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Preface

This volume contains the proceedings of the 2010 Runtime Verification confer-
ence (RV 2010), which was held in St. Julians, Malta on November 1–4, 2010.
The conference program included a mix of invited talks and peer reviewed pre-
sentations, tutorials, and tool demonstrations.

The 2010 Runtime Verification conference was a forum for researchers and
industrial practitioners to present theories and tools for monitoring and analyz-
ing system (software and hardware) executions, as well as a forum for presenting
applications of such tools to practical problems. The field of runtime verification
is often referred to under different names, including dynamic analysis, runtime
analysis, and runtime monitoring, to mention a few. Runtime verification can
be applied during the development of a system for the purpose of program un-
derstanding, debugging, and testing, or it can be applied as part of a running
system, for example for security or safety policy monitoring, and can further-
more be part of a fault protection framework. A number of sub-fields of runtime
verification have emerged over time, such as specification languages and logics
for execution analysis, dynamic analysis algorithms, program instrumentation,
security monitoring, fault protection, specification mining, and dynamic system
visualization. Runtime verification has strong connections to other fields of com-
puter science research, such as combinations of static and dynamic analysis,
aspect-oriented programming, and model-based testing.

Runtime Verification events started with a workshop in 2001 and continued
as an annual workshop series through 2009. The workshops were organized as
satellite events to such established forums as CAV (2001–2003, 2005–2006, and
2009), ETAPS (2004 and 2008), and AoSD (2007). In 2006, RV was organized
jointly with the FATES workshop (Formal Aspects of Testing). The proceedings
for RV from 2001 to 2005 were published in Electronic Notes in Theoretical Com-
puter Science (ENTCS). Since 2006, the RV proceedings have been published in
Lecture Notes in Computer Science (LNCS).

This year marks an important transition for RV from workshop to a stand-
alone conference. In the decade that has passed since the inception of the series,
the field has matured considerably and a sense of community has emerged. By
broadening the event to a conference, we hoped to enlarge the community even
further, increasing the visibility of RV events and making submission and par-
ticipation more attractive to researchers.

As we expected, the change to a conference received a welcome response
from the community. RV 2010 received a record number of submissions, ex-
ceeding the previous record twofold. Overall, 74 submissions were received, of
which 15 were tutorial and tool demonstration proposals. All regular submis-
sions were reviewed by the Program Committee, with each paper receiving at
least three reviews. The Program Committee selected 23 papers for presentation
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at the conference. Tutorial and tool demonstration proposals were evaluated by
the respective chairs with the help of external reviewers. Six tutorials and four
tool demonstrations were selected.

The organizers would like to thank the Program Committee for their hard
work in evaluating the papers. Financial support for the conference was provided
by the International Federation for Computational Logic, by the ARTIST Net-
work of Excellence on Embedded Systems Design, by Microsoft Research, and
by the University of Illinois. We also would like to thank University of Malta for
the extensive and competent help in handling local organization and providing
registration services. Submission and evaluation of papers, as well as the prepa-
ration of this proceedings volume has been handled by the EasyChair conference
management service.

We hope that the strong program of RV 2010 will provide a focal point for
the RV community and foster collaborations with researchers in related fields.

August 2010 Howard Barringer
Klaus Havelund

Insup Lee
Grigore Roşu
Oleg Sokolsky
Gordon Pace

Bernd Finkbeiner
Nikolai Tillmann

Ylies Falcone
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Automatic Requirement Extraction from Test
Cases

Chris Ackermann1, Rance Cleaveland1, Samuel Huang1, Arnab Ray2,
Charles Shelton3, and Elizabeth Latronico3

1 Dept. of Computer Science, University of Maryland, College Park, MD 20742 USA

{chris ack,rance,srhuang}@cs.umd.edu
2 Fraunhofer USA Center for Experimental Software Eng., College Park,

MD 20740 USA

arnabray@fc-md.umd.edu
3 Robert Bosch RTC, P.O. Box 6762, Pittsburgh PA 15212 USA

{charles.shelton,elizabeth.latronico}@us.bosch.com

Abstract. This paper describes a method for extracting functional re-

quirements from tests, where tests take the form of vectors of inputs

(supplied to the system) and outputs (produced by the system in re-

sponse to inputs). The approach uses data-mining techniques to infer

invariants from the test data, and an automated-verification technology

to determine which of these proposed invariants are indeed invariant

and may thus be seen as requirements. Experimental results from a pilot

study involving an automotive-electronics application show that using

tests that fully cover the structure of the software yield more complete

invariants than structurally-agnostic black-box tests.

1 Introduction

Software development, maintenance and evolution activities are frequently com-
plicated by the lack of accurate and up-to-date requirements specifications. In
addition to providing developers with guidance on their design and implemen-
tation decisions, good requirements documentation can also give an overview of
system purpose and functionality. Such an overview gives maintainers and devel-
opment teams a clear snapshot of expected system behavior and can be used to
guide and assess modification decisions necessitated by bug fixes and upgrades.

Implementations can deviate from their requirements specifications for a num-
ber of reasons. Miscommunication among the requirements, design and devel-
opment teams is one; churn in the requirements is another. So-called implicit
requirements can also arise during development, especially with experienced pro-
grammers familiar with the problem domain; such programmers may rely on
their intuitions about what ought to be required rather than what is actually in
the requirements documentation. Regardless of the source, such deviations con-
found development, maintenance and evolution efforts, especially when teams
are geographically distributed and possess differing levels of experience with the
system domain.

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 C. Ackermann et al.

In this paper, we propose and assess a methodology, based on data mining,
for automatically extracting requirements from executable software artifacts.
The motivation of the work is to make requirements documents more accurate
and complete. Our approach is intended for use with software following a read-
execute-write behavioral model: input variables are assigned values, computa-
tions performed, and values written to output variables. The method first uses
an automated test-generator to generate collections of input sequences that cover
the model according to several structural-coverage criteria; the resulting outputs
for each input vector are also collected. Data-mining tools are then applied to
the test data to infer relationships among the input and output variables that
remain constant over the entire test set (invariants). In a subsequent validation
step, an automated tool is used to check which of the proposed invariants are
indeed invariant; invariants passing this step are then proposed as requirements.

The rest of the paper is structured as follows. Section 2 gives background
on data mining, invariant inference, and the artifacts and verification technique
used to conduct the studies in this paper. Section 3 then outlines our approach in
more detail, while Sections 4 and 5 present the results of a pilot study involving
a production automotive application. Section 6 discusses related work, and the
final section contains our conclusions and ideas for future work.

2 Background

Our work is inspired by Raz et al. [18, 17], which used data-mining tools to
deduce invariants from the execution traces of running systems for the pur-
poses of anomaly detection. Our motivation differs in that our work is aimed
at reconstructing requirements from program test data arising in the context
of model-based development of automotive systems. In this section we review
the results of Raz et al. and also describe the model-based development envi-
ronment for automotive software in which the results of our work are assessed.
An approach for verifying automotive software models, Instrumentation-Based
Verification [1], is also briefly described.

2.1 Invariant Inference from Executions

Invariants are commonly employed in program verification and express a relation
between variables that holds for all executions of a piece of code. For example
the invariant (x > y) means that the value of variable x is always greater than
the value of variable y. Invariants have a long history in software specification
and development, as they define relationships that must hold among program
variables even as these variables change values.

The work of Raz et al. was motivated by the desire to study the emergent
behavior of systems when access to software and other development artifacts for
the systems was impossible. The technical approach taken was to observe input
/ output sequences at the system interface and to use data-mining tools to infer
invariants on the input and output variables. Several such tools are capable of
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discovering so-called association rules from time-series data given to them; these
rules take the form of implications involving variables in the data that appear
to hold throughout the data set. For example, in a data set recording values at
different time instants for two variables, speed and active, which reflect the
vehicle speed and the status (active or not) of a vehicle cruise control, one pos-
sible association rule that could be inferred is ’speed < 30.0’ -> ’active =
false’; in other words, the data set might support the conclusion that whenever
the speed is below 30.0, the cruise control is inactive.

In the case of Raz et al., inferred association rules are viewed as invariants
that, if true, yield insight into system behavior. Because the invariants deduced
by these tools are only based on a subset of system executions, they may in fact
not be invariants when considering the entire system. In Raz et al. this issue
was addressed by presenting inferred invariants in a template form to an expert,
who would use his / her understanding of the system to decide whether these
candidate invariants were actual invariants on system behavior or had merely
been flagged as invariants by the automated tools based on the characteristics of
the analyzed traces. If accepted, this invariant would be then used to build up a
model of program execution and then when anomalous behavior was observed,
it would be flagged either as an error or used to update the set of invariants and
consequently the model of proper operation [18].

In this paper, we interpret requirements to be invariants that hold true on all
possible runs of the software system. Such requirements can constitute a docu-
ment of formal properties for the model under inspection (containing properties
such as the relationship between inputs, for example), which can serve as the
basis for a comparison between the model’s observed and intended behavior.

Unlike [18], whose primary goal was anomaly detection, our aim is to effi-
ciently identify a complete set of invariants with minimal and targeted effort for
the expert. This includes deducing previously unknown implicit requirements,
eliminating candidate invariants that are not valid, and demonstrating that our
procedure is robust in that multiple runs will produce converging results.

2.2 Automotive Model-Based Development

The work in this paper grew out of a project devoted to improving the efficiency
of software development processes for automotive software. The pilot study in
particular involves an external-lighting control feature in a Bosch production
application. As automotive software is increasingly developed using model-based
development, the software-artifact analyzed in later takes the form of a model in
the MATLAB R© / Simulink R© / Stateflow R©1 modeling notation. This section
discusses some of the uses of such models in the automotive industry.

Modern automobiles contain significant amounts of software. One estimate
put the average amount of source code in high-end models at 100 million lines
of code, with the amount growing by an order of magnitude on average every
decade [6]. At the same time, the business importance of software is growing,
with new (and profitable) features relying on software for their functionality.
1 MATLAB

R©, Simulink
R© and Stateflow

R© are trademarks of The MathWorks, Inc.
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For these reasons, automotive companies, and their suppliers such as Bosch,
have strong incentives to improve the efficiency of their software development
processes. At the same time, safety, warranty, recall and liability concerns also
require that this software be of high quality and dependability.

One approach that is garnering rapidly growing acceptance in the industry is
model-based development (MBD). In MBD traditional specification and design
documents are supplemented with executable models in notations such as MAT-
LAB / Simulink / Stateflow or ASCET R©2 that precisely define the expected
behavior of eventual software and system implementations. These models are
often developed upstream of the software-development teams by controls engi-
neers, and the notations are often based on block-diagram notations favored by
members of the controls community.

From a programming language perspective, Simulink (and its Statecharts-
like sub-language Stateflow) may be seen as a synchronous dataflow language.
Blocks in the diagram’s design represent functions that compute output values
given inputs. Because Simulink and related models are executable, they may be
simulated and debugged; they may also be used as test oracles for downstream
software development. As the gap between design models and implementation
narrows, design models also become increasingly attractive as test oracles.

2.3 Instrumentation-Based Verification

Because of the centrality of models in model-based development processes, it is
important that they behave correctly, i.e. in accordance with functional require-
ments specified for them. Several model-checking tools, including commercial
ones such as The MathWorks’ DesignVerifier, have been developed for this pur-
pose. Such tools take models to be verified (we call these design models in what
follows, because they are often the outputs of design processes) and requirements
specifications, typically in a temporal logic, and attempt to prove automatically
that model behavior conforms to the requirements.

A related approach, called Instrumentation-Based Verification (IBV) [1], ad-
vocates the formalization of requirements instead as so-called monitor models in
the same modeling notation used for the other models in the MBD process. Each
discrete requirement has its own monitor model, whose purpose is to monitor the
data flowing through the design model and determine if the associated require-
ment is being violated or not via a boolean-valued output. The design model
is then instrumented with the monitor models, and structural-coverage testing
performed to determine if any monitor models can report an error. The advan-
tages of IBV are that a separate notation for formalizing requirements need not
be learned; that monitor models can be executed and debugged; that the mon-
itor models (and the requirements they express) are likely to be updated with
the design models, and that testing-based approaches scale better than model
checkers. The disadvantage is that IBV cannot produce the iron-clad guaran-
tees of correctness that model checkers can when the latter do indeed terminate.

2 ASCET
R© is a trademark of the ETAS Group.
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Commercial tools like Reactis R©3 provide support for IBV by supporting the
instrumentation process and automating the generation of test suites that max-
imize coverage of models.

2.4 Reactis

The experimental work described later in this paper makes heavy use of the
aforementioned Reactis tool, so this section gives more detail about it.

Reactis is a model-based testing tool. Given an open-loop model (i.e. one
with unconnected inputs and outputs) in the MathWorks’ Simulink / Stateflow
notation, Reactis generates test cases in the form of sequences of input vectors for
the model. The goal of the generated tests is to provide full coverage of the model
according to different model-based adaptations of structural coverage criteria.
In general, for reasons of undecidability, full coverage cannot be guaranteed;
Reactis uses different heuristics in to try to maximize the coverage of the test
cases it creates. The tool also evaluates the model while it is constructing the
test suites and stores the model-generated output vectors in the test cases.

Reactis also supports the Instrumentation-Based Verification (IBV) technique
mentioned in the previous subsection. To use this feature, a user first creates a
Simulink library containing the monitor models for the requirements of interest.
S/he then uses Reactis to instrument the model to be verified with the monitor
models, and to generate test cases that cover the instrumented model, including
the constructs contained in the monitor models. While the tests are being con-
structed, Reactis also evaluates the monitor model outputs, and if any reports
“false” then the resulting test is evidence that a requirement is violated. The
coverage criteria guarantee that the test generator will attempt to generate tests
that cause outputs of “false” from the monitor models.

The Reactis test-generation algorithm employs a three-phase approach, in-
cluding a Monte Carlo simulation step. For space reasons, further details are
omitted here; the core of the technique is covered by US Patent #7,644,398. It is
important to note that Reactis test suites include randomly generated test cases
that are subsequently refined. For this reason, different executions of the tool,
even on the same model, will in general yield very different test suites.

3 Extracting Requirements

This section outlines our approach to inferring requirements from executable
software artifacts. The steps in our methodology are depicted graphically in
Figure 1; they rely on the use of coverage testing and data-mining tools to
propose invariants from test data generated from simulated execution runs of the
model, and the subsequent validation of these invariants. What follows describes
each step in more detail.

3 Reactis
R© is a registered trademark of Reactive Systems, Inc. (RSI). In the interest

of full disclosure, one of the authors is a co-founder of this company.
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Fig. 1. Overview of requirements-extraction process

Step 1: Generate Test Cases. Test data is generated from design models by
running a sequence of generated inputs on the design models using automated,
coverage-based test-generation tools.

Step 2: Invariant Inference. Invariants are discovered using an association
rule-mining tool on the test data from Step 1. The tool proposes a set of as-
sociation rules that are believed suspected to be invariants of the model under
inspection. We report only invariants having a strength value equal to 1.0, the
maximum value a strength score can take [22]. This equivalently means that any
invariant reported has no counter example in the observed data, namely it is a
true invariant for the evidence which the inference is performed over.

Step 3: Invariant Validation. Model-coverage metrics merely assure that
critical elements (blocks, conditions, decisions, etc.) have been executed at least
once in a test-suite. They of course cannot enforce full coverage of all possible
behavior (i.e. path coverage). This is why the inferred invariants cannot be as-
sumed to be true requirements, and must be further validated in order to be
reported as such.

In Raz et al.’s approach, this validation was carried out manually. We instead
automate this validation step by converting each candidate requirement into a
monitor model and using IBV to determine if the proposed invariant can be
invalidated. While performing this verification, the validation tool will generate
a new test-suite that, in its attempt to maximize model coverage, will attempt
to violate the monitor model.

If the monitor model is not satisfied, then the putative invariant that it repre-
sents does not hold true for all traces and is thus discarded. If the monitor model
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is satisfied, then we can say, with a high level of confidence, that a valid invariant
has been inferred from the design model and can be seen as a requirement.

As indicated in Figure 1, our technique can be iterated. By the nature of IBV,
the extra step of validating the invariants involves instrumenting the original
design model with monitor model representations of the invariants themselves.
The result of this instrumentation is a well-defined design model which has at its
core the original design model whose behavior has not been altered due to the
manner in which the instrumentation takes place. Thus, we can repeat steps 1-3
on this new, instrumented model and obtain a different, richer set of invariants.

4 Experimental Configuration

We evaluate the requirements extraction process in the previous section using a
production automotive pilot study. This section details the experimental set-up
used, including the application and tool chain used to implement the steps of
the procedure, the specific questions studied, and the analysis framework for
assessing the results. The section following then reports the results themselves.

4.1 Test Application

The model used to evaluate our framework is a Simulink diagram encoding the
design of an automotive software function taken from existing production C
source code developed by Bosch. The model consists of approximately 75 blocks
and has two inputs and two outputs. Existing documentation was present that
described, among other things, a state machine describing expected behavior.
The requirements extraction process corresponds to inferring valid edges between
the set of states on this machine. In this state machine there are nine states and
42 transitions, and thus 42 possible invariants that can be discovered. We refer
to this automotive model as D in what follows.

4.2 Tool Chain

The specific tasks that need to be performed in order to implement our require-
ments-extraction approach include: (1) generation of full-coverage test suites
from D; (2) production of proposed invariants from test data; (3) creation of
monitor models from invariants; (4) instrumentation of D with monitor mod-
els; (5) generation of coverage test-suites from instrumented D. As indicated
in Section 2, the Reactis tool generates high-coverage test suites from Simulink
models and also supports the instrumentation of models with monitor models
and subsequent validation testing. This tool was used for tasks 1 and 5.

To mine invariants (task 2), we used the Magnum Opus data-mining tool [21],
mainly based on its relative ease of use efficiency. For our model, all the vari-
ables under consideration are nominal rather than numeric. Thus, we focus on
discovering rules of the form(∧

a = ai

)
−→

(∧
b = bi

)
,
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where the premise and consequent are conjunctions of terms involving equalities
of variables to specific values.

Because we have existing ground truth data regarding D in the form of a
state machine, we rewrite all invariants discovered to contain state information
on both the premise and the consequent of rule. When considering invariants of
this form, there is a one-to-one correspondence with state transitions on the state
machine. This allows us to easily check what rules are recovered and what are
not. For example, a rule such as ’button=pressed’ -> ’new state=2’ would
be expanded to the set of rules (assuming possible values of state are 1,2).

’state=1’ ∧ ’button=pressed’ -> ’new state=2’
’state=2’ ∧ ’button=pressed’ -> ’new state=2’

To streamline theprocess,we alsowrote scripts that: translateReactis-generated
test data into the Magnum Opus format; convert Magnum Opus association rules
into monitor models; and create the file Reactis uses to instrument models with
monitors (tasks 3 and 4). The result is a fully automated system that requires no
manual involvement.

To use the resulting tool-chain, a user first runs Reactis on D to create a test
suite (set of sequences of input/output vectors). The suite is then automatically
translated into Magnum Opus format, and that tool then run infer invariants.
Another conversion transforms these invariants into monitor models, along with
the proper information for wiring monitor-model inputs into D. Finally, the user
runs Reactis a second time on the instrumentedD (D + monitor models); Reactis
creates a second test suite that attempts to cover the instrumented model (and
also tries to invalidate the monitor models), reporting when it terminates which
monitor models were found to be violated in the second round of testing. Violated
monitor models correspond to invariants that are in fact not valid invariants and
thus should not be considered requirements.

Note that, as discussed in Section 3, this process can be iterated. Furthermore,
because the test suite created during the validation phase of the monitor models
is constructed using the same heuristics as that of the standard test suites, it
can be used as the basis for a second round of invariant inference and by being
combined with the first round’s data. Because the second batch of tests includes
any counterexamples that where constructed to invalidate some of the invariants
generated from the first batch of tests, the already-violated invariants will not
reappear in subsequent iterations of this procedure due to our criterion that
proposed invariants must satisfy all test data known at the time.

4.3 Structural vs. Random Testing

One hypothesis we wish to test in our experiments is that using full-coverage
tests as a basis for invariant inference yields better invariants than tests that
do not have coverage guarantees. We quantify the notion of “better” in two
dimensions: how accurate are the invariants (i.e. what proportion of a set of
proposed invariants are found to be valid in the validation-testing phase), and
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how complete are they (what proportion of the total set of invariants from the
requirements documentation are generated).

To conduct this assessment empirically, we first produce a test suite having
maximal coverage. This suite is then mined for invariants. Finally, we validate
these proposed invariants by encoding them as monitor models and generat-
ing new test cases with these monitor models instrumenting the original design
model. This experiment, which we call Efull, is repeated five times to increase
statistical confidence in the results.

As a baseline comparison, we then generate a suite of test cases randomly with
no structural constraints imposed (a limit on test length was instead imposed).
In the exact same way as Efull, this test suite is then mined for invariants which
are then converted into monitor models and validated using Reactis. We refer to
this configuration as Epartial, indicating that full coverage is not guaranteed for
the design model. As before for Efull, five separate experiments of configuration
Epartial are performed.

We hypothesize that because coverage is complete for Efull runs and incom-
plete for those generated by Epartial runs, less of the state space of the design
model is covered, and thus Efull runs will generate more accurate and more
complete invariant sets than those generated by random testing. Along with this
total, the number of invalid invariants can also be considered. Because we cover
more variation of the state space in our test cases, we expect fewer spurious
invariants to be inferred by Efull than by Epartial during the entire process.

In this pilot study, we have access to the full set of known requirements, and
the performance of the different experimental set-ups can also be assessed in
terms how many of these are discovered. Also, we can measure the reproducibility
of the output, i.e. the similarity of the outputs of any run to any other run
within the same configuration. To assess how similar any particular invariant
set is to another, we use set a set-similarity statistic, the Jaccard coefficient
[11]. Often used in clustering and other applications where similarity scores are
needed [19], this metric is a measurement of the overlap of two sets, with a
score of 0 (lowest) signifying no overlap, and a score of 1 (highest) signifying
set equivalence. We compute these similarity scores between all pairs of runs
within each configuration. We expect to observe a higher similarity between pairs
of individual Efull experiments than the similarity between pairs of individual
Epartial experiments.

4.4 Invariant Refinement through Iteration

The second hypothesis we wish to test is that iterating our procedure produces
more accurate and complete sets of invariants. To assess this, following the vali-
dation phase of each of the previous experiments, we perform the entire process
again. For Efull, we use as a new test suite the suite generated during the
previous validation step together with the original test suite used for invariant-
generation. For Epartial, we generate another suite of randomly selected test
cases. We refer to the configuration and results of the Efull experiments af-
ter only one iteration as E

(1)
full (which corresponds to exactly the configuration
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discussed in Section 4.3), and results of these experiments extending over two
iterations to be E

(2)
full. A similar scheme applies to Epartial, where we refer to

E
(1)
partial and E

(2)
partial. It should be noted that although the validation phases for

E
(2)
partial involves generating test suites guided by coverage criterion, we discard

this when producing new data for the second iteration, as we wish to preserve
the “coverage-blindness” of the Epartial test suites.

As before, five runs are performed using one of the second iteration configura-
tions. For further analysis, we again report the number of valid invariants mined,
as well as the pairwise Jaccard similarity measurements between experimental
runs in belonging to the same configuration. We expect that the number of valid
invariants to increase from results in E

(1)
full to E

(2)
full, due to the increase in the

amount of testing; the newly introduced test cases for the second iteration can
potentially include counterexamples and other new portions of the state space
that were not well represented in the first iteration. For this reason, the number
of valid invariants detected by E

(2)
partial is also expected to exceed the number

found by E
(1)
partial, but again because no structural guidance is given, the likeli-

hood of counter examples and other unexplored portions of the state machine
being encountered is lower, so the increase should not be as significant.

5 Experimental Results

This section presents the results of our empirical study on D. Table 1 shows the
results of running E

(1)
full and E

(2)
full experiments, while Table 2 shows the results

for the E
(1)
partial and E

(2)
partial configurations.

The data in the tables supports both hypotheses made in Sections 4.3 and 4.4.
In particular, in the first iteration of the structural-coverage method, the accu-
racy ratios (proportion of proposed invariants that the validation step determines
are indeed invariant) are in the range 0.69 − 0.82, with an average over the 5
runs of 0.76; the corresponding figures for the first iteration of the randomly
generated method are 0.42 − 0.76, with an average of 0.54. Thus, about 3

4 of
the invariants inferred from full-coverage test data are valid in the first itera-
tion, on average, while only just over 1

2 are using randomly generated data. The
differences in completeness (ratio of net invariants to total number of known
invariants, based on requirements documentation) is also pronounced, with cov-
erage test-data yielding numbers in the range 0.43− 0.67 (average of 0.57) and
random test data producing results in the range 0.19− 0.45 (average of 0.31).

These differences are accentuated when the results of the second iteration
are considered. In the structural-coverage case (Table 1) the accuracy and com-
pleteness ratios rise to 0.97 and 0.92, respectively, while in the random case the
corresponding figures are 0.67 and 0.51. Structural-coverage test data yields a
negligible number of incorrect invariants and infers 92% of the total invariants,
while 1

3 of the invariants produced from random test data are determined to be
invalid in the second iteration and just over 1

2 of known invariants are discovered.
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Table 1. Results from E
(1)
full and E

(2)
full. The “Putative” columns reports the total

number of potential invariants mined after the inference phase, but before validation.

“Invalid” reports the number of invariants that were found to be spurious in the vali-

dation phase. “Net” reports the number of validated invariants. “Acc.” is the accuracy

ratio: the ratio of “Net” to “Putative”. “Comp.” is the completeness ratio: the ratio of

“Net” to the 42 total invariants contained in the original specification. The average of

each column is reported in the last row.

E
(1)
full E

(2)
full

Run # Putative Invalid Net Acc. Comp. Putative Invalid Net Acc. Comp.

1 26 8 18 0.69 0.43 40 1 39 0.97 0.93

2 34 6 28 0.82 0.67 40 2 38 0.95 0.90

3 30 9 21 0.70 0.50 38 1 37 0.97 0.88

4 33 7 26 0.79 0.62 42 1 41 0.98 0.98

5 34 7 27 0.79 0.64 38 0 38 1.00 0.90

Avg 31.4 7.4 24.0 0.76 0.57 39.6 1.0 38.6 0.97 0.92

Table 2. Results from E
(1)
partial and E

(2)
partial. The columns are the same as in Table 1.

E
(1)
partial E

(2)
partial

Run # Putative Invalid Net Acc. Comp. Putative Invalid Net Acc. Comp.

1 19 11 8 0.42 0.19 29 13 16 0.55 0.38

2 22 11 11 0.50 0.26 27 10 17 0.63 0.40

3 26 12 14 0.54 0.33 34 9 25 0.74 0.60

4 26 13 13 0.50 0.31 32 15 17 0.53 0.40

5 25 6 19 0.76 0.45 35 3 32 0.91 0.76

Avg 23.6 10.6 13.0 0.54 0.31 31.4 10.0 21.4 0.67 0.51

The data in these tables also supports the second hypothesis: that iteration
of the process yields more accurate and more complete sets of invariants. In the
structural-coverage case, the average accuracy ratio increases from 0.76 to 0.97,
and the average completeness ratio rises from 0.57 to 0.92. The corresponding
figures for the random-test case show a similar (but less substantial) improve-
ment: from 0.54 to 0.67 (accuracy), and from 0.31 to 0.51 (completeness).

Table 3 and Table 4 present the Jaccard pairwise similarities between in-
dividual runs of the same type. The average Jaccard similarity for E

(1)
partial is

0.51, and it increases to 0.58 when a second iteration is added in E
(2)
partial. The

structurally-guided coverage testing shows better results. The average for E
(1)
full

is 0.65, which increases to 0.87 when adding a second iteration. These findings,
coupled with the completeness-ratio results from Table 1 and Table 2, support
our hypothesis, showing that randomly guided test cases lead to both fewer in-
variants being detected, as well as high variation in the set of those that are
detected, when compared to test cases satisfying coverage criteria.
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Table 3. Jaccard similarity scores for E
(1)
full and E

(2)
full. The minimum, average, and

maximum values are also given.

E
(1)
full 1 2 3 4 5

1 1 0.53 0.86 0.52 0.67

2 1 0.63 0.64 0.72

3 1 0.62 0.71

4 1 0.61

5 1

E
(2)
full 1 2 3 4 5

1 1 0.88 0.85 0.90 0.83

2 1 0.92 0.88 0.81

3 1 0.86 0.83

4 1 0.88

5 1

Min Avg Max

E
(1)
full 0.52 0.65 0.87

E
(2)
full 0.81 0.87 0.92

Table 4. Jaccard similarity scores for E
(1)
partial and E

(2)
partial

E
(1)
partial 1 2 3 4 5

1 1 0.46 0.47 0.62 0.35

2 1 0.47 0.60 0.58

3 1 0.59 0.43

4 1 0.52

5 1

E
(2)
partial 1 2 3 4 5

1 1 0.74 0.52 0.74 0.50

2 1 0.45 0.70 0.48

3 1 0.56 0.63

4 1 0.48

5 1

Min Avg Max

E
(1)
partial 0.35 0.51 0.62

E
(2)
partial 0.45 0.58 0.74

Regarding the effort needed to conduct these experiments, space limitations
prevent us from reporting fully. However, it should be noted that no run of
Reactis or Magnum Opus ever required more than 3.5 minutes to complete on
the commercial laptops used in the study. The data suggest obvious time savings
for validating invariants over manual inspection.

6 Related Work

In specification mining [3, 5, 9, 10, 16, 20, 23], the interaction behavior of run-
ning programs is extracted [14] by machine-learning algorithms [15] wherein a
state machine, which is supposed to represent a model of the program’s specifi-
cation, is constructed and analyzed using a variety of static techniques [4]. Our
approach, in contrast, concentrates on deriving individual requirements rather
than constructing a total specification of the system. In addition, our approach
is distinguished by its provisions of guarantees regarding coverage of behavior.
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We also use Magnum Opus for its easy setup and its support for association
rules, but other tools could also be used to mine the invariants.

The Weka project[24] is a toolkit for performing data-mining-related tasks
and includes the Apriori algorithm [2], one of the earliest algorithms used for as-
sociation rule mining. The particular types of association rules mined are similar
to Magnum Opus in that they do not support invariants involving ranges.

The Daikon system proposed by Ernst et al. [8] performs dynamic detection of
“likely invariants” in programs written in C, C++, Java, and Perl. An early step
in the approach uses code instrumenters to obtain trace data that is passed into
its inference algorithm. This trace data does not guarantee good coverage over
the program under inspection; Ernst et al. note that multiple runs may be re-
quired by the program under inspection and combined. The invariants proposed
by Daikon are checked for redundancy, but it is difficult to validate invariant
correctness for test cases other than those given by the presented trace data.
Through the use of Reactis, our framework only will produce test cases with a
specified coverage level (able to be set by the user). Also, by converting invariants
into monitor models and validating them, we can provide stronger assurances in
the correctness of our final invariant set.

Hangal et al.’s IODINE framework [12] dynamically mines low-level invariants
on hardware designs. Rather than employ a machine-learning approach, they use
analyzers that monitor signals in the design and report observations that are of
interest, such as equality between signals, mutual exclusion between signals, etc.
In contrast to our work, the observations / invariant types that are discoverable
are determined by the analyzers selected, which can be difficult to identify if one
is searching for invariants that are either unknown or otherwise not considered.
In our case, test cases are generated through the same general framework re-
gardless (using structural coverage), and the data-mining tool employed is the
determining factor of what types of invariants are discovered.

Mesbah et al. [13] proposed a method of automatic testing of the user inter-
faces of AJAX-based applications. Their approach reveals invariants of an AJAX
application and constructs a state machine of the application, over which other
invariants (which they equate to requirements) are identified. The notion of dif-
fering states in their context corresponds to the various paths of action events
that can be taken through user interactions such as button clicks. Their work
focuses on using these invariants to detecting faults for testing purposes, rather
than attempting to construct a well-covered set of invariants which corresponds
to a largely complete view of the state machine, as our work does.

Cheng et al. [7] use data-mining techniques to extract putative invariants
over a program’s dynamic execution, and augment an existing bounded model
checker that uses SAT formulations of the code statically. This approach is shown
to speed up software verification when compared to performing bounded model
checking without the invariants obtained from the data mining. In contrast, our
work infers a largely complete set of such invariants that could characterize the
model itself over the variety of dynamic executions that could possibly occur.
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7 Conclusions and Future Work

This paper has presented a framework for requirements reconstruction from exe-
cutable software artifacts, such as control software, that follow a read-compute-
write behavior model. The method relies on the application of data-mining
techniques to test data that structurally cover the artifact to derive proposed re-
quirements in the form of invariants expressing relationships between inputs and
outputs. The method then uses an automated validation step to identify spurious
invariants. The method was piloted on a production automotive lighting-control
application modeled in Simulink; the experimental data indicate that using full-
coverage test data yields better invariant sets than random test data, and that
iteratively applying the approach further improves these invariants.

As future work, we wish to experiment further with the method, using other
automotive-related Simulink models. We also would like to study the impact
that the use of different coverage criteria — decision coverage, MC/DC, etc. —
have on the quality of invariant sets. Finally, the invariants that were studied
in this work lack a temporal aspect; we are interested in pursuing requirement-
generation strategies that permit the inference of requirements that contain a
time element (e.g. “if a happens then b must happen within x time units”).
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The project Code Contracts for .NET [1] comes from the Research in Software Engi-
neering (RiSE) group [5] at Microsoft Research. We took the lessons we learned from
the Spec# project [3,4] and have applied them in a setting available to all .NET pro-
grammers without the need for them to adopt an experimental programming language
or the Spec# programming methodology. It has been available since early 2009 with a
commercial use license on the DevLabs [7] web site. Since then there have been about
20,000 downloads, with an active forum of users.

The central concepts are method pre- and postconditions and object invariants. These
are specified using ordinary method calls defined in the class Contract which has
been introduced into the Base Class Library in .NET 4.01. Contracts can be specified
for interface methods (including abstract methods) and can refer to “old” values and
return values (in method postconditions).

A library-based approach allows all .NET programmers to use Code Contracts,
whether from C#, VB, F#, or any of the other .NET languages. By using a library in-
stead of a separate programming language we trade off “beauty” for “usability”: there is
no barrier to incrementally adding contracts to an existing codebase, no change is needed
in existing build environments, and all existing IDE features are leveraged while author-
ing and maintaining both the code and the specifications. It also means that we get —
for free — a concrete semantics against which the soundness of static analyses can be
evaluated.

The current download contains tools for runtime verification, static checking, doc-
umentation generation, and editor extensions, as well as Visual Studio integration. We
also have a set of reference assemblies for most of the libraries in the Base Class Li-
brary. A reference assembly provide contracts for external references. Our reference
assemblies have been produced as part of a continuing collaboration with the .NET
product group.

All of our tools operate on the compiled binary produced by each compiler. Since
the contracts occur within the code, it is important to provide infrastructure for ex-
tracting and manipulating contracts. This functionality is available through CCI [6], an
open-source project. We hope that this allows an ecosystem to develop for many dif-
ferent tools that are interested in leveraging specifications. The infrastructure performs
contract inheritance and well-formedness checks (e.g., special rules govern what can
appear within a contract), which all of our tools make use of.

1 Earlier versions of .NET can use the Code Contracts tools by referencing a separate library —
supplied with the tools — that defines this class.

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 16–17, 2010.
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In the runtime checker, contract failures are completely customizable, either via an
event-based hook or else by user-supplied methods that replace the built-in error han-
dlers. Runtime checks are injected for method contracts at method entry and exit, while
object invariants are enforced at the end of public constructors and all public methods.
Invariant checks occur only for the outermost method on the call stack and method
contracts include a recursion guard. Preconditions can also be injected at call-sites for
programming against a runtime assembly that is not itself instrumented for runtime
checking, but for which a reference assembly exists. Source context information is pre-
served in the instrumented assemblies for debugging. Runtime checking also interacts
with other tools; most notably with Pex [8,2], a white-box test generation tool.

Code Contracts for .NET aims for an entire development experience centered around
code specifications: runtime checking is just one facet. It is crucial to have contracts
appear during code authoring and maintenance. They must be present in printed and
on-line documentation. Other tools, such as code optimizers and static analyses, should
be able to take advantage of them.
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Abstract. Stream processing is a new computing paradigm that enables con-
tinuous and fast analysis of massive volumes of streaming data. Debugging 
streaming applications is not trivial, since they are typically distributed across 
multiple nodes and handle large amounts of data. Traditional debugging tech-
niques like breakpoints often rely on a stop-the-world approach, which may be 
useful for debugging single node applications, but insufficient for streaming 
applications. We propose a new visual and analytic environment to support de-
bugging, performance analysis, and troubleshooting for stream processing ap-
plications. Our environment provides several visualization methods to study, 
characterize, and summarize the flow of tuples between stream processing op-
erators. The user can interactively indicate points in the streaming application 
from where tuples will be traced and visualized as they flow through different 
operators, without stopping the application. To substantiate our discussion, we 
also discuss several of these features in the context of a financial engineering 
application.    

Keywords: Visualization, debugging, streaming applications, performance 
analysis, tracing. 

1   Introduction 

Stream processing is a new emerging computing paradigm with applications in vari-
ous areas such as environment monitoring, financial trading, business intelligence and 
healthcare [1]. This paradigm enables continuous and immediate analysis of massive 
volumes of streaming data. In contrast with traditional data analysis approaches, 
stream computing does not require data to be persisted before being analyzed. It al-
lows for data to be analyzed while in motion, by going through a mostly static set of 
long-standing queries that constitute the core of stream processing applications.  

While data stream processing systems are substantially different from traditional 
database-centric analysis systems, developers are confronted with familiar challenges 
and goals, i.e. the identification of the causes for incorrect or missing results, the iden-
tification of errors in the input data, the understanding of performance degradation 
issues, including exhaustion of resources, and the coping with design flaws, among 
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others. However, the nature of streaming applications prevents classical debugging 
approaches to fully achieve these debugging goals. Indeed, typical streaming applica-
tions can be highly distributed to handle large data throughput and low latency re-
quirements. This distribution of computation yields numerous possible data paths in 
an application thus complicating the identification of causes of problems.  

Furthermore, in a streaming environment where data is constantly in motion, it is 
quite hard, if not impossible, to capture a complete and globally consistent view of the 
input data streams and the application state. While breakpoints may be useful for de-
bugging single node applications, they are insufficient for streaming applications for 
the following reasons. First, the cause and the manifestation of an error may be situ-
ated at different locations. Second, halting the execution on one node often has a 
“train wreck” effect on streaming applications, disturbing the relative order of events 
throughout the application. Finally, the large amounts of data that are typically proc-
essed in streaming applications make manual inspections of individual tuples sent 
across operators quite impractical and difficult without proper tooling.  

This paper presents a new visual and analytic environment to support large-scale 
application understanding, including specific features for debugging, performance 
analysis, and troubleshooting. Our environment consists of several visualization 
methods to study, characterize, and summarize the flow of tuples between streaming 
operators as part of System S [2], a large-scale stream-processing platform developed 
at IBM Research.  

We demonstrate several techniques for tracing and visualizing the data flow of 
streaming applications that enable the developer to understand the application's run-
time behavior and more effectively locate and diagnose typical problems. The  
proposed environment allows the user to recreate these data flows in a temporally 
accurate fashion. The user can also interactively indicate points in the streaming ap-
plication from where tuples will be traced and visualized as they flow through differ-
ent operators, without stopping the application. 

The tracing and visualizations described here are intended to be used in concert 
with the existing debugging techniques described in our earlier work [3, 4, 5], thereby 
enabling the developers to apply the existing techniques when they can be the most 
effective. To substantiate our discussion, we organize the presentation of the features 
of our visualization tool in the context of a simple, yet real-world inspired financial 
engineering application.  

In Section 2, we describe the programming model used by System S, the distributed 
stream computing platform on which we have implemented our visual debugging con-
cepts. After a comparison with related work in Section 3, we propose the fundamental 
model of the data dependencies in Section 4. We describe the visual syntax of our tool in 
Section 5. Section 6 illustrates the new features with real-world debugging scenarios. Sec-
tion 7 highlights major design points in our prototype and we conclude with Section 8. 

2   SPADE and System S in a Nutshell 

SPADE [6] is the programming language used for developing stream processing appli-
cations on System S [2], a distributed stream processing platform developed by IBM 
Research. We briefly describe some of the programming language features, focusing 
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on the aspects that are directly related to the visualization capabilities described in this 
work: 

Flow composition: The SPADE language provides composition capabilities that are 
used to create data flow graphs out of basic analytical units called operators. Opera-
tors are composed into data flow graphs via stream connections. This is called static 
flow composition, where the topology of the data flow graph is constructed at applica-
tion development time and does not change at runtime. The language also supports 
dynamic flow composition, where connections are established at runtime, based on 
conditions specified at development time and availability of matching streams at run-
time. In addition to these, SPADE also supports hierarchical flow composition via 
composite operators. A composite operator encapsulates a data flow graph as an op-
erator, which enables development of large-scale streaming applications.  

Flow manipulation: SPADE provides a type system and an expression language. They 
provide the basic constructs for expressing flow manipulations as custom functions 
and operators. A standard set of operators that are parameterizable using SPADE ex-
pression language, as well as a large set of built-in functions are also provided. The 
standard set of operators include basic relational manipulations such as selection, pro-
jection, aggregation, join, and sort, as well as common utilities such as buffering, 
throttling, splitting, merging, etc. Fundamental abstractions, such as windowing, 
punctuations, output functions, and operator parameters, among others are provided to 
facilitate flexible and powerful flow manipulations. The language also provides a set 
of edge adapters to connect operators to external sources and sinks, for ingesting  
external stream data and producing results to be consumed by external applications, 
respectively. 

Extensible analytics: The SPADE language supports extensibility through toolkits. A 
toolkit is a set of reusable operators and functions [7]. The language can be extended 
with new operators, written in general-purpose programming languages, such as C++ 
and Java. Such operators can be type generic and parametrizable. In other words, they 
can potentially operate on any type (as in a Projection operator in relational algebra) 
and can be customized using SPADE’s expression language (as in defining a match 
condition for a relational Join operator). This enables third parties to provide cross-
domain as well as domain-specific toolkits of operators and functions, which encapsu-
late various streaming analytics from a wide range of application domains [1]. 

Distributed execution: The SPADE language provides various configuration options 
that influence the mapping of the logical data flow graph to a physical one, which can 
be deployed on a set of distributed hosts. For instance, the language can be used to 
express operator fusion constraints, which influence how operators are grouped into 
partitions that map to OS processes. Similarly, it can be used to specify partition 
placement constraints, which influence how processes representing the partitions are 
mapped to hosts. Ex-location and isolation constraints at the partition and host-level 
are also supported. These constraints can be used to express detailed requirements [8] 
in terms of how an application executes on the distributed platform. The SPADE lan-
guage can also be used to specify threading and queueing configurations, controlling 
the data processing behavior within an operator and of an input port, respectively.  
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System S provides the runtime platform on which SPADE applications run. It pro-
vides management services such as scheduling, security, job management and moni-
toring, fault-tolerance services, dynamic stream traffic routing, to name a few. It also 
provides a high-performance communication substrate for SPADE applications, which 
makes available highly efficient transport capabilities for cross-process and cross-
node communication; including some of the capabilities we make use of for visualiza-
tion purposes, such as exposed performance metrics and tuple tagging.  

3   Related Work  

There are several bodies of literature related to this work, ranging from debugging 
systems to streaming data provenance tracking systems. Causeway [9] is a debugging 
system that allows developers to debug message-passing distributed systems. Using 
Causeway, the developer can observe the connection between the function call stack 
and the message passing mechanism. However, debugging is done postmortem, by 
processing offline traces that have been generated at runtime. Our tool allows live 
debugging and is able to reconfigure the tracing, based on intermediate results, which 
might already have attracted the attention of a developer. The authors of Causeway 
state that their system generates large quantities of debugging data, but they do not 
tackle the problem of narrowing the tracing space. Our tool uses execution slices to 
only trace the part of the system that is under observation, as we will describe later. 
Causeway is able to capture dependencies between an incoming message and one or 
more outgoing messages that were caused by it, but does not support the model where 
several incoming messages are aggregated into an outgoing message. Our debugging 
environment is able to aggregate tuples from the same or different input ports to out-
put a single resulting tuple. To present the results, the Causeway tool uses text-based 
representations, comparable to the ones found in traditional debuggers while our tool 
provides the user with graphical models of entities in System S and their interactions.  

Finding causalities between input and output data has been the focus of research in 
data provenance. In the context of stream computing, data provenance has received 
only a limited amount of attention, such as in the work of Vijayakumar et al. [10]  
Their work focuses on identifying and storing dependencies among streams (by en-
coding, as a tree, the IDs of ancestor streams of a derived stream), rather than the data 
dependencies for individual stream tuples. In our earlier work [11, 12] we proposed 
efficient techniques to track data and explored a model-based solution for data prove-
nance in stream computing platforms. In a nutshell, our approach compresses the 
meta-data needed to track data provenance into a set of rules capturing input-output 
dependencies. The system that we developed is limited to backward provenance que-
ries. Furthermore, the capture of provenance meta-data is severely limited by the ca-
pacity of the underlying storage system where the traces are persisted.  

Our previous work in problem determination for Web Services uses message tag-
ging [13] as well as semantic correlations between messages [14] to discover the data 
flow in business applications. Aguilera et al. [15] propose a method that treats the 
distributed components as black boxes. They infer causal paths from the observed 
messages by finding nested calls for RPC-style communication or by applying signal 
processing techniques that rely on the time variance between request and response 
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messages. However, all these techniques that help with problem determination in dis-
tributed debugging are hard to apply to stream processing, because the volume in-
gested streaming data makes the implementation of these techniques impractical, if 
not impossible.  

The Streams Debugger [5] enables a developer to inspect individual tuples in a 
SPADE application, by setting breakpoints and tracepoints on an operator's input or 
output ports. At a breakpoint, the flow of tuples on the stream connection is sus-
pended, enabling the developer to examine, and optionally update, the contents of the 
tuple traversing the port. Tracepoints are similar to breakpoints, but trace the tuple 
without stopping the data flow. While the Streams Debugger has demonstrated utility 
for understanding and diagnosing the behavior of individual operators, it is not ade-
quate when used to locate problems related to a long sequence of transformations that 
are characteristic of larger stream processing applications. In part, the techniques de-
scribed in this paper are motivated by the observation that the Streams Debugger will 
benefit from an integration with our new visual environment that lets the developer 
reason about the end-to-end data flows of streaming applications.   

4   Basic Model for Tracing Streaming Applications 

As mentioned in Section 1, finding the cause of unexpected or incorrect results in 
streaming applications can be challenging since cause and effect can be located in dif-
ferent operators of the distributed application and be disjoint in time. For example, a 
particular operator might have a computational bug, which is noticed only when an  
incorrect output tuple generated by that operator is processed further downstream by 
another operator. Moreover, massive amounts of fast moving data in streaming applica-
tions can make it difficult for a user to isolate and retrieve the causal paths, in particular, 
because of the interweaving patterns created by correlation and aggregation operators. 
On the one hand, correlations computed by a join operation will take two (or more 
streams) and use incoming tuples from both input ports to compute the results. On the 
other hand, aggregations will compute an output tuple based on a collection of input 
tuples aggregated over a window. Hence, one can infer that the provenance of interme-
diate and final results can be clouded by operations like joins and aggregations. In other 
words, the outcome of an operator can be impacted by the preceding control flow, data 
flow, or by side effects, for example, occurring via out-of-band communication with 
other non-stream applications (via files, sockets, interactions through a database, etc.). 

In this paper, we will focus primarily on dependencies caused by the regular stream 
data flow. The complexity of data dependencies can grow quickly for any non-trivial 
streaming application. The key to our visual debugging techniques is to trace and 
process information that allows the reconstruction and filtering of the data depend-
ency paths that are of interest to the user. In addition, we will also describe how carv-
ing out a subset in the execution space limits the amount of traced information to 
manageable proportions.  

4.1   Establishing Data Dependency Relationships 

Developers of stream processing applications often want to see how data tuples are 
flowing between and through the operators of an application as well as inspect their 
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content. In many cases, developers want to trace back to tuples that were employed to 
perform computations inside an operator and, ultimately, produced this operator’s 
outgoing tuples. Tuples are generated by the output port of an operator, transported by 
a stream connection, and routed to one or more operators, where they are received via 
an operator’s input port. On receiving a tuple, an operator will generally perform 
computational steps that may or may not yield an immediate output tuple. For exam-
ple, a filter operator might simply discard an input tuple whose properties do not sat-
isfy the filtering predicate. As we discussed before, more complex data dependencies 
might arise when more than a single tuple gives rise to the creation of an outgoing 
tuple, e.g., in a join operator. 

In this context, data dependencies in stream processing applications can be decom-
posed into two types of causality corresponding to inter- and intra-operator data 
flows (Figure 1). In either case, the main capability required to aid developers with 
understanding and debugging their applications consists of appropriately capturing 
and tagging these flows. 

 

Fig. 1. Inter- and intra-operator data flow in a streaming application 

Inter-Operator Data Flow 

Recording the flow of tuples between operators is relatively straightforward. Typi-
cally, an operator producing a tuple tags it with a unique ID. This ID is carried with 
the tuple at the middleware level and is invisible at the application level. In fact, for 
performance reasons, such tagging can be completely disabled, when running an ap-
plication in production mode. When the tuple arrives at the consuming operator(s), 
the ID and other contextual information, such as timestamps, are logged for future use 
by our tool.  

Intra-Operator Data Flow 

Intra-operator data flows are substantially more complex to capture. While in the 
simplest case, an operator might (or might not) forward a tuple based on a filter 
predicate, the causality relationship between an incoming and an outgoing tuple can 
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be considerably more intricate than the one-to-one relationship defined by filtering. 
In a slightly more complex case, an output tuple is created out of a single incoming 
tuple, by preserving certain fields, dropping others, or computing new fields, effec-
tively performing a projection operation (from relational algebra). 

More often than not, multiple tuples are involved in the creation of a new outgoing 
tuple. As we alluded to before, a join or an aggregate operator may produce a new 
tuple, based on a condition that takes into account multiple incoming tuples. As an 
extreme example, an aggregation operation may take an average across the last one 
thousand incoming tuples. In this case, there is a data dependency between the outgo-
ing tuple and these one thousand incoming tuples.  

As expected, intra-operator data dependencies are defined by the internal process-
ing logic of an operator, and therefore, are less straightforward to capture accurately 
in an automated fashion. In our current implementation, rather than relying on (some-
times inaccurate) heuristics or more sophisticated but accurate static analysis, we pro-
vide an API for operator developers to define the intra-operator data dependency. This 
approach meshes well with the extensibility framework afforded by the code genera-
tion infrastructure that underlies the SPADE language [7]. Nevertheless, we are also 
looking into static analysis to automatically establish these relationships. While our 
existing approach might be a burden in the general case, System S comes with a large 
library of pre-built operators, relieving developers of worrying about this task, except 
for operators that developers themselves might add to the application.  

4.2   Narrowing the Execution Space with Execution Slices  

After the inter- and intra-operator data dependencies have been established for indi-
vidual tuples, our visualization tool can use the raw tracing information to infer the 
graph that represents the detailed data flows observed at runtime from a stream proc-
essing application. 

Due to the high-data volumes and large-scale characteristics of production level 
stream processing applications, simply recording the inter- and intra-operator tuple 
flow is not always practical. First, tracing data flows in an application causes substan-
tial perturbation on the system under study, which can impact its external behavior 
and in some cases change the results. Second, tracing every single data flow in the 
entire application for any extended period typically generates enormous amounts of 
trace data to be processed by the visualization tool. Third, and perhaps more impor-
tantly, even if enough computing power were available to generate the trace data, pre-
process, and ingest this data, the results would most likely cause cognitive overload to 
the human analyst for any realistic application.  

In our visualization framework, we make use of execution slices as a means to de-
clutter and focus the analysis on the relevant data. This concept has been successfully 
employed as a clutter-reducing strategy in the area of dynamic program analysis (e.g. 
by Wong et al. [16]). Similarly, in our context, we can carve out a portion of the exe-
cution space by limiting tracing in the application topology (i.e., by activating tracing 
only in a portion of the dataflow graph) and in time (i.e., by allowing the tracing to be 
activated during user-defined time windows, interactively). 

Furthermore, our tool makes use of static analysis on the SPADE program-generated 
dataflow graph, to automatically determine the set of operator nodes in the application 
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that are upstream from an operator where anomalies have been observed. Alterna-
tively, it is also possible to limit the set of operators to be traced downstream of a 
given operator, if the user’s intention is to evaluate the impact of tuples coming from 
a certain stream connection created by that operator. 

Finally, our tool can also limit the amount of trace data by only recording enough 
tuple events per operator’s input port subjected to a cap defined in terms of a maxi-
mum count or a maximum time interval.  

5   Visualizing Data Flows  

Our visualization tool allows developers to inspect tuple flows passing through the 
operators. Developers are also able to control the tracing options and focus on specific 
sites of the application by selecting the parts of the application that are of immediate 
interest to the task at hand (e.g., debugging or analyzing a specific part of the flow). 

The visualization tool is fully integrated with System S’ Streamsight visualization 
environment [3, 4]. In the present tool, however, the main focus has been on mecha-
nisms to tease apart and analyze specific data flows, on establishing the provenance 
for final and intermediate results, and on additional capabilities to drill down and look 
at properties associated with the multiplexed tuple flows coexisting in the same 
stream connection, providing powerful application understanding and debugging 
functions to developers. As will be seen, these additional capabilities nicely comple-
ment (and, therefore, are naturally integrated with) the original Streamsight tool.   

 

Fig. 2. The visualization tool has two views. The Topology view, at the top, shows data flowing 
through the operators (in green) from left to right; tuple log widgets near the input and output 
ports show individual tuples. The Tuple Sequence view, at the bottom, shows the tuples as 
small dots (in this example, in blue and red), organized vertically by time and horizontally by 
the input and output ports of operators, shown as light blue vertical lanes. Clicking on a tuple in 
either view will highlight (in yellow) the tuples forward and backward data dependencies.  
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Figure 2 shows the visualization tool with two views, the Topology view at the top 
and the Tuple Sequence View at the bottom. The Topology view renders operators, 
which contain the processing logic expressed in the SPADE language, as green rectan-
gles with a slanted corner. In this example, data is being generated by the leftmost 
operator (TradeQuoteTh) and sent to operators to the right. An operator can have zero 
or more input ports (shown as small red rectangles on an operator’s left border) and 
zero or more output ports (shown as red small rectangles on an operator’s right bor-
der). Data in the form of individual tuples is sent from output ports to input ports 
across stream connections, shown as the connection splines in the Topology view. 
The original Streamsight tool provided the user with dynamic aggregate information 
such as the tuple rates on specific streams, but did not capture individual tuple infor-
mation as currently done with the new tool.  

In our new tool, we allow developers to observe individual tuples at specific input 
or output ports as well as their data dependencies across the application. Building on 
these features, we constructed a powerful application understanding and debugging 
methodology. The following scenario illustrates these features.  

A developer can turn on tracing either for a particular port, a subset of application 
operators, or for the whole application. As a result, small scrolling tuple log widgets 
will appear next to the respective ports as depicted in the upper part of Figure 2.  
Figure 3 shows one such tuple log widget in detail. A limited number (ten, in this ex-
ample) of tuples is visible, while additional tuples (if available) can be made visible 
by scrolling left or right. Moving the mouse over a tuple will bring up a tooltip, which 
displays the complete tuple content. As seen in the figure, a tuple is a collection of 
attributes; both the attribute name and the associated value are shown. 

 

Fig. 3. A tuple log widget next to a port allows the user to browse through the tuples and their 
contents that have been received by an input port or sent by an output port 

Clicking on a tuple highlights it locally, but more importantly also highlights all 
tuples upstream and downstream that have a data dependency to this tuple. This op-
eration also highlights all the data flow paths throughout the application, as shown in 
Figure 2 and illustrated in Section 6.3. In addition, the corresponding tuples and data 
flow paths in the Tuple Sequence view described below and shown in the lower part 
of Figure 2 are highlighted. From an application understanding standpoint, this new 
capability can be useful to track the provenance and the impact of specific tuples on 
the results an application generates. From a debugging standpoint, this capability pro-
vides the fundamental answer to the question of “where did this (incorrect) result 
come from?”.  



 Visual Debugging for Stream Processing Applications 27 

 

Further extending this capability, the tool also allows the user to automatically 
color tuples according to the content of a certain attribute in the tuple. This capability, 
while simple in concept, is extremely useful in allowing individual subflows  
multiplexed in the same stream to be teased apart and made visible based on specific 
properties of the data traffic. In the example shown in Figures 2 and 3, we depict a 
particular stock trading application (which we will describe in more detail later). In 
this case, each tuple is colored according to the value of the “ticker” attribute, allow-
ing us to separate transactions related to particular companies whose shares are pub-
licly traded in the stock market.  

While the Topology view allows the developer to monitor how tuples are flowing 
through the application, it does not provide the user with any insight into the specific 
timing or ordering of the tuples. The Tuple Sequence view, shown in the lower part of 
Figure 2, addresses this issue by laying out the tuples horizontally, by operator, and 
vertically, by time. The light blue vertical lanes represent each of the application  
operators under inspection. Inside each operator lane, the light gray vertical rails rep-
resent input ports (to the left) and output ports (to the right). Tuple instances are ren-
dered as small rectangles. Their y-coordinates reflect the time that they were observed 
at the port; their x-coordinates represent the operator and port locations where they 
were observed. The dark red lines between the tuples show the inter-operator depend-
encies (i.e., the transmission of tuples between operators), whereas the green lines 
show the intra-operator dependencies. Operators in this view are sorted horizontally 
based on the their topological order from source to sink (and, if needed, on their verti-
cal order, when adjacent horizontal paths might exist) in the Topology view. This 
ensures that, in most cases, the flow of most tuples goes from left to right, similar to 
the flow in the Topology view. Note also that, the information depicted in this view 
slides downwards, as time progresses.  

A user can hover over a tuple to see its content and timing information. Clicking on 
a tuple or a connection in this view highlights the data path(s) going into and out of this 
tuple as defined by the inter- and intra-operator data dependencies and the computed 
tuple provenance. Clicking on tuples in either the Topology or the Tuple Sequence 
view will highlight these tuples and their data paths in both views, to help the user situ-
ate the specific flow in the context of the overall application view. To decrease the 
amount of clutter, the user can choose to focus only on a specific highlighted path, 
triggering the tool to hide the now irrelevant elements. For example, isolating the (yel-
low) highlighted path shown in Figure 2 will result in the user seeing the view shown 
in Figure 9.  

6   Usage Scenarios  

Our tool is fully functional and seamlessly integrated with our earlier visualization 
tool, System S’ Streamsight [3, 4]. To discuss and demonstrate the dataflow debug-
ging capabilities as well as the large-scale application understanding features avail-
able in our tool, we will briefly describe the Bargain Discovery stream processing 
application [17]. We will employ this application to motivate several real-world prob-
lems faced in the context of much larger stream processing applications [1]. 
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6.1   The Bargain Discovery Application 

Our sample application emulates a scenario where a securities trading firm makes 
money by quickly spotting bargains in trading transactions in the stock market. To 
identify a bargain, a hypothetical firm first needs to acquire data to build a model for 
pricing all (or some of) the securities that are being traded in the market. Once a secu-
rity is priced (let's call it the security’s fair price), the firm can assess whether ask 
quotes are mispriced. That is, the application can determine whether a seller is willing 
to sell that security (or a bundle of them) for a price that is lower than the fair price as 
predicted by the pricing model. 

The incoming primal stream to this application carries all the information neces-
sary for performing such computation, i.e., the market feed, including quote and trade 
transactions [18]. In our implementation, trade transactions (where a security is actu-
ally sold) are used by the pricing model to compute the security’s real-time fair price 
(in this case, by employing a simple moving volume-weighted average of recent trade 
transactions) to score quote transactions (where a security is simply being quoted by 
another party). 

The top view of Figure 2 shows a Streamsight data flow graph of this application. 
Here, the top flow corresponds to the implementation of the pricing model. The nota-
ble part there is the use of an aggregate operator, which computes the volume 
weighted moving averages for each different stock symbol seen in the stock market 
feed. The bottom flow, which filters only quote transactions, is used to transport these 
transactions to a join operator, where quotes are scored against the pricing model. 
Finally, the potential bargains spotted by the application are scaled, ranked, and 
communicated to an external sink that, in the real world, would be connected to a 
trading execution application, which would take care of acting on these bargains.  

6.2   Detecting an Incorrect Parameter in an Aggregate Operator 

The following debugging scenario describes a problem that is hard to spot by the sole 
examination of the output data, since the impact on the results can be rather subtle, at 
least in relatively short timespans. However, in the long term, the bug can potentially 
cause a significant financial loss. In this case, the implementation of the application 
does not match one key aspect of the requirements laid out by a quantitative analyst 
who designed the Bargain Discovery application.  

On performing an application validation test, the developer starts by examining all 
operators and their interconnections, and subsequently samples the incoming and out-
going tuples in the Topology view of our tool. In principle, everything seems to look 
fine. To verify the behavior of the application over time, the developer now turns to 
the Tuple Sequence view. There the developer observes that the data flow going 
through the PreVwap Aggregate operator exhibits the pattern shown in Figure 4a. 
From this pattern, it appears that this operator consumes four new input tuples before 
it produces an output tuple. However, the original application specification required 
that an output tuple be created with the weighted average of the last four tuples, after 
every new incoming tuple arrives at the operator. Clearly, the PreVwap Aggregate has 
been incorrectly deployed with a “tumbling window” parameter (i.e., the window 
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state is reset every time an aggregation is produced), while the specification de-
manded a “sliding window” average (i.e., the window state is updated on arrival of 
new tuples, by discarding older ones). From an application design standpoint, using a 
sliding window in this operator allows for a smoother function constantly indicating 
the fair value prices for each stock symbol. 

After redeploying the application with the corrected parameter in the configuration 
of the Aggregate operator, the developer can observe the new (and now compliant) 
behavior depicted by Figure 4b.  As can be seen, about four times as many output 
tuples are now created in the same time span.  

        

Fig. 4a (left) and 4b (right). Time moves downwards, tuples are shown as small black rectan-
gles, and the green lines represent intra-operator dependencies. In the incorrect implementation, 
on the left side, the PreVwap Aggregate operator creates an output tuple (on the second vertical 
rail) each time four new input tuples (on the first vertical rail) have arrived to (supposedly) 
calculate the weighted moving average value for the stock price. Here it can be seen that an 
incoming tuple contributes to only one outgoing tuple, which is an indication of a problem, as 
this pattern is not consistent with computing a moving metric. In the corrected version, on the 
right side, the PreVwap Aggregate operator uses a sliding window to calculate the average 
value over the four last incoming tuples, thus creating an output tuple after every incoming 
tuple. It can be seen here that an incoming tuple contributes to four outgoing tuples (in this 
case, the sliding window was configured to hold four tuples at any given point in time and uses 
these tuples to produce the moving average).  

6.3   Tracking Down the Locus of a Calculation Error 

Figure 5 shows the content of a tuple at the sink operator. A tuple with a positive in-
dex field, like the one shown here, indicates a trading bargain and the specific value 
indicates the magnitude of the bargain for ranking purposes (i.e., a bigger bargain 
should be acted on first, due to its higher profit making prospect).  

However, the tuple shown in this figure as well as other tuples seen at the input 
port suggest that the system has spotted bargains, although, surprisingly, the ask price 
seems to be higher than the VWAP or fair price value predicted by the pricing model, 
opposite to what the definition of a bargain is. This is a clear sign that something went 
wrong, leaving the question of where the problem actually originated. 
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Fig. 5. Hovering over one of the result tuples shows an (incorrect) tuple with an ask price 
higher than the fair price (VWAP) 

In order to retrieve the lineage of this incorrect result, a developer can click on 
one of the tuples with incorrect results. This will highlight all the tuples, upstream in 
the application, whose contents might have impacted the outcome of the selected 
tuple. Moving to the left, from the tuple with the incorrect values, the developer can 
quickly spot the contributing tuples at the join operator. Both the fair value tuple 
(received from the Vwap operator and used for this computation) as well as the quote 
tuple (received from the QuoteFilter operator) turn out to be correct. This leads the 
developer to take a closer look at the BargainIndex operator. Examining the SPADE 
code1 then leads to the discovery of a “greater than” sign that should have been a 
“less than” sign.  

 

Fig. 6. Selecting the tuple with the incorrect value in the result operator on the right highlights 
its lineage, showing the upstream tuples potentially contributing to the error 

6.4   Investigating the Absence of a Result 

The incorrect behavior in an application sometimes manifests itself by the absence of 
an expected result. For example, automated unit tests set in place to ensure an applica-
tion gets validated before deployment are typically built with pre-determined inputs 
that will lead to an expected output. Finding out why we did not observe an outcome 
is often more difficult than investigating an incorrect outcome. 

In the following debugging scenario, a developer observes that no tuples are re-
ceived at the sink, as shown in Figure 7. However, the same figure also shows that all 
operators in front of the sink operator did receive tuples.   

                                                           
1 System S provides an integrated environment that allows developers to conveniently jump 

from the dataflow graph representation to the specific segment of source code implementing 
that segment and vice-versa [3, 5]. 
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Fig. 7. The sink operator, to the right, does not receive any tuples (as seen by the absence of a 
tuple log widget). Nevertheless, tuples are arriving at preceding operators, but none are produced 
by the output port of the join operator. Hovering the tooltip over one of the input queues in the 
join operator reveals the ticker symbols for the tuples that have been received so far. 

The first suspicion is that there is a problem in the BargainIndex join operator. Ex-
amining a few individual tuples at both inputs of the BargainIndex reveals that the 
lower port seems to receive only tuples with the ticker symbol “IBM” (shown by the 
tooltip in the Figure 7), whereas the upper port seems to receive only tuples with a 
ticker symbol “LLY” (not shown). This suggests that the join operator works cor-
rectly, but simply did not find tuples with matching ticker symbols, required to evalu-
ate and potentially indicate the existence of a bargain. 

The next step is to go upstream and look at the distribution of ticker symbols in the 
tuples flowing through the application. The visualization tool can color the tuples ac-
cording to the content of an attribute belonging to the schema that defines a stream 
and its tuples, at the request of the user. For example, Figure 8 shows the tuples flow-
ing through the operators in this application colored by the content of the “ticker” 
attribute. Each value for the ticker attribute is automatically hashed into a color. The 
figure shows that tuples with ticker symbol “LLY” are rendered in red, whereas tuples 
containing “IBM” are rendered in blue. It also reveals that the TradeFilter operator 
(second from the left) only forwards LLY tuples and that the QuoteFilter operator (at 
the bottom) only forwards IBM tuples.  The solution for this problem was to change 
the parameterization of the TradeFilter operator, so that it also forwards IBM tuples.  
In this case, the problem stemmed from an (incorrectly implemented) effort at paral-
lelizing the application [17]. Specifically, the filter condition in the Trade part of the 
graph was not the same as the condition in the Quote part of the graph. With this par-
allelization approach, the space of stock ticker symbols (around 3,000, for the  
 

 

Fig. 8. Tuples are colored by the ticker attribute: tuples containing “LLY” are rendered in red, 
“IBM” tuples are (appropriately) in blue.  The TradeFilter only forwards “LLY” tuples, the 
QuoteFilter only allows “IBM” tuples, preventing the join operator to make matches.  
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New York Stock Exchange) was partitioned into ranges (e.g., from A to AAPL, from 
C to CIG, etc) so that replicas of the bargain discovery segment could operate on  
different input data concurrently, yielding additional parallelism and allowing the 
application to process data at a much higher rate. 

6.5   Latency Analysis 

Understanding latency is a key challenge in streaming applications, in particular, for 
those that have rigid performance requirements, as is the case, for example, of many 
financial engineering applications. To assess latency, we must first establish what the 
latency metrics represent. Latency can be defined in many different ways, depending 
on the particular path of interest within the flow graph as well as the set of tuples in-
volved. Second, manually capturing latency via application-level time-stamps im-
poses a heavy burden on the developer and often complicates the application logic. As 
a result, system and tooling support for analyzing latency are a critical requirement 
for stream processing systems. This requirement addresses the need for providing 
comprehensive application understanding, especially from the perspective of user-
friendly performance analysis. 

As an example, consider the Bargain Discovery application, discussed earlier, and 
the following measures of latency that are relevant to application understanding: 
 

A. Given a tuple that indicates that a bargain has been spotted, the time between 
(i) the arrival of the quote tuple that triggered the spotting of that new bargain 
and (ii) the generation of the bargain tuple itself is one of the latency metrics 
of interest. This latency measure helps in understanding how quickly the bar-
gains are spotted based on the arrival of new quotes. 

B. Given a tuple representing a volume weighted average price (VWAP), the 
time between (i) the arrival of the trade tuple that triggered the price and (ii) 
the generation of the VWAP tuple itself is another latency metric of interest. 
This latency measure helps in understanding how quickly new trades are re-
flected in the current VWAP fair value price, which impacts the freshness of 
the pricing model and in turn the accuracy of the discovery (or not) of the  
bargains. 

C. Given a tuple representing a trade, the time between (i) the arrival of the trade 
tuple itself and (ii) the generation of the last bargain tuple that was impacted 
by the trade tuple in question is another latency metric of interest. This latency 
measure helps in understanding the duration of the impact of given trade tuple 
to the pricing model. 

 

It is interesting to note that the above listed use cases can be broadly divided into two 
categories. These categories are determined by the anchor tuple used for defining the 
latency, which impacts the type of workflow involved in the visual analysis of the 
latency. We name these categories as result-anchored and source-anchored latencies. 
A result-anchored latency is defined using the downstream result tuple as an anchor. 
It is visually analyzed by first locating the result tuple and then using the result tuple’s 
provenance to locate the source tuple. Use cases A and B above fall into this category, 
as illustrated by Figure 9, produced by our visualization tool. 
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Fig. 9. Visualization of the result-anchored latencies from the use cases A and B, showing the 
provenance of a bargain tuple and the start and end points for the computation of the result-
anchored latencies 

In this figure, we mark the source tuples using a diamond shape and the result tu-
ples using a square shape. For use cases A and B, we first locate the result tuple and 
use it as an anchor point to take the provenance. For use case A, the bargain tuple is 
our anchor point, whereas for use case B, the VWAP tuple is our anchor point. We 
then locate the source tuple in the lineage of the result tuple. For use case A, the 
source tuple is the quote tuple, whereas for use case B, the source tuple is the last 
trade tuple that is in the lineage of the result tuple. Once the source and target tuples 
are located, the latency can be retrieved easily.  

A source-anchored latency is defined using the upstream source tuple as the an-
chor. It can be visually analyzed by first locating the source tuple and then using the 
source tuple’s downstream lineage to locate the result tuple. Use case C above falls 
into this category, as illustrated by the Figure 10. 

 

Fig. 10. Visualization of the source-anchored latency from the use case C, showing a down-
stream lineage of a trade tuple and the start and end points for the computation of the source-
anchored latency 

For use case C, we first locate the source tuple and use it as an anchor point to take 
the downstream lineage. The trade tuple is our anchor point in this case. We then lo-
cate the target tuple in the lineage of the source tuple. In this case, the result tuple of 
interest is the last bargain tuple produced downstream that is in the lineage of the 
source tuple. Once the source and target tuples are located, the latency can be re-
trieved easily.  

Finally, it should be pointed out that the average latencies and outliers can also be of 
interest, rather than the instantaneous latencies of specific tuples. Given that our tool 
has access to various samples for a given type of provenance or lineage, simple pattern 
analyses techniques can be used to compute average values as well as outliers for the 
desired latencies. For instance, the latency defined in use case A can be averaged over 
all the bargain tuples in the history to compute an average value. While our tool does 
not provide this capability yet, this represents a simple and straightforward extension.     
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7   Design and Implementation  

The System S runtime was enhanced to track inter-tuple dependencies by intercepting 
tuples as they leave output ports and assigning them unique tuple identifiers. These iden-
tifiers enable the receiver of a tuple to learn about the immediate origin of the tuple. To 
track intra-tuple dependencies, a provenance tag is added to each tuple. The provenance 
tag is maintained by the System S runtime based on a lightweight API exposed to appli-
cation developers for specifying dependencies of output tuples to input ones. 

The System S runtime maintains one-step dependency only, which captures inter- and 
intra-operator dependencies, but does not include the complete provenance information, 
which contributes to lowering the amount of overhead imposed by tracing operations.  

The visualization tool is used to reconstruct the complete provenance information 
from one-step data dependency information collected from multiple operator ports. 
The new visualization features for debugging and data flow analysis are implemented 
as an Eclipse plug-in and are fully integrated into System S’ Streamsight visualization 
environment [3, 4]. In our current prototype we use a mix of CORBA calls and files 
for the two-way communication between the System S runtime and the visualization. 
We designed the tool so that it can process and reflect near-live information from the 
runtime system. In particular, the data models that contain the tuple and data depend-
ency information can be populated incrementally. Similarly, the visual front-end is 
able to render the new information almost immediately.  

8   Conclusion 

In this paper we presented a new, visual environment that allows developers to debug, 
understand, and fine-tune streaming applications. Traditional debugging techniques, 
like breakpoints, are insufficient for streaming applications because cause and effect 
can be situated at different locations. Development environments for message-based 
distributed or concurrent systems offer the developer insight by aligning the distrib-
uted events with the messages that were exchanged. However, even these techniques 
tend to be impractical for debugging streaming applications because of the sheer vol-
ume of data that they produce.  

Our new environment allows the developer to limit the tracing information to execu-
tion slices, defined in time and in space. It organizes the traced tuples based on their data 
dependencies. This offers a natural way for the user to navigate the distributed execution 
space in terms of provenance and lineage. We offer two new views to the developer. The 
Topology view projects the execution information, i.e. the tuples, their contents and their 
mutual data dependencies, on the application topology graph. The Tuple Sequence view 
organizes tuples by time and by operator. The combination of these two views offers a 
natural way for a developer to explore causal paths during problem determination, as 
well as to carry out performance analysis.  
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Abstract. Runtime verification has primarily been developed and evaluated as
a means of enriching the software testing process. While many researchers have
pointed to its potential applicability in online approaches to software fault toler-
ance, there has been a dearth of work exploring the details of how that might be
accomplished.

In this paper, we describe how a component-oriented approach to software
health management exposes the connections between program execution, error
detection, fault diagnosis, and recovery. We identify both research challenges and
opportunities in exploiting those connections. Specifically, we describe how re-
cent approaches to reducing the overhead of runtime monitoring aimed at error
detection might be adapted to reduce the overhead and improve the effectiveness
of fault diagnosis.

1 Introduction

The past decade has witnessed a growing interest in relating program executions to
rich correctness properties as a way to increase the observability of software system
behavior and thereby enhance the software testing process. The foundations of runtime
verification have been well established. Researchers have developed sophisticated spec-
ification notations for expressing properties to be checked at runtime, e.g., [1,2], devised
techniques for synthesizing efficient monitors to check those properties, e.g., [3], and
produced powerful frameworks that allow monitors to be incorporated into programs,
e.g., [4,5].

Early runtime verification systems, e.g., UPenn’s MaC [2] and NASA’s Java Path
Explorer [6], focused on using monitoring to enhance program testing. While enhanced
test oracles offer significant value, it seems clear that even in the early years of research
on runtime verification, researchers envisioned using it in a broader context. For ex-
ample, the authors of both the MaC and Java Path Explorer papers identify exploring
monitoring in a broader context as future work in stating “Our current system is geared
towards the detection of faults. It would be desirable in the future to build monitors that
can steer a system to a correct state.” [2] and asking “How can missions be made safer
in the face of errors occurring during flight that survived tests?” [6].
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Research towards those goals has been modest, at least in part because it is a very
difficult challenge. In recent years, however, there has been a concerted effort to un-
derstand how one might construct software health management (SHM) subsystems [7].
Building on decades of work in systems and vehicle health management, SHM seeks
to accommodate the nature of software faults, e.g., that arise as discontinuities relative
to their input domain, and provide an overall framework into which different error de-
tection, fault diagnosis, and recovery techniques can be incorporated to achieve greater
tolerance to software errors in fielded systems.

We believe that the broader context of SHM provides a number of significant chal-
lenges and opportunities for the runtime verification research community, which has fo-
cused primarily on error detection techniques. More specifically, we believe there is a
need to consider the connections between error detection and other elements of SHM so-
lutions. In this paper, we consider one such connection, between error detection and fault
diagnosis, in light of recent efforts to mitigate the runtime overhead of error detection.

One of the key challenges to widespread use of runtime verification, especially mon-
itoring of rich properties, i.e., monitors that check non-trivial predicates over program
data state and monitors that reason about sequences of program states, is runtime over-
head. Recent studies of the performance of state-of-the-art algorithms for monitoring
typestate properties [8] on Java program executions [5,9,10] have revealed rather bi-
modal findings in terms of performance; for many combinations of programs and prop-
erties, the overhead is negligible– less than 5% –but there are combinations that incur
significant overhead– more than 100%.

Monitor overhead is determined by a number of factors: the number of program lo-
cations that must be observed, the extent to which different data values require the need
for multiple copies of a monitor, and the cost of updating monitor state and checking
for violations. In the case of monitoring a typestate property, i.e., using a finite-state au-
tomaton (FSA) that expresses constraints on the legal ordering of operations called on
an instance of a given type, monitoring can incur significant overhead. For example, to
monitor the HasNext property on the bloat benchmark, one of the DaCapo benchmarks
[11] that was studied in [5], over 211 million operations, spread across one million
iterator instances, are processed during monitoring.

