
Chapter 6
Spatial Structure

6.1 Subdivided Populations and the Structured Coalescent

Most models of spatially structured populations have the same basic format. The
population is assumed to be subdivided into demes, which one can think of as
‘islands’ of population. The demes sit at the vertices of a graph and interaction
between the subpopulations in different demes is through migration (or more accu-
rately exchange) of individuals along the edges of the graph. The most elementary
example is Wright’s island model. This is how he introduced it in (Wright (1943)):

The simplest model is that in which the total population is assumed to be divided into
subgroups, each breeding at random within itself, except for a certain proportion of migrants
drawn at random from the whole. Since this situation is likely to be approximated in a group
of islands, we shall refer to it as the island model.

This corresponds to taking islands at the vertices of a complete graph. More gen-
erally one chooses the graph to caricature the spatial environment in which the
population evolves. For example populations evolving in a two-dimensional spatial
continuum are often approximated by taking the demes to sit at the vertices of Z

2.
To get a feel for the effect that this will have on the genealogical trees for the

population we first take a very simple example. Consider a population that is di-
vided into just two demes with migration between the two. This simple model also
arises as a model for a single population divided into two genetic types which are in
approximate equilibrium in the population, but in which there is mutation between
types. The Wright–Fisher model is adapted to this setting as follows:

Definition 6.1 (Wright–Fisher model with migration). A population of size N is
structured into two demes, 1 and 2 with population sizes N1 = Nω1 in deme 1 and
N2 = Nω2 in deme 2. Each subpopulation reproduces (independently) according
to the neutral Wright–Fisher model except that now, after each reproduction step,
a proportion of the population in each deme is exchanged. In other words μ1N1

individuals migrate from deme one to deme two and μ2N2 go the other way. In order
to maintain constant population size in each deme, we take μ1N1 = μ2N2.

We can establish the genealogy of a sample from such a population exactly as
in Sect. 5.5. Here things are easier because the population size in each deme is
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90 6 Spatial Structure

constant. Because the individuals in a given deme are indistinguishable from one
another, the probability that an individual in deme 1 had a parent in deme 2 is just
the proportion of individuals in deme 1 after the migration step that had parents
in deme 2, namely μ2N2/N1 = μ2ω2/ω1. Similarly, the probability that an indi-
vidual in deme 2 had a parent in deme 1 is μ1ω1/ω2. To obtain a diffusion limit
we suppose that μi = νi/N where N = N1 + N2 is the total population size and we
measure time in units of size N. Since the chance of a migration event and a coales-
cence event both affecting our ancestral lineages in a single generation is O(1/N2),
in the diffusion timescale we only see coalescences between lineages in the same
deme. Our time unit is the total population size, as opposed to the population size in
one of the demes, so each pair of lineages currently in deme i, coalesces at instanta-
neous rate 1/ωi. We are implicitly assuming that Nωi is large so that we never see
multiple mergers. The genealogical trees for this model can then be described by a
structured (Kingman) coalescent. As we trace backwards in time

• Ancestral lineages migrate from deme one to deme two at rate ν2ω2/ω1 and from
deme two to deme one at rate ν1ω1/ω2.

• Any pair of lineages currently in deme i coalesces at instantaneous rate 1/ωi.

Remark 6.2. Notice that the rate of migration of ancestral lineages is weighted
by the ratio of the population size in the two demes, just as in Sect. 5.5, so that
backwards in time the migration mechanism is biased towards the more populous
deme, and, again as in Sect. 5.5, the rate of coalescence within a deme depends on
population size there. The analogous result will hold for more general structured
populations.

Here we have fixed the total population size in each deme so that different ances-
tral lineages evolve independently. If we allowed the population size in each deme
to fluctuate randomly, then this would no longer be the case. Loosely, knowing that
one lineage jumps to a deme tells us that the population size there is probably larger
and so other lineages are more likely to jump there too.

Just as we passed to a diffusion approximation from the Wright–Fisher model
for a panmictic population, we can also pass to a diffusion approximation for the
structured Wright–Fisher model. We assume that the population size in each deme
is large enough that the Wright–Fisher diffusion provides a good approximation for
the effect of the random resampling due to reproduction. This leads to Kimura’s
stepping stone model (Kimura (1953)).

Definition 6.3 (Kimura’s stepping stone model). We suppose that a population
that is distributed across a collection of demes indexed by some set I is also subdi-
vided into two allelic types labelled a and A. The proportion of a-alleles in deme i
at time t is denoted by pi(t). Under Kimura’s stepping stone model:

d pi = ∑
j

m ji(p j − pi)dt +
√

1
Ne

pi(1− pi)dWi. (6.1)
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Here mi j reflects migration between demes and satisfies

∑
j �=i

mi j = ∑
j �=i

m ji (6.2)

(in order to maintain constant population size in each deme). The parameter Ne is the
(effective) population size in each deme and the {Wi}i∈I are independent standard
Brownian motions.

In other words we have a system of interacting Wright–Fisher diffusions. To under-
stand the first term on the right hand side of (6.1), note that type a individuals arrive
in deme i at total rate Ne ∑ j m ji p j and leave at total rate Ne ∑ j mij pi and observe that
by (6.2)

∑
j

m ji p j −∑
j

mi j pi = ∑
j

m ji p j −∑
j

m ji pi = ∑
j

m ji(p j − pi).

