even of a non injective single-valued map): The contingent derivative of
the inverse of a set-valued map F is the inverse of the contingent derivative:

D(F−1)(y, x) = DF (x, y)−1

If K is a subset of X and f is a single-valued map which is Fréchet
differentiable around a point x ∈ K, then the contingent derivative of the
restriction of f to K is the restriction of the derivative to the tangent cone:

D(f |K)(x) = D(f |K)(x, f(x)) = f ′(x)|TK (x)
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Fig. 18.6 Examples of Contingent Derivatives.

The upper row displays the point in the graph where the contingent derivative
is taken. The lower row shows the graph of the corresponding derivative at
this point.

Observe that
Dom(DF (x, y)) ⊂ TDom(F )(x)

and that, whenever y ∈ Int(K), then

DF (x, y)(u) := Y whenever u ∈ TDom(F )(x) (18.12)

18.5.3 Derivative of Numerical Set-Valued Maps

Let us consider the case when Y := R and F : X � R. Therefore, DF (x, y)
and D��F (x, y) are maps from X to R, the graphs of which are respectively
a closed cone and a closed convex cone.

Definition 18.5.6 [Subdifferential of Numerical Map] Let F : X �
R. The graph of the convexified derivative D��F (x, y) being a closed convex
cone, the images D��F (x, y)(u) ⊂ R are closed intervals denoted by

D��F (x, y) := [d↑(F (x, y))(u), d↓(F (x, y))(u)] (18.13)

The subdifferential ∂−F (x, y) and superdifferential ∂+F (x, y) of the numer-
ical set-valued map F are respectively defined by
{

(i) ∂−F (x, y) := {p ∈ X� such that ∀ u, 〈p, u〉 ≤ d↑(F (x, y))(u)}
(ii) ∂+F (x, y) := {p ∈ X� such that ∀ u, d↓(F (x, y))(u) ≤ 〈p, u〉}

(18.14)
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With these notations, we can compute the co-derivative of the numerical
map F :

Lemma 18.5.7 [Co-Derivative of Numerical Map] Let F : X � R.
The graph of D�F (x, y) being a closed convex cone, it is enough to know
the value of D�F (x, y)(λ) at λ := +1, λ = 0 and λ = −1 for deriving the
values D�F (x, y)(λ) of all λ ∈ R. These values are equal to

⎧⎨
⎩

(i) D�(F (x, y))(+1) = ∂−F (x, y)
(ii) D�(F (x, y))(−1) = −∂+F (x, y)
(iii) D�(F (x, y))(0) = (Dom(DF (x, y)))�

(18.15)

Note that D�(F (x, y))(0) := {0} whenever F is differentiable at (x, y).
Furthermore, for any y ∈ Int(F (x)), the co-derivative D�F (x, y)(λ) = ∅
are empty for λ �= 0.

Proof. To say that p ∈ D�F (x, y)(+1) means that for any u ∈ X ,
∀ v ∈ [d↑(F (x, y))(u), d↓(F (x, y))(u)], 〈p, u〉 ≤ (+1)v. Therefore, p ∈
D�F (x, y)(+1) if and only if ∀ u ∈ X , 〈p, u〉 ≤ d↓(F (x, y))(u). In the
same way, one can check that p ∈ D�F (x, y)(−1) if and only if ∀ u ∈ X ,
d↓(F (x, y))(u)(x, y)(u) ≤ 〈−p, u〉. Finally, p ∈ D�F (x, y)(0) means simply
that ∀ u ∈ X , 〈p, u〉 ≤ 0, i.e., that p ∈ (Dom(DF (x, y)))�, the polar cone of
the domain of the derivative of F . Consequently, if F is differentiable in the
sense that when Dom(DF (x, y)) = X , then D�F (x, y)(0) = {0}.

Property (18.12), p. 741 implies that whenever y ∈ Int(F (x)) and u ∈
TDom(F )(x), then d↓(F (x, y))(u) = −∞ and d↑(F (x, y))(u) = +∞. Hence,
the co-derivative D�F (x, y)(λ) = ∅ are empty for λ �= 0. ��

18.6 Epigraphical Analysis

18.6.1 Extended Functions

Extended functions have been introduced in Definition 4.2.1, p. 131.
Since the order relation on the real numbers is involved in the definition

of the Lyapunov property (as well as in minimization problems and other
dynamical inequalities), we no longer characterize a real-valued function by
its graph, but rather by its epigraph

Ep(v) := {(x, λ) ∈ X × R | v(x) ≤ λ}



18.6 Epigraphical Analysis 743

(see Definition 4.2.2, p. 131).
A function is said to be nontrivial if its domain is not empty. Any function

v defined on a subset K ⊂ X can be regarded as the extended function vK
equal to v on K and to +∞ outside of K, whose domain is K.

The graph of a real-valued (finite) function is then the intersection of its
epigraph and its hypograph.

Definition 18.6.1 [Indicator of a Set] Indicators ψK of subsets K are
cost functions defined by

ψK(x) := 0 if x ∈ K and +∞ if not

which characterize subsets (as characteristic functions χK(x) := e−ψK(x)

do for other purposes) provide important examples of extended functions.

Since
Ep(ψK) = K × R+

we deduce that the indicator ψK is lower semicontinuous if and only if K is
closed and that ψK is convex if and only if K is convex. One can regard the
sum v + ψK as the restriction of v to K.

Remark: Toll sets. The indicator ψK can be regarded as a membership
cost to K: it costs nothing to belong to K, and +∞ to step outside of K.
In the same context, positive extended functions v : X �→ [0,+∞] can be
regarded as some kind of fuzzy sets, called toll sets, since their membership
cost is not only 0 or +∞, but can also be any positive cost. The set of x
such that v(x) = 0 is called the core of the toll set v, the set of x such
that v(x) = +∞ the complement of the toll set v and the set of x such that
0 < v(x) < +∞ the boundary of the toll set v. Definition 15.3.1, p.621 of
constraint function in economics provides can be reformulated by saying the
constrained tube is a “toll tube”. ��

We also remark that some properties of a function are actually properties
of their epigraphs and λ-lower section or λ-lower level set

L≤v (λ) := {x ∈ K such that v(x) ≤ λ}

(see Definition 10.9.5, p.429). For instance, an extended function v is convex
(resp. positively homogeneous) if and only if its epigraph is convex (resp. a
cone).
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Definition 18.6.2 [Lower Semicontinuous and inf-Compact
Extended Functions] An extended function v is said to be lower
semicontinuous if its lower level-set L≤v (λ) are closed for all λ ∈ R. It is
called inf-compact if furthermore there exists λ ∈ R such that its lower
level-set L≤v (λ) is nonempty and compact.

Lemma 18.6.3 [Lower Semicontinuous Functions] Consider an
extended function v : X �→ R ∪ {±∞}. The conditions are equivalent:

1. The epigraph of v is closed
2. For all λ ∈ R, the level-sets L≤v (λ) of v are closed
3. The function v satisfies:

∀x ∈ X, v(x) ≤ lim inf
y→x

v(y)

Any lower semicontinuous and inf-compact extended function achieves it
infimum at some x ∈ Dom(v).

Proof. Assume that the epigraph of v is closed and pick x ∈ X . There exists
a sequence of elements xn converging to x such that

lim
n→+∞

v(xn) = lim inf
x′→x

v(x′)

Hence, for any λ > lim infx′→x v(x′), there exist N such that, for all n ≥ N ,
v(xn) ≤ λ, i.e., such that (xn, λ) ∈ Ep(v). By taking the limit, we infer that
v(x) ≤ λ, and thus, that v(x) ≤ lim infx′→x v(x′). The converse statements
are obvious.

Since at least one level set L≤v (λ0) is nonempty and compact, the
decreasing family of closed level-sets L≤v (λ) when infx∈X v(x) < λ ≤ λ
in the compact subset L≤v (λ0) has a nonempty (compact) intersection⋂
infx∈X v(x)<λ≤λ

L≤v (λ). This intersection is equal to the set of elements

achieving the infimum of v. ��

Let us point out the following
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Lemma 18.6.4 [Interior of an Epigraph] A pair (x, λ) ∈ Int(Ep(v))
belongs to the interior of the epigraph of v : X �→ R ∪ {+∞} if and only if

x ∈ Int(K) and lim sup
y→x

v(y) < λ (18.16)

Proof. Indeed, to say that (x, λ) ∈ Int(Ep(v)) amounts to saying that there
exist a neighborhood N(x) of x and ε > 0 such that (y, μ) ∈ (Ep(v)) for all
y ∈ N(x) and μ ≥ λ−ε. This is equivalent to saying that x ∈ Int(Ep(v)) and
that

lim sup
y→x

v(y) ≤ sup
y∈N(x)

v(y) ≤ λ− ε < λ

Consequently, if v is upper semicontinuous in the interior of its domain, then
the interior of its epigraph Int(Ep(v)) is the set of pairs (x, λ) such that
v(x) < λ. ��

We have defined the epilevel function of a tube K : R � X in
Definition 10.9.6, p. 430, defined by (10.26), p. 430:

Λ↑K(x) := inf {λ such that x ∈ K(λ)} = inf
(λ,x)∈Graph(K)

λ

where Graph(K) is a subset of R+ × X . We adopt an analogous definition
for subset of X × R:

Definition 18.6.5 [Epi-envelopes] A subset M⊂ X ×R is an epigraph
if

M+ {0} × R+ = M

We associate with a subset M ⊂ X × R+ its epi-envelope vM : X �→
R+ ∪ {+∞} defined by

vM(x) := inf
(x,w)∈M

w

and its epi-closure defined by

vM(x) := inf
(x,w)∈M

w

If M := Ep(v), its epi-envelope
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v̂(x) := vEp(v)(x) = inf
w≥v(x)

w

is called the epi-envelope of v and its epi-closure the epi-closure of v.

We observe that

M+ {0} × R+ ⊂ Ep(vM) ⊂ M+ {0} × R+

Lemma 18.6.6 [Epigraphs of epi-envelopes] Let M ⊂ X × R+ be a
closed subset. Then its epi-closure vM is lower semicontinuous and

Ep(vM) = M+ {0} × R+

Proof. For proving that the epi-closure vM is lower semicontinuous whenever
M is closed, let (xn, λn) be a sequence of Ep(vM) converging to (x, λ). We
know that there exists αn ≤ λn + 1

n such that (xn, αn) belongs to M. Since
0 ≤ αn ≤ λn + 1

n , a subsequence (again denoted by) αn converges to some
α ≤ λ, and thus, (x, α) belongs to M and consequently, (x, λ) belongs to
Ep(vM). ��

Let us consider a family of extended functions vi∈I and their pointwise
supremum supi∈I vi defined by

∀x ∈ X, (sup
i∈I

vi)(x) := sup
i∈I

(vi(x))

and their pointwise infimum infi∈I vi defined by

∀x ∈ X, (inf
i∈I

vi)(x) := inf
i∈I

(vi(x))

We first observe that

Lemma 18.6.7 [Pointwise suprema and infima] The epigraph of the
pointwise supremum v := supi∈I vi of a family of functions vi is the
intersection of their epigraphs:

Ep(sup
i∈I

vi) =
⋂
i∈I

Ep(vi)

and thus,
v⋂

i∈I Ep(vi) = sup
i∈I

vMi
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Let Mi∈I be a family of subsets Mi ⊂ X×R. Then the epilevel function
of the union of the Mi is the infimum of the epilevel functions of the set
Mi:

v⋃
i∈IMi

= inf
i∈I

vMi

Proof. The first statement is obvious. For proving the second one, we observe
{

v⋃
i∈IMi

(x) = inf(x,y)∈⋃i∈IMi
y

= infi∈I inf(x,y)∈Mi
y = infi∈I vMi(x) ��

18.6.2 Epidifferential Calculus

Definition 18.6.8 [Epilimits] The epigraph of the lower epilimit
lim�
↑n→+∞un of a sequence of extended functions un : X �→ R ∪ {+∞}

is the upper limit of the epigraphs:

Ep(lim�
↑n→+∞un) := Limsupn→+∞Ep(un)

The function lim�
↑n→+∞un whose epigraph is the lower limit of the epigraphs

of the functions un

Ep(lim�
↑n→+∞un) := Liminfn→+∞Ep(un)

is the upper epilimit of the functions un

One can check that(
lim�
↑n→+∞un

)
(x0) = lim inf

n→∞,x→x0
un(x)

When u is an extended function, we associate with it its epigraph and the
tangent cones to this epigraph. This leads to the concept of epiderivatives of
extended functions.

Definition 18.6.9 [Epiderivatives] Let u : X �→ R ∪ {±∞} be a
nontrivial extended function and x belong to its domain.
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We associate with it the differential quotients

u � ∇hu(x)(u) :=
u(x + hu)− u(x)

h

The epiderivative D↑u(x) of u at x ∈ Dom(u) is the lower epilimit of
its differential quotients:

D↑u(x) := lim�
↑h→0+∇hu(x) (18.17)

We shall say that the function u is contingently epidifferentiable at x if for
any u ∈ X, D↑u(x)(u) > −∞ (or, equivalently, if D↑u(x)(0) = 0).