Given such a large overhead to monitor a single property, work to optimize this
type of property monitor is needed and has become an active area of research in recent
years, e.g., [10,12]. The results thus far are quite promising, however, in all of the work
to date, there is no consideration of how optimization might impact the broader context
in which the monitor is deployed. For example, both error detection and fault diagnosis
must observe program behavior. How are those observations related to one another?
Can optimizing error detection also optimize fault diagnosis? Will such optimization
preserve the information needed by fault diagnosis?

In this paper, we begin to explore some of these questions, and more broadly, to
consider the connections that arise from considering runtime verification in an SHM
context. Our study offers some insights into how those connections might be exploited
to produce better SHM systems, and suggests principles that must be observed when
designing an error detection techniques for SHM.
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Fig. 1. Conceptual architecture for software health management

The paper is organized as follows. Section 3 describes one recent strategy for opti-
mizing runtime monitors for typestate properties and describes the property preserva-
tion requirements developed for that optimization. Section 4 considers the impact of
applying that optimization strategy on three techniques for online fault diagnosis that
have been proposed recently. We present, in Section 5, a series of research challenges
and opportunities related to how runtime verification fits into SHM solutions that we
believe the research community is well-positioned to advance in the near future. We
begin with a discussion of existing research that forms the background for our study.

2 Background and Related Work

We provide background on the application of runtime monitoring for error detection,
survey approaches to software health management, and outline a few recent approaches
to software fault localization.

2.1 Runtime Monitoring for Error Detection

Monitoring the execution of a software system might be performed for a variety of rea-
sons, e.g., to assess performance, to enforce security policies, or to provide test coverage
information. The runtime verification community has focused, primarily, on monitor-
ing the conformance of program executions relative to a formally specified correctness
property. This type of monitoring can extend the set of errors that can be observed dur-
ing system execution compared to a traditional test oracle which evaluates predicates
on output values. Moreover, since such monitors typically observe the internal state of a
software system they are capable of detecting errors before they give rise to system-level
failures, such as outputting an incorrect value.

The top portion of Figure 1 depicts the relationship between a program, P , and an
error detection capability realized through runtime monitoring. A set of correctness
properties, φi, are defined and those properties together define the set of observations



Runtime Verification in Context 39

Monitor 

P
Pφ

Monitor 

P’ φ

Fig. 2. Monitor instrumentation and optimization

of program behavior that is necessary to make judgments about the satisfaction or fal-
sification of each of the φi; this set is denoted Σ–the alphabet of program observations.
As the program executes, it reaches locations at which an observation, or symbol, in
Σ is generated and that observation is communicated to the monitor associated with
each property. Each monitor tracks the sequence of observations and renders a boolean
judgment about the conformance of the program execution with respect to its property.

This conceptual architecture for monitoring can be instantiated using a wide range of
property monitoring approaches. For example, monitoring assertion properties relies on
observations that query the data state of the program. In this case, a single observation
is all that is required to render a judgment of ¬φ, and if all observations satisfy φ then
a satisfying judgment is produced on program exit. Monitoring temporal or sequencing
properties relies on observation of a set of program locations along with data values,
e.g., indications of calls and returns to methods of a given class coupled with the identity
of the receiver object. For such properties, the processing of an observation updates the
monitor state and judgments are rendered when an object’s lifetime ends or the property
enters a trap state, i.e., a state for which no subsequent observations can prevent the
property from being falsified.

The identification of observations during program execution and their communica-
tion to the property monitor can be achieved in a variety of ways. In recent years, the
runtime verification community appears to have converged on the use of program instru-
mentation, realized by sophisticated aspect weaving technologies, as being a particu-
larly effective means of integrating the generation of observations into programs [4,13].
To illustrate, consider the three versions of program P shown in Figure 2. On the left
is the original, uninstrumented, version of P . In the middle is Pφ, an instrumented ver-
sion of P that produces observations relevant to φ. We discuss the rightmost version in
Section 3. When the instrumentation in Pφ is executed, sophisticated data structures are
used to route observations [5] to monitors that are synthesized from high-level property
specifications [3,14]. This monitoring code is incorporated in the deployed program,
e.g., as the added module shown at the bottom of Figure 2, so that it can be invoked as
needed during runtime.

2.2 Software Health Management

For at least three decades, there has been a recognition that the challenges of construct-
ing correct software are so significant that deployed systems will contain faults and that
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cost-effective techniques for tolerating faults at runtime would be extremely valuable.
Many techniques have been proposed, but no technique has emerged as one that can be
widely applied in practice–some techniques have been shown to be ineffective [15,16].

More recently, forms of software fault tolerance have been explored under the
names autonomic, recovery-oriented, failure-oblivious, self-healing, self-adaptive and
re-configurable systems. Even more recently, the term software health management
(SHM) has emerged in the safety-critical systems community and we adopt that term
here to encompass the general class of software fault tolerance approaches.

Rather than surveying the significant literature in these areas, we present, in Figure 1,
a conceptual architecture for SHM that includes three capabilities that are incorporated
into the subject program: error detection, fault diagnosis, and system recovery.

As described above, as program P executes it is monitored for properties, φi. Run-
time monitoring detects property violations, i.e., errors, that indicate a potential need
for system recovery. In an SHM solution, error detection communicates the identity of
the violated property to a fault diagnosis capability. Fault diagnosis is a very differ-
ent problem than error detection. Its goal is to identify the system component whose
behavior initiated the erroneous behavior that was ultimately detected–the faulty com-
ponent. Information from the faulty component may be separated both temporally and
structurally within the code from the component that exhibited the error. Consequently,
additional diagnostic information, D, is recorded during program execution to aid fault
diagnosis. While Σ and D may overlap or be generated from common locations in the
program, that need not be the case. Once diagnosis completes, it passes an indication
of the faulty component(s) to the recovery capability which may reconfigure, restart,
remove or replace those component(s).

This architecture can be instantiated in a wide variety of ways. For example, the Pin-
point system [17] provides for SHM of web-services by instrumenting portions of the
service implementations and J2EE infrastructure to capture data for error detection and
fault diagnosis, which then triggers rather rudimentary component reboot for recovery
[18]. Other approaches skip fault diagnosis altogether [19,20] and instead simply repair
data structures at the point of failure as a means of recovering from immediate system
failure. The FLORA [21] system allows an application to be refactored into isolated re-
covery units that are rebootable, and allows different error detection and fault diagnosis
approaches to be incorporated–we discuss one such approach below.

None of these solutions seems appropriate in a safety-critical context. For such sys-
tems, SHM approaches are typically much more integral to overall system development
and are not regarded as an add on. Approaches like [22] take a holistic approach and
consider the possibility that faults might also exist within detection, diagnosis, and re-
covery algorithms–their approach is to prove those algorithms correct.

Researchers and developers will undoubtedly continue to evolve SHM solutions from
individual application domains to more general settings, from coping with individual
types of of faults to broad classes of faults, and between different levels of critical-
ity. As they do, there will be opportunities for results from runtime verification to be
incorporated as long as those results are designed to fit into the broader SHM context.
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2.3 Software Fault Localization

Over the past decade, the software engineering research community has developed a
rich literature on techniques for identifying the root cause of a program failure, i.e., the
fault. Most of the techniques that have been developed are intended to support human
developers by narrowing their attention to parts of the program that are more likely to be
faulty. In doing this, they may produce a ranking of program elements, e.g., statements,
methods, classes, from most likely to be faulty to least likely. A developer starts at the
top of the list and works their way down and, if the localization technique is effective,
they save time in finding the fault and can then proceed with fixing it.

In recent years, several researchers have investigated the adaptation of fault local-
ization techniques to online fault diagnosis. While many different fault localization ap-
proaches might be used for this purpose, here we describe two classes of approaches
that use very different types of recorded information.

Spectrum-based fault localization [23]. This technique records information about which
system components are executed during a run of the system. This information is captured
prior to deployment as the system undergoes its final round of testing. The information
recorded includes the coverage or execution frequency of each component.

Let the set of system components be c1, . . . , cm, then the hit spectrum, hs, is an ar-
ray of m values drawn from {0, 1} where hs[i] = 1 indicates that component ci was
executed in a program run. The count spectrum, cs, is an array of m natural numbers
where cs[i] indicates the number of times component ci was executed in a program run.
Rather than accumulate this information across a test suite, as is done in test adequacy
calculations, the spectra are stored for each of n runs thereby forming an n × m ac-
tivity matrix. An additional row stores a boolean value indicating whether an error was
detected during the run.

Studies have shown that spectrum-based on-line fault localization can narrow the lo-
cation of a fault to a set of components comprising between 10% and 25% of the system
components across a range of software systems with injected faults [24,25]. The sys-
tem achieves good localization performance when given spectra for at least 10 error-free
executions, and, surprisingly, without spectra for runs with errors the technique is able
to eliminate 75% of the components from consideration. For these reasons, in recent
work, spectrum-based fault localization has been incorporated as an on-line diagnosis
technique in the FLORA system [26].

Sequence-based fault localization [27]. This technique records information about the
order in which system components are executed during a run of the system. Intuitively,
this technique should provide richer information when compared with spectra, which
are order-independent, and the study presented in [27] confirms this intuition at least
with respect to hit spectra.

It can be very costly to record the entire component execution sequence for any
given program run. Consequently, the approach of Dallmeier et al. [27] uses several
techniques to reduce the cost of capturing and storing sequence information. The most
aggressive technique stores all sub-sequences of component invocations of length k.
This results in the recording of a sequence set for each program run.
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As with spectrum-based localization, sequence sets are accumulated for both erro-
neous and error-free runs. The sequence sets for a set of runs are processed to produce
a ranking of components – from most likely to be faulty to least likely. A case study ap-
plied sequence-based localization to multiple faulty versions of a non-trivial software
system with k = 8. They explored varying numbers of error-free runs together with
a single error run. The faulty component was ranked first 36% of the time and in the
top two 47% of the time. On average, the faulty component fell in the top 21% of the
ranking which is comparable to the accuracy achieved by spectrum-based diagnosis.

3 Optimizing Monitor Overhead

We begin with some definitions that will permit us to explain monitor optimization in
sufficient detail. For the purposes of illustration, we discuss monitoring of properties
expressed as deterministic finite state automaton (FSA) [28]. An FSA is a tuple φ =
(S, Σ, s0, δ, A) where: S is a set of states, Σ is an alphabet of symbols that encode
program observations, s0 ∈ S is the initial state, δ : S ×Σ → S is the state transition
function, and A ⊆ S are the accepting states. We use Δ : S × Σ+ → S to define
the composite state transition for a sequence of symbols from Σ; we refer to such a
sequence as a trace and denote it π. We lift the transition function from traces to sets
of traces, Π , and define Δ(s, Π) = {s′|∃π ∈ Π : Δ(s, π) = s′}1, i.e., the set of
states reached from s via any trace in Π . We define an error state as err ∈ S such
that ¬∃π ∈ Σ∗ : Δ(err, π) ∈ A. A property defines a language L(φ) = {π | π ∈
Σ∗ ∧Δ(s0, π) ∈ A}.

FSA monitoring generally involves instrumenting a program to detect each occur-
rence of an observation, a ∈ Σ. A simple runtime monitor stores the current state,
sc ∈ S, which is initially s0, and at each occurrence of an observation a, it updates
the state to sc = δ(sc, a) to track the progress of the FSA in recognizing the trace of
the program execution. We say that a program execution violates a property, φ, if the
generated trace, π, ends in a non-accepting state, i.e., Δ(s0, π) �∈ A; violations can be
detected as soon as the monitor enters an error state, i.e., sc = err.

3.1 Monitor Correctness

Definition 1 (Monitor Correctness for Error Detection). A runtime monitor for prop-
erty φ observing execution trace π is sound if it reports a violation if π �∈ L(φ), and
complete if it reports a violation only if π �∈ L(φ). A runtime monitor is correct in the
context of error detection if and only if it is sound and complete.

Soundness guarantees that no observed violation will be missed, whereas completeness
guarantees that false reports of violations will not occur. We note in the context of error
detection systems soundness is associated with the absence of false negatives. In other
words, an error detection system is sound if and only if not reporting an error means

1 Δ inside the set comprehension corresponds to the composite state transition for a sequence
of symbols from Σ.
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the absence of errors in the system [29]. For runtime monitoring, the notions of sound-
ness and completeness are relative to the trace generated by observations of program
behavior. In general, runtime monitoring would be complete, but unsound since it is im-
practical to observe all program behavior. Hence, soundness in Definition 1 is defined
relative to just the observed behavior.

While it might seem obvious to require sound and complete monitoring, this require-
ment can incur greater overhead than approaches that sacrifice one or the other. For
example, researchers have explored a variety of sampling techniques that assure com-
pleteness of monitoring [30,31,32], but sacrifice soundness. This means that there may
exist a trace of the program that violates φ, but no error is reported. The advantage of
sacrificing soundness is the potential to maintain very low-levels of runtime overhead,
e.g., below 10%. When using runtime monitoring for the purpose of error detection, i.e.,
to enrich existing test oracles, such a tradeoff may be appropriate however, sacrificing
soundness is undesirable when monitoring is used in the context of SHM.

3.2 Transforming Loops to Optimize Monitoring

Over the past several years several researchers explored approaches to statically opti-
mizing the overhead of runtime monitoring [9,10,12,33]. In principle, these techniques
work much like compiler optimizations. They first perform static analyses to calculate
information about how a program and property relate to each other. Then, as depicted
on the right side of Figure 2, they use the results of those analyses to eliminate or mod-
ify monitor-related instrumentation within the program, to produce P ′

φ, so as to reduce
its runtime cost.

To illustrate how such optimizations interact with online fault diagnosis techniques,
we provide a brief overview of the optimization described in [12]. This optimization
targets loops that involve observations related to a property being monitored. The goal
of the analysis is to determine whether the loop’s iteration space, i.e., the series of
executions of a loop’s body that arise when executing a loop, can be partitioned into a
prefix and a suffix as follows.

The loop prefix is comprised of a fixed number of iterations, such that after moni-
toring the observations in those iterations the property monitor is guaranteed to reach a
common state regardless of the monitor state on entry to the loop. More formally, if π
is a non-empty regular expression encoding all possible sequences of observations in a
single loop iteration and d is the number of iterations in the prefix, then the loop is said
to stutter at distance d for property φ if

∀s ∈ S : ∀s′ ∈ Δ(s, πd) : Δ(s′, π) = {s′}

We have found that for many properties and programs, the minimum stutter distance
is 1. This means that only a single iteration of the loop must be monitored. Instru-
mentation related to property monitoring can be eliminated from the loop suffix. Con-
sequently, monitoring a loop for a property defined as an FSA requires only constant
overhead – the overhead does not vary with the number of iterations of the loop.

As an example, we consider the property StartStart described by the FSA in
Figure 3. This property states that “on a stopwatch, do not call start twice without calling
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err1S

Fig. 3. Property StartStart

i n t b = 0 ;
w h i l e ( b < n ) {

. . .
sw . s t a r t ( ) ∗ ;
. . .
sw . s t o p ( ) ∗ ;
. . .

}
sw . r e s e t ( ) ;

i n t b = 0 ;
w h i l e ( b < n ) {

. . .
sw . s t a r t ( ) ∗ ;
. . .
sw . s t o p ( ) ∗ ;
. . .
b r e a k ;

}
w h i l e ( b < n ) {

. . .
sw . s t a r t ( ) ;
. . .
sw . s t o p ( ) ;
. . .

}
sw . r e s e t ( ) ;

Fig. 4. Example from SciMark 2.0 FFT: original (left) and optimized (right)

stop in between” [9]. The snippet of code in Figure 4 resembles the code in class FFT
from the benchmark SciMark 2.0 [34]. The optimization described above transforms the
code as shown in Figure 3. This loop stutters at unit distance, and only the first iteration of
the loop needs to be monitored. The instrumented statements are marked by an asterisk
in the figure, which shows that observable statements only in the predecessor loop are
monitored. If during the program execution the original loop is required to be executed
k times before exiting it, the monitor optimized using this technique will only observe 2
events instead of 2*k that will be observed by an unoptimized monitor.

In evaluating this optimization, we have found that it can yield significant reductions
in runtime overhead. For example, for the Bloat DaCapo [11] benchmark and a property
that requires the strict alternation of hasNext() and next() calls on iterators the
number of observations that require processing is reduced by two orders of magnitude
which yields a factor of 4 reduction in runtime overhead. This significant optimization
benefit comes at no cost to the quality of error detection when monitoring since, for
programs that are free of certain forms of uncaught unchecked exceptions, the opti-
mized monitors are guaranteed to preserve both soundness and completeness provided
the corresponding unoptimized monitor preserves them.

Optimization of monitoring must preserve the correctness of the original monitor.
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Definition 2 (Correctness of Monitor Optimization for Error Detection). A runtime
monitor M ′ for property φ, is correctly optimized with respect to an unoptimized run-
time monitor M for error detection if and only if for every trace π that would have been
observed by M , it observes π′, where |π′| ≤ |π| and M ′ reports a violation for π′ if
and only if M would have reported a violation for π.

3.3 Preserving Diagnostic Information

In the context of SHM, one must consider the possibility that the optimization of error
detection impacts the information collected for fault diagnosis. IfΣand D, from Figure 1,
are completely distinct then there is no danger that optimizing error detection will impact
fault diagnosis. In general, we expect that these two information sources may overlap,
Σ∩D �= ∅. For example, the set of observations for error detection of typestate properties
are exactly what are needed to form sequence sets for the fault localization in [27].

While it may be permissible for optimization to degrade D in some way without
impacting the output of fault diagnosis, we define a more conservative property here
that suffices as long as fault diagnosis is deterministic relative to its input.

Definition 3 (Diagnostic Information Preservation of Monitor Optimization for
Error Detection). An optimized runtime monitor M ′ for property φ, preserves diag-
nostic information, D, relative to an unoptimized runtime monitor M , if for every trace
π that would have been observed by M , M ′ observes π′, and D ∩ π = D ∩ π′.

4 Adapting Monitor Optimization to Diagnosis

Overhead and resource constraints are important considerations when designing run-
time monitors. These considerations are equally important when designing diagnosis
capabilities. In this section, we consider the potential for adapting several optimization
techniques for monitoring aimed at error detection to optimize the recording of infor-
mation for diagnosis.

Stutter-optimization and hit-spectra present a clear opportunity for optimizing the
recording of diagnosis information. Recall that stutter-optimization clones a loop prefix
which contains instrumentation to support error detection, and leaves an uninstrumented
loop suffix. From a diagnosis point of view, the bodies of the loop prefix and suffix are
identical. Loop execution will remain in the prefix until all of the behavior relevant to
error detection is covered thereby computing a hit-spectra for the prefix. For all paths
through the loop that involve error detection instrumentation, this prefix hit-spectra is
guaranteed to be the hit-spectra for the original loop. Consequently, diagnosis related
instrumentation that records hit-spectra from the loop suffix can be safely removed.

Stutter-optimization and count-spectra require diagnosis related instrumentation in the
loop suffix be preserved. This is because each execution of a block of code that is
relevant for diagnosis must be recorded, and there is no way to infer the length of
the loop suffix from the analysis performed for stutter-optimization of error detection
monitors.
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Stutter-optimization and sequence sets present a more subtle opportunity for optimiz-
ing the recording of diagnosis information. Recall that stutter-optimization preserves
error detection whenever the prefix has at least a minimum stutter distance d. The op-
timization will instrument d iterations of the loop, i.e., the loop prefix, and on each
iteration the non-empty string π is generated. The loop prefix is thus guaranteed to gen-
erate a sequence of at least length d ∗ |π|. Prefixes and suffixes of that sequence will be
combined with sequences occurring before and after the loop.

By setting the sequence length to k, one can apply stutter-optimization to a loop
using a distance of max(d, �k/|π|�), which will ensure an adequate stutter distance and
a sufficiently long sequence of symbols from the loop prefix to generate all k-length
subsequences. Using this distance, the diagnosis related instrumentation in the loop
suffix may be removed.

In this section, we have seen that for hit spectra and sequence set based fault diagno-
sis, stutter-optimization of error detection is diagnostic information preserving.

5 Challenges and Opportunities

In this section, we identify challenges and opportunities in runtime monitoring that we
believe to be worth exploring in the broader context of software health management.
The connections that arise from runtime verification in this context not only provide new
requirements for designing error detection techniques, but also create new opportunities
to improve the efficiency and effectiveness of fault detection and diagnosis, and produce
better SHM systems.

Property Selection and Specification. One of the main reasons for using runtime mon-
itors is to check properties that cannot easily be verified prior to deployment using
static analysis techniques. While considerable progress has been made with respect to
specification of rich correctness properties amenable to runtime monitoring, various
challenges and opportunities remain in this area. For example, care must be taken in
developing property specifications such that sufficient information is captured for both
detection and diagnosis. For an expressive path-property, the property specification re-
quired for detection may suffice as an input for diagnosis; however, for a less expressive
state-property the diagnosis module may require a more elaborate specification to cor-
rectly identify the faulty component(s). For example, when checking the state property
divide-by-zero, in addition to the point where the error was detected, the diagnosis mod-
ule may require a trace of instructions that generated, propagated and wrote a value of
zero at the location of interest. This diagnosis can be very challenging due to arbitrarily
large number of observations and real-time constraints.

Implicit Constraints. Property specifications form the primary requirements for run-
time monitor operation; however, because monitors operate as a component of a larger
system, checking properties of the system under observation, and interfacing with the
diagnosis component, they are subject to implicit constraints resulting from constraints
on the system and on the diagnosis component. Moreover, the nature of the system,
e.g., highly-dependable, real-time, distributed, fault-tolerant, can also be a source of
implicit constraints. For example, many of the systems being developed in the context
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of SHM are real-time embedded systems operating on precise schedules. This implies
that the scheduling constraints must not be compromised by the addition of detection
and diagnosis. For critical systems, one must also assure that the detection, diagno-
sis, and recovery implementations do not themselves introduce faults lest the overall
dependability of the system be decreased.

Placement of Observations. The points at which program behaviors are observed to
detect property violations affect not only the efficiency and proper functioning of the
error detection capability, but they can also affect the efficiency and effectiveness of the
diagnosis component to accurately identify the faulty component(s). We suggest that
a static analysis that is geared towards improving the efficiency of monitors and the
effectiveness of diagnosis can be developed and employed in order to identify an ap-
propriate set of program points for instrumentation. For example, there are many cases
where the same instrumentation can be used to generate observations for error detec-
tion and diagnostic information. It may also be possible to coalesce data from multiple
instrumentation points when it can be proved that error detection will not occur during
some region of program execution, e.g., [33]. Clearly opportunities for piggybacking
both observation and diagnostic data collection should be exploited.

Exploiting Efficiency. If error detection and the collection of fault diagnosis information
can be made more efficient, then the time gained might be exploited to gather alternate
forms of diagnostic information that could improve diagnosis precision.

The cost of error detection and the collection of fault diagnostics is spread throughout
execution, but once an error is detected the system should execute recovery actions
very quickly. This argues for minimizing the cost of executing diagnostic algorithms,
which seems to run counter to the goal of making precise fault diagnoses. Here again
efficiency improvements can be leveraged for improved diagnoses by shifting some
diagnostic processing to the point at which diagnosis information is collected. This
effectively amortizes diagnostic cost across the entire program execution, rather then
concentrating it between error detection and recovery.

Exploiting Diagnosis Algorithms. In our presentation, we adopted a conservative ap-
proach to optimizing error detection. With more information about the structure of diag-
nostic data and how a diagnosis algorithm processes that information it may be possible
to achieve greater degrees of optimization of both error detection and of diagnostic data
collection. For example, knowledge about redundancy of diagnostic data could be ex-
ploited. To illustrate, consider hit count spectra – one can easily optimize hit count
data collection with removable instrumentation as has been done for test coverage data
collection.

Predictive Error Detection. As discussed above the latency between error detection and
recovery is a critical design constraint for SHM systems. One approach to relaxing this
constraint is to shift error detection earlier in time. This can be achieved, for example,
by migrating probes earlier in the code, e.g., the earliest point that is post-dominated by
the original probe location, or by performing static analyses to calculate predicates on
data values that when true guarantee that a path with probes leading to an error will be
taken. This would allow a longer period of time for diagnosis to operate, and thereby
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produce a more precise result, or allow recovery to begin earlier. If an error is predicted
long enough in advance, then program execution might be modified to avoid the failure
thereby eliminating the need for recovery.
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École Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland

martin.odersky@epfl.ch

Contracts are partial specifications that can be added to program code. They
are checked by compilers or other tools, or, more commonly, by runtime checks.
Languages such as Eiffel[8], JML[7], or Spec#[1] support contracts natively. Scala
[11] does not. Instead, Scala provides flexible syntax that helps in writing high-
level libraries which can often mimic true language extensions. An interesting
question is to what degree this syntactic flexibility supports the embedding of
contracts.

This note reviews some of the notations for contracts and other specifica-
tions that have been implemented in Scala, along with some more hypothetical
extensions and alternatives.

Contracts as Code

Currently, the standard approach to writing specification-like statements in Scala
relies on four operations, all defined in Scala’s standard Predef object, which is
imported by default. They are:

assert(cond) Throws an AssertionError if the given condition
cond is false.

assume(cond) Like assert, but is treated as an assumption (pre-
condition) rather than an assertion (post-condition)
for program verifiers.

require(cond) Throws an IllegalArgumentException if the given
condition cond is false.

expr ensuring pred Applies boolean-valued function pred to expr. If the
result is true, the value of expr is returned; other-
wise an AsserttionError is thrown.

There are also versions of these operators that take an additional argument
indicating which error message to produce in case of failure.

Here is a small example using require and ensuring.

def sqrt(x: Double) = {
require(x >= 0)
newtonRaphson(x, 1.0)

} ensuring { result =>
(result * result - x).abs < epsilon)

}

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 51–57, 2010.
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Note that ensuring takes a closure { result => ... } as argumentwhich binds the
method’s result in its parameter. Since all of Scala’s “contract operations” are pure
library code, there is no good way to introduce “ghost-variables” such as result
for a function’s result. The closure binding syntax is a lightweight substitute.

Here is how these methods are implemented in the Predef object. The imple-
mentation of the assert method is straightforward:

@elidable(ASSERTION)
def assert(assertion: Boolean, message: => Any) {
if (!assertion) throw new java.lang.AssertionError(message)

}
The @elidable annotation causes calls to assert to be suppressed on the
ASSERTION elision level, which can be specified by a compiler option. Note that
the message argument is a call-by-name parameter. This means that the price
of constructing elaborate messages need to be paid only if the assertion is false.

The implementations of assume and require are analogous to assert, except
that a different exception is thrown in case of failure. The ensuring method is
more interesting:

final class Ensuring[A](val x: A) {
def ensuring(cond: Boolean): A = { assert(cond); x }
def ensuring(cond: A => Boolean): A = { assert(cond(x)); x }
// two more variants that take error messages

}
implicit def any2Ensuring[A](x: A): Ensuring[A] = new Ensuring(x)

Note the implicit conversion any2Ensuring that maps any Scala value to an
instance of the Ensuring class. This class acts as a wrapper that takes a Scala
value and offers an ensuring method in four variants on it. When faced with an
expression such as

expr ensuring cond

the Scala compiler will treat this as a method call

expr.ensuring(cond)

and attempt to make this expression typecheck by adding the implicit conversion
any2Ensuring. This gives

any2Ensuring(expr).ensuring(cond)

and explains why ensuring can seemingly be applied to any Scala value.
The use of these specification methods has some advantages. First, being pure

library code, they can be extended and customized as needed. Second, since the
methods are plain Scala code, the binding of parameters and local variables work
as expected.

On the other hand, there are also some shortcomings and difficulties to be
overcome. One problem is that common specification notation for a function’s
result or an old value of a variable are not natively supported and have to be
simulated using explicit bindings through local variables or closure parameters.
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Another shortcoming is that only assertions applying to precisely one program
point are currently supported. It would be nice to have invariants that apply to
all entry and exit points of methods of a given class, for instance. In fact, with a
little bit of work such functionality can also be provided in the libraries, by means
of trait Invariants that can be mixed into classes. Here is a possible definition of
such a trait:

trait Invariants {
private var invs = new ListBuffer[() => Boolean]
def invariant(cond: => Boolean) = invs += (() => cond)
def step[T](body: => T): T = {
for (inv <- invs) assert(inv())
val result = body
for (inv <- invs) assert(inv())
result

}
}

The trait offers two public methods, invariant and step. The invariant
method adds a given condition (passed as a by-name parameter) to a private
buffer. The step method brackets the execution of a given body with a check
of all installed invariant conditions. Typically, step is used to enclose a com-
putation that is supposed to maintain the class invariants. This trait has to be
mixed in by any class that wants to use the invariant and step methods. As an
example, here is an implementation of a stack that maintains a list of elements
and a length field. The invariant in this case is that the value of the length field
corresponds to the length of the list elems.

class Stack[T] extends Invariants {
private var length = 0
private var elems = List[T]()

invariant(length == elems.length)

def push(elem: T): Unit = step {
elems = elem :: elems
length += 1

}

def pop(): T = step {
require(length > 0)
val first :: rest = elems
elems = rest
length -= 1
first

}
}
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The third shortcoming of using predefined operations for contracts is that, being
code, these operations cannot be attached to abstract methods. However, the
problem can be alleviated by defining an operation unimplemented that stands
for an unimplemented value:

def unimplemented[T]: T = throw new UnimplementedOperationException

Using unimplemented, an “abstract” version of the sqrt function above could
be defined as follows.

def sqrt(x: Double) = {
require(x >= 0)
unImplemented[Double]

} ensuring { result =>
(result * result - x).abs < epsilon)

}

Unfortunately, this is still more verbose than what one might hope for. Also,
this solution would make the formerly abstract method sqrt concrete for the
purposes of type-checking. This means that missing implementations of sqrt in
subclasses would no longer be flagged as static errors. It’s quite conceivable that
one could recover this static safety by means a Scala compiler plugin [9].

On the other hand, contracts as code also offer new possibilities that are hard
to get in other specification notations. In particular, one can make use of Scala’s
flexible composition mechanisms for traits to elegantly separate specifications
from implementations.

As an example, consider again the square-root function, but now split into
three versions: a type signature, a specification, and an implementation. Each
version is defined in a separate trait.

trait Math {
def sqrt(x: Double): Double

}

trait MathSpec extends Math {
protected def epsilon: Double
abstract override def sqrt(x: Double): Double = {
require(x >= 0)
super.sqrt(x)

} ensuring { result =>
(x * x - result).abs < epsilon

}
}

trait MathImpl extends Math {
protected def epsilon: Double
def sqrt(x: Double): Double = newtonRaphson(x, 1.0)

}
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Note that the specification of sqrt in trait MathSpec invokes the (at this
point unknown) implementation through a super call. The static supertrait of
MathSpec is Math, which has an abstract definition of sqrt, but no concrete
implementation. The abstract override annotation on the sqrt method in
MathSpec says that this is OK, an implementation will be provided at the time
of mixin composition (and this is checked by the compiler).

Here is a possible final assembly of the Math functionality.

class MathFinal extends MathImpl with MathSpec {
val epsilon = 1.0e-15

}

By extending both MathImpl and MathSpec, class MathFinal pulls together
implementation and specication. Its definition of the epsilon constant fills in
at the same time an implementation variable that guides the termination of
the square root approximations and a specification variable that guarantees the
accuracy of the result.

It is also possible to combine several specifications which each capture some
aspect of the problem domain. The specifications can be stacked through super
calls and can be linked through mixin composition.

Alternatives and Complements

Here are some of the alternatives that have been explored for expressing contracts
in Scala.

Comments. One could embed contracts with pre- and post-conditions in com-
ments, analogous to what is done in JML, for example. However, there would
then be no language-level help in abstracting and composing contracts.

Annotations. A slightly more structured approach is to express contracts as
annotations. Typically, one assumes @pre, @post, and @invariant annotations
that can take expressions of the host language as arguments. At first glance,
annotations are attractive because they separate specifications from code. The
downside is that it becomes difficult to link expressions in annotations to the
right context. For instance, a @pre annotation of a method cannot simply refer
to a parameter of this method. So the following would not compile:

@pre(x >= 0) // ‘x’ not visible here!
def sqrt(x; Double) = ...

Refinement Types. One could envision an extension of Scala with refinement
types [4,2]. A refinement type augments a base type with a predicate that further
characterizes legal values of the type. Refinement types are a good basis for
static verification [12,5]. On the other hand, more work is needed to achieve
with refinement types a clean separation of specification and implementation
along the lines of the square root example above.
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Property Specifications. Testing frameworks take a different approach to the
specification of properties, separating tests from the tested code. The ScalaCheck
tool [10] can produce test cases automatically based on the types of the specificed
properties. ScalaCheck is modelled after the QuickCheck tool for Haskell [3]. Here
is an example of a specification of square root using ScalaCheck.

def sqrtOK =
forAll ((x: Double) => if (x >= 0) {
val r = sqrt(x)
(r * r - x).abs < epsilon

}

An advantage to this specification approach is that properties involving several
methods can be expressed easily. For instance:

def pushPopOK[T] =
forAll (x: T, s: Stack[T]) => s.pop(s.push(x)) == s

This form of property specifications complements the contracts as code approach
well. A possible downside is that it tends to complicate static analysis because
of the additional quantifiers.

Synthesis. Program synthesis makes specifications executable and therefore
bridges the gap between specifications and implementations. Program synthe-
sis extends standard programming with a non-deterministic choice operator,
choose. A program synthesis tool for a range of constraint domains has been
implemented for Scala by Kuncak et.al.[6]. For example, here is an implementa-
tion of a secondsToTime function that splits a given number of seconds into a
time value consisting of hours, minutes and seconds:

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
choose { (h: Int, m: Int, s: Int) =>
h * 3600 + m * 60 + s == totalSeconds &&
h >= 0 &&
m >= 0 && m < 60 &&
s >= 0 && s < 60

}

The non-deterministic choose expression is converted by a Scala compiler plugin
into inline code.

Synthesis fits well with a contracts-as-code approach. Essentially, one can sim-
ply replace an unimplemented ensuring { ... } construct by the correspond-
ing choose { ... }, provided the given predicate is expressible as a constraint
for which a synthesis method exists.

Conclusion

This short note has presented and assessed some common approaches to ex-
press contracts in Scala. In conclusion, the contracts as code approach currently
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provided by Scala’s library is attractive despite some notational inconveniences
because it integrates well with the component abstractions of the base language
and provides a natural fit for program synthesis. This note has proposed library
abstractions for class invariants and an unimplemented marker as lightweight
mechanisms that extend the applicability of the approach further.
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Abstract. The past decade has witnessed an explosive increase in the

scale, intensity and sophistication of cyber attacks. While software ven-

dors have significantly increased their efforts on security, they are almost

always playing “catch up.” As a result, security-conscious organizations

and individuals have come to expect their system administrators to de-

ploy an array of tools and techniques to stay a step ahead of the hackers.

While developer-oriented security tools rely mainly on static analysis,

runtime analysis and policy enforcement are the mechanisms of choice

in administrator-oriented tools. Runtime techniques offer increased au-

tomation and precision over static analysis, thus addressing the needs of

administrators who don’t have the time or resources needed to acquire

extensive knowledge about the internals of a software system.

In this talk, I will begin by summarizing some of the significant ad-

vances that have been achieved in the past few years in the context

of software vulnerability mitigation, including buffer overflow defenses,

and more recently, the impressive results that have been achieved us-

ing dynamic information-flow analysis for blocking the most popular ex-

ploits today, including SQL and command injection and cross-site script-

ing. I will then proceed to describe dynamic analysis and enforcement

techniques aimed at another high-profile security problem faced today,

namely, malware defense. Our initial target in this regard has been on

dynamic analysis techniques for extracting high-level models of program

behavior. These models could be used in a variety of applications such

as intrusion detection, vulnerability analysis and security policy verifica-

tion. More recently, interesting advances have been made in the context

of security policy development, where a combination of static and dy-

namic analysis techniques have been developed to synthesize low-level,

enforceable policies that achieve a high-level goal such as protecting sys-

tem integrity. Finally, I will conclude the talk with a discussion of some

research opportunities and challenges in software security.
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Abstract. Most applications that are in use today inter-operate with

other applications, so-called peers, over a network. The analysis of such

distributed applications requires that the effect of the communication

with peers is included. This can be achieved by writing or generating

stubs of peers, or by including all processes in the execution environ-

ment. The latter approach also requires special treatment of network

communication primitives.

We also present an alternative approach, which analyzes a networked

application by recording and caching its communication with peers.

Caching becomes useful when several traces of the application are ana-

lyzed. It dispenses with the need of generating a new peer application

execution for each different execution of the main application. Such a

caching framework for input/output has been implemented on the Java

PathFinder platform, which can be used to verify executions of non-

deterministic applications at run-time.

1 Introduction

Most of the software written today does not implement a stand-alone system,
but communicates with other software. Testing such networked software requires
that either all necessary applications be running, or that applications outside the
scope of the analysis be replaced by an open environment, or stubs. An open
environment non-deterministically returns all possible outcomes of a given func-
tion, and is often used for analysis on a more abstract level. In model checking,
approaches exist that iteratively narrow down the scope of an open environ-
ment, to generate a result that mirrors actual executions more closely [7,12,13].
Nonetheless, such techniques may not always generate over-approximations that
are precise enough to analyze complex systems.

Run-time verification takes a different approach to analysis, executing the
actual system under test (SUT) rather than an approximation. This has the
benefit that observed execution failures always correspond to actual system fail-
ures. However, the analysis of a few execution traces may miss certain defects if
a system is not fully deterministic. In particular, concurrent systems suffer from
this problem: The thread schedule is not controlled by the application, and may
vary between executions. Classical testing invariably covers only a subset of all
possible schedules and may miss defects.

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 59–73, 2010.
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For concurrent software, run-time verification provides several means of ex-
tending classical testing. Approaches exist that analyze the detailed behavior
of software, for example, its lock usage, in addition to its output [27]. Other
approaches observe several execution traces that are generated in a way as to
maximize the potential of finding faults [9,18]. For smaller systems, the coverage
of possible execution schedules may even be exhaustive [22,30]. Exhaustive tech-
niques are at the boundary between model checking and run-time verification,
analyzing concrete executions while striving to cover all possible outcomes.

If one attempts to apply such techniques to networked software, the challenge
of orchestrating the execution of a distributed system arises. Multiple executions
may be achieved by restarting the SUT, or by backtracking it to a previous state.
In either case, after the SUT has been backtracked or restarted, its state may not
be logically consistent anymore with the state of its peer processes. Distributed
systems can therefore not be directly executed when using backtracking.

1.1 Overview

This tutorial presents several approaches for verifying networked software [4]:

1. Stubs. Stubs summarize the behavior of the environment, replacing it with
a simpler model. The model may be written manually, or recorded from a
previous execution to represent the behavior of the environment for a given
test case [8].

2. Multi-process analysis. The execution environment may be augmented in
order to keep the state of multiple processes in sync, for example, by back-
tracking multiple processes simultaneously [13,19]. Alternatively, multiple
processes may be transformed into a stand-alone system, requiring several
program transformations to retain the original semantics [2,29].

3. Caching. Communication between the SUT and its environment is observed,
and a model of observed communication traces is generated. This model can
then be used to replay communication on demand for subsequent repeated
executions of the SUT [3]. Caching yields major performance benefits if dif-
ferent outcomes of the SUT are analyzed by backtracking, thus replaying
subsets of the full execution many times [5]. Challenges in this approach in-
clude tracking message boundaries while having only an incomplete knowl-
edge of peer processes [3], and handling non-deterministic input/output of
the SUT [5].

1.2 Outline

This text is organized as follows: Section 2 shows how software model checking
relates to run-time verification. Problems arising with distributed systems are
covered in Section 3. The three approaches presented in this tutorial are covered
in Sections 4, 5, and 6. Section 7 concludes.
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2 Run-Time Verification and Software Model Checking

Model checking [14] explores the entire behavior of a system by investigating
each reachable system state. In classical model checker, both the system and the
properties to be checked are translated into finite state machines. The properties
are negated in the process, such that the analysis of the state space can detect
whether undesired states are reachable. The system starts in an initial state, from
where iteration proceeds until an error state is reached, or no further states are
to be explored. This iteration can also be performed in the reverse manner, where
iteration starts from the set of error states and proceeds backwards, computing
whether one of these error states is reachable from an initial state.

Model checking is commonly used to verify algorithms and protocols [23].
However, more recently, model checking has been applied directly to concrete
software systems [6,7,12,15,17,19,30]. Software model checking investigates the
effects of all non-deterministic choices in the SUT, and in particular, all pos-
sible interleavings between threads and processes involved. The number of in-
terleavings is exponential in the number of operations and threads, resulting in
a state space explosion for any non-trivial system. For a more efficient system
exploration, a number of partial-order reduction techniques have been proposed.
They have in common that they do not analyze multiple independent interleav-
ings when it can be determined that their effect is equivalent [11,23].

Properties typically verified in model checking include temporal properties,
typically expressed in linear temporal logics [26] or similar formalisms such as
state machines [10]. For software, typically checked constructs include pre- and
post-conditions such as specified by contracts [25] and assertions. Furthermore,
software model checkers for modern programming languages typically regard
uncaught exceptions and deadlocks as a failure.

In software verification, model checking has the advantage that it can auto-
matically and exhaustively verify systems up to a certain size. If the state space
of the SUT becomes too large, a possible solution is to prioritize the search of
the state space towards states that may more likely uncover defects. User-defined
heuristics guide the state space search towards such states. This type of anal-
ysis may be implemented in a software model checker framework [21] or in the
standard run-time environment, by choosing a heuristic that likely uncovers new
thread schedule with each program execution [9,28].

In this sense, the two domains have much in common. Both software model
checking and other run-time verification tools analyze the actual implementa-
tion of the SUT (or a derived version of it that preserves the original run-time
behavior). Both techniques cover a set of execution traces that characterizes a
large part of the behavior of the SUT, but not necessarily the entire state space.

In this paper, the term backtracking will denote the restoration of a previous
state, even if that state is not a predecessor state of the current state. This
definition allows the term “backtracking” to be used for search strategies other
than depth-first search, and for techniques where a previous system state is
restored by re-executing the SUT again from its initial state with the same
input (and thread schedule) up to the given target state.
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3 Distributed Applications

The analysis of multiple execution traces of a SUT becomes challenging if the
SUT communicates with external processes. Backtracking the SUT allows the
restoration of a previous state without having to execute the system again up to
a given state. However, when backtracking the SUT, external (peer) processes
are not affected. As a consequence of this, the states of the SUT is likely no
longer consistent with the states of peer processes. From this inconsistency, two
problems arise [3]:

1. The SUT will re-send data after backtracking, which interferes with peers.
2. After backtracking, the SUT will expect the same external input again. How-

ever, a peer does not re-send previously transmitted data.

Some run-time environments may be able to control the states of multiple pro-
cesses at the same time. For example, a hypervisor can execute the entire oper-
ating system inside a virtual machine, and store and restore any state. However,
such tools are, at the time of writing, slow for the usage of state space exploration
because of the large size of each system state (consisting of an entire operating
system at run-time). Furthermore, processes running on external systems can-
not be handled on this way. We therefore focus on dealing with distributed
(networked) software executing on verification tools that support one process at
a time. In this context, the SUT will denote the process to be verified, and a peer
process denotes another application running outside the scope of the verification
tool. The environment of the SUT consists of several peer processes, and other
resources used by the SUT, such as communication links to peers.

4 Modeling External Processes as Stubs

If an external process cannot be controlled by an analysis tool, a possible ap-
proach is to exclude it from analysis, and replace it with an open model that rep-
resents all its possible behaviors. Such an abstract environment model has been
successfully used in software model checking [7,12,16]. When targeting complex
applications, though, an open model may include too many behaviors of the
environment to make analysis tractable. Furthermore, for run-time verification,
concrete executions of environment processes are needed, as the SUT cannot be
executed against an open model at run-time.

In the case of networked programs, any interaction between the SUT and its
environment occurs through the application programming interface (API) pro-
viding network access. Responses of an environment process are also retrieved
through this API. This allows a replacement of the API with a light-weight skele-
ton, or stub, which only returns the appropriate response of the environment
process, without actually communicating with it. The open model is therefore
closed with a specialized implementation that is tailored to one particular veri-
fication run (or a limited number of tests). Compared to the actual environment
process, the implementation of the stub can usually be simplified significantly,
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removing operating system calls and inter-process communication. The imple-
mentation of such a stub is often simple enough to be written manually. For
larger projects, frameworks exist that implement some of the common aspects of
network APIs [8]. Another approach is to record a communication trace between
the SUT and its environment for a given test run, and then generate a stub that
implements the recorded responses [8].

In some cases, not all responses from a peer process may be fully deterministic.
Network communication involves inherent non-determinism: Even during the
verification of a concrete execution with deterministic input, it is possible that
network communication is severed due to transmission problems. The reason for
this lies in possible transmission problems and is not visible in the SUT. From
the point of view of software, communication failures may be regarded as a non-
deterministic decision of the environment. As a result, an exception indicating
the loss of connectivity may be thrown at run-time, as an alternative outcome
to the expected response.

Such exceptions cannot always be tested easily using conventional unit or sys-
tem tests. A stub is quite suitable for modeling such outcomes, though. In the
stub model, one execution for the successful case and another execution for the
failure case can be covered. For verification, one can either use a software model
checker that interprets such non-determinism as two related test executions,
backtracking when necessary [30], or use a run-time verification tool that ana-
lyzes execution traces and then selectively implements fault injection, covering
both outcomes [1].

Verification of client application

(Conventional) test combining client and server

Verification of server application

Verification tool

Server

S
tu

b

S
tu

b Verification tool

Client Server

Client

Fig. 1. Verification using stubs

Finally, an approach using stubs for peers is unlikely to find defects in peer
processes. When using stubs to analyze a distributed system, one system is an-
alyzed at a time (see Figure 1). It is therefore advisable to alternate the roles
of SUT and stubs. Even then, a stub that replaces the other processes during
verification may not reflect all possible outcomes of a peer process, especially
when a stub is synthesized from recording one sample execution. This limits the
degree of confidence gained. Nonetheless, stub-based verification is an elegant
and efficient way of analyzing a distributed system, and works especially well
when the target is concurrency within the SUT, and fault injection for the inter-
action between the SUT and the environment. The simplification of peers usually
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removes interleavings between the SUT and peers, which can be regarded as a
partial-order reduction. The performance gained by this abstraction enables the
usage of techniques such as fault injection or software model checking, in cases
when they may not scale up to multi-process systems in their entirety.

5 Centralization

Many existing software analysis tools can only explore a single process and are
not applicable to networked applications, where several processes interact. More
often than not, extending the capabilities of these systems towards multiple
processes would take considerable effort. It is often easier to reverse the problem,
and transform multiple processes into a single process that behaves the same as
the original (distributed) application. This approach is called centralization [29].

For centralization, processes are converted into threads and merged into a sin-
gle process. Networked applications can then run as one multi-threaded process.
Figure 2 illustrates the idea: All applications are run inside the same process, as
threads. I/O between applications has to be virtualized, i. e., modeled such that
it can be performed inside the execution environment. In the remainder of this
section, the term “centralized process” will denote all threads of a given process
that was part of a distributed system. In that terminology, three processes are
centralized in the example in Figure 2, and converted into one physical process.

Process

Process

Client

Server

creates

Worker

Process

Worker

accesses

main

Client

accesses

Worker

Worker

main

Client

Client

Server

creates

1 process

Fig. 2. Centralization

In the remainder of this section, we discuss the treatment of Java [20] pro-
grams. The ideas presented here can be readily generalized to other platforms.
Centralization of a Java program involves four issues [2,29]:

1. Wrapping applications (processes) as threads, and starting them as such.
2. Keeping the address space of each process separate. In object-oriented lan-

guages, this is not a problem for normally created instances, as they are cre-
ated separately for each application. Therefore, this problem is reduced to
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the management of global variables, which are contained in the data segment
of C or C++ programs, and in static fields in Java. In Java, each static field
is unique and globally accessible by its class name. This uniqueness applies
per class and thus per VM. In the centralized version, field accesses to static
fields are shared between centralized processes, must be disambiguated. In
addition to that, access to environment variables may have to be wrapped
to present a distinct environment to each centralized process.

3. Static synchronized methods. In Java, instance-level synchronization is per-
formed implicitly by the VM whenever a method is synchronized. For
static methods, synchronization accesses a class descriptor that should again
be unique for each centralized process. In programming languages that have
no built-in concurrency constructs, like C or C++, global locks are already
transformed in the previous step.

4. Shutdown semantics. When a process is shut down, its run-time environ-
ment closes open sockets and files before exiting. Furthermore, background
(daemon) threads are killed. These actions do not occur if just a thread ter-
minates. After centralization, such clean-up actions therefore do not occur
automatically anymore, unless all centralized processes have terminated.

Likewise, actions that terminate an entire process would end up termi-
nating all centralized processes in the centralized version; this has to be
prevented to retain the original semantics.

Figure 2 illustrates the overall approach on a typical client-server example.
Clients are single-threaded and communicate with the server. The server uses
one main thread to accept requests, and one worker thread per request to handle
accepted requests. Worker threads on the server side share a global state, such
as the number of active connections. Centralization transforms the given pro-
cesses into one process. In most cases, this transformation results in an additional
wrapper thread that launches the main thread of each process involved.

Once all applications have been centralized, the effects of network communi-
cation have to be internalized, such that they can be analyzed entirely within
the memory space of the centralized program. In this transformation, blocking
and unblocking calls, and bidirectional communication, have to be modeled such
that their semantics are preserved. The remainder of this section covers the nec-
essary program transformations to address the four points listed above, and the
treatment of network communication in the resulting transformed program.

5.1 Program Transformations for Centralization

The four points above address two underlying problems: combining all processes
into a single process, and adapting the resulting single-process system such that
it exhibits the same behaviors as the original multi-process system.

The first challenge of the required program transformation is to wrap the
main method of each centralized process in its own thread (see Figure 3). The
wrapper code constructs an instance of CentralizedProcess, which extends
the built-in thread class with a virtual process ID. This process ID is used later
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on to distinguish the address spaces of the centralized processes [29]. Each ap-
plication is called with its original arguments and receives a distinct process ID.
In Figure 3, the exact arguments to main, and the code that ensures that the
server is ready to accept incoming client requests, are elided.

1 /* Wrapper for running a process inside a thread */
public class CentralizedProcess extends Thread {
public int pid;

5 public CentralizedProcess (int procId) {
super();
pid = procId;

} }

10 /* Wrapper for combining all processes */
public class LaunchProcesses {
public static final void main(...) {
new CentralizedProcess(0) {
public void run() {

15 Server.main(server_args);
}}.start();

// wait for server to be ready

20 for (int i = 1; i <= N; i++) {
new CentralizedProcess(i) {

public void run() {
Client.main(client_args);

}}.start();
25 } } }

Fig. 3. Wrapping and launching centralized processes

Second, in the implementation of the SUT, access to global data has to be
changed. Code belonging to distinct applications must not (inadvertently) access
the same memory location when centralized. Such a disambiguation of data
accesses can be achieved by changing each global variable to an array, using the
virtual process ID as an index to that array [29]. This transformation can be
automated by tools that rewrite source code or byte code [2,29]. For complex
data structures in Java, care has to be taken that code to initialize the resulting
arrays is generated. For example, an integer field is set to 0 by default in Java, but
an array is not created without corresponding code to create it. The initialization
of array entries to 0 is again automatic in Java.

Third, it is possible in Java to use class descriptors for locking. Class descrip-
tors can only exist once in each run-time environment, so the approach described
above to replicate normal data structures is not applicable in this case. The so-
lution is to use proxy locks instead of a class descriptor [29]. One array of proxy
locks is created for each class descriptor used for locking. Proxy locks are ac-
cessed by virtual process ID as described above. Care has to be taken that class
descriptors are not replaced when they are used for the purpose of reflection. In
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that case, the actual class descriptor, which is unique even in the centralization
version of the program, has to be used. The distinction of the two cases, followed
by code transformation, can usually be made by data flow analysis [2,29].

Finally, the semantics of program shutdown should be reflected accurately.
There are two sides of this problem: On the one hand, a call to exit termi-
nates only one process in the original application, but all centralized processes
in the centralized program. On the other hand, resources such as files or net-
work connections should be closed in the centralized version even if the run-time
environment has not terminated yet.

In Java, the first aspect of shutdown semantics can be addressed by chang-
ing calls to System.exit to throwing an instance of ThreadDeath, which
terminates the active thread. Complex cases may need code that manages the
number of active child threads per centralized process, as this necessary to deter-
mine when a process has terminated. This is not always trivial in a centralized
program, and an automatic transformation may not always be possible; for ex-
ample, in Java, there is no direct way to kill one thread from another thread [20].

The second aspect, the automated release of shared resources, can be imple-
mented by writing a custom shutdown handler, which is invoked whenever the
last thread belonging to a centralized process terminates. Both aspects of the
shutdown semantics require extensive run-time data structures to keep track of
the status of each process, and are work in progress [2].

5.2 Networking for the Centralized Program

Distributed applications need communication mechanisms to interact. Such com-
munication includes the usage of files or shared buffers. These can be modeled
using a shared global array in the centralized version. More typically, though,
communication takes place over a network. Inter-process communication mecha-
nisms involve low-level operating system calls and are often outside the scope of
run-time verification tools. While centralization itself makes multiple processes
visible to a single-process analysis tool, it is also necessary to make inter-process
communication transparent. This can be achieved by providing a communica-
tion model library. The library takes advantage of centralization, and provides
the original communication API while sending messages between threads rather
than (possibly remote) processes. Using this model library instead of the default
library, inter-process communication takes place entirely within the memory of
one application.

While this section only describes network communication in detail, the princi-
ples described are also applicable to other types of inter-process communication.
The common aspects are as follows:

1. In an initial phase, applications set up a communication link. This usually in-
volves one process waiting (listening) for another process to connect. Within
each process, both actions are blocking, and will suspend the current thread
performing this action until the action has completed.

In the centralized program, blocking system calls that require a re-
sponse from another process are modeled with inter-thread signals. In Java,
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wait/notify pairs in both threads involved, model the “handshake proto-
col” between centralized processes.

2. Once communication is established, a bidirectional channel is available for
the transmission of messages. Data that is communicated between applica-
tions can be modeled with constructs that share data between threads, such
as arrays or inter-thread pipes.

For simplicity, network communication is described here as an interaction be-
tween two centralized processes, a client and a server. The server accepts incom-
ing connections at a certain port. The client subsequently connects to that port.
After a connection is established, a bidirectional communication channel exists
between the client and the server. Communication can then be performed in an
asynchronous manner: Underlying transport mechanisms (commonly TCP/IP)
ensure that sent messages arrive eventually (if a connection is available), but
with some delay. This applies to messages in both directions. A connection can
be closed by the client or the server, terminating communication.

initializes new connection

finishes conn. init.

wakes up

accept

connect

waits

inter−thread pipe

bidirectional comm.

Client

server

Server

notifies

Fig. 4. Client-server communication

For establishing the network connection, we use a two-step initialization (see
Figure 4). In the first step, the accept call of the server, the server sets up its part
of the connection and then blocks (waits) on a common semaphore, which exists
in the network model code. When the client calls connect, it completes its part
of setting up the connection, and then unblocks (notifies) the server. This ensures
that the sequence of each original application passing through blocking library calls
is preserved in the centralized version. Upon connection, two unidirectional inter-
threadpipes are set up, as available throughjava.io.PipedInputStreamand
java.io.PipedOutputStream. They model the underlying network commu-
nication normally provided by system libraries, replacing inter-process communi-
cation by inter-thread communication [2].

Once the network model for the centralized application is available, the code
that starts the centralized clients after the server is ready, can be provided (see
Figure 3). By inspecting the state of the connection hand-shake, the wrapper
code sees if the server has partially initialized its first connection, and is able to
accept an incoming client request. At that point, the execution of the wrapper
code can continue, and the clients can be launched [2].
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To summarize, centralization of networked software consists of program trans-
formation, and a network model library. The resulting centralized application can
be executed by any run-time environment, making the approach very versatile
for verification. While the complexity of all processes combined may be exceed
the capabilities of a heavy-weight analysis tool, centralization is a promising
technique for light-weight run-time verification algorithms, extending the scope
of single-process tools (such as debuggers) to multiple processes.

6 Input/Output Caching

Unlike approaches that execute multiple (possibly transformed) processes inside
the analysis tool, it is possible to execute only one process in the analyzer, and
mitigate the effects of backtracking by caching the input/output (I/O) of the
SUT. This I/O cache approach only runs a single process using the verification
tool. Other processes run in their normal environment, perhaps even on remote
hosts that are not controlled by the test setup. If multiple communication traces
of the SUT are generated by backtracking the state of the SUT, followed by
a different scheduling choice, then the state of peer processes has to be kept
consistent with the SUT. Without enforcing consistency after backtracking, the
state of the SUT would no longer correspond to the state of the communication
protocol, as communication has taken place in the physical world and cannot be
backtracked.

This discrepancy between the state of the SUT and the physical world can be
overcome by caching communication data. A special I/O cache hides backtrack-
ing operations, and subsequent repeated communication, from external processes
(see Figure 5). Communication with external processes is physically executed on
the host until backtracking occurs. After backtracking, previously observed com-
munication data is fetched from the cache [3]. This idea requires an execution en-
vironment that is capable of enumerating, storing, and restoring program states;
software model checkers that virtualize the execution environment provide this
functionality [30].

Application (SUT)

(running normally)
Target application
(model checked)

Peer

I/O
 c

ac
h

e

Verification tool

Peer applications

Fig. 5. Verification using I/O caching

The I/O cache keeps track of data that has already been sent to or received
from the network. It determines if an I/O operation occurs for the first time; if
so, data is physically transmitted; otherwise, data is simply read from the cache.
Figure 6 illustrates the principle of the caching approach. Communication data is
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kept persistent by the cache, in conjunction with a mapping of (1) program states
to stream positions, and (2) requests to responses [3]. The first mapping allows a
reconstruction of the exact stream state upon backtracking; the second mapping
determines the size of a response that corresponds to a particular request. After
backtracking, the cache replays duplicate responses from memory. It also verifies
that duplicate requests are consistent. If a different request is sent, because a
different interleaving of threads generates a different output, cached data is no
longer valid for the diverging communication trace [3].

Program state I/O Cache

1

3

2
321

New state: I/O data is stored globally. The program

state is mapped to the positions of each stream. The

size of each message is also stored in a persistent data

structure.

1

3

2
321

Backtracking: The current read/write positions in

each stream are restored in accordance to the program

state, but stream data is kept persistently. This can

be regarded as rewinding the position of the stream

without erasing it.

1

3

2
321

Continued exploration: Cached data of previous

I/O operations is replayed. Output data is compared

to previously cached data. Whenever communication

data differs from cached data, or exceeds it, a new in-

stance of the peer process is created. Previously cached

data is replayed up to the given point, after which a

new branch in the data cache is created (not shown in

this figure).

Fig. 6. Mapping program states to communication data

Communication diverges in cases where requests depend on a global program
state, for example, when the value of a global counter is sent over the network.
When communication diverges after backtracking, the state of peer processes is
no longer consistent with the state of the SUT. In such cases, peer processes have
to be reset to a state that is equivalent to the state of the backtracked SUT.
An equivalent peer state can be obtained by sending the new (diverging) input
to a peer process, starting from the state at which communication diverged.
This requires a new copy of the peer program, running from the point where
communication diverges.

An extended cache model starts a new peer process in such cases, and replays
communication data up to the point before the trace diverged. This results in a
tree structure of communication traces. Despite the need to restart peer processes
occasionally, the cache-based solution is still far more efficient than approaches
where the peer processes are restarted each time after backtracking [5]. Work is in
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progress to replace restarting peer processes with restoring a recorded snapshot
of all peers, by using virtualization tools [24].

The I/O caching approach analyzes one application in a distributed frame-
work at a time. The other applications run normally. When analyzing a client,
the service it requests may even be hosted on a remote machine that is controlled
by the verification setup. When analyzing a server, the verification environment
has to be able to execute a client on demand, to allow the server to receive re-
quests. In either case, peer processes are not aware that the SUT is not executing
serially, but subject to backtracking. Peer processes can therefore be executed
in their normal test environment. The cache enables the verification tool to use
backtracking to verify the outcome of non-deterministic decisions of the SUT,
without always having to restart all peer processes involved after backtracking.
As only the SUT is subject to backtracking, the caching technique ignores non-
determinism in peer processes. Therefore, the technique is potentially unsound,
but this unsoundness comes at a vast improvement in scalability compared to
sound approaches such as centralization [3].

7 Conclusion

Distributed applications consist of several processes interacting over a network.
Many existing analysis tools are designed to explore the state space of only a
single process. Luckily, there exist several ways to adapt a multi-process program
to a single-process analysis tool.

One approach is to treat each application separately. Interactions with other
applications can be simulated by stubs, which replace the original function call
and return a value suitable for testing. Stubs can be written manually or synthe-
sized from data recorded in a sample execution. The resulting system is simpler
than the original program. For concurrent peer processes, stubs generated from
sample executions provide unsound but efficient verification.

To fully verify a distributed system in a single-process environment, multiple
processes can be centralized, converted into a single process. In such a conversion,
distinctive features of separate processes, in particular, their separate address
spaces, have to be preserved. Finally, a new implementation of the network
API is needed for the centralized program, where inter-process communication
is replaced by inter-thread communication. The resulting program is fully self-
contained, and all effects of communication are visible inside a single process.

As another alternative, network communication can be captured and replayed
on the fly. This requires a caching system that provides transparent interaction
between the system under test and external processes. The cache has to be inte-
grated in the analysis tool, though, and the approach may be unsound. However,
it provides the performance advantage of stubs without requiring code synthesis.

Input/output caching requires a special run-time environment, but it has the
advantage of providing a virtual network environment that can communicate
with external peers. The other approaches can be used without requiring adap-
tations of the verification tools, making it possible to verify multi-process systems
on tools that handle only one process by themselves.
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Abstract. Clara is a novel static-analysis framework for partially eval-

uating finite-state runtime monitors at compile time. Clara uses static

typestate analyses to automatically convert any AspectJ monitoring as-

pect into a residual runtime monitor that only monitors events triggered

by program locations that the analyses failed to prove safe. If the static

analysis succeeds on all locations, this gives strong static guarantees.

If not, the efficient residual runtime monitor is guaranteed to capture

property violations at runtime. Researchers can use Clara with most

runtime-monitoring tools that implement monitors as AspectJ aspects.

In this tutorial supplement, we provide references to related reading

material that will allow the reader to obtain in-depth knowledge about

the context in which Clara can be applied and about the techniques

that underlie the Clara framework.

1 Introduction

It is challenging to implement runtime-verification tools that are expressive,
nevertheless induce only little runtime overhead. It is now widely accepted that,
to be expressive enough, runtime-verification tools must be able to track the
monitoring state of different objects or even combinations of objects separately.
Maintaining these states at runtime is costly, especially when the program under
test executes monitored events frequently.

Even worse, to be reasonably confident that a program does not violate the
monitored property, programmers must monitor many different program runs.
The more code locations a program contains at which the program may violate
the monitored property, the more test cases one may need to execute to appro-
priately cover all possible execution paths through these code locations. Paired
with potentially slow runtime monitors, this goal may be hard if not impractical
to achieve.

We therefore developed the Clara [9] framework to partially evaluate runtime
monitors at compile time. Partial evaluation brings two main benefits:
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G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 74–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Clara: Partially Evaluating Runtime Monitors at Compile Time 75

1. The partially evaluated monitors usually induce a much smaller runtime
overhead than monitors that are fully evaluated at runtime.

2. The partial evaluation can drastically reduce the number of code locations
that one needs to consider when looking for code that may cause a property
violation. This helps programmers to tell apart useful from useless test cases.

As we show in our accompanying research paper [17], Clara’s partial-evaluation
algorithms can often prove that a given program can never violate the monitored
property. In these cases, monitoring becomes entirely obsolete.

Clara was designed such that it poses minimal restrictions on the runtime-
verification tool that generates the runtime monitor. Clara works with virtually
all tools that generate runtime monitors in the form of AspectJ aspects.

In this paper we recapitulate Clara’s architecture, explain its major design
decisions and give pointers to further in-depth reading material.

2 Architecture of Clara

Clara targets two audiences: researchers in (1) runtime verification and (2)
static typestate analysis. Clara defines clear interfaces to allow the two com-
munities to productively interact. Developers of runtime verification tools simply
generate AspectJ aspects annotated with semantic meaning, in the form of so-
called “Dependency State Machines”. Static analysis designers can then create
techniques to reason about the annotated aspects, independent of the monitor’s
implementation strategy.

Figure 1 gives an overview of Clara. A software engineer first defines (top
right of figure) finite-state properties of interest, in some finite-state formal-
ism for runtime monitoring, such as Extended Regular Expressions or Linear-
Temporal Logic, e.g. using JavaMOP [18] or tracematches [1]. The engineer then
uses some specification compiler such as JavaMOP or the AspectBench Com-
piler [4] (abc) to automatically translate these finite-state-property definitions
into AspectJ monitoring aspects. These aspects may already be annotated with
appropriate Dependency State Machines: we extended abc to generate annota-
tions automatically when transforming tracematches into AspectJ aspects. Other
tools, such as JavaMOP, should also be easy to extend to generate these anno-
tations. If the specification compiler does not yet support Dependency State
Machines, the programmer can easily annotate the generated aspects by hand.

Clara then takes the resulting annotated monitoring aspects and a program
as input. Clara first weaves the monitoring aspect into the program. The De-
pendency State Machine defined in the annotation provides Clara with enough
domain-specific knowledge to analyze the woven program. The accompanying
research paper [17] summarizes Clara’s predefined analyses; further details can
be found in previous work [10, 11, 14] and the first author’s dissertation [9]. The
result is an optimized instrumented program that updates the runtime monitor
at fewer locations. Sometimes, Clara optimizes away all updates, which proves
that the program cannot violate the monitored property.
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Fig. 1. Overview of Clara

In addition, Clara supports Collaborative Runtime Verification [13]. In Col-
laborative Runtime Verification, users execute differently-configured versions of
the program under test; each version only contains partial monitoring code. Col-
laborative Runtime Verification interacts smoothly with the static analyses.

Finally, Clara includes a set of built-in ranking heuristics [15]. These heuris-
tics rank all program points that Clara reports as “potential point of failure”
according to a computed confidence value. This confidence value enables Clara

to prioritize program points where the program most likely violates the stated
typestate property. Program points at which a violation is still possible, but not
likely, will show up further down the ranked list. In addition, Clara associates
with each potentially property-violating program point all other program points
that may have contributed to this violation, enabling programmers to easily
inspect the context of the violation.

Clara is available as open-source software at http://bodden.de/clara/,
along with extensive documentation, the first author’s dissertation [9], which
describes Clara in detail, and benchmarks and benchmark results.

In the following sections we discuss further reading on Clara, explain how
Clara relates to existing approaches to runtime monitoring and static typestate
analysis.

3 Further Reading on Clara and Its Analyses

Clara started out as an extension to the AspectBench Compiler [4] that was
specific to one single specification formalism for runtime monitors, called trace-
matches [1]. At ECOOP 2007, we presented a set of three static analyses that

http://bodden.de/clara/
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attempt to statically optimize tracematches at compile time [14]. The three anal-
yses presented there are similar to the three analysis stages that Clara contains
today, however they were all bound to tracematches; they did not generalize to
any other monitoring tool. Further, the third analysis stage from the ECOOP
paper, the “Active-shadows Analysis”, is entirely different from today’s Nop
Shadows Analysis. The former analysis did not work at all: too coarse-grained
abstractions resulted in both bad performance and bad precision.

In 2007, we presented an approach to Collaborative Runtime Verification [12].
In this approach, runtime monitors are spread accross multiple users; every user
only monitors a subset of the original instrumentation points. It is non-trivial
to select subsets of instrumentation points that (1) still have the potential of
causing, in combination, a property violation, and (2) will not cause any false
warnings at runtime. In our approach, we present an algorithm to select such
subsets. We further present an algorithm that enables certain subsets only from
time to time. This trades recognition power for runtime: the program runs faster
but may not detect all property violations. Our results showed that this approach
scales very well. A journal version of this work appeared in 2008 [13]. Clara

contains an option to enable Collaborative Runtime Verification.
In 2008, we presented [15] a replacement for the ineffective Active-shadows

Analysis. This new analysis improves on the Active-shadows Analysis:

– It uses intra-procedural must-alias information to allow for strong updates.
In many situations it helps to know that two variables must point to the
same object. Similarly, the new analysis now uses may-alias information
that is flow-sensitive on the intra-procedural level (opposed to being flow-
insensitive everywhere). We use a novel pointer abstraction, called Object
Representatives [16], to transparently combine the different sources of alias
information. The original Active-shadows Analysis had no access to such
information, it only used flow-insensitive may-alias information.

– While the Active-shadows Analysis performed a flow-sensitive analysis of the
entire program, the novel analysis inspects one method at a time. While the
analysis analyzes this method flow-sensitively, it models outgoing method
calls flow-insensitively. This trades precision for analysis time, speeding up
the analysis significantly.

Further, we presented a novel ranking and filtering approach that aids program-
mers in finding “true warnings” in a set of potentially false warnings. For program
points at which the static analyses issue a warning, the analyses collect informa-
tion about possible sources of imprecision. If there are many such sources, then
the warning is assigned a low probability of being a “true warning”, otherwise a
higher probability. The Clara framework contains these filtering and ranking
heuristics as well.

In 2009, in joint work with Feng Chen and Grigore Roşu [11], the developers
of JavaMOP [18], we generalized the analyses from ECOOP so that they were
applicable to AspectJ aspects in general, and to monitors generated by JavaMOP
in particular. The analyses presented in this novel work are generalizations of
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the first two analysis stages from the ECOOP paper, however include also the
following improvements:

– The Quick Check in [14] can only detect cases in which a monitor cannot
reach a final state as a whole. The improved Quick Check from [11], on
the other hand, considers individual paths to final states. This can yield
advantages in case of complicated specifications.

– The Orphan Shadows Analysis in [11] is highly optimized. In [14], the analy-
sis algorithm explicitly enumerated all possible combinations, i.e., subsets of
instrumentation points. With 1000 or more points, there can be up to 21000

subsets. While we only observed a few pathological cases where this exponen-
tial blow-up happened in practice, the novel implementation of the Orphan
Shadows Analysis circumvents this problem through a new algorithm that
requires no such enumeration.

Also in 2009, for the first author’s dissertation [9], we extended the analysis ap-
proach to be a proper framework, Clara, that can be easily extended by others.
For the first time, Clara provides a uniform way to (1) specify runtime monitors
as annotated AspectJ aspects, and (2) integrate novel static typestate analyses.
During the process, we discovered that the flow-sensitive analysis presented in
2008 [15] was incorrect: in certain cases it could occur that the analysis yielded
optimized runtime monitors that give false warnings at runtime. (see [10] for an
example) Interestingly, in the meantime Naeem and Lhoták had published [36]
an improved version of our analysis from 2008 that contained the same mis-
take. In 2010, we published [10] a modified version of the analysis, called the
Nop Shadows Analysis, which is the final version of the flow-sensitive analysis
that Clara contains today. Opposed to the original analysis attempts, this new
analysis now contains a backwards-analysis pass that computes for every instru-
mentation point information about all continuations of the control flow from this
point. It was this crucial piece of information that the original analysis was miss-
ing. The first author’s dissertation [9] proves this analysis (and the analyses [11]
from 2009) sound.

4 Runtime Monitoring Tools

In the following we discuss a number of monitoring tools that influenced the
design and implementation of Clara. We also discuss whether programmers
could use these tools in combination with Clara.

4.1 Stolz and Huch

Our work was originally motivated by Stolz and Huch’s work [38] on runtime-
verifying concurrent Haskell programs. The authors specify program properties
using linear-temporal-logic formulae. Such formulae are generally evaluated over
a propositional event trace: a formula refers to a finite set of named propositions
and any of the propositions can either hold or not hold at a given event. Stolz and
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Huch implemented a runtime library that would generate a propositional event
trace at runtime and update a linear-temporal-logic formula according to the
monitored propositional values. The library reports a property violation when
the formula reduces to false. The formulas that Stolz and Huch allow for can
be parameterized by different values, similar to the object-to-variable bindings
that Clara supports.

4.2 J-LO

We ourselves developed J-LO, the Java Logical Observer [8], a tool for runtime-
checking temporal assertions in Java programs. J-LO follows Stolz and Huch’s ap-
proach in large parts, however the propositions in J-LO’s temporal-logic formulae
carry AspectJ pointcuts as propositions. The J-LO tool accepts linear-temporal-
logic formulae with AspectJ pointcuts as input, and generates plain AspectJ code
by modifying an abstract syntax tree. J-LO extends the AspectBench Compiler,
which allows it to then subsequently weave the generated aspects into a program
under test. Pointcuts in J-LO specifications can be parameterized by variable-to-
object bindings. While the implementation of J-LO is effective in finding seeded
errors in small example programs, it causes a runtime overhead that is too high
to allow programmers to use J-LO on larger programs. Nevertheless, one could
annotate the J-LO-generated aspects with dependency information and then use
Clara’s static analyses to remove some of this overhead.

4.3 Tracematches

Allan et al. [1] are the creators of tracematches. Tracematches share with J-
LO the idea of generating a low-level AspectJ-based runtime monitor from a
high-level specification that uses AspectJ pointcuts to denote events of interest.
Nevertheless, the tracematch implementation generates runtime monitors that
are far superior to those that J-LO generates. Avgustinov et al. [6] perform so-
phisticated static analyses of the tracematch-induced state machine to determine
an optimal monitor implementation that satisfies three main goals:

1. The monitor implementation should be correct.
2. The monitor should allow parts of its internal state to be garbage-collected

whenever possible without jeopardizing correctness.
3. The monitor should implement an indexing scheme that allows the monitor,

at any event that binds a variable v to an object o, to quickly look up all
state-machine instances for the binding v = o.

As Avgustinov et al. show, reclaiming memory (2) and indexing of partial matches
(3) are both necessary to achieve a low runtime overhead in the general case. In
all the experiments that we conducted with tracematches in our work, these op-
timizations were already enabled. Hence our experiments show that, while these
optimizations are necessary, they may not always be sufficient on their own. How-
ever, in combination with Clara’s analysis, the runtime overhead will be low in
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most cases. Another difference between Allan et al.’s analyses and ours is that Al-
lan et al. only analyze the state machine, while we analyze both the state machine
and the program. This allows us to disable instrumentation at program points
where this is sound, hence making it easier to check the program for potential
property violations already at compile time. Allan et al.’s analyses do not analyze
or modify the program under test.

4.4 Tracecuts

Walker and Viggers developed tracecuts [41], an approach that monitors pro-
grams with respect to a specification given as a context-free grammar over As-
pectJ pointcuts. Context-free grammars are strictly more expressive than the
finite-state patterns that we consider in Clara: the first author’s dissertation [9,
Chapter 2] shows that some properties exist that finite-state formalisms cannot
express but that could be expressed as a context-free language. However, most
interesting program properties are in fact finite-state properties.

It is unclear how much runtime overhead tracecuts induce. In previous work [5],
we tried to compare the relative efficiency of J-LO, tracematches, tracecuts and
another tool called PQL (see below). As we reported there, there is an implemen-
tation of tracecuts, but it is immature, and while its authors kindly gave us private
access to their executables, they did not feel it was appropriate for us to use their
prototype for our experiments.

4.5 JavaMOP

JavaMOP provides an extensible logic framework for specification formalisms
[18]. Via logic plug-ins, one can easily add new logics into JavaMOP and then use
these logics within specifications. As we already showed in this thesis, JavaMOP
has several specification formalisms built-in, including extended regular expres-
sions (ERE), past-time and future-time linear temporal logic (PTLTL/FTLTL),
and context-free grammars. JavaMOP translates specifications into AspectJ as-
pects using the rewriting logic Maude [19]. JavaMOP aims to be a generic frame-
work that should support multiple specification languages. Therefore, the de-
signers of JavaMOP are careful when it comes to making assumptions about the
specifications used with their framework.

To make JavaMOP compatible with Clara, Feng Chen extended [11] the
JavaMOP implementation so that it would perform some limited analysis of
the specification, so that JavaMOP could annotate the generated monitors with
dependency information that Clara can use to partially evaluate these monitors
at compile time.

4.6 PQL

The Program Query Language [35] by Martin at al. resembles tracematches in
that it enables developers to specify properties of Java programs, where each
property may bind free variables to runtime heap objects. PQL supports a
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richer specification language than tracematches: it uses stack automata rather
than finite state machines, which yields a language slightly more expressive than
context-free grammars. Martin et al. propose a flow-insensitive static-analysis
approach to reduce the runtime overhead of monitoring programs with PQL.
This approach inspired us to implement our Orphan Shadows Analysis. As the
authors show and as we confirm in our work, such an analysis can be very
effective in ruling out impossible matches. However, we also showed that a flow-
sensitive analysis can yield additional optimization potential. PQL instruments
the program under test manually, using the BCEL [20] bytecode engineering
toolkit. If PQL used AspectJ instead, then is should be possible to optimize the
generated monitor with Clara, similar to tracecuts. PQL was published as an
open-source project, available for download at http://pql.sourceforge.net/.
However, it appears that the project is no longer maintained.