Remark 6.4. We can more generally take Ne(i) for the effective population size in
deme i, reflecting different population sizes in different demes, but then since we are
assuming that the population size in each deme is maintained we must assume that

Ne(i)∑
j �=i

mi j = ∑
j �=i

Ne( j)m ji,

and the first term in (6.1) becomes

∑
j

Ne( j)
Ne(i)

m ji(p j − pi).

Lemma 6.5. For a population evolving according to (6.1), the genealogical trees
relating a finite sample consisting of ni individuals from deme i for each i ∈ I are
traced out by the system of coalescing random walks whose evolution is described
as follows:

• For each i ∈ I, ni �→ ni −1 at instantaneous rate 1
Ne

(ni
2

)
.

• For each i, j ∈ I with i �= j,

{
ni �→ ni −1
n j �→ n j + 1

at instantaneous rate nim ji.

6.2 Duality

In this section we outline another connection between the stepping stone model and
the structured coalescent of Lemma 6.5. This is through a powerful technique called
the method of duality. To illustrate the strengths (and limitations) of the approach,
we are going to extend the stepping stone model slightly to incorporate selection.
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Definition 6.6 (Kimura’s stepping stone model with selection). We suppose that
a population that is distributed across a collection of demes indexed by some set
I is also subdivided into two allelic types labelled a and A. The proportion of
a-alleles in deme i at time t is denoted by pi(t). Under Kimura’s stepping stone
model with selection

d pi = ∑
j

m ji(p j − pi)dt + α pi(1− pi)dt +
√

1
Ne

pi(1− pi)dWi. (6.3)

Here again mi j reflects migration between demes and satisfies

∑
j �=i

mi j = ∑
j �=i

m ji

(in order to maintain constant population size in each deme). The Ne is the (effective)
population size in each deme and the {Wi}i∈I are independent standard Brownian
motions.

The idea of duality is simple. We should like to express the distribution of the
process p = (pi)i∈I that we are actually interested in, in our case allele frequencies
in different demes, in terms of another (simpler) random variable, n, that may take
values in a completely different state space. The aim is to find a function f for which
the following relationship holds:

d
du

E
[

f
(

p(u),n(t −u)
)]

= 0, 0 ≤ u ≤ t, (6.4)

so that

E
[

f
(

p(t),n(0)
)]

= E
[

f
(

p(0),n(t)
)]

.

If, as the second argument of f (p,n) varies, this provides a wide enough class of
functions, then this is enough to characterise the distribution of p. In particular,
existence of a dual process is often used to prove uniqueness (in distribution)
of the original process. A good reference is Ethier and Kurtz (1986), see also
Etheridge (2000).

It is usually far from evident how to identify a suitable function f , but many
models that arise in genetics have moment duals. These provide expressions for the
moments and mixed moments of the process,

E

[
∏
i∈I

pni
i

]
,

where n = (ni)i∈I is a vector with non-negative integer entries, a finite number of
which are non-zero. In our dual process we are going to think of ni as representing
a number of ‘particles’ in deme i. The function f is defined by

f (p,n) = pn ≡ ∏
i∈I

pni
i
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and our aim is to find dynamics for the process n(t) that guarantee that (6.4) is
satisfied. The first step is to calculate d pn with n held fixed. Writing ei for the vector
consisting entirely of 0s except for a 1 in the ith position,

d
(

pn) = ∑
i

ni p
n−ei

[
∑

j
m ji (p j − pi)+ α pi (1− pi)

]
dt

+ ∑
i

1
2Ne

ni (ni −1) pn−2ei pi (1− pi)dt +∑
i

(. . .)dWi.

Notice that, because we take the expectation in (6.4), we don’t care about the exact
form of the martingale term. Rearranging,

d
(

pn) = ∑
i

ni ∑
j

m ji
(

pn+e j−ei − pn)dt +∑
i

niα
(

pn − pn+ei
)

dt

+ ∑
i

1
2Ne

ni (ni −1)
(

pn−ei − pn)dt +∑
i

(. . .)dWi. (6.5)

Our task is to identify dynamics for n(t) that ensure that (6.4) holds. To do this,
we now think of evaluating d pn with p held fixed. Notice that since we evaluate
n at time t − u in (6.4) we pick up an extra minus sign. To cancel the first term
in (6.5), particles should migrate according to the time reversal of the random walk
that governed the forwards in time evolution of the individuals in our biological
population. To cancel the second term we assume that α ≤ 0. Note that there is no
loss of generality in doing so because if we consider 1− p in place of p, that is we
look at the proportion of A alleles instead of a alleles, the only effect on (6.6) is to
switch the sign of α . If α < 0, then the second term will be cancelled by assuming
that particles in the dual give birth (split in two) at rate −α . Finally, to deal with the
last term, we suppose that at instantaneous rate 1/Ne each pair of particles currently
in deme i coalesces to form a single particle.

We have recovered a spatial version of the ancestral selection graph.

Lemma 6.7. Suppose that p(t) evolves according to the Kimura stepping stone
model with selection of Definition 6.6 with α < 0 and that the process n, taking
values in Z

I
+ (that is vectors indexed by I with non-negative integer components)

and with n(0) having only finitely many non-zero components, evolves as follows:

• ni �→ ni + 1 at rate −αni

•
{

ni �→ ni −1
n j �→ n j + 1

at rate nim ji

• ni �→ ni −1 at rate 1
2Ne

ni (ni −1).