The alternative definition is a generalization of Fermat’s concept of
derivative:

Theorem 18.6.10 [Fermat Formulation of Epiderivatives] Let u :
X �→ R∪{±∞} be a nontrivial extended function and x belong to its domain.
The epigraph of the epiderivative D↑u(·) is equal to the tangent cone to the
epigraph of u at (x,u(x)) is

Ep(D↑u(x)) = TEp(u)(x,u(x)) (18.18)

Proof. The first statement is obvious. For proving the second one, we recall
that the tangent cone

TEp(u)(x,u(x)) = Limsuph→0+

Ep(u)− (x,u(x))
h

is the upper limit of the differential quotients
Ep(u) − (x,u(x))

h
when h →

0+. It is enough to observe that

Ep(∇hu(x)) =
Ep(u) − (x,u(x))

h

to conclude that
Ep(D↑u(x)) := TEp(u)(x,u(x)) ��

Consequently, the epigraph of the epiderivative at x is a closed cone.
It is then lower semicontinuous and positively homogeneous whenever u is
contingently epidifferentiable at x.
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We observe that the epiderivative of the indicator function ψK at x ∈ K
is the indicator of the tangent cone to K at x:

D↑ψK(x) = ψTK(x)

making precise the intuition stating that the tangent cone TK(x) plays the

role of a “derivative of a set”, as the limit of differential quotients
K − x

h
of

sets.
Let us mention the following pointwise translation of the definition of

epiderivatives:

Lemma 18.6.11 [Pointwise Characterization of Epiderivatives]
The epiderivative D↑u(x) is equal to

∀u ∈ X, D↑u(x)(u) = lim inf
h→0+,u′→u

u(x+ hu′)− u(x)
h

Proof. See the proof of Proposition 6.1.3 of Set-Valued Analysis, [27, Aubin
& Frankowska]. ��

As for derivatives of set-valued maps, since viability and invariance
tangential conditions actually involve the closed convex hull of the tangent
cone, we shall need the concept of convexified epiderivative:

Definition 18.6.12 [Convexified Epiderivative] The convexified epi-
derivative D��

↑ u(x) of the extended function u at x ∈ Dom(u) is defined
by

Ep(D��
↑ u(x)) := T ��Ep(u)(x,u(x))

where T ��K (x) is the closed convex hull to the tangent cone TK(x) to K at
x.

Under adequate assumptions, the epiderivative of the restriction of u to
K is the restriction of the epiderivative to the tangent cone:

Lemma 18.6.13 [Epiderivatives of a Restriction] Let K ⊂ X be a
closed subset and u : X �→ R ∪ {+∞} be an extended function. We denote
by u|K := f + ψK the restriction to u at K. Inequality



750 18 Set-Valued Analysis at a Glance

D↑u(x)|TK (x) ≤ D↑u|K(x)

always holds true. It is an equality when u is differentiable from the right.

Proof. Indeed, let x ∈ K ∩Dom(u). If u belongs to TK(x), there exist hn →
0+ and xn := x+ hnun ∈ K such that

D↑u(x)(u) ≤ lim inf
n→+∞

u(xn)− u(x)
hn

= lim inf
n→+∞

u|K(xn)− u|K(x)
hn

which implies the inequality. If u is differentiable from the right, the
differential quotient converges to the common value D↑u(x) = D↑u|K(x) =
D↓u|K(x). ��

For locally Lipschitz functions, the epiderivatives are finite:

Proposition 18.6.14 [Derivatives of Locally Lipschitz Functions]
If u : X �→ R ∪ {+∞} is Lipschitz around x ∈ Int(Dom(u)), then the
epiderivative D↑u(x) is Lipschitz: there exists λ > 0 such that

∀u ∈ X, D↑u(x)(u) = lim inf
h→0+

u(x+ hu)− u(x)
h

≤ λ‖u‖

Proof. Since u is Lipschitz on some ball B(x, η), the above inequality
follows immediately from

∀u ∈ ηB,
u(x+ hu)− u(x)

h
≤ u(x+ hu′)− u(x)

h
+ λ(‖u‖+ ‖u′ − u‖)

by taking the liminf when h→ 0+ and u′ → u. ��

The Ekeland Theorems 3.3.1, p.94, and 6.1.12, p.226, of Set-valued
Analysis, [27, Aubin & Frankowska] provide an approximate minimizer of a
bounded from below lower semicontinuous function in a given neighborhood
of a point. This localization property is very useful and explains the
importance of this result which has been extensively used since its discovery
in 1974.
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Theorem 18.6.15 [The Ekeland Variational Principle] Let

v : X �→ R ∪ {+∞}

be a lower semicontinuous nontrivial extended bounded from below function
defined on a complete metric space X. Let x0 ∈ Dom(v) and ε > 0 be fixed.
Then there exists xε ∈ X, a solution to

⎧⎨
⎩

(i) v(xε) + εd(x0, xε) ≤ v(x0)

(ii) ∀ x �= xε, v(xε) < v(x) + εd(x, xε)
(18.19)

When X is a finite dimensional vector space, it can be written in the form:
there exists xε ∈ X satisfying

⎧⎨
⎩

(i) v(xε) + ε‖xε − x0‖ ≤ v(x0)

(ii) ∀ u ∈ X, 0 ≤ D↑v(xε)(u) + ε‖u‖
(18.20)

18.6.3 Generalized Gradients

Definition 18.6.16 [Subgradients] Let u : X �→ R ∪ {+∞} be a
nontrivial extended function. The continuous linear functionals p ∈ X�

satisfying
∀v ∈ X, 〈p, v〉 ≤ D↑u(x)(v)

are called the (regular) subgradients of u at x, which constitute the (possibly
empty) closed convex subset

∂−u(x) := {p ∈ X� | ∀v ∈ X, 〈p, v〉 ≤ D↑u(x)(v)}

called the (regular) subdifferential of u at x0.

Naturally, when u is Fréchet differentiable at x, then

D↑u(x)(v) = 〈f ′(x), v〉

so that the subdifferential ∂−u(x) is reduced to the gradient u′(x).



752 18 Set-Valued Analysis at a Glance

Fig. 18.7 Subgradients.

Illustration of subgradient for different class of functions, continuous,
discontinuous, upper or lower semicontinuous.

We observe that

∂−u(x) +NK(x) ⊂ ∂(u|K)(x)

If u is differentiable at a point x ∈ K, then the subdifferential of the
restriction is the sum of the gradient and the normal cone:

∂−(u|K)(x) = u′(x) +NK(x)

We also note that the subdifferential of the indicator of a subset is the
normal cone:

∂−ψK(x) = NK(x)

and that{
(i) (p,−1) ∈ NEp(u)(x,u(x)) if and only if p ∈ ∂−u(x)
(ii) (p, 0) ∈ NEp(u)(x,u(x)) if and only if p ∈ Dom(D↑u(x))−

We also deduce that

NEp(u)(x,u(x)) = {λ(q,−1)}q∈∂−u(x), λ>0

⋃
{(q, 0)}q∈Dom(D↑u(x))−

The subset Dom(D↑u(x))− = {0} whenever the domain of the epiderivative
D↑u(x) is dense in X . This happens when u is locally Lipschitz and when
the dimension of X is finite:
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Proposition 18.6.17 [Viscosity Characterization of Subdifferen-
tials] Let X be a finite dimensional vector space, u : X �→ R ∪ {±∞} be
a nontrivial extended function and x0 ∈ Dom(u). Then the subdifferential
∂−u(x) is the set of elements p ∈ X� satisfying

lim inf
x→x0

u(x)− u(x0)− 〈p, x− x0〉
‖x− x0‖

≥ 0 (18.21)

Proof. See the proof of Proposition 6.4.8 of Set-Valued Analysis, [27, Aubin
& Frankowska]. ��

The equivalent formulation (18.21) of the concept of subdifferential has
been introduced by Crandall & P.-L. Lions for defining viscosity solutions to
Hamilton–Jacobi equations.

18.6.4 Tangent and Normal Cones to Epigraphs

We shall need the following technical Lemma 18.6.18 to prove that via-
bility solutions of Hamilton–Jacobi–Bellman equations are actually con-
tingent Frankowska solutions (see Theorem 17.4.1, p. 699) and Barron–
Jensen/Frankowska solutions (see Theorem 17.4.3, p. 701):

Lemma 18.6.18 [Tangent and Normal Cones to Epigraphs] Assume
that v : X �→ R+ ∪ {+∞} is a nontrivial extended function and that
its convexified epiderivative (see Definition 18.6.12, p.749) D��

↑ v(x)(u) is
finite.

1. if w = v(x), then, for any μ ≥ D��
↑ v(x)(u), the pair (u, μ) ∈ T ��Ep(v)

(x,v(x))
2. if w > v(x), then, for any μ ∈ R, the pair (u, μ) belongs to the convexified

tangent cone T ��Ep(v)(x,w) to the epigraph of v at (x,w).

Consequently, a pair (p, λ) belongs to the normal cone NEp(v)(x,w) to
the epigraph of v at (x,w) if and only if

1. if w = v(x), then either

• λ = 0 and thus p ∈ (Dom(D��
↑ v(x)))−,

• or λ < 0 and
p

|λ| ∈ ∂−v(x)
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2. if w > v(x), then λ = 0 and thus p ∈ (Dom(D��
↑ v(x)))−. In particular,

if the domain of D↑v(x)is dense in X, then p = 0. This is the case
whenever v is Lipschitz around x.

Proof. We successively prove the following points:

1. Let (u, μ) belong to TEp(v)(x,v(x)). Then we know that there exist
sequences hn > 0 converging to 0, un converging to u and μn converging
to μ such that (x + hnun,v(x) + hnμn) belongs to Ep(v). Therefore, for
w > v(x) and μ ∈ R and hn small enough,

(x+hnun, w+hnμ) = (x+hnun,v(x)+hnλn)+(0, w−v(x)+hn(μ−μn))

belongs to the epigraph of v since w−v(x) > 0. This implies that the pair
(u, μ) ∈ TEp(v)(x,w), and thus, belongs to the convexified tangent cone
T ��Ep(v)(x,w).

2. Let us consider now a pair (p, λ) belonging to the normal cone
NEp(v)(x,w) := (TEp(v)(x,w))− to the epigraph of v at (x,w): Therefore,

∀ (u, μ) ∈ T ��Ep(v)(x,w), 〈(u, μ), (p, λ)〉 = 〈p, u〉+ λμ ≤ 0

a. Examine first the case when w = v(x), for which (u, μ) ∈ T ��Ep(v)(x,v(x))
if and only if u ∈ Dom(D��

↑ v(x)) and μ ≥ D��
↑ v(x)(u). If λ > 0, we

obtain a contradiction because, when μ → +∞, 〈p, u〉 + λμ → +∞.
Hence
• either λ < 0, and thus, dividing by |λ| and taking μ := D��

↑ v(x)(dp),
we obtain

∀ u ∈ Dom(D��
↑ v(x)),

〈
p

|λ| , u
〉
−D��

↑ v(x)(u) ≤ 0

which means that
p

|λ| ∈ ∂−v(x)

• or λ = 0 and we obtain

∀ u ∈ Dom(D��
↑ v(x)), 〈p, u〉 ≤ 0

which means that p ∈ (Dom(D��
↑ v(x)))− by definition of the polar

cone.
b. When w > v(x), inequalities

∀ (u, μ) ∈ T ��Ep(v)(x,w), 〈(u, μ), (p, λ)〉 = 〈p, u〉+ λμ ≤ 0

imply that λ = 0. Indeed, otherwise, λμ converges to +∞ when μ →
+∞ when λ > 0 and when μ → −∞ when λ < 0 since μ is allowed to
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range over R. Therefore p ∈ (Dom(D��
↑ v(x)))− because, since λ = 0,

the above inequalities imply that 〈p, u〉 ≤ 0 for all u ∈ Dom(D��
↑ v(x)).

If the domain of D��
↑ v(x) is dense in X , then its polar cone (DomD↑v(x))−

is {0}. Therefore, p = 0 since it belongs to this set. ��

18.7 Convex Analysis: Moreau–Rockafellar
Subdifferentials

The first consequence of convexity assumptions is the Minimax Theorem.
Consider any function ϕ : K × L �→ R. It is obvious that

sup
y∈L

inf
x∈K

ϕ(x, y) ≤ inf
x∈K

sup
y∈L

ϕ(x, y)

The question arises whether this inequality becomes an inequality and under
which conditions. Von Neumann proved that convexity assumptions were
sufficient:

Theorem 18.7.1 [Minimax Theorem] Let us consider two convex
subsets K ⊂ X and L ⊂ Y of finite dimensional vector spaces X and
Y and a function ϕ : K × L �→ R such that

{
(i) ∀ y ∈ L, x �→ ϕ(x, y) is convex
(ii) ∀ x ∈ K, y �→ ϕ(x, y) is concave

1. If K is compact and, for all y ∈ L, x �→ ϕ(x, y) is lower semicontinuous,
then

sup
y∈L

inf
x∈K

ϕ(x, y) = inf
x∈K

sup
y∈L

ϕ(x, y) (18.22)

and there exists x ∈ L such that the “lop-sided minsup equality”

sup
y∈L

ϕ(x, y) = sup
y∈L

ϕ(x, y) = inf
x∈K

sup
y∈L

ϕ(x, y) = sup
y∈L

inf
x∈K

ϕ(x, y)

(18.23)
holds true

2. If furthermore, L is compact and, for all x ∈ K, y �→ ϕ(x, y) is upper
semicontinuous, then there exist y ∈ L such that ∀ (x, y) ∈ K × L,

ϕ(x, y) ≤ inf
x∈K

sup
y∈L

ϕ(x, y) = sup
y∈L

inf
x∈K

ϕ(x, y) ≤ ϕ(x, y) (18.24)
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Proof. See the proof of Theorems 8.1 and 8.2 of Optima and Equilibria, [19,
Aubin]. ��

When u is a lower semicontinuous convex function, the generalized
gradient coincides with the subdifferential introduced by Jean Jacques
Moreau and Terry Rockafellar for convex functions in the early 1960s. This
follows from the Werner Fenchel characterization of lower semicontinuous
convex functions in terms of conjugate functions:

Definition 18.7.2 [Conjugate Functions] Consider a nontrivial
extended function u : X �→ R ∪ {+∞}. Its Fenchel conjugate function is
the extended function u� : X� �→ R ∪ {+∞} defined by

∀ p ∈ X�, u�(p) := sup
x∈X

(〈p, x〉 − u(x)) (18.25)

Therefore,

∀ p ∈ X�, ∀ x ∈ X, 〈p, x〉 ≤ u(x) + u�(p) Fenchel Inequality (18.26)

The bi-conjugate function function u : X �→ R∪ {+∞} is the extended
function u�� : X �→ R ∪ {+∞} defined by

∀ x ∈ X, u��(x) := sup
p∈X�

(〈p, x〉 − u�(p))

We observe that ∀ x ∈ X, u(x) ≤ u��(x). The equality holds if and only
u is nontrivial, convex and lower semicontinuous. This was derived from the
Separation Theorem by Fenchel :

Theorem 18.7.3 [The Fenchel Theorem] A nontrivial function u :
X �→ R ∪ {+∞} is convex and lower semicontinuous if and only if the
function u = u�� is equal to its biconjugate.