4.7 PTQL

Goldsmith et al. [30] proposed PTQL, the Program Trace Query Language,
which provides an SQL-like language for querying properties of program traces
at runtime. The authors also provide “partiqle”, a compiler for this language.
The compiler instruments the program that is to be queried so that the program
notifies monitoring code about the appropriate events at runtime. The moni-
tor itself uses indexing trees to associate the monitor’s internal state with the
appropriate objects. It may be possible to evaluate parts of a program query
at compile time, for instance when comparing a method name to a constant
string. Partiqle resolves such parts of a query already during compilation. This
is the same as the partial evaluation of pointcuts that happens in standard As-
pectJ compilers: these compilers also insert runtime checks only for parts of a
pointcut that the compilers cannot determine at compile time. Partiqle resorts
to a table-based approach to evaluate the remainder of the query at runtime.
Because PTQL uses its own compiler, and is not based on AspectJ, one cannot
currently use Clara to evaluate PTQL queries ahead of time. Even if PTQL
did generate aspects for its monitoring needs, one would have to take into ac-
count that the PTQL language is very expressive and probably Turing complete.
Hence it remains unclear whether one could effectively determine dependencies
within a query at compile time, so that Clara could exploit these dependencies
to optimize PTQL monitors.

4.8 Sub-alphabet Sampling

Dwyer, Diep and Elbaum propose a novel mechanism to guaranteeing low run-
time overhead even in the presence of multiple monitoring properties and in
cases where programs need to update the internal state of monitors for these
properties very frequently [23]. The authors first propose to combine multiple
properties over objects of the same class into one large “integrated” property.
As the work shows, monitoring of this integrated property can be more effi-
cient than monitoring of the individual original properties. Then second, the

http://pql.sourceforge.net/
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authors propose to project the monitor for this integrated property onto multi-
ple sub-alphabet monitors, where each monitor monitors exactly one subset of
the original alphabet Σ of events. These sub-alphabet monitors form a lattice
that is isomorphic to the power-set lattice of Σ. By the way in which Dwyer et
al. define their state-machine semantics, each individual monitoring automaton
in this lattice is sound, i.e., cannot report any false positives. The authors show
that programmers can gain fine-grained control over the perceived monitoring
overhead by selecting a subset of monitors from the lattice. Further, the authors
present several heuristics that attempt to select reasonable subsets automati-
cally. As the results show, the sub-alphabet lattice allows for a flexible selection
of monitors that gives programmers fine-grained control over their overhead. We
therefore believe that the authors’ technique is a valuable addition to our own
efforts of reducing the runtime-monitoring overhead, in particular to Clara’s
component for Collaborative Runtime Verification.

4.9 QVM

Arnold, Vechev and Yahav present QVM, the “Quality Virtual Machine”, an
extension of IBM’s J9 Java Virtual Machine that implements a set of tech-
niques that aim at aiding programmers to debug their programs [3]. QVM comes
equipped with support for virtual-machine-level monitoring of single-object type-
state properties. Programmers can use a simple syntax to define typestate prop-
erties for any given Java class. QVM then instruments instances of such classes
to track the instances’ typestate at runtime. Once QVM detects and report
that a typestate property was violated, it starts sampling method calls that the
program issues on objects that are allocated at the same allocation site as the
object for which the violation occurred. Naturally, the calling sequences for both
objects are not necessarily the same. Yet, the authors argue that in most cases
these sequences will be similar enough such that the sampled trace will help the
programmers pinpoint the actual problem on the violating sequence and hence
fix the bug in their program code. QVM’s techniques are complementary to all of
the static techniques that Clara provides and it would be interesting to integrate
both tools into a common solution.

5 Typestate Analysis

In the previous section we have described several approaches to runtime-verifying
program properties through monitoring. Many of these properties are finite-state
properties, i.e., one can express the properties using finite-state machines. In the
scientific literature, there is a large body of work that attempts to determine
finite-state properties of program already at compile time. In this literature,
finite-state properties are often called typestate properties, and the related static
analyses are called typestate analysis.
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5.1 Typestate by Strom and Yemini

In their original paper on typestate [39], Strom and Yemini first describe the idea
of having a value’s type depend on an internal state, the typestate, associated
with that value. Certain operations can change a value’s type by transition-
ing from one typestate to another. Strom and Yemini used state charts [32] to
describe the possible state transitions for a class of objects.

In the description by Strom and Yemini, typestate properties are restricted
to describing the state of single objects. For example, their model does not
allow the state of an iterator i to change when the iterator’s collection c is
modified. This is because the authors’ model has no means of associating i with
c. Recently, typestate properties have been enjoying renewed interest, and many
current analyses, including ours, do support the analyses of such “generalized”
typestate properties.

5.2 Fink et al.

Fink et al. present a static analysis of typestate properties [26]. Their approach,
like ours, uses a staged analysis which starts with a flow-insensitive pointer-
based analysis, followed by flow-sensitive checkers. The authors’ analyses allow
only for specifications that reason about a single object at a time. This prevents
programmers from expressing multi-object properties such as FailSafeIter. Like
us, Fink et al. aim to verify properties fully statically. However, our approach
nevertheless provides specialized instrumentation and recovery code, while their
approach only emits a compile-time warning. Also, Clara supports a range
of input languages so that developers can conveniently specify the properties
to be verified, while Fink et al. do not say how developers might specify their
properties.

5.3 Bierhoff and Aldrich

Bierhoff and Aldrich [7] recently presented an intra-procedural approach that
enables the checking of typestate properties in the presence of aliasing. The
authors’ approach aims at being modular, and therefore abstains from potentially
expensive whole-program analyses like the ones that Clara uses. To be able to
reason about aliases nevertheless, Bierhoff and Aldrich associate references with
special access permissions. Their abstraction is based on linear logic, and using
access permissions it can relate the states of one object (e.g. an iterator) with the
state of another object (e.g. a collection). These permissions classify how many
other references to the same object may exist, and which operations the type
system allows on these references. The authors use reference counters to reclaim
permissions to help their type system to accept more valid programs. In their
approach, they assume that every method is annotated with information about
how access permissions and typestates change when this method is executed. Of
course this does not necessarily imply that it has to be the programmer who
adds these annotations. Many approaches exist [2, 25, 27–29, 31, 33, 34, 37, 42]
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that can infer program properties. Some can even infer typestate properties. All
of these tools operate under the assumption that programs are “mostly correct”:
by observing mostly correct program runs, the tools can infer which behavior is
“usual”. Deviations from this usual behavior can then be encoded as typestate
properties.

In comparison to Fink et al., Bierhoff and Aldrich’s approach has the ad-
vantage of being modular: given appropriate annotations it can analyze any
method, class or package on its own. Clara on the other hand needs the whole
program to be present, and in particular expects a complete but nevertheless
sufficiently precise call graph. When the whole program is available, and can
be analyzed, then Clara gives programmers the advantage that it does not re-
quire any program annotations. Clara only requires annotations that describe
error situations, not the program, and then automatically analyzes the program
to see whether such error situations can occur. We have found that worst-case
assumptions coupled with coarse-grained side-effect information are surprisingly
effective.

Bierhoff and Aldrich define typestate properties via a textual representa-
tion of statecharts. Hence, programmers can conveniently model behavioral sub-
typing, as in the original typestate-checking methodology that Strom and Yemini
proposed.

Because Bierhoff and Aldrich’s work defines a type system and not a static
checker like Clara, the workflow that a programmer has to follow in Bierhoff
and Aldrich’s approach is slightly different than it is in the case of using Clara.
Clara allows the programmer to define a program that may violate the given
safety property. Clara then tries to verify that the program is correct, and when
this verification fails it delays further checks until runtime. Bierhoff and Aldrich’s
approach defines a type checker, and hence the idea is that the programmer is
prevented from compiling a potentially property-violating program in the first
place. This gives the advantage of strong static guarantees. After all, if the
program does compile then the programmer knows that the program must fulfill
the stated property. On the other hand, the type checker may reject useful
programs that appear to violate the stated property but will not actually violate
the property at runtime.

5.4 DeLine and Fähndrich

DeLine and Fähndrich’s approach [21] is similar in flavor to Bierhoff and Aldrich’s.
Theauthors implemented their approach in theFugue tool for specifying andcheck-
ing typestates in .NET-basedprograms. Fugue checks typestate specifications stat-
ically, in the presence of aliasing. The authors present a programming model of
typestates for objectswith a soundmodular checking algorithm. Theprogramming
model handles typical features of object-oriented programs such as down-casting,
virtual dispatch, direct calls, and sub-classing. The model also permits subclasses
to extend the interpretation of typestates and to introduce additional typestates,
similar to the statecharts-based approachby Strom and Yemini. As in Bierhoff and
Aldrich’s approach,DeLine andFähndrich assume that a programmer (or tool)has
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annotated the program under test with information about how calls to a method
change the typestate of the objects that the method references. One fundamental
difference between the two approaches is the treatment of aliasing. While Bierhoff
and Aldrich used access permissions to reason about aliases, Fugue’s type system
tracks objectsmerely as “not aliased” or“maybe aliased”.Objects typically remain
“not aliased” as long as they are only referenced by the stack. The respective ob-
jects can change state only during this period. Once they become “maybe aliased”,
Fugue forbids any state-changing operations on these objects. This makes Fugue’s
type system less permissive than the system that Bierhoff and Aldrich describe: in
the latter type system objects can change states even when they are aliased.

5.5 Dwyer and Purandare

Dwyer and Purandare use existing typestate analyses to specialize runtime mon-
itors [24]. Their work identifies “safe regions” in the code using a simple static
typestate analysis similar to [22]. Safe regions can be methods, single statements
or compound statements (e.g. loops). A region is safe if its deterministic transi-
tion function does not drive the typestate automaton into a final state. A special
case of a safe region would be a region that does not change the automaton’s
state at all. The authors call such a region an identity region. For regions that
are safe but no identity regions, the authors summarize the effect of this region
and change the program under test to update the typestate with the region’s ef-
fects all at once when the region is entered, instead of at the individual shadows
that the region contains. This has the advantage that the analyzed program will
execute faster because it will execute fewer transitions at runtime. One possible
disadvantage of such summary transitions may be that one loses the connection
between the places in the code that perform a state transition and the places
that actually cause these transitions. This makes it harder for programmers to
investigate these program places manually to decide for themselves whether this
part of the program could or could not violate the property at hand. Our static
analysis does not attempt to determine regions; we instead decide if each sin-
gle shadow is a nop-shadow. Dwyer and Purandare’s analysis should be easily
implementable in Clara and we encourage such an implementation.

6 Conclusion

In this work, we have described the general architecture of Clara and have
given pointers to related work from the literature, work both by ourselves and
others. Clara is available as open source at http://bodden.de/clara/ and
we encourage researchers to use it and extend it. The website also includes a
mailing list, on which we will be happy to answer any questions that may arise.

Acknowledgements. We thank everybody who contributed to the design and
implementation of Clara, including the developers and maintainers of Soot [40]
and abc [4], but in particular Laurie Hendren, Grigore Roşu, Feng Chen, Oege
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18. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.

In: OOPSLA, pp. 569–588 (October 2007)

19. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of maude. Electronic

Notes in Theoretical Computer Science (ENTCS) 4 (1996)

20. Dahm, M.: BCEL, http://jakarta.apache.org/bcel

21. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.)

ECOOP 2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

22. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for ver-

ifying properties of concurrent software systems. ACM Transactions of Software

Engineering and Methodolology (TOSEM) 13(4), 359–430 (2004)

23. Dwyer, M.B., Diep, M., Elbaum, S.: Reducing the cost of path property monitoring

through sampling. In: ASE, Washington, DC, USA, pp. 228–237 (2008)

24. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis: Exploiting

static analysis results to reformulate and reduce the cost of dynamic analysis.

In: ASE, pp. 124–133 (May 2007)

25. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering

likely program invariants to support program evolution. IEEE Transactions on

Software Engineering (TSE) 27(2), 99–123 (2001)

26. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verifi-

cation in the presence of aliasing. In: International Symposium on Software Testing

and Analysis (ISSTA), pp. 133–144 (July 2006)

27. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:

Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,

Heidelberg (2001)

28. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties

from dynamic traces. In: Symposium on the Foundations of Software Engineering

(FSE), pp. 339–349 (November 2008)

29. Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In:

ICSE 2010: Proceedings of the 32nd ACM/IEEE International Conference on Soft-

ware Engineering, pp. 15–24. ACM, New York (2010)

30. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.

In: OOPSLA, pp. 385–402 (October 2005)

31. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly

detection. In: ICSE, pp. 291–301 (May 2002)

32. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming 8(3), 231–274 (1987)

33. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules

and detecting violations in large software code. In: Symposium on the Foundations

of Software Engineering (FSE), pp. 306–315 (September 2005)

34. Lo, D., Maoz, S.: Specification mining of symbolic scenario-based models. In: Work-

shop on Program analysis for software tools and engineering (PASTE), pp. 29–35

(November 2008)

35. Martin, M., Livshits, B., Lam, M.S.: Finding application errors using PQL: a pro-

gram query language. In: OOPSLA, pp. 365–383 (October 2005)

36. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects.

In: OOPSLA, pp. 347–366 (October 2008)

37. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from

large method traces. In: ASE, pp. 371–382. IEEE Computer Society, Washington

(2009)

38. Stolz, V., Huch, F.: Runtime verification of concurrent haskell programs. Electronic

Notes in Theoretical Computer Science (ENTCS) 113, 201–216 (2005)

http://jakarta.apache.org/bcel


88 E. Bodden and P. Lam

39. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-

ing software reliability. IEEE Transactions on Software Engineering (TSE) 12(1),

157–171 (1986)

40. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -

a Java bytecode optimization framework. In: CASCON, p. 13. IBM Press (1999)

41. Walker, R., Viggers, K.: Implementing protocols via declarative event patterns.

In: Symposium on the Foundations of Software Engineering (FSE), pp. 159–169

(October 2004)

42. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Sym-

posium on the Foundations of Software Engineering (FSE), pp. 35–44 (September

2007)



You Should Better Enforce Than Verify�

Yliès Falcone

INRIA, Rennes - Bretagne Atlantique, France

Ylies.Falcone@inria.fr

Abstract. This tutorial deals with runtime enforcement and advocates

its use as an extension of runtime verification. While research efforts in

runtime verification have been mainly concerned with detection of misbe-

haviors and acknowledgement of desired behaviors, runtime enforcement

aims mainly to circumvent misbehaviors of systems and to guarantee

desired behaviors. First, we propose a comparison between runtime veri-

fication and runtime enforcement. We then present previous theoretical

models of runtime enforcement mechanisms and their expressive power

with respect to enforcement. Then, we overview existing work on run-

time enforcement monitor synthesis. Finally, we propose some future

challenges for the runtime enforcement technique.

Runtime verification [1,2] is a well established technique which consists in using a
monitor to supervise, at runtime, the execution of an underlying program against
a set of expected properties. A monitor is a decision procedure with an output
function (e.g., a state machine when dealing with regular properties) processing
(step by step) an execution sequence of the monitored program, and producing
a sequence of verdicts (truth values of a truth-domain) indicating fulfillment or
violation of a property. Whilst the detection might sometimes be a sufficient
assurance for some systems, the occurrence (resp. non-occurrence) of property
violations (resp. validations) might be unacceptable for others.

Runtime enforcement [3,4,5,6] of the desired property is a possible solution
to ensure expected behaviors and avoid misbehaviors. Within this technique the
monitor not only observes the current program execution, but also modifies it. It
uses an internal memorisation mechanism, in order to ensure that the expected
property is fulfilled: it still reads an input sequence but now produces a new
sequence of events in such a way that the property is enforced. The precise
and formal relation between input and output sequences is usually ruled by
two constraints: soundness and transparency. From an abstract point of view,
those constraints entail the monitor to minimally modify the input sequence
in order to ensure the desired property. When the program behaves well, the
enforcement monitor lets the program execute with the least influence. If the
program behavior is about to exhibit a deviation w.r.t. the expected property, the
monitor uses its internal memorization mechanism to prevent the misbehavior.

Practical applications of runtime enforcement. There have beenmanypractical ap-
plicationsof the theoryof runtimeenforcement (e.g., in [7,8,9] for programsafety, or
� A longer version with more results and examples is available on the author’s webpage.
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in [10,11] for access controlpolicies). Most of them are built on Schneider’smodel of
security automata. Although in this tutorial we will see an ideational difference be-
tweenenforcementandverification, inpractice there isnotalways acleardistinction
between these disciplines. As so, even early runtime verification frameworks were
oftendesigned to, say, “execute somecode”when aproperty isviolated;hencemod-
ifying the initial program execution. For instance, when a property gets violated:

– JPAX [12], RMOR [13] allow to specify call-back functions that get called;
– Temporal Rover [14] allows to specify a bunch of code to be executed;
– MOP [15] augments monitors with exception handlers.

Nevertheless, reactions to errors are seldom used or at least lacks a systematic
and formal study. Furthermore, it is clear that preventing bad behaviors would
be more desirable than providing reactions to them (“better safe than sorry”).
Tutorial outline. This tutorial focuses on the efforts towards building a theory
of runtime enforcement which is, as we believe, emerging as a new activity. We
advocate its use as an important complementary activity to runtime verification.

1 Underlying Concepts

Given an alphabet E, a sequence σ on E is a total function σ : I → E where
I is either the interval [0, n] for some n ∈ N, or N itself. The empty sequence
is denoted by ε. We denote by E∗ the set of finite sequences over E and by Eω

the set of infinite sequences over E. E∗ ∪Eω is noted E∞. We will assume some
familiarity with the notions of sequence, prefix, and continuation. We will use
σ···n, for n ∈ N \ {0}, to denote the prefix of σ of length n.

Execution Sequences. In runtime verification and enforcement techniques, as
we are not aware of the program specification, the monitored program is often
regarded as a generator of sequences. Thus, the runtime activity focuses on a
restricted alphabet Σc of concrete events or operations the program can perform.
Such sequences can be made of e.g., resource-access events on a secure system, or
kernel operations on an operating system. In a software context, these events may
represent a relevant subset of instructions (e.g., variable modifications or proce-
dure calls). These operations determine the truth value of properties. Thus, in
order to compare program’s executions with the property, these concrete events
should be abstracted in a finite set of abstract events Σa. This abstraction is an
underlying correspondence Σc ↔ Σa, mapping every occurrence of a concrete
event to the occurrence of an abstract event1. To simplify notations, in this tuto-
rial we will talk uniformly about execution sequences, and use a unified alphabet
Σ. Execution sequences, i.e., possibly non-terminating runs, range over Σ∞.

Policies vs. Properties. As often referred in the verification literature, a pro-
perty is a set of single execution sequences, i.e., a property partitions the set

1 This is exactly the purpose of program instrumentation (cf. Section 2.1). Note also

that the problem might be slightly more complex when dealing with parametric
events, events that also depend of concrete execution values (see. [16] for instance).
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of possible execution sequences. Schneider [3] distinguishes properties from poli-
cies. A policy is defined over sets of execution sequences, i.e., a policy partitions
the set of sets of execution sequences. Properties thus represent a subset of the
set of policies. Only properties are suitable for a monitoring approach since they
can be decided on single executions; through a predicate applying on execution
sequences in isolation. On the contrary, policies which are not properties cannot
be monitored since they would require information from other executions. For
instance [3], forbidding information flow from two variables in a program is a
policy and not a property since checking it would require many executions to de-
termine if values are correlated. Moreover, in this tutorial, as we are dealing with
runtime techniques, we will consider only properties defined on linear executions,
excluding specific properties defined on branching execution sequences [17]. Run-
time frameworks have considered properties on finite, infinite, or both finite and
infinite sequences. We will note Π the property under scrutiny and Π(σ) when
the sequence σ belongs to Π .

1.1 Classification of Properties

In the validation community, two classifications of properties have been mainly
used: the Safety-Liveness and the Safety-Progress classifications.

The Safety-Liveness Dichotomy. Noticing that different properties lead to
different kinds of proofs on programs, Lamport suggested in [18] that two classes
of properties should be distinguished:

safety [18] properties stating that something bad does not happen (e.g., dead-
lock-freedom, partial correction, FIFO ordering);

liveness [19] properties stating that a good thing eventually happens (e.g.,
starvation-freedom, program termination).

From an abstract point of view, the difference between these properties is as
follows. When safety properties are falsified it is always by a finite sequence.
However, liveness properties cannot be falsified by finite sequences. That is to
say, for a liveness property, any finite sequence is the prefix of an infinite one
satisfying the property. For more results detailing the organization of properties
within this class, we refer the reader to [19,20,21,22].

The Safety-Progress Hierarchy. Pnueli et al. introduced the Safety-Progress
classification of properties [23,24], as a hierarchy between regular (linear time)
properties defined as sets of infinite execution sequences. Unlike the Safety-
Liveness dichotomy, the Safety-Progress classification is a hierarchy, and pro-
vides a finer-grain classification in a uniform way according to four views [25]: a
language-theoretic one (seeing properties as sets of sequences), a logical one (see-
ing properties as LTL formulas), a topological one (seeing properties as open or
closed sets), and an automata one (seeing properties as accepted words of Streett
automata [26]). Connections between the various views endow this classification
with means to translate and see a given property differently.
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The Safety-Progress classification first defines basic classes over infinite exe-
cution sequences. Classes are informally defined as follows. Safety properties are
the properties for which whenever a sequence satisfies a property, all its prefixes
satisfy this property. Guarantee properties are the properties for which whenever
a sequence satisfies a property, there are some prefixes (at least one) satisfying
this property (e.g., total correctness, program termination). Response properties
are the properties for which whenever a sequence satisfies a property, an infinite
number of its prefixes satisfy this property (e.g., success of all processes enter-
ing critical section or weak fairness). Persistence properties are the properties
for which whenever a sequence satisfies a property, all but finitely many of its
prefixes satisfy this property (e.g., entering nominal regime).

Reactivity

Obligation

Safety

Progress
Safety

Guarantee

Response Persistence

Furthermore, two extra classes can be defined as (finite) Boo-
lean combinations (union and intersection) of basic classes.
Obligation properties are combinations of safety and gua-
rantee properties (e.g., exceptions). Reactivity properties are
combinations of response and persistence properties (e.g.,
strong fairness). This latest is the most general class contai-

ning all linear temporal properties [23]. See [25,27] for more details.

2 Runtime Verification vs. Runtime Enforcement

In this section, we compare runtime verification and runtime enforcement. We
first give an abstract picture of runtime verification and its main concepts. These
concepts are mostly shared with runtime enforcement. Second, we introduce
runtime enforcement and exhibit differences between the two fields.

2.1 Runtime Verification

We shall now introduce runtime verification at an abstract level. For more de-
tails, the reader may refer to surveys [1,2]. A candidate definition of “runtime
verification” may be formulated as follows:

Definition 1 (Runtime Verification). Runtime Verification is the discipline
of computer science dedicated to the analysis of system executions (possibly leve-
raged by static analysis) by studying specification languages and logics, dynamic
analysis algorithms, system instrumentation, and system guidance.

However, the following definition has been the most admitted one [2]:

“Runtime verification is the discipline [...] that allows to determine whether a
run of a system satisfies or violates a given correctness property.”

This definition leaves aside the topic of program guidance that runtime verifi-
cation took into account early in its scope [28]. However, we believe that this
definition is representative of the research efforts in the past decade: determining
how a run of the system under scrutiny gives information about a property.

Flavors of runtime verification. Two kinds of approaches are usually distin-
guished in runtime verification [29]:
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Detection of concurrency errors: Debugging is hard to achieve on multi-threaded
systems due to the large numbers of possible behaviors and the difficulty
to establish causality between events. Runtime verification techniques for
concurrency errors extract information from the run of the system in order
to determine if such transient errors may happen on other executions (even if
the current execution exhibited no errors). For instance, several methods and
tools were proposed to detect data races (e.g., [30,31]), deadlocks (e.g., [32]),
or atomicity errors (e.g., [33]).

Verification of user-provided specifications: It consists in checking whether or
not the system satisfies a given specification. Several approaches were pro-
posed from verification of simple assertions at a single location in the program
to the verification of temporal assertions at several locations in the program.
We refer to [1] for a study and a classification of existing approaches.

Basic Concepts. As one can notice from examining Definition 1, and as se-
veral authors [2,4,34] pointed out, runtime verification has been only concerned
with sequence recognition. Let us now elaborate more on the basic principles of
runtime verification by depicting its ingredients.
Trace. In order to analyze a program at runtime, its concrete execution needs to
be abstracted. In this perspective, the program under scrutiny is instrumented
so as to produce a sequence of concrete events, a trace. An hypothesis is that the
vocabulary of concrete events Σc should match with the vocabulary Σa in which
the property is expressed. Program instrumentation then consists in inserting
code at relevant places in the program to capture the occurrence of events in Σc

and associate each of them with an event in Σa. The various locations in the
program, where events are picked up, are named locations. Determining these
locations relies on an analysis of the program, either manual or automatic. When
manual, it consists in manually inserting monitor’s code in relevant places in the
program. When automatic, the instrumentation relies on an analysis that can be
either static, dynamic, or both. Several approaches for program instrumentation
were considered (e.g., manually in [12], with Aspect-Oriented Programming [35],
or byte-code insertion [36]). All these methods share the common objective to
be simple, efficient, with limited impact to program’s performance. Moreover,
instrumentation may be realized on source code or on object code.
The monitor and its placement. Once settled, the trace is fed to one of the cen-
tral concept in runtime verification: the verification monitor. There are various
alternatives for monitor placement wrt. the program [37]. Usually the monitor
runs in the same memory space as the program: inline placement. In this case,
the monitor’s code can be inserted within program’s code either at observation
points or by routine calls. In the second case, the monitor is placed in another
memory space: outline placement (e.g., in a thread or different process).

The monitor may also analyze the program in different ways, in a lock-step
manner or a posteriori, i.e., a verdict is either incrementally produced (online
analysis) or once the program is terminated (offline analysis).
The monitor’s purpose. The monitor behavior amounts to translate an execution
sequence σ ∈ Σ∞ into a sequence of verdicts ω ∈ B∞, for a truth domain B.
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events verdictsMonitor

σ |= Π?
Π

Verification

ω ∈ B∞σ ∈ Σ∞

B

A monitor, for a property Π , behaves as a function
[[Π ]]B(·) : Σ∞ → B∞ that provides an evaluation
ω = [[Π ]]B(σ) for an execution sequence σ in the truth-
domain B under consideration. Thus, one of the pro-

blems to be addressed is that each partial evaluation [[Π ]]B(σ···n) = ω···n of a
finite sequence should not only give some relevant information on Π(σ···n), but
also possibly on Π(σ). In this context, the principle expressing whether or not it
is worth monitoring a property, i.e., monitorability, get raised several definitions.

What is monitorable - definitions of monitorability. The first characte-
rization of monitorable properties was given by Viswanathan and Kim in [38].
Monitorable properties were characterized as a strict subset of safety proper-
ties. The authors showed that, due to the undecidability of some problems, a
verification monitor is limited by some computability constraints. Monitorable
properties are precisely defined as the safety decidable properties2.

Pnueli et al. gave a more general notion of monitorable properties [39] relying
on the notion of verdict determinacy for an infinite sequence.

Definition 2 (Monitorability [39]). Considering a finite sequence σ ∈ Σ∗,
a property Π ⊆ Σ∞ is negatively determined (resp. positively determined) by
an execution sequence σ if σ and each of its possible extension does not satisfy
(resp. does satisfy) Π. Then, Π is σ-monitorable, i.e., monitorable after reading
σ, if σ has an extension s.t. Π is negatively or positively determined by this
extension. Finally, Π is monitorable, if it is σ-monitorable for every σ ∈ Σ∗.

The idea is that it becomes unnecessary to continue the execution of a Π-monitor
after reading σ if Π is not σ-monitorable. In [40], Bauer et al. gave a first under-
approximation of monitorable properties following this definition. They noticed
that, in the Safety-Liveness classification, safety and co-safety3 properties are
monitorable according to this definition. Later in [41,27], Falcone et al. tack-
led the question of monitorability within the Safety-Progress classification of
properties. They established a characterization of monitorable properties as a
super-set of obligation properties. Furthermore, they provided a syntactic crite-
rion on Streett automata to determine whether or not the property recognized
by an automaton is monitorable.

Noticing that the classical definition of monitorability may lead to inconsis-
tencies, Falcone et al. proposed an alternative definition of monitorability [27,41].
Indeed, following the classical definition of monitorability, for some obligation
properties, some correct and incorrect execution sequences would not be dis-
tinguishable. They proposed a definition of monitorability, parameterized by a
truth-domain B, allowing to discard properties leading to ambiguities in B.

Definition 3 (Monitorability [41]). A property Π is said to be monitorable
with the truth-domain B iff ∀σgood ∈ Π, ∀σbad /∈ Π : [[Π ]]B(σgood) �= [[Π ]]B(σbad).
2 A non-decidable safety property is a safety property for which the test used to decide

whether a given sequence belongs to the property is not computable.
3 A property Π is a co-safety property if its negation ¬Π is a safety property.
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A property Π is monitorable wrt. the truth-domain B, if it possible to distinguish
correct from incorrect sequences within this truth domain. In other words, a
property is monitorable, for a truth-domain, if it is possible to build a monitor
that would not produce the same verdict for incorrect and correct sequences.

Synthesis of Runtime Verification Monitors. Generally, runtime verifica-
tion monitors are generated from LTL-based specifications, as seen in [15,42].
Alternatively, ω-regular expressions have been used as a basis for generating mo-
nitors, as for example in [43]. To the author’s knowledge, RuleR [44] is the system
accepting the most expressive specification formalism. In RuleR, specifications
are written as a set of rules and are then translated into an automaton-like lan-
guage. An exhaustive list of works on monitor synthesis is far beyond the scope
of this tutorial. We refer to [1,2,28] for more information on this topic.

Summary. All in all, runtime verification is a technique mainly used to de-
tect expected or unexpected behaviors of a program at runtime. It consists in
instrumenting the underlying program in order to be able to observe relevant
events. These events are then fed to a decision procedure, a monitor, that states
a verdict regarding property fulfilment or violation.

2.2 Runtime Enforcement

Runtime enforcement [3,4,5,6] is an extension of runtime verification that aims
at answering the following questions, which are often left unanswered during a
runtime verification process4:

– What happens when the property is violated ?
– Is it possible to prevent program’s misbehaviors?

We propose a definition of runtime enforcement:

Definition 4 (Runtime Enforcement). Runtime enforcement is technique
dedicated to ensure that a run of a system satisfies a given desired property.

Basic Concepts. Runtime verification and runtime enforcement share many
concepts together. The concepts of trace, monitor placement, previously pre-
sented in Section 2.1, still apply for runtime enforcement. The main conceptual
differences lie in the monitor and his purpose.

eventsevents Monitor

memory

σ |= Π? o |= Π

Enforcement

Op
Π

The used mechanism is an enforcement monitor. It
shares the same features with a verification monitor.
In particular, it is also dedicated to a property Π , but
it is augmented with a memorisation mechanism M.

It still reads an input sequence σ ∈ Σ∞ but outputs a new sequence o ∈ Σ∞.

4 Reaction to specification violation was originally in the scope of runtime verifica-

tion [28]. Our point is that not much attention has been given to perform reactions

in a completely formal and systematic way.
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To do so, the monitor is endowed with a set Op of enforcement primitives that,
by operating on the memorisation mechanismM, are used to suppress or insert
actions using the memory content and the current input, i.e., each op ∈ Op is a
function op :M×Σ∗ →M×Σ∗. The upshot is that the monitor behaves as a
function [[Π ]]Op(·) : Σ∞ → Σ∞ providing o = [[Π ]]Op(σ) when input σ.

Property Enforcement. The relation between input and output sequences should
adhere the two following constraints that were enunciated in the work of Schnei-
der, Bauer, Ligatti, and Walker:

soundness: the output sequences should be correct wrt. the property;
transparency: the input correct sequences should not be modified.

Thus, the enforcement monitor and its use of the memorization mechanism
should be designed so as to guarantee those constraints. According to how an
enforcement monitor transforms input sequences, several definitions of property
enforcement5 were proposed [4,45,34,46]. We shall now present them with the
unified view of an enforcement monitor as a function that transforms sequences.

Definition 5 (Property enforcement). An enforcement monitor dedicated
to a property Π, abstracted as a function [[Π ]]Op(·) : Σ∞ → Σ∞ is said to
enforce Π conservatively when (1), precisely when (2), delayed-precisely when
(3), effectively wrt. the equivalence relation ≈ when (4); where (1), (2), (3), (4)
are defined, for all σ ∈ Σ∞, as follows:

∃o ∈ Σ∞
: [[Π ]]Op(σ) = o ∧ Π(o) (1)

(1) ∧ Π(σ) ⇒ σ = o ∧ ∀i < |σ| : [[Π ]]Op(σ···i) = σ···i (2)

(1) ∧ Π(σ) ⇒ σ = o ∧ ∀i < |σ|, ∃j ≤ i : [[Π ]]Op(σ···i) = σ···j (3)

(1) ∧ Π(σ) ⇒ σ ≈ o (4)

An enforcement monitor enforces a property:

– conservatively when it adheres only to soundness;
– precisely when it follows soundness, transparency, and it produces outputs

in a lock-step manner with the input sequence and stops outputting actions
as soon as the current input deviates from the property;

– delayed-precisely when it follows soundness, transparency, and it produces
outputs in a lock-step manner with the input sequence and it can suppress
actions and later insert them (when becoming correct again);

– effectively when it follows soundness and transparency related to an equiva-
lence relation ≈.

Note that, when the considered equivalence relation is the equality, effective
enforcement amounts to delayed-precise enforcement, except that effective en-
forcement relaxes the constraints on the output sequence when input an incorrect
sequence which does not have any correct continuation.

In the remainder of this tutorial, we will discuss some questions presented for
runtime verification in the scope of runtime enforcement. We first present the
5 Property enforcement amounts to monitorability in runtime verification.
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models of enforcement monitors. Then we will review known result in the study
of enforceable properties that corresponds to the study of the monitorability of
properties in runtime verification. We will also present some enforcement monitor
synthesis approaches.

3 Models of Enforcement Monitors

We first present the main models6 of enforcement monitors. Then we present
derived models that take memory limitation into account.

3.1 General Models

We shall give a perspective on the main models of runtime enforcement monitors.

Security Automata. In his seminal work [3], Schneider introduced Security Au-
tomata (SA) as the first runtime mechanisms dedicated to property enforcement.
SA are a variant of Büchi automata that execute in parallel with the underlying
program. These automata are endowed with the ability to stop the underlying
program as soon as a violation of the considered property is detected.
Edit-Automata. Ligatti et al. [4,47] later introduced Edit-Automata (EA). They
noticed that, by only halting the program, Schneider’s SA were too restricted.
According to its current input and its control state, an EA can either:

– insert an action (by either replacing the current input or inserting it), or
– suppress the current input (possibly memorized in the control state for later).
Variants of EA have been defined: Insertion Automata (only inserting actions),
Suppression Automata (only suppressing inputs). In EA-like enforcement mech-
anisms, memorization of events (i.e., suppression) is realized using control states.
A hierarchy of Edit-Automata. Bielova and Masacci [34] noticed that edit-
automata generated by Ligatti et al. with the provided algorithm in [47] are
of a restricted form. While EA have no restrictions on the order of enforcement
operations they can perform, Bielova and Masacci noticed that EA generated
by Ligatti’s construction run their enforcement operations in such a way that,
when they are input an incorrect execution sequence, they always output the
longest correct prefix. Following this observation, [34] built a hierarchy of EA
according to the enforcement ability they are endowed (i.e., how enforcement op-
erations can be performed). Delayed-Automata are constrained Edit-Automata
that always output a prefix of their input. In other words, they can only insert
previously suppressed actions. All-or-Nothing automata are a more constrained
form of EA, i.e., they are constrained Delayed-Automata. On each transition
they can only either output all suspended events or suppress the current event.
The kind of automata actually synthesized by Ligatti are named Ligatti’s Au-
tomata by the authors of [34]. These automata are All-or-Nothing automata that
always produce the longest correct prefix of the input.
6 We only give informal pictures of the various models we introduce. These models

will be formally presented during the tutorial presentation.
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Generic Enforcement Monitors. In [6,46], independently from [34], Falcone et
al. proposed the mechanism of Generic Enforcement Monitors (GEMs) as an
alternative to EA. Contrary to EA, their memorization is realized through a
specific memory mechanism completed with a set of operations. Moreover, the
proposed automata differ in several points by offering novel features regarding
enforcement monitoring. We recall some of them.

First, finding and encoding an enforcement mechanism using edit-automata
is not an intuitive operation. As exposed in [34], synthesized automata using
the transformation proposed in [48] may produce unexpected results for bad se-
quences. Second, compared to EA, GEMs propose a clear distinction between
control states (used for property recognition) and the sequence memorization
(when the current execution deviates from the property) in the memory device
for potential replay (if the execution meets the property again). Edit-Automata
use a potentially infinite number of control states for property recognition and
sequence memorization. Thus, even for a simple guarantee property e.g., “even-
tually b” an edit-automaton needs an infinite number of states to memorize the
potential incorrect sequence of events built on Σ \ {b}. Furthermore, one can
notice that the size of an EA is hardly dependent on the vocabulary Σ under
consideration. Hence such a mechanism is easier to implement, as they are given
a restricted set of control states. Meanwhile, linking the proposed mechanism to
their implementation is more compatible with formal reasoning. This provides
more confidence in the implementation of such mechanisms.

3.2 Models Taking into Account Memory Constraints

While previously presented models of enforcement monitors provide good basis
for the design of enforcement mechanisms, they are supposed to be able to me-
morize an unbounded number of events: through a potentially infinite number
of control states for EA and its derivatives, with an unbounded-size memory in
GEMs. In order to get more insights on the suitability of such mechanisms for
practical purposes, several models were derived.

Shallow-History automata. Fong [49] studied the effect of restraining the ca-
pacity of the runtime execution monitor using an information-based approach.
Shallow History Automata (SHA) keep as history a set of access events the un-
derlying program made and do not keep any information about the order of
their arrival. Then, Fong generalized the result by using abstraction by an ho-
momorphism α on a variant of Schneider’s automata. Fong defined the notion of
α-SA that intuitively abstracts previously accepted events at each transition it
performs. It raised up an information-based lattice of enforcement mechanisms.
At the top of this lattice are the α�-SA keeping history of all events (α� distin-
guishes all elements of Σ∗). At the bottom of this lattice are the “memory-less”
α⊥-SA, not tracking the history (α⊥ does not distinguish any sequence of Σ∗,
i.e., they are one-state mechanisms that prohibit a given set of events). Further-
more, the class of SA built using the abstraction function αocc that captures the
occurrence of events in an execution sequence corresponds to the class of SHA.
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Bounded History Automata. In [50], Talhi et al. proposed Bounded Security Au-
tomata (BSA) and Bounded Edit-Automata (BEA) as restricted versions of SA
and EA. These models manipulate a bounded space to record a limited history.
Given a fixed size to track histories, their states represent a bounded history of
valid execution execution sequences. At each performed step, the transition func-
tion of a Bounded Security Automaton abstracts the current history (state) along
with the read event in order to produce the next history (state). In Bounded
Edit-Automata, states are refined into pairs distinguishing the accepted prefix
and the suppressed suffix of the input sequence. Thus, the transition function ab-
stracts the concatenation of the current accepted prefix with the supressed suffix
along with the read event in order to produce the new state. A BSA (resp. BEA)
whose the maximum size of a history is k is said to be a k-BSA (resp. k-BEA).
As expected, enforcement power of Bounded History Automata raises up with
the available memory (the maximum size of a history), i.e., for k, k′ ∈ N, when
k < k′: k′-BSA (resp. k′-BEA) are more powerful than k-BSA (resp. k-BEA).

Summary. We report comparisons [50] related to runtime enforcement mecha-
nisms taking into account memory limitation in the figure below.

lattice

SHA

chain

et al’s
Talhi

Security Automata

differentiating events
with same action set

SHA

Fong’s

α
’s

in
creasin

g
d
iff

eren
tiatin

g
p
ow

er

s.t. |Σ| = k
for Σ

k-BSA

k
∈

N
in

creasin
g

α�-SA
N-BSA

k-BSA

on Σ

α⊥-SA
0-BSA

αocc-SA

α-SA

Classes of enforcement mechanisms are repre-
sented in a hierarchical manner. For any BSA,
one can find an α-SA enforcing the same pro-
perty. Moreover, for any α-SA, there exists a
k-BSA s.t. k is the size used to encode the
results of α. Moreover, for a given alphabet
Σ of size k, k-BSA are more powerful than
SHA. However, note that those limited-memo-
ry models assume an infinite number of states.

4 Enforcement Abilities of Enforcement Monitors

4.1 Power of General Runtime Enforcement Mechanisms
Security Automata and decidable safety properties. Schneider announced that
the set of precisely enforceable properties with SA is the set of safety properties.
Then in [5], Hamlen et al. refined the set of enforceable properties and showed
that these SA were in fact restrained by some computational limits. Indeed, as
Viswanathan noticed in [51], the class of enforceable properties is impacted by
the computational power of enforcement monitors. As the enforcement mecha-
nism can implement no more than computable functions, the enforceable proper-
ties are included in the decidable ones. Hence, authors of [5] showed that the set
of safety properties is a strict upper limit of the power of enforcement monitors
defined as SA (the unsatisfiable safety property is also not enforceable [45]).

Edit-Automata and infinite renewal properties. The properties effectively en-
forced wrt. the equality by edit-automata are called infinite renewal properties.
They have been defined, in the Safety-Liveness classification, as the properties
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for which every infinite valid sequence has an infinite number of valid prefixes [4].
The set of renewal properties is a super set of safety properties and contains some
liveness properties (but not all). Moreover, Ligatti et al. showed that insertion
and suppression automata can enforce two different proper subsets of the set of
enforceable properties by Edit-Automata.

Finite edit-automata and memory-bounded properties. In [52], Beauquier et al.
studied the effective enforcement ability wrt. equality of finite-state edit au-
tomata. Focusing on regular languages, they proved that enforceable properties
are memory-bounded properties. Furthermore, they provided a syntactic crite-
rion on generalized Muller automata [53] to determine if the property recognized
by a given automaton is memory-bounded and thus enforceable; this criterion is
checkable in time O(n2), where n is the number of states in the automaton.

Generic enforcement monitors and response properties. In [46], Falcone et al.
showed that GEMs, instantiated with a set of enforcement operations similar
to insertion and suppression, can delayed-precisely enforce the set of response
properties within the Safety-Progress classification of properties. Moreover, they
proved that the set of response properties is the upper-bound for any enforcement
mechanism with a finite number of states (but with an unbounded memory).

4.2 Power of Memory-Limited Runtime Enforcement Mechanisms

Shallow History Automata and an information-based lattice of enforceable
policies. Fong showed in [49] that these automata can precisely enforce a set
of properties strictly contained in the set of properties enforceable by SA. Re-
garding the lattice of enforcement monitors defined as α-SA, Fong showed that
they give raise to a lattice on the space of all congruence relations over Σ∗

which is ordered by the tracked information. Fong’s classification has a practical
interest by studying the effect of a practical programming constraint (limited
memory) from an information point of view. It also shows that some classical
security policies remain enforceable using such Shallow History Automata.

Bounded-History Automata and locally testable properties. In [50], Talhi et al.
showed that there exists a taxonomy of effective enforceable properties wrt.
equality based on the size limitation affecting the memory. As expected, for both
BSA and BEA enforcement ability raises with the available space. Moreover, they
related the enforcement ability of BHA to locally testable properties. Intuitively,
a property is said k-locally testable if it can be recognized by an automaton with
a finite memory and examining a sequence chunk of a fixed size k. According to
which part of the sequence the chunk represents, several classes of locally testable
properties can be defined. Intuitively, a property is prefix-testable (resp. suffix
testable, prefix-suffix testable, strongly locally testable) if it is recognizable by
examining a prefix (resp. suffix, both prefix and suffix, a factor) of limited size.
Locally testable properties are linked to Bounded History Automata as follows:

– For BSA: prefix-closed k-prefix locally testable properties and k-strongly lo-
cally testable properties are enforceable with a memory of size k; suffix testable
and prefix-suffix testable properties are not enforceable.
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– For BEA: k-prefix locally testable properties are enforceable with a memory of
size k; k-strongly locally testable are enforceable (no bound is given on the me-
mory); suffix testable and prefix-suffix testable properties are not enforceable.

5 Synthesis of Runtime Enforcement Monitors

In [54], Martinelli and Matteucci tackle the synthesis of enforcement mechanisms
as defined by Ligatti. More generally, the authors consider security automata and
edit-automata. The monitor is modeled by an algebraic operator expressed in
CCS. The program under scrutiny is then a term Y �K X where X is the target
program, Y the controller program and �K the operator modeling the monitor
where K is the kind of monitor (truncation, insertion, suppression or edit). The
desired property for the underlying system is formalized using μ-calculus. In [55],
Matteucci extends the approach in the context of real-time systems.

In [48], Ligatti et al. announced a construction of Edit-Automata from finitary
properties defined using a predicate on finite sequences for effective enforcement.
However, as shown by [34], this construction actually affords a Ligatti automaton
that delayed-precise enforce the finitary property.

In [56,46], Falcone et al. defined class-specific transformations for the classes
of enforceable properties within the Safety-Progress classification of properties.
The monitor synthesis procedures were defined from Streett automata. Besides,
due to the connections between the views in the classification, their transforma-
tion indirectly provides enforcement monitor synthesis from LTL formula and
properties defined using language-based operators. In [27], the authors generali-
zed the class-specific transformations in an independent one.

In [52], Beauquier et al. defined translation of generalized pruned Muller au-
tomata [53] (for memory-bounded properties) to finite edit-automata (i.e., edit-
automata whose set of states is finite).

In [57], Chabot et al. synthesize Schneider’s security automata from properties
expressed by Rabin automata [53]. Authors provide a construction from safety
properties in the general case, and for more than safety when leveraged with
static information gathered from the program. However, full expressiveness of
Rabin automata is left aside for non prefix-closed properties.

6 Practical Problems and Future Challenges

We now describe some future challenges for runtime enforcement. Advances in
runtime verification (see [1,2]) will also surely benefit to runtime enforcement.

6.1 Theoretical Open Questions

An open question is how static information on the program can leverage runtime
enforcement. As suggested in [57], having a specification of the program under
scrutiny allows to slightly increase the space of enforceable properties. However,
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the study has been conducted only for safety properties and security automata.
Thus, it remains to study how static information on the program would leverage
enforcement, for others classes than safety and using more powerful mechanisms.

As exposed in Section 4, effective enforcement abilities of Generic Enforce-
ment Monitors and Edit-Automata is unknown. Moreover, as exposed in [34],
provably correct synthesis of enforcement monitors, beyond safety properties,
is only effective for delayed-precise enforcement, both for Edit-Automata and
Generic Enforcement Monitors. A working direction is, in this respect, to find
more expressive formalisms, and associated monitor synthesis techniques.

Another working direction would be to adapt runtime verification frameworks
dedicated to detection of errors on multi-threaded programs and use the principle
of runtime enforcement so as to provably prevent those errors.

Soundness and transparency along with precise and delayed-precise enforce-
ment indicate exactly how good and bad sequences should be processed by an
enforcement monitor. By contrast, effective enforcement leaves the monitor free
to act on bad sequences. For this purpose, one should find relevant remedial
actions to be taken, e.g., completion of bad sequences into good ones.

6.2 Practical Challenges

A current working direction is to make the runtime enforcement technique more
able to cope with practical limitations in order to deal with largescale examples.
In particular it is likely that not all events produced by an underlying program
can be freely observed and/or controlled by the enforcement mechanisms. More-
over, regarding the objective of limiting the resources consumed by the monitor,
it might be interesting to study how to store in memory only an abstraction of
the observed sequence of events for effective enforcement and a suitable equiva-
lence relation. From a theoretical point of view, this means to define enforcement
up to some abstraction preserving trace equivalence relations.

Similarly, it would be of interest to study the notion of enforcement when
weakening the transparency constraint. In this case, the most general form of
edit-automata and our generic EMs could be used. Their complete enforcement
potentials remain to be studied. This perspective would involve to define other
relations between the input and the output sequences; and thus define other
enforcement primitives so as to enforce properties automatically. It seems to us
that such alternative constraints should be motivated by practical needs.

Finally, most of the practical and effective approaches to runtime enforcement
have been performed using security automata. Proposing a framework solving
practical implementation issues and staging the most expressive forms of runtime
enforcement mechanisms would certainly be an achievement.
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villemaire.roger@uqam.ca

Abstract. This tutorial presents an introduction to the monitoring of

web applications. These applications run in a user’s web browser and

exchange requests and responses with a server in the background to up-

date their display. A demo application, called the Beep Store, illustrates

why complex properties on this exchange must be verified at runtime.

These properties can be formalized using an extension of Linear Tempo-

ral Logic called LTL-FO+. The tutorial concludes with the presentation

of BeepBeep, a lightweight runtime monitor for web applications.

1 Introduction

In the past decade, numerous applications, such as Facebook and Google Mail,
have become part of popular culture. These so-called “web” applications come
into the scope of a programming paradigm called cloud computing, where the
user’s web browser is responsible for loading from a server and displaying the
various elements of the application’s page. The user can interact with some of
these elements, which in turn trigger the browser to send further requests to the
server, and update the display.

To be properly understood by their respective recipients, each request and
each response is expected to follow a specific structure, where the possible oper-
ations, parameters and values are precisely defined. In many cases, the browser-
server exchange also moves forward according to a protocol, where the validity
of a request depends on past events.

The technologies over which web applications are built were not designed
with complex interactions in mind. Consequently, they do not provide facilities to
define or enforce such an “interface contract”. Ensuring a correct match between
the browser’s and the server’s behaviour is an open problem, currently left as the
developer’s sole responsibility. Recording the sequence of requests and responses,
and providing a means of preventing contract violations from occurring is an
appealing prospect in this regard.

The present tutorial summarizes our experiments in the enforcement of in-
terface contracts in web applications. Its interest lies primarily in providing a

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 106–121, 2010.
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self-contained introduction to a domain that meets many favourable conditions
for the application of runtime verification techniques. To this end, Section 2
presents a running web application typical of many real-world web services we
studied in the past; Section 3 discusses the interface contract for this applica-
tion. Section 4 introduces a formal language, LTL-FO+, expressive enough for
the constraints encountered, and describes how BeepBeep, a lightweight LTL-
FO+ runtime monitor, can be integrated into the initial application to effectively
enforce the contract.

2 Anatomy of a Web Application: The Beep Store

For the purpose of this tutorial, we designed a simple web application called
the Beep Store that will be used as a running example to illustrate web-based
runtime verification concepts.

2.1 End-User Perspective

The Beep Store allows registered users to browse a fictional collection of books
and music, and to manage a virtual shopping cart made of these elements. It
runs out-of-the-box in any modern web browser pointed at the store’s URL.1

Fig. 1. The Beep Store’s web interface

Figure 1 shows a typical application screen. At any time, users can use the
search box at the top right of the screen to type any keyword. Similarly, they
can click on the “Search an item” menu element at the left to summon a more
complete search pane, where they can restrict the search to a specific artist, a
specific title, and split the result into pages of a fixed number of entries.

Pressing the “Go” button retrieves from the server the list of all relevant
entries. Optionally, users have the option of adding an item from that list into
1 http://beepbeep.sourceforge.net/examples/beepstore

http://beepbeep.sourceforge.net/examples/beepstore
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a personal inventory called a “shopping cart”. To do so, they must first log into
the application (using the “Sign in” link at the top of the page) and provide
their username and password. A shopping cart is automatically created when
users add their first item into it.

Once a cart is created, a “Your Cart” button (not shown) appears at the
right of the search box. Clicking this button opens the cart pane, which displays
the list of all items currently in the user’s cart, their quantity and total price.
Buttons allow the user to edit the quantity for an item, or remove it altogether.
Each action updates the cart’s list on the fly.

Such a scenario is a purposefully condensed version of popular commercial
web sites, such as Amazon or eBay. Indeed, although the Beep Store is a demo
application, all its functionalities —and constraints on its use, as we shall see—
have been found in at least one of the real-world web services we studied in
the past [14]. This includes in particular the User-Controlled Lightpath Ser-
vice [7], the Amazon e-Commerce Service [1], and the PayPal Express Checkout
Service [2].

2.2 Internal Workings

Asynchronous JavaScript and XML (Ajax) refers to the collection of technologies
used to develop such rich and interactive web applications. The execution of an
Ajax application in a web browser is a straightforward process. First, the client’s
browser loads the application’s page, beepstore.html. It uses it to render the
page’s content by interpreting its markup elements: text boxes, buttons, menu
elements, headings, images. The header of this HTML file contains a link to a
JavaScript document hosted in the same directory, called beepstore.js.

The JavaScript functions it contains are used for three purposes. First, it asso-
ciates snippets of code to some page elements. For example, a button in the HTML
file can be linked to a JavaScript function through the onClick event; any click on
this button triggers the execution of the associated JavaScript function. Second,
the web browser provides a JavaScript object, called document, whose methods
can be used to access the HTML page’s elements and modify their content and
appearance dynamically. Hence, the button’s onClick event can toggle the visi-
bility of some page section that was previously hidden, producing an effect similar
to a pop-up window. With proper coding, JavaScript can reproduce in the browser
most of the look-and-feel of a traditional desktop application.

The last use of JavaScript is for the handling of requests and responses over
the network. This is done through a standard object called XMLHttpRequest,
also provided by the local browser.2

2.3 Interaction through XML

The second part of an Ajax application is a script running on the server side,
and answering to requests initiated by the local browser’s XMLHttpRequest

2 An exception is Internet Explorer, which exposes the same functionalities under a

different object called MSXML. Their differences are superficial.
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object. In the case of the Beep Store, a PHP script called beepstore.php acts
as the application’s front door on the server. Data is exchanged using a standard
markup called XML. Each XML document sent and received is called a message,
and the communication between the browser and the server hence generates a
message sequence.

Figure 2 shows the structure of two typical request-response pairs of messages
sent by the Beep Store’s application to its server. For instance, Figure 2(a)
shows the message sent by the browser when a user clicks on the Login button:
it includes an element called Action whose value indicates the name of the
action to be executed by the server, and two additional parameters providing a
Username and Password. The actual values inserted inside these two elements
are dynamically fetched by the JavaScript function responsible for sending the
Login message on the browser.

<Message>

<Action>Login</Action>

<Username>Sylvain</Username>

<Password>banana</Password>

</Message>

<Message>

<Action>LoginResponse</Action>

<SessionKey>123456</SessionKey>

</Message>

(a) Login (request) (b) Login (response)

<Message>

<Action>CartCreate</Action>

<SessionKey>123456</SessionKey>

<Items>

<Item>

<ItemId>123</ItemId>

<Quantity>1</Quantity>

</Item>

...

</Items>

</Message>

<Message>

<Action>CartCreateResponse</Action>

<SessionKey>123456</SessionKey>

<CartID>789123</CartId>

<Items>

<Item>

<ItemId>123</ItemId>

<Quantity>1</Quantity>

<Price>12.00</Price>

<Author>The Beatniks</Author>

<Title>Yelp!</Title>

</Item>

...

</Items>

</Message>

(c) Create a cart (request) (d) Create a cart (response)

Fig. 2. Examples of XML messages for the Beep Store

The server’s PHP script processes this request by checking that the name-
password pair is contained in its user database. In such a case, it creates and
records a new unique session key, and produces the response message shown
in Figure 2(b). The JavaScript code on the client side parses it and keeps the
session key in local memory for future requests.
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Request and response messages for cart creation, shown in Figure 2(c)-(d),
are more complex. In addition to the Action and SessionKey, the creation
request includes a compound element, Items, itself made of one or more Item
elements. Each item specifies an item ID (taken from the store’s catalogue) and
the quantity of this item to be included in the cart. The response returned by
the server repeats that information, provides a unique ID to the newly created
cart, and adds pricing, title and author information for each item, as obtained
from the store’s database.

2.4 The Beep Store as a Web Service

One can see how the exchange of XML messages outsources the application’s core
functionalities to the server over the network, leaving the client with only the
lighter, GUI-related processing. For example, database search and cart manipu-
lations are handled by the server, which only sends the results of these operations
to the browser for proper display. This architecture is appealing, if only for prac-
tical reasons: a browser-side search for an item would involve downloading the
whole store’s catalogue on the client.

As a matter of fact, the server’s functionality is not limited to this particular
web client: it is made publicly available as an instance of a web service. Any third-
party developer can produce a working pair of HTML/JavaScript files and send
requests to the Beep Store’s PHP script; provided that the requests are properly
formed and sent in a reasonable sequence, the store’s script will serve them.

Similarly, a different server, accepting the same messages as the Beep Store,
could be used indifferently by the web client. A web service can even send re-
quests to another service. Ultimately, the vision of web services is to separate
functionalities into simple, stand-alone units, communicating over the network
through standardized mechanisms such as XML messaging. A web application
is a particular case of this scenario consisting of a single browser-server pair.

3 Interface Contracts in Web Applications

The appealing modularity of web services is the source of one major issue: how
can one ensure the interaction between each application and each service pro-
ceeds as was intended by their respective providers? Without any clear and
mutual understanding of the acceptable requests and responses, an Ajax client
might try to send a message that the server does not recognize, and vice versa. A
correct interoperation between a client and a service is only guaranteed if both
partners follow a well defined and enforceable interface contract.

3.1 The Beep Store Interface Contract

The source for such an interface contract invariably comes from the service’s
documentation, intended for developers. The online documentation for the Beep
Store3 is modelled after that of real-world web services, in particular the Amazon
E-Commerce Service.
3 http://beepbeep.sourceforge.net/examples/beepstore/documentation

http://beepbeep.sourceforge.net/examples/beepstore/documentation
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The first observable part of an interface contract that this documentation
provides consists of the description of all the XML request and response messages
for each operation, in a way similar to Figure 2. Any client and service must
produce messages following the structure mentioned there.

In addition, accompanying text explains the semantics of each operation, and
lists a number of conditions that must be fulfilled for each operation to be
properly processed and return a response. Some of these constraints have been
purposefully integrated into the Beep Store to faithfully reproduce behaviour
found in some real-world web service we studied. Our prior work led us to divide
these constraints into three categories:

Data Constraints. The first class of properties expresses constraints over the
structure and values inside a single message at a time. For example, in the
ItemSearch message:

P1. The element Page must be an integer between 1 and 20.
P2. The element Page is mandatory only if Results is present; otherwise it is

forbidden.

These requirements go beyond the specification of a rigid XML structure:
they also provide ranges for possible values, and even state that the presence of
some element be dependent on the presence of another. Further data constraints
could, for example, impose possible values for some element as a function of the
value in another element —an example of such a constraint can be found in the
Amazon E-Commerce Service [12].

Control-Flow Constraints. Other restrictions are related to the sequence in
which operations are invoked. Any application introducing the concept of session,
or manipulating persistent objects such as a shopping cart, includes control-flow
constraints of that kind. For example:

P3. The Login request cannot be resent if its response is successful.
P4. All cart operations, such as CartCreate, must follow a successful Login-

Response.

These constraints introduce the notion of state into the application: the pos-
sible future messages allowed depend on what has happened in the past. Indeed,
it does not make sense for a user to try to login again after a successful login.
Similarly, since shopping carts must be associated to a logged user, it is impossi-
ble to create such a cart without first logging in. An attempt at such operations
hints at some programming flaw on the client side, and should be replied by an
error message from the server.

Data-Aware Constraints. Furthermore, the Beep Store includes properties
referencing data elements inside exchanged messages, such that these data el-
ements are taken at two different moments in the execution and need to be
compared. Properties having this characteristic have been dubbed “data-aware”
temporal properties [15]. For example:
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P5. There can be at most one active cart ID per session key.
P6. You cannot add the same item twice to the shopping cart.

Property 5 obviously forbids a client to involve a CartCreate operation twice.
However, it also requires that at any time, the CartId value found in a message
be the same for all subsequent messages. This must be respected both by the
client (which cannot try to sneak information about another cart by simply
providing a different ID) and the server (which cannot change a cart’s ID after
it has been communicated to the client).

Property 6, although seemingly counter-intuitive, has actually been found in
the Amazon E-Commerce Service, as reported in [14]. The service requires that,
to add one more of an existing item into a cart, the CartEdit operation be
invoked on that item instead of repeating a CartAdd message. Therefore, this
property entails that any ItemId appearing in a CartAdd message no longer
appears in a future CartAdd (unless the item is found in a CartRemove message
in between).

The reader is referred to the Beep Store documentation for a list of all con-
straints in the interface contract; further examples of constraints in other sce-
narios can be found in our earlier papers [13, 15, 14].

3.2 Issues with Current Technologies

The examples shown above represent a small portion of all the constraints im-
posed by the Beep Store. The interface contract for a typical web service is
made of dozens of such properties. However, as numerous and well-documented
as these properties are, the technologies over which web applications are built
bring a number of issues when it comes to handling them.

Free-Form Messages. As such, there is no “web service protocol”. The closest
one gets to such a concept is with the Simple Object Access Protocol (SOAP)
[20], itself built as a special case of the HTTP protocol that web browsers have
been using for decades. A SOAP request is little more than a collection of HTTP
headers, followed by an XML payload formed of two mandatory sections: Head
and Body (the XML documents in Figure 2 are sent inside the Body). Apart
from these conditions, SOAP regards the payload as a free-form document. This
entails that the message structure —the web equivalent of types in a classical
programming language— is not even checked.

Stateful Behaviour, Stateless Protocol. HTTP is also a stateless proto-
col, where each new request processed by the server is detached from previous
ones, and unrelated to those that follow. At the time HTTP was designed, this
characteristic was appealing for its simplicity of implementation and the limited
resources it requires for processing a request. Yet, we have seen how the Beep
Store, typical of many web applications, requires long-running interactions span-
ning multiple requests and responses, and where past requests determine current
valid ones.
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Since session logic is not carried transparently through the protocol, it must
be explicitly handled by the application itself. This is why the Beep Store must
simulate sessions through a sequence of individual request-response pairs, where
a unique identifier created at the start of a session (the SessionKey) is repeated
in each subsequent message. The session’s state (shopping cart contents, user
name) is written to persistent storage between requests and can be retrieved
using this identifier.

No Standardized Contract Notation. It follows from these observations
that most properties of an interface contract lie at a higher conceptual level
than current web protocols. Their expression and enforcement should therefore
be handled in an extra control layer on top of HTTP and SOAP.

The only part of interface contracts that made it to some form of standard-
ization is the Web Service Description Language (WSDL) [9]. WSDL allows the
creation of an auxiliary document that specifies the XML structure of each re-
quest and response accepted by a service. Existing software frameworks, such
as Apache Axis [3], can generate template functions called stubs for each mes-
sage. By communicating only through these auto-generated stubs, a client or
server can be guaranteed to send only WSDL-compliant messages. The same
stubs can also verify at runtime that any incoming message follows the WSDL
specification.

If the generation of WSDL-based stubs and the runtime verification of message
structures is now considered routine, the Beep Store shows that there is much
more to interface contracts than checking XML message structures: WSDL run-
time verification only traps violations of Property 1. No standardized language
exists to express Properties 2-6; no framework helps building an application that
complies with them, or traps their violations at runtime. A developer needs to
peruse the service’s natural language documentation, and check each constraint
manually with a copious amount of tests.

To illustrate this fact, the Beep Store browser client can be turned into a
deliberately faulty application. Its user interface contains a “Fault Parameters”
pane, shown in Figure 3, that provides the complete list of constraints specified
by the store’s documentation. Normally, the client is robust and performs thor-
ough checks of all these constraints before sending any message to the server. For
example, once a shopping cart is created, it hides the “Create cart” button to
avoid users creating a second one (see P5). Similarly, it hides the Login button
once a user has successfully logged in (see P4). With the Fault pane, the user
can tick the checkbox for any of these constraints, causing the application to
bypass these measures and allow actions at inappropriate moments.

3.3 Particularities of Web Service Interface Contracts

Web service interface contracts bear many resemblances with temporal prop-
erties or contracts found in other domains. In object-oriented languages, some
classes, such as Java’s File or Iterator, also impose constraints on the sequence
of method calls; these class contracts can be checked at runtime using tools such
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Fig. 3. The Beep Store’s “Fault Parameters” pane allows the application to deliberately

ignore some elements of its interface contract, causing the server to reply with an error

message on purpose

as Java-MOP [8]. Similarly, research on trace validation applied to spacecraft test
sequences unveiled constraints that correlate both data values and ordering of
events [6]. This hints that existing solutions developed for other scenarios could
be ported to the web service realm. However, web services exhibits a combination
of characteristics that makes them unique.

Data-Aware Dependencies. Simplified versions of the contract properties
could be verified using classical Petri nets, finite state automata or propositional
linear temporal logic. However, many constraints can only be faithfully checked
by taking into account dependencies between data parameters. Obviously, the
data elements cannot be enumerated statically: Property 6 would have to be
repeated for every item in the Beep Store’s catalogue, which would be required
to be known in advance.

Data-aware dependencies do not merely require the access to parameters in-
side a message; they also need such values to be kept, and compared at a later
time with values inside another message. Moreover, the time separating these
two messages is unknown in advance, and potentially unbounded; hence it does
not suffice to keep a fixed-size window of past messages.

Complex Message Structure. Not only do most messages contain an action
name and a set of data parameters, these parameters themselves are subject to a
potentially complex XML structure. In the Beep Store, one cannot simply refer
to “the” item ID in a shopping cart, as there can be multiple instances of the
ItemId element in a message. A property can require that all, or only one of
these item IDs fulfils a constraint, hence a form of quantification over message
contents is required.

This is probably the single most distinguishing point with respect to other
verification applications. Most verification solutions that take data dependencies
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into account work in a context where there is at most one instance of a parameter
in a message (removing the need for quantification).

4 Runtime Verification of Interface Contracts

The previous sections described how the architecture of web applications, cou-
pled with the state of current technologies, calls for a runtime verification so-
lution of interface contracts. This section describes the authors’ attempts at
developing and running a possible solution. It first shows how the properties
in Section 3 can be expressed in a formal language, called LTL-FO+. It then
presents BeepBeep, a Java-based runtime monitor for LTL-FO+. BeepBeep can
be integrated into the Beep Store described in Section 2, and enforce its interface
contract at runtime.

4.1 Formalizing Contracts with LTL-FO+

LTL-FO+ is an extension of Linear Temporal Logic (LTL) developed to address
the characteristics of web application interface contracts. Relating the expres-
siveness of this logic to other solutions has extensively been done in previous
papers [15, 19].

Let Q be a set of queries, M a set of messages, and V a set of atomic values.
A query function π is defined as π : Q×M → 2V . Intuitively, π(q, m) retrieves a
set of values from a message m, given some “filtering criterion” q. We typically
use as π the function that takes as query a path in an XML document (a slash-
separated list of element names) and which returns all the values at the end of
such a path in the current message. For example, in the following message m,
we have π(“message/item”, m) = {A, B}.

<Message>
<Item>A</Item>
<Item>B</Item>
<Client>10</Client>

</Message>

A message trace is a sequence m = m1m2 . . . such that mi ∈M for i ≥ 1; mi

denotes the suffix of mimi+1 . . . .

Definition 1 (Syntax). The language LTL-FO+ (Linear Temporal Logic with
Full First-order Quantification) is obtained by closing LTL under the following
construction rules:

1. If x and y are variables or constants, then x = y is a LTL-FO+ formula;
2. If ϕ and ψ are LTL-FO+ formulæ, then ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, G ϕ, F ϕ,

X ϕ, ϕ U ψ, ϕ V ψ are LTL-FO+ formulæ;
3. If ϕ is a LTL-FO+ formula, xi is a free variable in ϕ, q ∈ Q is a query

expression, then ∃qxi : ϕ and ∀qxi : ϕ are LTL-FO+ formulæ.
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Definition 2 (Semantics). We say a message trace m satisfies the LTL-FO+

formula ϕ, and write m |= ϕ if and only if it respects the following rules: if ϕ
is of the form ¬ψ, ψ ∨ ψ′, F ψ, X ψ and ψ U ψ′, the semantics is identical to
LTL’s. Let q ∈ Q be some query expression. The remaining cases are defined as:

m |= c1 = c2 ⇔ c1 is equal to c2

m |= ∃qxi : ϕ⇔ m |= ϕ[b/xi] for some b ∈ π(q, m1)

We define the semantics of the other connectives with the usual identities:
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), ϕ→ ψ ≡ ¬ϕ ∨ ψ, G ϕ ≡ ¬(F¬ϕ), ϕ V ψ ≡ ¬(¬ϕ U¬ψ),
∀qx : ϕ ≡ ¬(∃qx : ¬ϕ).

Equipped with this language, it is possible to revisit the interface contract
described earlier and formalize it with LTL-FO+ formulæ. Properties 1 and 2
are data constraints; they only involve the temporal operator G to specify that
the data constraint applies to all messages. If we define q1 = Message/Action,
q2 = Message/Page and q3 = Message/Results, then Properties 1 and 2 become
respectively equations 1 and 2 below:

G (∀q1a : a = ItemSearch→ (∀q2p : p ≥ 1 ∧ p ≤ 20)) (1)
G (∀q1a : a = ItemSearch→ (∃q3r : � ↔ ∃q2p : �)) (2)

The first property states that globally, if the message’s action is ItemSearch,
then for every Page value p inside that message, p is in the range [1, 20]. Similarly,
the second property states that any ItemSearch message is such that for every
Results element, a Page element must exist (π returns the empty set if no
element with the specified path can be found in a message). The symbol �
stands for “true”; ∃qx : � is true whenever the path q exists.

In a similar way, control-flow properties P3 and P4 become formulæ 3 and 4
below:

G (∀q1a : a = LoginResponse→ (XG (∀q1a
′ : a′ �= LoginResponse)) (3)

(∀q1a : a �= CartCreateW (∀q1a
′ : a′ �= LoginResponse) (4)

Finally, by defining q4 = Message/CartId, q5 = Message/SessionKey and
q6 = Message/Items/Item, data-aware properties 5 and 6 can be formalized
into the following:

G (∀q4c : ∀q5k : G (∀q4c
′ : ∀q5k

′ : (k = k′ → c = c′))) (5)

G (∀q1a : a = CartAdd→
(∀q6 i : X G (∀q1a

′ : a′ = CartAdd→ ∀q6 i
′ : i �= i′))) (6)

Equation 5 states that in every message, the presence of a CartId c and
SessionKey k entails that, from that point on, any other occurrences of a CartId
c′ and SessionKey k′ are such that the same key imposes the same ID. This is
equivalent to P5. The “data-awareness” of this constraint can be observed in
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the fact that two variables that have been quantified across temporal operators
(such as c and c′) are compared at a later point in the expression.

A particularity of LTL-FO+ lies in its quantification mechanism: note in the
definition how the values over which quantification applies are only those found
in the current message, m1. For example, in equation 6, variables i and i′ both
quantify over catalogue item IDs. If quantification did not depend on the current
message, the previous formula would always be false, as any value c bound to i
would also be admissible for i′, making the assertion i �= i′ false at least once.
The previous formula rather states that at any time in the execution of the
application, for any item ID i appearing in a CartAdd message, then from now
on in any future CartAdd message, any item ID i′ is different from i. Hence,
it will be true exactly when no item appears more than once in any CartAdd
message, which is consistent with Property 6.

LTL-FO+ allows the Beep Store to publicize a formal version of its interface
contract. To this end, an auxiliary file, contract.txt, is hosted along with the
Beep Store’s other files on the server. It contains the list of all LTL-FO+ formulæ
forming that contract, including equations (1)-(6) described above. Figure 4
shows a snippet of the contract file containing a text rendition of Property 1.

% The page element must be an integer between 1 and 20

; G (([a /Message/Action] ((a) = ({ItemSearch}))) ->

([p /Message/Page] (((p) > ({1})) & ((p) < ({20})))))

Fig. 4. A sample contract specification. Each constraint is preceded by a caption.

4.2 The BeepBeep Runtime Monitor

Since LTL-FO+ draws heavily on classical LTL, a runtime verification proce-
dure can be obtained from an algorithm presented in [10], which creates the
Büchi automaton for a given LTL formula. This algorithm performs on the fly
and generates the automaton as the sequence of states unwinds. The LTL-FO+

monitoring procedure, detailed in [15], is an extension of this algorithm, adapted
for first-order quantification on message elements.

LTL-FO+ monitoring can then be implemented into a lightweight tool for web
applications. It suffices that incoming and outgoing messages be intercepted
as “events” and fed to the monitor. The algorithm updates its internal state
according to the processed event, and eventually blocks the actual transmission
or reception if a violation is discovered.

Since a web application is inherently distributed, the location of this monitor
leads to multiple architectural choices, shown in Figure 5. In client-side verifi-
cation, shown in Figure 5(a), contract compliance is checked in the user’s web
browser before any message is allowed to be transmitted over the network: an
outgoing message m is sent to a function δ monitoring a specification ϕ. Incom-
ing messages are filtered in the same way before reaching the application’s code.
Server-side verification 5(b) works on the opposite. A third solution is to use a
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third-party protocol coordinator (not shown) as suggested by [5]. The coordi-
nator ideally resides neither in the client’s browser nor in the web server, and
acts as a monitoring proxy for both ends of the communication. To illustrate
monitoring on the client side, we developed BeepBeep, a lightweight, Java-based
runtime monitor for Ajax web applications.4

mm

�
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�

Application Service

(a) Client-side verification

m m

�
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�

Application Service

(b) Server-side verification

Fig. 5. Design choices for runtime verification of web applications

In classical (e.g. Java) programs, intercepting events generally requires instru-
menting the code or resorting to mechanisms such as pointcuts [8]. In the present
case, network operations converge to a single input-output point, the standard
XMLHttpRequest object provided by the local browser. It becomes easy to in-
terpose an extra layer of processing over that object, without resorting to any
other form of instrumentation.

Including BeepBeep into an existing Ajax application is straightforward.
It suffices to host BeepBeep’s two files (beepbeep.jar, the Java applet, and
beepbeep.js, an auxiliary JavaScript file) in the same directory as the Ajax
application. BeepBeep is bootstrapped by adding a single line in the <head>
portion of the application’s HTML page.

When such a BeepBeep-enabled application is started, the procedure de-
scribed in Section 2.2 is followed. BeepBeep’s additional JavaScript include file
dynamically appends the snippet of HTML code instructing the browser to load
the Java applet implementing the LTL-FO+ monitoring algorithm, which ap-
pears as a small rectangle at the bottom of the application’s page. The speci-
fication passed to the applet is automatically retrieved from the contract.txt
file hosted on the server.

The JavaScript code also overloads the methods of the standard XMLHttp-
Request object. When the original application’s JavaScript invokes the send
method of XMLHttpRequest, it actually calls the method implemented by Beep-
Beep first. This way, incoming and outgoing messages, before being actually sent
(or returned), can be deviated to the applet for verification.

4.3 Wrapping Up

We can now return to the Beep Store application and perform runtime monitor-
ing of its interface contract on the client side. Assuming that the store provides
4 BeepBeep and its source code are available for download under a free software license:

http://beepbeep.sourceforge.net

http://beepbeep.sourceforge.net
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a contract file and hosts the two BeepBeep files, we can then modify its HTML
code to include the additional JavaScript file, as described above.

The monitor-enabled Beep Store application can be started as usual in a
standard browser. As previously, one can open the store’s Fault parameters pane,
and disable, for example, the internal enforcement of property 3 (“don’t login
twice”). This time, however, the rectangle at the bottom of the page tells us
that BeepBeep successfully fetched a contract and is awaiting for incoming or
outgoing XML messages.

The first login attempt can be executed as expected. BeepBeep’s display up-
dates, indicating that it indeed witnessed the corresponding messages, but let
them through as they did not violate any constraint. After successfully logging
in, as expected the faulty client fails to hide the Login link. Clicking on it a
second time summons the Login pane, where one can enter the same credentials
and press on the Login button. Like before, the client attempts to send a Login
XML message; however, this time, BeepBeep intercepts the message, correctly
discovers that it violates property 3, and skips the piece of code that would
normally send it. It also pops a window alerting the user, showing the caption
associated with the violated property in the contract file.

This scenario has also been experimented on a real-world web application
for the Amazon E-Commerce Service [16]. Our findings indicate that on a low-
end computer, monitoring LTL-FO+ contract properties produces an average
overhead of around 3% or 10 ms per message in absolute numbers. As a rule, the
state of the network accounts for wider variations than the additional processing
required by the monitor.

It shall be noted that BeepBeep is independent of any browser-server pair
of applications. Its Java applet is self-contained, and the JavaScript auxiliary
file can be included into any web page and load it at startup. It can correctly
intercept and process any request as long as it is XML-based. Similarly, the
contract to be monitored is hosted in a separate text file that is read each time
the applet is loaded —hence the contract can be changed without changing
the monitor. This way, BeepBeep is a runtime monitoring solution that can be
applied to other scenarios than the Beep Store: it suffices to write an appropriate
contract for the application under study.

5 Conclusion

This tutorial has highlighted the potential for the application of runtime veri-
fication techniques to the field of web services; yet several interesting questions
have been left out from this presentation. For example, since events in web ap-
plications are sequences of XML messages, it is possible to treat a sequence of
such events as one large XML “document” and leverage commercial XML query
processors to perform an equivalent validation of message traces [18]. However,
the monitoring of quantified formulæ presents a potential for unbounded re-
source consumption. The forward-only fragment of LTL is an ongoing attempt
at providing a bounded subset of the logic suitable for limited environments [17].
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Finally, if the goal of client-side monitoring is to relieve the server from the bur-
den of dealing with faulty clients, how can one be certain that a client indeed
monitors the contract? The concept of cooperative runtime monitoring [11] has
recently been put forward to resolve such an issue.