Then we have the duality relationship

E

[
p(t)n(0)

]
= E

[
p(0)n(t)

]
.
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It is easy to explain this result probabilistically. Calculating E[p(t)n(0)] is equivalent
to asking what is the probability that in a sample consisting of ni(0) individuals
from deme i for each i ∈ I, all individuals are of type a. Just as in the ancestral
selection graph of Definition 5.12, the process n(t) traces all ‘potential’ ancestors.
The migration and coalescence is what we expect from tracing ancestral lineages
of individuals in the sample. The branching of course reflects selection. It is most
easily understood in terms of the Moran model with selection of Definition 5.9.
The extra ‘potential’ selective events in the Moran model take place at rate |α|.
Here (in contrast to Definition 5.9) we are assuming that A has a selective advantage
and so if we are to emerge with a type a individual from such a selective event, it
must be that both individuals sampled at the event were type a. This happens with
probability p2, hence the branch in the structured coalescent dual – we must check
the ancestry of both potential parents at such an event.

Remark 6.8. Although the process {n(t)}t≥0 has an interpretation in terms of the
genealogy of a sample from the population, it is important to remember that the
duality relation (6.4) is not enough to guarantee this, c.f. Remark 3.7.

Let’s use this duality to try to make some qualitative statements about the long-
time behaviour of a population evolving in a two-dimensional habitat. We take
I = Z

2 and suppose that migration corresponds to the discrete Laplacian (that is
mi j = 1/4 if i and j are neighbours and zero otherwise). We consider two separate
cases.

First suppose α < 0 and to avoid special cases suppose that 0 < pi(0) < 1 for all
i ∈ Z

2. Let’s calculate
E

[
p(t)n(0)

]
as t → ∞,

for a non-trivial n(0). In the dual process of branching and coalescing random walks,
branches take place all the time, whereas particles only coalesce when they are in
the same site, and the random walk is dispersing them across Z

2, so we expect the
number of particles to eventually grow without bound. Irrespective of n(0) then,

E

[
p(t)n(0)

]
= E

[
p(0)n(t)

]
→ 0 as t → ∞.

Asymptotically, all individuals in our sample will be of type A. This of course makes
sense biologically because the type A individuals have a selective advantage.

Now suppose that α = 0 so that both alleles are selectively neutral. First we
calculate E [pi(t)p j(t)] as t → ∞. To do this, we start the dual process from one
particle in site i and one in site j at time zero and see what happens as t → ∞. Now
there are no branches any more, just migration and coalescence. The distance be-
tween the two particles follows a two-dimensional random walk. Eventually they
will come together. When that happens, there is some chance that they will coa-
lesce before they move apart. If they don’t coalesce, eventually they will come back
together and once again they will have some chance of coalescence. And so on. In fi-
nite time they will coalesce. Then there will just be a single individual exploring Z

2.
The same argument applies for any n(0) (with finitely many non-zero components).
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Eventually, there will just be a single individual exploring Z
2. Thus

E

[
p(t)n(0)

]
→ p as t → ∞,

where p is a constant determined by the average initial proportion of a alleles in the
population at time zero. How can this happen? Well, only if

p(t)
f dd−−→

{
1 with probability p
0 with probability 1− p

as t → ∞,

where 1 is the vector all of whose entries are 1 and 0 is the vector consisting entirely
of 0s and the convergence is in the sense of finite dimensional distributions. So even
though neither type has a selective advantage, for large times we expect our sam-
ple to consist entirely of a or entirely of A alleles. In the non-spatial setting, since
the Wright–Fisher diffusion with no selection or mutation is in the natural scale,
the probability that the a allele fixes is its initial frequency (see Lemma 3.14). In the
spatial setting, which allele we see in our sample is determined by p.

6.3 Collapse of Structure

Having established the genealogical trees relating individuals in a sample from a
subdivided population one can look for the effect of structure on simple summary
statistics of the coalescent trees. Perhaps the best known result is the following.

Lemma 6.9. Suppose that a population evolves according to Wright’s island model
with D demes and population size N in each deme. Then the mean coalescence time
of two ancestral lineages sampled from within the same island is equal to that of two
lineages sampled from a panmictic population of size DN independent of the rate of
migration between islands.

Remark 6.10. In fact this result can be extended. For a surprisingly wide range
of models of subdivided populations, the mean coalescence time of a sample of
two lineages from within a single subpopulation will be equal to that of two
individuals sampled from a panmictic population of the same total size, irrespec-
tive of the detailed pattern of migration. Conditions to guarantee this can be found
in Wilkinson-Herbots (2003).

Proof of Lemma 6.9. Let us write T11 for the mean time to coalescence of two
lineages sampled at random from within the same island and T12 for the mean time
to coalescence of two lineages sampled from different islands. Suppose that the rate
of migration of each lineage is m. We condition on the first event to hit the two
sampled lineages. If they are in the same island then this can be a migration or
a coalescence and happens at exponential rate 2m + 1/N. If they are in different
islands then the event is necessarily a migration. It occurs at rate 2m and it can leave
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the lineages in different islands (with probability (D− 2)/(D− 1) since only one
of the D− 1 possible targets contains the other lineage) or the same island (with
probability 1/(D−1)). This leads to the linear equations

T11 =
1

1
N + 2m

+
2m

1
N + 2m

T12,

T12 =
1

2m
+

D−2
D−1

T12 +
1

D−1
T11.

Solving these we obtain
T11 = ND

as required. 	

We can also solve for T12 to obtain

T12 =
D−1

2m
+ ND.