Proof. See the proof of Theorem 3.1 of Optima and Equilibria, [19, Aubin].
��

Let β : x �→ β(x) be a lower semicontinuous convex function defined
everywhere (Dom(β) = X) and ψF the indicator of F defined by: ψF (x) = 0
if x ∈ F and to +∞ outside of F .

Remark: Restriction of a Function. The restriction u(·) of β(·) to
F can be written in the form
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u(x) := β(x) + ψF (x)

Denoting σF (p) := supx∈F 〈p, x〉 the support function of F , we can associate
with any p at least one q such that

u�(p) := inf
q

(β�(q) + σF (p− q)) = β�(q) + σF (p− q)

• If β(x) := 0, then
u�(p) := σF (p)

• If β(x) := 〈π, x〉 + γ, then β�(π) = −γ and for p �= π, β�(p) = +∞.
Therefore

u�(p) := σF (p− π) − γ

• If β(x) := ρ ‖c‖x+ γ, then β�(p) = ψρB� − γ. Therefore

u�(p) := inf
‖q‖�≤ρ

σF (p− q)− γ ��

Recall that two lower semicontinuous convex functions satisfy u1 ≤ u2 if
and only if u�2 ≤ u�1. We deduce from the above examples the following dual
characterization of estimates of u and u�:

Lemma 18.7.4 [Dual Estimates] Let u be a lower semicontinuous
convex function. We introduce two subsets F ⊂ G and two finite lower
semicontinuous convex functions α ≤ β. The following conditions are
equivalent:

∀ p, inf
q

(β�(q) + σF (p− q)) ≤ u�(p) ≤ inf
q

(α�(q) + σG(p− q)) (18.27)

and ⎧⎨
⎩

co(F ) ⊂ Dom(u) ⊂ co(G)
∀ x ∈ co(F ), u(x) ≤ β(x)
∀ x ∈ co(G), α(x) ≤ u(x)

(18.28)

In particular, the two following conditions are equivalent:

∀ p, σDom(u)(p)− c ≤ u�(p) ≤ c‖p‖� + α (18.29)

and {
Dom(u) ⊂ cB and is closed
∀ x ∈ Dom(u), −α ≤ u(x) ≤ c

(18.30)

Proof.

1. To say that ∀ p, infq (β�(q) + σF (p− q)) ≤ u�(p) amounts to saying that
u(x) ≤ ψco(F )(x) + β(x). This means that for all x ∈ co(F ), u(x) ≤ β(x)
and thus, since β is assumed to be finite, that co(F ) ⊂ Dom(u).
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2. To say that ∀ p, u�(p) ≤ infq (α�(q) + σG(p− q)) amounts to saying that
ψco(G)(x)+α(x) ≤ u(x). This means that for all x ∈ Dom(u), α(x) ≤ u(x)
and thus, since α is assumed to be finite, that Dom(u) ⊂ co(G).

The second statement is deduced by taking F := Dom(u), G := cB, β(·) ≡ c
and α(·) ≡ α. ��

For lower semicontinuous convex functions, subgradients coincide with
Moreau–Rockafellar sub-subdifferentials:

Definition 18.7.5 [Subdifferential of a Convex Function] Consider
a nontrivial function u : X �→ R ∪ {+∞} and x ∈ Dom(u). The closed
convex subset ∂u(x) defined by

∂u(x) = {p ∈ X such that 〈p, x〉 = u(x) + u�(p)} (Fenchel equality)

(which may be empty) is called the Moreau–Rockafellar subdifferential of u
at x. We say that u is subdifferentiable at x if ∂u(x) �= ∅.

For convex functions, this concept coincides with the general one.

Proposition 18.7.6 [Epiderivative of a Convex Function] Let u :
X �→ R+ be a nontrivial extended convex function. Then

1. the epiderivative is equal to

D↑u(x)(u) = lim inf
u′→u

(
inf
h>0

u(x+ hu′)− u(x)
h

)

2. the subdifferential ∂−u(x) coincides with Moreau–Rockafellar subdiffer-
ential ∂u(x).

Proof. For proving the first statement, take 0 < h1 ≤ h2,

Ep(∇h2u(x)) =
Ep(u)− (x,u(x))

h2
⊂ Ep(u)− (x,u(x))

h1
= Ep(∇h1u(x))

i.e.,
∀u ∈ X, ∇h1u(x)(u) ≤ ∇h2u(x)(u)

Therefore,
⎧⎪⎨
⎪⎩
∀u ∈ X, Du(x)(u) := lim

h→0+

u(x+ hu)− u(x)
h

= inf
h>0

u(x + hu)− u(x)
h

≤ u(x+ v)− u(x)
(18.31)
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and this function Du(x) is convex with respect to u. Since the epigraph of
Du(x) is the increasing union of the epigraphs of the differential quotients
∇hu(x), we infer that

D↑u(x)(u) := lim inf
u′→u

Du(x)(u′)

For proving the second statement, take p ∈ X� satisfying the Fenchel equality:

∂u(x) = {p ∈ X such that 〈p, x〉 = u(x) + u�(p)}

For any v ∈ X , Fenchel inequality

∂u(x+ hv) ≤ {p ∈ X such that 〈p, x〉 ≤ u(x+ hv) + u�(p)}

and Fenchel equality imply that

∀ v ∈ X, ∀ h > 0, 〈p.v〉 ≤ u(x+ hv)− u(x)
h

We thus infer that
∀ v ∈ X, 〈p, v〉 ≤ D↑u(x)(v)

and thus, that p belongs to ∂−u(x).
Conversely, take p ∈ ∂−u(x), x ∈ X and consider any v ∈ X . By (18.31),

p. 758, we infer that

〈p, x+ v〉 − 〈p, x〉 := 〈p, v〉 ≤ D↑u(x)(v) ≤ u(x+ v)− u(x)

and thus, that

u�(p) = sup
v∈X

(〈p, x+ v〉 − u(x+ v)) ≤ 〈p, x〉 − u(x) ≤ u�(p)

Hence 〈p, x〉 = u(x) + u�(p). ��

Therefore, we deduce at once from the Fenchel Theorem the crucial
Legendre property of subdifferentials stating that the inverse of the set-valued
map x� ∂u(x) is the set-valued map p� ∂u�(p):

Theorem 18.7.7 [Legendre Property of Subdifferentials] Let u :
X �→ R ∪ {+∞} be a nontrivial lower semicontinuous convex function.
Then the three following conditions are equivalent:

⎧⎨
⎩

(i) 〈p, x〉 = u(x) + u�(p)
(ii) p ∈ ∂−u(x)
(iii) x ∈ ∂−u�(p)

(18.32)

In other words
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(∂−u(·))−1 = ∂−u�(·)

Let us also mention the following simple – but useful – remark:

Proposition 18.7.8 [Example of the use of the Fermat Rule]
Assume that u := v + w is the sum of a differentiable function v and
a convex function w. If x minimizes u, then

−v′(x) ∈ ∂w(x)

Proof. Indeed, for h > 0 small enough, x+ h(y − x) = (1− h)x+ hy so that

0 ≤ u(x+ h(y − x))− u(x)
h

≤ u(x+ h(y − x))− u(x)
h

+ w(y)−w(x)

thanks to the convexity of w. Letting h converge to 0 yields

0 ≤ 〈v′(x), y − x〉+ w(y)−w(x)

so that −v′(x) belongs to ∂w(x). ��

We recall the following important property of convex functions defined on
finite dimensional vector spaces:

Theorem 18.7.9 [Continuity of a Convex Function] An extended
convex function u defined on a finite dimensional vector-space is locally
Lipschitz and subdifferentiable on the interior of its domain. Therefore,
when x belongs to the interior of the domain of u, there exists a constant
λx such that

∀u ∈ X, D↑u(x)(u) = inf
h>0

u(x+ hu)− u(x)
h

≤ λx‖u‖

Proof. See the proof of Theorem 4.1 of Optima and Equilibria, [19, Aubin].
��

We shall need to adapt convex analysis to concave analysis, associating
with a convex function v the function l defined by

l(x) := −v(−x)
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l�(p) := inf
x∈Dom(l)

[〈p, x〉 − l(x)] = −v�(−p)

The Fenchel Theorem 18.7.3, p.756 states that l = l�� if and only if l is
concave, upper semicontinuous, and non trivial (i.e. Dom(l) := {x | v(x) >
−∞} �= ∅).

The epigraph Ep(v) of an extended function v is the set of pairs (x, λ) ∈
X × R such that v(x) ≤ λ and the hypograph Hyp(l) of a function l is the
set of pairs (x, μ) ∈ X ×R such that μ ≤ l(x). Note that the hypograph of l
is related to the epigraph of v by the relation

(x, λ) ∈ Hyp(l) if and only if (−x,−λ) ∈ Ep(v)

An extended function is lower semicontinuous if and only if its epigraph is
closed and upper semicontinuous if and only if its hypograph is closed.

Definition 18.7.10 [Hypoderivatives and Superdifferentials] The
hypoderivative D↓l(x) and the epiderivative D��

↑ v(x) are related to the
tangent cones of the hypograph of l and epigraph of v by the relations

Hyp(D↓l(x)) := THyp(l)(x, l(x)) and Ep(D��
↑ v(x)) := TEp(v)(x,v(x))

The superdifferential ∂+l(x) of the concave function l at p is defined by

u ∈ ∂+l(x) if ∀ v ∈ X, 〈u, v〉 ≥ D↓l(x)(v)

and the subdifferential ∂−v(x) is defined by

u ∈ ∂−v(x) if ∀ v ∈ X, 〈u, v〉 ≤ D��
↑ v(x)(v)

We infer that

∀ v ∈ X, D↓l(x)(v) = −D↑v(x)(v)

and that
p ∈ ∂+l(x) if and only if p ∈ −∂−v(x)

The superdifferential ∂+l(x) and the subdifferential ∂−v(x) are related to
the normal cones of the hypograph of l and epigraph of v by the relations

u ∈ ∂+l(x) if and only if (−u, 1) ∈ NHyp(l)(x, l(x))

and
u ∈ ∂−v(x) if and only if (p,−1) ∈ NEp(v)(x,v(x))
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Recall the Legendre inversion formula:

u ∈ −∂+l(x) if and only if x ∈ ∂−v�(p)

18.8 Weighted Inf-Convolution

The weighted inf-convolution of functions vj is defined through the weighted
aggregation of their epigraphs:

Definition 18.8.1 [Weighted Inf-Convolution] Let us consider J lower
semicontinuous vj : Xj �→ R ∪ {+∞}.

The weighted inf-convolution �J
j=1Ajvj : X �→ R∪{+∞} of functions

vj and operators Aj ∈ L(Xj , X) is defined by

Ep(�J
j=1Ajvj) :=

J∑
j=1

(Aj × 1)Ep(vj) (18.33)

where 1 denotes the identity operator of R

If the functions vj are convex, so is their weighted inf-convolution
�J
j=1Ajvj because the weighted sum of images of convex epigraphs by linear

operators is convex. Since the sum of closed subsets is not necessarily closed,
we shall need some assumption for showing that the weighted inf-convolution
�J
j=1Ajvj of lower semicontinuous functions vj is lower semicontinuous.
This is the purpose of the next two lemmas:

Lemma 18.8.2 [Epigraphs of Weighted Inf-Convolutions] Let us set

v(x) := inf∑
J
j=1 Ajxj=x

J∑
j=1

vj(xj)

Then
J∑
j=1

(Aj × 1)Ep(vj) ⊂ Ep(v) ⊂
J∑
j=1

(Aj × 1)Ep(vj)

Proof. We observe first that
J∑
j=1

(Aj × 1)Ep(vj) ⊂ Ep(v).
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Indeed, take any (x, y) :=
∑J
j=1(Ajxj , yj) ∈

∑J
j=1(Aj × 1)Ep(vj). This

means that for any j = 1, . . . , J , vj(xj) ≤ yj , that
J∑
j=1

Ajxj = x and that

J∑
j=1

yj = y. Hence

v(x) ≤
J∑
j=1

vj(xj) ≤
J∑
j=1

yj = y

Second, let us check that Ep(v) ⊂
J∑
j=1

(Aj × 1)Ep(vj). By definition of the

infimum, we can associate with every ε > 0 elements xjε such that
J∑
j=1

vj(xjε) ≤ v(x) + ε. This implies that (x,v(x) + ε) ∈
J∑
j=1

(Aj × 1)Ep(vj).