Finally, it could be very well possible that application developers refrain from
integrating more complex behaviours into their web applications precisely for
lack of tools to deal with them in a systematic way. Hence even a modest contri-
bution from runtime verification to the practitioner’s toolbox could enhance the
quality and ease of development of web applications. In this regard, we hope this
tutorial will encourage researchers in the monitoring and validation community
to consider web applications as a potential field of application to their work.
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Abstract. Quantitative properties of stochastic systems are usually

specified in logics that allow one to compare the measure of executions

satisfying certain temporal properties with thresholds. The model check-

ing problem for stochastic systems with respect to such logics is typically

solved by a numerical approach [31,8,35,22,21,5] that iteratively com-

putes (or approximates) the exact measure of paths satisfying relevant

subformulas; the algorithms themselves depend on the class of systems

being analyzed as well as the logic used for specifying the properties. An-

other approach to solve the model checking problem is to simulate the

system for finitely many executions, and use hypothesis testing to infer

whether the samples provide a statistical evidence for the satisfaction

or violation of the specification. In this tutorial, we survey the statis-

tical approach, and outline its main advantages in terms of efficiency,

uniformity, and simplicity.

1 Introduction and Context

Quantitative properties of stochastic systems are usually specified in logics that
allow one to compare the measure of executions satisfying certain temporal prop-
erties with thresholds. The model checking problem for stochastic systems with
respect to such logics is typically solved by a numerical approach that iteratively
computes (or approximates) the exact measure of paths satisfying relevant sub-
formulas. The algorithm for computing such measures depends on the class of
stochastic systems being considered as well as the logics used for specifying the
correctness properties. Model checking algorithms for a variety of contexts have
been discovered [2,13,8] and there are mature tools (see e.g. [25,7]) that have
been used to analyze a variety of systems in practice.

Despite the great strides made by numerical model checking algorithms, there
are many challenges. Numerical algorithms work only for special systems that
have certain structural properties. Further the algorithms require a lot of time
and space, and thus scaling to large systems is a challenge. Finally, the logics
for which model checking algorithms exist are extensions of classical temporal
logics, which are often not the most popular among engineers.

Another way to verify quantitative properties is to use a simulation-based
approach. The key idea is to deduce whether or not the system satisfies the
property by observing some of its executions with a monitoring procedure [1,19],
and use hypothesis testing to infer whether the samples provide a statistical

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 122–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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evidence for the satisfaction or violation of the specification [42]. Of course, in
contrast to a numerical approach, a simulation-based solution does not guarantee
a correct result. However, it is possible to bound the probability of making an
error. Simulation-based methods are known to be far less memory and time
intensive than numerical ones, and are sometimes the only option [41].

The crux of the statistical model checking approach is that since sample ex-
ecutions of a stochastic system are drawn according to the distribution defined
by the system, they can be used to get estimates of the probability measure on
executions. Starting from time-bounded Probabilistic Computational Tree Logic
properties [42], the technique has been extended to handle properties with un-
bounded until operators [33], as well as to black-box systems [32,37]. Tools based
on this idea have been built [34,39], and they have been used to analyze many
systems.

This approach enjoys many advantages. First, these algorithms only require
that the system be executable (or rather, sample executions be drawn according
to the measure space defined by the system). Thus, it can be applied to larger
class of systems than numerical model checking algorithms including black-box
systems and infinite state systems. Second the approach can be generalized to a
larger class of properties, including Fourier transform based logics. Finally, the
algorithm is easily parallelizable, which can help scale to large systems. However,
the statistical approach also has some disadvantages when compared with the
numerical approach. First, it only provides probabilistic guarantees about the
correctness of the algorithms answer. Next, the sample size grows very large
if the model checker’s answer is required to be highly accurate. Finally, the
statistical approach only works for purely probabilistic systems, i.e., those that
do not have any nondeterminism. Furthermore, since statistical tests are used to
determine the correctness of a system, the approach only works for systems that
“robustly” satisfy a given property, i.e., the actual measure of paths satisfying a
given subformula, is bounded away from the thresholds to which it is compared
in the specification.

In this tutorial, we will overview existing statistical model checking algorithms
and discuss their efficiency. We will also overview existing tools and case studies
and discuss future work.

2 Our Objective

We consider a stochastic system S and a property φ. An execution of S is a
possibly infinite sequence of states of S. Our objective is to solve the probabilistic
model checking problem, i.e., to decide whether S satisfies φ with a probability
greater or equal to a certain threshold θ. The latter is denoted S |= P≥θ(φ),
where P is called a probabilistic operator. This paper will overview solutions to
this problem. These solutions depend on the nature of S and φ. We consider
three cases.

1. We first assume that S is a white-box system, i.e., that one can generate
as much executions of the system as we want. We also assume that φ does
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not contain probabilistic operators. In Section 3, we recall basic statistical
algorithms that can be used to verify bounded properties (i.e., properties
that can be monitored on fixed-length execution) of white-box systems.

2. In Section 4, we discuss extensions to the full probabilistic computation tree
logic[8]. There, we consider the case where φ can also contain probabilistic
operators and the case where it has to be verified on infinite executions.

3. In Section 5, we briefly discuss the verification of black-box systems, i.e.
systems for which a part of the probability distribution is unknown.

In Section 6, we will present various experiments that show that (1) statistical
model checking algorithms can be more efficient than numerical ones, and (2)
statistical model checking algorithms can be applied to solve problems that are
beyond the scope of numerical methods. Finally, Section 7 discusses our vision
of the future of statistical model checking.

Remark 1. The objective of the tutorial is not to feed the reader with technical
details, but rather to introduce statistical model checking, and outline its main
advantages in terms of efficiency, uniformity, and simplicity.

Remark 2. There are other techniques that allow to estimate the probability for
S to satisfy φ. These approaches (that are based on Monte-Carlo techniques) will
not be covered in this paper. The interested reader is redirected to [17,20,26] for
more details.

Remark 3. Statistical Model Checking also applies to non stochastic systems [17].
This topic will not be covered in this tutorial.

3 Statistical Model Checking : The Beginning

In this section, we overview several statistical model checking techniques. We
assume that S is a white-box system and that φ is a bounded property. By
bounded properties, we mean properties that can be defined on finite executions
of the system. In general, the length of such executions has to be precomputed.

Let Bi be a discrete random variable with a Bernoulli distribution of param-
eter p. Such a variable can only take two values 0 and 1 with Pr[Bi = 1] = p
and Pr[Bi = 0] = 1− p. In our context, each variable Bi is associated with one
simulation of the system. The outcome for Bi, denoted bi, is 1 if the simulation
satisfies φ and 0 otherwise. To make sure that the above approach works, one
has to make sure that one can get the result of any experiment in a finite amount
of time. In general, this means that we are considering bounded properties, i.e.,
properties that can be decided on finite executions.

Remark 4. All the results presented in this section are well-known mathemati-
cal results coming from the area of statistics. As we shall see, these results are
sufficient to verify bounded properties of a large class of systems. As those prop-
erties are enough in many practical applications, one could wonder whether the
contribution of the computer scientist should not be at the practical level rather
than at the theoretical one.
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Before going further one should answer one last question: “What is the class of
models that can be considered?” In fact, statistical model checking can be applied
to any stochastic system and logic on which one can define a probability space
for the property under consideration. Hence, the approach provides a uniform
way for the verification of a wide range of temporal logic properties over vari-
ous stochastic models, including Markov Chains or Continuous Timed Markov
Chains [35,3,2]. In general, it is not necessary to make the hypothesis that the
system has the Markovian property1, except when working with nested formulas
(see Section 4). It is worth mentioning that the technique cannot be applied
to systems that combine both nondeterministic and stochastic aspects (such as
Markov Decision Processes). Indeed, the simulation-based approach could not
distinguish between the probability distributions that are sampled.

3.1 Qualitative Answer Using Statistical Model Checking

The main approaches [38,32] proposed to answer the qualitative question are
based on hypothesis testing. Let p = Pr(φ), to determine whether p ≥ θ, we
can test H : p ≥ θ against K : p < θ. A test-based solution does not guarantee
a correct result but it is possible to bound the probability of making an error.
The strength (α, β) of a test is determined by two parameters, α and β, such
that the probability of accepting K (respectively, H) when H (respectively, K)
holds, called a Type-I error (respectively, a Type-II error ) is less or equal to α
(respectively, β).

A test has ideal performance if the probability of the Type-I error (respectively,
Type-II error) is exactly α (respectively, β). However, these requirements make
it impossible to ensure a low probability for both types of errors simultaneously
(see [38] for details). A solution to this problem is to relax the test by working
with an indifference region (p1, p0) with p0≥p1 (p0−p1 is the size of the region).
In this context, we test the hypothesis H0 : p≥ p0 against H1 : p≤ p1 instead of
H against K. If the value of p is between p1 and p0 (the indifference region), then
we say that the probability is sufficiently close to θ so that we are indifferent
with respect to which of the two hypotheses K or H is accepted. The thresholds
p0 and p1 are generally defined in term of the single threshold θ, e.g., p1 = θ− δ
and p0 = θ + δ. We now need to provide a test procedure that satisfies the
requirements above. In the next two subsections, we recall two solutions proposed
by Younes in [38,43].

Single Sampling Plan. To test H0 against H1, we specify a constant c. If
∑n

i=1 bi

is larger than c, then H0 is accepted, else H1 is accepted. The difficult part in this
approach is to find values for the pair (n, c), called a single sampling plan (SSP
in short), such that the two error bounds α and β are respected. In practice, one
tries to work with the smallest value of n possible so as to minimize the number
of simulations performed. Clearly, this number has to be greater if α and β are
smaller but also if the size of the indifference region is smaller. This results in

1 The Markovian property ensures that the probability to go from a state s to a next

state only depends on s, not on the states that have been visited before reaching s.
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an optimization problem, which generally does not have a closed-form solution
except for a few special cases [38]. In his thesis [38], Younes proposes a binary
search based algorithm that, given p0, p1, α, β, computes an approximation of
the minimal value for c and n.

Remark 5. There are many variants of this algorithm. As an example, in [33],
Sen et al. proposes to accept H0 if (

∑ n
i=1 bi)

n ≥p. Here, the difficulty is to find a
value for n such that the error bounds are valid.

Sequential probability ratio test. The sample size for a single sampling plan is
fixed in advance and independent of the observations that are made. However,
taking those observations into account can increase the performance of the test.
As an example, if we use a single plan (n, c) and the m > c first simulations
satisfy the property, then we could (depending on the error bounds) accept
H0 without observing the n −m other simulations. To overcome this problem,
one can use the sequential probability ratio test (SPRT in short) proposed by
Wald [36]. The approach is briefly described below.

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A,

and H1 if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values

of m until either H0 or H1 is satisfied; the algorithm terminates with probabil-
ity 1[36]. This has the advantage of minimizing the number of simulations. In
his thesis [38], Younes proposed a logarithmic based algorithm SPRT that given
p0, p1, α and β implements the sequential ratio testing procedure.

Discussion. Computing ideal values Aid and Bid for A and B in order to make
sure that we are working with a test of strength (α, β) is a laborious procedure
(see Section 3.4 of [36]). In his seminal paper [36], Wald showed that if one de-
fines Aid≥A = (1−β)

α and Bid ≤ B = β
(1−α) , then we obtain a new test whose

strength is (α′, β′), but such that α′ + β′ ≤ α + β, meaning that either α′≤α or
β′ ≤ β. In practice, we often find that both inequalities hold. This is illustrated
with the following example taken from [38].

Example 1. Let p0 = 0.5, p1 = 0.3, α = 0.2 and β = 0.1. If we use Aid≥A =
(1−β)

α and Bid ≤ B = β
(1−α) , then we are guaranteed that α′≤0.222 and β′≤0.125.

Through computer simulation (reproducing the same experiments 10000 of time),
we observe that α′≤0.175 and β′≤0.082. So the strength of the test is in reality
better than the theoretical assumption.
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3.2 Some Generalities Regarding Efficiency

The efficiency of the above algorithms is characterized by the number of sim-
ulations needed to obtain an answer as well as the time it costs to compute a
simulation. The latter often depends on the property under verification. Both
numbers are expected numbers as they change from executions to executions and
can only be estimated (see [38] for an explanation). However, some generalities
are known. For example, it is known that, except for some situations, SPRT is
always faster than SSP. When θ = 1 (resp. θ = 0) SPRT degenerates to SSP;
it is not a problem since SSP is known to be optimal for such values. Observe
that the time complexity of statistical model checking is independent from the
state-space and that the space complexity is of the order of the state space.
Also, the expected number of simulations for SSP is logarithmic with respect to
α and β and linear with respect to the indifference region; for SPRT, the number
depends on the probability distribution p.

Remark 6. A very relevant discussion on complexity of statistical model checking
can be found in Section 5.4 of [38].

4 Statistical Model Checking: Next Step

In the previous section, we have proposed statistical model checking algorithms
for verifying bounded properties of white-box systems. In this section, we go one
step further and consider three nontrivial extensions that are:

1. The nested case, i.e., the case where φ can also contain probabilistic opera-
tors. As an example, we can write the following property P≥θ1(q ⇒ P≥θ2(φ2))

2. The unbounded case, i.e., the case where φ cannot be decide on a finite
execution. Here we will restrict ourselves to the until property. Given two
formulas φ1 and φ2, the until operator ensures that φ1 is true until φ2 has
been seen.

3. Boolean combinations of formulae, i.e., formulae of the form: P≥θ1(φ1) ∧
P≥θ2(φ2).

We will only survey existing results and give pointers to the relevant papers.

4.1 The Unbounded Case: Until

We are now concerned with the verification of the until property. This property
requires that a property φ1 remains valid until a property φ2 has been seen.
The problem is that we do not know a priori the moment when φ2 will be
satisfied. Hence, one has to reason on infinite execution. There are two works
on this topics, one by Sen et al.[33] and one more recent work by Pekergin et
al. [30]. We will not give details on these works, but the reader should know
that Sen works by extending the model with extra probabilities, which makes
the solution extremely slow. Pekergin uses a new technique that is based on
perfect simulation. According to [30], this technique is not only faster than Sen’s
one, but also more general as it allows to study the steady-state operator for
continuous timed Markov Chains.
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Remark 7. Contrary to the numerical results [35,5] the above results are not
sufficient to verify properties of the form P≥θ(φ), where φ is a property expressed
in Linear Temporal Logic [29]. Incomplete results regarding the verification of
these properties with simulation-based techniques can be found in [20,17].

4.2 Nested Probability Operators

We consider the problem of checking whether S satisfies φ with a probability
greater or equal to θ. However, contrary to what we have been doing so far, we
will now assume that φ cannot be decided on a single execution, i.e., we will
assume that φ is of the form P≥θ1φ1. So, where is the difficulty? The difficulty
is that φ cannot be model checked on a single execution, but rather depends on
another test. Hence, we have to provide a way to nest tests. In his thesis, Younes
proposed the following theorem.

Theorem 1. Let ψ = P≥θ(φ) be a property and assume that φ can be verified
with Type-I error α′ and Type-II error β′, then ψ can be verified with Type-I
error α and Type-II error β, assuming that the indifference region is of size at
least ((θ + δ)(1 − α′), (1 − (1− (θ − δ)))(1 − β′).

Hence one has to find a compromise between the size of the indifference region of
the inner test and the outer one. There are two interesting facts to know about
nested operators:

1. Even for bounded properties, the above result (and in fact, any result in
the literature [33,38,37,39]) only works for systems that have the Markovian
property.

2. In practice, the complexity (in term of number of sampling) becomes expo-
nential in the number of tests.

Remark 8. An interesting research direction would be to study the link with
probabilistic testing [27].

4.3 Boolean Combinations

We have to consider two operations, namely conjunction and negation (as it is
known that any Boolean combination reduces to combinations of these two op-
erators). We recall some results provided by Younes. We start with conjunction.

Theorem 2. Let ψ be the conjunction of n properties φ1, . . . , φ2. Assume that
each φi can be decided with Type-I error αi and Type-II error βI . Then φ can be
decided with Type-I error mini(αi) and Type-II error maxi(βi).

The idea behind the proof of the theorem is that

1. If we claim that the conjunction is not satisfied, this means that we have
deduced that one of the operands is not.
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2. If we claim that the conjunction is satisfied, this means that we have con-
cluded that all the operands are satisfied. As we may have made mistakes in
each individual verification, we get maxi(βi).

For negation, the result is provided by the following theorem.

Theorem 3. To verify a formula ¬ψ with Type-I error α and Type-II error β,
it is sufficient to verify ψ with Type-I error β and Type-II error α.

5 Black-box Systems: A Note

Black-box Systems is an interesting class of stochastic systems whose treatment
is beyond the scope of numerical techniques. Roughly speaking, a black-box
systems is simply a system whose probability distribution (i.e., set of behaviors)
is not totally known and cannot be observed. Hence, one can view a black-box
system as a finite set of executions pre-computed and for which no information
is available.

In the context of such systems, Type errors and indifference region cannot
play a role. Indeed, those parameters influence the number of simulations that
can be computed, but here the simulations are given and you cannot compute
more!

A solution to this problem is to conduct a SSP test assuming that the pa-
rameter n is fixed to the number of simulations that are given in advance. The
difficulty is to chose the constant c in such a way that it becomes roughly equal
to accept H0 or H1 if θ = p. In his thesis [38] and in [40], Younes proposed a
solution to the problem. He also shown that a previous solution proposed by Sen
[32] is not correct.

There are techniques to verify nested formulas over black-box systems. How-
ever, a technique for the verification of unbounded properties is still needed.

6 Tools and Experiments

Any statistical model checking toolset is build by combining 1) a monitoring
procedure to decide whether a finite execution satisfies the property under con-
sideration, 2) a statistical model checking algorithm, and 3) a tool that allows
to describe a system and generate sets of executions.

The two firsts tools that implemented statistical model checking algorithms
are Ymer[39] and Vesta[34]. Vesta implements a variation of the single sampling
plan algorithm. The choice of implementing the SSP algorithm is motivated by
the fact that it is easier to parallelize as the number of simulations to perform
is known in advance. However, in his thesis, Younes showed that sequential
algorithms are also easily parallelizable. Ymer is limited to bounded properties
while Vesta also incorporate the unbounded until. In [22], the authors conducted
several experiments that tend to show that (1) Ymer is faster than Vesta and
(2) Vesta makes more false positive (selecting the bad hypothesis) than Ymer.
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Regarding the unbounded case, it seems that Vesta is not very efficient and can
make a lot of false positive. Both Vesta and Ymer have been applied to huge case
studies. A comparison of Ymer and Vesta to established tools such as PRISM [25]
can be found in [22].

Both Ymer and Vesta as well as their successors [23,24] focus on the verifi-
cation of classical stochastic extension of temporal logics. In a series of recent
work, we have shown that statistical model checking can also be used in other
contexts that are clearly beyond the scope of existing tools. This topic is the
subject of the next subsections.

6.1 Verifying Circuits

In [9,10], we applied SPRT to verifying properties of mixed-signal circuits, i.e.,
circuits for which there is an interaction between analog (continuous) and digital
(discrete) values. Our first contribution was to propose a version of stochastic
discrete-time event systems that fits into the framework introduced by Younes
with the additional advantage that it explicitly handles analog and digital sig-
nals. We also introduced probabilistic signal linear temporal logic, a logic adapted
to the specification of properties for mixed-signal circuits in the temporal domain
and in the frequency domain. Our second contribution was the analysis of a Δ−Σ
modulator. A Δ−Σ modulator is an efficient Analog-to-Digital Converter circuit,
i.e., a device that converts analog signals into digital signals. A common critical
issue in this domain is the analysis of the stability of the internal state variables of
the circuit. The concern is that the values that are stored by these variables can
grow out of control until reaching a maximum value, at which point we say that
the circuit saturates. Saturation is commonly assumed to compromise the qual-
ity of the analog-to-digital conversion. In [14] and [18] reachability techniques
developed in the area of hybrid systems are used to analyze the stability of a
third-order modulator. Their idea is to use such techniques to guarantee that for
every input signal in a given range, the states of the system remain stable. While
this reachability-based approach is sound, it has important drawbacks such as
(1) signals with long duration cannot be practically analyzed, and (2) properties
that are commonly specified in the frequency domain rather than in the time
domain cannot be checked. Our results show that a simulation-based approach
makes it possible to handle properties and signals that are beyond the scope of
the reachability-based approach. As an example, in our experiments, we analyze
discrete-time signals with 24000 sampling points in seconds, while the approach
in [14] takes hours to analyze signals with up to 31 sampling points. We are also
able to provide insight into a question left open in [14] by observing that satu-
ration does not always imply an improper signal conversion. This can be done
by comparing the Fourier transform of each of the input analog signals with
the Fourier transform of its corresponding digital signal. Such a property can
easily be expressed in our logic and Model Checked with our simulation-based
approach. We are unaware of other formal verification techniques that can solve
this problem. Indeed, numerical techniques cannot reason on an execution at a
time.
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6.2 Systems Biology

In [11], we considered the verification of complex biological systems. we intro-
duced a new tool, called BioLab, for formally reasoning about the behavior of
stochastic dynamic models by integrating SPRT into the BioNetGen [15,16]
framework for rule-based modeling. We then used BioLab to verify the stochas-
tic bistability of T-cell signalling. Our results have recently been extended to
take prior knowledge on the model into account [6].

Remark 9. Statistical model checking techniques recently received a lot of atten-
tion in the area of systems biology. As an example, Carnegie Mellon University was
awarded a $10.000.000 grant for applying such techniques in the medical area [12].

6.3 Heterogeneous Applications

In [4], we have proposed to apply statistical model checking techniques to the
verification of heterogeneous applications. Systems integrating multiple heteroge-
neous distributed applications communicating over a shared network are typical
in various sensitive domains such as aeronautic or automotive embedded sys-
tems. Verifying the correctness of a particular application inside such a system
is known to be a challenging task, which is often beyond the scope of existing
exhaustive validation techniques.

In our paper, we proposed to exploit the structure of the system in order to
increase the efficiency of the verification process. The idea is conceptually simple:
instead of performing an analysis of the entire system, we proposed to analyze
each application separately, but under some particular context/execution envi-
ronment. This context is a stochastic abstraction that represents the interactions
with other applications running within the system and sharing the computation
and communication resources. The idea is to build such a context automatically
by simulating the system and learning the probability distributions of key char-
acteristics impacting the functionality of the given application. The abstraction
can easily be analyzed with statistical model checking techniques.

The overall contribution of our study is an application of the above method
on an industrial case study, the heterogeneous communication system (HCS for
short) deployed for cabin communication in a civil airplane. HCS is an heteroge-
neous system providing entertainment services (ex : audio/video on passengers
demand) as well as administrative services (ex: cabin illumination, control, audio
announcements), which are implemented as distributed applications running in
parallel, across various devices within the plane and communicating through a
common Ethernet-based network. The HCS system has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and
synchronization constraints. An important requirement is the accuracy of clock
synchronization between different devices. This latter property states that the
difference between the clocks of any two devices should be bounded by a small
constant, which is provided by the user and depends on his needs (for example,
to guarantee the fiability of another service). Hence, one must be capable to
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compute the smallest bound for which synchronization occurs and compare it
with the bound expected by the user. Unfortunately, due to the large number
of heterogeneous components that constitute the system, deriving such a bound
manually from the textual specification is an unfeasible task. In this paper, we
propose a formal approach that consists in building a formal model of the HCS,
then we apply simulation-based algorithms to this model in order to deduce the
smallest value of the bound for which synchronization occurs. We start with a
fixed value of the bound and check whether synchronization occurs. If yes, then
we make sure that this is the best one. If no, we restart the experiment with a
new value.

We have been able to derive precise bounds that guarantee proper synchro-
nization for all the devices of the system. We also computed the probability to
satisfy the property for smaller values of the bound, i.e., bounds that do not
satisfy the synchronization property with probability 1. Being able to provide
such an information is of clear importance, especially when the best bound is
too high with respect to user’s requirements. We have observed that the values
we obtained strongly depend on the position of the device in the network. We
also estimated the average and worst proportion of failures per simulation for
bounds that are smaller than the one that guarantees synchronization. Checking
this latter property has been made easy because statistical model checking al-
lows us to reason on one execution at a time. Finally, we have also considered the
influence of clock drift on the synchronisation results. The experiments highlight
the generality of our technique, which could be applied to other versions of the
HCS as well as to other heterogeneous applications.

7 The Future of Statistical Model Checking

There are various directions for future research in the statistical model checking
area. Here is a list of possible topics.

– Using efficient techniques for performing simulation is crucial to guarantee
good performances for any statistical model checking algorithm. Unfortu-
nately, the existing algorithms do not exploit efficient simulation techniques.
It would thus be worth combining statistical model checking algorithms with
such techniques (example : rare-event simulations, , ...). This is a huge im-
plementation effort which also requires to define a methodology to select the
good simulation technique to be applied.

– Statistical model checking algorithms have not yet been applied to the veri-
fication of multi-core systems, this area should be investigated.

– Statistical model checking algorithms do not apply to systems that com-
bine both stochastic and non deterministic aspects. Extending the results to
such systems is however crucial to perform verification of security protocols,
networking protocols, and performance protocols.

– Statistical model checking algorithms reduce to decide between two hypoth-
esis. In many areas, especially systems biology, we may have a prior knowl-
edge on the probability to satisfy each hypothesis. Incorporating this prior
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knowledge in the verification process may considerably reduce the number
of simulations needed for the algorithm to terminate.

– Statistical model checking algorithms suppose that the property φ can be
checked on finite executions of the system. There are however many situ-
ations where φ cannot be checked in a finite amount of time. This is for
example the case when φ is a long-run average or a steady state property.
In systems biology, we are clearly interested in the study of such properties.

– Verifying applications running within a huge heterogeneous system without
is a challenging problem. In a recent work [4], the authors have proposed
a new simulation-based technique for solving such problem. The technique
starts by performing simulations of the system in order to learn the context
in where the application is used. Then, it creates a stochastic abstraction
for the application, which takes the context information into account. Up
to know, there is no automatic way to learn the context and derive the
stochastic context. However, what we have observed so far is that it often
takes the form of properties that cannot be expressed in classical temporal
logic. Hence, statistical model checking may be our last resort to analyze the
resulting abstraction.

– Statistical model checking may help testers. In [28], Cavalli et al. proposed
to use statistical techniques for conformance testing of timed stochastic sys-
tems. The technique should be automated. This could lead to new algorithms
for verifying the so-called black-box systems.
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9. Clarke, E.M., Donzé, A., Legay, A.: Statistical model checking of mixed-analog

circuits with an application to a third order delta-sigma modulator. In: HVC 2008.

LNCS, vol. 5394, pp. 149–163. Springer, Heidelberg (2008)
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Abstract. The RV system is the first system to merge the benefits of

Runtime Monitoring with Predictive Analysis. The Runtime Monitoring

portion of RV is based on the successful Monitoring Oriented Program-

ming system developed at the University of Illinois [6,7,9,21,5], while

the Predictive Analysis capability is a vastly expanded version of the

jPredictor System also developed at the University of Illinois [11,14].

With the RV system, runtime monitoring is supported and encour-

aged as a fundamental principle for building reliable software: monitors

are automatically synthesized from specified properties and integrated

into the original system to check its dynamic behaviors. When certain

conditions of interest occur, such as a violation of a specification, user-

defined actions will be triggered, which can be any code from information

logging to runtime recovery. The RV system supports the monitoring of

parametric properties that may specify a relationship between objects.

Properties may be defined using one of several logical formalisms, such

as: extended regular languages, context-free patterns, deterministic finite

state machines, linear temporal logic, and past time linear temporal logic.

The system is designed in such a way that adding new logical formalisms

is a relatively simple task

The predictive capabilities allow any of these monitoring specifications

to be extended to checking not just the actual runtime traces of program

execution, but any trace that may be inferred from a constructed casual

model. The Predictive Analysis also features built in algorithms for race

detection and atomicity violations, that are both highly useful in concur-

rent system design and difficult to specify in terms of formal specification

languages.

1 Introduction

This paper presents an introduction to the RV System, the first system to com-
bine runtime monitoring and predictive analysis. Not only do these two compo-
nents work in isolation to ease the testing and debugging of software, but they
also work in conjunction: monitoring properties can be predicted against using
the predictive analysis capabilities of the system.
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Runtime monitoring allows one to check safety properties against the execu-
tion of a program during runtime. In the RV System, properties are parametric,
which means they take into account the given objects that are related to a given
property. For example, one may wish to state a property that an Enumeration
from a given Vector in Java is not used after the Vector is updated. In this case
the parameters will be a Vector and an Enumeration, and the property will be
checked for every pair of Vector and Enumeration objects.

Predictive analysis allows one to check safety properties against all the viable
inferred executions of a program that can be generated by creating a causal
model from one run of the program. This is especially useful for checking safety
properties that rely on the behavior of concurrent code, such as finding races
and atomicity violations.

The remainder of this paper is as follows: Section 2 discusses a high level
overview of the RV system. Section 3 provides an explanation of runtime mon-
itoring, including an explanation of parametric slicing and several examples of
how to use the monitoring portion of the RV system (referred to as RV-Monitor).
Additionally, some performance results are given. Section 4 discusses the con-
cepts necessary to understanding the predictive analysis of the RV system (RV-
Predict), as well as explaining, at a high level, several of the algorithms used in
prediction. As with monitoring, several examples and results are given.

2 System Overview

Fig. 1 shows the dependency diagram for the RV System. The RV System consists
of two components, RV-Monitor and RV-Predict, which are further divided into
sub-components. The arrows represent the direction of data flow. In the case of
components that generate code, the generated code is treated as synonymous
with the component that generates it in order to simplify the diagram.

1. RV-Monitor
(a) Runtime Monitoring performs actual monitoring on a program under

test. This is achieved by generating an AspectJ aspect that is weaved

Fig. 1. System Overview
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into the program under test, which is then run to collect monitoring
results. This is discussed in detail in Section 3.

(b) Prediction Logging Aspect generates an aspect that is weaved into
the program under test that causes the program to generate logging
info for use in prediction of arbitrary properties. This is orthogonal to
the Instrumentation component of RV-Predict described below, and
used in conjunction with it. The logging aspect is automatically inferred
from a specification designed for the Runtime Monitoring component.

(c) Prediction Monitor Library generates a library that communicates
with the Generic Property Detection component of RV-Predict.
The Generic Property Detection component sends events to the
Prediction Monitor Library which reports monitoring results back to
the Generic Property Detection component. The library is generated
from a specification designed for the Runtime Monitoring component.

(d) Parametric Slicing slices a trace based on parameter instances. This
component is used both by the Runtime Monitoring and Prediction
Monitor Library in order to properly find violations and validations
of parametric properties. This is explained in more detail in Section 3.1.

2. RV-Predict
(a) Instrumentation adds logging code to a program under test. This will

cause important information about a run of the program under test, such
as the creation of threads or the entry and exit of methods, to be output
by the Logging component.

(b) Logging runs the program under test which has been instrumented
with logging code via the Instrumentation component. If generic prop-
erty detection is performed, the program under test will be weaved
with the Prediction Logging Aspect generated aspect before logging
commences.

(c) Causal Slicing performs casual slicing of the logged trace of the pro-
gram using the concept of sliced causality first introduced in [11]. Causal
slicing is able to reduce the amount of necessary information in a trace,
which allows the various prediction steps to find more viable lineariza-
tions of the trace. It is described in detail in Section 4.1.

(d) Race Detection performs race detection. This is achieved by determin-
ing when to accesses to the same variable, at least one of which is a
write, may be reordered while still preserving the causal dependences of
the program. It is described in more detail in Section 4.2.

(e) Atomicity Violation Detection finds violations in the intended atom-
icity of a program. More detail on this can be found in [14].

(f) Generic Property Detection detects violations and validations of
given generic specifications by discovering possible linearizations that
are causally possible and feeding the events of these linearizations to a
library generated by the Prediction Monitor Library. These specifi-
cations are written using the same syntax as those used by the Runtime
Monitoring component. It is described in more detail in Section 4.2.
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UnsafeMapIterator(Map m, Collection c, Iterator i){
event create coll after(Map m) returning(Collection c)} :

(call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create iter after(Collection c) returning(Iterator i) :

call(* Collection+.iterator()) && target(c) {}
event use iter before(Iterator i) : call(* Iterator+.next()) && target(i) {}
event update map after(Map m) : call(* Map.remove*(..)) || call(* Map.put*(..))

|| call(* Map.putAll*(..)) || call(* Map.clear())) && target(m) {}
fsm: start [ create coll -> s1 ]

s1 [ update map -> s1, create iter -> s2 ]
s2 [ use iter -> s2, update map -> s3 ]
s3 [ update map -> s3, uset iter -> end ]
end []

@end { System.out.println("fsm: Accessed invalid Iterator!"); RESET; }
ere: create coll update map* create iter use iter* update map+ use iter
@match { System.out.println("ere: Accessed Invalid Iterator!"); RESET; }

cfg: S -> create coll Updates create iter Nexts update map Updates use iter,
Nexts -> Nexts use iter | epsilon
Updates -> Updates update map | epsilon

@match { System.out.println("cfg: Accessed Invalid Iterator!"); RESET; }
ftltl: <>(create coll and <> (create iter and <> (update map and <> use iter)))
@validation { System.out.println("ftltl: Accessed Invalid Iterator!"); RESET; }

ptltl: use iter ->
((<*> (create iter and (<*> create coll))) -> ((not update map) S create iter))

@violation { System.out.println("prltl: Accessed Invalid Iterator!"); RESET; }
}

start s1 s2 s3 end
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Fig. 2. FSM, ERE, CFG, FTLTL, and PTLTL UnsafeMapIterator. Inset: graphical

depiction of the property.

3 Runtime Monitoring

Monitoring executions of a system against expected properties plays an impor-
tant role not only in different stages of software development, e.g., testing and
debugging, but also in the deployed system as a mechanism to increase system
reliability. This is achieved by allowing the monitors to perform recovery ac-
tions in the case that a specification is matched, or fails to match. Numerous
approaches, such as [18,15,8,3,1,2,20,17,10], have been proposed to build effec-
tive and efficient monitoring solutions for different applications. More recently,
monitoring of parametric specifications, i.e., specifications with free variables,
has received increasing interest due to its effectiveness at capturing system be-
haviors, such as the one presented in Fig. 2, which encapsulates the proper use
of Map Iterators.

It is highly non-trivial to monitor such parametric specifications efficiently.
It is possible to see a tremendous number of parameter instances during the
execution of a monitored program. For example, it is not uncommon to see
hundreds of thousands of iterators in a program, which will generate hundreds
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of thousands of parameter instances in the UnsafeMapIterator specification in
Fig. 2.

Several approaches have been introduced to support the monitoring of para-
metric specifications, including Eagle [3], Tracematches [1,2], PQL [20], and
PTQL [17]. However, they are all limited in terms of supported specification for-
malisms. Other techniques, e.g., Eagle, Tracematches, PQL and PTQL, follow a
formalism-dependent approach, that is, they have their parametric specification
formalisms hardwired, e.g., regular patterns (like Tracematches), context-free
patterns (like PQL) with parameters, etc., and then develop algorithms to gen-
erate monitoring code for the particular formalisms. Although this approach
provides a feasible solution to monitoring parametric specifications, we argue
that it not only has limited expressiveness, but also causes unnecessary com-
plexity in developing optimal monitor generation algorithms, often leading to
inefficient monitoring. In fact, the experiments summarized in Section 3.3 shows
that RV-Monitor generates more efficient monitoring code than other existing
tools.

Fig. 2 shows a RV-Monitor specification of the UnsafeMapIterator property.
The idea of UnsafeMapIterator is to catch an intricate safety property of Java.
There are several methods to create Collection (essentially sets) from Java Maps.
One may then create Java Iterators to traverse these Collections. However, if
the Map is updated, the Iterators are invalidated.

The specification uses five different formalisms: finite state machines (FSM),
extended regular expressions (ERE), context-free grammars (CFG), future-time
linear temporal logic (FTLTL), and past-time linear temporal logic (PTLTL).
Because each of the properties in Fig. 2 is the same, five messages will be re-
ported whenever an Iterator is incorrectly used after an update to the underlying
Map. We show all five of them to emphasize the formalism-independence of our
approach. Under normal circumstances a user would chose just one formalism.

On the first line, we name the specified property and give the parameters used
in the specification. Then we define the involved events using the AspectJ syntax.
For example, create coll is defined as the return value of functions values and
keyset of Map. We adopt AspectJ syntax to define events in RV-Monitor because
it is an expressive language for defining observation points in a Java program. As
mentioned, every event may instantiate some parameters at runtime. This can
be seen in Fig. 2: create coll will instantiate parameters m and c using the target
and the return value of the method call. When one defines a pattern or formula
there are implicit events, which must begin traces; we call them monitor creation
events. For example, in a pattern language like ERE, the monitor creation events
are the first events that appear in the pattern. We assume a semantics where
events that occur before monitor creation events are ignored.

3.1 Parametric Slicing

RV-Monitor automatically synthesizes AspectJ instrumentation code from the
specification, which is weaved into the program we wish to monitor by any
standard AspectJ compiler. In this way, executions of the monitored program
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# Event # Event

1 create coll〈m1, c1〉 7 update map〈m1〉
2 create coll〈m1, c2〉 8 use iter〈i2〉
3 create iter〈c1, i1〉 9 create coll〈m2, c3〉
4 create iter〈c1, i2〉 10 create iter〈c3, i4〉
5 use iter〈i1〉 11 use iter〈i4〉
6 create iter〈c2, i3〉

Fig. 3. Possible execution trace over the events specified in UnsafeMapIterator

will produce traces made up of events defined in the specification, as those in Fig.
2. Consider the example eleven event trace in Fig. 3 over the events defined in
Fig. 2. The # column gives the numbering of the events for easy reference. Every
event in the trace starts with the name of the event, e.g., create coll, followed by
the parameter binding information, e.g., 〈m1, c1〉 that binds parameters m and
c with a map object m1 and a collection c1, respectively. Such a trace is called
a parametric trace since it contains events with parameters.

Our approach to monitoring parametric traces against parametric properties
is based on the observation that each parametric trace actually contains multiple
non-parametric trace slices, each for a particular parameter binding instance. In-
tuitively, a slice of a parametric trace for a particular parameter binding consists
of names of all the events that have identical or less informative parameter bind-
ings. Informally, a parameter binding b1 is identical or less informative than a
parameter binding b2 if and only if the parameters for which they have bindings
agree, and b2 binds either an equal number of parameters or more parameters:
parameter 〈m1, c2〉 is less informative than 〈m1, c2, i3〉 because the parameters
they both bind, m and c, agree on their values, m1 and c2, respectively, and
〈m1, c2, i3〉 binds one more parameter. From here on we will simply say less
informative to mean identical or less informative. Fig. 4 shows the trace slices
and their corresponding parameter bindings contained in the trace in Fig. 3.
The Status column denotes the monitor output category that the slice falls into
(for ERE). In this case everything but the slice for 〈m1, c1, i2〉, which matches
the property, is in the “?” (undecided) category. For example, the trace for the
binding 〈m1, c1〉 contains create coll update map (the first and seventh events
in the trace) and the trace for the binding 〈m1, c1, i2〉 is create coll create iter
update map use iter (the first, fourth, seventh, and eighth events in the trace).

Based on this observation, our approach creates a set of monitor instances
during the monitoring process, each handling a trace slice for a parameter bind-
ing. Fig. 5 shows the set of monitor instances created for the trace in Fig. 3, each
monitor labeled by the corresponding parameter binding. This way, the monitor
does not need to handle the parameter information and can employ any exist-
ing technique for ordinary, non-parametric traces, including state machines and
push-down automata, providing a formalism-independent way to check paramet-
ric properties. When an event comes, our algorithm will dispatch it to related
monitors, which will update their states accordingly. For example, the seventh
event in Fig. 3, update map〈m1〉, will be dispatched to monitors for 〈m1, c1〉,
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Instance Slice Status

〈m1〉 update map ?

〈m1, c1〉 create coll update map ?

〈m1, c2〉 create coll update map ?

〈m2, c3〉 create coll ?

〈m1, c1, i1〉 create coll create iter use iter update map ?

〈m1, c1, i2〉 create coll create iter update map use iter match

〈m1, c2, i3〉 create coll create iter update map ?

〈m2, c3, i4〉 create coll create iter use iter ?

Fig. 4. Slices for the trace in Fig. 3

〈m1, c1〉

〈m1, c1, i1〉

〈m2, c3〉

〈m1, c1, i2〉

〈m1, c2〉

〈m1, c2, i3〉〈m2, c3, i4〉

Fig. 5. A parametric monitor with corresponding parameter instance monitors

〈m1, c2〉, 〈m1, c1, i1〉, 〈m1, c1, i2〉, and 〈m1, c2, i3〉. New monitor instances will be
created if the event contains new parameter instances. For example, when the
third event in Fig. 3, create iter〈c1, i1〉, is received, a new monitor will be created
for 〈m1, c1, i1〉 by combining 〈m1, c1〉 in the first event with 〈c1, i1〉.

An algorithm to build parameter instances from observed events, like the
one introduced in [12], may create many useless monitor instances leading to
prohibitive runtime overheads. For example, Fig. 4 does not need to contain the
binding 〈m1, c3, i4〉 even though it can be created by combining the parameter
instances of update map〈m1〉 (the seventh event) and create iter〈c3, i4〉 (the tenth
event). It is safe to ignore this binding here because m1 is not the underlying
map for c3, i4. It is critical to minimize the number of monitor instances created
during monitoring. The advantage is twofold: (1) that it reduces the needed
memory space, and (2), more importantly, monitoring efficiency is improved since
fewer monitors are triggered for each received event. RV-Monitor uses several
algorithms in order to prevent the creation of instances that are known to be
unneeded, as well as to remove those that become unneeded during execution.
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3.2 Monitoring Example

Here we give a simple example of monitoring using RV-Monitor, consider the
following Java program:

bash-3.2$ cat SafeEnum_1.java
import java.util.*;
public class SafeEnum_1 {

public static void main(String[] args){
Vector<Integer> v = new Vector<Integer>();
v.add(1); v.add(2); v.add(4); v.add(8);
Enumeration e = v.elements();
int sum = 0;
if(e.hasMoreElements()){

sum += (Integer)e.nextElement();
v.add(11);

}
while(e.hasMoreElements()){

sum += (Integer)e.nextElement();
}
v.clear();
System.out.println("sum: " + sum);

}
}

This program violates a basic multi-object protocol, namely that a vector
should not be modified during enumeration. For performance reasons, the JVM
does not perform this runtime check, so one can end up with a subtle, non-
deterministic and hard to check error in one’s program. Suppose now that one
wants to monitor the program above using rv-monitor. All one needs to do is to
create a subdirectory called mop and to place in this directory all the property
specifications against which one wants to monitor the program. In our case,

bash-3.2$ cat mop/SafeEnum.mop
package mop;
import java.io.*;
import java.util.*;

SafeEnum(Vector v, Enumeration e) {
event create after(Vector v) returning(Enumeration e) :

call(Enumeration Vector+.elements())
&& target(v) {}

event updatesource after(Vector v) :
(call(* Vector+.remove*(..))

|| call(* Vector+.add*(..))
|| call(* Vector+.clear(..))
|| call(* Vector+.insertElementAt(..))
|| call(* Vector+.set*(..))
|| call(* Vector+.retainAll(..)))
&& target(v){}

event next before(Enumeration e) :
call(* Enumeration+.nextElement())

&& target(e){}

ere : create next* updatesource updatesource* next
@match {

System.out.println("improper enumeration usage at " + __LOC);
__RESET;

}
}

Now one can call the rv-monitor program, which does a series of operations
under the hood (compiles the program, compiles the specification, weaves the
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generated monitor with the program binary, then runs the resulting monitored
program) and only shows the user the relevant information:

bash-3.2$ rv-monitor SafeEnum_1
-Processing ./mop/SafeEnum.mop
SafeEnumMonitorAspect.aj is generated

SafeEnum_1.java
Executing your program:
improper enumeration usage at SafeEnum_1.java:23
sum: 26
Done

The message above makes it clear to the user that the program violates the
specification.

3.3 Monitoring Results

Our previous work on monitoring, in particular [21,5] shows that, in general the
overhead of monitoring is around 10%. However, some exceptionally intensive
properties, such as iterator based properties in the bloat and pmd benchmarks
from DaCapo [4] showed exceptionally large overheads. Recent advances have
lowered these overheads considerably, as can be seen in Fig. 6 where JavaMOP
is our earlier system and RV-Monitor is our current system.

UnsafeMapIterator

JavaMOP RV-Monitor

bloat 935% 194%

pmd 196% 74%

Fig. 6. JavaMOP Vs. RV-Monitor

4 Predictive Analysis

Concurrent systems in general and multithreaded systems in particular may
exhibit different behaviors when executed at different times. This inherent non-
determinism makes multithreaded programs difficult to analyze, test and debug.
Predictive analysis is able to detect, correctly, concurrency errors from observing
execution traces of multithreaded programs. By “correct” or “sound” prediction
of errors we mean that there are no false alarms. The program is automatically
instrumented to emit runtime events for use in the Causal Slicing component,
and the various detection components on the right side of Fig. 1. The particular
execution that is observed need not hit the error; yet, errors in other executions
can be correctly predicted together with counter-examples leading to them.

There are several other approaches also aiming at detecting potential concur-
rency errors by examining particular execution traces. Some of these approaches
aim at verifying general purpose properties [25,26], including temporal ones, and
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are inspired from debugging distributed systems based on Lamport’s happens-
before causality [19]. Other approaches work with particular properties, such as
data-races and/or atomicity. [24] introduces a first lock-set based algorithm to
detect data-races dynamically, followed by many variants aiming at improving
its accuracy. For example, an ownership model was used in [23] to achieve a
more precise race detection at the object level. [22] combines the lock-set and
the happen-before techniques. The lock-set technique has also been used to de-
tect atomicity violations at runtime, e.g., the reduction based algorithms in [16]
and [27]. [27] also proposes a block-based algorithm for dynamic checking of
atomicity built on a simplified happen-before relation, as well as a graph-based
algorithm to improve the efficiency and precision of runtime atomicity analysis.

Previous efforts tend to focus on either soundness or coverage: those based
on happens-before try to be sound, but have limited coverage over interleavings,
thus missing errors; lock-set based approaches have better coverage but suffer
from false alarms. RV-Predict aims at improving coverage without giving up
soundness or genericity of properties. It combines sliced causality [11], a happen-
before causality drastically but soundly sliced by removing irrelevant causalities
using semantic information about the program obtained with an apriori static
analysis, with lock-atomicity. Our predictive runtime analysis technique can be
understood as a hybrid of testing and model checking. Testing because one runs
the system and observes its runtime behavior in order to detect errors, and
model checking because the special causality with lock-atomicity extracted from
the running program can be regarded as an abstract model of the program,
which can further be investigated exhaustively by the observer in order to detect
potential errors.

4.1 Causal Slicing

We briefly describe our technique for extracting from an execution trace of a
multithreaded system the sliced causality relation corresponding to some prop-
erty of interest ϕ. Our technique is offline, in the sense that it takes as input an
already generated execution trace (see Fig. 1); that is because causal slicing must
traverse the trace backwards. Our technique consists of two steps: (1) all the
irrelevant events (those which are neither property events nor events on which
property events are dependant) are removed from the original trace, obtaining
the (ϕ)-sliced trace; and (2) a vector clock (VC) based algorithm is applied on
the sliced trace to capture the sliced causality partial order.

Extracting Slices. Our goal here is to take a trace ξ and a property ϕ, and to
generate a trace ξϕ obtained from ξ filtering out all its events which are irrelevant
for ϕ. When slicing the execution trace, one must nevertheless keep all the prop-
erty events. Moreover, one must also keep any event e with e (�ctrl ∪ �data)+ e′

for some property event e′. This can be easily achieved by traversing the original
trace backwards, starting with ξϕ empty and accumulating in ξϕ events that
either are property events or have events depending on them already in ξϕ. One
can employ any off-the-shelf analysis tool for data- and control- dependence; e.g.,
RV-Predict uses termination-sensitive control dependence [13].
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Thread t1: 

x = 0 

x = 1 

y = 0 

Thread t2: 

y = 1; 

if (x == 0) { 

x = y 

}

e3: read x e2: write x 

T1
T2

e6: write y 

e4: write x 

e1write y 

e5: read y 

A. Example program B. Example Trace 

Fig. 7. Example for relevance dependence

To understand the process, consider the example in Fig. 7, threads T1 and
T2 are executed as shown by the solid arrows (A), yielding the event sequence
“e1, e2, e3, e4, e5, e6” (B). Suppose the property to check refers only to y; the
property events are then e1, e5, and e6. Events e2 and e3 are immediately marked
as relevant, since e2 �data e3 �ctrl e5. If only closure under control- and data-
dependence were used to compute the relevant events, then e4 would appear to
be irrelevant, so one may conclude that “e2, e6, e1, e3, e5” is a sound permutation;
there is, obviously, no execution that can produce that trace, so one reported a
false alarm if that trace violated the original property on y. Consequently, e4 is
also a relevant event and e3 �rlvn e4.

Unfortunately, one backwards traversal of the trace does not suffice to cor-
rectly calculate all the relevant events. Reconsider Fig. 7. When the backward
traversal first reaches e4, it is unclear whether e4 is relevant or not, because we
have not seen e3 and e2 yet. Thus a second scan of the trace is needed to in-
clude e4. Once e4 is included in ξϕ, it may induce other relevance dependencies,
requiring more traversals of the trace to include them. This process would cease
only when no new relevant events are detected and thus resulting sliced trace
stabilizes. If one misses relevant events like e4 then one may “slice the trace too
much” and, consequently, one may produce false alarms. Because at each trace
traversal some event is added to ξϕ, the worse-case complexity of the sound trace
slicing procedure is square in the number of events. Since execution traces can
be huge, in the order of billions of events1, any trace slicing algorithms that is
worse than linear may easily become prohibitive. For that reason, RV-Predict
traverses the trace only once during slicing, thus achieving an approximation of
the complete slice that can, in theory, lead to false alarms. However, our experi-
ments show that this approximation is actually very precise in practice: we have
yet to find a false alarm in any of our experiments.

1 RV-Predict compresses traces to keep sizes manageable. Reversing the trace is done

at logging time by outputting a buffer of events backwards into separate archives.

The archives are then read by the trace slicer in reverse order.
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Vector Clocking. Vector clocks [19] are routinely used to capture causal par-
tial orders in distributed and concurrent systems. A VC -based algorithm was
presented in [26] to encode a conventional multithreaded-system “happen-before”
causal partial order on the unsliced trace. We next adapt that algorithm to work
on our sliced trace and thus to capture the sliced causality. Recall that a vector
clock (VC ) is a function from threads to integers, VC : T → Int. We say that
VC ≤ VC ′ iff ∀t ∈ T,VC(t) ≤ VC ′(t). The max function on VCs is defined as:
max(VC1, ...,VCn)(t) = max(VC1(t), ...,VCn(t)) ([26]).

Before we explain our VC algorithm, let us introduce our event and trace no-
tation. An event is a mapping of attributes into corresponding values. One event
can be, e.g., e1 : (counter = 8, thread = t1, stmt = L11, type = write, target =
a, state = 1), which is a write on location a with value 1, produced at statement
L11 by thread t1. One can include more information into an event by adding new
attribute-value pairs. We use key(e) to refer to the value of attribute key of event e.
To distinguish different occurrences of events with the same attribute values, we
add a designated attribute to every event, counter, collecting the number of previ-
ous events with the same attribute-value pairs (other than the counter). The trace
for the vector clocking step is the ϕ-sliced trace ξϕ obtained in Section 4.1.

Intuitively, vector clocks are used to track and transmit the causal partial
ordering information in a concurrent computation, and are typically associated
with elements participating in such computations, such as threads, processes,
shared variables, messages, signals, etc. If VC and VC′ are vector clocks such
that VC(t) ≤ VC’(t) for some thread t, then we can say that VC’ has newer
information about t than VC. In our VC technique, every thread t keeps a vec-
tor clock, VCt, maintaining information about all the threads obtained both
locally and from thread communications (reads/writes of shared variables). Ev-
ery shared variable is associated with two vector clocks, one for writes (VCw

x )
used to enforce the order among writes of x, and one for all accesses (VCa

x) used
to accumulate information about all accesses of x. They are then used together
to keep the order between writes and reads of x. Every property event e found in
the analysis is associated a VC attribute, which represents the computed causal
partial order. We next show how to update these VCs when an event e is en-
countered during the analysis (the third case can overlap the first two; if so, the
third case will be handled first):

1. type(e) = write, target(e) = x, thread(e) = t (the variable x is written in
thread t) and x is a shared variable. In this case, the write vector clock
VCw

x is updated to reflect the newly obtained information; since a write is
also an access, the access VC of x is also updated; we also want to capture
that t committed a causally irreversible action, by updating its VC as well:
VCt ← VCa

x ← VCw
x ← max(VCa

x,VCt).
2. type(e) = read, target(e) = x, thread(e) = t (the variable x is read in t),

and x is a shared variable. Then the thread updates its information with
the write information of x (we do not want to causally order reads of shared
variables!), and x updates its access information with that of the thread:
VCt ← max(VCw

x ,VCt) and then VCa
x ← max(VCx

a,VCt).
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3. e is a property event and thread(e) = t. In this case, let VC(e) := VCt. Then
VCt(t) is increased to capture the intra-thread total ordering: VCt(t) ←
VCt(t) + 1.

4.2 Race and Generic Property Detection

The basic idea of race detection is simple: check for accesses to the same variable
with incomparable VCs. However, it is easy to note that this has quadratic
worst case complexity, because each access must be compared against every
other access. Clearly, when billions of accesses may occur in a trace, this is
unacceptable. Not only would this be unbearable slow, but it would be impossible
to even fit the accesses in memory to perform the comparisons.

To alleviate this, as well as to make it more easy to deal with streaming to
and from the disk when memory is overfull, we use the idea of a window of
comparisons, ignoring pairs of events that trivially cannot have incomparable
vector clocks. If at some point we note the second access, aT1

2 in thread T1 must
occur after the fifth access, aT2

5 , in thread T2 we know that we do not need to
check the aT1

2 against any further accesses in thread T2 because all accesses in a
given thread must be totally ordered (and the traces are backwards).

To implement this we use a set2 of search states. Each search state abstracts
the notion of checking accesses in two threads. Each search state keeps an itera-
tor to the list of accesses representing one of its two given threads. The algorithm
begins by keeping search states for each pair of threads in a set (actually not
all threads are known immediately, but we will elide this detail for ease of un-
derstanding). Each state is advanced by considering the accesses pointed to by
each of its iterators. If the iterators are incomparable, three new search states
are added to the set. One state where one iterator is advanced, one where the
other iterator is advanced, and one where both iterators are advanced. If the
two accesses are incomparable and are not protected by a shared lock, a race is
reported. If, one the other hand, the vector clocks of the two accesses in question
are ordered, only one of the iterators is advanced, for example, if the access in
thread t of the search state must take place before the access in thread t′, the
iterator pointing to the access from thread t is advanced, and no other states
are generated.

This idea is easily extrapolated to generic property detection. One caveat,
however, is that the iterators of the search states point to streams of monitoring
events like those describes in Section 3 rather than accesses to shared variables.
Also, rather than keeping iterators to only two threads in a search state, each
search state keeps an iterator to every thread in the program. Each search state,
additionally, keeps a reference to a monitor provided by the Prediction Mon-
itor Library component of Fig. 1. When a search state is advanced, a new
set of states is created and added to the overall set of states the same as for
race detection, save that the advanced iterators are the subset of iterators with

2 We must use a set to avoid duplicate search states, or the algorithm can quickly

explode.
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incomparable VCs, and that states that end up with the same monitor state
are collapsed immediately into one chosen representative search state. For each
search state thus generated, the event uncovered by advancing one of the itera-
tors is given to its monitor to check for property violation or validation. While
this is exponential in the worst case, in practice most search states are collapsed
because they have identical monitor states and positions in the event stream.

4.3 Prediction Example

Here we give a simple example of race prediction using RV-Predict:

bash-3.2$ cat simple/Simple.java
package simple;
public class Simple extends Thread {

static public int i = 1;
public static void main(String[] args) {

(new Simple()).start();
(new Simple()).start();

}
public void run() {

i++;
System.out.println(i);

}
}

This program creates two threads, each incrementing the shared variable i
and then printing it. This program has two dataraces, one on the variable i and
one on the output. All one has to do is to compile this program with javac and
then pass the binary to RV-Predict:

bash-3.2$ javac simple/Simple.java
bash-3.2$ RV-Predict simple.Simple
Instrumenting...
...Done
Executing the instrumented code...

2
3

...Done
Running Race Detection...

Determining race candidates
The following are our race candidates:
| java.io.PrintStream (instance #657291792) | simple.Simple.i
Predicting for race candidate: java.io.PrintStream (instance #657291792)

/--- Race found on java.io.PrintStream (instance #657291792) ---\
| Write at simple.Simple:10 |
| Write at simple.Simple:10 |
\---------------------------------------------------------------/

Predicting for race candidate: simple.Simple.i

/--- Race found on simple.Simple.i ---\
| Read at simple.Simple:10 |
| Write at simple.Simple:9 |
\-------------------------------------/

...Done
bash-3.2$

Both races were detected from one run of the program, even though the ob-
served run behaved normally (the output was 2,3). The different components
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of RV-Predict from Fig. 1 can be seen in the above output. “Execution the
instrumented code” corresponds to the Logging component. “Instrumenting”
and “Race Detection” are self-evident.

4.4 Prediction Results

Fig. 8 summarizes the differences in real time and disk usage between the original
jPredictor system first presented in [14] and RV-Predict for race prediction as
measured on a system with two quad core Xeon E5430 processors running at
2.66GHz and 16 GB of 667 MHz DDR2 memory running Redhat Linux. On
very small examples jPredictor occasionally outperforms RV-Predict, but on
anything substantial RV-Predict is a vast improvement. Account, elevator, and
tsp are actual programs used to benchmark parallel systems. Huge, medium,
small, and the mixed locks examples are microbenchmarks that we designed to
test particularly difficult aspects of race detection, such as millions of accesses
to the same shared variable in huge.

jPredictor RV-Predict

Name Input Real Time Disk Usage Real Time Disk Usage

account - 0:02.07 236K 0:04.31 360K

elevator - 5:55.29 63M 1:20.31 864K

tsp map4 2 5:30.87 16M 1:33.44 744K

tsp map5 2 10:10.19 17M 2:20.95 868K

tsp map10 2 8:25:04.00 442M 29:27.13 2.8M

huge - crash crash 0:42.22 13M

medium - crash crash 0:06.12 840K

small - crash crash 0:05.99 292K

mixedlockshuge - 8:13:40.00 250M 0:13.95 2.9M

mixedlocksbig - 5:44.89 25M 0:07.03 496K

mixedlocksmedium - 0:08.92 2.7M 0:07.25 308K

mixedlockssmall - 0:05.46 1.5M 0:05.67 296K

Fig. 8. jPredictor Vs. RV-Predict
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9. Chen, F., Roşu, G.: Java-MOP: A monitoring oriented programming environment

for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.

546–550. Springer, Heidelberg (2005)
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Abstract. Dynamic aspect-oriented programming has been widely used

for the development of dynamic analyses to abstract over low-level pro-

gram instrumentation. Due to particular feature requirements in differ-

ent analysis domains like debugging or testing, many different aspect

languages were developed from scratch or by extensive compiler or inter-

preter extensions. We introduce another level of abstraction in form of

a meta-aspect protocol to separate the host language from the analysis

domain. A language expert can use this protocol to tailor an analysis-

specific aspect language, based on which a domain expert can develop

a particular analysis. Our design enables a flexible specification of the

join point model, configurability of aspect deployment and scoping, and

extensibility of pointcut and advice language. We present the application

of our design to different dynamic analysis domains.

1 Introduction

Many dynamic analyses make use of program instrumentation tools to transform
the abstract-syntax tree (AST) of analyzed code. This leads to a tight coupling
between low-level language and analysis design. A designer needs expert knowl-
edge of the language specification, evolution of the language makes analyses
brittle, and the analysis code base includes many instrumentation details [5].

Aspect-oriented programming (AOP) has been used to overcome these prob-
lems [17, 25]. AOP allows high-level abstractions of program instrumentation
using pointcut and advice, and facilitates rapid design of small analysis aspects,
decoupled from language details. However, different dynamic analyses require
different aspect language features and instrumentation techniques. A debug-
ging tool might require a fine-grained instrumentation level (e.g., statement-
based) [19], while a memory profiler might need only object-allocation instru-
mentation [24]. Often, domain-specific aspect languages (DSALs) are built from
scratch or by extensive compiler extensions to fit particular requirements. A
general-purpose AOP language that covers all possible features, however, induces
unnecessary overhead and requires broader expert knowledge than a DSAL.

In object-oriented languages, metaobject protocols (MOPs) have been devel-
oped to access and adapt the language semantics from the programming level
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of the language itself [14]. In AOP, meta-aspect protocols (MAPs) have been
suggested, where parts of the language semantics are like in MOPs controlled
through a concrete interface [11]. This enables domain-specific extensions (DSX)
without the requirement of a new compiler or interpreter. However, there exists
no MAP known to the authors that covers the requirements of dynamic analyses.

We present a MAP that focuses in particular on the requirements of dynamic
analyses in the setting of dynamically typed languages. It is based on a load-
time program transformation that inserts hooks for dynamic aspect weaving and
scoping. The join point model is based on a user-defined AST-transformation,
so that every syntactic element can be included as a join point. The language
interface facilitates the configuration of different dynamic deployment methods
(global, per block, per reference) and scoping mechanisms (stack/reference prop-
agation) [4, 6,21], and the extension of pointcut and advice [1].

We present two DSXs based on our protocol focusing on the requirements of
the domains debugging and testing, respectively. Based on these extensions, we
develop two exemplary analysis aspects with a small code base.

The contributions of this work are as follows:

– We discuss several dynamic analyses that build on AOP. We point out par-
ticular dynamic AOP features that are required in certain analysis domains.

– We present a dynamic meta-aspect protocol that provides direct access to
the aspect language semantics at runtime and allows the configuration of
domain-specific extensions for particular dynamic analysis domains.

– We provide an implementation of our extensible language and evaluate its
applicability by developing language extensions and analysis aspects for the
domains debugging and testing.

We chose Ruby as implementation language, but the design could be applied to
other dynamic languages like Groovy as well. We intend our MAP to be used
for prototyping and developing analyses in domains like debugging and testing,
which are not limited by strict performance requirements, since dynamic AOP
comes with the cost of a certain runtime overhead.

The remainder of this paper is organized as follows: We analyze the require-
ments of dynamic analyses in Sec. 2 and discuss related AOP approaches. Section 3
presents the design of our meta-aspect protocol for dynamic analyses. We evaluate
our protocol in Sec. 4 on two example applications, followed by our conclusion.

2 Motivation

In the following, we analyze the requirements of dynamic analysis regarding
AOP, in order to build a flexible abstraction layer over program instrumentation.
We then discuss related approaches that either lack flexibility or generality.

2.1 Interception Requirements of Dynamic Analyses

Dynamic analyses vary widely in their interception requirements. We structure
the resulting design space in four dimensions: Join point model, aspect deploy-
ment, aspect scope, and pointcut and advice language.
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Join Point Model. Different analyses require different kinds of access to the pro-
gram structure or execution context in form of join points.1 To analyze perfor-
mance and relation of method calls or to analyze memory consumption, method
execution and object allocation join points are typically sufficient [24]. These
requirements are met by general-purpose AOP languages like AspectJ [13]. How-
ever, more advanced monitoring and debugging tools require instrumentation on
the level of basic blocks [5] or statements like assignment [17]. The debugging
approach of [19] also introduces line number join points. Data-race detection is
based on field access join points [7]. No general-purpose AOP language known
to the authors meets all these requirements.

Aspect Deployment. The entity on which an aspect is deployed differs among
many dynamic analyses (e.g., on the whole program, on objects or methods).
Bodden and Stolz suggest dynamic advice deployment (with a global deploy/un-
deploy functionality) and per object deployment as in Steamloom [6] to optimize
temporal pointcuts over execution traces [8]. Toledo et al. also deploy security
aspects in the dynamic scope of application objects [23]. In earlier work, we used
deployment on a block of code like in CaesarJ [4] to separate design changing
aspects used in different test cases [2]. Deployment on a block is particularly
powerful in combination with expressive aspect scoping [21].

Aspect Scope. Dynamic analyses often require fine-grained control over the scope
in which an aspect is active to determine what should be and what should not be
analyzed. E.g., omniscient debuggers (that can step backward in time) rely on
vast execution traces. Tanter suggests therefore a notion of partial traces defined
by an expressive scoping strategy [22]. Toledo et al. embed web application code
into the scope of a security aspect that monitors access attempts [23]. A so
called pervasive scope ensures that neither method calls nor references escape
the aspect.

Pointcut and Advice Language. Allan et al. introduce binding of free variables in
pointcut expressions for trace matching [3]. Dinkelaker et al. integrate a 3-valued
logic language into the advice language [10], which is advantageous for analyses
that reason with boolean abstractions at runtime like Java PathFinder [26].
Aspects that augment a program for test generation could be extended with
domain-specific constructs for non-deterministic choice [12]. The possibility to
specify new keywords for pointcut and advice enables shorter, analysis-specific
pointcut and advice definitions [1].

Our survey shows that certain classes of analyses require different AOP features.
General-purpose AOP does not solve the problem. If it covered all necessary AOP
features of all analysis domains, it would induce a lot of performance overhead
for some domains. If it was specialized, some domains would lack important
1 A join point is a point in the program text (static) or in the execution (dynamic),

where an interception with aspects can take place. A join point model defines the set

of possible join points and also the kind of interaction, e.g., if and how the program

state or control-flow can be changed at the join point and how aspects interact.
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features. Furthermore, the more features are covered, the more expert knowledge
is required by the analysis developer. A DSAL, in contrast, allows for domain-
specific abstractions of the respective analysis domain.

To avoid building a new DSAL for each class of dynamic analysis from scratch,
we need another level of abstraction between language and analysis domain. This
will allow a language expert to tailor a domain-specific extension that covers the
features of a certain analysis type like debugging. Based on the DSX, a domain
expert can rapidly prototype a dynamic analysis that is decoupled from host
language details.

2.2 Related Work

There have been previous works on extensible AOP languages, but none of them
meets the requirements for dynamic analyses in a satisfactory way. A meta-aspect
protocol (MAP) has been developed for the dynamic language Groovy [11]. The
join point model is configurable, based on the one of AspectJ [13], which, as
illustrated above, is not sufficient for fine-grained instrumentation, e.g., on basic
block level. The MAP facilitates both static and dynamic deployment, but does
not provide configurable and expressive dynamic scoping concepts. There are
also approaches that extend AspectJ by modifying its sources to include more
fine-grained join points [9].

Javana is an instrumentation system for building customized dynamic analysis
tools for the JVM [15]. The domain-specific Javana language, provides an AOP-
like join point model over virtual machine events like object allocation, class
loading, or method compilation. Unlike in our approach, the set of events and
the language are fixed and can neither be extended nor reduced.

There are specialized approaches for particular analysis domains. Nusayr et
al. suggest an AOP framework for runtime monitoring with basic block join
points and pointcuts over time and space [17]. Nir-Buchbinder and Ur present
a framework for concurrency-aware analysis tools [16]. Binder et al. develop
profiler aspects based on the @J language, that supports basic block join points
and inter advice communication [5]. Rakesh develops debuggers with line number
pointcuts [19]. All these approaches lack generality by implementing fixed sets
of features, focusing on the respective analysis domains.

3 The Meta-Aspect Protocol

A meta-aspect protocol (MAP) gives access to the aspect language semantics
through a concrete interface on the program level [11]. From the discussion in
Section 2.1 we can derive that a MAP for dynamic analysis requires variabil-
ity in the following dimensions: We need a flexible join point model that allows
every syntactical element to be a potential join point. We require different dy-
namic deployment methods and expressive dynamic scoping. Finally, pointcut
and advice language should be extensible with domain-specific constructs.
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Fig. 1. Overview of the language interface and the main components. Courier fonts

refer to actual source methods. Methods in italics are non-modifiable.

We provide a language interface that is instantiated with configurations and
extensions of the aforementioned dimensions. We give an overview of the inter-
face and the main components in Sec. 3.1. The join point model is defined by
an AST transformation, which we explain in Sec. 3.2. Section 3.3 presents our
extensible pointcut and advice language. We illustrate instantiations of different
dynamic deployment methods in Sec. 3.4 and demonstrate the configurability of
our language w.r.t. expressive aspect scoping in Sec. 3.5.

The features of all four dimensions can be selectively combined. We will in-
stantiate distinguished sets of features to develop two example applications in
Sec. 4. The implementation and all examples shown in this work are integrated
into the TwisteR project, available at http://twister.rubyforge.org.

3.1 Language Interface

Figure 1 gives an overview of the language interface and the main components.
We will briefly discuss each and go into more detail in the following sections. The
interface is separated into a file loading and a runtime interface. The first comes
into play when client code is loaded. The second contains callback methods and
extensible classes used at runtime. Loaded code is transformed by a custom
AST processor (1), which inserts join point and propagation shadows (4). A join
point shadow is a code snippet placed at join points. It guides advice interaction
through the weaving callback (9). Propagation shadows are code snippets that
maintain the scope of aspects. They embed the original code at the point of
insertion (e.g., a method call) and configure aspect propagation before and after

http://twister.rubyforge.org
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the embedded code with the prop up/down methods. These methods exist once
globally (9) and once for each propagation shadow type (3).

Aspects (7) are associated with scoping strategies (8) and stored in an as-
pect environment (6). The environment is maintained via the global language
interface (9) or through an object manager (10), which associates data with
arbitrary runtime objects using reflection. At runtime, join and propagation
points are reified through meta objects (5), on which context data is accessi-
ble. They are evaluated by meta objects for pointcut and advice (13), guided
by the weaving callback. Pointcut and advice are instantiated through extensi-
ble evaluators (12), which interpret aspects and scoping strategies, for enabling
the embedding of domain-specific pointcut and advice languages. Finally, aspect
deployment is performed by a user-defined method at (11), which modifies the
corresponding aspect environment.

3.2 AST-Based Join Point Model

We represent the AST of a program using S-expressions known from LISP. The
join point model of a custom AOP language is defined by a transformer on this
expression. The custom S-expression processor is part of the language interface
and augments particular AST nodes with join point and propagation shadows
for dynamic weaving and scoping.

S-Expressions. S-expressions are nested list-based data structures. In our
implementation, we use external libraries for parsing code and translating S-
expressions back to code written in Ruby [18, 20]. Each S-expression is repre-
sented by a function call s(...) listing nested elements as arguments. The list
consists of a type symbol, followed by nested S-expressions or primitives like
symbols, strings or numbers. We chose the S-expression representation depen-
dent on the external libraries – transforming it into an AST data structure would
be straightforward.

Processor for Join Point Generation. We distinguish two types of join point
shadows: the first type encloses a piece of code, which we will call interceptor
shadow, the second type only attaches statements to a sequence of code, which
we will call companion shadow. While the first can change the entire control
flow, the second can still access and change the state of the enclosing object.

At load-time, an AST-transformation, defined by a custom S-expression pro-
cessor (see Fig. 1 (1)), is applied to the code. The transformer performs a traver-
sal over the AST and calls visitor methods for each node type to insert join point
shadows. Each join point type is represented by a singleton class (see Fig. 1 (2))
that builds the corresponding shadows. At runtime, each join point is represented
by a reified meta object (see Fig. 1 (5)), accessible by pointcut and advice.

Figure 2 illustrates an S-expression processor that integrates method-execution
and if-condition join points, which we will need for our testing application (see
Sec. 4.1). The class CustomProcessor implements visitor methods process x for
each node type x that needs augmentation with join point shadows. The singleton
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class CustomProcessor

< JoinPointProcessor

(1) def process if(exp)

oldc = process(exp.shift)

newc = AroundIfCond.sexp(oldc)

return s(:if, newc, process(exp.shift),

process(exp.shift))

end
def process defn(exp)

name = exp.shift

(2) ast context[:name] = name

args = process(exp.shift)

old = process(exp.shift)

before = BeforeMExec.sexp

(3) cap = capture(:result, old)

after = AfterMExec.sexp(capture)

(4) newb = s(:block, before, cap.sexp,

after, cap.var)

return s(:defn, name, args, newb)

end
end

(5) class AroundIfCond

< InterceptorShadowType

def self.reification ast context

{:modifier=>:around}
end
def self.meta

IfConditionJoinPoint

end
end

(6) class BeforeMExec

< CompanionShadowType

def self.reification ast context

{:name=>ast context[:name],

...}
end
def self.meta

MethodExecutionJoinPoint

end
end

Fig. 2. Custom join point processor

classes that create the join point shadows are defined at (5) and (6) (AfterMExec
not shown here). At (1), we augment the if-expression condition with an inter-
ceptor shadow that embeds the original code. We iterate over the subexpressions
using exp.shift and process each recursively.

At method definitions (2), we add the actual method name to the context
stack, which stores context information of each AST node and its parents. The
original method body is transformed to capture its result in a fresh local variable
at (3). The join point shadows are inserted into a sequence before and after the
original method body at (4). The method evaluates to the captured result of the
original block. Connecting the capturing class and AfterMExec enables access
to the result through the reified meta join point.

The classes at (5) and (6) differ in their join point reification. The method
reification defines how to reify the dynamic context at runtime and spec-
ifies how to instantiate the meta object that represents the join point. E.g.,
the method execution join point provides access to the name of the executing
method, retrieved from the context stack. Each join point automatically provides
access to the self reference of the surrounding object.

Hooks for Weaving. Each join point shadow defines the interaction with
pointcut and advice. As a default, interceptor shadows introduce around advice
application and embed the original code to be called if no advice can be applied
or if the proceed method is called. Companion shadows introduce advice like
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tracing = Aspect.new do
before pc{jp.type == :execution} do
puts ”Tracing #{jp.name}”

end
after ...

around pc{jp.type == :if cond} do
puts ”Cond => #{res = proceed}”
res

end
end

Fig. 3. Simple tracing aspect

before and after at discrete points in the program, so that the original control-
flow is not modified.

3.3 Pointcut and Advice Language

In earlier work, we developed an extensible pointcut and advice language that
we adopted in the current approach [1]. Figure 3 shows the instantiation of a
simple aspect that traces method execution and condition evaluation. Aspects
are first-class values, their definition is passed as a closure (between do..end)
to the constructor (called by Aspect.new). The closure is interpreted on an
extensible evaluator object (see Fig. 1 (12)) on which pseudo-keywords like pc
are resolved as pretended method calls and property accesses [10]. Behind every
keyword is a meta class that represents the construct, e.g., each pointcut is
reflected by a meta pointcut with an evaluation function that takes the reified
join point as an argument and returns true or false (see Fig. 1 (13)). The
meta classes implement also operators that allow their composition and syntactic
sugar (like the operators &,| and ! to compose pointcuts). The before, around,
and after pseudo-keywords specify advice that will be executed at matching
join points. The pseudo-keyword jp gives access to the reified meta join point.
In [1], we presented extensions of this approach, e.g., the introduction of new
pseudo-keywords, which enables an AspectJ-like syntax, or the simulation of
cflow. Extensions could also comprise constructs that embed temporal logics or
binding of free variables.

3.4 Deployment

In this section, we present different aspect deployment methods and their appli-
cation. We first illustrate a simple global deployment mechanism, which we will
use for our debugging application (see Sec. 4.2). Then we define a deployment
of aspects on object references and deployment in the scope of a block of code,
which we will apply in our testing application (see Sec. 4.1).

Global Deployment. Using the global deployment method, all deployed as-
pects have a global scope. Figure 4 shows the language interface and sample
deployment. The aspect language Global subclasses AspectLanguage, which
manages the registration of all language components. At (1), we initialize a global
aspect environment that stores a list of deployed aspects (see Fig. 1 (6)). The
methods at (2) define the language semantics. They are called during language
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class Global < AspectLanguage

def initialize

(1) @context = AspectEnvironment.new

end
(2) def processor; CustomProcessor end

def context; @context; end
def weaving jp

context.iterate aspects{ |a|
a.each advice(jp){ |pc, ad|
if pc.evaluate(jp)

(3) yield lambda{ad.evaluate(jp)}
end }}

end
end

(4) def deploy aspect

LANG.context.add aspect

end
def undeploy aspect

LANG.context.remove aspect

end

# Example code:
def get sign x

if x>0; ”>0” else ”<=0” end; end
def sign x; puts get sign(x); end

(5) deploy tracing

sign(5)

undeploy tracing

Fig. 4. Global deployment of the tracing aspect from Fig.3

initialization and from the join point shadows. We reuse the join point processor
defined in Fig. 2. The weaving is performed at every join point shadow, it takes
a meta join point and an anonymous block as arguments. The block guides ad-
vice application and is called with yield for each matching advice at (3). This
abstracts as a co-routine over the actual weaving loop of both companion and
interception types. Extensions of the weaving loop could comprise, e.g., advice
precedence or optimizations that omit aspects at particular join points.

The deployment methods are defined at (4), and manipulate the global aspect
environment (the aspect language is accessible via the global constant LANG). We
deploy the tracing aspect from Fig.3 at (5) on a simple example. The application
of the sign method causes tracing of sign and get sign and of the evaluation
of the condition in get sign.

Per Object Deployment. The first column of Fig. 5 shows deployment in the
scope of particular objects. Instead of a global aspect environment, we maintain
an environment per object. The objects are augmented using a central object
manager (see Fig. 1 (10)), initialized at (1). It can be accessed using the objects
method of the language. At (2), the weaving process iterates over the object
stored in the target field of the join point, which is, e.g., the receiver object at
method calls or the self reference at an if-condition join point. The deployment
method at (3) creates a new aspect environment and adds it to the corresponding
object. Applying the example at (4) using the tracing aspect from Fig. 3 will
trace the method call to s of date, but no methods from other objects.