This quantity, by contrast, does depend on the migration rate, but if m → ∞ then
T12 → ND and the mean time to coalescence behaves as for a panmictic popula-
tion even if we sample from different demes. One can take this further. Bahlo and
Griffiths (2001) find an explicit expression for the Laplace transform of the distri-
bution of the time to the most recent common ancestor of a sample of size two and
from this show that, as m → ∞, the whole distribution of the time to the MRCA
converges to that of a sample of size two from a panmictic population.

It is natural to ask whether this extends to the genealogical tree of a larger
sample from the population. The answer, it turns out, is yes. This is part of a much
wider phenomenon in which, because migration and coalescence are happening on
different timescales, we see a ‘collapse’ of structure in the structured coalescent.
Nordborg and Krone (2002) summarise the situation beautifully. Here we shall
just skim the surface. We consider a population that is subdivided into different
states. These could be demes as before or, more generally, age classes, genetic types
and so on. If ‘migration’ (which could be through ageing or mutation for exam-
ple) between some groups of states is happening on a much faster timescale than
coalescence, then the structure associated with those groups collapses and each is
replaced, through some sort of averaging procedure, by a single ‘metastate’. We
already saw an effect like this is Sect. 2.3. When the entire structure collapses, we
recover the Kingman coalescent with an effective population size, but one can also
recover a structured coalescent in the limit. (We shall see something analogous
to this in Sect. 6.5.) To illustrate collapse of structure we consider a very simple
example.

Example 6.11. Suppose that our population, which evolves in discrete generations,
is divided into two demes with sizes N1 = a1N and N2 = a2N. In each generation,
ancestral lineages migrate between demes with strictly positive probabilities β12

and β21 and we write (γ1,γ2) for the stationary distribution of the corresponding
random walk. In contrast to Definition 6.1, we do not suppose that βi j is O(1/N).
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Coalescence within demes is with probability 1/Ni = 1/(Nai) in deme i in each
generation. Measuring time in units of N generations, the genealogy of a sam-
ple from the population converges to a Kingman coalescent in which if there are
currently k ancestral lineages, a pair chosen at random will coalesce at rate c

(k
2

)
where

c =
2

∑
i=1

1
ai

γ 2
i .

We verify this result only when starting from two ancestral lineages and refer
to Nordborg and Krone (2002) for a more general result. In this case we can record
the possible states of the process of ancestral lineages as

{(1,0),(0,1),(2,0),(1,1),(0,2)}.

Ignoring terms of O(1/N2), the backwards in time transition matrix of the process
of ancestral lineages can be written as

ΠN = A +
1
N

B

where the matrix A corresponds to migration of ancestral lineages and the matrix B
to coalescence within demes. The key result is the following Lemma which can be
found in Möhle (1998).

Lemma 6.12. Let t,K ≥ 0 be fixed and let (cN)N∈N be a sequence of positive
real numbers with limN→∞ cN = 0. Further let A = (ai j) be a matrix with ‖A‖ ≡
maxi ∑ j |ai j|=1 such that P = limn→∞ An exists. Then

lim
N→∞

sup
‖B‖≤K

‖(A + cNB)[t/cN ]− (P+ cNB)[t/cN ]‖ = 0.

If (BN)N∈N is a matrix sequence such that G = limN→∞ PBNP exists, then

lim
N→∞

(A + cNBN)[t/cN ] = P− I + etG ∀t > 0.

This generalises the familiar identity limN→∞(I+A/N)N = eA. An easy consequence
of this is the following useful theorem.

Theorem 6.13 (Möhle 1998). Let XN = {XN(r)}r∈N0 be a sequence of time homo-
geneous Markov chains on a probability space (Ω ,F ,P) with the same finite state
space S and let ΠN denote the transition matrix of XN. Assume that the following
conditions are satisfied.

1. A = limN→∞ ΠN exists and ΠN �= A for all sufficiently large N.
2. P = limn→∞ An exists.
3. G = limN→∞ PBNP exists, where BN = (ΠN −A)/cN and cN = ‖ΠN −A‖ for all

N ∈ N.
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If the sequence of initial probability measures PXN(0) converges weakly to some
probability measure μ , then the finite dimensional distributions of the process
{XN([t/cN ])}t≥0 converge to those of a continuous time Markov process (Xt)t≥0

with initial distribution X0
d= μ , transition matrix Π(t) = P− I + etG, t > 0, and

infinitesimal generator G.

Remark 6.14. This is a special case of a general class of results in perturbation
theory which are discussed, for example, in Ethier and Kurtz (1986), Chap. 1,
Sect. 7.

Since P is a projection, that is P2 = P, we have that

P− I + etG = PetG = etGP.

(To see this expand etG, and hence the left hand side, as a series and note from
the definition of G that PG = G = GP.) This tells us that the limiting process is
obtained by first projecting, using P, onto the stationary distribution of the ‘fast
process’ governed by A and then applying the generator G.

In our example,

P =

⎛
⎜⎜⎜⎜⎜⎝

γ1 γ2 0 0 0
γ1 γ2 0 0 0
0 0 γ2

1 2γ1γ2 γ2
2

0 0 γ2
1 2γ1γ2 γ2

2
0 0 γ2

1 2γ1γ2 γ2
2

⎞
⎟⎟⎟⎟⎟⎠

,

cN = 1
N and

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
1
a1

0 − 1
a1

0 0

0 0 0 0 0
0 1

a2
0 0 − 1

a2

⎞
⎟⎟⎟⎟⎟⎠

.