It is enough to let ε converge to 0. ��

Lemma 18.8.3 [Lower Semicontinuity of Weighted Inf-
Convolutions] Setting

D :=
{
(A�jp)j=1,...,J

}
p∈X� ⊂

J∏
j=1

X�
j

the weighted inf-convolution �J
j=1Ajvj of lower semicontinuous vj func-

tions is lower semicontinuous whenever assumption

0 ∈ Int

⎛
⎝D +

J∏
j=1

Dom(v�j )

⎞
⎠ (18.34)

holds true. Furthermore, if the functions vj are inf-compact, so is their
weighted inf-convolution �J

j=1Ajvj and there exist J elements xj ∈ Xj

such that
J∑
j=1

Ajxj = x and v(x) =
J∑
j=1

vj(xj)

Proof. Let us consider a sequence

(xn, yn) :=
J∑
j=1

(Ajxjn , yjn) ∈
J∑
j=1

(Aj × 1)Ep(vj)
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converging to (x, y) and prove that (x, y) :=
∑J

j=1(Ajxj , yj) ∈
∑J
j=1(Aj ×

1)Ep(vj). Therefore, for any j = 1, . . . , J , vj(xjn) ≤ yjn , that
J∑
j=1

Ajxjn = xn

converges to x and that
J∑
j=1

yjn = yn converges to y.

Assumption (18.34), p. 763 implies that there exists η > 0 such that

η
−→
B � ∈ D +

J∏
j=1

Dom(v�j )

We deduce that the sequence −→xn = (x1n , . . . xjn , . . . xJn) is bounded. Indeed,
for any −→p ∈ ηB�, there exist q ∈ X� and rj ∈ Dom(v�j ) such that

∀ j = 1, . . . J, pj = A�j q + rj

and thus, that

〈−→p ,−→xn〉 =
J∑
j=1

〈pj , xjn〉 =

〈
q,

J∑
j=1

Ajxjn

〉
+

J∑
j=1

〈rj , xjn〉

Observing that

〈rj , xjn〉 ≤ vj(xjn) + v�j (rj) ≤ yjn + v�j (rj)

we infer that

〈−→p ,−→xn〉 ≤ 〈q, xn〉+ yn +
J∑
j=1

v�j (rj) < +∞

since the sequences xn and yn are bounded, being convergent. This implies
that the sequence −→xn is bounded. Therefore, a subsequence (again denoted

by) −→xn converges to some −→x such that
J∑
j=1

Ajxj = x and such that

0 ≤ vj(xjn) ≤ yjn . Since the sequence yn is bounded, the subsequences

yjn are also bounded and converge to some yi such that
J∑
j=1

yj = x.

Since vj(xjn) ≤ yjn and since vj(·) is lower semicontinuous, we infer that
vj(xj) ≤ yj , i.e., that (xj , yj) ∈ Ep(vj). Consequently,

(x, y) =
J∑
j=1

(Ajxj , yj) ∈
J∑
j=1

(Aj × 1)Ep(vj)

which is then closed. ��
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Lemma 18.8.4 [Subdifferential of Weighted Inf-Convolutions]
Assume that condition (18.34), p. 763 hods true and that the functions
vj are lower semicontinuous, inf-compact and convex. Then there exist J
elements xj such that

J∑
j=1

Ajxj = x

and that the following conditions are equivalent:
⎧⎨
⎩

(i) p ∈ ∂
(
�J
j=1Ajvj

)
(x)

(ii) ∀ j = 1, . . . J, A�jp ∈ ∂vj(xj)
(iii) ∀ j = 1, . . . J, xj ∈ ∂v�j (A

�
jp)

(18.35)

In other words,

∂
(
�J
j=1Ajvj

)
(x) =

⋃
∑

J
j=1 Ajxj=x

J⋂
j=1

A�
−1

j ∂vj(xj) (18.36)

Proof. Conditions (18.35)(ii) and (iii) are equivalent and equivalent to
inequalities

∀ j = 1, . . . , J, 0 =
〈
A�jpj , xj

〉
− vj(xj)− v�j (A

�
jp)

Summing then for j = 1 to J , we obtain

∀ j = 1, . . . , J, 0 =
J∑
j=1

〈
A�jpj , xj

〉
−

J∑
j=1

vj(xj)− v�j (A
�
jp)

The converse is true since, for all j = 1 to J , 0 ≤
〈
A�jpj , xj

〉
− vj(xj)−

v�j (A
�
jp). ��

18.9 The Graal of the Ultimate Derivative

After Pierre de Fermat, Isaac Newton and Gottfried Leibniz three centuries
ago, Augustin–Louis Cauchy formalized the concept of derivative a little more
than one century ago, and, for that purpose, defined rigorously the concept of
limit. Since then, there was a consensus on the formalization of derivatives as
limits of difference quotients for the pointwise convergence. It was so strong
that the concept of derivative became a permanent reality, protected from any
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dissident view. However, some mathematicians motivated by applications are
no longer free to choose the assumptions and the rules of the game. Should the
nondifferentiable functions popping up in so many fields be deprived forever
from the benefits of some properties of the derivatives? This is quite natural,
though, because each problem demands its own amount of properties that
the derivative should enjoy, i.e., its own degree of regularity. Without going
too far by always requiring minimal assumptions, some problems could not
be solved by sticking to the richest structure. The right balance between
generality and readability is naturally a subjective choice.

Mathematicians of this period still asked many properties for the deriva-
tives of functionals and were not ready to give away linearity.

These definitions were too restrictive, so that they were weakened in several
ways, and led to a ménagerie of concepts: strong or weak Fréchet and Gâteaux
derivatives, Dini directional semiderivatives or derivatives from the right, to
quote a few.

However, this was not enough, the topologies used to define the limits of
difference quotients were still too strong for allowing more maps to retain
some kind of differentiability. But weakening the topologies allows us to get
more limits at the price of obtaining these limits outside the set of single-
valued maps. This was even worse than loosing the linearity of the directional
derivatives.

However, Serge Sobolev and Laurent Schwartz did dare to introduce weak
derivatives and distributions in the 1940s for obtaining solutions to partial
differential equations, Jean Jacques Moreau and Terry Rockafellar to define
set-valued subdifferential of convex functions to implement the Fermat rule
in optimization at the beginning of the 1960s, the 1980s witnessing the
eclosion of graphical derivatives of set-valued maps and set-valued analysis
for dealing, for instance, with control systems and differential games, the
1990s the appearance of mutations of set-valued maps for grasping new
kind of differential equations – called mutational equations – governing the
evolution of sets or, more generally, elements of a metric space. This process
of differentiating “less and less differentiable maps”, so to speak, continues
its random course to unknown shores.

The strong requirement of pointwise convergence of differential quotients
can be weakened in (at least) two ways, each way sacrificing different groups
of properties of the usual derivatives:

• Fix the direction v and take the limit of the function x �→ ∇hf(x)(v) in the
weaker sense of distributions (see for instance [16, Aubin]). The limit Dvf
may then be a distribution, and no longer a single-valued map. However, it
coincides with the usual limit when f is Gâteaux differentiable. Moreover,
one can define difference quotients of distributions, take their limit, and
thus, differentiate distributions.
Distributions are no longer functions or maps defined on Rn, so they loose
the pointwise character of functions and maps, but retain the linearity of
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the operator f �→ Dvf , mandatory for using the theory of linear operators
for solving partial differential equations.

• Fix the direction x and take the limit of the function v �→ ∇hf(x)(v) in
the weaker sense of graphical convergence and epigraphical convergence
(Definitions 18.5.1, p. 738 and 18.6.8, p. 747): the limit Df(x) may
then be a set-valued map, and no longer a single-value map. However,
it coincides with the usual limit when f is Gâteaux differentiable.
Moreover, one can define difference quotients of set-valued maps, take their
limit, and thus, differentiate set-valued maps. These graphical derivatives
and epiderivatives keep the pointwise character of functions and maps,
mandatory for implementing the Fermat Rule, proving inverse function
theorems under constraints (see Theorem 9.7.1, p. 366) and solving first-
order systems of partial differential equations, for instance, but loose the
linearity of the map f �→ Df(x).

In both cases, the approaches are similar: They use (different) concepts
of convergence weaker than the pointwise convergence for increasing the
possibility for the difference-quotients to converge. But the price to pay is
the loss of some properties by passing to these weaker limits (the pointwise
character for distributional derivatives, the linearity of the differential
operator for graphical derivatives).

For first-order systems of partial differential equation, either conservation
laws (Chap. 16, p. 631) or Hamilton–Jacobi–Bellman equations (Chap. 17,
p. 681), graphical and epigraphical derivatives happened to be quite appro-
priate, whereas distributional derivatives are quite efficient for second-order
partial differential equations.



Chapter 19

Convergence and Viability Theorems

19.1 Introduction

This chapter is mainly devoted to the proof of a series of Viability
Theorems leading to Theorem 11.3.4, p.455. This is done by approximating
the differential inclusion by the simple explicit finite-difference scheme
(the Euler method). In this setting, being a discrete scheme, the viability
characterization of an environment is trivial (see Theorem 2.9.3, p.72).

When the right hand side F of the differential inclusion is Marchaud, the
problem then boils down to prove that:

• the sequence of approximate evolutions converges;
• the limit is a solution to the differential inclusion.

As for differential equations, it is classical to prove the uniform convergence
of the approximated evolutions (from the Ascoli Compactness Theorem). For
differential equations, the convergence of derivatives follows under continuity
assumptions, and the pointwise convergence of both the evolutions and their
derivatives allow us to derive that the limit is a solution of the differential
equation.

This strategy does not work as well for differential inclusions since the
evolutions no longer determine in a unique way their velocities. Hence, we
need to prove their convergence, under assumptions as weak as possible
(Marchaud differential inclusions). This follows from the deep Convergence
Theorem 19.2.4, p.772 based on the fundamental theorems of functional
analysis and proved in Sect. 19.2, p.770. This is why its proof has been
relegated to the end of this book. This Convergence Theorem implies also
the convergence of discrete viability kernels with target to the continuous
ones.

Once Convergence Theorem 19.2.4, p.772 proved, we devote Sect. 19.3,
p.774, to the approximation of viability kernels and regulation map under
time-discretizations of the environment, the target et the control system.

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6 19,
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These theorems allow us to prove several Viability Theorems under more
and more restrictive assumptions in Sect. 19.4, p.781.

19.2 The Fundamental Convergence Theorems

We introduced maps F under which the (global) Viability Theorem 11.3.4,
p.455 is true. But other (local) Viability Theorems are true for a larger class
of set-valued maps:

Definition 19.2.1 [Zaremba Maps] A set-valued map F : X � Y is
called a Zaremba map if

∀ x ∈ X,

{
(i) F (x) is convex and compact
(ii) p ∈ Y �, x �→ σ(F (x), p) is upper semicontinuous (19.1)

where σ(F (x), p) := supy∈F (x)〈p,y〉 is the support function of F (x).

We shall need the following property of Marchaud maps:

Lemma 19.2.2 [Marchaud and Zaremba Maps] Every Marchaud set-
valued map is a Zaremba one.

Proof. Proving that for each p ∈ Y �, the support function is upper
semicontinuous amounts to proving that for any λ < +∞, the subset

K(p, λ) := {x such that λ ≤ σ(F (x), p)}

is closed. Consider thus a sequence xn ∈ K(p, λ) converging to some x ∈ X .
Since F is Marchaud, the subsets F (xn) are compact, so that there exists
yn ∈ F (xn) satisfying

λ ≤ σ(F (xn), p) = 〈p, yn〉 ≤ c(‖xn‖+ 1)‖p‖ ≤ γ‖p‖

Since yn belongs to the compact ball of radius γ, a subsequence (again
denoted by) yn converges to some y. Since (xn, yn) belongs to the graph
Graph(F ), which is closed, we infer that (x, y) ∈ Graph(F ). On the other
hand, we infer that

λ ≤ 〈p, y〉 ≤ σ(F (x), p)
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so that x belongs to K(p, λ), which is, then, closed. Hence F is a Zaremba
map. ��

Recall that the Lipschitz norm ‖F‖Λ of a map F : x� Y is the smallest
Lipschitz constants of F (see Definition 10.3.5, p.385).