Per Block Deployment. The second column of Fig. 5 introduces deployment
in the scope of a block of code. Instead of one global environment, an environment
stack is initialized at (5) and maintained with the callback methods at (6). The
deployment method at (7) takes an aspect, a (yet unused) scoping strategy and
an anonymous block as arguments. It maintains the aspect environment stack
around the call to the block (yield), so that the deployed aspect is active in the
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class PerObject < AspectLanguage
def initialize

(1) @objects = ObjMan.new(:env)
end
def weaving jp

(2) if objects.augmented?(jp.target)
env = objects.get data(jp.target)
env.iterate aspects{ |a|
... }

end
end
end

def deploy on object, a
(3) env = AspectEnvironment.new

env.add a
LANG.objects.augment(object)
LANG.objects.set data(object, env)
end

# Example:
(4) date = Date.new(15, 3)

deploy on date, tracing
puts date.to s

class PerBlock < AspectLanguage
def initialize

(5) @context = [AspectEnvironment.new]
end

(6) def context; @context.last; end
def prop up env
@context.push env
end
def prop down
@context.pop
end
end

(7) def deploy a, s=nil
env = LANG.context.clone
LANG.prop up(env)
LANG.context.add a, s
yield
LANG.context.remove a, s
LANG.prop down
end

# Example:
(8) deploy tracing do sign(5) end

Fig. 5. Per object and per block deployment of the tracing aspect

dynamic extent of this block. The example at (8) will apply tracing to everything
in the control flow of the method call sign(5).

3.5 Scoping

Tanter generalized the scope of aspects with a set of propagation or scoping
functions [21]. An aspect can, for example, be propagated over the call stack at
particular join points or into object references to enable a so called pervasive
scoping. Our design facilitates a lightweight integration of some or all of these
scoping mechanisms as we will show in the following. A scoping strategy object
stores the scoping functions and is associated with each aspect (shown in Fig. 5
at (7) as parameter s). It can be accessed at various points during weaving
and propagation. Scoping functions have the same semantics as pointcuts in our
language (see Sec 3.3) and can be extended in the same way. The propagation of
aspects is performed by propagation shadows in the code. Those are inserted like
join point shadows by the AST transformation. A propagation shadow embeds
a piece of code like an interceptor shadow and inserts a propagation expression
before and after the code. Possible expressions are filter(x), where the current
aspect environment is filtered by function x, inject(x, f), where the aspect
environment is filtered by x and stored in the actual join point using field f,
and extract(f), where the aspect environment is restored from the actual join
point using field f.
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class AroundMExecProp

< PropagationShadowType

def self.reification ast context

{:name => ast context[:name]}
end
def self.meta ...

(1) def self.prop up

filter(:c)

end
end

class CustomProcessor ...

def process defn(exp) ...

return s(:defn, name, args,

(2) AroundMExecProp.sexp(body))

end
end

# Example:
s = Strategy.new {

(3) {:c => pc{jp.name != :get sign}}}
deploy tracing, s do sign(5) end

Fig. 6. Scoping strategy over the call stack

Call Stack Scope. Figure 6 defines the propagation of aspects over the call
stack. The singleton class for propagation shadow creation (see Fig. 1 (3)) also
has an associated meta join point for reification. We reuse the processor from
Fig. 2 and the language PerBlock defined in Fig. 5, but augment method bodies
with the propagation expression at (2). The propagation expression automati-
cally calls the context propagation of the language (which we defined in Fig. 5
at (6)), so that the environment stack is extended in the context of the embed-
ded code. Before the embedded code is executed, the propagation at (1) applies
the filter method, which uses scoping function c of the scoping strategy associ-
ated with each aspect in the environment. The example at (3) defines a strategy
that associates with function c a pointcut that prevents propagating the tracing
beyond the dynamic extent of the get sign method.

Delayed Evaluation Scope. In object-oriented languages, an object created
in the scope of a dynamic aspect can escape this scope through a reference
(which would be a flaw for a security aspect [23]). The propagation of aspects
into references allows a richer and more pervasive scoping [21]. We reuse the
language defined in Fig. 6, augmenting object creation sites with a propagation
shadow that applies inject(d, result) after the embedded code, which will
store the actual environment in the result (the created object) filtered by d. At
method executions, we use propagation extract(target) to restore the aspect
environment from the receiver. Now we can apply the language in the following
example:

s = Strategy.new do {:d => True} end
deploy tracing, s do; date = Date.new 17,4; end
puts date.to s

We associate the strategy function d with a constant pointcut that always returns
true, which propagates the tracing aspect into the escaping reference date.

4 Applications

In the following, we present two instantiations of our MAP. They are used for the
development of two different analyses that build on distinguished AOP features.
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class TestLangProcessor ...

def process if(e)

# From Fig. 2
end
def process defn(exp)

# From Fig. 6
end

end

# Example:
def create display color, refresh

log ”Create display”

if color

# Creates colored display...
if refresh; # ...with refresh
else; # ...without refresh
end

end
end

# Variant without lazy choice:
(1) create display(choice(true, false),

choice(true, false))

# Variant with lazy choice:
lazy choice = ExtAspect.new do
around if cond do
case (result = proceed)

when TVTrue then true
when TVFalse then false

(2) when TVUnkn then
choice(true, false)

else result

end; end; end

s = Strategy.new {
{:c => !name(:log)}}}

(3) deploy lazy choice, s do
create display(TVUnkn, TVUnkn)

end

Fig. 7. Aspect for lazy choice in testing with non-determinism

4.1 Explorative Testing

In earlier work, we presented a test exploration tool that reduces the size of
test cases by applying a non-deterministic choice operator [2]. Such an operator
has also been used for the generation of complex test input [12]. The authors
of [12] suggest the application of lazy choice to avoid a combinatorial explosion
of possible executions. In the following, we instantiate the MAP for integrating
lazy choice with an aspect that delays choices to the evaluation of conditions.

The language components for instantiating the MAP are shown in Fig 7. We
implement a 3-valued boolean abstraction with TVTrue, TVFalse and TVUnkn.
We will reuse the stack propagation from Fig. 6 and the deployment on blocks
from Fig. 5. Due to the direct evaluation of choice, the execution of the example
at (1) will lead to four different execution paths of which two are identical. At
(2), we define a lazy choice aspect that resolves 3-valued logic abstractions at the
evaluation of conditions. Like that, the choice is delayed to the point were the
unknown value flows into a condition. In the scope of the aspect, the test at (3)
will yield only the three distinguished executions. For the sake of brevity, we omit
caching of made choices in this example. With the deployment strategy s, we
optimize the aspect’s scope by avoiding propagation into logging methods of the
program. While we saved only one execution, lazy choice becomes particularly
important when generating more complex test input.

4.2 Debugging

In the following, we develop a debugging-specific extension of our protocol and
then build a prototype debugger based on it. The first column of Fig. 8 shows
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class AtStmt

< CompanionShadowType

def self.reification ast context

result = {:modifier => :before,

:stype => ast context[:stype]}
if ast context[:var]

result[:var] =

ast context[:var]

end
return result

end
def self.meta ...

end

class CustomProcessor ...

def process if(exp)

ast context[:stype] = :if
return s(:block,

AtStmt.sexp, s(:if,...))
end
def process lasgn(exp)

ast context[:stype] = :lasgn

name = exp.shift

ast context[:var] = name

return s(:block,

AtStmt.sexp, s(:lasgn,...))

end
end

tracing = ExtAspect.new do
(1) before stmt & stype(:lasgn) do

puts ”Assignment to: #{var}”
end

end

debugging = ExtAspect.new do
around execution do
puts ”Entering: #{name}”
print ”Step [i|o|t|u]:”

com = gets.chomp

(2) deploy(tracing) if com =˜ /t/

undeploy(tracing) if com =˜ /u/

if com =˜ /o/

(3) undeploy debugging

begin
proceed

ensure
deploy debugging

end
else
proceed

end
end

(4) before stmt ...

end

deploy debugging

# Application code...

Fig. 8. Debugging language components and debugging aspect

an excerpt of the join point processor. We define a statement-based join point
model that introduces join point shadows, e.g., at assignments, conditions, loop
headers and bodies, method calls, etc. We reuse some language components like
method execution join points defined in Fig. 2, the global deployment mechanism
from Fig. 4 and some simplifying pointcut and advice expressions. We minimize
the reified context information for the sake of brevity, but it is straightforward
to include more data, e.g., about the static nesting of each statement.

The second column of Fig. 8 shows a simple debugging aspect. A statement
advice enables stepping per statement at (4). We reuse the tracing aspect from
Fig 4 extended with statement-based tracing, e.g., variable assignment at (1).
The tracing can be toggled on and off during debugging with a command at (2).
When tracing is off, the tracing aspect is not deployed and does not produce
additional runtime overhead. The around advice intercepts method executions
to facilitate a step over or step into functionality at (3). If the user chooses
step over, the debugging aspect undeploys itself in the dynamic extent of the
method’s proceed.
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The example shows the instantiation of a fine-grained join point model that
goes beyond general-purpose AOP. Together with the testing example it demon-
strates the selection and combination of distinct AOP features. We expect that
analyses in other domains like profiling or security can also be rapidly developed
through different instantiations of our meta-aspect protocol.

5 Conclusion

We presented a meta-aspect protocol for tailoring analysis-specific aspect lan-
guages. Our discussion of dynamic analyses showed distinguished requirements
on AOP in different analysis domains. We illustrated a broad spectrum of dy-
namic AOP features that can be selectively combined. Analysis-specific instan-
tiations configure join point model, deployment and scoping, based on which the
actual analysis aspects can be rapidly prototyped. We discussed two example
analyses in the domains debugging and testing to validate the usefulness of the
approach. We demonstrated how to separate the work of language and domain
expert, which will greatly ease the rapid development and the maintenance of
dynamic analyses in different domains.
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23. Toledo, R., Leger, P., Tanter, É.: AspectScript: Expressive aspects for the Web. In:

AOSD 2010, ACM, New York (2010)

24. Villazón, A., Binder, W., Ansaloni, D., Moret, P.: Advanced runtime adaptation

for Java. In: GPCE 2009, pp. 85–94. ACM, New York (2009)

25. Villazón, A., Binder, W., Ansaloni, D., Moret, P.: HotWave: creating adaptive tools

with dynamic aspect-oriented programming in Java. In: GPCE 2009, pp. 95–98.

ACM, New York (2009)

26. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: Auto-

mated Software Engineering, pp. 3–11. IEEE, Los Alamitos (2000)

http://parsetree.rubyforge.org/
http://seattlerb.rubyforge.org/ruby2ruby/


Behavior Abstraction in Malware Analysis�

Philippe Beaucamps, Isabelle Gnaedig, and Jean-Yves Marion

INPL - INRIA Nancy Grand Est - Nancy-Université - LORIA
Campus Scientifique - BP 239 F54506 Vandoeuvre-lès-Nancy Cedex, France
{Philippe.Beaucamps,Isabelle.Gnaedig,Jean-Yves.Marion}@loria.fr

Abstract. We present an approach for proactive malware detection
working by abstraction of program behaviors. Our technique consists in
abstracting program traces, by rewriting given subtraces into abstract
symbols representing their functionality. Traces are captured dynam-
ically by code instrumentation, which allows us to handle packed or
self-modifying malware. Suspicious behaviors are detected by comparing
trace abstractions to reference malicious behaviors. The expressive power
of abstraction allows us to handle general suspicious behaviors rather
than specific malware code and then, to detect malware mutations. We
present and discuss an implementation validating our approach.

Keywords: Malware, behavioral detection, behavior abstraction, trace,
string rewriting, finite state automaton, formal language, dynamic binary
instrumentation.

1 Introduction

Detection techniques of computer malware have traditionally relied on a combi-
nation of static and dynamic analysis. A shortcoming of static analysis, however,
is the general intractability of knowing in advance the entire program code as
it may change dynamically. Packing and obfuscation techniques typically capi-
talize on this intractability to prevent the reconstruction of the program code.
Structural and behavioral techniques, on the other hand, may be used to guard
against code protection and code transformation and are consequently more ro-
bust and reliable. These techniques rely on the analysis of the program structure
or its behavior rather than its binary code. This ensures an independence from
basic syntactic modifications or from packing techniques.

Structural techniques analyze the control flow graph representing the pro-
gram, by assuming that its structure remains untouched. They compare it to
control flow graphs of known malware using static analysis [10], sub-graph iso-
morphism [9], tree automata [7] or similarity measures [12,4]. Unfortunately,
these techniques are not resilient to functional polymorphism of behaviors, of
which malware variants are a form, and which expresses that behaviors can
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be carried out in different ways, without their functionality being altered. This
polymorphism often impacts the structure of the control flow graph.

Conversely, behavioral approaches, first introduced in Cohen’s seminal work
[11], monitor system calls and their arguments and have traditionally relied
on the use of finite state machines [18,21]. Recent approaches [19] deal with
functional polymorphism by preprocessing execution traces and transforming
them into a high-level representation which captures their semantic meaning.
But as these approaches deal with the execution trace being observed, they
analyze a single behavior at a time. Subsequently, [16] proposed to use attribute
automata but the cost is an exponential time complexity procedure.

Other behavioral approaches also use model checking techniques to track data
[6,17,22]: they define behavioral signatures as temporal logic formulae, defined
on a syntactic level. But none of these approaches considers functional poly-
morphism. Moreover they do not tackle either the problem of constructing a
high-level view of a program, which limits their applicability.

Our goal here is to provide a generic framework for malware detection, ab-
stract enough to be independent of the implementation of programs, resilient to
variants and relying on general suspicious behaviors rather than on specific mal-
ware code. Unlike the approaches cited before, which only consider the detection
scenario by working on one trace at a time, we intend to make our formalism
more generally applicable to analysis and signature generation of unkown mal-
ware by working on a set of traces representing the whole behavior of a program.

For this purpose, we present an approach working on an abstract representa-
tion of the behavior of a program. We propose an original strong theoretical set-
ting underpinned by the theory of formal languages and based on string rewriting
systems and finite state automata. Abstraction is carried out with respect to be-
havior patterns defined by string rewriting systems. Behavioral detection is then
carried out by automata intersection.

More precisely, execution traces of a program describe the capture of specific
data such as program instructions, system calls with their arguments, or file
system and network interactions. We represent a set of execution traces by an
automaton called trace automaton. An abstraction of this trace automaton is
then constructed, with respect to a set of predefined behavior patterns defined
as regular languages and describing high-level properties or actions such as a
file operation, a hook installation or a data leak. This gives a representation
independent of the program implementation. Finally, the abstracted trace au-
tomaton is intersected with a malware database, composed of abstract signatures
representing known malicious behaviors.

Our technique offers two detection scenarios: identifying a program as suspi-
cious when it performs some malicious action like keylogging, or detecting an
action sequence similar to the one of a known malware. The model we use, com-
bining string rewriting systems and finite state automata, allows us to detect
very efficiently malicious behaviors with high level descriptions, that is in linear
time. Detection speed can be tuned by setting the right tier of abstraction level.
So our behavioral detection model could be used inside a firewall for example.
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After presenting the background in Section 2, we define behavior patterns
in Section 3. Section 4 presents the abstraction mechanism of trace languages.
Section 5 explains how to represent trace languages by trace automata and gives
complexity bounds for computing abstractions. Section 6 formalizes the detection
problem with its cost. Section 7 presents the implementation of our approach
together with experiments. We conclude in Section 8.

2 Background

Let Σ be some finite alphabet. We denote by Σ∗ the set of finite words on Σ.
Subsets of Σ∗ are called languages on Σ. The empty word is denoted by ε.

Let Σ′ be some finite alphabet. The projection homomorphism which maps
words of Σ∗ to words of Σ′∗ is denoted by u|Σ′ for any u ∈ Σ∗ and is defined,
for a ∈ Σ, by: a|Σ′ = a if a ∈ Σ′ and a|Σ′ = ε otherwise. This definition is
homeomorphically extended to languages on Σ, and the projection on Σ′ of a
language L on Σ is denoted by L|Σ′ .

A finite state automaton A on an alphabet Σ is a tuple (Q, δ, q0, F ) where Q is
a finite set of states, δ : Q×Σ→Q is the transition relation, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. A run of A on a word w = a0a1 · · · an

is a sequence of states r = q0q1 · · · qm≤n+1 such that: ∀i < m, qi+1 ∈ δ (qi, ai).
The run r is successful if m = n + 1 and qm ∈ F ; in this case, w is said to be
recognized by A. The set of words for which there exists a successful run of A
is the language recognized by A and is denoted by L (A). Languages recognized
by some finite state automaton A are called regular. The size of a finite state
automaton A, denoted by |A|, is defined as the number of states of A.

For a given binary relation→, we denote by→∗ its reflexive transitive closure.
A string rewriting system (SRS in short) is a triple (Σ, V,→), where V is a set
of variables and → a binary relation on (Σ ∪ V )∗. A regular SRS is a 4-tuple
(Σ, V, S,→), where S ∈ V and the relation → is generated by rules of the form
a→ A, aA→ B and ε→ A, with a ∈ Σ, A, B ∈ V . The language recognized by
a regular SRS is the set {u|u ∈ Σ∗, u→∗ S}. Languages recognized by regular
SRS are exactly the regular languages. The size of a regular SRS R, denoted by
|R|, is defined as the number of variables of V .

3 Behaviors

We now introduce a model of abstract machine from which we define notions
of execution trace and behavior. An abstract machine M consists of the triple
(μ0, IP0,→) where (μ0, IP0) is an initial configuration ofM and→ is a transition
function from Configurations to Configurations, where Configurations denotes
the set of configurations ofM.

A configuration of M is a pair (μ, IP) where:

– μ : Addresses → Data represents the memory of M. Addresses is the set of
addresses ofM and Data is a set of values; both are subsets of N;
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– IP ∈ Addresses is the instruction pointer.

Thus, we have (μ, IP)→ (μ′, IP′) if the machine M executes the instruction at
address IP of memory μ. The memory μ′ is the memory obtained after executing
this instruction and IP′ is the address of the next instruction to execute. A
program is a set of instructions. An execution of an abstract machine M is a
finite sequence:

(μ0, IP0)→ (μ1, IP1)→ . . .→ (μn, IPn) .

In our scenario, the configuration (μ0, IP0) is the initial configuration. A pro-
gram is loaded into μ0 at the address pointed by the instruction pointer IP0.
So, at the beginning of an execution, a program is executed inside an initial
environment (also) given by μ0. Then, the program is run. At each step, we see
interactions with the "outside" through the memory. Though our model of ab-
stract machine can only represent single-threaded programs, this formalization
of communications is enough for our purpose.

The reader will notice that we focus on abstract machines rather than on pro-
gramming languages. There are several reasons for this. First of all, our model
allows us to talk about programming languages at any level of abstraction. Sec-
ond, in the context of malware, programs are generally self-modifying. Programs
are treated as data objects and elements of Data are regarded as instructions. A
program text is variable, which is not the usual point of view in semantics, see
for example Gunter’s textbook [15]. Moreover, low level instructions, like in the
x86 case, are not of fixed size and a program can modifiy its code by instruc-
tion misalignment. So we think that our model of abstract machine is a right
approach to underpin our study on malware behavior detection.

As said before, dynamic analysis and detection rely on capture and analysis
of execution data. This data may be the sequence of instructions being executed,
the sequence of system calls (i.e. calls to system code), etc. Other approaches may
capture yet higher-level actions of a program, for instance network interactions,
file system accesses, inter process communications (IPC), register usage statistics
or any data that can be used to characterize a behavior. Our framework aims at
dealing with any kind of the above data using an alphabet Σ.

We first formalize the capture of some execution data, represented by elements
of Σ, in the machine M.

Definition 1 (Capture operator). A capture operator with respect to Σ is an
operator π : Configurations→ Σ∪{ε} which associates with some configuration
the captured data if any, and ε otherwise.

Note that in the general case, captured data of a configuration cn may depend on
the history of the execution i.e. on configurations ci1 . . . cik

for i1 . . . ik ∈ [1..n−1]
at previous times. This is needed for example to compute register usage statistics
or to capture non atomic behaviors (for instance “smtp connection” which is the
combination of a network connection and reception of the message “220 .* SMTP
Ready”). For the sake of simplicity, for defining π, we do not consider ci1 . . . cik

.
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From now on, in our examples, we consider more specifically the operator
capturing library calls, including system calls.

Definition 2 (Execution trace). LetM be a machine, e = c1 . . . cn an execu-
tion ofM and π a capture operator with respect to Σ. Then π (c1) . . . π(cn) ∈ Σ∗

is the execution trace of the execution e of M with respect to π, denoted π(e).

In the following, we will call trace language of a machineM with respect to the
capture operator π, the set of execution traces ofM with respect to π. We denote
it by Tracesπ (M), or simply Traces (M) when π is clear from the context. We
can now formally define the notion of behavior we want to detect in a program,
with respect to some capture operator.

Definition 3 (Behavior pattern). A regular behavior pattern B is a regular
language on Σ. We call simple behavior pattern an element of B.

A behavior pattern does not necessarily describe a malicious behavior in itself.
It can describe an innocuous behavior – e.g. creating a process, opening a file,
sending a mail – or a relevant behavior sequence, possibly modulo shuffling of
independent actions. It can also represent a more specific behavior which is
shared by different malicious codes.

Example 1. Throughout this paper, we consider the example of the Allaple
worm, a polymorphic network worm. A simplified excerpt of the code of its
variant Allaple.A is given in [5]. It contains three behavior patterns: the ping
of a remote host, the opening of a Netbios connection and the scanning of local
drives. An example of execution trace of this excerpt is the following sequence
of library calls:
...GetLogicalDriveStrings.GetDriveType.FindFirstFile.
FindFirstFile.FindNextFile...

This trace exhibits the behavior pattern which describes the scanning of local
drives: GetLogicalDriveStrings.GetDriveType.FindFirstFile.

4 Trace Abstraction

Given some machine, recall that our goal is to abstract its execution traces, by re-
placing concrete behavior patterns by more abstract representations, expressing
their functionality, in order to compare them to reference malicious behaviors.

In this section, we formally define the abstraction of a program trace with
respect to behavior patterns. We start with a simple behavior pattern, then
generalize abstraction to a regular behavior pattern and finally to a set of regular
behavior patterns. We show that abstraction can be viewed as a string rewriting
process where each behavior pattern is replaced by a new specific symbol.

4.1 Abstracting with Respect to a Simple Behavior Pattern

Let t ∈ B be a simple behavior pattern for some B. Let M be a machine and
u ∈ Tracesπ (M) an execution trace of M for some π. Identifying occurrences
of the pattern t in the trace u amounts to matching t to some subword of u.
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Let λ �∈ Σ be a new symbol denoting the abstraction of our pattern t. We
define Σ′ = Σ ∪ {λ}. Trace abstraction of u with respect to pattern t of Σ∗ is
defined by rewriting u with the string rewriting system R on Σ′∗, where R is
composed of a single rewrite rule: R = {t→ λ}.

Let→t denote the rewriting relation induced by R, which rewrites substrings:

∀u, v ∈ Σ′∗, u rewrites into v, which is written u→t v iff

∃u′ ∈ Σ′∗, ∃u′′ ∈ Σ′∗,

{
u = u′ · t · u′′

v = u′ · λ · u′′ .

A trace has been abstracted when every occurrence of the pattern t has been
replaced by the abstract symbol λ. Thus abstraction of a trace is nothing but
normalization of that trace with respect to the SRS R. Note that R is not
confluent in general, so a trace may have several normal forms. Abstraction of a
trace can be naturally generalized to a trace language.

Example 2. Returning to our excerpt of the Allaple worm, suppose we are inter-
ested in detecting the previously defined behavior of scanning local drives. Then
t = GetLogicalDriveStrings.GetDriveType.FindFirstFile, and we define
λ = SCAN_DRIVES. The execution trace in Example 1 is thus abstracted into:
...SCAN_DRIVES.FindFirstFile.FindNextFile...

Note that we consider normal forms instead of partially reduced ones. In other
words, we require that every occurrence of a pattern that can be matched is
eventually rewritten. This allows to ensure that the computation of the ma-
licious behavior exhibited by a given malware is maximal. Also, this allows a
more precise detection of behaviors of the type “A followed by B, without C in
between”: partially rewriting a trace acb into AcB would then lead to a positive
detection, while the normal form ACB does not match the behavior.

4.2 Abstracting with Respect to a Regular Behavior Pattern

A behavior pattern can usually be achieved in different ways and malware writ-
ers may capitalize on this to perform functional polymorphism. For instance,
creating a file may be processed using different sequences of instructions: detec-
tion will only be interested in the functionality expressed by these sequences, not
in their implementation details. Thus, we now consider the case of a behavior
pattern defined as a language, and more specifically as a regular language, as
presented in Definition 3. Indeed, regular patterns allow to account for example
for behaviors interleaved with other unrelated or irrelevant actions. For instance,
file writes may often be interleaved with other interactions with the system, e.g.
string manipulation functions.

Normalization now consists in rewriting a trace language with the rules trans-
forming into λ any simple pattern of a behavior pattern B, where B is a regular
language on Σ∗. Since B may be infinite, we consider a regular SRS (Σ, V, S,→)
recognizing B and we define relation →B on (Σ′ ∪ V )∗ as the rewriting relation
induced by→ ∪{S → λ}. Using the reflexive transitive closure of→B, we define
trace language abstraction with respect to a regular behavior pattern.
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Definition 4 (Abstract trace language). Let B be a regular behavior pattern,
and→B its associated rewriting relation. The abstract form of the trace language
L with respect to B, denoted by L ↓B, is defined by:

L ↓B = {v ∈ Σ′∗ | ∃u ∈ L, u→∗
B v and � ∃w ∈ Σ′∗, v →B w} .

The following theorem expresses that abstraction preserves regularity, which is
a fundamental characteristic of our approach.

Theorem 1. Let B be a regular behavior pattern and L a trace language. If L
is regular, then so is L ↓B.

Proofs of all theorems of the paper are given in [5].

Example 3. One could extend the previous pattern SCAN_DRIVES to account for
alternative library calls, e.g. calling FindFirstFileEx instead of FindFirstFile:
SCAN_DRIVES = GetLogicalDriveStrings.GetDriveType.(FindFirstFile
+FindFirstFileEx). This corresponds to the following SRS:

FindFirstFile→ A
FindFirstFileEx→ A
GetDriveType.A→ B

GetLogicalDriveStrings.B → SCAN_DRIVES .

4.3 Abstracting with Respect to a Set of Regular Behavior Patterns

Finally, we generalize abstraction to a set of behavior patterns. Indeed, in prac-
tice, a suspicious behavior can be expressed as the combination of several be-
havior patterns Bi, each of them abstracting into a distinct symbol λi.

Throughout this paper, we denote by Γ the set of symbols representing ab-
stractions of our behavior patterns and we extend Σ′ to Σ ∪ Γ .

Let C = {Bi | Bi ⊆ Σ∗}1≤i≤n be a finite set of regular behavior patterns re-
spectively associated with distinct symbols λi ∈ Γ .

As a relation →Bi is defined on (Σ′ ∪ Vi)
∗, the relation →C=

⋃
1≤i≤n

→Bi is

defined on (Σ′ ∪
⋃

1≤i≤n

Vi)∗. We extend trace language normalization to a set of

regular behavior patterns, and the trace language L is now normalized with →C
into the abstract trace language L ↓C.

Theorem 2. Let C be a finite set of regular behavior patterns. If L is regular,
then so is L ↓C.

4.4 Projecting the Abstract Trace Language on Γ

Once a trace language has been normalized with respect to some set of behavior
patterns, details that have not been processed by the normalization have to be
pruned. A completely abstracted trace language is indeed expected to be defined
on Γ , in order to be compared afterwards to reference abstract behaviors. This
pruning operation is performed by projecting the abstract trace language on Γ .
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Definition 5 (Γ -abstract trace language). Let C be a set of regular behavior
patterns. Let L be a trace language for some machine M. L̂ = L ↓C |Γ is called
the Γ -abstract trace language of M with respect to C.

Once the abstraction is complete, the simplified traces describe functionality-
related actions and are consequently more robust and less complex. As they
represent several different implementations of the same behavior, they allow to
deal with functional polymorphism.

We can then compare the language of Γ -abstracted traces to the behavior of
some known malware or to some generic malicious behavior defined on Γ .

Finally, the whole abstraction process could be repeated, as in Martignoni
et al’s layered architecture [19]. A first layer would look up behavior patterns
defined in terms of raw analysis data. A second layer would look up behavior
patterns defined in terms of patterns from the first layer, and so on. However,
this case is encompassed in our formalism. It suffices to define behavior patterns
from the final layer directly in terms of the raw analysis data, by composition of
the regular SRSs defining patterns of the different layers. The resulting patterns
thereby remain regular on Σ, so our formalism can still be applied.

5 Trace Abstraction Using Finite State Automata

When considering a single trace, the associated trace language is trivially repre-
sented by an automaton. But when this trace language describes the set of traces
Traces (M) of some machine M, this set is in general undecidable or at least
non-regular, so no automaton can precisely represent it. Nevertheless, one may
build a regular approximation of this trace language, which is usually twofold:

– the trace language is over-approximated, when replacing for instance an · bn

sequences (stemming from program loops for instance) by a∗ · b∗ sequences
or when coping with obfuscation or dynamic analysis shortcomings. The
resulting automaton then contains spurious traces (false positives).
Formally, if Traces (M) is over-approximated by L, then Traces (M) ⊆ L.

– the trace language is under-approximated, when some hidden code path is
not discovered or when some uninteresting path is discarded. The resulting
automaton then misses some traces (false negatives).
Formally, if Traces (M) is under-approximated by L, then L ⊆ Traces (M) .

Thus a trace automaton represents a regular approximation of the trace language
of some machine and can be defined as an automaton recognizing a part of the
traces ofM.

Definition 6 (Trace automaton). Given a machine M, a trace automaton
for M with respect to Σ is a finite-state automaton A on Σ such that:

∃S ⊆ Σ∗, S ⊆ Traces (M) ∧ S ⊆ L (A) .
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In order to construct the trace automaton of a machine, one may either use a
collection of captured traces or reconstruct the program machine code from its
binary representation. In the first case, the automaton is built in such a way that
the captured traces correspond to a path in the trace automaton. In the second
case, the machine code of the program can be reconstructed using common
techniques that combine static and dynamic analysis: it is then projected on the
trace alphabet and the trace automaton is inferred from the code structure.

Example 4. Figure 1 shows a trace automaton for the Allaple.A excerpt repre-
senting the ping of a remote host and the scanning of local drives.

GetLogicalDriveStrings

IcmpSendEcho GetDriveType FindNextFileFindFirstFile

GetDriveType FindFirstFile

FindFirstFile FindNextFile

FindNextFile

Fig. 1. Trace automaton for the Allaple. A excerpt.

By Theorem 2, the abstraction problem for a regular trace language now amounts
to computing an automaton recognizing the abstraction of this language. Con-
struction of this automaton, which we call abstract trace automaton, is described
in the proofs of the following theorems and uses a method proposed by Esparza
et al. [13]. It consists in modifying the initial trace automaton by adding new
transitions using the left hand sides of the rewriting rules and then intersecting
it with an automaton recognizing the words in normal form with respect to our
rewrite system.

Thus, the abstract trace automaton may be more complex than the initial
one, as shown by the Allaple worm example. Abstraction of the trace automaton
with respect to patterns SCAN_DRIVES and PING, where PING = IcmpSendEcho
describes the ping of a remote host, gives the automaton of Figure 2.

PING

GetDriveType FindFirstFile
GetDriveType

FindNextFileFindFirstFile
FindFirstFile FindNextFile

FindNextFile

GetLogicalDriveStrings

GetDriveType

SCAN_DRIVES ε
ε

ε

Fig. 2. Abstract trace automaton for the Allaple. A excerpt.
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Theorem 3. Let A be a trace automaton and C = {Bi}1≤i≤n a set of behavior
patterns recognized by regular SRSs {RBi}1≤i≤n. Let |C| =

∑
1≤i≤n

|RBi |.

Then an automaton of size O (|A|) recognizing L (A) ↓C |Γ can be constructed
in time O

(
|A|3 · |C|2

)
and space O

(
|A|2 · |C|2

)
.

The final abstraction of the Allaple.A excerpt, for Γ = {PING, SCAN_DRIVES},
is depicted in Figure 3.

PING
SCAN_DRIVES

Fig. 3. Γ -abstract automaton for the Allaple. A excerpt.

6 Application to Malware Detection

Using the abstraction framework defined in Section 4, malware detection now
consists in computing the abstract trace language of some machine and compar-
ing it to a database of malicious behaviors defined on Γ . These malicious behav-
iors either describe generic behaviors, e.g. sending spam or logging keystrokes, or
behaviors of specific malware. According to our abstraction formalism, malicious
behaviors are sets of particular combinations of behavior patterns abstractions.

Definition 7. A malicious behavior on Γ , or signature, is a language on Γ .

More specifically, a malicious behavior describes combinations of patterns, pos-
sibly interleaved with additional patterns which are irrelevant in these combina-
tions. For instance, we define the signature for the Allaple worm as the following
regular language, which explicitly allows interleaving of patterns that do not
match the upcoming pattern:

LOCAL_COM_SERVER · (Γ \ {PING})∗ · PING ·
(Γ \ {NETBIOS_CONNECTION})∗ · NETBIOS_CONNECTION .

The automaton representing the signature of Allaple is given in Figure 4.
Note that the SCAN_DRIVES pattern, which is present in the Γ -abstract trace
automaton of the Allaple.A excerpt, does not appear here because the signature
describes a common discriminating behavior exhibited by all samples of Allaple.

Definition 8. Let Lm be a malicious behavior on Γ . A machine M, with a
Γ -abstract trace language L̂, exhibits the malicious behavior Lm iff there exists
v ∈ Lm and u ∈ L̂ such that u = u1vu2, where u1, u2 ∈ Γ ∗.
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LOCAL_COM_SERVER

Γ\{PING}

PING

Γ\{NETBIOS_CONNECTION}

NETBIOS_CONNECTION

Fig. 4. Allaple signature

Thus,M exhibits the behavior Lm if some subword of an abstract trace of L̂ is
in Lm. Our malicious database is then a set D of malicious behaviors. A machine
M is malicious with respect to D if it exhibits some malicious behavior of D.

L̂ can be constructed either from a single captured trace or from a whole trace
language. In the first case, the detection process is lighter. In the second case, we
get a better description of the program behavior, so detection is more reliable.

When L̂ is represented by an automaton A and Lm by an automaton Am,M
exhibits the behavior Lm when the following holds. Let A′

m be the automaton
recognizing the set of words containing a subword in Lm: A′

m is constructed from
Am by adding loops labelled by symbols of Γ on the initial state and the final
states of Am. ThenM exhibits the behavior Lm iff L (A) ∩ L (A′

m) �= ∅.
The malicious database is then represented by an automaton AD which is the

union of the automata Am representing the signatures and may be minimized.

Theorem 4. Let D be a set of regular malicious behaviors on Γ , recognized by an
automaton AD. LetM be a machine, with a Γ -abstract trace language recognized
by an automaton A. Then deciding whether M is malicious with respect to D
takes time: O

(
|AD|2 · |A|2

)
.

Note that runtime detection could be efficiently implemented from these results,
since all constructions (Γ -abstraction, automata intersection) are incremental.

Now, infection could be defined more intuitively and more generally in the
following way: behavior patterns, instead of representing building blocks of a
malicious behavior, could directly represent a malicious behavior, which would
then be defined on Σ.

Definition 9. Let C be a set of behavior patterns. Let M be a machine, with a
trace language L. M is malicious if L ↓C|Γ �= {ε}.

With the above detection model, we lose the expressive power of abstraction
and the robustness of our detection model. But on the other hand, detection is
performed by the sole process of normalization.

7 Implementation and Experiments

We implemented the presented techniques in a tool which is able to capture
execution traces of a given program, to build its trace automaton, to abstract
it with respect to a set of predefined behavior patterns and to compare it to a
malware database.
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Setting up the detection environment. In order to avoid static analysis short-
comings and to ignore unreachable code, we use dynamic analysis to construct
a trace automaton for some program loaded into a machine. The program is
instrumented using Pin [3], which allows us to collect library calls along with
their arguments while the program is running. Other instrumentation tools, like
Dynamorio [1], could have been utilized with similar results. Instrumentation al-
lows us to perform low-level analysis of the execution and to have a tight control
over the program. In particular, our instrumentation tool handles threads, child
processes and hooks, and features a simple data flow analyzer which relates call
arguments to previously used data. In order to reduce the size of captured traces
and to capture the behavior of a program at a source code level, we only col-
lect library calls directly made from the program code, ignoring calls originating
from libraries themselves.

When an execution trace is captured, we construct a trace automaton by as-
sociating a state with each different instruction pointer responsible for making
a library call. Threads are handled by associating a state with a set of instruc-
tion pointers. Additional execution traces can be used to complete the trace
automaton. Automata are manipulated with the OpenFST library [2].

Behavior patterns are defined after observing malicious execution traces and
extracting basic sequences likely to be part of a malicious behavior. These pat-
terns often define usual interactions of the program with the system or the
network. Once extracted, a sequence either defines a new behavior pattern or
extends an existing pattern.

The malware database is a collection of malicious behaviors, which is built
from a set of generic signatures along with signatures of known malware, con-
structed using their Γ -abstract trace automata. The resulting database automa-
ton is minimized in order to speed up detection.

Experiments. To test our detection method, samples of malicious programs were
collected using a honeypot1 and identified using Kaspersky Antivirus.

We defined 40 behavior patterns, extended to allow data constraints express-
ing properties about the arguments of the calls (see [5]). These constraints are
compatible with our formalism and amount to modify the trace automaton by
adding transitions denoting the verification of a constraint. Examples of such pat-
terns include writing to system files, persisting oneself in the Windows registry
or browsing drives and files. A complete abstraction example for the Agent.ah
worm is also given in [5].

Three experimentation scenarios were defined. In a first setting, we define
signatures for given malware families, by analysis and Γ -abstraction of a few
samples. Samples from different variants of each family are then compared to
the signatures: several of these variants are new, i.e. they were not considered
when defining the signatures. This allows us to test the applicability of our
approach and its robustness against mutation. In a second setting, a more general
signature is defined for a common malicious behavior encountered in different

1 The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr

http://lhs.loria.fr
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malware families. Several malicious samples are then tested, in order to find out
which samples exhibit this behavior. This allows us to test the expressive power
of behavior abstraction. In a third setting, sane applications are tested, to ensure
that the rate of false positives is low.

We tested the above settings on known malware families, among which Allaple,
Virut, Agent, Rbot, Afcore and Mimail. In particular, our honeypot shows that
Allaple, Virut and Agent are currently among the most active worms, which
makes their analysis particularly relevant.

In the first scenario, we constructed a signature for Allaple (Figure 4) and
abstracted samples from the variants a, b, d and e. Three of them were suc-
cessfully matched to the signature. The fourth variant made use of Windows
services, which our instrumentation tool does not currently handle. The same
scenario was repeated for Virut, with its variants ai, ak, ao, n, q and r. Detection
was again successful for four of them, although another technical shortcoming
was encountered, stemming from the inability of our tool to instrument injected
code called in remote threads.

For the second scenario, the signature is a generic malicious behavior describ-
ing malware replication, defined by the following patterns: injection of its own
code in foreign live processes, duplication on logical drives, duplication on net-
work shares, creating a local COM server, and registering an OLE component.

We then analyzed 39 variants from 16 malware families, among which: Agent,
Mimail, Avron, Drefir. . . Samples of these variants were abstracted and com-
pared to the previous behavior. Twenty of them were successfully matched.

For the last scenario, we abstracted traces of common applications, among
which: Notepad, Firefox, VLC. . . All of them failed to exhibit a malicious be-
havior from the previous experiments.

8 Conclusion and Future Work

In this paper, we have presented a new malware detection approach using ab-
stract representations of malicious behaviors to identify malicious programs.
Programs to analyze, represented as trace languages, are abstracted by rewriting
with respect to elementary behavior patterns, defined as regular string rewriting
systems. Abstractions are then compared to a database of abstract malicious
behaviors, wich describe combinations of the former patterns.

Abstraction is the key notion of our approach. Providing an abstracted form
of program behaviors and signatures allows us to be independent of the program
implementation, to handle similar behaviors in a generic way and thus to be
robust with respect to existing and future variants. The strength of our tech-
nique lies also in the fact that abstract malicious behaviors are combinations
of elementary patterns: this allows us to efficiently summarize and compact the
possible combinations likely to compose suspicious behaviors. Moreover, mali-
cious behaviors are easy to update since they are expressed in terms of basic
blocks. Behavior patterns themselves, as they describe basic functionalities, are
easier to update than if they had described more complex ones.
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Behavior abstraction may also prove useful in similarity analysis of malicious
programs. Like for detection, the use of abstract representations of programs
makes the analysis resilient to functional polymorphism and to minor changes.

We plan to extend our approach in several directions. The first one is con-
cerned with data flow analysis. The behavior patterns we define are unable to
express that the actions they match are actually related. Data flow information
would allow to address this question. While this issue is not very relevant when
matching local behaviors (eg. writing data to a file), it becomes more important
when specifying wider behaviors which spread over large execution sequences.
Work is in progress to handle data flow by using model checking with temporal
logic formulae with parameters.

The second extension is concerned with interleaved behavior pattens. When
two behavior patterns are interleaved in an execution trace, our approach can
only match one pattern out of the two since, while rewriting the first one, the
second will be consumed. Although interleaving does not occur very often in
practice since common behavior patterns are small and not very prone to inter-
leaving, we intend to propose non-consuming approaches to pattern abstraction.

Also, we would like to improve the construction of a trace automaton approx-
imating a trace language. When it is built from execution traces, meaningless
paths are created by interference between relevant paths. This increases the
matching possibilities between the abstract trace automaton and the malicious
signatures, which impacts the precision of the detection. A solution would be to
duplicate function calls in the automaton when appropriate.

Lastly, captured traces do not give an exhaustive view of all possible execu-
tions and some interesting behaviors may only be observed when some conditions
are met. We could use existing tools identifying these conditions. Sage [14] and
BitScope [8] use symbolic execution to systematically discover new execution
paths. Moser et al. [20] also address this problem in the malware context by
monitoring how certain inputs impact the control flow and by instrumenting
these inputs to drive the execution.
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Abstract. Researchers have developed a number of runtime verification

tools that generate runtime monitors in the form of AspectJ aspects. In

this work, we present Clara, a novel framework to statically optimize

such monitoring aspects with respect to a given program under test.

Clara uses a sequence of increasingly precise static analyses to auto-

matically convert a monitoring aspect into a residual runtime monitor.

The residual monitor only watches events triggered by program locations

that the analyses failed to prove safe at compile time. In two-thirds of

the cases in our experiments, the static analysis succeeds on all locations,

proving that the program fulfills the stated properties, and completely

obviating the need for runtime monitoring. In the remaining cases, the

residual runtime monitor is usually much more efficient than a full mon-

itor, yet still captures all property violations at runtime.

1 Introduction

Finite-state properties, also known as typestate [1] properties, constrain the set
of acceptable operations on a single object or a group of objects, depending on
the object’s or group’s history. Many formalisms allow programmers to easily ex-
press typestate properties, including linear temporal logic, regular expressions,
message sequence charts and live sequence charts [2, Chapter 2]. Potential ap-
plications of runtime monitoring include the evaluation of arbitrary queries over
the runtime program state and the enforcement of stated properties. For in-
stance, a monitor could detect attempts to circumvent an access-control policy
and then either log the attempt or stop the detected unauthorized access. Re-
searchers have proposed and implemented runtime monitoring tools [3,4, 5, 6,7]
which compile high-level temporal specifications into monitor implementations.

While runtime monitoring could be useful for finding violations in practice, it
is subject to the same problems as software testing. Runtime monitoring gives no
static guarantees: a particular program run can only prove the presence of prop-
erty violations, not their absence. Hence, developers and testers must exercise
judgment in deciding when to stop monitoring program runs, since exhaustive
testing is generally infeasible. Furthermore, although significant advances have
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been made [8, 9, 10], runtime monitors can still slow down monitored programs
significantly, sometimes by several orders of magnitude.

In this paper we therefore propose Clara, a framework for partially evaluat-
ing runtime monitors at compile time. Partial ahead-of-time evaluation addresses
all of the problems mentioned above. Clara specializes a given runtime moni-
tor to a program under test. The result is a residual runtime monitor that only
monitors events triggered by program locations that the analyses failed to prove
safe at compile time. In our experiments, Clara’s analyses can prove that the
program is free of program locations that could drive the monitor into an error
state in 68% of all cases. In these cases, Clara gives the strong static guarantee
that the program can never violate the stated property, eliminating the need
for runtime monitoring of that program. In many other cases, the residual run-
time monitor will require much less instrumentation than the original monitor,
therefore yielding a greatly reduced runtime overhead. In 65% of all cases that
showed overhead originally, no overhead remains after applying the analyses.

Clara’s principal design goal is to provide a maximally general framework
for statically analyzing runtime monitors. We anticipate that Clara will appeal
to researchers in runtime verification, as it supports a large variety of runtime
monitoring tools. Researchers in static analysis, on the other hand, can easily
extend Clara with novel static analyses to understand and optimize runtime
monitors even further. How do we achieve this generality? Clara’s design is
based on the crucial observation that most current runtime-verification tools
for Java share two common properties: (1) internally, they use a finite-state-
machine model of the property, and (2) they generate runtime monitors in the
form of AspectJ aspects [11]. Figure 1 shows a state-machine model for the
“ConnectionClosed” property: a disconnected connection should not be written
to, unless the connection is potentially reconnected at some later point. Figure 2
shows a monitoring aspect for this property. The remainder of the paper explains
this aspect and its analysis in more detail. Clara takes such monitoring aspects
as input and weaves the aspects into the program under test. While weaving,
Clara conducts static analyses, suppressing calls to the monitoring aspect when
it can statically prove that these calls are unnecessary.

To perform its static analysis, Clara must understand the monitoring as-
pect’s internal transition structure. Because every aspect-generating monitoring
tool uses a different code-generation strategy, and we wish to be independent
of that strategy, Clara expects the monitoring aspect to carry an annotation

s0 s1 s2

close

reconnect

close, reconnect, write

write

close write

Fig. 1. “ConnectionClosed” typestate property: no write after close
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1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();

3

4 dependent after close(Connection c) returning:

5 call(∗ Connection.disconnect()) && target(c) { closed.add(c); }
6

7 dependent after reconn(Connection c) returning:

8 call(∗ Connection.reconnect()) && target(c) { closed.remove(c); }
9

10 dependent after write(Connection c) returning:

11 call(∗ Connection.write (..)) && target(c) {
12 if (closed .contains(c))

13 error(”May not write to ”+c+”: it is closed !”); }
14

15 dependency {
16 close , write , reconn;

17 initial s0: close −> s0, write −> s0, reconn −> s0, close −> s1;

18 s1: reconn −> s0, close −> s1, write −> s2;

19 final s2: write −> s2;

20 } }

Fig. 2. “ConnectionClosed” aspect with Dependency State Machine

encoding the monitor’s transition structure explicitly—a Dependency State Ma-
chine. Figure 2 shows this annotation in lines 15–20. Most runtime verification
tools can easily generate such a state-machine annotation because they internally
use a state-machine model of the monitored property. For our experiments, we
extended the implementation of tracematches [3] to generate the annotations
automatically; we are currently talking to the developers of JavaMOP about
extending their tool to generate annotations, too.

In this paper we present the following original contributions:

– We present Clara, an extensible open framework to evaluate AspectJ-based
finite-state runtime monitors ahead of time.

– We explain the syntax and semantics of Dependency State Machines, Clara’s
mechanism to interface with existing runtime-monitoring tools.

Further, we summarizeClara’s three predefined static analyses and show through
a large set of experiments that, in many cases, these analyses can evaluate runtime
monitors ahead of time, either largely reducing runtime overhead or entirely obvi-
ating the need for monitoring at runtime.

2 The Clara Framework

Clara targets two audiences: researchers in (1) runtime verification and (2)
static typestate analysis. Clara defines clear interfaces to allow the two com-
munities to productively interact. Developers of runtime verification tools simply
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Clara

abc compiler

abc compiler,

JavaMOP, . . .

tracematches,

PTLTL, FTLTL,

ERE, . . .

compile & weave

program
AspectJ aspects annotated

with Dependency

State Machines

specification compiler

finite-state specification

static analysis engine

partitioning

ranking heuristics

optimized instru-

mented program

collaborative optimized

instrumented program

potential failure

points (ranked)

programmer

component designer,

QA engineer, . . .

runtime

monitor

test-run

inspect

hand-write

define

Fig. 3. Overview of Clara

generate AspectJ aspects annotated with semantic meaning, in the form of De-
pendency State Machines. Static analysis designers can then create techniques
to reason about the annotated aspects, independent of implementation strategy.

Figure 3 gives an overview of Clara. A software engineer first defines (top
right of figure) finite-state properties of interest, in some finite-state formalism for
runtime monitoring, such as Extended Regular Expressions or Linear-Temporal
Logic, e.g. using JavaMOP or tracematches. The engineer then uses some spec-
ification compiler such as JavaMOP or the AspectBench Compiler [12] (abc) to
automatically translate these finite-state-property definitions into AspectJ moni-
toring aspects. These aspects may already be annotated with appropriate Depen-
dency State Machines: we extended abc to generate annotations automatically
when transforming tracematches into AspectJ aspects. Other tools, such as Java-
MOP, should also be easy to extend to generate these annotations. If the specifica-
tion compiler does not yet support Dependency State Machines, the programmer
can easily annotate the generated aspects by hand.

Clara then takes the resulting annotated monitoring aspects and a program
as input. Clara first weaves the monitoring aspect into the program. The De-
pendency State Machine defined in the annotation provides Clara with enough
domain-specific knowledge to analyze the woven program. We will further explain
Clara’s predefined analyses in Section 4. The result is an optimized instrumented
program that updates the runtime monitor at fewer locations. Sometimes, Clara

optimizes away all updates, which proves that the program cannot violate the
monitored property.

Clara also supports Collaborative Runtime Verification, which distributes
instrumentation overhead among multiple users; and ranking heuristics, which
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aid programmers in inspecting remaining instrumentation manually [13] [2, Ch.
6 & 7]. Space limitations preclude us from discussing ranking and Collaborative
Runtime Verification here.

Clara is freely available as free software at http://bodden.de/clara/,
along with extensive documentation, the first author’s dissertation [2], which
describes Clara in detail, and benchmarks and benchmark results.

We next describe the syntax and semantics of Dependency State Machines, the
key abstraction of Clara. This abstraction allows Clara to decouple runtime
monitor implementations from static analyses.

3 Syntax and Semantics of Dependency State Machines

Dependency State Machines extend the AspectJ language to include semantic
information about relationships between different pieces of advice. Runtime ver-
ification tools which generate AspectJ aspects can use this extension to produce
augmented aspects. Clara can reason about the augmented aspects to prove
that programs never violate monitored properties or to generate optimized code.

3.1 Syntax

Our extensions modify the AspectJ grammar in two ways: they add syntax for
defining Dependent Advice [14] and Dependency State Machines. The idea of
Dependent Advice is that pieces of monitoring advice are often inter-dependent
in the sense that the execution of one piece of advice only has an effect when
executing before or after another piece of advice, on the same objects. Depen-
dency State Machines allow programmers to make these dependencies explicit
so that static analyses can exploit them. Our explanations below refer to the
ConnectionClosed example in Figure 2.

The dependent modifier flags advice to Clara for potential optimization;
such advice may be omitted from program locations at which it provably has no
effect on the state of the runtime monitor. Dependent advice must be named.
Lines 4, 7 and 10 all define dependent advice.

The Dependency State Machines extension enables users to specify state ma-
chines which relate different pieces of dependent advice. Dependency State Ma-
chine declarations define state machines by including a list of edges between
states and an alphabet; each edge is labelled with a member of the alphabet.
Clara infers the set of states from the declared edges. Line 16 declares the
state machine’s alphabet: {disconn, write, reconn}. Every symbol in the al-
phabet references dependent advice from the same aspect. Lines 17–19 enumer-
ate, for each state, a (potentially empty) list of outgoing transitions. An entry
“s1: t -> s2” means “there exists a t-transition from s1 to s2”. Users can
also mark states as initial or final (error states). Final states denote states
in which the monitoring aspect “matches”, i.e., produces an externally visible
side effect like the error message in our example (line 13, Figure 2).

The first author’s dissertation [2, page 134] gives the complete syntax for De-
pendency State Machines and also explains sanity checks for these annotations;

http://bodden.de/clara/


188 E. Bodden, P. Lam, and L. Hendren

e.g., each state machine must have initial and final states. Note that these checks
are minimal and support a large variety of state machines so that Clara can
support many different runtime verification tools. For instance, we allow multiple
initial and final states and we allow the state machine to be non-deterministic.

3.2 Semantics

The semantics of a Dependency State Machine refine the usual advice-matching
semantics of AspectJ [15]. In AspectJ, pieces of advice execute at “joinpoints”,
or intervals of program execution. Programmers use “pointcuts”, predicates over
joinpoints, to specify the joinpoints where advice should apply. In Figure 2, the
expression call(∗ Connection.disconnect()) && target(c) is a pointcut that picks
out all method calls to the disconnect method of class Connection. When the
pointcut applies, it binds the target object of the call to variable c.

Let A be the set of all pieces of advice and J be the set of all joinpoints that
occur on a given program run. We model advice matching in AspectJ as follows:

match : A× J → {β | β : V ⇀ O} ∪ {⊥}.

Given advice a ∈ A and a joinpoint j ∈ J , match(a, j) is ⊥ when a does not
execute at j. If a does execute, then match(a, j) yields a variable binding β,
which maps a’s formal parameters to objects.

Our formal semantics for Dependency State Machines will provide a replace-
ment for match, called stateMatch, that determines the cases in which a depen-
dent piece of advice needs to execute: informally, a dependent advice a must
execute when (1) AspectJ would execute a and (2) when not executing a at
j would change the set of joinpoints for which the Dependency State Machine
reaches its final state for a binding compatible with β. (We define “compatible”
later.) An optimal implementation, which determines exactly all cases in which a
dependent advice does not need to execute, is un-computable, as it would have to
anticipate the future behaviour (and inputs) of the program. The trick is there-
fore to implement statically computable approximations to stateMatch. At the
end of this section, we will present a soundness condition for stateMatch. This
condition uses the set of possible future behaviours to describe the permissible
(sound) implementations of stateMatch.

Semantics by example. Figure 4 contains a small example program that helps ex-
plain the intuition behind our semantics. The program triggers joinpoints which
the ConnectionClosed aspect monitors. AspectJ calls a program point that trig-
gers a joinpoint j the “joinpoint shadow” of j, or just “shadow” [16] for short.

Formal semantics. Our semantics of Dependency State Machines describe the
set of program traces which cause the state machines to reach their final states.
Note, however, that there is a mismatch between the usual semantics for 1) state
machines and 2) program traces: state machines are not aware of variable bind-
ings. We will call the traces that arise from program executions parameterized
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1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]),
3 c2 = new Connection(args[1]);
4 c1.write(args [2]); // write(c1): irrelevant shadow−stays in same state
5 c1. close (); // close(c1)
6 c1. close (); // close(c1): also irrelevant
7 c1.write(args [2]); // write(c1): violation−write after close on c1
8 c1. close (); // close(c1): irrelevant−no subsequent writes on c1
9 c2.write(args [2]); // write(c2): write , but on c2, hence incompatible with 8

10 }

Fig. 4. Example program

traces [17]. To apply Dependency State Machines to parameterized traces, we
project a parameterized trace onto a set of ground traces, which the Depen-
dency State Machine can process, obtaining one ground trace for every variable
binding.

We will also define the semantics of Dependency State Machines in terms of
“events”, not joinpoints. A joinpoint describes a time interval, while an event is
an atomic point in time. Events simplify reasoning by prohibiting nesting.

Event. Let j be an AspectJ joinpoint. Then j induces the pair of events jbefore

and jafter, which occur at the beginning and end of j. For any set J of joinpoints
we define the set E(J ) of all events of J as: E(J ) :=

⋃
j∈J {jbefore, jafter}. We

write E instead of E(J ) when J is clear from context.
For any declaration of a Dependency State Machine, the list of dependent

advice names forms an alphabet Σ. For instance, the alphabet for Connection-
Closed from Figure 2 is Σ = {disconn, write, reconn}.
Parameterized events. Let e ∈ E be an event and Σ be the alphabet of
advice references in the declaration of a Dependency State Machine. We define
the parameterized event ê as follows:

ê :=
⋃

a∈Σ

{(a, β) | β = match(a, e) ∧ β �= ⊥}.

Here, match(a, e) is AspectJ’s matching function, lifted to events; it therefore
maps advice/event pairs to variable bindings, returning parameterized events.
We label the set of all possible parameterized events Ê . Projection maps param-
eterized event traces (Ê∗) to “ground traces” (Σ∗).

Projected event. For every parameterized event ê ∈ Ê and binding β we may
project ê with respect to β:

ê ↓ β := {a ∈ Σ | ∃(a, βa) ∈ ê such that compatible(βa, β)},

where compatible means that β1 and β2 agree on their joint domains:

compatible(β1, β2) := ∀v ∈ (dom(β1) ∩ dom(β2)) : β1(v) = β2(v).
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In this predicate, dom(βi) denotes the domain of βi, i.e., the set of variables
where βi is defined.

Parameterized and projected event trace. Any finite program run induces
a finite parameterized event trace t̂ = ê1 . . . ên ∈ Ê∗. For any variable binding β
we define a set of projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the smallest
subset of Σ∗ for which:

∀t = e1 . . . en ∈ Σ∗ : if ∀i ∈ N with 1 ≤ i ≤ n : ei ∈ êi ↓ β then t ∈ t̂ ↓ β

We call such traces t, which are elements of Σ∗, “ground” traces; parameterized
traces are instead elements of Ê∗.

A Dependency State Machine will reach its final state (and the related aspect
will have an observable effect, e.g., will issue an error message) whenever a prefix
of one of the ground traces of any variable binding is in the language described
by the state machine. This yields the following definition.

Set of non-empty ground traces of a run. Let t̂ ∈ Ê∗ be the parameterized
event trace of a program run. Then we define the set groundTraces(t̂) of non-
empty ground traces of t̂ as:

groundTraces(t̂) :=

⎛⎝ ⋃
β∈B

t̂ ↓ β

⎞⎠ ∩Σ+

We intersect with Σ+ to exclude the empty trace, which contains no events and
hence cannot cause the monitoring aspect to have an observable effect.

The semantics of a Dependency State Machine. We define the semantics of
Dependency State Machines as a specialization of the AspectJ-inspired predicate
match(a, e), which models the decision of whether or not the dependent advice
a ∈ A matches at event e ∈ E , and if so, with which variable binding. We call
our specialization stateMatch and define it as follows:

stateMatch : A× Ê∗ × N → {β | β : V ⇀ O} ∪ {⊥}
stateMatch(a, t̂, i) :=

let β = match(a, e) in{
β if β �= ⊥ ∧ ∃t ∈ groundTraces(t̂) such that necessaryShadow(a, t, i)
⊥ otherwise

Note that stateMatch considers the entire parameterized event trace t̂, plus the
current position i in that event trace. In particular, the trace t̂ contains future
events. The function stateMatch is therefore under-determined. This is inten-
tional. Even though it is impossible to pass stateMatch all of its arguments,
static analyses can approximate all possible future traces.

We have left a parameter necessaryShadow in the definition of stateMatch.
This parameter may be freely chosen, as long as it meets the soundness condition
defined below. A static optimization for Dependency State Machines is sound if
it meets the soundness condition.
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Soundness condition. The soundness condition requires that an event be mon-
itored if we would miss a match or obtain a spurious match by not monitoring
the event. A Dependency State Machine M matches, i.e., causes an externally
observable effect, after every prefix of the complete execution trace that is in
L(M), the language that M accepts.

Matching prefixes of a word. Let w ∈ Σ∗ and L ⊆ Σ∗. Then the matching
prefixes of w (with respect to L) are the set of prefixes of w in L:

matchesL(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps} ∩ L

Soundness condition. For any sound implementation of necessaryShadow we
require:

∀t = t1 . . . ti . . . tn ∈ Σ+. ∀i ≤ n ∈ N.

matchesL(M)(t1 . . . ti−1titi+1 . . . tn) �= matchesL(M)(t1 . . . ti−1ti+1 . . . tn)
=⇒ necessaryShadow(ti, t, i)

The soundness condition hence states that, if we are about to read a symbol
ti, and the monitoring aspect hits the final state when processing the complete
trace t but not when processing the partial trace which omits ti, or the other
way around, then we must monitor ti.

Note that Clara’s semantics assume that the advice associated with De-
pendency State Machines implement the monitor’s transition structure. In par-
ticular, any dependent advice which does anything beyond computing a state
transition must be marked final. Tools which generate Dependency State Ma-
chines, or programmers who write them, must take this semantics into account.

4 Clara as a Framework

Version 1.0 of Clara includes three sound static analyses which eliminate irrel-
evant shadows. Recall from Figure 3 that Clara executes these analyses imme-
diately after weaving; the analyses plug into its static analysis engine. Analyses
may access all declared Dependency State Machines and the woven program.
The analyses also receive a list of joinpoint shadows.

For every shadow s, Clara exposes the following pieces of information:

– The dependent piece of advice a that s invokes, along with the name of a
and a list of variables that a binds.

– The source code position of s.
– The dynamic residue of s, which abstractly represents the runtime check that

determines whether a will actually execute. A static analysis can disable s
by setting its residue to the constant “NeverMatch”.

– A mapping from the variables that a binds at s to a points-to set [18] that
models all objects that these variables could possibly point to.
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Clara comes pre-equipped with three analyses that all aim to determine
“irrelevant shadows”. Such shadows must return false for necessaryShadow;
in other words, disabling an irrelevant shadow must preserve the behaviour of
the runtime monitor. An analysis disables a shadow by modifying its dynamic
residue to never match.

The QuickCheck [14], Clara’s first analysis stage, quickly computes whether
all shadows for a particular property are irrelevant because they do not suffice to
reach a final state; if so, it removes all of the shadows for that property. The second
analysis stage, the Orphan Shadows Analysis [14] takes pointer information
into account to find more specific sets of shadows, related by pointer information,
which can all be disabled. Clara uses a flow-insensitive and context-sensitive,
demand-driven, refinement-based pointer analysis [18] to determine which events
may occur on which groups of compatible variable bindings. The third stage, the
Nop Shadows Analysis [19], explicitly takes the program’s control flow into ac-
count. Using a backwards pass, the Nop Shadows Analysis first determines for
every shadow s a tri-partitioning of automaton states: states from which the re-
mainder of the program execution will, may, or won’t reach the final state. Next,
the Nop Shadows Analysis uses a forward pass to determine the possible automa-
ton states at s. If s may only transition between states in the same equivalence
class, then the analysis can soundly disable s.

We described all of three analyses in earlier work in [2,14,19]; the dissertation
also includes soundness proofs. In this paper, however, we describe for the first
time the common framework that makes these analyses accessible to various
AspectJ-based runtime monitoring tools.

Adding Analyses to Clara

Clara allows researchers to add their own static analyses to the static analysis
engine at any point. The Clara website provides an empty skeleton exten-
sion for researchers to fill in. Analyses execute, in sequence, immediately after
weaving. Clara executes the three default analyses in the order in which we
described them above: quick ones first, more complex ones later. In many cases,
even simple analyses like the Quick Check are already powerful enough to rec-
ognize all shadows as irrelevant, which obviously simplifies the task of the more
complicated analyses.

Programmers can insert their own analysis at any point in the sequence, as a
so-called re-weaving pass. As the name suggests, a pass participates in a process
called re-weaving [20]: just after having woven the monitoring aspects into the
program, the AspectBench Compiler that underlies Clara executes the given
sequence of passes. Each pass may modify the so-called “weaving plan”, e.g., by
modifying the residues of joinpoint shadows. After all passes have finished, the
compiler then restores the original un-woven program version and re-weaves the
program using this new plan, this time then with fewer joinpoint shadows when
the analysis passes succeeded.
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5 Experimental Results

In this section we explain our empirical evaluation and our experimental results.
Due to space limitations, we can only give a summary of those results. The first
author’s dissertation [2] gives a full account.

Although one can apply Clara to any AspectJ-based runtime monitor, we
decided to restrict our experiments to monitors generated from tracematch spec-
ifications. This does not limit the generality of our results: in earlier work [14]
we showed that the relative optimization effects of our static analyses are largely
independent of the concrete monitoring formalism.

For our experiments we wrote a set of twelve tracematch [3] specifications for
different properties of collections and streams in the Java Runtime Library. Ta-
ble 1 gives brief descriptions for each of these properties. We selected properties
of the Java Runtime Library due to the ubiquity of clients of this library. Our
tracematch definitions are available at http://bodden.de/clara/benchmarks/.

Table 1. Monitored specifications for classes of the Java Runtime Library

property name description
ASyncContainsAll synchronize on d at calls to c.containsAll(d) for synchronized collections c, d
ASyncIterC only iterate a synchronized collection c when owning a lock on c

ASyncIterM only iterate a synchronized map m when owning a lock on m

FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream is closed
Writer do not use a Writer after its OutputStream is closed

We used Clara to instrument the benchmarks of version 2006-10-MR2 of
the DaCapo benchmark suite [21] with these runtime monitors. DaCapo con-
tains eleven different workloads of which we consider all but eclipse. Eclipse uses
reflection heavily, which Clara still has trouble dealing with. For our experi-
ments, we used the HotSpot Client VM (build 1.4.2 12-b03, mixed mode), with
its standard heap size on a machine with an AMD Athlon 64 X2 Dual Core
Processor 3800+ running Ubuntu 7.10 with kernel version 2.6.22-14 and 4GB
RAM. We summarize our results in Table 2.

As the table shows, instrumenting 109 out of the 120 cases require at least
one instrumentation point for runtime monitoring. (We mark other cases with
“-”.) Clara was able to prove (�) for 74 out of these 109 cases (68%) that the
program cannot violate the property on any execution. In these cases, monitoring
is unnecessary because Clara removes all instrumentation. 37 of the original
109 combinations showed a measurable runtime overhead. After applying the
static analysis, measurable overhead only remained in 13 cases (35%). These
cases often show significantly less overhead than without optimization.

http://bodden.de/clara/benchmarks/
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Table 2. Effect of Clara’s static analyses; numbers are runtime overheads in percent

before and after applying the analyses; �: all instrumentation removed, proving that

no violation can occur; >1h: run took over one hour

antlr bloat chart fop hsqldb
before after before after before after before after before after

ASyncContainsAll - - 0 0 � 0 0 � - - - -
ASyncIterC - - 140 0 � 0 0 � 5 0 � 0 0 �
ASyncIterM - - 139 0 � 0 0 � 0 0 � 0 0 �

FailSafeEnumHT 10 4 0 0 � 0 0 � 0 0 � 0 0
FailSafeEnum 0 0 � 0 0 � 0 0 � 0 0 0 0 �

FailSafeIter 0 0 � >1h >1h 8 8 14 0 � 0 0 �
FailSafeIterMap 0 0 � >1h 22027 0 0 7 MEM 0 0 �

HasNextElem 0 0 � 0 0 � - - 0 0 � 0 0 �
HasNext - - 329 258 0 0 0 0 � 0 0 �

LeakingSync 9 0 � 163 0 � 91 0 � 209 0 � 0 0 �
Reader 30218 0 � 0 0 � 0 0 � 0 0 � 0 0
Writer 37862 36 229 228 0 0 � 5 0 � 0 0

jython luindex lusearch pmd xalan
before after before after before after before after before after

ASyncContainsAll 0 0 0 0 � 0 0 � 0 0 � - -
ASyncIterC 0 0 0 0 � 0 0 � 28 0 � - -
ASyncIterM 0 0 0 0 � 0 0 � 35 0 � - -

FailSafeEnumHT >1h >1h 32 0 � 0 0 � 0 0 � 0 0 �
FailSafeEnum 0 0 30 0 � 18 0 � 0 0 0 0 �

FailSafeIter 0 0 5 0 � 20 0 2811 524 0 0 �
FailSafeIterMap 13 13 5 0 � 0 0 � >1h >1h 0 0 �

HasNextElem 0 0 12 0 � 0 0 � 0 0 0 0
HasNext 0 0 0 0 � 0 0 � 70 64 - -

LeakingSync >1h 0 34 0 � 365 0 � 16 0 � 0 0 �
Reader 0 0 0 0 � 77 0 � 0 0 0 0 �
Writer 0 0 0 0 � 0 0 � 0 0 0 0 �

Jython causes trouble for Clara because of its heavy use of reflection and
dynamic class loading. Due to these features, the pointer analysis that Clara

uses has to make conservative assumptions, yielding imprecise results. Clara

also performs less well on Iterator-based properties than on others. Because Java
programs usually create all iterator objects through the same new statement,
Clara requires context information to distinguish different iterators statically.
Our pointer analysis sometimes fails to generate enough context information,
leading to imprecision. For fop/FailSafeIterMap, our analysis ran out of memory,
despite the fact that we allowed 3GB of heap space.

The first author’s dissertation [2] presents detailed experiments and results.

6 Related Work

Clara’s static analyses can be considered to be typestate analyses. Strom and
Yemini [1] were the first to suggest the concept of typestate analysis. Recently,
researchers have presented several new approaches with varying cost/precision
trade-offs. We next describe the approaches most relevant to our work. We dis-
tinguish work in type systems, static verification and hybrid verification.

Type-system based approaches. Type-system based approaches define a type sys-
tem and implement a checker for that system. The checker prevents programmers
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from compiling potentially property-violating programs and gives strong static
guarantees. However, the type checker may reject useful programs which statically
appear to violate the stated property but never actually violate the property at
runtime.

DeLine and Fähndrich [22] as well as Bierhoff and Aldrich [23] present type
systems for object-oriented languages with aliasing. Bierhoff and Aldrich’s type
system is generally more permissive than DeLine and Fähndrich’s. To enable
modular analyses, both of these approaches require annotations in the target
program indicating state transitions and aliasing relationships. We do not require
annotations in the program; our approach infers state changes from advice.

Static analysis approaches. Unlike type systems, such approaches perform whole-
program analysis and, unlike hybrid approaches, have no runtime component.

Fink et al. present a static analysis of typestate properties [24]. Their ap-
proach, like ours, uses a staged analysis which starts with a flow-insensitive
pointer-based analysis, followed by flow-sensitive checkers. The authors’ analy-
ses allow only for specifications that reason about a single object at a time, while
we allow for the analysis of multiple interacting objects. Fink et al.’s algorithms
only determine “final shadows” that complete a property violation (like “write”
in our example) but not shadows that initially contribute to a property violation
(e.g. “close”) or can prevent a property violation (e.g. “reconnect”). Therefore,
their algorithms cannot generate residual runtime monitors.

Hybrid analysis approaches. Naeem and Lhoták present a fully context-sensitive,
flow-sensitive, inter-procedural whole-program analysis for typestate-like prop-
erties of multiple interacting objects [25]. Naeem and Lhoták’s analysis is fully
inter-procedural. Unfortunately, Naeem and Lhoták based parts of their analy-
sis on earlier work of ours [26] that turned out be unsound [19]. All of Clara’s
analyses provides have been proven sound [2].

Dwyer and Purandare use existing typestate analyses to specialize runtime
monitors [27]. Their work identifies “safe regions” in the code using a static
typestate analysis. Safe regions can be single statements, compound statements
(e.g. loops), or methods. A region is safe if its deterministic transition function
does not drive the typestate automaton into a final state. For such regions, their
analyses summarize the effect of this region and change the program under test
to update the typestate with the region’s effects all at once when the region is
entered. Because these specializations change the points at which transitions oc-
cur, they can make it harder for programmers to understand monitor behaviour.
Further, their approach cannot generally handle groups of multiple interacting
objects, while ours can.

7 Conclusion

We have presented Clara, a framework for partially evaluating finite-state run-
time monitors ahead-of-time using static analysis. Clara is compatible with any
runtime monitor that is expressed as an AspectJ aspect. To make any such aspect
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analyzable by Clara, users need only ensure that the aspect is annotated with
a Dependency State Machine, a textual finite-state-machine representation of
the property being verified. Dependency State Machines function as an abstract
interface, allowing researchers in runtime verification to implement monitor op-
timizations on one side of this interface and static-analysis researchers to imple-
ment static analyses on the other side. This way, Clara allows researchers from
two communities to integrate their approaches with each other.We have pre-
sented the syntax and semantics of Dependency State Machines and Clara’s
extensible static analysis engine, along with three analyses that we provide with
Clara. Through experiments with the DaCapo benchmark suite, we have shown
that Clara’s static analysis approach can greatly reduce the amount of instru-
mentation necessary for runtime monitoring in most Java programs. Our exper-
iments further revealed that this reduced amount of instrumentation yields a
largely reduced runtime overhead in many cases.

Clara is available as free, open-source software. We hope that other re-
searchers will soon be joining us in using Clara, and that its availability will
foster progress in the field of typestate analysis.
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14. Bodden, E., Chen, F., Roşu, G.: Dependent advice: A general approach to opti-

mizing history-based aspects. In: AOSD, pp. 3–14 (March 2009)

15. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: AOSD, pp. 26–35 (March

2004)

16. Masuhara, H., Kiczales, G., Dutchyn, C.: A compilation and optimization model

for aspect-oriented programs. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp.

46–60. Springer, Heidelberg (2003)
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Abstract. UML class and sequence diagrams are used as the basis for runtime
profiling along with either offline or online analysis to determine whether the
execution conforms to the diagrams. Situations where sequence diagrams are in-
tended to characterize all possible executions are described. The approach gen-
erates an execution tree of all possible sequences, using a detailed collection of
graph transformations that represent a precise operational semantics for sequence
diagrams, including treatment for polymorphism, multiple activations, reference
to other diagrams, and the use of frames in sequence diagrams. The sequence di-
agrams are also used to determine the information that should be gathered about
method calls in the system. Aspects that can follow the flow of messages in a
distributed system, are generated and the results of execution are recorded. The
execution tree is used to automatically check the recorded execution to detect
operations that do not correspond to any of the diagrams. These represent either
new types of sequence diagrams that should be added to the collection, or imple-
mentation errors where the system is not responding as designed. In either case,
it is important to identify such situations.

Keywords: runtime verification, UML class and sequence diagrams, execution
semantics, graph transformation, aspect-oriented profiling.

1 Introduction

Software models are increasingly used in different phases of the software development
life cycle. Here we consider class and sequence diagram models from the UML [1]
suite of design models, and use them as the basis for run-time verification and analysis
of implemented code. UML is a widely accepted/standardized modeling language for
Object-Oriented (OO) systems. Although many diagrams exist, the two most popular
are generally acknowledged to be class diagrams to describe the structure and interre-
lationships among the classes, and sequence diagrams to describe sequences of method
calls among objects that together describe important usage scenarios.
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Class diagrams list the fields and methods in each class, and show which classes
use other classes, which inherit from others, and multiplicities of classes in various
relationships with other classes. Sequence diagrams are commonly used for partially
documenting the behavior of the software system as interaction patterns among objects.
Due to polymorphism, conditional frames, and multiple activations, these diagrams can
represent many possible execution sequences and complex interactions.

Other notations for describing constraints, such as temporal logic, or even state dia-
grams and the Object Constraint Language (OCL) notations within UML, suffer from
low availability: they simply are not widely used in industrial contexts, and are less
likely to be updated as the system evolves. For example, UML state diagrams further
describe the behavior of a system by defining the internal states and transitions among
them for the classes (and objects derived from them). They are sometimes used to de-
scribe abstract versions of key protocols. However, it is actually rare to provide a full set
of state diagrams, since they are viewed as extraneous and considered to be low-level.

We need to make sure that the implementation is consistent with the diagrams. Since
user intervention, reaction, and decision-making are often involved in the use of such
reactive systems, runtime verification of conformance is needed, in addition to testing
and formal verification of the code. As explained in more detail in the related work
section, most other works on using UML to generate monitors concentrate on the class
diagrams. Even the few that use sequence diagrams do not treat necessary and common
features such as polymorphism, multiple activations, and tracing over multiple sequence
diagrams where one diagram refers to another.

Sequence diagrams have traditionally been used as a source for test cases that can be
executed on the implemented system to see whether an expected sequence of method
calls and responses occurs. This is reasonable if the sequence diagrams are seen simply
as describing some sample scenarios of interaction, that in no way prevent other uses
and orderings of method calls in the system. Sometimes this is indeed the approach
used by software developers to describe expectations from a particular class or method
within it: the overall behavior is implicitly understood by describing typical, but by no
means exhaustive, cases of its use.

However, there are many software systems with UML designs where the sequence di-
agrams are more exhaustive: each sequence diagram provides a transaction-like descrip-
tion of scenarios that once begun, should be completed, and the collection of sequence
diagrams is intended to show the entire possible use of the system. For a banking sys-
tem, for example, the provided user actions of initiating a cash withdrawal, a transfer of
funds, a deposit, etc, must be followed by an entire sequence of method calls described
in one of the sequence diagrams. In the Crisis Mangagement case study presented in
the following section, the types of crisis (car accident, fire, etc.) are all assumed to have
corresponding sequence diagrams that design the proper response after analyzing the
needs. When a situation is encountered that does not correspond to any of the diagrams,
either it is a new type of crisis, or the system is not responding as designed. In either
case, it is important to identify such situations. Such a use of sequence diagrams is also
supported by the extension to live sequence charts [2] where after a pre-sequence oc-
curs, an instance of the main sequence must follow.
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When the sequence diagrams are used in this way, they can be used to automatically
generate run-time profiling aspects and offline or online analyzers that detect when the
system is not being used in conformance with any of the sequence diagrams. As noted
above, such detection could mean either that the collection of sequence diagrams is
incomplete, and new scenarios need to be added, or indeed that the implemented system
is reacting incorrectly, and some object does not respond as expected to a method call
that is part of a scenario.