We can then calculate G as

PBP =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

cγ1 cγ2 −cγ2
1 −2cγ1γ2 −cγ2

2
cγ1 cγ2 −cγ2

1 −2cγ1γ2 −cγ2
2

cγ1 cγ2 −cγ2
1 −2cγ1γ2 −cγ2

2

⎞
⎟⎟⎟⎟⎟⎠

,

with

c =
γ2

1

a1
+

γ2
2

a2
.

We can collapse states according to the number of lineages to see that we have recov-
ered exactly the Kingman coalescent (up to the time change by c). The assignment
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of demes to lineages is just by independent sampling according to the stationary
distribution of the random walk. 	


In this example, with a fixed and finite number of demes, the result is not really
surprising. On the time scale of the coalescence, at any given instant the random
walks have probability about γ2

1 of both being in deme 1 in which case they have
instantaneous coalescence rate 1/a1 and they have probability about γ2

2 of both be-
ing in deme 2 in which case they coalesce at instantaneous rate 1/a2. When we
look at larger numbers of lineages, convergence to the coalescent hinges on the ex-
changeability of lineages. Ancestral lineages have ‘forgotten’ all about their starting
point by the time we see a coalescence event, and so it is equally likely to be any
pair of lineages that coalesce. For a general spatial model, we cannot expect this
exchangeability for the ancestral lineages of an arbitrary sample. Lineages sampled
close together are more likely to coalesce first. However, if coalescence times are
long enough, then the lineages have time to ‘mix’. Zähle et al. (2005) consider a
stepping stone model on a large two-dimensional torus in Z

2. They show that if in-
dividuals are sampled uniformly from the torus, then as the side of the torus tends
to infinity the genealogy does indeed converge to a Kingman coalescent (with an
appropriate effective population size). We shall describe a close analogue of their
result in Sect. 6.5.

Collapse of structure can also be seen in island models with large numbers of
demes. This is demonstrated in a series of papers by Wakeley and coworkers (e.g.,
Wakeley (2001), Wakeley and Aliacar (2001)). In contrast to the setting of Nordborg
and Krone (2002), the population size, N, in each deme is assumed to be fixed and
finite, but the number, D, of demes grows without bound. While within the same
deme each pair of lineages coalesces at rate 1/N, but migration between demes
at a rate of O(1) sends each lineage to a new deme chosen uniformly at random
from the D− 1 available. If the sample size is much smaller than the number of
demes, then the chance of landing on a deme that is already occupied by another
ancestral lineage is O(1/D). For large D the history of a sample can then be di-
vided into two phases. During the first scattering phase, which is O(1) generations
long, lineages within the same deme will experience a mixture of coalescence and
migration to unoccupied demes, until there is at most one lineage in each deme.
Never again during the history of the sample will we see more than two lineages in
a single deme. During the second collecting phase, which is O(D) generations long,
lineages migrate between demes with the possibility of coalescence only when they
are in the same deme. Measuring time in units of D generations, we have a tractable
ancestral process in which the scattering phase is instantaneous (corresponding to
the projection P of Remark 6.14) and the collecting phase is a Kingman coalescent.

6.4 Evolution in a Spatial Continuum and the Pain in the Torus

So far we have concentrated on subdivided populations, but, in reality, many biolog-
ical populations evolve in a spatial continuum. Wright (1943) and Malécot (1948)
considered populations evolving in R

1 and R
2. They make similar assumptions.
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Malécot, for example, assumes that (I) individuals are distributed randomly with
constant expected density everywhere in space; (II) each individual, independently,
produces a Poisson number of offspring with mean one; and (III) each offspring mi-
grates independently, with the displacements being drawn from some distribution
m(x), for example a normal distribution. However, as Felsenstein (1975) observed,
these assumptions are inconsistent. A population evolving according to (II) and (III)
violates (I). In fact, if it is distributed over all of R

1 or R
2 it develops larger and

larger clumps separated by greater and greater distances. This is not overcome by
working on a torus as then the population dies out. Counteracting this, for example
by conditioning the total population size to be a constant N does not overcome the
problem of clumping. Felsenstein dubs these problems ‘the pain in the torus’.

Backwards in time, both Wright and Malécot assume that the probability that two
individuals have a common parent in the previous generation is a function of their
separation (determined by convolving two copies of the distribution m(x)) and that
if they did not have a common parent their parents’ positions are determined by
independent copies of m(x). Evidently this (backwards in time) description of the
genealogy is not consistent with their forwards in time model for the evolution of
the population.1 So can we find consistent forwards and backwards in time models?
In view of the success of the stepping stone model it is natural to use that as a starting
point and to try to replace the system of interacting stochastic (ordinary) differential
equations by a single stochastic partial differential equation. In one spatial dimen-
sion this can be achieved by applying the diffusive rescaling to the stepping stone
model (so that the random walk governing migration of individuals converges to
Brownian motion). This results in the limiting equation

d p =
1
2

Δ pdt +
√

γ p(1− p)dW, (6.6)

where W is now a space-time white noise. This was proved by Shiga (1988), who
also established convergence of the system of coalescing random walks that de-
scribe the genealogy in the stepping stone model to a system of Brownian motions
that coalesce at a rate determined by the local time that they spend together. This
generalises work of Nagylaki (1978; 1978) who derived, under the same rescaling,
an equation for the correlations between allele frequencies at different locations.
In two dimensions Nagylaki showed that the rescaling fails. The equations for
the correlations ‘blow up’ on scales comparable with the distance moved by a
single gene over a single generation. Correspondingly, (6.6) has no solution; the
white noise is ‘too rough’. (See Walsh (1986) for an introduction to stochastic par-
tial differential equations.) Moreover, if one applies the diffusive rescaling to the
stepping stone model then one recovers a deterministic heat equation. It is easy to
see why by thinking about the genealogical process of coalescing random walks.