Theorem 19.2.3 [Convergence Theorem with a priori Estimates]
Let F : X � Y be a Zaremba map. Consider sequences of Lipschitz

evolutions xn(·) ∈ Lip(0, T ;X) and of integrable evolutions ym(·) ∈
L1(0, T ;X) “approximating” the graph of F in the sense that for all ε > 0
there exists N such that, for all n ≥ N ,

for almost all t ∈ [0, T ], (xn(t), yn(t)) ∈ Graph(F ) + ε(B ×B)

Assume also that the sequences xn(·) and yn(·) satisfy the following a priori
estimates {

(i) supn≥0 ‖xn‖Λ ≤ α
(ii) supn≥0 ‖yn(t)‖ ≤ α

(19.2)

Then subsequences (again denoted by) xn(·) and yn(·) satisfying:

• xn(·) converges uniformly on compact intervals to an evolution x(·),
• yn(·) converges weakly to an evolution y(·) in L1(0, T ;X),

and their limits satisfy

for almost all t ∈ [0, T ], y(t) ∈ F (x(t))

Proof. Consider sequences xn(·) and yn(·) of approximate solutions xn(·)
approximating the graph of F and satisfying the a priori estimates (19.2),
p.771. They imply that for all t ∈ [0, T ], the sequence xn(t) remains in a
bounded set and that the sequence xn(·) is equicontinuous, because their
Lipschitz constants are bounded by α. We then deduce from Ascoli’s Theorem
that the sequence remains in a compact subset of the Banach space C(0, T ;X),
and thus, that a subsequence (again denoted) xn(·) converges uniformly to
some function x(·).

On the other hand, the sequence yn(·) being bounded in L∞(0, T ;X),
the dual of the Banach space L1(0, T ;X), it is weakly relatively compact
thanks to Alaoglu’s Theorem.1 The Banach space L∞(0, T ;X) is contained
in L1(0, T ;X) with a stronger topology.2 The identity map being continuous
for the norm topologies, is still continuous for the weak topologies. Hence the

1 Alaoglu’s Theorem states that any bounded subset of the dual of a Banach space is weakly
compact .
2 Since the Lebesgue measure on [0, T ] is finite, we know that
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sequence yn(·) is weakly relatively compact in L1(0, T ;X) and a subsequence
(again denoted) yn(·) converges weakly to some function v(·) belonging to
L1(0, T ;X).

In summary, we have proved that⎧⎨
⎩

(i) xn(·) converges uniformly to x(·)

(ii) yn(t) converges weakly to y(·) in L1(0, T ;X)

��
The rest of the proof is the consequence of the following:

Theorem 19.2.4 [Convergence Theorem] Let F : X � Y be
a Zaremba map. Consider sequences of Lipschitz evolutions xn(·) ∈
Lip(0, T ;X) and of integrable evolutions ym(·) ∈ L1(0, T ;X) “approximat-
ing” the graph of F in the sense that for all ε > 0 there exists N such that,
for all n ≥ N ,

for almost all t ∈ [0, T ], (xn(t), yn(t)) ∈ Graph(F ) + ε(B ×B) (19.3)

Assume also that sequences xn(·) and yn(·) converge in the following
sense: ⎧⎨

⎩
(i) xn(·) converges uniformly to x(·)

(ii) yn(t) converges weakly to y(·) in L1(0, T ;X)

Then their limits satisfy

for almost all t ∈ [0, T ], y(t) ∈ F (x(t))

Proof. Recall that in a Banach space, the closure (for the normed topology)
of a set coincides with its weak closure (for the weakened topology3).

L∞(0, T ; X) ⊂ L1(0, T ; X)

with a stronger topology. The weak topology σ(L∞(0, T ; X), L1(0, T ; X)) (weak-star
topology) is stronger than the weakened topology σ(L1(0, T ; X), L∞(0, T ; X)) since the

canonical injection is continuous. Indeed, we observe that the seminorms of the weakened
topology on L1(0, T ; X), defined by finite sets of functions of L∞(0, T ; X), are seminorms
for the weak-star topology on L∞(0, T ; X), since they are defined by finite sets of functions
of L1(0, T ; X).
3 By definition of the weakened topology, the continuous linear functionals and the
weakly continuous linear functionals coincide. Therefore, the closed half-spaces and weakly
closed half-spaces are the same. The Hahn–Banach Separation Theorem, which holds in
Hausdorff locally convex topological vector spaces, states that closed convex subsets are
the intersection of the closed half-spaces containing them. Since the weakened topology
is locally convex, we then deduce that closed convex subsets and weakly closed convex
subsets do coincide. This result is known as Mazur’s theorem.
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We apply this result: for every m, the function y(·) belongs to the weak
closure of the convex hull co({yp(·)}p≥m.) It coincides with the (strong)
closure of co({yp(·)}p≥m). Hence we can choose functions

vm(·) :=
∞∑
p=m

apmyp(·) ∈ co({yp(·)}p≥m)

(where the coefficients apm are positive or equal to 0 but for a finite
number of them, and where

∑∞
p=m apm = 1) which converge strongly to y(·) in

L1(0, T ;X). This implies that the sequence vm(·) converges strongly to the
function y(·) in L1(0, T ;X).

Thus, there exists another subsequence (again denoted by) vm(·) such
that4

for almost all t ∈ [0, T ], vm(t) converges to y(t)

Let t ∈ [0, T ] such that xm(t) converges to x(t) in X and vm(t) converges
to y(t) in X . Let p ∈ X� be such that σ(F (x(t)), p) < +∞ and let us choose
λ > σ(F (x(t)), p). Since F is a Zaremba map, x �→ σ(F (x), p) is upper
semicontinuous. Hence there exists a neighborhood V of 0 in X such that

∀ u ∈ x(t) + V , then σ(F (u), p) ≤ λ (19.4)

Let N1 be an integer such that

∀ q ≥ N1, xq ∈ x(t) +
1
2
V

Let η > 0 be given. Assumption (19.3), p.772, of the theorem implies the
existence of N2 and of elements (uq, vq) of the graph of F such that

4 Strong convergence of a sequence in Lebesgue spaces Lp implies that some subsequence
converges almost everywhere. Let us consider indeed a sequence of functions fn converging
strongly to a function f in Lp. We can associate with it a subsequence fnk satisfying

‖fnk − f‖Lp ≤ 2−k ; · · · < nk < nk+1 < · · ·

Therefore, the series of integrals

∞∑
k=1

∫
‖fnk (t) − f(t)‖p

X dt < +∞

is convergent. The Monotone Convergence Theorem implies that the series

∞∑
k=1

‖fnk (t) − f(t)‖p
X

converges almost everywhere. For every t where this series converges, we infer that the
general term converges to 0.
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∀ q ≥ N2, uq ∈ xq(t) +
1
2
V , ‖yq(t)− vq‖ ≤ η

Therefore uq belongs to x(t) + V and we deduce from (19.4) that
⎧⎨
⎩
〈p, yq(t)〉 ≤ 〈p, vq〉+ η‖p‖�
≤ σ(F (uq), p) + η‖p‖�
≤ λ+ η‖p‖�

Let us fix N ≥ max(N1, N2), multiply the above inequalities by the
nonnegative aqm and add them up from q = 1 to ∞. We obtain:

〈p, vm(t)〉 ≤ λ+ η‖p‖�

By letting m go to infinity, it follows that

〈p, y(t)〉 ≤ λ+ η‖p‖�

Letting now λ converge to σ(F (x(t)), p) and η to 0, we obtain:

〈p, y(t)〉 ≤ σ(F (x(t)), p)

Since this inequality is automatically satisfied for those p such that

σ(F (x(t)), p) = +∞

it thus holds true for every p ∈ X�. Hence, the images F (x) being closed and
convex, the Separation Theorem implies that y(t) belongs to F (x(t)). The
Convergence Theorem ensues. ��

19.3 Upper Convergence of Viability Kernels
and Regulation Maps

19.3.1 Prolongation of Discrete Time Evolutions

For mapping sequences to functions and functions to sequences, we introduce
the prolongation operators p0

h and ph and the restriction operator rh defined
in the following way (see for instance Approximation of Elliptic Boundary-
Value Problems, [15, Aubin]):

The prolongation operators p0
h and ph map any discrete time evolution

−→x h := (xh0 , . . . , x
h
n, . . .) to respectively the step function p0

h
−→x h ∈ L1(0,∞;X)

and the piecewise linear function ph−→x h ∈ C(0,∞;X) interpolating this
sequence at the nodes nh:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀ n ≥ 0, ∀ t ∈ [nh, (n+ 1)h[,
(i) p0

h
−→x h(t) := xhn

(ii) ph−→x h(t) := xhn +∇h−→x hn(t− nh) where ∇h−→x hn :=
xhn+1 − xhn

h

(iii)
d

dt
ph−→x h(t) = p0

h∇h−→x h(t)
(19.5)

We set {
(i) ‖−→x h‖∞ := supj≥0 ‖xhj ‖
(ii) ‖ph−→x h‖∞ := supt≥0 ‖p0

h
−→x h(t)‖

and we observe that{
(i) ‖ph−→x h‖∞ ≤ ‖p0

h
−→x h‖∞

(ii) ‖ph−→x h − p0
h
−→x h‖∞ ≤ h‖∇h−→x h‖∞

(19.6)

The restriction operator rh maps any continuous function x(·) ∈
C(0,∞;X) the sequence rhx(·) defined by

∀ j ≥ 0, rhx(·)j := x(hj)

We observe that any continuous function x(·) can be approximated by the
functions (phrhx)(·).

Definition 19.3.1 [Time Discretization of Sets and Systems] Let
K ⊂ X be any subset. We shall say that subsets Kh ⊂ X are discretizations
of the subset K if for all positive ε, there exists hε > 0 such that for all
h ∈]0, hε], Kh ⊂ K + εB.
Consider a control system (f, U). Discrete control systems (fh, Uh) defined
by single-valued maps fh : X × U � X and set-valued maps Uh : X � U
are discretizations of the control systems if for all positive ε, there exists
hε > 0 such that for all h ∈]0, hε],{

Graph (fh) ⊂ Graph(f) + ε(BX ×BU ×BX)
Graph (Uh) ⊂ Graph(U) + ε(BX ×BU) (19.7)

A discrete time evolution −→x h := (xh0 , . . . , x
h
n, . . .) is regulated by the system

(fh, Uh) if, for all n ≥ 0,

{
(i) ∇h−→x hn := fh(−→x hn,−→u hn) (or −→x hn+1 = −→x hn + hfh(−→x hn,−→u hn))
(ii) −→u hn ∈ Uh(−→x hn) (19.8)
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19.3.2 Upper Convergence

These important theorems have a long history, to which participated Pierre
Cardaliaguet and Marc Quincampoix during the 1990s for justifying the
convergence of viability kernels obtained by the viability algorithms.

We begin by studying the conditions under which the prolongations of
viable sequences converge to a viable evolution:

Lemma 19.3.2 [Convergence of Viable Discrete Evolutions] Let
V(Kh, Ch) be the set of sequences −→x h viable in Kh forever or until a date
N when it reaches the target Ch and V(K,C) the set of evolutions x(·)
viable in K forever or until a time T when it reaches the target T (see
Definition 2.2.3, p.49) where T := Nh. Assume that:

1. the environments Kh and targets Ch are discretizations of the environ-
ment K and the target C;

2. sequences −→x h ∈ V(Kh, Ch) satisfy a priori estimates

‖−→x h‖∞ ≤ β and |∇h−→x h‖∞ ≤ β

Then there exists a subsequence (again denoted by) ph−→x h(·) converging
uniformly over compact intervals to a limit x(·) which belongs to V(K,C).
In other words,

Limsuph→0+V(Kh, Ch) ⊂ V(K,C)

Proof. Let us consider a sequence −→x h ∈ Vh(Kh, Ch). Therefore,
d(p0

h
−→x h(s),Kh) ≤ h supj≤N ‖xhj ‖ and d(p0

h
−→x 0
h(Nh), Ch) ≤ h‖xhN‖. Since

Kh ⊂ K + αhB and that Ch ⊂ C + αhB, we infer that

p0
h
−→x h(·) ∈ V(K + h(α+ ‖xh‖∞), C + h(α+ ‖xh‖∞))

Assumptions on the sequence −→x h imply that the sequences ph(·) and
d

dt
ph(·) are bounded. Hence, the Ascoli compactness Theorem implies

that the prolongations ph−→x h(·) remain in a compact subset. Therefore
a subsequence (again denoted by) converges to a limit x(·) uniformly on
compact intervals. It belongs to V(K+h(α+β)B,C+h(α+β)B). For any fixed
h, Lemma 10.3.9, p.388 implies that this set is closed (for the compact con-
vergence). Hence, the limit x(·) belongs to V(K+h(α+β)B,C+h(α+β)B).
Since this holds true for any h, we infer that x(·) belongs to V(K,C). ��
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Viability kernel and regulation maps under approximate control systems
(fh, Uh) converge to the viability kernel and the regulation of the control
system (f, U) in the following sense:

Theorem 19.3.3 [Upper Convergence of Viability Kernels
and Regulation Maps] Let us consider a Marchaud control system (f, U)
and a sequence of time discretizations (fh, Uh) and time discretizations Kh

and Ch. Assume that evolutions (−→x h,−→u h) regulated by the discrete control
systems (19.8), p.775 satisfy the a priori estimates

∃ β > 0 such that sup
h

max(‖−→x h‖∞, ‖−→u h‖∞, ‖∇h−→x h‖∞) ≤ β (19.9)

Then the upper limits of the viability kernels and the graphs of the regulation
maps under the discrete systems (fh, Uh) are contained in the viability kernel
and the graph of the regulation map under the control system (f, U):

{
(i) Limsuph→0+Viab(fh,Uh)(Kh, Ch) ⊂ Viab(f,U)(K,C)
(ii) Limsuph→0+Graph(RKh) ⊂ Graph(RK) (19.10)

Proof. Let us introduce the set-valued map H : X �→ X ×X defined by

H(x) := {(u, v) such that u ∈ U(x) and v := f(x, u)}

We observe that if the system (f, U) is Marchaud (see Definition 11.3.3,
p.454), so is the set-valued map H .