The approach taken here is to use the sequence diagrams directly to generate a state
graph and then an execution tree of all possible abstract states and method calls in the
system based on the available knowledge. Since the internal behavior of the methods
in the objects is not available, we only check for key visible events, interleaved with
internal events and possibly actions from other scenarios. The implemented code and
the sequence diagrams are analyzed automatically to determine which information must
be collected, and to generate run-time non-invasive aspects that log messages and rel-
evant information, including tracking of the connections between threads in different
processors that correspond to a single execution of a sequence diagram. For our im-
plementation, the gathered information is automatically analyzed offline to detect non-
conformance with the collection of scenarios, and provide helpful feedback. We also
describe how to detect the deviations during execution, simply by sending the gathered
information directly to an online version of the analyzer.

This paper introduces an additional automatic traceability and verification step to
detect inconsistencies between specified UML sequence diagrams and the actual run-
time behavior. One of the key difficulties of run-time verification is knowing what to
check, and providing a practical way for users to express that. Since sequence diagrams
are already widely used to specify what is possible in a system, their direct use for
run-time verification is both natural and useful.

Our approach is fully automated with a set of integrated simulation, run-time verifi-
cation and feedback generation tools. Furthermore, it can be applied to systems that are
composed of a set of distributed sub-systems developed in multiple languages.

The remainder of this paper is organized as follows: In the following section, we
present a motivating example on the design of a crisis management system (CMS) to
illustrate the problem. Section 3 describes related work in greater detail. In Section 4,
we provide an overview of the approach, while Sections 5, 6 and 7 detail the simulation
of the sequence diagrams, the extraction of information to generate run-time monitors,
and the automatic analysis to detect deviations. Section 8 has a summary of application
to the motivating example, while Section 9 concludes the paper.

2 Motivating Example

Helping the victims of a crisis situation requires rigid management and allocation of
resources. For example, the allocated resources should be accounted for and free re-
sources should be assigned to a crisis by their location. The Crisis Management System
(CMS) case study [3] provides requirements for designing and implementing a software
system to manage the resources. In this section, we provide one design alternative to
illustrate how our approach can help in finding inconsistencies between UML models
and the implementation.
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Our design alternative focuses on coordination of the crisis resolution process. To
facilitate this, we added support for scenarios for recurring crises in our design. A
scenario prescribes the actions that should be taken in order to resolve the specific
crisis like a car accident. As the users become experienced with recurring crises, they
may want to extend existing scenarios and/or add new scenarios to the system. Thus,
we modularized the scenarios in our design. The scenarios can be viewed as reactive
systems that act upon outside events about the state of the crisis, which are: crisis start,
resource allocate, resource dispatch, initial report about the crisis, resolution failed and
crisis resolved. Both the scenarios and the system framework that organizes them can
be described using class and sequence diagrams.

+ScenarioOutSideEvent(in eventType : int, in evetData : object)
+ScenarioBroadCastEvent(in recourceEventType : int, in eventData : object)

Server

+ScenarioData(in scenarioType : int)
#setBeginTime(in currentTime : long)
#setEndTime()
#addWorkerReport(in report : string)
+addAllocatedResource(in res : Resource)
+scenarioStart()
+scenarioFail()

-startTime : long
-endTime : long
-currentState : State
-requestedResources : Vector
-allocatedResources : Vector
-type : int
-workerReports : Vector

Scenario::ScenarioData

-scenarioDatas1

*

+fireStart(in scenarioType : int, in scenarioData : ScenarioData)
+fireRequest(in scenarioType : int, in scenarioData : ScenarioData)
+fireFail(in scenarioType : int, in scenarioData : ScenarioData)
+fireCompleted(in scenarioType : int, in scenarioData : ScenarioData)
+fireArrivial(in scenarioType : int, in scenarioData : ScenarioData)
+fireAssistance(in scenarioType : int, in scenarioData : ScenarioData)

«interface»Scenario::IScenarioOutSideEvent

-registredScenarioOutSideListeners *1

+firePreEmpt(in eventType : int, in scenarioData : ScenarioData)
«interface»Scenario::IScenarioBroadcastEvent

-registeredBroadCastListeners*1
Server:Server scenario:

IScenarioOutSideEvent

fireStart(sData,sType)

ScenarioOutSideEvent(event,data)

Server.ScenarioOutSideEvent(event,data)

count<2loop

eventType=start

eventType=resourceAllocate

alt

fireResourceAllocate(sData,sType)

Fig. 1. The class diagram and a sequence diagram of the CMS

The event-based communication and the modularization of the scenarios can be sup-
ported by using the observer pattern. Here, the observer provides the interface of events
to which the scenarios should react. Figure 1 illustrates the class diagram of the design
with these patterns. Here, the class Server provides methods where the users (e.g., the
user interface) communicate with the scenarios. The interface IScenarioOutSideEvent
lists the events to which the scenarios should react. A scenario implements this inter-
face and in each method, the actions it should take are specified. The class ScenarioData
holds the data about the crisis, such as the allocated resources and the time the crisis
started. Each crisis has a distinct type designated with the attribute ScenarioData.type.

The sequence diagram Server.ScenarioOutSideEvent in Figure 1 shows the Server
looping through the list of scenarios and letting them know about the start of a crisis.
Note that the call to the method ScenarioOutSideEvent is asynchronous; the class Server
executes as a different process so that events arriving at the same time from different
sources can be handled. The call to the method fireStart is polymorphic and any instance
of a scenario can receive this call. Upon receiving an event, a scenario decides if it is
interested in the crisis or not with the value of this attribute. This is illustrated with the
sequence diagram CarCrashScenario.fireStart() in Figure 2.

The CMS has constraints essential for correct operation that emerge from the di-
agrams. For example, from the class diagrams it is clear that they should handle the
list of events. The reactions to the events can be seen in the sequence diagrams of the
scenarios. These constraints should be correctly reflected in the implementation, as a
violation of a constraint may have catastrophic effects in CMS. In addition, scenarios
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scenario : 
CarCrashScenario

setBeginTime(time)

sData : ScenarioData

[sType=CarCrashScenario]

executeStateAction(sData)

state : 
ScenarioAccepted

opt

scenarioStart()

fireStart(sData,sType)

CarCrashScenario.fireStart(sData,sType)

«interface»
Scenario::IScenarioBroadcastEvent

«interface»
Scenario::IScenarioOutSideEvent

scenario : 
CarCrashScenario

deallocateResource(res)

ResourceManager: 
ResourceManager

firePreEmpt(sData,sType)

CarCrashScenario.firePreEmpt(sData,sType)

Scenario::CarCrashScenario

Fig. 2. The class CarCrachScenario and the sequence diagram showing the handling of the event
fireStart()

may react to the same event and interfere with each other, which is considered additional
source of complication.

As an example, assume that the CMS is deployed in an environment where only
car accidents are managed. In due time, the users realize some accidents need priori-
tization. One such example is presidential emergencies coordinated by the class Pre-
sidentialEmergency. Prioritization then becomes a requirement, where a high priority
scenario may require another scenario to release its resources. The design allows re-
leasing of the resources through scenario broadcast events; a high-priority scenario
asks the other scenarios to release resources by calling the method Server.ScenarioOut-
SideEvent(), which in turn calls the method IScenarioOutSideEvent.firePreEmpt(). The
designer models the sequence diagrams showing the object CarCrashScenario handling
the event firePreEmpt. Now assume that the developers do not correctly implement this

PresidentEmergency.fireStart(sData,sType)

scenario: 
PresidentalEmergency

setBeginTime(time)

scenarioData: 
ScenarioData

[scenarioType=PresidentEmergency]

Server:Server

ScenarioBroadCastEvent(preEmpt,sData)

fireStart(sData,sType)

opt

Fig. 3. Sequence diagram showing the
scenario presidential emergency han-
dling the event fireStart

previously unnecessary sequence diagram, so the
resources are in fact not released.

As shown in Figure 3, the scenario Pre-
sidentialEmergency throws the broadcast event
for releasing resources when it starts. Because the
sequence diagram of CarCrashScenario respond-
ing to this event is not correctly implemented, it
does not release the resources causing the coordi-
nation of the presidential emergencies to fail. The
error is caused by the code not conforming to the
sequence diagrams and, in the remaining sections
of this paper, we describe how the approach pro-
posed in this paper can capture such conformance
errors.

3 Related Work

In the literature, the conformance checking of UML class diagram models with the
implementation has been addressed in several ways. Code generation techniques [4] di-
rectly generate program skeletons (class declarations and lists of method headers) that
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can then be expanded to full systems and are guaranteed to satisfy the structural require-
ments of the class diagram. Mappings can be used to connect formal model elements
to UML model elements using predicate logic [5], and runtime state observation can
be used to check for consistent use [6]. These techniques only consider structural UML
diagrams (class or object diagrams in particular) for conformance matching and do not
address the conformance of the behavior/interactions specified using UML sequence
diagrams.

A partial solution that does restrict the behavior is provided by adding class invariants
or other assertions to the class diagram, using the OCL (Object Constraint Language)
notation. Such assertions can then be verified for the implementation, either using static
formal methods, or using well-known run-time verification approaches to check asser-
tions about the state of the system. Unfortunately, such invariants are again not always
provided in industrial uses of UML, and of course do not treat liveness or required
sequences of actions.

Some approaches such as [7,8] aim at checking the behavioral correctness of soft-
ware by utilizing state diagrams as their specification language. The problem with state
diagram is the level of granularity depends on the employed language/tool for mod-
elling. Thus UML state diagrams can only model the behavior within an object, and
not inter-object behavior or message flow. Other languages such as Stateflow [9] fo-
cus on the modelling of the abstract behavior of software, without providing constructs
to model objects and interactions within and among objects that realize the behavior.
Therefore, it may be difficult, if not impossible, to use Stateflow for more fined-grained
models of the software.

To overcome the shortcomings of state diagrams, [10,11,12] make use of UML se-
quence diagrams as their specification language to verify security policies and web-
service interactions, respectively. Although a sequence diagram can include polymorphic
calls, calls made by multiple threads of execution, or activate other sequence diagrams,
those approaches cannot verify such advanced features of sequence diagrams. For exam-
ple, in our case study, we would not be able to verify that the execution of Presidential-
EmergencyScenario in one thread results in the release of resources that are acquired by
another thread executing CarCrashScenario. The polymorphic nature of fireStart in the
example is also beyond the capabilities of those tools.

There are several approaches [13,14,15,16] that make use of formalisms such as
temporal logics and regular expressions for their specification language. One may try
to express design conformance criteria as predicates in these formalisms and verify the
implementation of software against these predicates. However, there are two difficulties.
First, it is likely that most industrial developers are not expert in these formalisms, and
would show resistance to using them [17]. Second, instead of reusing design models,
separate specifications are used for the verification, which implies that the specifications
must also be updated as the software evolves. In the development of complex software
with strict time-to-market requirements, it is already a challenge to keep the design
documents up-to-date [18], and having more documents (i.e. verification specifications)
to update is a time-consuming and error-prone activity.
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There are other works such as [19] which extend the message sequence charts of
UML as their specification language. However, we believe that such customized ver-
sions of UML are not widely used in industrial environments.

4 Requirements and Overview of the Solution

In view of the shortcomings of existing techniques, we identify the following require-
ments for a conformance checking system based on class and sequence diagrams:
1) The ability to distinguish between polymorphic calls. As Figures 2 and 3 show,
the invocations of fireStart and firePrempt on Scenario objects can be received by dif-
ferent scenarios. Here, according to the object on which the polymorphic methods are
invoked, the conformance checking system must be able to match the execution trace
with the corresponding sequence diagram.
2) The ability to check the conformance of sequences that span multiple sequence di-
agrams. For example, a sequence diagram may use a reference frame to include or
activate another sequence diagram, as seen in the PresidentialEmergency diagram.
3) The ability to support multiple activations. In the implementation of our motivat-
ing example, multiple sources (running as different processes and threads) may trigger
an event by calling the method ScenarioOutSideEvent. Here, the conformance checking
system must be able to distinguish between the execution trace of each thread, and must
check each trace against the corresponding sequence diagram.

In this paper, we describe an implemented conformance checking system that ad-
dresses the requirements above. To utilize sequence diagrams as the specification, we
provide a simulator which constructs an execution tree from the sequence diagrams.
The execution trees are later on used as specification for the conformance verification.
The verification is done in an off-line manner, after the execution of the software ter-
minates, which implies that the execution traces of software must be profiled for the
off-line analysis. We make use of aspect-oriented programming to generate profiling
aspects (i.e. observers) and insert the aspects into the implemented software code.

Figure 4 shows the three-phase architecture of our approach. In the compilation
phase, a developer specifies the sequence and class diagrams, and the XML represen-
tation of the diagrams are input to the tools UML to Graph Convertor and Transla-
tor. The tool UML to Graph Convertor converts class and sequence diagrams to their
equivalent graph representation. The generated graphs are input to the simulator called
GROOVE [20], to which we added contains detailed graph transformation rules that
closely mimic the actual OO execution of the operations described in the sequence di-
agrams. These are used to generate an execution tree of all possible executions that
conform to the sequence diagrams (that we call a simulation).

In the right-hand side, for each specified sequence diagram, the tool Translator gen-
erates the Profiling aspect in the aspect-oriented language Compose* [21]. Translator
checks the static structure of the software to extract a list of methods defined in the
code. In addition, it receives information about the so-called activator method (i.e. the
first method that is invoked in a sequence diagram) from each sequence diagram, and
generates the Profiling aspects. The aspects log information about the methods that are
invoked during the execution of an activator method. Since multiple invocations to an
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Fig. 4. The overall architecture of our solution

activator method may exist, the Profiling aspects distinguish among the invocations by
associating a unique identifier, called ActivationID, to each of them. Consequently, sep-
arate log files are generated for each invocation of the activator method.

If during the execution of an activator method, a remote method is invoked in another
process, the corresponding ActivationID must be passed to the target process and Acti-
vationID must be preserved until the call returns to the caller process. This facilitates
logging the information about all the local and remote invocations during the execu-
tion of an activator method. The Profiling aspects are input to the Compose* compiler
which generates the executable codes for the aspects and inserts them in the software
code. The module Code Analyzer within the Compose* compiler checks the software
code to detect whether there is an inter-process communication (i.e. remote method in-
vocation) within the context of an activator method. The analysis is done based on the
available static information about the remote method invocations, for example, sockets
or Java-RMI method invocations. If there is such an invocation, the module Causality
Manager modifies the invocation in both caller and callee sides with one more parame-
ter holding ActivationID. Both Code Analyzer and Causality Manager receive the name
of activator methods as input from the sequence diagrams.

After the execution terminates, the tool Conformance Checker verifies the log file
against the simulation and provides feedback to the developer. The feedback includes
both where and in which sequence diagram a deviation is found, and the sequence of
calls that led to the deviation including the inconsistent method call or other response.

Although in this work we focus on off-line conformance checking, it is relatively
straightforward to accomplish an online checker as well. Here, we need to implement
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the tool Conformance Checker as another aspect which receives the required informa-
tion from the Profiling aspects and checks the observed information against the already-
generated execution trees.

As we will explain in the following sections, the sequence diagrams and gener-
ated execution models and states are independent from the implementation language
of the software. Moreover, the Compose* language is also a language- and platform-
independent aspect-oriented language; and the Compose* compiler can compile aspects
for various language environments such as Java, .Net and C. This increases the applica-
bility of our approach to software developed in various or even multiple languages.

5 From Class and Sequence Diagrams to Graph Transition System

The simulation of the class and sequence diagrams models are realized with graph-based
state-space generation [20] by i) Defining a model for representing an OO-like runtime
for the UML models with graphs, and ii) Modeling generic execution and exception
handling semantics with graph-transformation rules over this model. The main reason
for adopting graph-based state-space generation is that UML models can be transformed
to graph models in a relatively straightforward manner. Also, the user is not requested
to provide any other specifications than the UML class and sequence diagrams.

The simulation of the models resembles the execution of an OO software system.
For this, we use Design Configuration Models (DCMs), whose meta-model is defined
with Design Configuration Modeling Language (DCML), which includes a call stack,
operation frames and program counters in addition to the UML elements. These models
are represented as graphs since we defined the OO-like execution semantics with graph
transformation rules.The DCMs are not defined to be a full semantic representation of
OO software. They only include elements that can be modeled with class and sequence
diagram models. A DCM is generated from one class diagram and at least one sequence
diagram. We programmed a proof-of-concept converter for ArgoUML [22] and the in-
terested readers are referred to [23] for a detailed description of the UML-to-DCML
conversion.

The simulation starts from a user specified method we refer to as the activator
method. It generates a state-space, called the Graph Transition System (GTS), show-
ing all possible execution sequences that can be achieved by the invoke of the activator
method. The state-space is a tree where each path from root to a leaf node is an execu-
tion sequence. The simulation is realized with a graph-production system, consisting of
57 graph transformation rules that model OO-like execution semantics for UML class
and sequence diagrams (these rules can be downloaded from [24]). With these rules the
following actions of the sequence diagrams is simulated:

Follow in the activation bars – DCML contains a program counter, which shows the
action to be simulated. This program counter is advanced in the activation bar once the
action simulation completes.

Call invocation – Allows the simulation of the call instances, self calls, super calls
and calls to static methods. For example, the dispatch of a call to an instance method
involves finding the receiver object, and then, traversing the inheritance hierarchy to



Checking the Correspondence between UML Models and Implementation 207

find the latest implementation of the operation. If the object receiving the call imple-
ments the called operation, then the inheritance hierarchy is not traversed. If, on the
other hand, the object does not implement the operation, the super-type of this object
is traversed. After the method implementation is located, an operation frame for the
method is created. The program counter of this operation frame points to the first action
of the method (i.e. the first action in the activation bar). The newly created frame also
contains a pointer (in the form of an edge) to the operation frame from which the call is
made; in this way, a call stack is simulated. The semantics of the call to an instance is
implemented with 5 graph transformation rules. These rules match when the program
counter is a call action node whose receiver is an instance.

Asynchronous call invocation– These are presently allowed only as activator messages
that initiate a sequence diagram. For asynchronous calls that are activator messages,
before the call is invoked, a transformation rule increase the attribute activationCount
of the operation frame. In this way, multiple invocations of the activator method can be
distinguished in the state-space.

Parameter passing – is realized by going through the parameters specified in a call
action and adding the necessary graph-edges so that the values/object of the parameters
are accessible to the dispatched method: for in parameters these graph-edges simulate
call-by-value and for out/in-out parameters they simulate call-by-reference.

Create operations – simulation of these creates a new object which represents the
classifier receiving the create action in the sequence diagram.

Return from a method – is simulated in two steps when the program counter points to
a return action. In the first step, if the returning method has a return value, it is copied to
the previous (calling) operation frame. In the second step, a transformation rule “pops”
the frame of the returning method from the call stack.

Return value assignments – After the pop of the operation frame, if a return value is
copied to the top of the call stack, this return value is assigned to a variable specified in
the call action. The assignment is also simulated in two steps: first the type compatibility
of the returned value and the assigned variable is checked. Then, if this check succeeds,
the variable gets the return value of a method.

Conditional execution – When the program counter is at an alternative frame with N
frame fragments, the simulation continues in N branches: in each branch the actions
within one of these fragments are simulated. For an optional frame, two branches are
created, one activating the operational frame, and one ignoring it.

Loops – The simulation of a loop frame, requires the user to specify the desired num-
ber of iterations. Semantics of loops are modeled with 2 transformation rules, which
match when the simulation reaches a loop frame node. One of these transformation
rules arranges the program counter so that the simulation loops over the actions within
the loop fragment. The second transformation rule tests whether the loop is repeated by
the user-specified amount and, if so, it terminates the loop.

Figure 5 illustrates an excerpt of the GTS from the simulation of the sequence dia-
grams shown in Figures 1- 3. The sequence diagram S1 shows the operation frame and
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programcounter

OperFrame for 
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Fig. 5. An excerpt from the GTS of the simulation of the sequence diagrams
Server.ScenarioOutSideEvent(), CarCrashScenario.fireStart(), and PresidentialEmer-
gency.fireStart() depicted in Figures 1, 2 and 3

the program counter at state S1: the program counter is at the beginning of the activation
bar of the classifier Server showing that the call ScenarioOutSideEvent() has just been
dispatched. From state S1 the simulation moves to state S2 with the transition nextcall,
which is the name of the graph transformation rule responsible for incrementing the
program counter. Since at S1 the call ScenarioOutSideEvent() is dispatched, this rule
matches and moves the simulation to the beginning of the next action. The sequence
diagram S2 shows the program counter at state S2.

The call fireStart is a polymorphic call and can be received by the instance of classes
that implement the interface IScenarioOutSideEvent. There are two such instances in
the input sequence diagrams and, so, there are two outgoing transitions from the state
S2. When the program counter is at a polymorphic call, the transformation rule Poly-
morphicReceiver has a match for each possible receiver. Each match picks one of the
receivers and the application of the match arranges the picked instance as the receiver of
the call. This multiple matching causes branching. After the arrangement of the receiver
instance, the call is simulated. The sequence diagrams S6 and S11 corresponding to the
states with the same name, show the operation frame after the call dispatched: at state
S6 the call fireStart is received by the instance of the class CarCrashScenario and at
state S11, it is received by the instance of the class PresidentialEmergency. Even though
these receivers are in different sequence diagrams, the execution sequences where they
respond to a call from the users (i.e. the call ScenarioOutSideEvent()) is generated.

The GTS also includes transitions that display which methods begin/end executing.
These transitions are added by parameterized transformation rules; i.e, a rule specifies a
set of node attributes that should be output instead of the parameters. For example, a la-
bel executeMethod( activationCount, ClassifierID, ClassName, MethodName) is added
by the transformation rule executeMethod which matches when the program counter is
at the beginning of an activation bar.
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6 Runtime Observation

During the execution of software, upon the invocation of the activator method, the cor-
responding profiling aspect is activated, and consequently the runtime transitive effect
of the activator method is logged. The output of the logger is the observed execution
sequence, which is a a state machine where each state has at most one transition. The
transitions are of the form < action > ( activationID, ObjectID, ClassName, Method-
Name). Here, the action can be executeMethod when the logger observers the start of
a method or returnMethod when the logger observes the end of a method. To facili-
tate the conformance checking, the class name, object unique identifier (ObjectID),
method name and arguments of the methods are logged. As we explained in Section
4, we distinguish between multiple invocations of an activator method by assigning a
unique identifier called activationID to each invocation, and we log the execution trace
initiated from each invocation in a separate logfile. Note that each logfile must eventu-
ally finish (be closed) in order to check for deviations. This can be guaranteed even for
executions that do not perform expected events by, for example, building in an “error”
operation that closes a log file whenever a time bound has passed with no activity in
that log.

S1 S2

executeMethod(3:1807500377:
CarCrashScenario,

fireStart)
S3

executeMethod(3:1901116749:
ScenarioData.
setStartTime)

return(3:1901116749:
ScenarioData.
setStartTime)

S4S5

returnMethod(3:1807500377:
CarCrashScenario,

fireStart)

S6

executes(3:Server:Server.
ScenarioOutSideEvent,)

S7

returnMethod(3:Server:Server.
ScenarioOutSideEvent,)

Fig. 6. An example observed execution sequence

In Figure 6 an example output of the logger is shown. Here, after the activator method
Server.ScenarioOutSideEvent() starts execution, the car crash scenario executes and re-
turns. The logging stops with the return of the activator method.

7 Verifying Runtime Observation with GTS

Start

S2

executeMethod(1:
Server:Server.

ScenarioOutSideEvent,)

S5

executeMethod(1:OID:
CarCrashScenario,

fireStart)

S4

executeMethod(1:OID:
PresidentialEmergency,

fireStart)

*

*

*

S1

Fig. 7. The abstract execution automa-
ton for the example GTS in Figure 5

The verification is realized by tracing the GTS
with the transitions of an observed execution se-
quence. However, before the tracing starts the
GTS is converted to a non-deterministic automata,
we refer to as an abstract execution. This au-
tomata is generated in the following steps: 1) all
transitions except the ones added by the infor-
mative transformation rules are removed. 2) The
states where a different invocation of the activa-
tor method occurs (i.e. states with different acti-
vationCounts) are connected to the start state with
λ transitions. 3) a self transition labeled *, a wild
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card transition, is added to each state except the start state. The semantics of the wild-
card transition is specified as follows:

Let �i be the labels of the all the outgoing transitions from state Si and let U be
the union of all transition labels from an observed execution sequence. The wildcard
transition for Si are all the input whose label belongs to U − �i.

The wildcard transition allows us to abstract away from the observed execution se-
quence to the level of the sequence diagram: as a sequence diagram shows the sequence
of important calls, the observed execution may contain calls that are not modeled in it.
During the verification the wildcard transitions allows us to map these calls that are not
in the sequence diagrams to don’t cares. Figure 7 illustrates the abstract execution for
the GTS presented in Figure 5. Here, there is only one λ transition because there is one
invocation of the activator method Server.ScenarioOutSideEvent().

The verification algorithm applies the transitions in the order they are seen from
the observed execution sequence to the abstract execution, taking wildcard (irrelevant)
operations into account. After applying these transitions, it checks if a final state or
a state with a different activationCount in the abstract execution is reached. If such a
state is not reached, then there are calls missing in the observed execution sequence
which are in the sequence diagram. An important part of the verification is the binding
of the identifiers. The classifier and the activation identifiers from the abstract execution
are treated as variables, which are bound to actual values from the observed execution
sequence. At a transition Ta of the abstract execution, if the method and the class names
match to the next transition To from observed execution but the activation/classifier
identifiers (activationCount, classifierID) are not bound, then the activation/classifier
identifiers of Ta are set to the values of these identifiers at To.

We programmed an extension to GROOVE, that uses the output of the runtime ob-
server and verifies it against the GTS generated from the simulation of UML models.
Here, the verification step is repeated for each log file.

8 Case Study: Crisis Management System

In Section 2, we described an example inconsistency between the sequence diagrams
of the CMS and an implementation, where the scenario car crash does not handle the
request to preempt its resources correctly. Here, we show how our approach can de-
tect this inconsistency. For simulation, we used the sequence diagrams showing the
handling of the event fireAllocate() for the classes CarCrashScenario and Presiden-
tialEmergency scenario, in addition to the class and sequence diagrams presented in
Figures 1, 2 and 3. Each of these two additional sequence diagrams have 3 call ac-
tions (and 3 return actions); the DCM generated from these diagrams contains 36 ac-
tions. With these diagrams we simulated following scenario: the user interface making
4 outside events; these events are all different invocations of the activator method, and
so, they are shown as asynchronous calls. The simulation of these diagrams generated
20075 states and 21007 transitions and completed in 2 minutes using 37Mb memory
(with 2.2GHz Core Duo2 laptop running JRE 1.6 11). The simulation generated this
many states because the GTS contains every possible execution of the sequence dia-
grams. For example, an invocation of the method ScenarioOutSideEvent() generates 16
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branches: 2 branches for the frame fragments of the alternative frame, 2 more branches
due to the polymorphic call in each frame fragment adding 4 branches. In each of these
4 branches, another 4 branches is added due the loop frame. The number of transitions
are higher then the number of states because of the build-in isomorphism detection
mechanism of GROOVE. During simulation, GROOVE detects the isomorphic states
in different branches of the GTS and merges them reducing the size of the GTS.

We implemented a prototype CMS in Java using the models presented in Section 2.
We also added a sample user interface where the outside events can be sent to the
server: the user interface and the class Server run in different threads. The implemen-
tation of the scenarios and server only consists of the calls presented in the models
of Section 2 with the following exceptions: i) Upon receiving an event the scenarios
call the method ScenarioStatistics.addStatistic(); this call is added to test the wild-
card transitions. ii) To conform with the motivating example the method ResourceM-
anager.requestDeallocate() used for releasing resources is not called by the car crash
scenario upon receiving the preemption event. We ran this prototype with 2 user inter-
face threads, where one user interface sends two start events and the other sends two
allocate events. This run output 4 observed execution sequences, one for each invoca-
tion of the method ScenarioOutSideEvent().

The 4 log files are then transfered into the GROOVE to verify the execution se-
quences. The verification of these state machines took 25 seconds, which includes the
time for abstraction execution generation. For the resource allocation request sent by
the second user interface thread to the presidential emergency scenario, the verification
displayed the mismatch executeMethod(2, PID, ResourceManager, requestDeallocate).
This states that the car crash scenario did not in practice call the method to deallocate
the resources; however, in the GTS from the sequence diagram this method is called.

This case study shows that it is possible check the UML-to-code conformance for
sequence diagrams with polymorphic calls and for execution sequences spanning mul-
tiple sequence diagrams. Moreover, the runtime observer is able to trace sequences that
originated from different sources and overlap.

9 Conclusion

Sequence and class diagrams can provide constraints that go beyond the assert state-
ments commonly used to provide input for runtime monitoring and verification. This is
especially true when the diagrams are intended to describe all possible types of usage
for the system. Moreover, these diagrams are often readily available, when used as part
of the design process of systems. No new notation has to be mastered, or kept updated
as the system evolves, since most development processes anyway require updating the
design for purposes of documentation and maintenance.

It may be argued that the conformance checking can be realized without generating
all possible sequences (as is done here), where the conformance checker traces the se-
quence diagrams directly according to the logged execution. For situations where the
number of logs to be checked is small, this is less costly than generating all possible ex-
ecutions in advance. However, direct tracing may become too expensive when the num-
ber of logs to be checked is large. Software systems, like CMS, are usually deployed
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at multiple sites and at each site many logs are sampled for consistency checking. Our
approach is designed for such situations.

As future work, we are going to apply the approach to industrial software systems.
In our previous studies, we have applied a similar simulation to the UML models of an
industrial software system from the health care domain [23], where all possible uses of
the software system are specified with sequence diagrams. We observed that the sim-
ulation generated execution sequences that are not explicitly modeled but are possible
due to polymorphism. These execution sequences contained errors, showing the impor-
tance of considering the polymorphism in simulation. The application also showed that
GROOVE and the simulation can scale to the industrial context.
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Abstract. To avoid large overheads induced by runtime monitoring, the use of
asynchronous log-based monitoring is sometimes adopted — even though this
implies that the system may proceed further despite having reached an anomalous
state. Any actions performed by the system after the error occurring are undesir-
able, since for instance, an unchecked malicious user may perform unauthorized
actions. Since stopping such actions is not feasible, in this paper we investigate
the use of compensations to enable the undoing of actions, thus enriching asyn-
chronous monitoring with the ability to restore the system to the original state
in which the anomaly occurred. Furthermore, we show how allowing the moni-
tor to adaptively synchronise and desynchronise with the system is also possible
and report on the use of the approach on an industrial case study of a financial
transaction system.

1 Introduction

The need for correctness of systems has driven research in di�erent validation and ver-
ification techniques. One of the more attractive approaches is the use of monitors on
systems to verify their correctness at runtime. The main advantage in the use of runtime
verification over other approaches, is that it is a relatively lightweight approach and
scales up to large systems — guaranteeing the observation of abnormal behaviour.

Even though monitoring of properties is usually computationally cheap when
compared to the actual computation taking place, the monitors induce an additional
overhead, which is not always desirable in real-time, reactive systems. In transaction
processing systems, the additional overhead induced by each transaction can limit
throughput and can cripple the user-experience at peak times of execution. One
approach usually adopted in such circumstances, is that of evaluating the monitors
asynchronously with the system, possibly on a separate address space. The overhead
is reduced to the cost of logging events of the system, which will be processed by the
monitors. However, by the time the monitor has identified a problem, the system may
have proceeded further.

The problem is closely related to one found in long-lived transactions [14] — trans-
actions which may last for too long a period to allow for locking of resources, but which
could lead to an inconsistent internal state if the resources are released. To solve the
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search and Innovation (R&I) Programme 2008 project number 052.
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problem, typically one defines compensations, to undo partially executed transactions
if discovered to be infeasible half way through. In the case of asynchronous monitoring,
allowing the system to proceed before the monitor has completed its checks may lead
to situations where the system should have been terminated earlier. As with long-lived
transactions, we allow this run-ahead computation. We adopt the use of compensa-
tions in our setting to enable the undoing of system behaviour when an asynchronous
monitor discovers a problem late, thus enabling the system to rollback to a sane state.
Furthermore, in a setting such as transaction-processing systems, one can a�ord most
of the time to run the monitors in synchrony with the system, falling back to asyn-
chrony only when required due to high system load. Thus, we propose an architecture
to enable loosely-coupled execution of monitors with the system, typically running syn-
chronously, but allowing for de-synchronisation when required and re-synchronisation
when desired.

In this paper, we present a framework to enable compensation-aware monitoring —
and prove that the compensation triggering mechanism works as expected, resulting
in similar behaviour as though we had run the monitor synchronously. Furthermore,
we show that enabling the monitor to synchronise (and desynchronise) at will with
the system does not change the behaviour. We have investigated the use of this ap-
proach on an industrial case study — dealing with financial transactions, and for which
a compensation-based implementation was already in place.

The paper is organised as follows — in section 2 we present background necessary
to reason about compensations, which we use to formally characterise compensation-
aware monitoring in section 3. An architecture implementing this mode of monitoring
is presented in section 4, and we illustrate its use on an industrial case study in section
5. Finally we discuss related work in section 6.

2 Compensations

Two major changes occurred which rendered traditional databases inadequate in certain
circumstances [14,13]: on the one hand there was the advent of the Internet, facilitat-
ing the participation of heterogeneous systems in a single transaction, and on the other
hand, transactions became longer in terms of duration (frequently, the latter being a con-
sequence of the former). These changes meant that it was possible for a travel agency
to automatically book a flight and a hotel on behalf of a customer without any human
intervention — a process which may take time (mainly due to communication with
third parties and payment confirmation) and which may fail. These issues rendered the
traditional mechanism of resource locking for the whole duration of the transaction im-
practical since it may cause severe availability problems, and motivated the need for a
more flexible way of handling transactions amongst heterogeneous systems while at the
same time ensuring correctness. A possible solution is the use of compensations [14,13]
which are able to deal with partially committed long-lived transactions with relative
ease. Taking again the example of the flight and hotel booking, if the customer payment
fails, the agency might need to reverse the bookings. This can be done by first cancelling
the hotel reservation followed by the flight cancellation, giving the impression that the
bookings never occurred. Although several notations supporting compensations have
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been proposed [5,4,3,15,21], little work [5,6] has been done to provide a mathematical
basis for compensations. For simplicity, in the case of compensating CSP (cCSP) [5],
to study the e�ect of the use of compensations, it is assumed that they are perfect can-
cellations of particular actions. This leads to the idea that executing an action followed
by the execution of its compensation, is the same as if no action has been performed
at all. In practice, it is rarely the case that two operations are perfect inverses of each
other and that after their execution no trace is left. However, the notion of cancellation
is useful as a check to the correctness of the formalism.

In this section we present the necessary background notions of cancellation compen-
sations, based on [5].

2.1 Notation

To enable reasoning about system behaviour and compensations, we will be talking
about finite strings of events. Given an alphabet �, we will write �� to represent the
set of all finite strings over �, with � denoting the empty string. We will use variables
a, b to range over �, and v, w to range over ��. We will also assume action � indicat-
ing internal system behaviour, which will be ignored when investigating the externally
visible behaviour. We will write �� to refer to the alphabet consisting of � � ���.

Definition 1. Given a string w over ��, its external manifestation, written w��, is the
same string but dropping instances of �.
Two strings v and w are said to be externally equal, written v �� w, if their external
manifestation is identical: v�� � w��. This notion is extended to sets of strings.

External equivalence is an equivalence relation, and a congruence up to string
catenation.

2.2 Compensations

For every event that happens in the system, we will assume that we can automatically
deduce a compensation which, in some sense, corresponds to the action to be taken
to make up for the original event. Note that executing the two in sequence will not
necessarily leave the state of the system unchanged — a typical example being that of
a person withdrawing a sum of money from a bank ATM, with its compensation being
that of returning the sum but less bank charges.

Definition 2. Corresponding to every event a in alphabet �, its compensation will be
denoted by a. We will write � to denote the set of all compensation actions. For simplic-
ity of presentation, we will assume that the set of events and that of their compensations
are disjoint1. Extending compensations to an alphabet enriched with the internal action
�, we assume that � � �.

1 One may argue that the two could contain common elements — e.g. deposit can either be done
during the normal forward execution of a system, or to compensate for a withdraw action.
However, one usually would like to distinguish between actions taken during the normal for-
ward behaviour and ones performed to compensate for errors, and we would thus much rather
use redeposit as the name of the compensation of withdraw, even if it behaves just like deposit.
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We also overload the compensation operator to strings over ��, in such a way that
the individual events are individually compensated, but in reverse order: �

def
� � and

aw
def
� w a. For example, abc � cba.

To check for consistency of use of compensations, the approach is typically to consider
an ideal setting in which executing a, immediately followed by a will be just like doing
nothing to the original state. Although not typically the case, this approach checks for
sanity of the triggering of compensations.

Definition 3. The compensation cancellation of a string simplifies its operand by (i)
dropping all internal actions �; and (ii) removing actions followed immediately by their
compensation. We define cancel(w) to be the shortest string for which there are no
further reductions of the form cancel(w1aaw2) � cancel(w1w2).

Since the sets of normal and compensation events are disjoint, strings may change under
cancellation only if they contain symbols from both � and �. Cancellation reduction is
confluent and terminates.

Definition 4. Two strings w and w� are said to be cancellation-equivalent, written w �c

w�, if they reduce via compensation cancellation to the same string: cancel(w) �

cancel(w�). A set of strings W is said to be included in set W� up-to-cancellation, written
W �c W�, if for every string in W, there is a cancellation-equivalent string in W�:

W �c W� def
� �w � W � �w� � W� � w �c w�

Two sets are said to be equal up-to-cancellation, written W �c W�, if the inclusion
relation holds in both directions.

Cancellation equivalence is an equivalence relation, and is a congruence up to string
(and language) catenation. Furthermore, a string followed by its compensation cancels
to the empty string:

Proposition 1. The catenation of a string with its compensation is cancellation equiv-
alent to the empty string: �w � ww �c �.

3 Compensations and Asynchronous Monitoring

We start by characterising synchronous and asynchronous monitoring strategies. In the
synchronous version, it is assumed that the system and monitor perform a handshake
to synchronise upon each event. In contrast, in the asynchronous approach, the events
the system produces are stored in a bu�er, and consumed independently by the monitor,
which may thus lag behind the system. Based on the asynchronous semantics, we then
define a compensation-aware monitoring strategy, which monitors asynchronously, but
makes sure to undo any system behaviour which has taken place after the event which
led to failure. Finally we show how enabling synchronisation and desynchronisation at
will leaves the results intact.



218 C. Colombo, G.J. Pace, and P. Abela

3.1 Synchronous and Asynchronous Monitoring

We will assume a labelled transition system semantics over alphabet � for both systems
and monitors. Given a class of system states S , we will assume the semantics 	
sys �

S � � � S , and similarly a relation 	
mon over the set of monitor states M. We also
assume a distinct � � S identifying a stopped system, and  � M denoting a monitor
which has detected failure. Both � and  are assumed to have no outgoing transitions.

Using standard notation, we will write �
a
	
sys �

� (resp. m
a
	
mon m�) as shorthand

for (�� a� ��) � 	
sys (resp. (m� a�m�) � 	
mon). For any transition relation
a
	
X (a �

�), we will write
w
��X (w � ��) to denote its reflexive transitive closure.

Definition 5. The transition system semantics of the synchronous composition of a sys-
tem and monitor is defined over S � M using the rules given in Fig 1. The rule S���
defines how the system and monitor can take a step together, while S���E�� handles
the case when the monitor discovers an anomaly. A state (��m) is said to be (i) sus-
pended if � � �; (ii) faulty if m � ; and (iii) sane if it is not suspended unless faulty
(� � � �� m � ).

The set of traces generated through the synchronous composition of system � and
monitor m, written traces�(��m) is defined as follows:

traces�(��m) � �w � �(���m�) � (��m)
w
��� (���m�)�

Example 1. For example consider a simple system P over alphabet �a� b� and a monitor
A which consumes an alternation of a and b events starting with a i.e. abab � � � but
breaks for any other input. The synchronous composition of such system and monitor
takes a step if both the system and the monitor can take a step independently on the

given input. Therefore, if the system performs event a: (P� A)
a
	
� (P�� A�). If system P

performs a b instead, the system would break: (P� A)
b
	
� (��).

Proposition 2. A sequence of actions is accepted by the synchronous composition of a
system and a monitor, if and only if it is accepted by both the monitor and the system

acting independently. Provided that m�
� , (��m)

w
��� (���m�), if and only if �

w
��sys

�� and m
w
��mon m�.

In contrast to synchronous monitoring, asynchronous monitoring enables the system
and the monitor to take steps independently of each other. The state of asynchronous
monitoring also includes an intermediate bu�er between the system and the monitor
so as not to lose messages emitted by the system which are not yet consumed by the
monitor.

Definition 6. The asynchronous composition of a system and a monitor, is defined over
S � �� � M, in terms of the three rules given in Fig. 1. Rule A����S allows progress of
the system adding the events to the intermediate bu�er, while rule A����M allows the
monitor to consume events from the bu�er. Finally rule A����E�� suspends the system
once the monitor detects an anomaly. Suspended, faulty and sane states are defined as
in the case of synchronous monitoring by ignoring the bu�er.
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The set of traces accepted by the asynchronous composition of system � and monitor
m, written traces�(��m) is defined as follows:

traces�(��m) � �w � �(���w��m�) � (�� ��m)
w
��� (���w��m�)�

Example 2. Taking the same example as before, upon each step of the system, an event

is added to the bu�er — if the system starts with an event b: (P� �� A)
b
	
� (P�� b� A).

Subsequently, the system may either continue further, or the monitor can consume the

event from the bu�er and fail: (P�� b� A)
�

	
� (P�� ��). At this stage the system can
still progress further until it is stopped by the rule A����E��.

Proposition 3. The system can always proceed independently when asynchronously
monitored, adding events to the bu�er, while the monitor can also proceed indepen-

dently, consuming events from the bu�er: (i) if �
w
��sys ��, then (��w��m)

w
���

(���w�w�m); and (ii) if m
w
��mon m�, then (��ww��m)

�
�

��� (��w��m�).

Synchronous Monitoring

S���
�

a
	
sys �

�
� m

a
	
mon m�

(��m)
a
	
� (��

�m�)
m � � S���E��

�
a
	
sys �

�
� m

a
	
mon 

(��m)
a
	
� (��)

Asynchronous Monitoring

A����S

�
a
	
sys �

�

(��w�m)
a
	
� (��

�wa�m)
A����M

m
a
	
mon m�

(�� aw�m)
�

	
� (��w�m�)

A����E��
(��w�)

�

	
� (��w�)
� � �

Compensation-Aware Monitoring

C���

(��wa�)
a
	
C (��w�)

Adaptive Monitoring

R	S���
(�� ��m)

�

	
A (��m)
D	S���

(��m)
�

	
A (�� ��m)

Fig. 1. Semantics of di�erent monitoring schemas
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3.2 Compensation-Aware Monitoring

The main problem with asynchronous monitoring is that the system can proceed beyond
an anomaly before the monitor detects the problem and stops the system. We enrich
asynchronous monitoring with compensation handling so as to ‘undo’ actions which
the system has performed after an error is detected.

Definition 7. Compensation-aware monitoring uses the asynchronous monitoring rules,
together with an additional one C��� which performs a compensation action of ac-
tions still lying in the bu�er once the monitor detects an anomaly. The rule is shown
in Fig. 1.

The set of traces generated through the compensation-aware composition of system
� and monitor m, written traces C(��m), is defined as follows:

traces C(��m) � �w � �(���m�) � (�� ��m)
w
��C (��� ��m�)�

Sane, suspended and faulty states are defined as in asynchronous monitoring.

Example 3. Consider the previous example with:

(P� �� A)
b
��C (P�

� b� A)
b

��C (P��
� bb� A)

�

��C (P��
� b��)

a
��C (P���

� ba��)
�

��C (��ba��)
At this stage, compensation actions are executed for the actions remaining in the

bu�er in reverse order:
(�� ba��)

a
��C (�� b��)

b
��C (�� ���)

Proposition 4. States reachable (under synchronous, asynchronous and compensation-
aware monitoring) from a sane state are themselves sane. Similarly, for suspended and
faulty states.

Strings accepted by compensation-aware monitoring follow a regular pattern.

Lemma 1. For an unsuspended state (�� ��m), if (�� ��m)
w
��C (�� v�), then there

exist some w1�w2 � �� such that the following three properties hold: (i) w �� w1vw2w2;

(ii) m
w1
��mon ; (iii) ���� � �

w1vw2
�� sys �

��.

Similarly, for an unsuspended state (�� ��m), if (�� ��m)
w
��C (��� v�m�) (with ��

�

�), then there exists w1 � �� such that the following three properties hold: (i) w �� w1v;

(ii) m
w1
��mon m�; (iii) �

w1v
��sys �

�.

Proof. The proof of the lemma is by induction on the derivation string w.
For the base case, with w � �, we consider the two possible cases separately:

– Given that (�� ��m)
�

��C (�� v�), it follows immediately that � � �, v � � and
m � . By taking w1 � w2 � �, all three statements follow immediately.

– Alternatively, if (�� ��m)
�

��C (��� v�m�), it follows immediately that � � ��, v � �

and m � m�. By taking w1 � �, all three statements follow immediately.

Assume the property holds for a string w, we proceed to prove that it holds for a string
wa.
By analysis of the transition rules, there are four possible ways in which the final tran-
sition can be produced:
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(a) Using the rule A����E��: (�� ��m)
w
��C (��� v�)

�

	
C (�� v�).

(b) Using the rule C���B: (�� ��m)
w
��C (�� va�)

a
	
C (�� v�).

(c) Using the rule A����S : (�� ��m)
w
��C (���� v�m�)

a
	
C (��� va�m�).

(d) Using the rule A����M: (�� ��m)
w
��C (��� av�m��)

�

	
C (��� v�m�).

The proofs of the four possibilities proceed similarly. Consider the possibility (b):

(�� ��m)
w
��C (�� va�)

a
	
C (�� v�)

By the inductive hypothesis, it follows that there exist w�
1 and w�

2 such that (i) w ��

w�
1vaw�

2w�
2; (ii) m

w�

1
��mon ; (iii) ���� � �

w�

1vaw�

2
�� sys �

��.
We require to prove that there exist w1 and w2 such that: (i) wa �� w1vw2w2; (ii)

m
w1
��mon ; (iii) ���� � �

w1vaw2
�� sys �

��.
Taking w1 � w�

1 and w2 � aw�
2 statement (i) can be proved as follows:

wa
�� � by statement (i) of the inductive hypothesis �

w�
1vaw�

2w�

2a
� � by definition of compensation of strings �

w�
1vaw�

2aw�
2

� � by choice of w1 and w2 �

w1vw2w2

Statement (ii) follows immediately from the statement (ii) of the inductive hypothesis
and the fact that w1 � w�

1. Similarly, from statement (iii) of the inductive hypothesis,

�
w�

1vaw�

2
�� sys �

�, if follows by definition of w1 and w2, that �
w1vw2
�� sys �

�.
The proofs of the other possibilities follow in a similar manner.

We can now prove that synchronous monitoring is equivalent to compensation-aware
monitoring with perfect compensations. This result ensures the sanity of compensation
triggering as defined in the semantics.

Theorem 1. Given a sane system and monitor pair (��m), the set of traces produced by
synchronous monitoring is cancellation-equivalent to the set of traces produced through
compensation-aware monitoring: traces�(��m) �c traces C(��m).

Proof. To prove that traces�(��m) �c traces C(��m), we note that every synchronous

transition (���m)
a
	
� (����m��), can be emulated in two steps by the compensation-

aware transitions (��� v�m)
a�
��C (���� v�m��), leaving the bu�er intact. Using this fact,

and induction on string w, one can show that if (��m)
w
��� (���m�), then (�� ��m)

v
��C

(��� ��m�), with w � v��. Hence, traces�(��m) �c traces C(��m).
Proving it in the opposite direction (traces C(��m) �c traces�(��m)) is more intricate.

By definition, if w � traces C(��m), then (�� ��m)
w
��C (��� ��m�). We separately con-

sider the two cases of (i) �� � � and (ii) ��
� �.
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– When the final state is suspended (�� � �):

(�� ��m)
w
��C (�� ��m�)

�� � by sanity of initial state and proposition 4 �

(�� ��m)
w
��C (�� ���)

�� � by lemma 1 �

�w1�w2 	 w �� w1w2w2 
 m
w1
��mon �

� 
 ���� 	 �

w1
��sys �

��

�� � by proposition 2 �

�w1�w2 	 w �� w1w2w2 
 ���� 	 (��m)
w1
��� (���

��)
�� � by definition of traces� �

�w1�w2 	 w �� w1w2w2 
 w1 � traces�(��m)
�� � by proposition 1 �

�w1 	 w �c w1 
 w1 � traces�(��m)

– When the final state is not suspended (��
� �):

(�� ��m)
w
��C (��

� ��m�)
�� � by lemma 1 �

�w1 	 w �� w1 
 m
w1
��mon m� 
 �

w1
��sys �

�

�� � by proposition 2 �

�w1 	 w �� w1 
 (��m)
w1
��� (��

�m�)
�� � by definition of traces� �

�w1 	 w �� w1 
 w1 � traces�(��m)
�� � by the alphabet of synchronous monitoring �

�w1 	 w �c w1 
 w1 � traces�(��m)

Hence, in both cases it follows that:
w � traces C(��m) �� �w1 � w �c w1 � w1 � traces�(��m)

From which we can conclude that:
traces C(��m) �c traces�(��m)

3.3 Desynchronising and Resynchronising

Despite compensation-awareness, in some systems it may be desirable to run monitor-
ing synchronously with the system during critical sections of the code, only to desyn-
chronise the system from the monitor again once control leaves the critical code section.
In this section, we investigate a monitoring strategy which can run both synchronously
or asynchronously in a non-deterministic manner. Any heuristic used to decide when to
switch between modes corresponds to a refinement of this approach.

Definition 8. The adaptive monitoring of a system, is defined in terms of the two addi-
tional (over and above synchronous and asynchronous monitoring) rules given in Fig.
1. Rule R	S��� allows the system to synchronise once the bu�er is empty, while rule
D	S��� allows the monitor to be released asynchronously. By also including the com-
pensation rule C���, we obtain adaptive compensation-aware monitoring (	
AC).

The set of traces generated through the adaptive composition of system � and moni-
tor m, written traces A(��m), is defined as follows:
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traces A(��m)
def
� �w � �(��

�w�
�m�) 	 (��m)

w
��A (��

�w�
�m�)  (��m)

w
��A (��

�m�)�

The traces for compensation-aware adaptive composition traces AC(��m) can be simi-
larly defined.

Theorem 2. Asynchronous and adaptive monitoring are indistinguishable up to traces:
traces A(��m) � traces�(��m). Compensation-aware adaptive monitoring is also in-
distinguishable from compensation-aware monitoring up to traces: traces AC(��m) �
traces C(��m).

The theorems can be easily proved based on transition-relation inclusion. An imme-
diate corollary of this last result, is that compensation-aware adaptive monitoring is
cancellation-equivalent to synchronous monitoring.

It is important to note that the results hold about trace equivalence. In the case of
adaptive monitoring, we are increasing the set of diverging configurations — since
every state can diverge through repeatedly desynchronising and resynchronising. One
would be required to enforce fairness constraints on desynchronising and resynchronis-
ing rules to ensure achieving progress in the monitored systems.

4 A Compensation-Aware Monitoring Architecture

L
��
 [9] is a synchronous runtime verification architecture supporting DATEs [8] as
a specification language. A user wishing to monitor a system using L
��
 must supply
a system (a Java program) and a set of specifications in the form of a L
��
 script
— a textual representation of DATEs. Using the L
��
 compiler, the specification is
transformed into the equivalent monitoring code together with a number of aspects
which extract events from the system. Aspects are generated in AspectJ, an aspect-
oriented implementation for Java, enabling automatic code injection without directly
altering the actual code of the system. When a system is monitored by L
��
 generated
code, the system waits for the monitor before continuing further execution.

We propose an asynchronous compensation-aware monitoring architecture, �L
��
,
with a controlled synchronous element. In �L
��
, control is continually under the ju-
risdiction of the system — never of the monitor. However, the system exposes two
interfaces to the monitor: (i) an interface for the monitor to communicate the fact that
a problem has been detected and the system should stop; and (ii) an interface for the
monitor to indicate which actions should be compensated. Note that these correspond
directly to rules A����E�� and C��� respectively. Therefore, the actual time of stop-
ping and how the indicated actions are compensated are left for the system to decide.

Fig. 2 shows the four components of �L
��
 and the communication links between
them. The monitor receives system events through the events player from the log, while
the system can continue unhindered. If the monitor detects a fault, it communicates with
the system so that the latter stops. Depending on the actions the system carried out since
the actual occurrence of the fault, the monitor indicates these actions for compensation.
It is important to point out that the monitor can only compensate for actions of which
it is aware — the monitor can never alert the system to compensate actions which have
not been logged.
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Fig. 2. The asynchronous architecture with compensations �L
��
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Stop/Cont
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Events

Stop/Cont

Fig. 3. The asynchronous architecture with synchronisation and desynchronisation controls

To support switching between synchrony and asynchrony, a synchronisation man-
ager component is added as shown in Fig. 3. All connectors in the diagram are syn-
chronous with the system not proceeding after relaying an event until it receives control
from the manager. The following code snippet shows the logic of the synchronisation
manager:

� � �� ���� 	�
��� ������ �� ��

���� �� �� �����

�
 ���������	��

� � ���������� ����	 ����� 
��� ������

� � ������������ �
�����	 �� ������� ��	 ��� ��� �������� �����

������������� ����� ������ �� ������

���

��� ������ ���������

�� � ���������� ����	 
��� ������

�		����

������ ������ ��  �

��

������������� ������� ������ �� ������

����

�! � ���	"�����

���� ����	 
���  �

��

� � �����������!� �
�����	 �� ������� ��	 ��� ��� �������� �����

��	

The behaviour in which this architecture di�ers from �L
��
 is that it can operate in
both synchronous and asynchronous modes and can switch between modes. Switching
from synchronous to asynchronous is trivial. The opposite requires that the manager
waits for the monitor to consume all the events in the bu�er and then allowing the sys-
tem to proceed further. So far this has not been implemented, but we aim to implement
it in the future as an improvement on �L
��
.
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delete

Start Reg
register

ActiveFrozen Logged

operation

logout

freeze

unfreeze

login

activate

Fig. 4. The lifecycle property

In real-life scenarios it is usually undesirable to stop a whole system if an error is
found. However, in many cases it is not diÆcult to delineate parts of the system to
ensure that only the relevant parts of the system are stopped. For example, consider
the case where a transaction is carried out without necessary rights. In such a case, the
transaction should be stopped and compensated. However, if a user has managed to
illegally login and start a session, then user operations during that session should be
stopped and compensated.

5 Case Study

We have applied �L
��
 on Entropay, an online prepaid payment service o�ered by Ixaris
Systems Ltd2. Entropay users deposit funds through funding instruments (such as their
own personal credit card or through a bank transfer mechanism) and spend such funds
through spending instruments (such as a virtual VISA card or a Plastic Mastercard). The
service is used worldwide and thousands of transactions are processed on a daily basis.

The advantage of applying the proposed architecture to EntroPay is that the latter
already incorporates compensations in its implementation. The case study is further
simplified by the fact that properties are not monitored globally but rather on a per user
or per credit card basis. Therefore, when a problem is found with a particular user or
card, only the compensations for that particular entity need to be triggered.

The case study implementation closely follows the architecture described above with
two control connections: one with an interface for stopping EntroPay with respect to a
particular user and another to the compensation interface of EntroPay, through which
the monitor can cause the system to execute compensations.

In what follows, we give a classification of properties which were monitored suc-
cessfully and how these are compensated in case of a violation detection.

Life cycle. A lot of properties in Entropay depend on which phase of the life-cycle an
entity is in. Fig. 4 is an illustration of the user life-cycle, starting with registration
and activation, allowing the user to login and logout (possibly carrying out a series
of operations in between), and finally, the possibility of freezing�unfreezing�delet-
ing a user in case of inactivity.

2 ���	������	�
�
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Implicitly, such a property checks that for a user to perform a particular operation
and reach a particular state, the user must be in an appropriate state. If a life cycle
property is violated, the user actions carried out after the violation is compensated
and the user state is corrected. For example, if a user did not login and managed to
carry out a transfer, then as soon as the monitor detects the violation, any ongoing
user operations are stopped and the illegal transfer is compensated.

Real-time. Several properties in Entropay, have a real-time element. For example, a
user account which is inactive for more than six months is frozen. If freezing does
not take place, then, upon detection, the monitor issues a compensation for any
actions carried out after the expected freezing and freezes the user account.

Rights. User rights are a very important aspect of Entropay’s security. A number of
transactions require the user to have the appropriate rights before a transaction is
permitted. If a transaction is carried out without the necessary rights, it is compen-
sated.

Amounts. There are various limits (for security reasons) on the frequency of certain
transactions and the total amount of money which these transactions constitute. If
a user is found to have carried out more transactions than allowed, then the excess
transactions are compensated. Similarly, transaction amounts which go beyond the
allowed threshold are compensated for.

The case study was successfully executed on a database of 300,000 users with around
a million credit cards. A number of issues have been detected through the monitoring
system: (i) certain logs were missing; (ii) some users were found to be in a wrong state,
eg. should be in a frozen state but still active; (iii) the limit of the amount of money a
user can spend was in some cases exceeded. Monitoring of the logs performed asyn-
chronously ensured the identification of issues, and through the compensation mecha-
nism, identification of actions to be taken to rollback the system to the point where the
violation occurred. At that point, one can then either notify the operator of the issue, or
trigger the system’s own exception handling mechanism.

Although the current properties being monitored on Entropay are relatively light-
weight and monitoring can be done relatively seamlessly, due to security issues, running
the monitor synchronously is not an option — avoiding changes in the architecture of
Entropay. The monitors are linked to the database of log entries to enable asynchronous
monitoring, but giving feedback and compensation actions upon discovering issues.

6 Related Work

In principle, any algorithm used for synchronous monitoring can be used for asyn-
chronous monitoring as long as all the information available at runtime is still available
asynchronously to the monitor through some form of bu�er. The inverse, however, is
not always true because monitoring algorithms such as [19] require that the complete
trace is available at the time of checking. In our case, this was not an option since our
monitor has to support desynchronisation and resynchronisation at any time during the
processing of the trace.

There are numerous algorithms and tools [2,7,1,19,20,12,16,11] which support asyn-
chronous monitoring — sometimes also known as trace checking or o�ine monitor-
ing. A number of these tools and algorithms [2,7,1,19] support only asynchrony unlike
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our approach which supports both synchronous and asynchronous approaches. Further-
more, although a number of approaches [12,16,20,11] support both synchronous and
asynchronous monitoring, no monitoring approach of which we are aware is able to
switch between synchronous and asynchronous monitoring during a single execution.

Although the idea of using rollbacks (or perfect compensations) as a means of syn-
chronisation might be new in the area of runtime verification, this is not the case in the
area of distributed games [17,18,10]. The problem of distributed games is to minimise
the e�ects on the playing experience due to network latencies. Two general approaches
taken are pessimistic and optimistic synchronisation mechanisms. The former waits for
all parties to be ready before anyone can progress while the latter allows each party to
progress and resolve any conflicts later through rollbacks.

The problem which we have addressed in this work is a simplified version of the
distributed game problem with only two players: the system and the monitor. In a similar
fashion to game synchronisation algorithms, the system rolls-back (or compensates) to
revert to a state which is consistent with the monitor.

7 Conclusions and Future Work

In this paper, we have presented an adaptive compensation-aware monitoring architec-
ture, and an implementation �L
��
. Combined with the notion of compensations where
actions of a system can be ‘undone’ to somewhat restore a previous state, we reduce the
e�ect of errors detected late (due to asynchronous monitoring) by compensating for
additional events which the system may have performed in the meantime. We have
demonstrated the use of this approach on a financial transaction handling software. The
advantage of this case study is that compensations were already a well-defined concept
from the developers perspective.

At the moment we are investigating the use of heuristics for desynchronisation and
resynchronisation of the system and monitor. At the simplest level, one can simply trig-
ger asynchronous monitoring when the system load reaches a certain level, and switch
back to synchronous monitoring when it falls below the threshold. It would be interest-
ing to explore further the development of smarter heuristics for this purpose — taking
into account other issues, such as the trust in (or lack thereof) parties involved in the
transaction and its monetary value.

A significant limitation of our work is the assumption that compensations are associ-
ated to individual actions. Apart from the fact that this might not always be the case, this
approach is highly inflexible as one cannot simultaneously compensate for several ac-
tions, or commit a series of actions such that they cannot be compensated. In the future,
we aim to lift this limitation by introducing a structured approach to compensations.
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Abstract. We present a new approach for developing robust software applica-
tions that breaks dependences on the failed parts of an application’s execution
to allow the rest of the application to continue executing. When a failure occurs,
the recovery algorithm uses information from a static analysis to characterize the
intended behavior of the application had it not failed. It then uses this characteri-
zation to recover as much of the application’s execution as possible.

We have implemented this approach in the Bristlecone compiler. We have
evaluated our implementation on a multiplayer game, a web portal, and a MapRe-
duce framework. We found that in the presence of injected failures, the recovery
task version provided substantially better service than the control versions. More-
over, the recovery task version of the game benchmark successfully recovered
from a real fault that we accidentally introduced during development, while the
same fault caused the two control versions to crash.

1 Introduction

All too often, failures are caused by the propagation of errors through critical compo-
nents of software applications. Current software development tools actually encourage
the introduction of unnecessary dependences between conceptually unrelated compo-
nents. These dependences introduce new error propagation pathways, which in turn can
introduce new vulnerabilities. For example, many programming languages encourage
developers to map otherwise independent software components onto the same thread.
If one component fails, other components mapped onto the same thread will likely fail
even though their only relationship with the original failure is artificially induced via
the mapping of components to threads.

Our previous work on Bristlecone introduced a task-based language designed to
eliminate artificial dependences that serve to propagate errors [8]. A shortcoming of
Bristlecone is that it cannot prevent the propagation of failures through legitimate de-
pendences. If a failure occurs, it can be desirable for tasks that legitimately depend on
the failed part of the computation to operate in a degraded manner. For example, if a
failure prevents rendering a web page frame, the web browser can still render the web
page by simply rendering the frame as an empty box.

This paper extends our previous work on Bristlecone to manage failure propaga-
tion through legitimate dependences. The technique is based on the observation that
although it is difficult to anticipate how applications may fail, there are often locations
in an application in which it is straightforward to break dependences on data that is
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missing because of a failure. For example, developing recovery routines for all possible
failures of a web page rendering engine is likely to be impossible. However, a developer
might reasonably write a rendering engine that can assemble frames into a web page
even when some frames are missing because of a failure.

We extend Bristlecone with recovery tasks. Recovery tasks serve as software circuit
breakers — they break legitimate data dependences in the event of a software error to
mitigate the damage caused by that error. More precisely, a recovery task can function
even if an error in another part of the computation causes some of the recovery task’s
input parameters to be unavailable. Note that the exact task that breaks a dependence
chain is not important — the system simply needs a point in the dependence chain to
halt the propagation of a failure.

Our approach uses static analysis to characterize the intended behavior of the failed
part of a computation. We use the term intended behavior to refer to the behavior that
a failed computation would have had if the failure had not occurred. For each possi-
ble failure point, this analysis computes which tasks the computation, had it not failed,
would have executed. The analysis then identifies recovery tasks in these sets. The re-
covery algorithm then uses the recovery tasks to break data dependences on the failure
and recover that part of the computation.

A failure will cause the application to skip some tasks. The analysis next determines
which data structures these skipped task would have modified. The runtime uses these
results to mark any data structures that the skipped part of the application may have
modified as damaged. It then uses the recovery tasks to break the execution’s depen-
dence on the damaged data structures.

Our approach contains the following key components:

• Language Extensions: Developers use annotations to declare a set of recovery tasks
that can execute even if a failure causes some of their parameter objects to be un-
available. The developer guards accesses to those parameter with checks that verify
that the parameter is available before accessing it.
• Static Analysis: The compiler analyzes the application’s code and task specifications

to construct an abstract state transition graph for each class. These graphs abstract
concrete objects’ state with nodes that represent abstract states. We have developed
a static analysis that reasons about the state transition graphs to characterize the in-
tended behavior of the failed code.
• Recovery Algorithm: The runtime system uses static analysis results to reason about

the intended behavior of the failed part of the computation. While it is in general im-
possible to determine the exact intended behavior of the failed part on the objects’
states, our analysis can still generate constraints on the possible states of these ob-
jects. The recovery algorithm uses the results of the static analysis to determine which
recovery tasks should be executed.

1.1 Comparison to Manual Recovery

Many programming languages, including Java, provide exception handling mechanisms
that are designed to help applications recover from failures. Exception handling works
best when recovery can be performed at a location that syntactically encloses the
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failure and the recovery action allows the application to return to completely normal
execution. Unfortunately, effective error recovery can require addressing a wide range
of consequences of an error, which may propagate through both the control and data
dependences. In particular, the natural place to recover from an error that prevents the
generation of a data structure can often be after several subsequent operations on the
data. Moreover, it may not be possible to completely recover from an error at a single
program point — the effects of the error may linger for some time and require that
recovery actions be woven throughout the application.

Writing exception handlers can require the developer to write code that propagates
failure recovery information to the points at which application can perform recovery.
Our approach automatically reasons about an application to characterize the effects of
error propagation through both data and control dependences. Our algorithm uses this
information to generate a set of recovery actions for the application.

1.2 Contributions

This paper makes the following contributions:

• Recovery Algorithm: It presents a new recovery algorithm that manages the propa-
gation of errors through legitimate dependences to recover applications from failures.
• Analysis: It presents a static analysis and a recovery algorithm that can reason about

the intended behavior of the failed part of a computation.
• Language Extensions: It presents language extensions that developers can use to

express high-level insight into how to modify an application’s execution to break
dependences that would otherwise serve to propagate failures.
• Experience: It presents an evaluation of the technique on several benchmarks. For

each application, we report our experience developing the application and evaluate
how robust the application is to injected failures relative to control versions.

2 Example

We present a web browser example that illustrates the recovery algorithm.

2.1 Classes

Figure 1 presents parts of the Page, Frame, and FrameDescriptor class declara-
tions. When the example web browser parses a frame, it creates a new Page object to
store the rendered web page. For each frame, the parser creates a FrameDescriptor
object that describes where to place the frame and a Frame object that contains the in-
formation needed to render the frame. The Frame object will store the rendered frame.

Class declarations contain declarations for the class’s abstract states. Bristlecone’s
abstract states support orthogonal classifications of objects: an object may simultane-
ously be in more than one abstract state. The runtime uses the abstract state of an object
to determine which tasks to invoke on the given object. When a task exits, it can change
the values of the abstract states of its parameter objects.
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An abstract state is declared with the keyword flag followed by a name. The
Frame class declaration contains three abstract state declarations: the plugin state,
which indicates that rendering the frame object requires a plugin; the rendered state,
which indicates that the browser has rendered the frame; and the processed state,
which indicates that the browser has incorporated the rendered frame into the page.

1 p u b l i c c l a s s Page {
2 f l a g r e n d e r e d ;
3 f l a g d i s p l a y e d ;
4 . . .
5 }
6

7 p u b l i c c l a s s Frame {
8 f l a g p l u g i n ;
9 f l a g r e n d e r e d ;

10 f l a g p r o c e s s e d ;
11 . . .
12 }
13

14 p u b l i c c l a s s F r a m e D e s c r i p t o r {
15 . . .
16 }

Fig. 1. Class Definitions

2.2 Tasks

Figure 2 presents task definitions from the web browser example. A task definition
consists of the task keyword, the task’s name, the task’s parameter declarations,
and the task’s body. A parameter declaration consists of a type, a parameter variable,
and a guard expression. An object can serve as a task’s parameter if it satisfies the
parameter’s guard expression. The runtime invokes a task when there exist parameter
objects in the heap that satisfy all the parameter guard expressions for the task. We
discuss some of the example task definitions below:

• ParsePage Task: The ParsePage task allocates a Page object to the web page,
splits the page into individual frames, and then generates a Frame object and a
FrameDescriptor object for each frame.

Note that it is important that the Frame objects are associated with both the correct
FrameDescriptor and Page objects. Otherwise, the web browser may place
frames in the wrong pages. The ParsePage task groups these objects by using
tags. It creates a new tag instance of type pagetag and then binds this tag to the
Page and Frame objects.
• RenderFrame Task: The RenderFrame task renders a frame. Its parameter dec-

laration indicates that the runtime can invoke this task on Frame objects in the heap
and the parameter guard expression !rendered indicates that the parameter object
must not be in the rendered abstract state. When invoked, the task checks whether
rendering this frame requires a plugin, and then it either executes a taskexit state-
ment that transitions the object into the rendered abstract state to indicate that
the frame is rendered or a taskexit statement that transitions the object into the
plugin abstract state to indicate that a plugin is required to render the frame.
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1 tas k Pars ePage ( . . . ) {
2 . . .
3 tag p t =new tag ( p a g e t a g ) ;
4 Page p=new Page ( ) ( add p t ) ;
5 . . .
6 whi le ( moreFrames ( ) ) {
7 . . .
8 tag f t =new tag ( f r a m e t a g ) ;
9 F r a m e D e s c r i p t o r fd =new F r a m e D e s c r i p t o r ( ) ( add f t ) ;

10 Frame f =new Frame ( ) ( add pt , add f t ) ;
11 . . .
12 }
13 }
14

15 tas k RenderFrame ( Frame f in ! r e n d e r e d && ! p l u g i n ) {
16 i f ( n e e d s p l u g i n ( ) )
17 t a s k e x i t ( f : p l u g i n := true ) ;
18 . . .
19 t a s k e x i t ( f : r e n d e r e d := true ) ;
20 }
21

22 tas k I n v o k e P l u g i n ( Frame f in p l u g i n and ! r e n d e r e d ) {
23 . . .
24 t a s k e x i t ( f : r e n d e r e d := true ) ;
25 }
26

27 tas k AddFrameToPage ( Page p in ! r e n d e r e d with p a g e t a g pt , F r a m e D e s c r i p t o r fd
28 with f r a m e t a g f t , o p t i o n a l Frame f in r e n d e r e d and ! p r o c e s s e d with
29 p a g e t a g p t and f r a m e t a g f t ) {
30 i f ( i s a v a i l a b l e ( f ) ) {
31 / / Add Frame t o Page
32 . . .
33 }
34 i f ( l a s t f r a m e )
35 t a s k e x i t ( f : p r o c e s s e d := true ; p : r e n d e r e d := true ) ;
36 e l s e
37 t a s k e x i t ( f : p r o c e s s e d := true ) ;
38 }
39

40 tas k Dis p layPage ( Page p in r e n d e r e d and ! d i s p l a y e d ) {
41 / / D i s p l a y Page
42 . . .
43 t a s k e x i t ( p : d i s p l a y e d := true ) ;
44 }

Fig. 2. Task Definitions

• AddFrameToPage Task: The AddFrameToPage task adds a rendered frame to
the web page. Even if a software fault prevents a frame from being rendered, it is
still possible to display the web page with that frame blanked. Therefore, we use the
optional keyword to specify that the task can execute even if the Frame param-
eter is unavailable due to a failure. We call tasks that contain optional parameters
recovery tasks. Recovery tasks use isavailable checks to verify that an optional
parameter is available before accessing that parameter.

Note that it is important that both the FrameDescriptor object corresponds to
the Frame object and the Frame object is a frame for this specific Page object.
The tag guard expression with pagetag pt in the first and third parameter dec-
larations ensures that those parameter objects are bound to the same pagetag tag
instance.
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2.3 Error-Free Execution

We next discuss how the runtime would execute the example in an error-free execution:

1. Parsing the Page: The browser first executes the ParsePage task. This task cre-
ates a Page object to store the page, parses the web page, and creates both a Frame
object and a FrameDescriptor object for each frame in the page.

2. Processing Frames: The browser next processes the frames by performing the
following operations:

A. Render the Frame: The browser executes the RenderFrame task to render the
frame. If the frame requires a plugin to render, the runtime passes the frame to the
InvokePlugin task.

B. Optionally Invoke a Plugin: If a frame requires a plugin, the browser executes
the InvokePlugin task to invoke the necessary plugin.

C. Add the Frame to the Web Page: The AddFrameToPage task adds a rendered
Frame object to the Page object. Once all frames have been rendered, this task
marks the Page object as rendered.

3. Displaying the Page: After the Page object has been rendered, the
DisplayPage task displays the page.

2.4 Reasoning about Failures

In this example, the developer has provided a recovery task implementation of the
AddFrameToPage task that can function even if a failure affects one of its parameter
objects. If rendering a web page frame fails, this allows the runtime to break depen-
dences on missing frames at the AddFrameToPage task. Breaking these dependences
allows the web browser to recover from errors in processing and rendering web page
frames and still display the affected web page.

If a failure occurs, the recovery algorithm must characterize how the computation
would have proceeded in the absence of the failure. The recovery algorithm can then
resume execution of the failed part of the application’s execution if it can break the
data dependences on failed part of the execution. Therefore, the recovery algorithm
computes the set of recovery tasks that the computation was intended to execute.

If the example fails, an important question is whether the computation would have
invoked the AddFrameToPage recovery task in the absence of a failure. We use static
analysis of the abstract state transition graphs to determine the intended behavior of
the failed part of the computation. A separate static analysis generates the abstract state
transition graphs [8]. Figure 3 presents the abstract state transition graph for the Frame
class. For every reachable object state, there is a node in this graph with the abstract
state component of that state and an abstracted count of the tags of each type that are
bound to the object. For example, the node labeled 2. plugin, frametag(1),
pagetag(1) represents objects in the plugin abstract state and that are bound to
exactly one instance of both a frametag tag and a pagetag tag. Edges represent the
possible transitions an object’s state may make during the execution of a task. Double
boundaries indicates that new objects can be allocated with that state.
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2. plugin, frametag(1), pagetag(1)

3. plugin, rendered, frametag(1), pagetag(1)

ProcessPlugin

4. processed, plugin, rendered, frametag(1), pagetag(1)

AddFrameToPage

5. rendered, frametag(1), pagetag(1)

6. processed, rendered, frametag(1), pagetag(1)

AddFrameToPage

1. frametag(1), pagetag(1)

RenderFrame RenderFrame

Fig. 3. Abstract State Transition Graph for the Frame Class

The recovery algorithm characterizes the intended behavior of the failed part of the
computation. Note that the runtime plays a role in the execution of Bristlecone appli-
cations — it non-deterministically selects a task whose parameter guards are satisfied
to invoke next. The analysis of the failed part of the execution can suppose that the
runtime would have selected whichever schedule for the failed part of the computation
that makes recovery easiest. Therefore for each reachable abstract object state, the static
analysis computes the set of recovery tasks that the scheduler could cause the applica-
tion to eventually execute with the object serving as an optional parameter. For each
recovery task, it computes the possible states of the object when the task is invoked.

The analysis begins with the recovery tasks and then reasons backwards on the
abstract state transition graph. The analysis operates as follows on the example:

1. It first analyzes the two base cases: objects in the state 5. rendered,
frametag(1), pagetag(1) can immediately serve as parameter objects
for the optional parameter of the AddFrameToPage task. Similarly, objects
in the state 3. plugin, rendered, frametag(1), pagetag(1) can
also immediately serve as parameter objects for the optional parameter of the
AddFrameToPage task.

2. The analysis next reasons backwards and examines the state 2. plugin,
frametag(1), pagetag(1). If a FrameObject reaches this state, the run-
time can invoke the processPlugin task to place the object in the 3. plugin,
rendered, frametag(1), pagetag(1) state to which it can serve as a pa-
rameter object of the AddFrameToPage task.

3. The analysis finally examines the state 1. frametag(1), pagetag(1).
The RenderFrame task can transition objects from this state into two dif-
ferent abstract states. Because the AddFrameToPage task can be executed
from both final destination states, the runtime can cause objects in this state to
serve as parameters of the AddFrameToPage task. Since the RenderFrame
task decides the initial state transition, there remains uncertainty about the ex-
act state of the recovery task’s Frame parameter. We represent this uncertainty
using the set {3. plugin, rendered, frametag(1), pagetag(1),
5. rendered, frametag(1), pagetag(1)} that includes both states.
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2.5 Recovering from Failures

We use a hypothetical failure to illustrate the operation of the recovery algorithm.
Suppose that the RenderFrame task dereferences a null pointer. The runtime first
rolls back the RenderFrame task to return the heap to a consistent state. Then it
performs the following steps to continue past the failure to render the web page:

1. Determine the possible destination states for the failed task: The runtime uses
the static analysis results to determine that in the absence of the failure, this task
would transition the Frame object into either the 2. plugin, frametag(1),
pagetag(1) state or the 5. rendered, frametag(1), pagetag(1)
state. Because the task failed, the runtime cannot determine which of these two states
the Frame object would have transitioned.

2. Compute the recovery tasks in the intended execution: The runtime uses
the static analysis results to determine a set of tasks for each state that the
runtime could execute regardless of the application’s behavior. The analysis re-
sults from the previous section show that the runtime could cause Frame
objects in the 2. plugin, frametag(1), pagetag(1) state to transi-
tion to the 3. plugin, rendered, frametag(1), pagetag(1) state.
In this state, they can serve as parameter objects for the optional parame-
ter of the AddFrameToPage task. Frame objects in the 5. rendered,
frametag(1), pagetag(1) state can also serve as parameter objects for the
optional parameter of the AddFrameToPage task.