1 Wright and Malécot thought about probability of identity in allelic state under an infinitely many
alleles mutation model rather than genealogies, but as we saw in Sect. 2.4 the two notions are
closely related.
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Under the diffusive rescaling the random walks converge to Brownian motions,
but two independent Brownian motions evolving in R

2 never meet and so we lose
the coalescence. The coalescence is what reflects the noise term (which in turn
models the randomness of reproduction) and so with no coalescence we cannot
expect any noise.

Remark 6.15. If one modifies (6.6) by replacing the white noise W by a suitable
‘coloured’ noise, obtained for example by convolving W with a function from
L2(Rd), then the new equation does have a solution. Although at first sight this
equation looks natural, it is not, as one might hope, what one obtains by taking a
rescaling limit of an individual based model in which parents are chosen from a
neighbourhood (rather than the same location). Indeed it is not clear how to obtain
it as the limit of any individual based model.

Alternatively, instead of modifying the forwards in time stepping stone model, one
can try to modify the corresponding (backwards in time) structured coalescent.
An obvious approach is to assume that the genealogical trees can be constructed
from Brownian motions which coalesce at an instantaneous rate given by a func-
tion of their separation. The position of the common ancestor is generally taken
to be the midpoint between the two lineages immediately before the coalescence
event (although other distributions are of course possible). However, this process of
coalescence violates the consistency of Remark 2.4. To see this, take the tree cor-
responding to a sample of size k and consider a subtree of size two. Whenever one
of these two ancestral lineages is involved in a coalescence event in the full tree
it will jump. We would not see this jump if we modelled the tree relating just two
individuals directly. Furthermore, there is no corresponding forwards in time model
for the evolution of the population.

Wright and Malécot assume an infinitely many alleles mutation model in which,
in each generation, each offspring (independently) has a new allelic type with some
fixed probability. They find an expression for the probability that two individuals,
sampled at distance x apart, have the same allelic type. Although based on in-
consistent assumptions, the formula provides an astonishingly good fit to the two-
dimensional stepping stone model. This can be seen for example in Fig. 1 of Barton
et al. (2002). That paper shows that under certain conditions the Wright–Malécot
formula can be extended to continuum population models which incorporate lo-
cal structure. Over all but very small scales, the resulting probability of identity
can be written as a function of three parameters: the effective dispersal rate, the
neighbourhood size and the local scale. The difficulty is that there is a shortage of
explicit models for which the assumptions underlying this result can be verified and
the effective parameters established. Moreover, the formula only applies to samples
of size two.

Neighbourhood size is the product of the effective dispersal rate (that is the vari-
ance of the Gaussian distribution from which an individual’s parent is drawn) and
the local population density and gives some measure of how many individuals ‘inter-
act’ in a given generation. Although the Wright–Malécot formula could in principle
be extended to larger samples of well-separated genes, if neighbourhood size is
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small, multiple coalescences of ancestral lineages could become significant. This
observation turned out to be key in writing down a new model which addresses
some of the problems identified above.

6.5 The Spatial Λ -Fleming–Viot Process

Recently, in joint work with Nick Barton, we proposed a new framework for
modelling populations evolving in a spatial continuum and this will be our final
topic. Not only does the proposed framework address some of the issues raised
above, including allowing for small neighbourhood size, but it also allows us to ex-
plicitly incorporate large-scale extinction-colonisation events into the dynamics of
the population. The motivation for this is the basic observation that we made at the
beginning of Chap. 5:

Genetic diversity is orders of magnitude lower than expected from census population size
and genetic drift.

While selection certainly plays a rôle in reducing genetic diversity, it is plausible that
most of the reduction that we observe relative to the ‘null’ model of neutral evolution
and Kingman’s coalescent is due to large scale fluctuations in which the movement
and reproductive success of many individuals are correlated. For example climate
change has caused extreme extinction and recolonisation events that dominate the
demographic history of humans and other species. The new framework provides
mathematical models through which to assess the importance of such events relative
to some of the other forces that shape genetic diversity.

For simplicity we describe only a particular instance of our approach which can
be thought of as a spatial Λ -Fleming–Viot process with genealogical trees deter-
mined by a corresponding spatial Λ -coalescent. In this setting, after an extinction
event a region is recolonised by the descendants of a single individual. In many set-
tings it would be natural to take a Poisson number of colonists, say, and then the
corresponding coalescent model would be a spatial Ξ -coalescent.

The starting point is an individual based model. The resolution of Felsenstein’s
‘pain in the torus’ is that reproduction events (including the large-scale extinction-
recolonisation events) are based on a Poisson point process in space. The rate at
which a given region of space is affected by such an event does not grow with local
population density and this prevents clumping.