Consider the following discretizations (fh, Uh) of the control system (f, U).
Let us take any x0 = limh→0 x

h
0 where xh0 ∈ Viab(fh,Uh)(Kh, Ch). Then there

exists a discrete evolution −→x h := (xh0 , . . . , x
h
n, . . .) to the system (19.8), p.775

viable in Kh forever or until it reaches the target Ch.
Since the prolongations p0

h
−→x h(·), p0

h
−→u h(·) and p0

h∇h−→x h(·) are step
functions, we infer that for all t,

⎧⎨
⎩

(p0
h
−→x h(t),p0

h
−→u h(t),p0

h∇h−→x h(t)) ∈ Graph (fh)
⊂ Graph(f) + ε(BX ×BU ×BX)
(p0
h
−→x h(t),p0

h
−→u h(t)) ∈ Graph(Uh) ⊂ Graph(U) + ε(BX ×BU )

(19.11)
This can be written

(p0
h
−→x h(t),p0

h
−→u h(t),p0

h∇h−→x h(t)) ∈ Graph(H) + ε(BX ×BU ×BX)

On the other hand, a priori estimates (19.9), p.777 satisfied by the
solutions to the discrete time control system (19.8), p.775 imply that
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max
(
‖p0

h
−→x h‖∞, ‖p0

h
−→u h‖∞,

∥∥∥∥ ddtph−→x h
∥∥∥∥
∞

)
≤ β

Convergence Theorem 19.2.4, with F : H , xh(·) := ph−→x h(·) and
yh(·) := (p0

h
−→u h(·),p0

h∇h−→x h(·)), implies that there exist subsequences (again
denoted by) ph−→x h(·) converging uniformly on compact intervals to a function
x(·) and (p0

h
−→u h(·),p0

h∇h−→x h(·)) converging weakly to y(·) := (u(·), v(·))
in L1(0, T ;X) which satisfy, for almost all t, (u(t), v(t)) ∈ H(x(t)). Since
d

dt
ph−→x h = p0

h∇h−→x h and since |ph−→x h − p0
h
−→x h‖∞ ≤ h‖∇h−→x h‖∞ ≤ hβ

thanks to (19.6), p.775, we infer that v(·) = x′(·) in L1(0, T ;X) satisfy, for
almost all t, (u(t), x′(t)) ∈ H(x(t)), i.e., are governed by the control system

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

Let us denote by

RKh(−→x hn) :=
{−→u hn ∈ Uh(−→x hn) such that −→x hn + hfh(−→x hn,−→u hn) ∈ Kh

}

the regulation map governing the discrete time evolutions −→x h ∈ V(Kh, Ch)
viable in Kh forever or until they reach Ch in finite time. Then Lemma 19.3.2,
p.776 implies that x(·) belongs to V(K,C).

This implies that x0 belongs to the viability kernel Viab(f,U)(K,C).
Since the limit x(·) is viable in K until it reaches C, then, for almost
all t, f(x(t), u(t)) = x′(t) ∈ TK(x(t)), In other words, for almost all t,
u(t) ∈ RK(x(t)).

This means that

Limsuph→0+Viab(fh,Uh)(Kh, Ch) ⊂ Viab(f,U)(K,C)

and
Limsuph→0+Graph(RKh) ⊂ Graph(RK)

This prove the upper convergence of viability kernels with targets and of the
graphs of the regulation maps. ��

Theorem 19.3.4 [Restrictions of Solutions] Let us assume that F :
X � X is Lipschitz and bounded by ‖F‖∞ := supx∈X ‖F (x)‖ < +∞. We
set

α :=
‖F‖Λ‖F‖∞

2
Setting

Gαh := 1 + hF + αh2B
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the restriction operator rh maps the solution map SF into the solution map−→S Gα
h
:

rh (SF (x0)) ⊂ −→S Gα
h
(x0) (19.12)

Assume furthermore that
Gh(x) − x

h
⊂ F (x) + εB. The map ph satisfies

{
ph(

−→S Gh
(xh0 )) ⊂ SF (x0)

+e‖F‖Λt‖x0− xh0‖+ h(‖F‖∞ + ε)(e‖F‖Λt − 1)

Proof. Take any solution x(·) ∈ SF (x0) to the differential inclusion x′ ∈ F (x),
which satisfies ∀ t ≥ s ≥ 0,

x(t)− x(s) ∈
∫ t

s

F (x(τ))dτ

Since F is bounded, we deduce that

‖x(t)− x(s)‖ ≤ (t− s)‖F‖∞ (19.13)

On the other hand, since F is Lipschitz,

F (x(τ)) ⊂ F (x(s)) + ‖F‖Λ‖x(τ) − x(s)‖B,

and consequently

x(t)− x(s) ∈ (t− s)
[
F (x(s)) + ‖F‖Λ

(∫ t

s

‖x(τ) − x(s)‖dτ
)
B

]
(19.14)

Hence:

∀ t ≥ s ≥ 0, x(t) − x(s) ∈ (t− s)F (x(s)) +
‖F‖Λ‖F‖∞

2
(t− s)2B

and thus, for j = 0, . . . , N − 1,

x((j + 1)h) ∈ x(jh) + hF (x(jh)) + αh2B =: Gαh(x(jh))

The sequence rhx is then a solution to the discrete system Gαh .

Consider now a solution −→x h starting at xh0 to the discrete system Gh
and its associated piecewise linear interpolation ph−→x h. By the Filippov
Theorem 11.3.9, we know that there exists a solution xh(·) ∈ SF (x0)
satisfying inequality

{∥∥xh(t)− ph−→x h(t)
∥∥

≤ e‖F‖Λt
(
‖xh0 − x0‖+

∫ t
0 d(ph

−→x h)′(s), F (ph−→x h(s))e−‖F‖Λsds
)
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But, on each interval [jh, (j + 1)h[,

(ph−→x h)′(s) = vhj :=
xhj+1 − xhj

h
& ph−→x h(s) = xhj + (s− jh)vhj

Since vhj ∈ F (yhj (jh)) + εB and since F is Lipschitz, we deduce that
⎧⎨
⎩
d(ph−→x h)′(s), F (ph−→x h(s))
≤ ‖F‖Λ(‖yhj − xhj − (s− jh)vhj )‖
≤ h‖F‖Λ((‖F‖∞ + ε))

Therefore
⎧⎨
⎩
e‖F‖Λt

∫ t
0
d(ph−→x h)′(s), F (ph−→x h(s))e−‖F‖Λs

≤ he‖F‖Λt‖F‖Λ(‖F‖∞ + ε)
∫ t
0
e−‖F‖Λds

= h(‖F‖∞ + ε)(e‖F‖Λt − 1)

We thus infer that
∥∥xh(t)− ph−→x h(t)

∥∥ ≤ e‖F‖Λt‖xh0 − x0‖+ (ε+ h(‖F‖∞ + ε))(e‖F‖Λt − 1) ��

Theorem 19.3.5 [Convergence of Viability Kernels] Assume f that
F is Lipschitz, bounded and satisfy

1 + hF +
‖F‖∞‖F‖Λ

2
h2B ⊂ Gh

Then
ViabF (K,C) ⊂ Liminfh→0+ViabGh

(K,C)

Proof. Let x0 belong to the viability kernel ViabF (K,C) of a closed subset
K with closed target C. Since F is Lipschitz and bounded, there exists a
solution x(·) to the differential inclusion x′ ∈ F (x) viable in K forever or
until it reaches C. Theorem 19.3.4 implies that its image rhx is a solution to
the discrete system Gh, which is then viable in K until it reaches C. Hence
(rhx(·))(0) belongs to ViabGh

(K,C). ��

Remark. By taking constant environments and targets, we infer that

ViabF (K,C) ⊂ Liminfh→0+ViabGh
(K,C)

The limit of the viability kernels under Gh is thus equal to the viability kernel
under F . ��
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19.4 Proofs of Viability Theorems

We gather in this section the proof of the Viability Theorem as well as a
series of more abstract ones needed to derive it.

We begin by proving the necessary conditions. Next, we prove a general
Viability Theorem valid in a relatively compact environment K (this means
that each element of x0 ∈ K has a compact neighborhood BK(x0, r) :=
K ∩ (x0 + rB)). In a finite dimensional vector space, open subsets, closed
subsets, intersections of open and closed subsets are relatively compact.
When the environment is open, we obtain the generalization to differential
inclusions of the Peano Theorem on the existence of a solution to a differential
equation with continuous right hand side. When the environment is closed,
we derive the local Viability Theorem, when solutions are allowed to blow up
in finite time. Additional linear growth condition excludes this possibility for
obtaining the Viability Theorem 11.3.4, p.455 of the survival kit 2.15, p. 98,
that we did use in most parts of the book.

19.4.1 Necessary Condition for Viability

Proposition 19.4.1 [Necessary Condition] Let us assume that F is
a Zaremba map. Let us consider a solution x(·) to differential inclusion
(19.17) starting at x0 and satisfying

∀ T > 0, ∃ t ∈]0, T ] such that x(t) ∈ K (19.15)

(Naturally, viable solutions do satisfy this property.) Then

F (x0) ∩ TK(x0) �= ∅

Proof. By assumption (19.15), there exists a sequence tn → 0+ such that
x(tn) ∈ K. Since F is Zaremba, the support functions σ(F (x(·)), p) are upper
semicontinuous at x0. We thus can associate with any p ∈ X� and ε > 0 an
ηp > 0 such that

∀ τ ∈ [0, ηp], < p, x′(τ) > ≤ σ(F (x(τ)), p) ≤ σ(F (x0), p) + ε‖p‖�

By integrating this inequality from 0 to tn, setting vn :=
x(tn)− x0

tn
and

dividing by tn > 0, we obtain for n larger than some Np

∀ p ∈ X�, ∀ n ≥ Np, 〈p, vn〉 ≤ σ(F (x0), p) + ε‖p‖�
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Therefore, vn lies in a bounded subset of a finite dimensional vector space,
so that a subsequence (again denoted) vn converges to some v ∈ X satisfying

∀ p ∈ X�, < p, v > ≤ σ(F (x0), p) + ε‖p‖�

By letting ε converge to 0, we deduce that v belongs to the closed convex
hull of F (x0).

On the other hand, since for any n, x(tn) = x0 + tnvn belongs to K, we
infer that v belongs to the contingent cone TK(x0) since

⎧⎨
⎩

lim infn→∞ dK(x0 + hv)/h

≤ limn→∞ ‖x0 + tnv − x(tn)‖/tn = limn→∞ ‖vn − v‖ = 0

The intersection F (x0) ∩ TK(x0) is then nonempty, so that the necessary
condition ensues. ��

19.4.2 The General Viability Theorem

Theorem 19.4.2 [General Viability Theorem] Let F : X � X be a
Zaremba map. Assume that K is relatively compact and satisfy tangential
condition (11.5), p. 447:

∀x ∈ K∩
◦
B (x0, r), F (x) ∩ T ��K (x) �= ∅ (19.16)

Then for any initial state x0 ∈ K, there exist a strictly positive T > 0
and a solution on [0, T [ to differential inclusion

for almost all t ∈ [0, T ], x′(t) ∈ F (x(t)) (19.17)

starting from x0, viable in K.

Proof. We construct approximate solutions by modifying Euler’s method
to take into account the viability constraints, then deduce from available
estimates that a subsequence of these solutions converges in some sense to
a limit, and finally, check that this limit is a viable solution to differential
inclusion (19.17).

1. Construction of Approximate Solutions
By assumption, there exists r > 0 such that BK(x0, r) := K ∩ (x0 + rB)
is compact. We set
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C := F (BK(x0, r)) +B, T := r/‖C‖

and observe that C is compact.
2. Theorem 11.2.7, p.447 implies that for all ε > 0, and for any “graphical

approximation” Fε (in the sense that Graph(Fε) ⊂ Graph(F )+ ε(B×B))
of F , then

{
∃ η(ε) > 0 such that ∀x ∈ BK(x0, r), ∀h ∈ [0, η(ε)] ,
(x+ hF (x)) ∩BK(x0, r) �= ∅ (19.18)

Setting Gh(x) := (x+ hF (x)) ∩BK(x0, r), we see that this discretization
of the set-valued map F governs viable discrete evolutions −→x h starting
from X0 ∈ K defined by

xhj+1 ∈ (xhj + hF (xhj )) ∩BK(x0, r)

viable in BK(x0, r) for j = 0, . . . , Jh where Jh is the smallest integer
largest than T :=

r

‖C‖ . Indeed, inequality

‖xhj − x0‖ ≤
i=j−1∑
i=0

‖xhi+1 − xhi ‖ ≤
i=Jh−1∑
i=0

h
∥∥vhj ∥∥ ≤ Jh‖C‖

implies that the discrete evolution is viable in K and in the ball B(x0, r)
on the interval [0, T ]. It satisfies the a priori estimates

‖−→x h‖∞ ≤ β and |∇h−→x h‖∞ ≤ β (19.19)

3. They imply a priori estimates (19.9), p.777 of the Convergence Theo-
rem 19.3.3, p.777. It implies that the limit of a converging subsequence is
a solution to the differential inclusion, viable inK thanks to Lemma 19.3.2,
p.776. ��

19.4.3 The Local Viability Theorem

Recall that by Definition 4.3.3, p.135, the minimal time functional

�(K,C)(x(·)) := inf{t ≥ 0 | x(t) ∈ C & ∀s ∈ [0, t], x(s) ∈ K }

is infinite when it is viable in K \C and finite when it captures the target C.