3. Compute the intersection: Because the RenderFrame task failed, the run-
time cannot determine the exact intended execution. However, if a recovery
task appears on all paths, the runtime can still safely execute that task. The
analysis computes the intersection of the recovery task results from step 2 to
determine that the runtime can cause the AddFrameToPage task to be exe-
cuted. Because the failure prevents the runtime from discovering the path taken
by the RenderFrame task, the runtime does not know the exact abstract
state that the Frame object would have been in when the AddFrameToPage
task executed. So the runtime represents the object’s state with the set of
possible states {3. plugin, rendered, frametag(1), pagetag(1),
5. rendered, frametag(1), pagetag(1)}.

4. Execute the recovery task: The runtime next executes the recovery task. Note that
the isavailable predicate returns false indicating that the Frame object is not
available because of a failure. The runtime marks the object as a failed object. The
object’s data is now inconsistent with its abstract state. Therefore, the data in that ob-
ject can never be accessed. This means that the object cannot serve as a non-optional
parameter object.

5. Update the abstract states: When the recovery task exits, the run-
time updates the Frame object’s set of states to {4. processed,
plugin, rendered, frametag(1), pagetag(1), 6. processed,
rendered, frametag(1), pagetag(1)}. The execution of tasks on the
Frame object is now complete. In general, the runtime would compute the intersec-
tion of the sets of recovery tasks for all of the possible states that the Frame object
may be in. The runtime would then execute one of the tasks in the intersection.
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3 Static Analysis

The goal of the static analysis is to determine a failed computation’s intended behavior.

3.1 Abstract State Transition Graphs

The analysis operates on the abstract state transition graphs that we developed in previ-
ous work [8]. A abstract state node represents the abstract state and tag components of
an object’s state — each node contains the states of all the abstracted object’s abstract
states and a 1-limited count (0, 1, or at least 1) of the number of tag instances of each
type that are bound to the object. The abstract state transition graph contains abstract
state nodes for each reachable abstract state. The abstract state transition graph contains
a set of edges that abstract the actions of tasks on objects. There is an edge between
two abstract state nodes if a task can be invoked on an object in the abstract state cor-
responding to the source node and the task could transition the object into the abstract
state corresponding to the destination node.

Abstract state nodes n ∈ N abstract the reachable abstract states. The set T rep-
resents the set of tasks. The set P ⊆ T × N represents the set of combinations of
tasks and parameter indices for the invocation of a task on an object. The set of edges
E ⊆ N × P ×N represents the possible transactions of an object’s abstract state.

3.2 Analysis Abstraction

The analysis computes the recovery function r : N → 2O that maps abstract state
nodes to their corresponding recovery set. A recovery set is the set of recovery tasks
invocations for which there exist a scheduling strategy that ensures that the computation
will eventually invoke the task on the object abstracted by the state transition graph.
O ⊆ T ×N× 2N is the set of recovery task invocations. Each recovery task invocation
o = 〈t, i, s〉 ∈ O consists of a task t, the optional parameter index i, and the set s of
parameter object abstract states at invocation. These states represent the possible states
of the object at task invocation if the recovery task is invoked.

The dataflow lattice is the standard lattice for sets: the elements of these sets are sets
of recovery task invocations, meet is set union, and the subset relation defines the partial
order. The analysis is a fixed-point algorithm on the abstract state transition graph.

3.3 Transfer Function

We next describe the transfer function for computing the set of recovery task invoca-
tions for an abstract state node n ∈ N . There are two sources of uncertainty in the
abstract state transition graph: (1) there is uncertainty in how a task’s execution will
change an object’s state and (2) there is uncertainty in the task the runtime chooses to
invoke. The Section Results for a Single Task Invocation describes how we handle the
first type of uncertainty in detail. The Section The Runtime’s Choice of Task describes
how we handle the second type of uncertainty. We first describe the basic transfer func-
tions. We later extend the basic analysis to support tags and multiple parameter tasks in
Sections 3.4 and 3.5, respectively.
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Results for a Single Task Invocation. We represent a task invocation on an object
using the pair 〈t, i〉 ∈ P where t is the task and i is parameter that references the object.
For each task invocation p = 〈t, i〉 ∈ P the algorithm computes the set of recovery
task invocations that can break data dependences if the failed part of the computation
includes p. We consider the following two possible cases:

Optional Parameter Case: If parameter i of task t is optional, the set of recovery task
invocations for the invocation of the task-parameter pair p on the abstract state n is
{〈t, i, {n}〉}.
Normal Case: Otherwise, the algorithm computes the set of possible destination ab-
stract states Ndstn = {ndst | 〈n, p, ndst〉 ∈ E} = {ndst1 , ..., ndstm}. Because the
runtime does not choose the destination state of a task, the set of recovery task invoca-
tions for p can only include combinations of recovery task topt and optional parameter
iopt that appear in the recovery sets of all destination states. The set of recovery task
invocations for the task invocation p on n is therefore: {〈topt, iopt, s1 ∪ ... ∪ sm〉 |
〈topt, iopt, s1〉 ∈ r(ndst1), ..., 〈topt, iopt, sm〉 ∈ r(ndstm)}. The recovery task invoca-
tion’s set of abstract states is equal to the union of all the component sets of abstract
states {s1, ..., sm} because the analysis cannot determine the destination state of the
task invocation p and therefore cannot determine the exact state that an object would be
in when it serves as the iopt parameter of the task topt.

The Runtime’s Choice of Task. When an abstract state has more than one possible
task invocation, the runtime can choose which task to invoke. To compute the set of
recovery task invocations for the abstract state n, the analysis first computes the set of
recovery task invocations for each pair of task t and parameter i that can be invoked on
the abstract state n. The set of recovery task invocations for n is the union of these sets.

3.4 Multiple-Parameter Tasks

Tasks that operate on multiple-parameters pose extra challenges. Because the abstract
state transition graph only characterizes the application’s behavior with respect to a
single object, the runtime must ensure that all other parameter object guards for a
multiple-parameter task are satisfied. Moreover, a multiple-parameter task could po-
tentially introduce inconsistencies in other object’s states if the abstract states of some
parameter objects were updated and another parameter object’s abstract states were not.
For example, if the abstract states of other parameter objects were updated without actu-
ally executing the multiple-parameter task, it would likely introduce inconsistencies be-
tween the other object’s data and the states of its abstract states. If the runtime declared
the other objects as failed, the recovery attempt could cause the loss of key data struc-
tures. To avoid these issues, the analysis conservatively omits multiple-parameter tasks
that change the abstract states or tag bindings of other parameters. Note that omitting
these tasks is safe, it simply reduces how much of the computation can be recovered.

We have extended the transfer function for multiple-parameter tasks to add predicates
to recovery task invocations. These predicates verify that the heap contains objects that
satisfy the guard expressions for the other parameters of the task. The runtime uses
these predicates to check whether an execution path involving a multiple-parameter
task is feasible, and therefore that the corresponding recovery task can be executed.
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3.5 Tag Bindings

Another complication is that a task in the failed part of the execution may bind a new
tag instance to an object. Because Bristlecone cannot determine the exact tag instance
that would have been bound, the static analysis must conservatively handle this case.
We have extended the transfer function to omit recovery task invocations if the current
task binds a tag descriptor of the same type as the tag guards that appear either in the
recovery task’s guard expressions or in any tag guard predicates in the recovery task
invocation. Note that omitting these invocations is safe, it simply reduces the set of
possible recoveries that the system can generate.

4 Recovery Algorithm

The runtime should only invoke a recovery task on a failed object when the intended
execution would have executed that task. Because the failure prevented part of the
computation from executing, the analysis may not be able to determine the exact
abstract state of the failed object, but only that the object’s abstract state satisfies the
recovery task’s guard. There are two sources of uncertainty in the abstract state of a
failed object:

• Uncertainty from Failed Tasks: A task can have multiple exits and therefore po-
tentially transition its parameter objects into different abstract states. Because the
runtime cannot determine which exit a failed task would have taken had it not failed,
the runtime must conservatively assume that the task could take any of the exits.
The recovery algorithm represents this uncertainty using a possible abstract state set
SF = {n1, ..., nj} ⊆ 2N that contains all possible abstract states that the tasks could
have transitioned the parameter objects into. A recovery task can only be invoked on
a possible abstract state set if it can be invoked on all of its component abstract states.
• Uncertainty from the Runtime: If the runtime would have had a choice between

multiple tasks to invoke on an object in a failure-free execution, the runtime can
use the same freedom to make recovery easier. Because the choice of which failed
task the runtime executes does not have an immediate side-effect, the runtime can
delay this choice. This delay gives the runtime extra flexibility in recovery and pro-
vides a beneficial source of uncertainty in an object’s state. The recovery algorithm
represents this uncertainty source with a choice set C = {SF1 , ..., SFm} ⊆ 22N

of
choices between many possible abstract state sets. A recovery task can be invoked on
a choice set if it could be invoked on at least one of the component possible abstract
state sets. When a recovery task is invoked, its guards constrain the abstract states of
the parameter objects and may force the runtime to commit to a specific choice of
task scheduling for the failed part of the computation.

4.1 Task Invocation

Task invocation during normal execution is conceptually straightforward — the runtime
maintains the current state of the objects and invokes tasks on these objects when the ob-
jects satisfy the task’s guards. Our previous work describes efficient runtime techniques
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for task invocation. In this section, we extend this work to support recovery tasks by
tracking the states of failed objects. We first describe how the runtime uses static analy-
sis to compute the set of recovery tasks that can be executed on a failed task’s parameter
objects. We then describe how, after a recovery task completes execution on a failed ob-
ject, the runtime uses the static analysis results to compute the set of recovery tasks it
can execute next on the failed object.

Failed Tasks. This section describes the actions taken by the runtime when task
t fails with its ith parameter object o in the state given by the choice set C =
{{n11, ..., n1k1}, ..., {nj1, ..., njkj}}.1 The runtime first computes which recovery tasks
could have been executed had task t not failed. It also characterizes the possible states
of the object o at the time these recovery tasks would have been invoked.

The runtime computes the function R ⊆ T × N→ 22N

that characterizes the set of
possible recovery task invocations. We define the functionO = T (t, i, n) to return the
set of recovery task invocations O for a failure of task t on the ith parameter object in
state n. The runtime uses the procedure described in Section 3.3 to compute T from the
static analysis results.

The operator � models the effects of the uncertainty of the failed task’s execution
by conservatively combining the sets of recovery task invocations – a recovery task
is in the combination only if it appears in both sets. Formally, we define O1 � O2 =
{〈t′, i′, S〉 | 〈t′, i′, S1〉 ∈ O1 ∧ 〈t′, i′, S2〉 ∈ O2, S = S1 ∪ S2}. We use the � operator
to compute the set of possible recovery task invocations for an object in the possible
abstract state SF = {n1, ..., nj} ⊆ 2N that served as parameter i during a failure of task
t as T (t, i, n1)�...�T (t, i, nj). We use the set union operator to extend this computation
to choice sets — the algorithm computes the set of possible recovery task invocations
C =

(
T (t, i, n11) � ... � T (t, i, n1k1)

)
∪ ... ∪

(
T (t, i, nj1) � ... � T (t, i, njkj )

)
. We

define R(t, i) = {S | 〈t, i, S〉 ∈ C}. The function R gives for each possible recovery
task invocation 〈t, i〉 that can be enqueued, the choice set that characterizes the failed
object’s state. Note that the object remains enqueued in any previous task queues.

Recovery Tasks on Failed Objects. This section describes the actions the runtime
takes to execute a recovery task on a failed parameter object. The runtime starts the
task’s execution with the object in the state computed in the previous section for
the task invocation. When the task exits, the runtime updates each of the object’s
possible states with the abstract states and tag changes from the taskexit state-
ment. The runtime then removes the parameter objects from all task queues. If the
parameter object is in a non-failed state, the runtime enqueues the object in the task
queues. Otherwise, for a failed parameter object in the state given by the choice set
C = {{n11, ..., n1k1}, ..., {nj1, ..., njkj}} the algorithm uses the recovery function r
to compute C =

(
r(n11) � ... � r(n1k1)

)
∪ ... ∪

(
r(nj1) � ... � r(njkj )

)
. We define

R(t, i) = {S | 〈t, i, S〉 ∈ C}. The algorithm then uses R to determine, for each possi-
ble recovery task invocation 〈t, i〉 that can be enqueued, the corresponding choice set.

1 A non-trivial choice set can appear after a failure of a recovery task invocation during the
process of recovery. The recovery algorithm continues to try to break other data dependences
at future recovery tasks that access the object. Note that the parameter objects of a normal
failed task will be in a trivial choice set C = {{n11}}.
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5 Experience

We next discuss our experiences using recovery tasks to develop three robust software
applications: a multiplayer game, a web portal, and a simplified MapReduce framework.
We have implemented the enhanced recovery algorithm with support for recovery tasks
in the Bristlecone compiler and runtime. The source code for the compiler, runtime, and
benchmarks is available at http://demsky.eecs.uci.edu/software.php.

For each benchmark, we developed three versions: a recovery task version, a standard
Bristlecone version without recovery tasks, and a Java version.

We used randomized failure injection to simulate the effects of software faults. The
compiler inserts failure injection code after every instruction in the generated code. We
inject exactly one failure into each execution at a random instruction. The failures we
injected simulate the entire class of software faults that cause failures in the same task
that contains the fault. This fault class includes illegal memory accesses, failed asser-
tions, failed data structure consistency checks, library errors, and arithmetic exceptions.

We developed this randomized failure injection strategy to avoid biases that hand-
selected faults may introduce. Note that our randomized failure injection strategy likely
represents an unrealistically harsh metric — it may inject faults that are extremely dif-
ficult to recover from, but are unlikely to occur in practice. For example, it sometimes
injects failures into simple, completely deterministic startup code. While such injected
failures cause the Bristlecone versions to fail to recover because the entire application
depends on the startup code, they are unlikely to occur in practice as they would have
been caught the first time the application was executed.

5.1 Multiplayer Game

The multiplayer game benchmark is a simplified version of larger scale multiplayer on-
line games. Software bugs have been a recurring problem for many of these games. Our
game consists of a world with both humans and monsters. Humans try to escape through
exits while monsters try to capture the humans. The game contains AI components that
use search algorithms to plan the moves for both monsters and humans. The recovery
task version uses a recovery task to collect the players’ moves and update the map.

In the process of developing the AI code, which is shared across all versions, we
made an unintentional coding mistake that could cause an out-of-bounds array access
under certain circumstances. The recovery task version recovered from this bug while
the other two versions crashed. While this experience is only a single anecdote, we
found it to be an encouraging validation of the approach.

Our workload was running the game with all players controlled by the AI. We per-
formed 100 trials of the experiment on each of the three versions. We found that using
recovery tasks enabled the recovery task version of the game to survive the injected
failure in all 100 trials. We found that in the presence of errors, the standard Bristlecone
and Java versions were unable to continue the game.

5.2 Web Portal

The web portal models a category of applications that perform independent compu-
tations, combine the results, and then display some aggregation to the user. When a

http://demsky.eecs.uci.edu/software.php
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web browser requests the portal page, the web portal generates requests for the current
weather conditions, stock prices, and the Google home page. Finally, the web portal
combines the results from the individual responses into a single page and serves this
page to the browser. The recovery task version enhances the data combination phase to
enable recovery from failures that make parts of the information unavailable.

Our workload consisted of using a web browser to view the portal web page. We
performed 20 trials of the experiment on each of the three versions. We found that
using recovery tasks enabled the web portal to serve the unaffected parts of the web
portal page in 17 of the 20 trials. We found that in the presence of errors, the standard
Bristlecone and Java versions were unable to serve the portal web page. However, all
three versions were able to isolate errors to a single request — all versions of the web
portal were able to serve future page requests after a failure.

5.3 MapReduce Framework

MapReduce provides an abstract programming model for parallel computations on large
data sets [7]. Users specify the computation in terms of a map function and a reduce
function and MapReduce automatically parallelizes the computation across machines.

We implemented a simplified MapReduce framework. The implementation partitions
the input, invokes the map function, aggregates intermediate results, invokes the reduce
function, and aggregates the final results. The recovery task version uses recovery tasks
for aggregating the map and reduce results.

Our workload counts the occurrences of each word in a text file. We performed 100
trials on each of the three versions. For each trial, we recorded whether the final output
was generated. Without failure injection, all of the versions generated the final output.
With the injected failures, the recovery task version produced the final output in 93 trials
while the other two versions failed in all trials. When the recovery task version failed,
it warned the user that the word counts could potentially be low. We expect that users
will often find the output useful as it represents a lower bound on word counts.

We divide the injected failures into three categories: (1) failures that affect map work-
ers, (2) failures that affect reduce workers, and (3) failures that affect the tasks that co-
ordinate the computation. We observed 86 executions in the first category. The effect of
these errors was to cause word counts to be low or missing — in these executions the
counts were low by an average of 5%. We observed 7 executions in the second category.
The effect of these errors was to cause word counts for some words to be missing. We
observed that 86 words out of 6,213 total words were missing on average from these
executions. The 7 failed executions fall in the third category.

5.4 Discussion

We measured the execution time of both the recovery task version and the Java version
of the multiplayer game and MapReduce benchmarks. We omit a performance evalu-
ation for the web portal because of the difficulty of measuring its performance given
that the portal accesses remote web servers. The Bristlecone version of the MapReduce
benchmark running on a RAM disk took 0.63 seconds to execute while the Java version
took 0.58 seconds. The recovery task version of the multiplayer game benchmark took
0.94 seconds to execute while the Java version took only 0.63 seconds.
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In general, we have found writing Bristlecone applications to be straightforward —
most of the code was shared with the Java version. The Bristlecone versions of the
benchmarks were comparable in length to the Java versions. The recovery task version
of MapReduce framework contains 20% fewer lines of code than the Java version, the
recovery task version of multiplayer game contains 5% more lines of code, and the
recovery task version of web portal contains 6% more lines of code of which about one
third were simply abstract state declarations.

6 Related Work

Recovery blocks [1] and N-version programming [3] are two classic approaches to fault
tolerance. These approaches add significant software development costs. Bristlecone is
designed to provide fault tolerance for applications that cannot afford the development
costs associated with these classic techniques.

Backward recovery uses a combination of checkpointing and acceptance tests to pre-
vent a software system from entering an incorrect state [5]. Forward recovery uses mul-
tiple copies of a computation to recover from transient errors [11]. Unfortunately, it can
be difficult to handle deterministic failures with these methods as the same error will
likely cause the software system to repeatedly fail.

The Recovery-Oriented Computing project has explored systems out of a set of indi-
vidually rebootable components [4]. Researchers have used retry with reconfiguration
to address configuration issues [13]. Contract-based data structure repair [15] is an al-
ternative approach to tolerating failed components.

A key component of Bristlecone is decoupling unrelated conceptual operations and
tracking data dependences between these operations. Dataflow computations also keep
track of data dependences between operations so that the operations can be paral-
lelized [12]. Errors in a dataflow computation could easily cause key data structures
to be lost. Bristlecone’s abstract state and tag constructs allow data structures to pas-
sively persist across failures.

Tuple-space languages, such as Linda [9], decouple computations to enable paral-
lelization. The threads of execution communicate through primitives that manipulate
a global tuple space. However, these language were not designed to address software
errors — software errors can permanently halt threads of execution in these languages
causing the system to eventually fail.

Orc [6] and Oz [14] are other examples of task-based languages. This work is largely
orthogonal as they are not designed for fault tolerance. Actors are a concurrent program-
ming paradigm in which applications are architected as several actors that communicate
through messages [10]. Actors are note designed for fault tolerance and failures may
cause actors to drop messages and corrupt or lose their state.

Erlang has been used to implement robust systems using a software architecture
containing a set of supervisors and a hierarchy of increasingly simple implementations
of the same functionality [2]. Bristlecone is complementary to the supervisor approach
— while the supervisor approach gives the developer complete control over recovery,
it requires the developer to manually develop multiple implementations of the same
functionality. Bristlecone requires only minimal additional development effort.
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7 Conclusion

We have presented an analysis that reasons about the effects of potential failures and a
recovery algorithm that uses the analysis results to determine how to recover the appli-
cation from the failure. Our experience shows that the new technique recovers signifi-
cantly better from failures for our benchmarks. Moreover, we found it straightforward to
use this technique to develop applications, and that it did not significantly affect either
the complexity or length of the benchmarks.
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Abstract. The term “instrumentation” refers to modification of a pro-

gram or its runtime environment to make hidden details of execution visi-

ble. Instrumentation can severely compromise program execution speed.

Frameworks like DTrace (Sun Microsystems) and VProbes (VMware)

offer practical ways of addressing performance concerns, but there has

been no formal understanding of what it means for instrumentation to be

efficient. To fill this gap, we propose a criterion based on that of Popek

and Goldberg for virtual machines and on our previous work relating this

to Jones optimality of program specializers. We further suggest linguis-

tic constraints on instrumentation code to enable more aggressive static

optimization of dynamically instrumented programs.

1 Introduction

There is a wealth of literature on the subject of program instrumentation, and
many tools are used in practice. Implementation methods range from manually
adding printf calls to purpose-built frameworks with virtual machines and JIT
compilers. Historically, instrumentation was seen as a debugging aid, unsuit-
able for use in production systems primarily because the runtime overhead of
instrumentation can slow down a program by orders of magnitude. This tradi-
tional view is challenged by modern, lightweight dynamic binary instrumenta-
tion frameworks—of which DTrace (developed by Sun Microsystems) is perhaps
the best-known example—that allow instrumentation code to be selectively en-
abled and disabled at runtime. The performance implications of an instrumenta-
tion framework largely determine its adoption. Although there is broad informal
agreement that only those parts of the program that are being instrumented
should incur a performance penalty, no formal criteria exist. The present pa-
per begins to address this shortcoming. Section 2 introduces AL, an assembly
language, and IL, an instrumentation script loosely based on DTrace’s “D” lan-
guage. As a form of augmented execution, instrumentation shares many similar-
ities with virtualization. Our efficiency criterion (Section 3) is inspired by one
of Popek and Goldberg’s [10] requirements for virtual machine monitors. This
addresses explicit overheads, but implicit overheads remain: compiler optimiza-
tion opportunities lost to allow potential instrumentation. Section 4 suggests
linguistic restrictions on IL scripts to recover such lost ground.

Technical Preliminaries: Jones Optimality. A partial evaluator uses known in-
put values to optimise a program. Let [[·]] be an evaluation function and p a

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 245–252, 2010.
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program with two inputs d1 and d2, then a partial evaluator mix satisfies the
equation [[p]](d1, d2) = [[[[mix ]](p, d1)]](d2). The output of mix is called the resid-
ual or specialized program. Specializing an interpreter for language L written in
language M with respect to p, a program in L, has the effect of compiling p into
M . This surprising fact is known as the first Futamura projection. Some special-
izers are better than others: for example, the trivial specializer does no useful
work and merely splices its inputs into a predetermined program template. Jones
optimality, due to Neil Jones [6], is intended to tell the good specializers from
the bad. Let sint range over self-interpreters (a self-interpreter is an interpreter
written in the same language that it interprets), then mix is Jones-optimal iff
∃sint . ∀p. [[mix ]](sint , p) =α p where =α is a decidable syntactic equality. Intu-
itively, this means that mix is capable of removing a layer of interpretational
overhead. A later version of Jones optimality [8, Definition 6.4] specifies a weaker
relation, defined over the running times of the computations.

2 AL and IL

We will use an assembly language called AL with syntax:

insn ::= NOP | MOV rdst, asrc a ::= v | r where v ∈ Val , r ∈ Reg
| LOAD rdst, (asrc) | STORE (adst), asrc | ALU〈op〉 rdst, asrc1, asrc2

| CALL aloc | RET | JZ acond, aloc | HLT | OUT rsrc | UPDATE | BRK | BRET .

AL programs run on a finite CISC-style Harvard architecture: instructions and
data are stored separately. The code store cannot be read or written to and the
data store cannot be executed.1Most of the instructions are standard, and the
destination operand comes before the source operand(s); OUT prints the contents
of a register; BRK invokes the trap handler which resides at a well-known address
inaccessible by means of a jump or call; BRET returns from the handler—both BRK
and BRET are part of the instrumentation mechanism and may not occur in user
programs; UPDATE terminates the program preserving the entire machine state.
Since we will not be considering recursive instrumentation (i.e. “instrumentation
of instrumentation code”) the trap handler is not re-entrant. Instrumentation
is added and removed when a program reaches an update point by executing
UPDATE: we borrow the term from dynamic software updating. UPDATE can be
thought of as transferring control to the operating system. The trace of an AL
program is the sequence of operations that were executed together with their
data-flow inputs and outputs. We further define a name erasure map over traces
which discards the operand encoding information as well as register names and
the target addresses of jumps and calls. A program to calculate the factorial of
5 and the first few operations in its original and erased traces are shown below.
Outputs are enclosed in square brackets and the letters following the values (r
or i) identify the opcode variant used.

1 Similar constraints are often imposed on x86 code to allow reliable disassembly.
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Program Trace Erased trace
fac5: MOV r1, 5 MOV [5]/r1, 5/i MOV [5], 5

MOV r2, 1 MOV [1]/r2, 1/i MOV [1], 1
loop: JZ r1, done JZ 5/r1, 24/i JZ 5

MUL r2, r1, r2 MUL [5]/r2, 5/r1, 1/r2 MUL [5], 5, 1
SUB r1, r1, 1 SUB [4]/r1, 5/r1, 1/i SUB [4], 5, 1
JZ 0, loop JZ 0/i, 8/i JZ 0

done: OUT r2 JZ 4/i, 24/i JZ 4
. . . . . .

Nethercote and Mycroft [9] argued that a dynamic data dependence graph built
from a program trace represents the “essence” of a computation. The erased trace
is an attempt to capture the same intuition with a more lightweight formalism.

IL is an instrumentation language in the spirit of “D” [3] with syntax:

exp ::= val | var | bvar | pc | reg(exp) | code(exp) | data(exp) | op exp+

comm ::= comm ; comm | if exp then comm | var ← exp | print exp+

pat ::= opcode bvar+ rule ::= pat { comm } script ::= rule� .

IL rules pattern-match on AL opcodes, binding variables (bvar s) to the operands
of the instruction. The UPDATE, BRK and BRET instructions are special and cannot
be instrumented (see the next section). The order of the rules is not important;
each instruction can only be instrumented once. Instrumentation code is exe-
cuted before the instruction takes effect. A sample IL script is shown below:

STORE (rdst), rsrc { x ← data(12345678); print x ; }
JZ rcond, rloc { if code(reg(rloc)) = NOP then y ← y + 1; print y; } .

We further assume the existence of two auxiliary functions: I(t) maps an IL
script t to an instrumented interpreter for AL which is itself written in AL.
An instrumenting function Ct(p) augments an AL program p using script t,
producing an instrumented AL program. Given any specializer mix for AL, one
possibility is to define Ct(p) as [[mix ]](I(t), p).

3 Efficient Instrumentation

Jones [7] notes that original and specialised computations can—for reasonable
specializers—be related by “execution order”-preserving maps. Previously we
showed [5] that a version of Jones optimality built on this observation—which
we called “Jones optimality for traces”—can capture Popek and Goldberg’s [10]
efficiency criterion. To provide isolation between individual virtual machines, a
virtual machine monitor (VMM) must emulate privileged instructions: roughly,
those that affect the operation of the CPU itself or other hardware. Popek and
Goldberg’s efficiency criterion states that non-privileged instructions must be
executed directly by the hardware with no intervention by the VMM. This mir-
rors Cantrill et al.’s [3] claim that “when DTrace is not in use, the system is
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just as if DTrace were not present at all”. The key point is that common-case
performance—i.e. execution of unprivileged instructions for VMMs and non-
instrumented execution for DTrace—should not degrade.

Assume programs p and p′ yield erased traces tr and tr ′. Then p is (erased)
trace-simulated by p′ (p � p′) iff tr is a subsequence of tr ′, i.e. ∃f. ∀i. tr(i) =
tr ′(f(i)) where f is a strictly increasing function. An instrumenting function
C should result in an instrumented program Ct(p) which executes all the in-
structions that the original program p does, interspersed with instrumentation
code. We call C a faithful instrumenting function iff ∀t. ∀p. p � Ct(p). Faithful-
ness limits the choice of instrumentation function C because of the intensional
nature of �. However, erased trace simulation is purposely a loose relation in
the sense that it does not require an exact matching (as would a bisimulation)
between the execution states under the standard and non-standard interpreta-
tions. The benefit is that erased trace simulation allows many sensible imple-
mentations of the instrumenting function. First, consider naive interpretation,
i.e. Ct(p) = [[mix triv]](I(t), p) where mix triv is the trivial specializer for AL. The
simplest interpreter implements every instruction in terms of itself: an ADD with
an ADD, a MOV with a MOV, etc.; this clearly gives faithful instrumentation. The
dispatch mechanism used by the interpreter—a switch statement or threading—
is not important here. Arguably interpretation is not a viable implementation
strategy for a variety of reasons: DTrace and many other frameworks use in-place
binary patching to substitute instrumented instructions with breakpoints. The
breakpoint instruction provides rudimentary support for what the virtualization
literature calls “trap-and-emulate” execution. It is educational to reconstruct
breakpoints rationally starting from context-threaded (CT) interpretation [2],
although AL contains explicit provision for trap-and-emulate. A CT interpreter
replaces every non-jump instruction in its input program with a call to the
procedure in the interpreter that implements the opcode. Once the resulting
context threading table (CTT) is constructed, the interpreter jumps to the first
instruction in the table. Note that, as a result, a CT interpreter cannot be im-
plemented on a machine with no data execution capability. Instruction operands
are retained in a separate table in data memory:

Original CTT (Operands) Instrumented (Operands)
MOV r1, 3 CALL doMOV r1, 3 MOV r1, 3 N/A
ADD r2, r1, 5 CALL doADD r2, r1, 5 CALL doADD r2, r1, 5
OUT r2 CALL doOUT r2 OUT r2 N/A

For a self-interpreter, we expect inlining followed by constant propagation on
the CTT to recover the original program (cf. a Jones-optimal mix ). Suppose
instead we allow the ADD instruction to be instrumented; then doADD calls can-
not be inlined since the specific interpretation of ADD is not known when the
program is compiled, but all the other doXXX calls can! The instrumented pro-
gram in the table above executes in a mixed compiled/interpreted mode—the
bulk of the program runs natively, but the ADD instruction is interpreted. The
Linux kernel implementation of paravirtualization provides a real-world exam-
ple. The hypervisor fills in a pv_cpu_ops structure with pointers to functions
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(clts, write_cr0, etc.) that emulate privileged instructions. Instead of execut-
ing a privileged instruction directly, the kernel calls the corresponding function
in the structure. Morally speaking, an instance of pv_cpu_ops is a non-standard
interpreter for x86 machine code and the kernel is a CTT. The default, native
pv_cpu_ops implementation acts directly on the hardware—i.e. it defines a self-
interpreter. Indeed, written in Haskell, pv_cpu_ops would be a type class and
each hypervisor an instance; dictionary passing replaces a global pv_cpu_ops
variable. As an aside: this view of non-standard interpretation through context
threading is closely related to Carette et al.’s [4] “final tagless” style.

Faithfulness places a lower bound on the number of instructions executed
by the instrumented program. Efficient instrumentation is also bounded from
above. Let tr be the erased trace of the original program. Let tr ′ be the erased
trace of the instrumented program from which all instrumentation code has been
removed (the BRK/BRET pair indicate where execution passes between program
and instrumentation code). Define dom(t), the domain of script t, as the set of
opcodes for which there is a rule in t. For example, the domain of the sample
script in Sec. 2, dom(t) = {STORErr, JZrr} where the suffix rr selects a partic-
ular version of the opcode (in this case, one whose both operands are registers).
Define a predicate h on sequence indices such that h(tr , i) is true iff the instruc-
tion at index i in tr is bracketed by a BRK/BRET pair. This enables us to define,
using dom(t) and h, the script-specific relation �t between the instrumented
and original programs that disregards instrumentation code: p �t p′ means the
same as p � p′ modulo the contribution of t (i.e. code bracketed by BRK/BRET).
Every instruction in the trace of p which is not part of instrumentation as well
as exactly one instruction from every block of instrumentation code must also
occur in the trace of p′ in the correct order. We call C an efficient instrumenting
function iff ∀t. ∀p. Ct(p) �t p. Finally, we call C a good instrumentation function
iff it is both faithful and efficient:

∀t. ∀p. p � Ct(p) �t p .

Notice that the instrumenting function must behave uniformly for all scripts:
compare with Jones optimality which requires the existence of a single self-
interpreter for which the specializer is able to remove an entire layer of interpre-
tational overhead, but says nothing about the variability of results produced by
the specializer from one interpreter to the next, giving rise to “cheating” spe-
cializers. Defining good instrumentation in two parts (faithfulness and efficiency)
has advantages over straightforward erased trace equality because the efficiency
relation can be independently refined. Instrumentation by naive interpretation
is clearly not “good” in the sense above because for every unit of useful work in
the program, the interpreter executes many housekeeping instructions. Unfortu-
nately, our definition suffers from the same drawback as the original statement
of Jones optimality: it does not allow C to optimize the program. This is not nec-
essarily a deficiency since it could be argued that a distinct boundary between
program and instrumentation is desirable. We leave a detailed examination of
this issue to further work and for now assume that programs are optimized prior
to being instrumented (which is frequently the case in practice).
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4 Static Optimization of Dynamically Instrumented Code

Debugging is well-known to be antagonistic to program optimization. Optimiza-
tion in the presence of dynamic instrumentation is challenging for much the same
reasons: IL scripts can distinguish previously equivalent programs. Worse still,
the compiler must forego profitable optimization in deference to potential future
instrumentation which may never materialize. So much as removing a spurious
NOP instruction may have an effect on the result of an instrumented run. In
the general case, the unoptimized execution state—the state of the program as
it would have been, had the program not been optimized—must be preserved
or reconstructed both at update points (UPDATE) and prior to entering instru-
mentation code (BRK). We are interested in static, common-case optimization of
dynamically instrumented programs, relying on these observations: (i) instru-
mentation can only be applied at UPDATE points, (ii) instrumentation is applied
rarely (i.e. most of the time an UPDATE is a no-op), and (iii) only a small pro-
portion of instructions are instrumented at any given time. The trade-offs for
instrumentation of production systems and debugging are slightly different. So,
rather than attempt to undo the effect of arbitrary program transformations on
the execution state (a costly procedure), we propose to selectively ban overly in-
vasive instrumentation. As an example, consider the programs and script below:

Program Optimized
MOV r9, 3 —
MOV r9, 5 MOV r9, 5
MOV r7, 1 —
OUT r9 OUT r9

Instrumentation Script

MOV r, v { print reg(r); }
OUT r { print “r7 holds ”, reg(7); }

The optimized program is obtained from the original by eliminating two dead
assignments: the first and third MOVs. Running either program produces the out-
put “5”. But when instrumented this is preceded by “0 3 0 1” in the original
program, and “0 0” in the optimized (assuming the machine initializes registers
to zero). The basic issue is that the optimizer is semantics-preserving with re-
spect to the standard AL interpretation, but not the non-standard interpretation
defined by the script. Various authors (e.g. Tolmach and Appel [11]) have sug-
gested adding instrumentation to the program prior to optimization. However,
our proposed efficiency criterion requires a strict separation between program
and instrumentation code.

Since every instruction is a potential candidate for instrumentation, the opti-
mizer cannot perform even the simplest peephole rewrites. A possible workaround
is to declare certain instructions—e.g. all arithmetic instructions—as exempt
from instrumentation. However, the problem remains that execution state on
entry into instrumentation code is altered as a result of optimization. We note
that instrumentation code introduces additional dependencies not present in the
program itself (for instance, the rule for OUT in the script above makes r7 “live”
in the usual data-flow sense). Therefore, by limiting the dependence of instru-
mentation code on the execution state of the program, further optimizations
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become possible. To this end we will ascribe types to IL expressions2 to capture
their observational power (i.e. ability to distinguish execution states) as a par-
tial equivalence relation (PER). The approach closely follows Benton’s work [1]
on program transformation for imperative languages using PERs to model the
context in which a command or expression is executed. A PER is a binary rela-
tion that is symmetric and transitive, but, unlike a proper equivalence relation,
not necessarily reflexive. The domain of a PER P ⊆ X ×X is the subset of X
where P is reflexive: |P | = {x ∈ X | x P x}. Every equivalence relation is a
PER and every PER is an equivalence relation on its domain. It will be conve-
nient to refer to these two equivalence relations by name: AllX = X × X and
IdX = {(x, x) | x ∈ X}. If P and Q are PERs over X and Y respectively, then
(P ×Q) and (P ⇒ Q) are PERs over X × Y and X → Y respectively:

(x, y) (P ×Q) (x′, y′) iff x P x′ and y Q y′

f (P ⇒ Q) g iff x P x′ =⇒ (f x) Q (g x′) .

Further, given function Γ (which should be thought of as a typing context)
from elements of X to PERs over Y , by a slight abuse of notation we will
treat Γ as a relation over X → Y defined as follows: f (Γ ) g ⇐⇒ ∀x ∈
dom(Γ ). f(x) Γ (x) g(x). Assume [[e]]expIL ∈ State × VEnv → Val is the evalua-
tion function for IL expressions; State is the state of an AL program, a tuple
(pc, R, D, C) where pc is the program counter, R ∈ Reg → Val is the register
file, and D, C ∈ Loc ⇀ Val are the data and code memories respectively, map-
ping locations to values; the environment VEnv ≡ Var → Val holds bindings of
IL variables. Let P and Q PERs over (State ×VEnv) and Val respectively and
define equivalence of expressions like so: e1 ∼P⇒Q e2 ⇐⇒ [[e1]] (P ⇒ Q) [[e2]].
We will write e : P ⇒ Q as shorthand for e ∈ |P ⇒ Q|. Intuitively, the relation
P reveals the dependence of the expression on the program state and the IL
variable environment; Q describes how the value computed by the expression
is going to be used by the surrounding context. Note that every expression e
such that e : All ⇒ Id necessarily conflates all execution states and variable
environments, e.g. 42, reg(7) ∗ 0. Such expressions have the least impact on pro-
gram optimization because they are extensionally constant. Suppose that, like
in the example above, the compiler optimizes away a dead MOV to r7. In that
case, no guarantee can be made about the contents of the target register, since
it may have been written to by a preceding MOV or STORE. The optimization
remains sound in the presence of instrumentation expression e so long as e does
not depend on the value: this is easily modelled by a register context ΓR such
that ΓR(r7) = All . Further refinement is possible: if an IL command interprets
r7 as a boolean (i.e. “if reg(7) then . . .”), only the truth (or falsity) of the value
needs to be preserved by optimization. We posit per-program syntactic (or “type
system”-like) restrictions on instrumentation code to enforce independence from
parts of the program state. We plan to explore this direction in further work.
2 We focus on IL expressions here, but equivalence of commands is defined similarly,

taking care to handle print: we consider two commands equivalent only if they pro-

duce exactly the same output—i.e. the same values in the same order.



252 B. Feigin and A. Mycroft

5 Conclusions and Further Work

This paper has started to apply programming language theory to an emerging
class of instrumentation tools—like DTrace and VProbes—where the instrumen-
tation code is written in a domain-specific language. We have specifically focused
on performance guarantees, proposing a definition for efficient instrumentation
adapted from a well-known virtualization efficiency criterion. We do not claim
that our proposed criterion is applicable to all instrumentation frameworks and
under all circumstances. Rather, it is a first attempt to capture a property that
has hitherto received little attention in the literature. Malicious or incompe-
tent instrumentation code can compromise security by—directly or indirectly—
leaking values of secret variables. DTrace has a coarse-grained capability system
governing what a given UNIX user can instrument. In addition to performance
guarantees, we believe that pervasive instrumentation of production systems will
require a finer, language-based permissions model.
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Interval Analysis for Concurrent Trace Programs Using
Transaction Sequence Graphs

Malay K. Ganai and Chao Wang
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Abstract. Concurrent trace programs (CTPs) are slices of the concurrent pro-
grams that generate the concrete program execution traces, where inter-thread
event order specific to the given traces are relaxed. For such CTPs, we introduce
transaction sequence graph (TSG) as a model for efficient concurrent data flow
analysis. The TSG is a digraph of thread-local control nodes and edges corre-
sponding to transactions and possible context-switches. Such a graph captures
all the representative interleavings of these nodes/transactions. We use a mutu-
ally atomic transaction (MAT) based partial order reduction to construct such a
TSG. We also present a non-trivial improvement to the original MAT analysis to
further reduce the TSG sizes. As an application, we have used interval analysis
in our experiments to show that TSG leads to more precise intervals and more
time/space efficient concurrent data flow analysis than the standard models such
as concurrent control flow graph.

1 Introduction

Verification of multi-threaded programs is hard due to the complex and often unex-
pected interleaving between the threads. Exposing concurrency related bugs—such as
atomicity violations and data races—require not only bug-triggering inputs but also
bug-triggering execution interleavings. Unfortunately, testing a program for every in-
terleaving on every test input is often practically impossible. Runtime-based program
analysis [1–13] infer and predict program errors from an observed trace. Compared to
static analysis [14–20], runtime analysis often result in fewer false alarms.

Runtime analysis can be broadly classified into three categories: runtime monitor-
ing, runtime prediction, and runtime model checking. In the first category, analysis such
as[1–6] monitor the observed trace events (such as shared memory accesses) and flag
true or potential violations of intended atomic transactions. In the second category, the
analysis can also predict violations in other interleavings of the events in the observed
trace. Some of these approaches [7, 8] use data abstraction, and thereby report false
alarms as the interleaving may not be feasible; while other approaches such as [21]
use happens-before causal relation to capture only (but may not be all) the feasible
interleavings, and thereby, report no bogus (but may miss some true) violations. The
third category includes more heavy-weight approaches such as dynamic model check-
ing [9–11] and satisfiability-based symbolic analysis [12, 13]. These methods search
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for violations in all feasible alternate interleavings of the observed trace and thereby,
report a true violation if and only if one exists.

In dynamic model checking, for a given test input, systematic exploration of a pro-
gram under all possible thread interleavings is performed. Even though the test input is
fixed, explicit enumeration of interleavings can still be quite expensive. Although par-
tial order reduction techniques (POR) [9, 22] reduce the set of necessary interleavings
to explore, the reduced set often remains prohibitively large. Some previous work used
ad-hoc approaches such as perturbing program execution by injecting artificial delays
at every synchronization points [23], or randomized dynamic analysis to increase the
chance of detecting real races [24].

In trace-based symbolic analysis [12, 13], explicit enumeration is avoided via the use
of symbolic encoding and decision procedures to search for violations in a concurrent
trace program (CTP) [25]. A CTP corresponds to data and control slice of the concurrent
program (unrolled, if there is a thread local loop), and is constructed from both the
observed trace and the program source code. One can view a CTP as a generator for
both the original trace and all the other traces corresponding to feasible interleavings of
the events in the original trace.

In this paper, we present a light-weight concurrent data flow analysis which can be
used as an efficient preprocessor to reduce the subsequent efforts of the more heavy-
weight symbolic analysis for concurrency verification such as [12, 13]. Our primary
focus is on a suitable graph representation of CTP to conduct more precise and scalable
concurrent data flow analysis than the standard models such as concurrent control flow
graph (CCFG). In the sequel, we use interval analysis as an example.

In a nutshell, our approach proceeds as follows: from a given CCFG (corresponding
to a CTP), we construct a transaction sequence graph (TSG) denoted as G(V, E) which
is a digraph with nodes V representing thread-local control states, and edges E rep-
resenting either transactions (sequences of thread local transitions) or possible context
switches. On the constructed TSG, we conduct an interval analysis for the program vari-
ables, which requires O(|E|) iterations of interval updates, each costing O(|V | · |E|)
time. Our main contributions are two fold:

– Precise and effective interval analysis using TSG.
– Identification and removal of redundant context switches.

For construction of TSGs, we leverage our mutually atomic transaction (MAT) analy-
sis [26]—a partial-order based reduction technique that identifies a subset of possible
context switches such that all and only representative schedules are permitted. Using
MAT analysis, we first derive a set of so-called independent transactions. (As defined
later, an independent transaction is globally atomic with respect to a set of schedules.)
The beginning and ending control states of each independent transaction form the ver-
tices of a TSG. Each edge of a TSG corresponds to either an independent transaction
or a possible context switch between the inter-thread control state pairs (also identified
in MAT analysis). Such a TSG is much reduced compared to the corresponding CCFG,
where possible context switches occur between every pair of shared memory accesses.
Most prior work such as [15–19] apply the analysis directly on CCFGs. In contrast,
we conduct interval analysis on TSGs which leads to more precise intervals, and more
time/space-efficient analysis than doing on CCFGs.



Interval Analysis for Concurrent Trace Programs 255

We improve our original MAT analysis further by reducing the set of possible context
switches, and at the same time guarantee that such a reduced set captures all necessary
schedules. Such improvement is important because:

– It significantly reduces the size of TSG, both in the number of vertices and in the
number of edges; this in turn, results in a more precise interval analysis with im-
proved runtime performance.

– The more precise intervals reduce the size and the search space of decision prob-
lems that arise during the more heavy-weight symbolic analysis.

The outline of the rest of the paper is as follows: We provide formal definitions and
notations in Section 2. In Section 3, we give an informal overview of our approach, and
in Section 4, we present our approach formally. We present our experimental results in
Section 5, followed by conclusions, related, and future work in Section 6.

2 Formal Definitions

A multi-threaded concurrent program P comprises a set of threads and a set of shared
variables, some of which, such as locks, are used for synchronization. Let Mi (1 ≤ i ≤
n) denote a thread model represented by a control and data flow graph of the sequential
program it executes. Let Vi be a set of local variables in Mi and V be a set of (global)
shared variables. Let S be the set of global states of the system, where a state s ∈ S is
valuation of all local and global variables of the system. A global transition system for
P is an interleaved composition of the individual thread models, Mi.

A thread transition t ∈ ρ is a 4-tuple (c, g, u, c′) that corresponds to a thread Mi,
where c, c′ represent the control states of Mi, g is an enabling condition (or guard)
defined on Vi ∪ V , and u is a set of update assignments of the form v := exp where
variable v and variables in expression exp belong to the set Vi ∪ V . As per interleaving
semantics precisely one thread transition is scheduled to execute from a state.

A schedule of the concurrent program P is an interleaving sequence of thread tran-
sitions ρ = t1 · · · tk. In the sequel, we focus only on sequentially consistent [27] sched-
ules. An event e occurs when a unique transition t is fired, which we refer to as the
generator for that event, and denote it as t = gen(P, e). A run (or concrete execution
trace) σ = e1 · · · ek of a concurrent program P is an ordered sequence of events, where
each event ei corresponds to firing of a unique transition ti = gen(P, ei). We illustrate
the differences between schedules and runs in Section 3.

Let begin(t) and end(t) denote the beginning and the ending control states of t =
〈c, g, u, c′〉, respectively. Let tid(t) denote the corresponding thread of the transition t.
We assume each transition t is atomic, i.e., uninterruptible, and has at most one shared
memory access. Let Ti denote the set of all transitions of Mi.

A transaction is an uninterrupted sequence of transitions of a particular thread. For
a transaction tr = t1 · · · tm, we use |tr| to denote its length, and tr[i] to denote the ith

transition for i ∈ {1, · · · , |tr|}. We define begin(tr) and end(tr) as begin(tr[1]) and
end(tr[|tr|]), respectively. In the sequel, we use the notion of transaction to denote an
uninterrupted sequence of transitions of a thread as observed in a system execution.
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We say a transaction (of a thread) is atomic w.r.t. a schedule, if the corresponding se-
quence of transitions are executed uninterrupted, i.e., without an interleaving of another
thread in-between. For a given set of schedules, if a transaction is atomic w.r.t. all the
schedules in the set, we refer to it as an independent transaction w.r.t. the set.1

Given a run σ for a program P we say e happens-before e′, denoted as e ≺σ e′ if
i < j, where σ[i] = e and σ[j] = e′, with σ[i] denoting the ith access event in σ.
Let t = gen(P, e) and t′ = gen(P, e′). We say t ≺σ t′ iff e ≺σ e′. We use e ≺po e′

and t ≺po t′ to denote that the corresponding events and the transitions are in thread
program order. We extend the definition of ≺po to thread local control states such that
corresponding transitions are in the thread program order.

Reachable-before relation (�): We say a control state pair (a, b) is reachable-before
(a′, b′), where each pair corresponds to a pair of threads, represented as (a, b) � (a′, b′)
such that one of the following is true: 1) a ≺po a′, b = b′, 2) a = a′, b ≺po b′,
3) a ≺po a′, b ≺po b′.

Dependency Relation (D): Given a set T of transitions, we say a pair of transitions
(t, t′) ∈ T × T is dependent, i.e. (t, t′) ∈ D iff one of the following holds (a) t ≺po t′,
(b) (t, t′) is conflicting, i.e., accesses are on the same global variable, and at least one
of them is a write access. If (t, t′) �∈ D, we say the pair is independent.

Equivalency Relation (#): We say two schedules ρ1 = t1 · · · ti · ti+1 · · · tn and ρ2 =
t1 · · · ti+1 · ti · · · tn are equivalent if (ti, ti+1) �∈ D. An equivalent class of schedules
can be obtained by iteratively swapping the consecutive independent transitions in a
given schedule. A representative schedule refers to one of such an equivalent class.

Definition 1 (Concurrent Trace Programs (CTP), Wang 09). A concurrent trace
program with respect to an execution trace σ = e1 · · · ek and concurrent program
P , denoted as CTPσ , is a partial ordered set (Tσ,≺σ,po)

– Tσ = {t | t = gen(P, e) where e ∈ σ} is the set of generator transitions
– t ≺σ,po t′ iff t ≺po t′ ∃ t, t′ ∈ Tσ

Let ρ = t1 · · · tk be a schedule corresponding to the run σ, where ti = gen(P, ei).
We say schedule ρ′ = t′1, · · · , t′k is an alternate schedule of CTPσ if it is obtained by
interleaving transitions of ρ as per≺σ,po. We say ρ′ is a feasible schedule iff there exists
a concrete trace σ′ = e′1 · · · e′k where t′i = gen(P, e′i).

We extend the definition of CTP over multiple traces by first defining a merge op-

erator [13] that can be applied on two CTPs, CTPσ and CTPψ as: (Tτ ,≺τ,po)
def
=

merge((Tσ,≺σ,po), (Tψ,≺ψ,po)), where Tτ = Tσ ∪ Tψ and t ≺τ,po t′ iff at least one
of the following is true: (a) t ≺σ,po t′ where t, t′ ∈ Tσ , and (b) t ≺ψ,po t′ where
t, t′ ∈ Tψ. A merged CTP can be effectively represented as a CCFG with branching
structure but no loop. In the sequel, we refer to such a merged CTP as a CTP.

1 We compare the notion of atomicity used here, vis-a-vis previous works [2, 6, 8]. In our work,
the atomicity of transactions corresponds to the observation of the system, which may not
correspond to the user intended atomicity of the transactions. Previous work assume that the
atomic transactions are system specification that should always be enforced, whereas we infer
atomic (or rather independent) transactions from the given system under test, and intend to use
them to reduce the search space of symbolic analysis.
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3 Our Approach: An Informal View

In this section, we present our approach informally, where we motivate our readers
with an example. We use that example to guide the rest of our discussion. In the later
sections, we give a formal exposition of our approach.

Consider a system P comprising interacting threads Ma and Mb with local vari-
ables ai and bi, respectively, and shared (global) variables X, Y, Z, L. This is shown
in Figure 1(a) where threads are synchronized with Lock/Unlock. Thread Mb is created
and destroyed using fork-join primitives. Figure 1(b) is the lattice representing the com-
plete interleaving space of the program. Each node in the lattice denotes a global control
state, shown as a pair of the thread local control states. An edge denotes a shared event
write/read access of global variable, labeled with W (.)/R(.) or Lock(.)/Unlock(.). Note,
some interleavings are not feasible due to Lock/Unlock, which we crossed out (×) in
the figure. We also labeled all possible context switches with cs. The highlighted inter-
leaving corresponds to a concrete execution (run) σ of program P

σ = R(Y )b ·Lock(L)a · · ·Unlock(L)a ·Lock(L)b · · ·W (Z)b ·W (Y )a ·Unlock(L)b ·W (Y )b

where the suffices a, b denote the corresponding thread accesses.

A thread transition (1b, true, b1 = Y, 2b) (also represented as 1b
b1=Y→ 2b) is a

generator of access event R(Y )b corresponding to the read access of the shared variable
Y . The corresponding schedule ρ of the run σ is

ρ = (1b
b1=Y→ 2b)(1a

Lock(L)→ 2a) · · · (4a
Unlock(L)→ 5a)(2b

Lock(L)→ 3b) · · · (6b
Y =b1+b2→ Jb)

From σ (and ρ), we obtain a slice of the original program called concurrent trace pro-
gram (CTP) [25]. A CTP can be viewed as a generator of concrete traces, where the
inter-thread event order specific to the given trace are relaxed. Figure 1(c) show the
CTPσ of the corresponding run σ shown as a CCFG (This CCFG happens to be the

Thread Ma

X = Y = Z = [0..2];
0 fork(Mb);
1a. lock(L)
2a. a1 = Z;
3a. X = a1 + 1;
4a. unlock(L);
5a. Y = a1;
Ja. join(Mb);
7. assert(Y ≤ 5);

Thread Mb

1b. b1 = Y ;
2b. Lock(L)
3b. b2 = X;
4b. Z = b1 + 1
5b. Unlock(L)
6b. Y = b1 + b2
Jb. /* join Ma */
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blocked transitions

X=[0..2]
Y=[0..2]
Z=[0..2]

Lock(L)

1a

2a

3a

4a

5a

0

1b

2b

3b

4b

5b

6b

7

JbJa

a1=Z

X=a1+1

Unlock(L)

Y=a1

Y=b1+b2

Unlock(L)

Z=b2-1

b2=X

b1=Y

Lock(L)

Join

Fork

assert(Y≤≤≤≤5)

(a) (b) (c)

Fig. 1. (a) Concurrent system P with threads Ma, Mb and local variables ai, bi respectively,
communicating with shared variable X, Y, Z, L. (b) lattice and a run σ (c) CTPσ as CCFG.
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same as P , although it need not be the case). Each node in CCFG denotes a thread con-
trol state (and the corresponding thread location), and each edge represents one of the
following: thread transition, a context switch, a fork, and a join. To not clutter up the
figure, we do not show edges that correspond to possible context switches (30 in total).
Such a CCFG captures all the thread schedules of CTPσ.

3.1 Transaction Sequence Graph

We now briefly describe the construction of TSG from the CCFG obtained above.
Assuming we have computed—using MAT analysis (described in the next section)—
independent transactions sets ATa and ATb and necessary context switches for threads
Ma and Mb, where ATa = {1a · · · 5a, 5a · Ja}, ATb = {1b · 2b, 2b · · ·6b, 6b · Jb},
and the context switching pairs are {(2b, 1a), (Ja, 1b)(6b, 1a)(5a, 2b), (Ja, 6b)(Jb, 1a)
(Ja, 2b)(Jb, 5a)}. The independent transactions are shown in Figure 2(a) as shaded
rectangles.

Given such sets of independent transactions and context switching pairs, we
construct a transaction sequence graph (TSG), a digraph as shown in Figure 2(b), as
follows: the beginning and ending of each independent transaction forms nodes, each
independent transaction forms a transaction edge (solid bold edge), and each context-
switching pairs forms a context-switch edge (dash edge). We use V , TE, and CE to
denote the set of nodes, transaction edges, and context-switch edges, respectively. Such
a graph captures all and only the representative interleaving, where each interleaving
is a sequence of independent transactions connected by directed edges. The number
of nodes (|V |) and the number of transaction edges (|TE|) in TSG are linear in the
number of independent transactions, and the number of context-switch edges (|CE|) is
quadratic in the number of independent transactions. The TSG (in Figure 2(b)) has 7
nodes and 13 edges (= 5 transaction edges + 8 context-switch edges).

If we do not use MAT analysis, a naive way of defining an independent transaction
would be a sequence of transitions such that only the last transition has a global access.
This is the kind of graph representation used by most of the prior work in the liter-
ature [15–19]. In the sequel, we refer to a TSG obtained without MAT analysis as a
CCFG. Such a graph would have 13 nodes, and 41 edges (=11 transaction edges + 30
context-switch edges).

Range Propagation on TSG. Although TSG may have cycles (as shown in Figure 2(b)),
the sequential consistency requirement does not permit such cycles in any feasible path.
A key observation is that any feasible path will have a sequence of transactions of
length at most |TE|. As per the interleaving semantics, any schedule can not have two
or more consecutive context switches. Thus, a feasible path will have at most |TE|
context switches. For example, path Ja · 2b · 1a · 5a involves two consecutive context
switches, and therefore, can be ignored for range propagation. Clearly, one does not
require a fixed point computation for range propagation, but rather a bounded number
of iterations of size O(|TE|).

Let D[i] denote a set of TSG nodes reachable at BFS depth i from an initial set
of nodes. Starting from each node in D[i], we compute range along one transaction
edge or along one context switch edge together with its subsequent transaction edge.
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Fig. 2. (a) CCFG with independent transactions (b) TSG (c) Traversal on TSG

We show such a traversal on TSG in Figure 2(c), where dashed and solid edges cor-
respond to context switch and transaction edges, respectively. The nodes in D[i] are
shown in dotted rectangles. As a transaction edge is associated with at most one context
switch edge, a range propagation would require O(|V | · |TE|) updates per iteration.

3.2 MAT Analysis

We now discuss the essence of MAT analysis used to obtain TSG. Consider a pair
(tam1 , tbm1), shown as the shaded rectangle m1 in Figure 3(a), where tam1≡Lock(L)a

·R(Z)a · · ·W (Y )a and tbm1 ≡ R(Y )b are transactions of threads Ma and Mb, respec-
tively. Note, we use an event to imply the corresponding generator transition.

From the control state pair (1a, 1b), the pair (Ja, 2b) can be reached by one of the
two representative interleavings tam1 · tbm1 and tbm1 · tam1 . Such a transaction pair
(tam1 , tbm1) is atomic pair-wise as one avoids interleaving them in-between, and hence,
referred as Mutually Atomic Transaction, MAT for short [26]. Note that in a MAT only
the last transitions pair is dependent. Other MATs m2 · · ·m7 are similar. A MAT is
formally defined as:

Definition 2 (Mutual Atomic Transactions (MAT), Ganai 09). We say two transac-
tions tri and trj of threads Mi and Mj , respectively, are mutually atomic iff except for
the last pair, all other transitions pairs in the corresponding transactions are indepen-
dent. Formally, a Mutually Atomic Transactions (MAT) is a pair of transactions, i.e.,
(tri, trj), i �= j iff ∀k 1 ≤ k ≤ |tri|, ∀h 1 ≤ h ≤ |trj |, (tri[k], trj [h]) �∈ D (k �=
|tri| and h �= |trj |), and tri[|tri|], trj [|trj |]) ∈ D.

The basic idea of MAT-based partial order reduction [26] is to restrict context switching
only between the two transactions of a MAT. A context switch can only occur from the
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Fig. 3. MATs mi shown as rectangles, obtained using (a) GenMAT (b) GenMAT’

ending of a transaction to the beginning of the other transaction in the same MAT. Such
a restriction reduces the set of necessary thread interleavings to explore. For a given
MAT α = (fi · · · li, fj · · · lj), we define a set TP (α) of possible context switches as
ordered pairs, i.e., TP (α) = {(end(li), begin(fj)), (end(lj), begin(fi))}. Note that
there are exactly two context switches for any given MAT.

Let TP denote a set of possible context switches. For a given CTP, we say TP is
adequate iff for each feasible thread schedule of the CTP there is an equivalent sched-
ule that can be obtained by choosing context switching only between the pairs in TP .
Given a setMAT of MATs, we define TP (MAT ) =

⋃
α∈MAT TP (α). A setMAT

is called adequate iff TP (MAT ) is adequate. For a given CCFG, one can use an algo-
rithm GenMAT [26] to obtain an adequate set ofMAT that allows only representative
thread schedules, as claimed in the following theorem.

Theorem 1 (Ganai, 2009). GenMAT generates a set of MATs that captures all (i.e.,
adequate) and only (i.e., optimal) representative thread schedules. Further, its running
cost is O(n2 · k2), where n is number of threads, and k is the maximum number of
shared accesses in a thread.

The GenMAT algorithm on the running example proceeds as follows. It starts with
the pair (1a, 1b), and identifies two MAT candidates: (1a · · · Ja, 1b · 2b) and (1a ·
2a, 1b · · ·6b). By giving Mb higher priority over Ma, it selects the former MAT (i.e.,
m1) uniquely. Note that the choice of Mb over Ma is arbitrary but is fixed through
the MAT computation, which is required for the optimality result. After selecting MAT
m1, it inserts in a queue Q, three control state pairs (1a, 2b), (Ja, 2b), (Ja, 1b) cor-
responding to the begin and the end pairs of the transactions in m1. These corre-
spond to the three corners of the rectangle m1. In the next step, it pops out the pair
(1a, 2b) ∈ Q, selects MAT m2 using the same priority rule, and inserts three more pairs
(1a, 3b), (5a, 2b), (5a, 3b) in Q. Note that if there is no transition from a control state
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such as Ja, no MAT is generated from (Ja, 2b). The algorithm terminates when all the
pairs in the queue (denoted as • in Figure 3(a)) are processed. Note that the order of
pair insertion can be arbitrary, but the same pair is never inserted more than once.

For the running example, a setMAT ab = {m1, · · ·m7} of seven MATs is gener-
ated. Each MAT is shown as a rectangle in Figure 3(a). The total number of context
switches allowed by the set, i.e., TP (MAT ab) is 12. The highlighted interleaving
(shown in Figure 1(b)) is equivalent to the representative interleaving tbm1 · tam1 · tbm3

(Figure 3(a)). One can verify (the optimality) that this is the only representative sched-
ule (of this equivalence class) permissible by the set TP (MAT ab).

Reduction of MAT. We say a MAT is feasible if the corresponding transitions do not
disable each other; otherwise it is infeasible. For example, as shown in Figure 3(a),
MAT m2 = (tam2 , tbm2) is infeasible, as the interleaving tbm2 · tam2 is infeasible due
to locking semantics, although the other interleaving tam2 · tbm2 is feasible.

The GenMAT algorithm does not generate infeasible MATs when both the inter-
leavings are infeasible. Such case arises when control state pairs such as (2a, 3b) are
simultaneously unreachable. However, it generates an infeasible MAT if such pairs
are simultaneously reachable with only one interleaving of the MAT (while the other
one is infeasible). For example, it generates MAT m2 as (5a, 3b) is reachable with
only interleaving Lock(L)a · · ·Unlock(L)a ·Lock(L)b while the other one Lock(L)b ·
Lock(L)a · · ·Unlock(L)a is infeasible. Such infeasible MAT may result in generation
of other MATs, such as m5 which may be redundant, and m4 which may be infeasible.
Although the interleaving space captured byMAT ab is still adequate and optimal, the
set apparently may not be “minimal” as some interleavings may be infeasible.

To address the minimality, we modify GenMAT such that only feasible MATs are
chosen as MAT candidates. We refer to the modified algorithm as GenMAT’. We use ad-
ditional static information such as lockset analysis [1] to obtain a reduced setMAT ′

ab

and later show (Theorem 2) that such reduction do not exclude any feasible interleav-
ing. The basic modification is as follows: stating from the pair (begin(fi), begin(fj)),
if a MAT (fi · · · li, fj · · · lj) is infeasible, then we select a MAT (fi · · · l′i, fj · · · l′j) that
is a feasible, where end(li) ≺po end(l′i) or end(lj) ≺po end(l′j) or both.

With this modified step, GenMAT’ produces a set MAT ′
ab = {m1, m

′
2, m3, m6,

m7} of five MATs, as shown in Figure 3b. Note that infeasible MATs m2 and m4 are
replaced with MAT m′

2. MAT m5 is not generated as m2 is no longer a MAT, and
therefore, control state pair (5a, 3b) is no longer in Q.

The basic intuition as to why m5 is redundant is as follows: For m5, we have
TP (m5) = {(Ja, 2b), (5a, Jb)}. The context switching pair (Ja, 2b) is infeasible, as
the interleaving allowed by m5, i.e., R(Y )b ·Lock(L)b ·Lock(L)a ·W (Y )a ·R(X)a · · ·
is an infeasible interleaving. The other context switching pair (5a, Jb) is included
in either TP (m3) or TP (m7), where m3, m7 are feasible MATs (Figure 3(b)). The
proof that TP (MAT ′

ab) allows the same set of feasible interleavings as allowed by
TP (MAT ab), is given in Section 4.

Independent Transactions. Given a set of MATs, we obtain a set of independent trans-
actions of a thread Mi, denoted as ATi, by splitting the pair-wise atomic transactions of
the thread Mi as needed into multiple transactions such that a context switching (under
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MAT-based reduction) can occur either to the beginning or from the end of such trans-
actions. For the running example, the sets of independent transactions corresponding to
MAT ′

ab are ATa = {1a · · ·5a, 5a · Ja} and ATb = {1b · 2b, 2b · · ·6b, 6b · Jb}. These
are shown in Figure 2(a) as shaded rectangles, and are shown as outlines of the lattice
in Figure 3(b). The size of set of independent transaction determines the size of TSGs.

If we usedMAT ab, we would have obtained ATa = {1a·2a, 2a · · ·5a, 5a·Ja} and
ATb = {1b · 2b, 2b · 3b, 3b · · ·6b, 6b · Jb}, as shown outlining the lattice in Figure 3(a).
A TSG constructed usingMAT ab (not shown) would have 8 nodes and 17 edges (= 7
transaction edges + 10 context-switch edges). Note, out of the 12 context-switches, one
can remove (3b, 1a) and (2a, 3b) as they are simultaneously unreachable.

4 Our Approach: TSG-Based Interval Analysis

We now present our approach formally. We first discuss MAT reduction step. Then we
describe the construction of TSGs in Section 4.1, followed by interval analysis on TSG
in Section 4.2. For comparison, we introduce a notion of interval metric in Section 4.3.

Given a CTP with threads M1 · · ·Mn, and a dependency relationD, we use algorithm
GenMAT [26] to generate MAT ij for each pair of threads Mi and Mj , i �= j, and
obtainMAT =

⋃
i�=jMAT ij . Note that D may not include the conflicting pairs that

are unreachable. We now define the feasibility of MAT to improve the MAT analysis.

Definition 3 (Feasible MAT). A MAT m = (tri, trj) is feasible such that both repre-
sentative (non-equivalent) interleavings, i.e., tri·trj and trj ·tri, are feasible; otherwise
it is infeasible. In other words, in a feasible MAT, the corresponding transitions do not
disable each other.

We modify GenMAT such that only feasible MATs are chosen as MAT candidates. We
denote the modified algorithm as GenMAT’. The modified step is as follows: starting
from the pair (fi, fj), if a pair (li, lj) ∈ D is found that yields an infeasible MAT, then

– we select another pair (l′i, l
′
j) ∈ D such that (li, lj) � (l′i, l

′
j) and (fi · · · l′i, fj · · · l′j)

is a feasible MAT, and
– there is no pair (l′′i , l′′j ) ∈ D such that (li, lj) � (l′′i , l′′j ) � (l′i, l

′
j) and

(fi · · · l′′i , fj · · · l′′j ) is a feasible MAT.

where � is the reachable-before relation defined before. Interested readers may refer
to the complete algorithm in the extended version [28].

LetMAT andMAT ′ be the set of MATs obtained using GenMAT and GenMAT’,
respectively. We state the following MAT reduction theorem:

Theorem 2 (MAT reduction).MAT ′ is adequate, and TP (MAT ′) ⊆ TP (MAT ).

The proof is provided in the extended version [28].

4.1 Transaction Sequence Graph

To build a TSG, we first identify independent transactions of each thread, i.e., those
transactions that are atomic with respect to all schedules allowed by the set of MATs,
as discussed in the following. Here we useMAT to denote the set of MATs obtained.
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Identifying Independent Transactions. Given a set MAT =
⋃

i�=j ∈{1,··· ,n}
MAT ij , we identify independent transactions, denoted as ATi as follows:

– We first define a set of transactionsMAT i of thread Mi:

MAT i = {tri|m = (tri, trj) ∈ MAT ij i �= j ∈ {1, · · · , n}}
In other words,MAT i comprises all transactions of thread Mi that are pairwise
atomic with some other transactions. For the running example with the MAT set
as shown in Figure 3(b), MAT a= {1a · · ·Ja, 1a · · · 5a, 5a · Ja}, and MAT b=
{1b · 2b, 2b · · ·6b, 6b · Jb}.

– Given two transactions tr, tr′ ∈ MAT i, we say begin(tr) ≺po begin(tr′) if
tr[1] ≺po tr′[1]. Using the set MAT i, we obtain a partial order set of control
states Si, referred as transaction boundary set, that is defined over≺po as follows:

Si ≡ {begin(tri,1), begin(tri,2), · · · , begin(tri,m), end(tri,m)}
where tri,k ∈ MAT i, and tri,m denote the last transaction of the thread Mi.
Note that due to conditional branching the order may not be total. For the running
example, with the given setsMAT a andMAT b, we obtain Sa = {1a, 5a, Ja},
and Sb = {1b, 2b, 6b, Jb}.

– Using the set Si, we obtain a set of transactions ATi of thread Mi as follows:

ATi = {t · · · t′ | c t···t′−→ c′ where c ≺po c′ and c, c′ ∈ Si and t, · · · , t′ ∈ Ti and
there is no c′′ ∈ Si such that c ≺po c′′ ≺po c′}

Recall that Ti is the set of transitions in Mi. For the running example, we obtain
ATa and ATb, as shown as shaded rectangles in Figure 2(a).

Proposition 1. Each transaction tr ∈ ATi for i ∈ {1, · · · , n} is an independent trans-
action and is maximal, i.e., can not be made larger without it being an independent
transaction. Further, for each transition t ∈ Ti, there exists tr ∈ ATi such that t ∈ tr.

Constructing TSG. Given a set of context-switching pairs TP (MAT ), a set of inde-
pendent transactions

⋃
i ATi, and a set of transaction boundaries

⋃
i Si, we construct a

transaction sequence graph, a digraph G(V, E) as follows:

– V = ∪iVi is the set of nodes, where Vi denotes a set of thread local control states
corresponding to the set Si,

– E = TE
⋃

CE is the set of edges, where

• TE is the set of transaction edges corresponding to the independent transac-
tions i.e., TE = {(begin(tr), end(tr)) | tr ∈

⋃
i ATi}

• CE is the set of context switch edges corresponding TP (MAT ) i.e., CE =
{(ci, cj) | (ci, cj) ∈ TP (MAT )}

A TSG G(V, E = (CE ∪ TE)), as constructed, has |V | = O(Σi|ATi|), |TE| =
(Σi|ATi|), and |CE| = (Σi�=j |ATi| · |ATj|), where i, j ∈ {1, · · · , n}, and n is number
of threads. In the worst case, however, |V | = O(n · k), |TE| = O(n · k), and |CE| =
O(n2 · k2) where k is the maximum number of shared accesses in any thread.

Proposition 2. TSG as constructed captures all and only the representative interleav-
ing (of a given CTP), each corresponding to a total ordered sequence of independent
transactions where the order is defined by the directed edges of TSG.
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4.2 Range Propagation on TSG

Range propagation uses data and control structure of a program to derive range informa-
tion. In this work, we consider intervals for simplicity, although other abstract domains
are equally applicable. For each program variable v, we define an interval 〈lcv, uc

v〉,
where lcv, u

c
v are integer-valued lower and upper bounds for v at a control location c.

One can define, for example, the lower bound(L)/upper bound (U ) of an expression
exp = exp1 + exp2 at a control location c as L(exp, c) = L(exp1, c)+L(exp2, c) and
U(exp, c) = U(exp1, c) + U(exp2, c), respectively (more details in [29]).

We say an interval 〈lcv, uc
v〉 is adequate if value of v at location c, denoted as val(v, c)

is bounded in all program executions, i.e., lcv ≤ val(v, c) ≤ uc
v. As there are potentially

many feasible paths, range propagation is typically carried out iteratively along bounded
paths, where the adequacy is achieved conservatively. However, such bounded path
analysis can still be useful in eliminating paths that do not satisfy sequential consistency
requirements. As shown in Figure 2(c), a sequence 5a·2b·6b·1adoes not follow program
order, and therefore, paths with such a sequence can be eliminated.

At an iteration step i of range propagation, let rc,p[i] denote the range information
(i.e., a set of intervals) at node c along a feasible path p, and is defined as:

rc,p[i] = {〈lc,p
v [i], uc,p

v [i]〉| interval for v computed at node c along path p at step i}
One can merge rc,p[i] and rc,p′

[i] conservatively as follows:

rc,p[i] $ rc,p′
[i] = {〈lc,p

v [i], uc,p
v [i]〉 $ 〈lc,p′

v [i], uc,p′
v [i]〉| interval for v computed

at node c along paths p, p′ at step i}
where the interval merge operator ($) is defined as:

〈l, u〉 $ 〈l′, u′〉 = 〈min(l, l′), max(u, u′)〉.
Let rc[i] denote the range information at node c at step i, i.e.,

rc[i] = {〈lcv[i], uc
v[i]〉 | interval for v computed at node c at iteration step i}.

Let FP denote a set of feasible paths starting from nodes D[i] of length B ≥ 1, where
B is a lookahead parameter that controls the trade off between precision and update
cost. Given rc,p[i] with p ∈ FP , we obtain the range information at step i as rc[i] =
$p∈FP rc,p[i] and cumulative range information at step i as Rc[i] = $j=i

j=0r
c[j].

We present a self-explanatory flow of our forward range propagation procedure, re-
ferred as RPT, for a given TSG G = (V, E) in Figure 4(a). As observed in Section 3.1,
in any representative feasible path, a transaction edge is associated with at most one con-
text switch edge. Thus, the length of such a path is at most 2 · |TE|. At every iteration
of range propagation, we compute the range along a sequence of |B| transaction edges
interleaved with at most |B| context switch edges. Such a range propagation requires
�|TE|/B� iterations. The cost of range propagation at each iteration is O(|V | · |TE|B).
After RPT terminates, we obtain the final cumulative range information Rc[i] at each
node c, denoted as Rc.

Proposition 3. Given a TSG G = (V, E = (TE ∪ CE)) that captures all feasible
paths of a CTP, the procedure RPT generates adequate range information Rc for each
node c ∈ V , and the cost of propagation is O(|V | · |TE|B+1).
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We show a run of RPT in Figure 4(b) on the TSG shown in Figure 2(b). At each iteration
step i, we show the range computed rc[i] (for each global variable) at the control states
1a, 5a, Ja, 1b, 2b, 6b, Jb. Since there are 5 TE edges in the TSG, we require 5 iterations
with B = 1. The cells with 〈−,−〉 correspond to no range propagation to those nodes.
The cells in bold at step i correspond to nodes in D[i]. The final intervals at each
node c, i.e., Rc, is equal to the data-union of the range values at c computed at each
iteration i = 1 · · · 5. We show the corresponding cumulative intervals obtained for the
CCFG after 11 iterations (as it has 11 TE edges). Note that using TSG, RPT not only
obtains more refined intervals, but also requires fewer iterations. Also observe that the
assertion Y ≤ 5 (line 7, Figure 1(a)) holds at Jb with the final intervals for Y obtained
using TSG, while it does not hold at Jb when obtained using CCFG.

Input: G(V,E=(TE ∪ CE))
D[0] = set of source nodes
rc[0] = set of initial range information at

each source node c
i = 0 // initialize iteration step.
B = look ahead parameter, B ≥ 1

Enumerate paths P with k transaction
edges where k=min(B, (|TE|) mod B)

starting from nodes c ∈ D[i]

FP={p∈P | p≡c0…cm satisfies 
sequential consistency}

Merge range information obtained
along different paths: rc[i] = p rc,p[i], and 

Cumulate: Rc[i] = 0≤j≤i rc[j]

|TE| ≤ i∗B
?

Output:
Ranges
∀c Rc

i++

Y

N

Fwd range propagation and 
obtain rc,p[i] along each path p ∈ FP

where c is a node in the path. 