Definition 6.16 (Individual based model). We suppose that the population is ini-
tially distributed as a Poisson point process in R

d (with d = 2 being the most
interesting case). Let λ be a fixed positive constant, μ(dr) be a measure on (0,∞)
and, for each r > 0, let νr(du) be a probability measure on [0,1] such that

∫ ∞

0

∫ 1

0
urd(1 + rd)νr(du)μ(dr) < ∞. (6.7)
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Write ξ (dr,du) = μ(dr)νr(du). The dynamics of the population are as follows:

1. Let Π be a Poisson Point Process on R+ ×R
d ×R+× (0,1] with rate dt ⊗dx⊗

ξ (dr,du).
2. If (t,x,r,u) is a point of Π , then at time t throw down a ball Br(x) of radius r and

centre x in R
d .

3. If the ball is empty do nothing. If not:

a. Choose an individual at random from those in Br(x);
b. for each individual in Br(x), independently flip a coin which shows heads with

probability u and kill all those individuals with a head;
c. throw down individuals with the same type as the selected individual (who

may now be dead) according to an independent Poisson Point Process with
intensity uλ 1Br(x)dx.

Regions of space can, and do, become empty in this model, but, because the neigh-
bourhoods affected by different events overlap, an empty region can subsequently
be recolonised. Berestycki et al. (2009) show that there is a critical value of λ above
which the process survives and below which it dies out. They also check that under
condition (6.7) the process described in Definition 6.16 actually exists.

The difficulty with this model is that it is not easy to write down explicitly the
genealogical trees relating individuals in a sample from the population. An ancestor
is necessarily in a non-empty patch of space and knowing that a region is non-
empty gives information about the rate at which it is hit by reproduction events as
one traces back in time, but it is hard to find explicit expressions for this effect.
We overcome this difficulty by letting λ → ∞ so that there are no empty regions of
space. At first sight it looks as though we are thereby losing the possibility of small
neighbourhood size, but in fact this is not so: by retaining the same reproduction
mechanism, in which each individual hit by a reproduction event has probability u
of being killed, we retain the signature of finite neighbourhood size. In particular,
we can still see multiple coalescences of ancestral lineages.

Remark 6.17. An alternative model of this type, considered in Barton et al. (2010),
has a slightly modified reproduction mechanism. It is again based on a spatial
Poisson process, but now if an event is centred on the point x, then an individual at y
is killed with probability u(x,y), where u(x,y) is a Gaussian kernel centred on x say.
A parent is selected by taking a weighted sample from the population immediately
before the event, in which individuals are weighted according to their distance from
x according to a (possibly different) Gaussian distribution. Offspring, of the same
type as the parent, are distributed according to a Poisson point process with intensity
λ u(x,y). The resulting population model has a Poisson distribution with intensity λ
as its stationary distribution.

Let us now describe the limiting model a little more precisely. We suppose that each
individual in our population has a type taken from a set K (for example K = [0,1])
and a location in a space E . For illustration, here we continue to take E = R

d .
To each point x ∈ E and at each time t, the limiting process assigns a probability
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measure, ρ(t,x) on K. The idea is that the type of an individual sampled from the
point x at time t has distribution ρ(t,x). The reproduction mechanism mirrors that
for our discrete time model.

Definition 6.18 (Spatial Λ -Fleming–Viot process). The spatial Λ -Fleming–Viot
process, denoted {ρ(t,x, ·),x ∈ R

d ,t ≥ 0}, specifies a probability measure on the
type space K for every t ≥ 0 and every x ∈ R

d . With the notation of Definition 6.16,
the dynamics of the process are as follows. At every point (t,x,r,u) of the Poisson
point process Π we select a point z at random from Br(x) and a type k at random
according to ρ(t−,z, ·). For all y ∈ Br(x),

ρ(t,y, ·) = (1−u)ρ(t−,y, ·)+ uδk.

Of course we must impose restrictions on the intensity measure if our process is
to exist. To see what these should be, consider first the evolution of the probabil-
ity measure ρ(t,x, ·) defining the distribution of types at the point x. This measure
experiences a jump affecting a proportion y ∈ A ⊆ [0,1] of individuals at x at rate

∫
(0,∞)

∫
A

Cdrdνr(du)μ(dr),

where Cd is the volume of the unit ball in R
d . By analogy with the Λ -Fleming–Viot

process, we should like

Λ̃(du) =
∫

(0,∞)
u2rdνr(du)μ(dr) (6.8)

to define a finite measure on [0,1]. In fact, we require a bit more:

Λ(du) =
∫

(0,∞)
urdνr(du)μ(dr) (6.9)

must define a finite measure on [0,1].

Remark 6.19. Recall from Remark 5.24 that the existence of Λ -coalescents for
which the analogue of (6.8) is satisfied, but not that of (6.9), relies on some can-
cellation of positive and negative jumps. Our need for the stronger condition in
the spatial setting reflects the fact that the existence of overlapping neighbourhoods
destroys that cancellation.