Theorem 19.4.3 [Local Viability Theorem] Let K ⊂ X and C ⊂ K be
two closed subsets. Assume that the right hand side F of inclusion x′ ∈ F (x)
is Zaremba and satisfies tangential condition (11.5), p. 447:
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∀x ∈ K \C, F (x) ∩ T ��K (x) �= ∅ (19.20)

Then for any initial state x0 ∈ K \ C, there exists a strictly positive
T � > 0 and a solution on [0, T �[ to differential inclusion x′(t) ∈ F (x(t)) on
the interval [0, T �[, starting from x0, viable in K forever or until it reaches
C where T � satisfies

⎧⎨
⎩

either T � = �(K,C)(x(·))
or T � < �(K,C)(x(·)) and lim supt→T�− ‖x(t)‖ = ∞

“blows up” before reaching the target C
(19.21)

Proof. 1. The subset K \ C is locally compact since it is the intersection
closed subset and an open subset and since the dimension of X is finite.
If x0 belongs to K \ C, there exists ρ > 0 such that (K \ C) ∩B(x0, ρ) is
compact. By Theorem 19.4.2, p.782, there exists an evolution x(·) governed
by differential inclusion x′ ∈ F (x) viable in (K\C)∩B(x0, ρ) on an interval
[0, S[ for some positive S.

2. We claim that starting from any x0, the evolution can be extended by an
evolution defined on a maximal [0, T �[ which is viable inK\C either forever
(�(K,C)(x(·)) = +∞) or until it reaches C in finite time �(K,C)(x(·)).
We introduce the set of pairs {(T, x(·))} where x(·) is an evolution governed
by x′ ∈ F (x) viable in K \ C forever or reaches C in finite time.
We define the order relation ≺ by

(T, x(·)) ≺ (S, y(·)) if and only if T ≤ S & ∀ t ∈ [0, T [, x(t) = y(t)

Since every totally ordered subset has obviously an upper bound, Zorn’s
Lemma implies that any solution y(·) defined on some interval [0, S[ can
be extended to an evolution x(·) defined on a maximal interval [0, T �[.

3. We shall deduce from the maximality of (T �, x(·)) that if T � is finite, we
cannot have

γ := lim sup
t→T�−

‖x(t)‖ < �(K,C)(x(·))

Indeed, if γ < +∞, there would exist a constant η ∈]0, T �[ such that

∀ t ∈ [T � − η, T �[, ‖x(t)‖ ≤ γ + 1

Since F is upper semicontinuous with compact images on the compact
subset K ∩ (γ + 1)B, we infer that

∀ t ∈ [T � − η, T �[, x′(t) ∈ F (K ∩ (γ + 1)B), which is compact

and thus bounded by a constant ρ. Therefore, for all τ, σ ∈ [T � − η, T �[,
we obtain:
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‖x(τ) − x(σ)‖ ≤
∫ τ

σ

‖x′(s)ds‖ ≤ ρ|τ − σ|

Hence the Cauchy criterion implies that x(t) has a limit from the left when
t → T �. We denote by x(T �) this limit, which belongs to K because it is
closed. Let Tk < T � converge to T �. Equalities

x(Tk) = x0 +
∫ Tk

0

x′(τ)dτ

and Lebesgue’s Theorem imply that by letting k→∞, we obtain:

x(T �) = x0 +
∫ T�

0

x′(τ)dτ

(a) either x(T �) ∈ K\C, and we can find a viable solution starting at x(T �)
on some interval [T �, S[ where S > T � thanks to Theorem 19.4.2, p.782,
a contradiction to the maximality of (T �, x(·));

(b) or x(T �) ∈ C and thus, T � ≥ �(K,C)(x(·)), a contradiction of T � <
�(K,C)(x(·)). ��

19.4.4 Proof of the Viability Theorem 11.3.4

We have gathered all the tools needed to prove this Theorem.
Linear growth of F or other conditions imply an a priori estimate of the

form ‖x(t)‖ ≤ ϕ(t) where ∀ t ≥ 0, ϕ(t) < +∞, so that the second condition
T � < +∞ and lim supt→T�− ‖x(t)‖ = ∞ of (19.21), p.784 being excluded,
there exits a solution which exists for all positive t and viable in K without
blowing up in finite time.

Since the growth of F is linear,

∃ c ≥ 0, such that ∀ x ∈ Dom(F ), ‖F (x)‖ ≤ c(‖x‖+ 1)

Therefore, any solution to differential inclusion (19.17) satisfies the estimate:

‖x′(t)‖ ≤ c(‖x(t)‖ + 1)

The function t → ‖x(t)‖ being locally Lipschitz, it is almost everywhere
differentiable. Therefore, for any t where x(t) is different from 0 and
differentiable, we have

d

dt
‖x(t)‖ =

〈
x(t)
‖x(t)‖ , x

′(t)
〉
≤ ‖x′(t)‖
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These two inequalities imply the estimates:

‖x(t)‖ ≤ (‖x0‖+ 1)ect & ‖x′(t)‖ ≤ c(‖x0‖+ 1)ect (19.22)

Hence, for any T � > 0, we infer that

lim sup
t→T�−

‖x(t)‖ < +∞

Theorem 19.4.3 implies that we can extend the solution on the interval
[0, �(K,C)(x(·))[. ��

Remark. One can find an extension of Viability Theorem to the case
of time dependent differential inclusions when the dependence on time is
measurable (see Sect. 11.7, p. 395, of Viability Theory, [18, Aubin]. We
only reproduce the statement of the viability theorem on measurable time
dependence by Peter Tallos and refer to the literature for subsequent
results. ��

Theorem 19.4.4 [Measurable Time Dependence] Let X be a finite
dimensional vector-space X and F : R+×K � X be a nontrivial set-valued
map satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i) ∀ x ∈ K, t� F (t, x) is measurable

ii) ∀ t ≥ 0, x� F (t, x)
is upper semicontinuous with compact convex values

iii) ∃ c(·) ∈ L1(0,∞;R+) such that ‖F (t, x)‖ ≤ c(t)(‖x‖+ 1)

If the tangential condition

for almost all t ≥ 0, F (t, x) ∩ TK(x) �= ∅

holds, the environment K is viable under F : for any initial stage x0 ∈ K,
there exists a solution to the differential inclusion x′(t) ∈ F (t, x(t)) starting
at x0 which is viable in K.

19.4.5 Pointwise Characterization of Differential
Inclusions

A solution x(·) to a Marchaud differential inclusion being Lipschitz, is
almost everywhere differentiable (in the usual sense), but also graphically
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differentiable in the sense that its (contingent graphical) derivative of the
graphical derivative of x(·). Theorem 18.5.4, p.739 states that the graphical
derivative Dx(t) := Dx(t, x(t)) is defined by

Graph(Dx(t)) := TGraph(x)(t, x)

has always non empty values, in particular, for the time direction 1:

∀ t ≥ 0, ∀ u ∈ X, Dx(t)(1) = Limsuph→0+

{
x(t + h)− x(t)

h

}
�= ∅

We show that we can trade the “almost all t” in the definition of differential
inclusions using classical derivatives by the “all t” by using graphical
derivatives.

Lemma 19.4.5 [Pointwise Characterization of Solutions to
Differential Inclusions] Assume that the right hand side F of the
differential inclusion is Marchaud. The two following statements are
equivalent for characterizing a solution x(·) to the differential inclusion
“x′ ∈ F (x)”:

{
(i) for almost all t ≥ 0, x′(t) ∈ F (x(t))
(ii) for all t ≥ 0, Dx(t)(1) ∩ F (x(t)) �= ∅ (19.23)

Proof. Let us consider a solution x(·) to differential inclusion

for almost all t ∈ [0, T ], x′(t) ∈ F (x(t))

in the usual sense. By definition, the graph

Graph(x) := {(t, x(t))}t≥0 ⊂ R+ ×X

of the solution is viable under the auxiliary differential inclusion
{

(i) τ ′(t) = 1
(ii) x′(t) ∈ F (x(t))

The Viability Theorem 11.3.4, p. 455 states that, for any t ≥ 0, there
exists u ∈ F (x) such that

(1, u) ∈ ({1} × F (x)) ∩ TGraph(x)(t, x)

and conversely.
This means that for every t ≥ 0, there exists u ∈ F (x) such that u ∈

Dx(t)(1). ��
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G-regulation map, 484
P -exhaustive, 465

P exhaustive envelope, 465
T -capture basin, 133

T -viability kernel, 133
m-order inertia function, 227

(canonical) extension, 719
(contingent) derivative, 739

(inverse) core, 720
(weak) sensitivity function, 355

Absolutely continuous evolution, 211
Absorption basin, 89

Absorption basin of C invariant in K, 72,
89

Adjustment map, 221

Alaoglu’s theorem, 771
Amalgam, 209, 237, 423, 424
Amalgam of set-valued maps, 725

Amalgamated system, 235, 424
Antiextensive, 80

Attracting function, 143
Attracting set, 349

Attraction basin, 20, 47, 347
Attraction functional, 143

Attractor, 47, 88, 349
Attractor map, 349
Aubin constant, 369, 371

Aubin’s property, 366, 369
Auxiliary state, 263

Backward attractor, 349

Backward attractor map, 349
Backward capture basin, 279
Backward evolutionary system, 100, 277

Backward invariance, 100
Backward invariant, 101

Backward invariant subset, 278

Backward part of an evolution, 275
Backward regulation map, 462

Backward shift evolution, 276, 690
Backward shift operator, 276

Backward time-dependent evolutionary
system, 310

Backward time-independent auxiliary
system, 311

Backward time-independent evolutionary
system, 310

Backward viability kernel, 279
Backward viable subset, 278

Baire’s theorem, 368

Ball, 715
Barrier cone, 715

Barrier property, 408

Bi-conjugate function, 756
Bidual, 715

Bilateral fixed point, 381
Bilateral viability kernel, 279

Bipolar cone, 734

Bipolar property, 734
Bolza problem, 162, 176

Bouligand tangent cone, 733
Boundary condition, 526

Boundary Hamiltonian, 475

Boundary of the toll set, 743
Bounded-valued, 723

Brachistochrone, 294
Burgers equation, 631

Bursting evolution, 322

Cadence map, 515
Cadences, 505

Canonical extension, 720
Cantor set, 80
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Cantor Ternary Map, 81
Capturability tube, 133

Capture basin, 20, 86, 182
Capture basin of C viable in K, 71, 86

Carrying capacity, 248
Cascade of cells, 329

Cascade of environments, 328

Cauchy condition, 684
Cauchy initial condition, 586

Causal map, 524
Causal variable, 524

Celerity, 528

Celerity function, 579
Celerity map, 589

Celerity traffic value, 580
Cell, 322

Centered rarefaction, 647
Characteristic control system, 579, 624

Characteristic function, 724, 726

Characteristic map, 726
Characteristic tychastic system, 612

Characteristics (of a partial differential
equation), 633

Clarke tangent cone, 733

Closed, 722

Closed convex process, 367, 722
Closed loop controls, 65

Closed set-valued map, 722
Closed-valued, 723

Closure, 714
Cluster basin, 347

Co-derivative, 740

Coefficient (of a differential equation), 204
Colliding evolutions, 299

Collision cost, 299
Collision kernel, 298, 299

Collision time, 299

Commodity, 620
Compact-valued, 723

Comparative statics, 302
Complement of the toll set, 743

Complexity index, 497
Composition product of set-valued maps,

723
Concatenation, 422

Concatenation of evolutions, 727
Concealed tychastic domain, 611

Congestion function, 566, 580
Congestion variational principle, 580

Connecting matrices, 497

Connection basin, 291, 341, 413
Connection cost, 293

Conservation law, 631
Consistent, 126

Consistent (nominal evolution), 587
Consistent (price map and transaction cost

function), 624
Constrained distance, 142

Constrained minimal time functional, 135,
392

Constraint function, 683, 685, 708

Contingent, 442
Contingent cone, 442, 733

Contingent temporal preorder, 306
Contingentes, 440

Contingently epidifferentiable, 748
Control system, 457

Controllability basin, 21
Controlled system, 59

Convex set-valued map, 722
Convex-valued, 723

Convexified derivative, 363, 366, 367, 370,
372, 740

Convexified epiderivative, 698, 749

Convexified tangent cone, 447, 732
Core, 89, 323, 720
Core of the toll set, 743

Costate variable, 524, 528
Cournot map, 288, 551

Cournot regulation map, 551
Crisis function, 152, 269, 319, 326, 327

Crisis time, 327
Critical density interval, 571

Critical map, 216, 255, 266
Critical zone, 216, 218, 426

Cyclic evolutionary systems, 234
Cyclic evolutions, 233

Decreasing envelope, 593, 596
Delta, 609

Departure time, 580, 691
Departure traffic value, 580

Detection basin, 286, 287
Detection tube, 287

Detector, 313
Diagonal condition, 297

Diagonal of a subset, 293, 295, 299, 300
Differentiable, 739, 742

Dilation, 154
Direct approach, 5, 234, 247

Disconnecting, 79
Discount rate, 682, 708
Discrete invariance kernel of K with target

C, 72

Discrete logistic system, 52
Discrete run, 505

Distance to a set, 715
Distribution, 766
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Distributivity property, 595, 714
Domain, 131, 719
Dual Frankowska property, 478–480

Dual space, 715
Duality product, 571
Dynamic programming equation, 169, 539,

696

Economic value, 620
Economic value function, 621
Economic variational principle, 624

Egress set, 507
Ekeland’s variational principle, 751
Emergence, 219

Envelope, 108
Environmental cost function, 130
Epi-closure, 745, 746

Epi-envelope, 745, 746
Epiderivative, 542

Epigraph, 131, 172, 742, 745
Epigraphical convergence, 767
Episolution, 683

Epsilon, 609
Equilibrium, 208, 332
Equilibrium map, 332

Equilibrium subset, 183
Equilibrium theorem, 360
Erosion, 154

Eupalinian distance, 294, 295
Eupalinian evolution, 292

Eupalinian function, 303
Eupalinian kernel, 292
Eventual consequence, 306

Evolutionary system, 70
Exact capturability tube, 133
Exercise time, 607

Exit function, 20, 135, 136, 208, 326
Exit functional, 135
Exit set, 184, 206, 235, 396

Exit subset, 208
Exit time, 135

Expansion fan, 647
Explicit viability multiplier, 493
Exponential attraction basin, 147

Exponential Lyapunov function, 147
Exposition map, 609
Exposition of a portfolio, 609

Extended functions, 131, 527, 726
Extension, 722

Fatou dust, 77

Feedbacks, 18, 65
Fenchel conjugate function, 756
Fenchel Inequality, 573, 612

Filippov property, 459
Filled-in Julia set, 76, 77
Final scalar product, 736

Finite run, 505
Fixed point, 51
Flare envelope, 112

Floor, 610
Flow function, 571
Flows, 284, 285, 567, 571, 611

Fluctuating evolution, 50, 322, 346
Fluctuation basin, 29, 324, 331

Fluctuation property, 341
Focus, 719
Forward evolution, 273

Forward part of an evolution, 275
Fréchet, 727
Fractal dimension, 83

Frankowska property, 104, 462, 463
Full evolution, 276
Fundamental celerity diagram, 572

Fundamental density diagram, 568
Fundamental diagram, 563, 567, 568

Generalized occupational measure, 166

Geodesic distance, 295
Glideslope, 110
Graph, 12, 429, 719

Graph of a set-valued map, 719
Graph of function, 132

Graphical convergence, 738, 767
Graphical restriction, 507, 725
Graphical upper limits of set-valued maps,

738

Greeks, 608
Greenshields flow function, 577
Grid, 96

Hamiltonian, 174, 439, 475, 684

Hamiltonian function, 524
Heavy adjustment map, 222

Heavy evolutions, 63, 222, 268, 495
Heteroclines, 341
Heteroclinic basin, 341

Hierarchical system, 501
History, 276
Homocline, 341

Homoclinic basin, 341
Hutchinson map, 80

Hybrid differential inclusion, 510
Hyperspace, 714, 719, 720
Hypograph, 132

Hyposolution, 683
Hysteresis, 237
Hysteresis cycle, 237
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Hysteresis loop, 237
Hysteresis property, 260, 261
Hysteron, 237

Image, 719

Implicit portfolio problem, 610
Implicit tychastic volatility, 611
Impulse, 236

Impulse evolutionary system, 508
Impulse models, 234
Impulse set of a run, 505

Impulse time, 505
Impulse viability oscillator, 235
Increasing, 593
Increasing envelope, 594

Indicator function, 176
Indicators, 184, 683, 743
Inert evolution, 208, 266

Inert hysteresis cycle, 241
Inert regulation map, 216, 254, 265
Inertia function, 210, 253, 262

Inertia principle, 203, 204, 422, 426
Inertia threshold, 203, 206, 207, 218, 234,

253
Inf-compact, 594, 744

Inf-norm, 371
Infinite run, 505
Ingress set, 507

Initial time map, 539
Inner semicontinuity, 730
Interest rate, 620
Intergenerational constraints, 158

Intergenerational valuation function, 159
Interior, 714
Internal condition, 524

Invariance envelope, 421
Invariance kernel of K with target C, 89
Invariant, 95

Invariant absorption basin, 603, 608, 612
Invariant outside a target, 72, 90
Invariant set under a set-valued map, 100

Inverse approach, 5, 234, 247
Inverse focus, 720
Inverse image, 85, 323, 720
Inverse map, 12, 719

Inverse problem, 377
Isolated, 72, 86
Iterated function system, 80

Jerk, 226
Julia set, 30, 76, 77
Jump, 506

Kairos, 218, 224

Lagrangian, 579, 682, 708
Lamarckian systems, 501
Law of a random variable, 434

Lax Principle, 366
Lax-Hopf formula, 469, 555, 582

Lax-Hopf value function, 554
Lax-Oleinik formula, 542, 558

Legendre property, 759
Level function of a tube, 430, 432, 745

Level set of an extended function, 209, 429,
743

Limit map, 345
Limit of sets, 416

Limit set, 344
Lipschitz constant, 368

Lipschitz evolutionary system, 386
Lipschitz norm, 386, 771

Local inf-norm, 370
Local viability kernel, 397

Locally bounded set-valued map, 451
Locally compact subset, 444
Locally invariant, 95

Locally stable under translation, 95
Locally viable, 95

Locations, 510
Lower level map, 429

Lower limit of sets, 728
Lower semicontinuous, 527, 729

Lower semicontinuous function, 744
Lyapunov evolution, 21
Lyapunov function, 20, 185

Macroeconomic value function, 622
Macrosystem, 126

Mandelbrot function, 76
Marchaud function, 529

Marchaud map, 384
Marginal function, 731

Mark, 423, 724
Mathematical striptease, 10

Max-Plus algebra, 468
Max-Plus morphism, 468
Maximal flow, 571, 574, 578

Maximal temporal window, 396
Maximum Theorem, 731

Mayer problem, 162
Mazur’s theorem, 772

Measurement map, 316
Membership cost, 743

Meta variational inequalities, 494
Metaregulation map, 484
Metasystem, 200, 211, 483

Metric regularity, 367
Micro-macro system, 171
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Microsystem, 126
Minimal congestion regulation map, 599
Minimal length, 140
Minimal length function, 20, 140, 294

Minimal time, 135
Minimal time evolutions, 21, 139, 393
Minimal time function, 20, 135, 136, 326

Minimax Theorem, 755
Minkowski difference, 154, 465, 714
Minkowski sum, 714

Monotone tube, 429
Monotone set-valued map, 68
Monotonic map, 332

Monotonic cell, 302, 332
Moreau-Rockafellar subdifferential, 758
Morphological equation, 354

Moskowitz tube, 588
Motive, 505

Newton Basin, 364
Newton system, 363

Newtonian inertia function, 213
Nontrivial (function), 743

Objective function, 613

Observation map, 316
Occupational measure, 165, 166
Open loop, 13
Open loop controls, 65

Optimal evolution, 21
Optimal map, 539
Outer semicontinuous, 730

Painlevé-Kuratowski lower limit, 728
Painlevé-Kuratowski upper limit, 344, 728
Parameter, 58

Parameter identification, 155, 317, 427
Partition, 323, 721
Path-dependent, 277

Peano’s Theorem, 444
Perfect, 80
Periodic evolution, 47, 233
Permanence kernel, 26, 269, 323, 326

Permanence property, 341
Permanent evolution, 50, 322, 346
Persistent, 396

Persistent evolutions, 21, 139, 184, 206,
208, 235, 393, 425, 426

Persistent evolutions under constant
controls, 208

Persistent kernel, 395

Pointwise inf-norm, 370
Polar cone, 715, 734
Popper (Karl), 306

Portfolio valuation, 607
Portfolio variational principle, 613
Preisach hysteresis loop, 236
Preisach hysteron, 236

Preorder, 306
Price, 620
Price (of one share), 607

Price map, 622
Process, 722
Projector (of best approximation), 735

Proper, 505, 743
Pseudo-Lipschitz modulus, 369
Pseudo-Lipschitzianity, 366

Punctuated equilibrium, 204, 216
Punctuated regulon, 216, 220

Quadratic Map, 81
Qualitative analysis, 302

Qualitative cells, 274, 302, 330
Qualitative differential inclusion, 510
Qualitative physics, 302

Quantized control, 209, 422, 423

Ramp controls, 208
Ramp evolution, 208
Reachable map, 284, 354, 514

Reachable tube, 285
Recurrent evolution, 322
Redundancy, 358

Regulated system, 59, 438
Regulation law, 492
Regulation map, 73, 98, 102, 169, 422, 437,

439, 460, 488, 492, 496, 704

Regulon, 47
Reinitialization map, 513
Reinitialized state, 505

Repeller, 72, 86, 101, 183, 531
Repelling set, 349
Repulsiveness domain, 148
Reset map, 236, 507

Reset state, 505
Restriction, 756
Retroaction, 63

Retroaction map, 527
Return (of an asset), 607
Return portfolio value, 613

Risky asset, 607

Safe touch down envelope, 115
Safety function, 152, 153
Safety functional, 152

Second-order inertia function, 226
Section of an extended function, 429
Selection procedure , 482
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Selections, 439, 481, 722
Self similar expansion wave, 647
Semi-group, 284

Semi-group property, 284, 285
Semi-permeability, 328, 348

Semi-permeability property, 91, 407, 408
Sensitivity basin, 357

Sensitivity function, 320
Sensor map, 316
Separated, 72, 90

Separation function, 148
Separation Theorem, 715

Set-valued map, 12, 719
Shock, 642

Shooting methods, 18, 29, 75
Similarities, 84

Sleek (set-valued map), 494
Slow evolutions, 487
Slow solution, 482

Smooth heavy hysteresis cycle, 239
Sole, 466, 477

Source, 86
Speed limit, 235, 253

Spike evolution, 348
Spot cost, 683, 708

Spot cost function, 130
Stable, 354
Stable in the sense of Lyapunov, 354

Stable under translation, 95
State space, 45

Stationary evolutions, 46
Stochastic core, 433

Striking price, 609
Strong sensitivity function, 355
Structured characteristic system, 530

Structured system, 126
Structuring element, 154

Structuring variable, 524
Subdifferential, 751

Subdifferential of a convex function, 528
Subgradients, 751

Substratum, 515
Support function, 529, 715
Support of the law, 434

Tangent cone, 442
Tangent cones to convex sets, 733

Tangential Frankowska Property, 461
Target function, 683, 685, 708

Temporal window, 396
Tensor product, 498
Theta, 608

Time scale, 45
Time-dependent evolutionary system, 309

Time-independent auxiliary system, 310
Timing, 218
Titanic effect, 239, 240, 258

Topological regular, 714
Topologically transitive, 349, 358
Totally disconnected, 80

Touch down envelope, 112
Tracking property, 670
Tracking solution, 634

Traffic density, 567
Traffic domain map, 568

Traffic profile, 567, 584
Trajectory, 45
Transaction, 620

Transaction cost function, 621
Transaction value, 620
Transgression function, 152, 153

Transgression functional, 152
Transient cost function, 130
Transition function, 232

Transversality, 392
Transversality condition, 492

Trapezoidal celerity function, 575
Trapezoidal density function, 574
Trapezoidal flow function, 574, 575

Trapping set, 86
Travel time, 580
Travel traffic value, 580

Tube, 429
Tychastic controlled system, 59

Tychastic domain, 607, 610
Tychastic map, 89
Tychastic regulated system, 59

Tychastic system, 59, 89, 457
Tychastic volatility, 607, 610
Tyche, 47, 60

Unit ball, 714

Upper epilimit, 747
Upper limit of sets, 416, 728

Upper semicompact, 729
Upper semicontinuous, 729
Utility function, 611

Valuation function, 156, 162, 533, 684, 689

Value flow, 622
Value function, 125, 684, 689
Valuemeter, 644, 654

Variational inequalities, 490
Verhulst feedback, 249

Versatility, 130, 204
Viability algorithms, 18
Viability congestion function (associated

with the traffic condition), 580
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Viability constraint, 524
Viability discrepancy, 486
Viability economic value, 624
Viability envelopes, 421
Viability feedback, 109
Viability graphical solution, 172
Viability kernel, 20, 71, 86, 182, 605
Viability kernel of K with target C, 71, 86
Viability matrices, 497
Viability matrix, 495
Viability multipliers, 486
Viability niche, 216, 235
Viability partition, 279
Viability solution, 633, 663, 665, 683
Viability solution (to a Hamilton–Jacobi–

Bellman equation), 681
Viability tube, 133
Viability valuation of the portfolio, 613
Viable, 95, 505
Viable (evolutions viable in a environment),

71
Viable (evolutions viable in a subset), 49

Viable equilibrium, 332
Viable geodesic, 294, 295
Viable outside a target, 72, 86
Viable reachable map, 312
Viable-capture basin, 530
Viscosity property, 463
Viscosity solution, 463, 753
Visiting kernel, 303
Volatility, 130, 607
Volterra inclusion, 290
Volterra property, 315

Walras law, 439, 475, 478, 630
Walras normal to a set, 475
Warning signals, 218, 225
Warning time, 218, 223, 224, 239
Watershed, 392
Weak derivative, 681
Weighted inf-convolution, 762

Zaremba map, 770
Zeno sequence, 727
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