Of course it is not enough to consider a single point. It has to be possible to ‘fit
together’ the type distributions at different sites in a consistent way and the simplest
way to guarantee that we can do this is to ensure the existence of a nice dual process
describing, for each n ∈ N, the distribution of lineages ancestral to a sample of size
n from the population. Suppose then that a population evolves according to this
model and consider the (backwards in time) dynamics of a single ancestral lineage.
It evolves in a series of jumps with intensity
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dt ⊗
∫

(|x|/2,∞)

∫
[0,1]

Lr(x)
Cdrd uνr(du)μ(dr)dx

on R+ ×R
d where Lr(x) is the volume of Br(0)∩Br(x). If we want this to give a

well-defined Lévy process, then we require

∫
Rd

(1∧|x|2)
(∫

(|x|/2,∞)

∫
[0,1]

Lr(x)
Cdrd uνr(du)μ(dr)

)
dx < ∞. (6.10)

Consider now lineages currently at separation y ∈ R
d . They will coalesce if they are

both involved in a replacement event which happens at instantaneous rate

∫
(|y|/2,∞)

Lr(y)
(∫

[0,1]
u2νr(du)

)
μ(dr). (6.11)

Under condition (6.9), the expressions in (6.10) and (6.11) are both automatically
finite. Of course if two ancestral lineages do coalesce, then their common parent
is located at a point selected at random from the ball involved in the reproduction
event. Conceptually, this is readily extended to multiple lineages (where we will see
multiple mergers). Notice that conditional on not having coalesced, the locations of
ancestral lineages are not independent of one another. This is entirely analogous to
the dependence between ancestral lineages in the coalescent for a continuous (finite)
linear population suggested by Wilkins and Wakeley (2002) (see Wilkins (2004) for
a two-dimensional analogue).

Remark 6.20 (Spatial Λ -coalescent). Evidently the dual process of ancestral lin-
eages is a spatial version of the Λ -coalescent. However, we emphasise that it differs
from that studied by Limic and Sturm (2006).

Recall from Sect. 6.3 that the work of Zähle et al. (2005) shows that it makes sense
to define a coalescent effective population size (see Remark 2.8) for a uniform sam-
ple from a population evolving according to the stepping stone model on a large
torus in Z

2. It is natural to ask whether an analogous result holds here and, if so,
what the effect of large scale extinction-recolonisation events is on that effective
population size. This question is addressed by Barton et al. (2010) and we finish
with a description of their result.

Let T(L) denote the torus of side L in R
2. Suppose that there are two types of

event:

1. Small events affecting bounded regions;
2. large events affecting regions of diameter O(Lα), for some 0 ≤ α ≤ 1.

The idea is that small events reflect ‘ordinary’ reproduction, whereas large events
model large-scale extinction-recolonisation events. We assume that each ancestral
lineage is hit by a small event at rate O(1), but by a large event at rate O(1/ρ(L))
where ρ(L) → ∞ as L → ∞. We then sample uniformly at random from the whole
of T(L) and ask what happens to the genealogy as L → ∞?

A precise statement can be found in the paper, but here is an outline of the result.
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Theorem 6.21 (Barton et al. 2010).

1. Suppose that α < 1. On a suitable timescale the genealogy converges to a
Kingman coalescent (with an effective parameter). Depending on ρ(L), the ef-
fective population size that determines the timescale can depend on both large
and small scale events.

2. Suppose that α = 1. There are three cases:

a. ρ(L) ≈ L2. On timescale ρ(L), the coalescent converges to a spatial
Λ -coalescent in which lineages follow independent Brownian motions in
between coalescence events.

b. ρ(L) ≈ L2 logL. On timescale ρ(L), the coalescent converges to a (non-
spatial) Λ -coalescent in which multiple mergers are due to large events and
there can also be a Kingman component reflecting coalescence due to small
events.

c. ρ(L) � L2 logL. On a timescale L2 logL, the coalescent converges to the
Kingman coalescent.

If there are no large events, then in many ways the model looks like a two-
dimensional stepping stone model and so, in view of the results of Zähle
et al. (2005), it is no surprise to recover the Kingman coalescent. From a biological
perspective, what is interesting is the large effect that even rare extinction-
recolonisation events can have on the effective population size.

Since for α = 1 large scale events cover a non-negligible fraction of the torus,
a mathematically much richer picture emerges. If they happen too frequently, then
they can affect multiple lineages while the location of those lineages is still corre-
lated with their starting points. If ρ(L)≈ L2 logL, the positions of ancestral lineages
have homogenised over the torus by the time a large event arrives, but lineages have
not necessarily yet all coalesced due to small events. Finally, if large events are too
rare, then lineages have all coalesced due to small events before we see a large event
and so their effect is lost.

6.6 More General Models

One of the attractions of the approach to modelling outlined above is its flexibility.
Although we have presented only the simplest form of the spatial Λ -Fleming–
Viot process, it can readily be modified to incorporate more realistic biological
assumptions. For example, it would be natural to allow for multiple founders after an
extinction-recolonisation event and there is no reason to suppose that they are cho-
sen uniformly from the region affected by the event. Equally, we can incorporate
selection, recombination, spatial motion of individuals not linked to reproduction
and so on.

From a mathematical perspective, even the simplest model reveals a rich struc-
ture. For example, by considering a population subdivided into two types, a and A
say, with a sufficiently ‘sparse’, just as for the voter model, if events affect only
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balls of bounded radius then other than in one spatial dimension one can recover a
cluster of superBrownian motion as a rescaling limit for the distribution of a-alleles.
By incorporating selection and rescaling suitably, one can obtain the (deterministic)
Fisher-KPP equation as a limiting description of allele frequencies. In one dimen-
sion one can also recover the stochastic partial differential equation

d p =
1
2

Δ pdt + sp(1− p)dt +
√

ε p(1− p)dW, (6.12)

where W is space-time white noise. This equation is the focus of a great deal of
current research, but in higher dimensions, which are more biologically relevant, it
has no solution. By basing reproduction on regions instead of individuals, we have
a natural alternative to (6.12), which makes sense in arbitrary spatial dimensions,
from which (6.12) can be recovered as a limit in one spatial dimension, and which
arises in a natural way as a limit of an individual based model.
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