Obtain nodes for next iteration,
D[i+1] = {cm | p∈FP, p≡c0…cm}

Ranges rc[i] at each step i=0..5 on TSG with B=1
i V 1a 5a Ja 1b 2b 6b Jb

X 〈0,2〉 〈−,−〉 〈−,−〉 〈0,2〉 〈−,−〉 〈−,−〉 〈−,−〉
0 Y 〈0,2〉 〈−,−〉 〈−,−〉 〈0,2〉 〈−,−〉 〈−,−〉 〈−,−〉

Z 〈0,2〉 〈−,−〉 〈−,−〉 〈0,2〉 〈−,−〉 〈−,−〉 〈−,−〉
X 〈0, 2〉 〈1,3〉 〈−,−〉 〈0, 2〉 〈0,2〉 〈−,−〉 〈−,−〉

1 Y 〈0, 2〉 〈0,2〉 〈−,−〉 〈0, 2〉 〈0,2〉 〈−,−〉 〈−,−〉
Z 〈0, 2〉 〈0,2〉 〈−,−〉 〈0, 2〉 〈0,2〉 〈−,−〉 〈−,−〉
X 〈0, 2〉 〈1,3〉 〈1,3〉 〈0, 2〉 〈0, 3〉 〈0, 3〉 〈−,−〉

2 Y 〈0, 2〉 〈0,2〉 〈0,2〉 〈0, 2〉 〈0, 2〉 〈0, 2〉 〈−,−〉
Z 〈0, 2〉 〈0,2〉 〈0,2〉 〈0, 2〉 〈0, 2〉 〈−1, 2〉 〈−,−〉
X 〈0, 3〉 〈0,3〉 〈1,3〉 〈0, 3〉 〈0,3〉 〈0, 3〉 〈0,2〉

3 Y 〈0, 2〉 〈0,2〉 〈0,2〉 〈0, 2〉 〈0,2〉 〈0, 2〉 〈0,5〉
Z 〈−1, 2〉 〈−1,2〉 〈0,2〉 〈0, 2〉 〈0,2〉 〈−1, 2〉 〈−1,2〉
X 〈0, 3〉 〈0,3〉 〈0,3〉 〈0, 3〉 〈0,3〉 〈0, 3〉 〈0,3〉

4 Y 〈0, 5〉 〈0,5〉 〈−1,2〉 〈0, 2〉 〈0,2〉 〈0, 2〉 〈0,5〉
Z 〈−1, 2〉 〈−1,2〉 〈−1,2〉 〈0, 2〉 〈−1,2〉 〈−1, 2〉 〈−1,2〉
X 〈0, 3〉 〈0,3〉 〈0,3〉 〈0, 3〉 〈0,3〉 〈0, 3〉 〈0,3〉

5 Y 〈0, 5〉 〈0,5〉 〈−1,2〉 〈−1, 2〉 〈−1,5〉 〈−1, 5〉 〈0,5〉
Z 〈−1, 2〉 〈−1,2〉 〈−1,2〉 〈−1, 2〉 〈−1,2〉 〈−1, 2〉 〈−1,2〉
X 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉

Rc Y 〈0, 5〉 〈0, 5〉 〈−1, 2〉 〈−1, 2〉 〈−1, 5〉 〈−1, 5〉 〈0, 5〉
Z 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉

Final ranges on CCFG (Figure 1(c)) with B=1 at i=11
X 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉

Rc Y 〈−1, 7〉 〈−1, 7〉 〈−1, 2〉 〈−1, 7〉 〈−1, 7〉 〈−1, 7〉 〈0, 7〉
Z 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉

Notes: Cells with ranges in bold correspond to nodes in D[i].
〈−,−〉 corresponds to unreachable node at depth i

(a) (b)

Fig. 4. (a) RPT: Range Propagation on TSG (b) A run of RPT on TSG (Figure 2) and CCFG

4.3 Interval Metric

Given the final intervals 〈lcv, uc
v〉 ∈ Rc, we use the total number of bits needed (the

fewer the better) to encode each interval, as a metric to compare effectiveness of interval
analysis on CCFG and TSGs. We refer to that as interval metric. It has two components:
local (denoted as RBl) and global (denoted as RBg) corresponding to the total range
bits of local and global variables, respectively.

The local component RBl is computed as follows:

RBl = Σt∈
⋃

i
Ti

Σv∈assgnl(t) log2(u
end(t)
v − l

end(t)
v )

where assgnl(t) denotes a set of local variables assigned (or updated) in transition t.
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For computing the global component RBg, we need to account for context switching
that can occur between global updates. Hence, we add a synchronization component,
denoted as RBsync

g , in the following:

RBg = Σt∈
⋃

i
Ti

Σv∈assgng(t) log2(u
end(t)
v − l

end(t)
v ) + RBsync

g

where assgng(t) denotes a set of global variables assigned in transition t, and RBsync
g

is the synchronization component corresponding to a global state before an independent
transaction begins, and is computed as follows:

RBsync
g = Σtr∈

⋃
i
ATi

Σv∈V log2(u
begin(tr)
v − l

begin(tr)
v )

where v ∈ V is a global variable, and tr is an independent transaction.
For the running example, the interval metrics obtained are as follows: CCFG: RBl =

8, RBg = 95; TSG usingMAT ab: RBl = 6, RBg = 57; TSG usingMAT ′
ab: RBl =

6, RBg = 43.

5 Experiments

In our experiments, we use several multi-threaded benchmarks of varied complexity with
respect to the number of shared variable accesses. There are 4 sets of benchmarks that
are grouped as follows: simple to complex concurrent programs [26] (cp), our Linux/
Pthreads/C implementation [12] of atomicity violations reported in apache server [30]
(atom), bank benchmarks [31] (bank), and indexer benchmarks [9] (index). Each set
has concurrent trace programs (CTP) generated [25] from the runs of the corresponding
concurrent programs. These benchmarks are publicly available at [32]. We used constant
propagation algorithm [16] to preprocess these benchmarks in order to expose the benefits
of our approach.

Our experiments were conducted on a linux workstation with a 3.4GHz CPU and
2GB of RAM, and a time limit of 20 minutes. From these benchmarks, we first ob-
tained CCFG. Then we obtained TSG and TSG’ after conducting MAT analysis on the
CCFGs, using GenMAT and GenMAT’, respectively, as described in Section 4.1. For
all three graphs, we removed context switch edges between node pairs that are found
unreachable using lockset analysis [1].

Comparison of RPT on CCFG, TSG, and TSG’ are shown in Table 1 using looka-
head parameter B = 1. The characteristics of the corresponding CTPs are shown in
Columns 2-6, the results of RPT on CCFG, TSG and TSG’ are shown in Columns 7-
11, and Columns 12-17, and Columns 18-23, respectively. Columns 2-6 describe the
following: the number of threads (n), the number of local variables (#L), the number
of global variables (#G), the number of global accesses (#A), and the number of total
transitions (#T), respectively. Columns 7-11 describe the following: the number of con-
text switch edges (#CE), the number of transaction edges (#TE) (same as the number of
iterations of RPT), the time taken (t, in sec), the number of local bits RBl, and number
of global bits RBg, respectively. Columns 12-17 and 18-23 describe similarly for TSG
and TSG’ including the number of MATs obtained (#M). In case of CCFG, we obtained
a transaction by combining sequence of transitions such that only the last transition has
exactly one global access. The time reported includes MAT analysis (if performed) and
run time of RPT.
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Table 1. Comparison of RPT on CCFG, TSG and TSG’

Ex Characteristics CCFG TSG TSG’
n #L #G #A #T #C #TE t (s) RBl RBg #M #C #TE t (s) RBl RBg #M #C #TE t (s) RBl RBg

cp1 3 4 3 41 28 90 24 < 1 6 131 18 22 13 < 1 6 82 9 14 9 < 1 6 50
cp2 3 4 3 185 108 1562 88 < 1 22 531 330 342 45 < 1 22 354 121 222 25 < 1 22 178
cp3 3 4 3 905 508 35802 408 13 102 2531 7650 7702 205 2 102 1714 2601 5102 105 1 102 818

atom1 3 1 2 27 25 44 16 < 1 29 493 11 14 11 < 1 29 300 6 9 8 < 1 29 200
atom2 3 2 3 37 31 68 20 < 1 30 647 14 19 13 < 1 30 389 8 12 9 < 1 30 245
atom3 3 2 11 412 243 4748 153 < 1 61 10.5K 1321 1350 91 < 1 61 6945 478 865 48 < 1 61 3605
atom4 3 3 13 435 251 5336 160 1 32 12.4K 1344 1342 95 < 1 32 7933 508 899 50 < 1 32 4115
bank1 9 59 16 383 286 12.6K 180 10 855 22.8K 178 278 75 < 1 808 10.6K 178 278 75 < 1 808 10.6K
bank2 9 67 25 540 369 25.1K 231 63 818 35.9K 440 559 155 1 771 25.1K 277 409 115 < 1 771 19K
bank3 9 67 26 599 386 24.8K 240 38 834 38.3K 384 454 147 < 1 786 24.7K 212 320 99 1 786 16.6K
index1 9 11 24 229 168 7224 98 2 52 7653 6 12 12 < 1 32 452 6 12 12 < 1 32 452
index2 19 21 54 514 363 40.1K 213 51 154 43.5K 351 513 106 1 132 11.6K 225 366 64 1 132 6613
index3 31 33 184 2125 1490 627K 821 TO NA NA 2573 3386 496 40 883 399K 1399 2024 265 22 883 121K
index4 33 35 246 3914 2793 1.98M 1490 TO NA NA 29.6K 31.4K 922 822 1814 1M 10.8K 11.9K 479 275 1814 307K
Notes: n: num. of threads, #L: num. of local vars, #G: num. of global vars, #A: num. of global accesses, #T: num. of transitions,

#CE: num. of context switch edges, #TE: num. of transaction edges (=num. of iterations), t(s): time in sec (TO: t > 1200s),
#M: num. of MATs, RBl : num. of local bits, RBg : num. of global bits, B = 1 for the experiments

As we notice, RPT on TSG and TSG’ (except index4) completes in less than a
minute, and is an order of magnitude faster compared to that on CCFG. Also, the inter-
val metric (RBl, RBg) for TSG and TSG’ are significantly lower compared to CCFG.
Further, between TSG’ and TSG, the former generates tighter intervals.

We also evaluated reduction in the efforts of a heavy-weight trace-based symbolic
analysis tool CONTESSA [13] using RPT results. For each benchmark, we selected a
reachability property corresponding to a reachability of a thread control state. Using
the tool, we then generated Satisfiability Modulo Theory (SMT) formula such that the
formula is satisfiable if and only if the control state is reachable. We then compared the
solving time of two such SMT formula, one encoded using the bit-widths of variables
as obtained using RPT (denoted as φR), and other encoded using integer bit-width of
32 (denoted as φ32). We observed that the solving on φR is faster than on φ32 by about
1-2 orders of magnitude. Further details are available in the extended version [28].

6 Conclusion, Related and Future Work

We presented an interval analysis for CTPs using the new notion of TSGs, which is
often more precise and space/time efficient than using the standard CCFGs. We use a
MAT analysis to obtain independent transactions and to minimize the size of the TSGs.
We also propose a non-trivial improvement to the MAT analysis to further simplify
the TSGs. Our work is related to the prior work on static analysis for concurrent pro-
grams such as [15-19], although such analysis were directly applied to the CCFG of
a whole program. Our notion of TSG is also different from the transaction graph (TG)
[20] and the task interaction concurrency graph (TICG) [14] that have been used in con-
current data flow analysis. Such graphs, i.e, TG and TICG, represent a product graph
where nodes correspond to the global control states and edges correspond to thread
transitions—such graphs are often significantly bigger in size than TSGs.

Although we have applied our TSG approach only to CTPs, in future we plan to
generalize it for concurrent programs with loops. Such generalization would involve
extending the MAT analysis to handle loops (e.g. by considering the loop back-edges
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during MAT generation) and introducing abstract domains to handle the interleaving of
interacting loops (e.g. by considering independent transactions in a loop).
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Abstract. Establishing liabilities in component-based systems is a chal-

lenging task, as it requires to establish convincing evidence with respect

to the occurrence of a fault, and the causality relation between the fault

and a damage. The second issue is especially complex when several faults

are detected and the impact of these faults on the occurrence of the fail-

ure has to be assessed. In this paper we propose a formal framework for

reasoning about logical causality between contract violations.

1 Introduction

Establishing liabilities in case of litigation is generally a delicate matter. It be-
comes even more challenging when IT systems are involved. Generally speaking,
a party can be declared liable for a damage if a fault can be attributed to that
party and that fault has caused the damage. The two key issues are thus to
establish convincing evidence with respect to (1) the occurrence of the fault and
(2) the causality relation between the fault and the damage. The first issue con-
cerns the technique used to log the relevant events of the system and to ensure
that the logs can be produced (and have some value) in court. The second issue
is especially complex when several faults are detected in the logs and the impact
of these faults on the occurrence of the failure has to be assessed. In this paper,
we focus on this second issue and propose a formal framework for reasoning
about causality. A system based on this framework could be used to provide
relevant information to the expert, the judge, or the parties themselves (in case
of amicable settlement) to analyze the origin of the failure of an IT system.

The notion of causality has been studied for a long time in computer science,
but with very different perspectives and goals. In the distributed systems com-
munity, causality (following Lamport’s seminal paper [11]) is seen essentially as
a temporal property. In our context, the temporal ordering contributes to the
analysis, but it is obviously not sufficient to establish the logical causality re-
quired to rule on a matter of liability: the fact that an event e1 has occurred
before an event e2 does not imply that e1 was the cause for e2 (or that e2 would
not have occurred if e1 had not occurred).

Causality has also been studied by logicians (e.g. in the framework of deontic
logic or extensions of classical propositional logic), but in a very abstract way,
without consideration for actual behaviors of software components or application
to software traces. In this paper, we contribute to filling the gap between these
two trends of work and provide ways to reason on component traces to establish

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 270–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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causality properties which go beyond temporal causality and can be used to
assess the role of a fault in the occurrence of a failure.

In Section 2, we introduce our formal model of IT system based on components
interacting according to well identified interaction models. Each component is
associated with an individual contract which specifies its expected behavior. The
system itself is associated with a global contract which is assumed to be implied
by the composition of the individual contracts.

We first define several variants of logical causality in Section 3. The first
variant, necessary causality, characterizes cases when the global contract would
not have been violated if the local contract had been fulfilled. The second variant,
sufficient causality, characterizes cases when the global contract would have been
violated even if all the other components had fulfilled their contracts. In other
words, the violation of its contract by a single component was sufficient to violate
the global contract.

We further show that our definitions of causality are decidable in the intro-
duced setting. We also provide conditions for decidability on trace suffixes. Such
a possibility is of great practical significance because it makes it possible to an-
alyze traces back to a given point in the past. Indeed, the analysis of liability in
real cases can hardly assume that all traces of the past can always be produced
and analyzed.

In Section 4, we sketch a case study, an adaptive cruise control system inspired
from [1], and illustrate the definitions of Section 3 with different sets of execution
traces giving rise to different combinations of causality.

In order to be able to trace the propagation of faults, we define in Section 5
horizontal causality, which relates prefixes of local traces of components on the
same level of hierarchy. Horizontal causality allows to analyze causality among
violations of component contracts.

Finally, Section 6 is devoted to a discussion of related work and Section 7
draws some conclusions and outlines perspectives for further work.

2 The Contract Framework

In this section we introduce a framework for reasoning about components and
their interactions, contracts, and traces. We use labeled transition systems to
model contracts.

Definition 1 (LTS). A labeled transition system (LTS) over an action alpha-
bet Σ is a tuple B = (Q, q0, Σ,→) with Q a finite set of states, q0 ∈ Q an initial
state, and →: Q×Σ ×Q is transition relation.

A component is an LTS. Throughout this paper, we make the assumption that
components are black boxes whose traces of actions can be observed, whereas
the internal behavior is unknown.

Composition of LTS is defined by a composition operation which is parame-
trized with an interaction model.
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Definition 2 (Interaction model). Given LTSs Bi with disjoint alphabets
Σi, an interaction α over Σ =

⋃
i Σi is a non-empty subset of Σ of actions

taking place simultaneously. An interaction model IM over the set of LTS is a
set of interactions over Σ such that

⋃
α∈IM α = Σ. We suppose that each action

participates in exactly one interaction: ∀α1, α2 ∈ IM : α1∩α2 �= ∅ =⇒ α1 = α2.
For α ∈ IM, let α(k) = α ∩Σk be the actions of Bk participating in α.

For simplicity, we write a1|a2 for the interaction α = {a1, a2}.

Example 1. Consider the architecture of the system in Figure 3. Components
are represented as boxes, actions as bullets, and interactions as lines connecting
actions. For instance, we have sldo ∈ ΣSLD, accs

i ∈ ΣACC , and sldo|accs
i ∈ IM.

The latter interaction is a rendez-vous, modeling a hand-shake between SLD
and ACC.

Definition 3 (Composition of LTS). Given LTSs Bi = (Qi, q
0
i , Σi,→i), i =

1, ..., n, and an interaction model IM over
⋃

i Σi, let their composition be the
LTS ‖IM{Bi} = (Q, q0, IM,→) where

– Q = Q1 × ...×Qn and q0 = (q0
1 , · · · , q0

n);
– (q1, ..., qn) α→ (q′1, ..., q

′
n) if for i = 1, ..., n, either α(i) = ∅ and qi = q′i, or

qi
α(i)→ i q′i.

We extend the notion of interaction model to individual components, such that
the interaction model of a component with action alphabet Σ is the set of sin-
gleton interactions IM =

{
{a} | a ∈ Σ

}
. This allows us to apply the following

definitions both on the component and system level.

Definition 4 (Trace). A trace tr over IM is a sequence of interactions in IM.

Let IM ∗ and IMω denote the set of finite and infinite traces over IM, respectively.
Let tr[i..j] be the infix of tr between positions i and j and tr[i] be the interaction
occurring at position i. We suppose that each trace begins at position 1.

Definition 5 (Acceptance). A trace tr over IM is accepted by an LTS B =
(Q, q0, Σ,→), noted tr |= B, if there exists a sequence of states q0, · · · , qi, · · · of
Q such that q0 = q0 and for all i ≥ 0, (qi, tr[i + 1], qi+1) ∈ →.

Given a global trace of ‖IM{Bi}, the component traces are obtained by projection.

Definition 6 (Projection). The projection πk(tr) on Bk of a global trace tr =
α1.α2 · · ·αi · · · over an interaction model IM is obtained by removing all empty
interactions from the trace α1(k).α2(k) · · ·αi(k) · · · .

We use assume/guarantee-contracts (see e.g. [3]) to specify the expected behavior
of black-box components interacting with each other, and conversely, limit the
responsibility of a component if an assumption on its use is not satisfied.
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sldi

sldo

tck tck, sldi

(a) Assumption ASLD
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tck

(b) Guarantee GSLD

sldi

tcksldo

tck

tck
sldi, sldo

sldo

(c) Implicit form

Fig. 1. A contract CSLD for the SLD component

Definition 7 (Contract). A contract over a component with interaction model
IM is a pair (A,G) of deterministic LTSs over IM, where A is called assumption
and G guarantee.

Example 2. We consider in Fig. 1 a contract CSLD regarding the behavior of a
Speed Limit Detector component (SLD) embedded in a car. It communicates
with the environment though a sensor in order to get the speed limitation (sldi)
and is then able to forward this information (sldo) in the system. Time is dis-
cretized with the tick (tck) action. According to Fig. 1(b), the component guar-
antees to forward each received input (sldi) after one tick. The assumption of
SLD is specified in Fig. 1(a): the guarantee will hold if the environment re-emits
each input (sldi) until it has been transmitted (sldo).

Definition 8 (Satisfaction). A trace tr over IM satisfies a contract C=(A,G),
noted tr |= C, if for i the maximal position for which tr[1..i] |= A we have
tr[1..i] |= G.

Example 3. The trace tr1 = sldi.tck.sldo.sldi.tck.sldo.tck.sldi.tck.sldo satisfies
the contract in Fig. 1 whereas tr2 = sldi.tck.sldo.sldi.tck.tck.sldo.sldi does not
as tr2[6] |= ASLD but tr2[6] |=/ GSLD.

The implicit form of a contract C is an LTS characterizing the set of traces
satisfying C.

Definition 9 (Implicit form). Given a contract C = (A,G) over a component
with interaction model IM, we call implicit form IF(C) of C the LTS (QA ×
QG ∪ {�}, (q0

A, q0
G), IM,→) with the following transitions:

– (qA, qG) α→ (q′A, q′G) if qA
α→A q′A and qG

α→G q′G
– (qA, qG) α→ � if there is no transition labeled by α stemming from qA in A
– � α→ � for all α ∈ IM

Example 4. The implicit form of the contract CSLD is depicted in Fig. 1(c).

Proposition 1. tr |= IF(C)⇐⇒ tr |= C

According to Proposition 1, satisfaction of a contract C can be verified by check-
ing acceptance by the implicit form of C.
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Hypothesis 1. Given a set of contracts Ci over components Bi, i = 1, ..., n, we
require the contracts Ci to be consistent, that is, for all traces tr of B = ‖IM{Bi},

(∀i : πi(tr) |= Ci) =⇒ (∀i : πi(tr) |= Gi)

Similarly, for global contracts (A,G) over B, we assume that

(∀i : πi(tr) |= Ci) =⇒ tr |= G

The satisfaction of this hypothesis can be effectively checked using results from [9].
In the remainder of this paper we consider a system with n components inter-

acting together as described by a fixed interaction model IM. We suppose that
the activity of each component is logged locally, yielding a trace of component
actions.

3 Logical Causality

In contrast to the notion of precedence established by Lamport clocks [11] and
vector clocks [8,13], we introduce stronger conditions for causality between the
violation of a component contract and the subsequent violation of a global con-
tract.

3.1 Definition

We define three notions of vertical causality (or causality for short): weak, nec-
essary, and sufficient causality. Let Ci = (Ai,Gi) be component contracts over
components Bi, IM be an interaction model, and C = (A,G) be a global contract
over B = ‖IM{Bi}. Let tri be a trace of Bi, i = 1, ..., n.

According to our hypothesis, the behavior at execution time is logged sepa-
rately for each component. The obtained vector of local traces does not define a
unique global trace, in general. Therefore, vertical causality is not defined as a
relation between events of a local and a global trace, but as a predicate on the
prefixes of local traces.

Weak causality formalizes the fact that the violation of a global guarantee is
preceded (in the usual sense of causality in distributed systems) by the violation
of the guarantee of a component contract.

Definition 10 (Weak causality). trk[1..i] is a potential cause of the violation
of G, written trk[1..i]↗Ck

G, if trk[1..i] �|= Gk, there exists a global trace tr over
IM such that ∀� : π�(tr) = tr�, and ∃j : |πk(tr[1..j])| = i, tr[j](k) �= ∅, and
j ≤ min{m | tr[1..m] �|= G} <∞.

Intuitively, the prefix trk[1..i] is a potential cause of the violation of G if for some
global trace tr having the observed projections, the position j of interaction
trk[i] in tr is between the violation of Gk and a subsequent violation of G. Weak
causality is illustrated in Figure 2.

Weak causality is complete in the sense that each violation of a global contract
has a weak cause. The claim follows from Hypothesis 1.
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|=/ G1

trk

i

|=/ G
j m

tr

Fig. 2. Weak causality between prefix trk[1..i] and a possible global trace tr

Definition 11 (Necessary causality). trk[1..i] is a necessary cause of the
violation of G, written trk[1..i]↗n

Ck
G, if trk[1..i]↗Ck

G and

∀tr′ ∈ IM ∗ s.t.
(
|πk(tr′)| ≥ i ∧ ∀j ∈ {1, ..., n} \ {k} : πj(tr′) = trj

)
:(

πk(tr′)[1..i] |= Gk =⇒ tr′ |= G
)

That is, trk[1..i] is a necessary cause of the violation of G if it is a weak cause,
and replacing trk[1..i] with a prefix πk(tr′)[1..i] satisfying Gk while keeping all
other traces, would not have violated the global guarantee.

Given a set S of traces, we call a trace tr ∈ S maximal if tr is not a strict
prefix of some trace in S.

Definition 12 (Sufficient causality). trk[1..i] is a sufficient cause of the vi-
olation of G, written trk[1..i]↗s

Ck
G, if trk[1..i]↗Ck

G and ∀tr′ ∈ IM ∗ ∪ IMω:((
∀p ∈ {1, ..., n} \ {k} : πp(tr′) |= Cp ∧ πk(tr′) = trk

)
(1)

∧ tr′ is maximal among the traces satisfying (1)
)

=⇒ tr′ �|= G

Thus, trk[1..i] is a sufficient cause of the violation of G if it is a weak cause, and
replacing all traces except for trk with traces satisfying the component contracts,
would also lead to a violation of the global guarantee. Maximality ensures tr′ to
be long enough for the effects of the violation of Gk to be propagated.

3.2 Decidability

We now discuss algorithmic procedures to test the different kinds of causality
previously defined, in the context of the component framework introduced in
Section 2.

Theorem 1. Weak, sufficient, and necessary causality are decidable.

Due to space limitations we only focus on the decision procedure for sufficient
causality (Definition 12).

The first step consists in reconstituting the possible global traces of the sys-
tem. For this, we define the composition of local traces and therefore consider



276 G. Gössler, D. Le Métayer, and J.-B. Raclet

the symbolic encoding of a trace as an LTS. A trace trk = α1...αn of a compo-
nent with alphabet Σk can be represented by the LTS T (trk) = (Q, q0, Σk,→)
where Q = {q0, · · · , qn} and which has, for each interaction αi, a transition
(qi, αi, q

i+1). Then, the set of global traces tr whose projections coincide with
observed local traces tri is characterized by the LTS ‖IM{T (tri)}:

Proposition 2. tr |= ‖IM{T (tri) | i = 1, ..., n} ⇐⇒ ∀i = 1, ..., n : πi(tr) = tri

To decide sufficient causality, the following sets of traces must be considered:

Sk = {tr′ ∈ IM ∗ s.t. πk(tr′) = trk} (2)
Sj = {tr′ ∈ IM ∗ ∪ IMω s.t. πj(tr′) |= Cj}, j ∈ {1, ..., n} \ {k} (3)

The LTS Bk characterizing Sk is given by T (trk). The LTS Bj for Sj is obtained
by taking the implicit form IF(Cj) of Cj. Let B = ‖IM{Bi | i = 1, ..., n}.

It then suffices to tell if no maximal trace of B satisfies G. This second step
can be achieved via the following binary relation # on LTS called inconsistency.
We call sink state a state of an LTS without any outgoing transition.

Definition 13 (Inconsistency). Consider two LTS S = (QS , q0
S , IM,→S) and

T = (QT , q0
T , IM,→T ). Let � ⊆ QT ×QS be the greatest solution of

� =
{
(qT , qS) | sink(qT ) ∨ ∃α ∈ IM. ∃q′T ∈ QT . ∃q′S ∈ QS :

qT
α→T q′T ∧ qS

α→S q′S ∧ q′T � q′S
}

T is inconsistent with S (written T#S) if q0
T � q0

S.

Two LTS S and T are inconsistent if no maximal trace of T is accepted by S.

Proposition 3. T#S ⇐⇒
(
∀tr : tr is a maximal trace of T =⇒ tr |=/ S

)
.

Thus, to decide sufficient causality, one has to check if no maximal trace of B
satisfies G, that is, whether B#G.

3.3 Causality Analysis on Bounded Past

The decision procedure described above requires, in the worst case, the local
traces to be inspected entirely to determine causality between two traces. How-
ever, for systems that must guarantee a high degree of availability such as em-
bedded and telecommunication systems, it is in general not be feasible to keep
the full traces since the initialization of the system. Therefore we now discuss
the stability of the definitions of causality when applied to suffixes of traces, in
order to make causality analysis feasible in practice.

Consider a vector of traces (tri), and a suffix tr′i = tri[ji..ni] of each trace,
with ni = |tri|, such that the suffixes are obtained by the projection of some
global trace: ∃tr ∀i : πi(tr) = tr′i, that is, the suffixes agree on the common
interactions. We can now interpret the different definitions of causality over the
suffixes tr′i rather than tri. We have the following results:
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Weak causality over suffixes is exact if the suffixes are sufficiently long to
contain an interaction between the considered components.

The definitions of necessary and sufficient causality depend on the satisfaction
of a contract and/or a guarantee by some prefix. As the simple assumption
that they were satisfied by the missing prefix might be overly optimistic and
compromise the legal value of the results, we suggest the following solution. For
each contract (A,G), construct two observers O(A) and O(G) by adding to the
LTS distinct ⊥ states modeling that the observed trace does not satisfy the LTS,
and transitions to ⊥ so as to make the observer receptive to all possible traces.
For each component, the log encompasses, in addition to the trace, a Boolean flag
for each contract, indicating whether the contract was satisfied by the missing
prefix, and the state of the observers at the end of the missing prefix. Therefore,
the satisfaction of any contract, its assumption, and guarantee, can be computed
exactly for each prefix of tr′i from the log. The only remaining approximation is
the matching of the projection of hypothetical traces πi(tr′) with tri, which we
have to over-approximate by matching with the suffixes tr′i.

It is now straight-forward to reformulate the definitions of causality using the
bounded traces and observer states, and it can be shown that these approxi-
mated definitions are sound, in the sense that they under-approximate the exact
definitions of causality.

4 Case Study: Adaptive Cruise Control

In this section, we illustrate our definitions of causality with a simple, but real-
istic, case study, an adaptive cruise control system inspired from [1]. The goal of
the system, which is depicted in Fig. 3, is to automatically adjust the speed of
a car in order to maintain a security distance with any front car and to comply
with speed limitations. To this aim, the system includes two dedicated com-
ponents, an Object Recognition component (OR) using a radar to provide the
distance with the nearest object in front of the car and a System Limit Detector
(SLD) communicating with road sign transmitters to get the current speed limit.
The Switch component allows the driver to activate or deactivate the adaptive
cruise control via a button on the HMI (Human Machine Interface) component.
The core of the system is the Adaptive Cruise Control component (ACC) which
decides from the speed limit, the distance with the object in front of the car, and
the current speed, either to accelerate or to brake. The last two components are
the Throttle System (TS) and the Brake System (BS) to activate the throttle
and brake respectively.

The contracts of the components and the global contract of the system involve
complex properties such as, for example, the conditions under which the SLD
and OR components must send a new signal to the ACC component or the
rules to be applied by ACC to determine the action to be taken. For the sake
of conciseness, we focus on a single, but critical, aspect of the specifications in
this section: timeliness. The issue of composing multiple contracts describing
different aspects has been largely studied in [9].
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Fig. 3. Architecture of the cruise control system

Time is represented in the architecture through a Clock component which
synchronizes with SLD, OR, and ACC through a rendez-vous on tck actions.
Following the contract CSLD in Fig. 1, exactly one clock tick action is allowed
between an input sldi and the corresponding output sldo. We associate to OR
a similar contract COR imposing also a delay of one tick between the occurrence
of ori and of oro in GOR. For GACC , there again the delay of reaction between
the reception of input(s) accs

i and/or acco
i and the emission of the output accb

o

or acct
o is fixed to 1. The assumption of CACC is the LTS accepting any traces in

Σ∗
ACC for which any two occurrences of accs

i are separated by at least one tck.
Globally, in order to ensure the security of the car and compliance with

speed regulations, the end-to-end throughput of the system must be less than
three ticks. The guarantee of the global contract is then the LTS accepting the
traces formed by the repetition of the sequence starting by any interleaving of
ssro|sldi.sldo|accs

i and rdro|ori.oro|acco
i followed by accb

o|bsi,auto or acct
o|tsi,auto

with at most three ticks in each sequence. It is easy to check that the set of local
time constraints implies the global time constraint.

In the following, we consider successively scenarios involving failures within
dependent (serial) components and independent (parallel) components. We use
Δ, ΔSLD, ΔOR and ΔACC to denote the global delay and the delays observed
for components SLD, OR, and ACC respectively. Local contracts impose that
ΔSLD = 1, ΔOR = 1 and ΔACC = 1, and the global guarantee requires that
Δ ≤ 3.

4.1 Failures within Dependent Components

We first focus on failures involving serial components: the SLD and ACC com-
ponents. The same scenarios can be transposed to any pair of dependent com-
ponents (HMI and Switch, Switch and ACC, OR and ACC, etc.).
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Two necessary causes. Let us consider first the following trace excerpts:

SLD: . . . sldi, tck, tck, sldo, tck, tck, . . .
ACC: . . . tck, tck, accs

i , tck, tck, accb
o, . . .

In these traces, both SLD and ACC violate their contracts (ΔSLD = 2,
ΔACC = 2), which leads to a violation of the global timing constraint (Δ =
4 > 3). From the definition of Section 3, we obtain that both SLD and ACC
failures are necessary causes for the global failure. Indeed, would any of them
have been avoided, then the global delay would not have exceeded the threshold
of 3.

One necessary and sufficient cause. We consider the following trace excerpts:

SLD: . . . sldi, tck, tck, tck, sldo, tck, tck, . . .
ACC: . . . tck, tck, tck, accs

i , tck, tck, acct
o, . . .

Again both SLD and ACC violate their contracts but SLD’s violation is more
serious (ΔSLD = 3, ΔACC = 2). The definitions of Section 3 show that SLD’s
violation is a necessary and sufficient cause for the global failure but the violation
of ACC is no longer a necessary cause. Similarly, the case where ACC’s violation
would be the most serious (ΔSLD = 2, ΔACC = 3) would lead to identify ACC’s
violation as a necessary and sufficient cause.

Two sufficient causes. The following trace excerpts exhibit yet another causality
pattern:

SLD: . . . sldi, tck, tck, tck, sldo, tck, tck, tck . . .
ACC: . . . tck, tck, tck, accs

i , tck, tck, tck, accb
o, . . .

Both SLD and ACC violate their contracts in the more serious way (ΔSLD =
3, ΔACC = 3). Indeed, the definitions of Section 3 show that both violations are
sufficient causes for the global failure.

4.2 Failures within Independent Components

To illustrate failures between independent components, we focus on cases involv-
ing the SLD and OR components. The same scenarios can occur between any
pair of independent components (HMI and OR, Switch and SLD, etc.).

One necessary and sufficient cause. Consider first the following trace excerpts:

SLD: . . . sldi, tck, tck, tck, sldo, tck, . . .
OR: . . . ori, tck, tck, oro, tck, tck, . . .
ACC: . . . tck, tck, acco

i , tck, accs
i , tck, acct

o, . . .

Again both SLD and OR violate their contracts but SLD’s violation is more
serious (Δsld = 3, Δor = 2). Indeed, the definitions of Section 3 show that SLD’s
violation is a necessary and sufficient cause for the global failure.
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Two sufficient causes. As a final example, consider the following trace excerpts:

SLD: . . . sldi, tck, tck, tck, sldo, tck, . . .
OR: . . . ori, tck, tck, tck, oro, tck, . . .
ACC: . . . tck, tck, tck, acco

i , accs
i , tck, accb

o, . . .

Both SLD and OR violate their contracts in the most serious way (ΔSLD = 3,
ΔOR = 3) and the definitions of Section 3 show that both violations are sufficient
causes for the global failure.

5 Horizontal Causality

As an extension of the framework we introduce horizontal causality, which relates
prefixes of traces of components on the same level of hierarchy. If one is interested
in the causality among violations of local contracts — for instance, in order to
precisely establish the scenario leading to the violation of a global contract —,
horizontal causality allows us to refine the analysis of vertical causality with
further information about dependencies between contract violations.

Let Ci = (Ai,Gi) be component contracts over components Bi, and B =
‖IM{Bi}. Let tri be a trace of Bi, i = 1, ..., n.

Definition 14 (Weak horizontal causality). The prefix tr1[1..i] is a weak
cause of the violation of G2 by tr2[1..j], written tr1[1..i] →C1,C2 tr2[1..j], if
tr1[1..i] �|= G1, tr2[1..j] �|= A2, and there exists a global trace tr over IM such
that ∀� : π�(tr) = tr�, and ∃k : |π1(tr[1..k])| = i, |π2(tr[1..k])| = j, tr[k](1) �= ∅,
tr[k](2) �= ∅, and k ≤ min{k′ | tr2[1..k′] �|= G2} <∞.

Intuitively, tr1[1..i] is a potential cause of the violation of G2 by tr2[1..j] after k
if there is an interaction between components 1 and 2 at position (i, j) after a
violation of G1, A2 is violated at or before j, and G2 is subsequently violated.

In order to be able to trace the propagation of faults, we define necessary
and sufficient horizontal causality. Intuitively, a contract violation would not
have happened without collusion of a necessary cause. Conversely, a violation
would also have occurred with only one sufficient cause, with all other compo-
nents behaving correctly. Notice that we do not require the assumption of the
downstream component to be satisfied up to the contract violation, in order to
account for multiple causes.

Definition 15 (Necessary horizontal causality). trk[1..i] is a necessary
cause of the violation of G�, written trk[1..i] →n

Ck,C�
tr�[1..j], if trk[1..i] →Ck,C�

tr�[1..j] and

∀tr′ ∈ IM ∗ s.t.
(
|πk(tr′)| ≥ i ∧ ∀p ∈ {1, ..., n} \ {k, �} : πp(tr′) = trp ∧
π�(tr′)[1..j − 1] = tr�[1..j − 1]

)
:(

πk(tr′)[1..i] |= Gk ∧ π�(tr′) |= C� =⇒ π�(tr′) |= G�

)
Definition 15 is illustrated in Fig. 4. Intuitively, trk[1..i] is a necessary cause of
the violation of G� by tr�[1..j] if it is a weak cause, and replacing the faulty trace
trk and the faulty suffix of tr� with correct traces ensures G� to be respected.
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Fig. 5. Sufficient horizontal causality trk[1..i] →s
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Definition 16 (Sufficient horizontal causality). trk[1..i] is a sufficient cause
of the violation of G�, written trk[1..i]→s

Ck,C�
tr�[1..j], if trk[1..i]→Ck,C�

tr�[1..j]
and

∀tr′ ∈ IM ∗ s.t.
(
∀p ∈ {1, ..., n} \ {k} : πp(tr′) |= Cp ∧ πk(tr′) = trk ∧

π�(tr′)[1..j − 1] = tr�[1...j − 1]
)

: π�(tr′) �|= G�

Definition 16 is illustrated in Fig. 5. Intuitively, trk[1..i] is a sufficient cause of
the violation of G� by tr�[1..j] if it is a weak cause, and replacing all local traces
except for trk with correct traces still results in a violation of G�.

Example 5. Consider the scenario where SLD violates its local contract by send-
ing an output twice, which violates ACC’s assumption and causes ACC to stop
producing outputs and violate its local guarantee and the global contract:

SLD: sldi, tck, sldo, sldo, tck, tck, tck, ...
ACC: tck, accs

i , accs
i , tck, tck, tck, ...

According to Definition 12, the trace of SLD is considered as a sufficient
cause for the violation of the global contract. The analysis of horizontal causality
provides additional insights on the propagation of the failure: the trace of SLD
is by Definition 15 a necessary cause and by Definition 16 a sufficient cause for
the violation of GACC .
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6 Related Work
The research described here has been conducted in the context of a multidisci-
plinary project involving lawyers and computer scientists with the aim to put
forward a set of methods and tools (1) to define software liability in a precise
and unambiguous way and (2) to establish such liability in case of incident. On
the legal side, the notion of causality is essential in contractual liability as well
as tort law [6,18]. Among the crucial issues regarding the notion of causality are
the assertion of the existence of a causality relation between two events and the
treatment of multiple causes. A key condition for the existence of causality in
European tort law is the conditio sine qua non: ”An activity or conduct is a
cause of the victim’s damage if, in the absence of the activity, the damage would
not have occurred”1, which is close to the so called ”but for” test in British law
or the ”proximate cause” in American law. This condition is captured by our
definition of necessary causality in Section 3.

The notion of causality appears directly or indirectly in different areas of com-
puter science, with different flavors and for different purposes. On the theoretical
side, causality is usually seen as a temporal property in the distributed systems
community. In our context, the temporal ordering contributes to the analysis
(see the definition of weak causality in Section 3), but it is obviously not suffi-
cient to establish the logical causality required to rule on a matter of liability:
the fact that an event e1 has occurred before an event e2 does not imply that e1

was the cause for e2 (or that e2 would not have occurred if e1 had not occurred).
The notions of faults, errors and failures have been studied extensively in the

areas of computer related risks and system dependability [14,2,12]. The depen-
dencies between failures are often represented as fault trees [10] or FMEA (Fail-
ure Mode and Effect Analysis) tables or their FMECA (Failure Mode, Effects
and Criticality Analysis) extension [17]. A fault tree represents combinations of
events (based on AND and OR connectors) leading to a given failure. On the
other hand, an FMEA table identifies all potential effects of a given cause. In
other words, fault trees favor top-down approaches (from failures to their poten-
tial causes) when FMEA naturally leads to bottom-up analyses (from causes to
their consequences). In both cases however, the analysis is based on the exper-
tise of the designers of the system. The work presented here is complementary
to the fault tree and FMEA approaches in several ways: first, our analysis is
conducted a posteriori, based on real execution traces, and its results rely on a
formal model of the system. Therefore these results are well-founded and can be
used as evidence in case of dispute between the parties.

Causality has also been studied by logicians. For example, [7] explores different
notions of responsibility in a deontic setting. However, the modal operators are
characterized in a rather abstract way and no attempt is made to relate these
definitions to execution traces. In the classical logic setting, [4] proposes a logic
to reason about causes. The logic deals with transitivity of causes and allows for
predictive reasoning (deriving consequences from a cause) as well as abductive
reasoning (deriving the causes from the facts). Again, this trend of work takes
1 Art. 3:101 of [6].
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a fairly abstract point of view which is different from (and complementary to)
the results presented in this paper.

Another related, but different area is model based diagnosis [5,15,16,19]. Di-
agnosis can be carried out either off-line or on-line with different cost and time
constraints. Most of the contributions in this area focus on the possibility to
detect the occurrence of a fault assuming certain observability properties. To
our best knowledge however, the notion of logical causality as proposed here has
not been considered in this context.

7 Conclusion

This paper contributes to filling the gap between the trends of work sketched in
Section 6 and provides ways to reason on component traces to establish causality
properties which go beyond temporal causality and can be used to assess the role
of a fault in the occurrence of a failure.

A straightforward extension to this work which is not presented here for the
sake of conciseness is the support for message passing within interactions and
the generalization to symbolic components and contracts.

Another avenue for further work concerns the extension of our framework to
alleviate over-approximations in the definitions of Section 3. One option to get
more precise definitions of causality would be to involve the actual implementa-
tion of the components. For example, in the case of necessary causality, rather
than considering the traces tr′ equal to tr (except for component k), we could
consider traces tr′ produced by the implementations of the components (consid-
ering a correct behavior of component k). This approach introduces new issues
though, such as the definition of a complete initial state for the execution of the
implementations of the components.

Another useful extension concerns the notion of ”group causality” which
would apply to sets of actors rather than individual actors. In some cases, the
information conveyed by group causality is strictly more precise than individual
causality. For example, it may be the case that two events involving two actors
satisfy together the criteria for necessary causality but none of them would sat-
isfy these conditions individually. Collective (solidary or several) liability is also
useful in a legal perspective [6].

Last but not least, it would also be interesting to introduce probabilities in
the framework in order to reflect certain interpretations of causality in the legal
sense, the differences between several causes being often considered with respect
to their effects on the likeliness of the occurrence of the damage [6].
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Abstract. A software product line is a family of programs where each

program is defined by a unique combination of features. Product lines,

like conventional programs, can be checked for safety properties through

execution monitoring. However, because a product line induces a number

of programs that is potentially exponential in the number of features, it

would be very expensive to use existing monitoring techniques: one would

have to apply those techniques to every single program. Doing so would

also be wasteful because many programs can provably never violate the

stated property. We introduce a monitoring technique dedicated to prod-

uct lines that, given a safety property, statically determines the feature

combinations that cannot possibly violate the property, thus reducing

the number of programs to monitor. Experiments show that our tech-

nique is effective, particularly for safety properties that crosscut many

optional features.

1 Introduction

A software product line (“SPL” or “product line” for short) is a family of pro-
grams where each program is defined by a unique combination of features . By
developing programs with commonalities and variabilities in a systematic way,
SPLs help reduce both the time and cost of software development [17]. Unfor-
tunately, SPLs also pose significant new challenges, as they involve reasoning
about a family of programs whose cardinality may be exponential in the number
of features.

In this paper, we consider the problem of runtime-monitoring SPLs for safety
property [16] violation. We avoid monitoring every program of an SPL by stat-
ically identifying feature combinations (i.e., programs) that provably can never
violate the stated property. These programs do not need to be monitored. Achiev-
ing this reduction is beneficial in at least two settings under which monitors are
used. First, it can significantly speed up the testing process as these programs
do not need to be run to see if the property can be violated. Second, if the
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monitor is used in production, it can speed up these programs because they are
not monitored unnecessarily.

We accomplish this goal by starting with analyses that evaluate runtime mon-
itors at compile time for single programs [5,6,7]. Our work extends these analyses
by lifting them to understand features, making them aware of possible feature
combinations. A programmer applies our analysis to an SPL once at each SPL re-
lease. The output is a bi-partitioning of feature combinations: (1) configurations
that need to be monitored because violations may occur and (2) configurations
for which no violation can happen.

To validate our work, we analyze two different Java-based SPLs. Experiments
show we can statically rule out over half of the configurations for these case stud-
ies. Further, analyzing an entire SPL is not much more expensive than applying
the earlier analyses to a single program.

To summarize, the contributions of this paper are:

– A novel static analysis to determine, for a given SPL and runtime-monitor
specification, the feature combinations (programs) that require monitoring,

– An implementation of this analysis within the Clara framework for hy-
brid typestate analysis [4], as an extension to Bodden et al.’s earlier whole-
program analysis [6], and

– Experiments that show that our analysis noticeably reduces the number of
configurations that require runtime-monitoring and thus saves testing time
and program execution time for the programs studied.

2 Motivating Example

Figure 1 shows a simple example SPL, whose programs fetch and print data.
There are different ways of representing a product line. In this paper, we use the
SysGen program representation [13], where an SPL is an ordinary Java program
whose members are annotated with the name of the introducing feature and
statements are conditionalized using feature identifiers (in a manner similar to
#ifdef).1 Local data is fetched if the Local feature is selected (blue code), local
data from a file is fetched if File is selected (yellow code) and internal contents of
data are printed if Inside is selected (green code). Each member (class, field, or
method) is annotated with a feature. In this example, every member is annotated
with Base feature, meaning that it will be present in a program only if the Base
feature is selected. A program (also referred to as a configuration or feature
combination) in SysGen is instantiated by assigning a Boolean value for each
feature and statically evaluating feature-conditionals and feature-annotations.

Every SPL has a feature model [2] that defines the legal combinations of fea-
tures. The feature model for our SPL is expressed below as a context-sensitive
grammar. Base is a required feature. Optional features (Inside, File, and
Local) are listed in brackets.

1 For presentation, we omit the class of field references in feature-conditionals and

capitalize feature identifiers.
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Fig. 1. Example Product Line

Example :: [Inside] [File] [Local] Base;

Inside or File or Local;

// Implementation constraints

(Inside implies Base) and (File implies Base) and (Local implies Base);

The model further requires at least one of the optional features to be selected
(second line). In the last line, the feature model enforces additional implementa-
tion constraints that must hold for all programs in the product line to compile.
For example, File implies Base because the code of the File feature refer-
ences data (line 17, Figure 1) that belongs to Base (lines 3-5, Figure 1). A tech-
nique described elsewhere [18] can generate these implementation constraints
automatically. In total, the feature model allows seven distinct programs (eight
variations from three optional features then remove the case without any op-
tional feature).

2.1 Example Monitor Specifications: ReadPrint and HasNext

Researchers have developed a multitude of specification formalisms for defin-
ing runtime monitors. As our approach extends the Clara framework, it can
generally apply to any runtime-monitoring approach that uses AspectJ aspects
for monitoring. This includes popular systems such as JavaMOP [8] and
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tracematches [1]. For the remainder of this paper, we will use the tracematch
notation because it can express monitors concisely. Figure 2(a) shows a simple
example. ReadPrint prevents a print event after a read event is witnessed. In
line 3 of Figure 2(a), a read symbol captures all those events in the program
execution, known as joinpoints in AspectJ terminology, that are immediately
before calls to Util.read*(..). Similarly, the symbol print captures joinpoints
occurring immediately before calls to Util.print*(..). Line 6 carries the sim-
ple regular expression “read+ print”, specifying that code body in lines 6–8
should execute whenever a print event follows one or more read events on the
program’s execution. Figure 2(b) shows a finite-state machine for this trace-
match, where symbols represent transitions.

1 aspect ReadPrint {
2 tracematch ( ) {
3 sym read before : ca l l (∗ Ut i l . read ∗ ( . . ) ) ;

4 sym p r in t before : ca l l (∗ Ut i l . p r i n t ∗ ( . . ) ) ;

5

6 read+ pr in t {
7 throw new RuntimeException ( ‘ ‘ ReadPrint v i o l a t i o n ! ’ ’ ) ;

8 }
9 }

10 }
(a) ReadPrint Tracematch

0start 1 2
read

read

print

(b) Finite-State Machine

Fig. 2. ReadPrint Safety Property

Figure 3 shows another safety property, HasNext [6], which checks for it-
erators if next() is called twice without calling hasNext() in between. Note
that this tracematch only matches if the two next() calls bind to the same
Iterator object i, as shown in Figure 3(a), lines 2–4. When the tracematch
encounters an event matched by a declared symbol that is not part of the reg-
ular expression, such as hasNext, the tracematch discards its partial match.
Therefore, the tracematch would match a trace “next(i1) next(i1)” but not
“next(i1) hasNext(i1) next(i1)”, which is exactly what we seek to express.

A naive approach to runtime-monitoring would insert runtime monitors like
ReadPrint and HasNext into every program of a product line. However, as we
mentioned, it is often unnecessary to insert runtime monitors into some programs
because these programs provably cannot trigger the runtime monitor.
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1 aspect HasNext {
2 tracematch( I t e r a t o r i ) {
3 sym next before : ca l l (∗ I t e r a t o r . next ( ) ) && target ( i ) ;

4 sym hasNext before : ca l l (∗ I t e r a t o r . hasNext ( ) ) && target ( i ) ;

5

6 next next {
7 throw new RuntimeException ( ‘ ‘ HasNext v i o l a t i o n ! ’ ’ ) ;

8 }
9 }

10 }
(a) HasNext Tracematch

0start 1 2

next

hasNext

next

(b) Finite-state machine

Fig. 3. HasNext Safety Property [6]

2.2 Analysis by Example

Our goal is to statically determine the feature configurations to monitor, or con-
versely the configurations that cannot trigger the monitor. For our running
example, let us first deduce these configurations by hand. For ReadPrint, both
read and print symbols have to match, meaning that File (which calls read(..)
in line 17) and Base (which calls print*(..) in lines 29 and 30) have to be
present for the monitor to trigger. Also, Local needs to be present because it
enables File’s code to be reached. Therefore, the ReadPrint monitor has to be
inserted if and only if these three features are present, which only holds for two
out of the seven original configurations.

We represent the condition under which a monitor has to be inserted by treat-
ing a monitor, e.g. ReadPrint, as a feature itself and constructing its presence
condition: ReadPrint iff (File and Local and Base). Similarly, the moni-
tor for HasNext only has to be inserted iff Iterator.next() can be called, i.e.,
on the four configurations with Inside and Base present. The presence condition
for HasNext is HasNext iff (Inside and Base). The goal of our technique is
to extend the original feature model so that tracematch monitors are now fea-
tures and the tracematch presence conditions are part of the revised feature
model (the extension is shown in italics):

// ReadPrint and HasNext are now features themselves

Example :: [ReadPrint] [HasNext] [Inside] [File] [Local] Base;

// Implementation constraints

(Inside implies Base) and (File implies Base) and (Local implies Base);

// Tracematch presence conditions

ReadPrint iff (File and Local and Base);

HasNext iff (Inside and Base);
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Note that, although a tracematch is itself a feature which can be selected or
not, it is different from other features in that its selection status is determined
not by the user, but instead by the presence or absence of other features.

2.3 The Need for a Dedicated Static Analysis for Product Lines

As mentioned earlier, there exist static analyses that improve the runtime perfor-
mance of a monitor by reducing its instrumentation of a single program [5,6,7].
We will refer to these analyses as traditional program analyses (TPA). There
are two ways to apply such analyses to product lines. One way is inefficient,
the other way imprecise. Running TPA against each instantiated program will
be very inefficient because it will have to inspect every program of the product
line separately. The other way is to run TPA against the product line itself.
This is possible because a product line in a SysGen program representation
can be treated as an ordinary program (recall that a SysGen program uses
ordinary program constructs like if-conditionals, rather than pre-processor con-
structs like #ifdefs, to represent variability). However, this second way will be
imprecise. For example, suppose we apply TPA on the ReadPrint and HasNext
tracematches for our example SysGen program: both tracematches may match
in the case in which all features are enabled. Being oblivious to the notion of
features, the analysis will therefore report that the tracematches have to be
present for every program of the product line. This shows that a static analy-
sis, to be both efficient and effective on an SPL, has to be aware of the SPL’s
features.

3 Product Line Aware Static Analysis

Figure 4 displays an overview of our approach. First, for a tracematch, our anal-
ysis determines the symbols required for the tracematch to trigger (“Determine
Required Symbols”). For each of these symbols, we use the aspect weaver to
identify the statements that are matched (“Determine Symbol-To-Shadows”).
We elaborate on these two steps in Section 3.1. Then, for each of the matched
statements, we determine the feature combinations that allow the statement to
be reachable from the program’s main() method. This results in a set of presence
conditions . We combine all these conditions to form the presence condition of
the tracematch. We repeat the process for each tracematch (“Determine Pres-
ence Conditions”) and add the tracematches and their presence conditions to
the original feature model (“+”). We explain these steps in Section 3.2.

3.1 Required Symbols and Shadows

A safety property must be monitored for a feature configuration c if the code
in c may drive the finite-state monitor from its initial state to its final (error)
state. In earlier work [6], Bodden et al. described three different algorithms
that try to determine, with increasing levels of detail, whether a single program
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Fig. 4. Overview of Our Technique

can drive a monitor into an error state, and using which transition statements.
The first, called Quick Check , rules out a tracematch if the program does not
contain transition statements required to reach the final automaton state. The
second, called Consistent-Variables Analysis, performs a similar check on every
consistent variable-to-object binding. The third, called Active-Shadows Analysis ,
is flow-sensitive and rules out a tracematch if the program cannot execute its
transition statements in a property-violating order.

In this paper, we limit ourselves to extending the Quick Check to SPLs. The
Quick Check has the advantage that, as the name suggests, it executes quickly.
Nevertheless, our results show that even this relatively pragmatic analysis ap-
proach can noticeably reduce the number of configurations that require monitor-
ing. It should be possible to extend our work to the other analyses that Bodden
et al. proposed, but doing so would not fundamentally alter our technique.

Required Symbols. A symbol represents a set of transition statements with
the same label. Given a tracematch, we determine the required symbols, i.e.,
the symbols required to reach the error state, by fixing one symbol s at a time
and checking whether removing all automaton edges labeled with s prevents
the final state from being reached. For any given program p, if there exists a
required symbol s for which p contains no s-transition, then p does not have
to be monitored. For the ReadPrint property, the symbols read and print are
required because without one of these, the final state in Figure 2(b) cannot be
reached. For the HasNext property, only the symbol next is required. This is
because one can reach the final state without seeing a hasNext-transition. If
a tracematch has no required symbol, e.g. a|b (either symbol will trigger the
monitor, meaning that neither is required), it has to be inserted in all programs
of the product line.2

2 In practice, such a tracematch will be rare because the regular expression is generally

used to express a sequence of events (meaning one of the symbols will be required),

rather than a disjunction of events, which is typically expressed through a pointcut.
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Symbol-to-Shadows. For each required symbol, we determine its joinpoint
shadows (shadows for short), i.e., all program statements that may cause events
that the symbol matches. We implemented our analysis as an extension of the
Clara framework. Clara executes all analyses right after the advice-matching
and weaving process has completed. Executing the analysis after weaving has the
advantage that the analysis can take the effects of all aspects into account. This
allows us to even handle cases correctly in which a monitoring aspect itself would
accidentally trigger a property violation. A re-weaving analysis has access to the
weaver, which in turn gives detailed information about all joinpoint shadows.

In the ReadPrint tracematch, the read symbol’s only shadow is the read-
("secret.txt") call in line 17 of Figure 1 and the print symbol’s shadows are
the calls printHeader() in line 29 and print(p.data) call in line 30. For the
HasNext tracematch, the next symbol’s shadows are the next() calls in lines 50
and 51, and the hasNext symbol’s only shadow is the hasNext() call in line 49.

3.2 Presence Conditions

A tracematch monitor must be inserted into a configuration when each of the
tracematch’s required symbols is present in the configuration. The presence con-
dition (PC) of a tracematch is thus the conjunction of the presence condition
of each of its required symbols. In turn, a symbol is present if any one of its
shadows is present. Thus, the PC of a symbol is the disjunction of the PC of
each of its shadows. The PC of a shadow is the conjunction of features that
are needed for that shadow to appear in an SPL program. A first attempt to
computing the PC of a tracematch is therefore:

tracematch iff (pc(reqdSymbol_1) and ... and pc(reqdSymbol_n))

pc(symbol_i) = pc(shadow_i1) or ... or pc(shadow_im)

pc(shadow_j) = feature_j1 and ... and feature_jk

For example, Figure 5 shows how we determine the PC of the ReadPrint
tracematch. The required symbols of this tracematch are read and print. read
has one shadow in line 17 of Figure 1 and print has two shadows in lines 29
and 30. For the shadow in line 17 to be syntactically present in a program, the
if(FILE) conditional in line 16 must be true and the fetchLocal() method
definition (annotated with BASE in line 14) must be present. That is, pc(line17)
= [File and Base]. Similarly, pc(line29) and pc(line30) are each expanded
into [Base] because each of the shadows just requires BASE, which introduces
the Program class and its main-method definition.

The solution in Figure 5 is imprecise in that it allows configurations where
a shadow is syntactically present, but not necessarily reachable from the main

ReadPrint iff (pc(read) and pc(print))

ReadPrint iff ((pc(line17)) and (pc(line29) or pc(line30)))

ReadPrint iff (([File and Base]) and ([Base] or [Base]))

ReadPrint iff (File and Base)

Fig. 5. Computing ReadPrint’s Presence Condition
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method. For example, according to the algorithm, the read(..) shadow (line 17)
is “present” in configurations {Base=true, Local=false, File=true, Inside=-
DONT CARE} even though it is not reachable from main due to Local being
turned off. Based on this observation, the algorithm that we implemented can
take into account the shadow’s callers in addition to its syntactic containers.
The algorithm therefore conjoins a shadow’s imprecise PC with the disjunction
of precise PC of each of its callers, recursively. For the line 17 shadow, which is
called by line 10, which is in turn called by line 28, this precise algorithm would
return:

pc(line17) = [enclosingFeatures and (pc(caller1) or ... or pc(caller_m))]

= [enclosingFeatures and (pc(line10))]

= [enclosingFeatures and

(enclosingFeaturesLine10 and (pc(line28)))]

= [File and Base and (Local and Base and (Base))]

= File and Local and Base

Substituting this in Figure 5, we get ReadPrint iff (File and Local and
Base), which is optimal for our example and, as mentioned in Section 2.2, is
what we set out to construct. Similarly, HasNext’s presence condition is:

HasNext iff (pc(next))

HasNext iff (pc(line50) or pc(line51))

HasNext iff ([Inside and Base and (Base)] or [Inside and Base and (Base)])

HasNext iff (Inside and Base)

Note that, even though HasNext is more localized than ReadPrint, i.e., in
one optional feature (Inside) as opposed to two optional features (File and
Local), it is required in more configurations (4 out of 7) than ReadPrint (2 out
of 7).3 This is because the feature model allows fewer configurations with both
Local=true and File=true than configurations with just Inside=true.

There may be shadows that can only be reached through a cyclic edge in a
call-graph. Rather than including the features controlling the cyclic edge in the
presence condition of such a shadow, for simplicity, we ignore the cyclic edge.
This is not optimally precise but sound. For example, Util.read(..) call in
Figure 6 is actually only present in an execution if the execution traverses the
cyclic edge from c() to a(), which is possible only if X=true. Instead of adding
this constraint on X to the presence condition of Util.read(..), we simply
insert the monitor for both values of X.

3.3 Precision on a Pay-As-You-Go Basis

While considering the callers of a shadow makes its presence condition more
precise, doing so is entirely optional for the following reason: without considering
the callers, a shadow will simply be considered to exist both when a caller is
present and when a caller is not present, which will insert a monitor even if a
required symbol’s shadow cannot be reached. For example, it would be sound,
3 Base is a required feature according to the feature model.
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Fig. 6. Example of Computing a Presence Condition with Cycles in the Call-Graph

although not optimally precise, to return the imprecise presence condition of
the shadow at line 17. But users of our approach can even go beyond that.
Our analysis is pessimistic, i.e., starts from a sound but imprecise answer that
ignores the call graph and then gradually refines the answer by inspecting the
call graph. Therefore, our analysis can report a sound intermediate result at any
time and after a certain number of call sites have been considered, we can simply
stop going farther in the call-graph, trading precision for less computation time
and resources. Being able to choose the degree of precision is useful especially
because the call graph can be very large, which can make computing the presence
condition expensive both time-wise and memory-wise. Our technique works with
any kind of call graph. In our evaluation, we found that even simple context-
insensitive call graphs constructed from Spark [14] are sufficient.

4 Evaluation

We implemented our analysis as an extension of the Clara framework for hy-
brid typestate analysis [4] and evaluated it on the following SPLs: Graph Product
Line (GPL), a set of programs that implement different graph algorithms [15]
and Notepad , a Java Swing application with functionality similar to Windows
Notepad. We considered three safety properties for each SPL. For each property,
we report the number of configurations on which the property has to be moni-
tored and the time taken (duration) to derive the tracematch presence condition.
We ran our tool on a Windows 7 machine with Intel Core2 Duo CPU with 2.2
GHz and 1024 MB as the maximum heap size.

Note that, although the product lines were created in-house, they were created
long before this paper was conceived (GPL over 5 years ago and Notepad 2 years
ago). Our tool, the examined product lines and monitors, as well as the detailed
evaluation results are available for download [12].

4.1 Case Studies

Graph Product Line (GPL). Table 1 shows the results for GPL, which has
1713 LOC with 17 features and 156 configurations. The features vary algorithms
and structures of the graph (e.g. directed/undirected and weighted/unweighted).
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Table 1. Graph Product Line (GPL) Results

Lines of code 1713
No. of features 17

No. of configurations 156
DisplayCheck

No. of configurations 55 (35%)
Duration 69.4 sec. (1.2 min.)

SearchCheck
No. of configurations 46 (29%)

Duration 110.2 sec. (1.8 min.)
KruskalCheck

No. of configurations 13 (8%)
Duration 69.8 sec. (1.2 min.)

The DisplayCheck safety property checks if the method for displaying a ver-
tex is called outside of the control flow of the method for displaying a graph: a
behavioral API violation. Instead of monitoring all 156 configurations, our anal-
ysis reveals that only 55 configurations, or 35% of 156, need monitoring. The
analysis took 1.2 minutes to complete. The tracematch presence condition that
represents these configurations is available on our website [12].

SearchCheck checks if the search method is called without first calling the
initialize method on a vertex, which would make the search erroneous. Our
analysis shows that only 29% of the 156 configurations need monitoring. The
analysis took 1.8 minutes to complete.

KruskalCheck checks if the method that runs the Kruskal’s algorithm returns
an object that was not created in the control-flow of the method, which would
mean that the algorithm is not functioning correctly. In 1.2 minutes, our analysis
showed that only 8% of the GPL product line needs monitoring.

Notepad Table 2 shows the results for Notepad, which has 2074 LOC with
25 features and 144 configurations. Variations arise from permuting end-user
features, such as saving/opening files, printing, and user interface support (e.g.
menu bar or tool bar). The analysis, for all safety properties, takes notably
longer than that for GPL because Notepad uses the Java Swing framework,
which heavily uses call-back methods that increase by large amounts the size of
the call graph that our analysis needs to construct and to consider.

Table 2. Notepad Results

Lines of code 2074
No. of features 25

No. of configurations 144
PersistenceCheck

No. of configurations 72 (50%)
Duration 296.3 sec. (4.9 min.)

CopyPasteCheck
No. of configurations 64 (44%)

Duration 259.9 sec. (4.3 min.)
UndoRedoCheck

No. of configurations 32 (22%)
Duration 279.8 sec. (4.7 min.)
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PersistenceCheck checks if java.io.File* objects are created outside of
persistence-related functions, which should not happen. Our analysis completes
in 4.9 minutes, reducing the configurations to monitor by 50%.

CopyPasteCheck checks if a paste can be performed without first performing
a copy, an obvious error with the product line. The analysis completes in 4.3
minutes, reducing the configurations to monitor to 44% of the original number.

UndoRedoCheck checks if a redo can be performed without first performing an
undo. The analysis takes 4.7 minutes and reduces the configurations to 22%.

4.2 Discussion

Cost-BenefitAnalysis. As the Duration row for each product-line/tracematch
pair shows, our analysis introduces a small cost. Most of the duration is from
the weaving that is required to determine the required shadows and from con-
structing the inter-procedural call-graph that we then traverse to determine the
presence conditions. Usually, monitors are used in testing. Then, the one-time
cost of our analysis is worth incurring if it is less than the time it takes to
test-run each saved configuration with complete path coverage (complete path
coverage is required to see if a monitor can be triggered). Consider Notepad and
PersistenceCheck pair, for which our technique is least effective as it takes the
longest time, 4.1 seconds, per saved configuration (144-72=72 configurations are
saved in 296.3 seconds of analysis time). The only way our technique would not
be worth employing is if one could test-run a configuration of Notepad with com-
plete path coverage in less than 4.1 seconds. Executing such a test-run within
this time frame is unrealistic, especially in a UI-driven application like Notepad.

In another scenario where a monitor is used in production, our analysis allows
developers to shift runtime-overhead that would incur on deployed systems to a
development-time overhead that incurs through our static analysis.

Ideal (Product Line, Tracematch) Pairs. Our technique works best for
pairs where the tracematch can only be triggered on few configurations of the
product line. Ideally, a tracematch would crosscut many optional features or
touch one feature that is present in very few configurations. This is evident
in the running example, where the saving for ReadPrint, which requires two
optional features, is greater than that for HasNext, which requires one optional
feature. It is also evident in the case studies, where KruskalCheck and Undo-
RedoCheck, which are localized in a small number of features but requires other
features due to the feature model, see better saving than their counterparts.
Without any constraint, a tracematch requiring x optional features needs to
be inserted on 1/(2x) of the configurations (PersistenceCheck requires one
optional feature, hence the 50% reduction). A general safety property, such as
one involving library data structures and algorithms, is likely to be applicable
to many configurations of a product line (if a required feature uses it, then it
must be inserted in all configurations) and thus may not enable our technique to
eliminate many configurations. On the other hand, a safety property crosscutting
many optional features makes an ideal candidate.
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5 Related Work

Statically Evaluating Monitors. Our work is most closely related to [6].
As mentioned in Section 2.3, this traditional static analysis is not suitable for
product lines because it is oblivious to features. As mentioned in Section 3.1,
the traditional static analysis proposes three stages of precision. Although we
took only the first stage and extended it, there is no reason why the other stages
cannot be extended in a similar fashion. Whether further optimization should
be performed after running our technique remains an open question. Namely,
it may be possible to take a configuration or a program that our technique has
determined to require a monitor and apply the traditional program analysis on it,
which could yield optimizations that were not possible in the SysGen program.

Testing Product Lines. The idea of reducing configurations for product line
monitoring originated from our work on product line testing [13], which finds
“sandboxed” features, i.e. features that do not modify other features’ control-flow
or data-flow, and treats such features as don’t-cares to determine configurations
that are identical from the test’s perspective. But the two works are different
both in setting and technique. In setting, in [13], only one of the identical config-
urations needs to be tested. In this paper, even if a hundred configurations are
identical in the way they trigger a monitor (e.g. through the same feature), all
hundred configurations need to be monitored because all hundred can be used
by the end-user. In testing mode, it would be possible to run just one of the
hundred configurations if our technique could determine that the configurations
are identical in the way they trigger the monitor. However, this would require a
considerably more sophisticated analysis and is beyond the scope of this paper.
In technique, the static analysis employed in [13] is not suitable for our work be-
cause a sandboxed feature can still violate safety properties and cause a monitor
to trigger. Thus the two works are complementary.

Model-Checking Product Lines. Works in model-checking product lines
[9,10] are similar in intent to ours: using these techniques, programmers can
apply model checking to a product line as a whole, instead of applying it to
each program of the product line. In the common case, these approaches yield
a far smaller complexity and therefore have the potential for speeding up the
model-checking process. However, these approaches do not model-check concrete
product lines. Instead, they assume a given abstraction, such as a transition sys-
tem, of a product line. Because our technique works on SysGen and Java, we need
to consider issues specific to Java such as the identification of relevant events,
the weaving of the runtime monitor and the static computation of points-to
information. Also, model-checking answers a different question than our analy-
sis: model-checking a product line can only report the configurations that may
violate the given temporal property. Our analysis further reports a subset of
instrumentation points (joinpoint shadows) that can, in combination, lead up to
such a violation. As we showed in previous work [3], identifying such shadows
requires more sophisticated algorithms than those that only focus on violation
detection.
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Safe Composition. [18,11] collect implementation constraints in a product line
that ensure that every feature combination is compilable or type-safe. Our work
can be seen as a variant of safe composition, where a tracematch is treated as
a feature itself that “references” its shadows in the product line and requires
features that allow those shadows to be reached. However, our analysis checks a
much stronger property, i.e. reachability to the shadows, than syntactic presence
checked by the existing safe composition techniques. Also, collecting the refer-
ential dependencies is much more involved in our technique because it requires
evaluating pointcuts that can have wildcards and control-flow constraints.

Relying on Domain Knowledge. Finally, rather than relying on static analy-
sis, users can come up with a tracematch’s presence condition themselves if they
are confident about their understanding of the product line and the tracematch
pair. However, this approach is highly error-prone as even a slight mistake in
the presence condition can cause configurations that must be monitored to end
up not being monitored. Also, our approach promotes separation of concerns
by allowing a safety property to be specified independently of the product line
variability.

6 Conclusion

A product line enables the systematic development of a large number of related
programs. It also introduces the challenge of analyzing families of related pro-
grams, whose cardinality can be exponential in the number of features. For safety
properties that are enforced through an execution monitor, conventional wisdom
tells us that every configuration must be monitored. In this paper, we presented a
static analysis that minimizes the configurations on which an execution monitor
must be inserted. The analysis determines the required instrumentation points
and determines the feature combinations that allow those points to be reachable.
The execution monitor is inserted only on such feature combinations. Experi-
ments show that our analysis is effective (often eliminating over one half of all
possible configurations) and that it incurs a small overhead.

As the importance of product lines grows, so too will the importance of analyz-
ing and testing product lines, especially in a world where reliability and security
are its first and foremost priorities. This paper takes one of the many steps
needed to make analysis and testing of product lines an effective technology.
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Abstract. We describe a combination of runtime information and static

analysis for checking properties of complex and configurable systems. The

basic idea of our approach is to 1) let the program execute and thereby

read the important dynamic configuration data, then 2) invoke static

analysis from this runtime state to detect possible errors that can happen

in the continued execution. This approach improves analysis precision,

particularly with respect to types of global variables and nested data

structures. It also enables the resolution of modules that are loaded based

on dynamically computed information.

We describe an implementation of this approach in a tool that stati-

cally computes possible types of variables in PHP applications, including

detailed types of nested maps (arrays). PHP is a dynamically typed lan-

guage; PHP programs extensively use nested value maps, as well as ’in-

clude’ directives whose arguments are dynamically computed file names.

We have applied our analysis tool to over 50’000 lines of PHP code,

including the popular DokuWiki software, which has a plug-in architec-

ture. The analysis identified 200 problems in the code and in the type

hints of the original source code base. Some of these problems can cause

exploits, infinite loops, and crashes. Our experiments show that dynamic

information simplifies the development of the analysis and decreases the

number of false alarms compared to a purely static analysis approach.

1 Introduction

It is challenging to apply precise static analysis to realistic software applica-
tions; such applications often give results that are less precise than desired. The
imprecision stems both from 1) the approximation that is necessary to ensure ac-
ceptable analysis performance, and 2) the absence of detailed information about
the environment in which the application runs (such as the file system and user
inputs). A common pattern that makes static analysis difficult is reading in con-
figuration data from the external environment, then substantially changing the
program behavior based on this data: turning certain features on or off, and load-
ing external modules determined by the configuration. A static analysis typically
gives very imprecise results in such cases; it can even fail to determine which files
� This research was supported in part by the Swiss National Science Foundation Grant
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to include in the application code base, making a conservative analysis entirely
useless. Whereas a purely dynamic analysis for such software systems is useful,
it may entirely miss opportunities for identifying errors by code inspection.

A hybrid approach. To address these difficulties we propose the follow-
ing hybrid approach: 1) run the application in its environment as usual, in a
deployment-like scenario, up to a user-specified point where most configuration
data is expected to be known; 2) record the program state at this point; and
3) use the recorded state as the starting point for a static analysis. The values
of many configuration variables thus effectively become constant. This improves
the analysis, both of data structures and of control-flow, in some cases making
the subsequent results vastly more precise.

We believe that such an hybrid analysis approach deserves more attention
than it has received so far. Previous approaches in this spirit include symbolic
execution from concrete state [12] and explicit-state model checking from con-
crete state [15]. In this paper, we show the benefits of this hybrid approach
for data-flow analysis. We examine the problem of checking for type errors in
applications written in PHP, a popular dynamically-typed scripting language.

PHP as the language of the web. PHP scripts are behind many web sites,
including wikis, content management systems, and social networking web sites.
It is notably used by major web actors, such as Wikipedia,Facebook1 or Yahoo.2

Unfortunately, it is very easy to write PHP scripts that contain errors. Among
the PHP features that are contributing to this fact is the lack of any static
system for detecting type or initialization errors.

Our analyzer. This paper presents Phantm
3, a hybrid static and dynamic

analyzer for PHP 5. Phantm is an open-source tool written in Scala and avail-
able from http://lara.epfl.ch/dokuwiki/phantm. It contains a full parser
that passes 10’000 tests from the PHP test suite, a static analysis algorithm
for type errors, and a library to save and restore representations of concrete
program states. Phantm uses an abstract interpretation domain that approxi-
mates both simple and structured values (such as arrays and objects). Phantm

is flow-sensitive, handling initialization and supporting a form of typestate [13].
The motivation for this feature is that the same PHP variable can have different
types at different program points. Moreover, the analyzer’s notion of type also
represents certain concrete values manipulated by the program. Flow sensitive
analysis of structured values enables Phantm to handle, e.g., frequently occur-
ring code that uses untyped arrays with string keys as a substitute for records.

Phantm supports a large number of PHP constructs in their most com-
mon usage scenarios, with the goal of maximizing the usefulness of the tool. It
incorporates precision-enhancing support for several PHP idioms that we fre-
quently encountered and for which our initial approach was not sufficiently
precise. Phantm reports some other features of PHP, such as generic error

1 http://wiki.github.com/facebook/hiphop-php/
2 http://public.yahoo.com/~radwin/talks/php-at-yahoo-mysqluc2006.ppt
3 PHp ANalyzer for Type Mismatch.

http://lara.epfl.ch/dokuwiki/phantm
http://wiki.github.com/facebook/hiphop-php/
http://public.yahoo.com/~radwin/talks/php-at-yahoo-mysqluc2006.ppt
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handlers for undefined methods, as bad practice instead of attempting to ab-
stract the complex behavior of the PHP interpreter. Based on our experience as
PHP programmers, we believe that this is a reasonable design decision.

Phantm analyzes each function separately by default but uses PHP docu-
mentation features to allow users to declare types of function arguments. It also
comes with detailed type prototype information for a large number of standard
library functions, and can be very helpful in annotating existing code bases. By
providing additional flexibility in annotation and analysis, going beyond simple
type systems, we expect Phantm to influence future evolutions of the language
and lead to more reliable applications. Phantm also supports context-sensitive
analysis of non-recursive functions without annotations.

Leveraging runtime information. Phantm ships with a library that can be
used to instrument the analyzed code and thereby improve the precision of error
detection. Programs can be annotated to indicate that the static analysis should
start at a given execution point, or to collect a trace of dynamically included
files. The collected information is then read by the static analysis component
which can use it to, for instance, conclude that certain parts of the program
are never executed under a given initial configuration, to detect which function
declarations are active, and to refine possible types and values of variables.

Experience. We have applied Phantm to three substantial PHP applications.
The first application is a webmail client used by several thousand users. The second
is the popularDokuWiki software,4 and the third is the feed aggregator SimplePie.5

Using Phantm, we have identified a number of errors in these applications.

2 Example

PHP has a dynamic typing policy: types are not declared statically, and variables
can adopt various types at different times, depending on the values assigned to
them. The basic types are booleans, integers, floating point numbers, strings, ar-
rays and objects. There is also a null type for undefined values and a special type
for external resources such as file handlers or database connections. Variables are
not declared. Reading from an uninitialized variable results in null.

The arrays in PHP are essentially maps from integers and strings to arbitrary
values; we thus use the terms array and map interchangeably. For instance, the
following is a valid definition:

$arr = array(”one” ⇒ 1, −1 ⇒ ”minus one”, 3 ⇒ 3.1415);

After this assignment, $arr is an array defined for the keys ”one”, -1 and 3.
Contrary to many programming languages, PHP arrays are passed by value and
not aliased on assignments.
Handling typestate and nested data types. We illustrate some of the chal-
lenges in type analysis of PHP programs and show how Phantm tackles them.
Consider the following code:
4 http://www.dokuwiki.org
5 http://simplepie.org

http://www.dokuwiki.org
http://simplepie.org
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$inputFile = ”template.txt”;
$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
$content = fread($conf[”file”]);
echo $content;
fclose($conf[”file”]);

First, note that several values of different type are stored in an array. To check
that the call to the library function fopen is correctly typed, we need to establish
that the value stored in $conf[’readmode’] is a string. This immediately points
to the fact that our analyses cannot simply abstract the value of $conf as “any
array”, as the mapping between the keys and the types of the value needs to
be stored. On this code, Phantm correctly concludes that the entry for the key
”readmode” always points to a string.

The function fopen tries to open a file in a desired mode and returns a pointer
to the file (a resource, in PHP terminology) if it succeeded, or the value false
otherwise. To properly handle this fact, Phantm encodes the result of the call
as having the type “any resource or false”. Because fread expects a resource
only, Phantm will display the following warning message:
Potential type mismatch. Expected: Array[file => Resource, ...], found:

Array[file => Resource or False, ...]

This warning indicates that the developer did not handle the case when the file
could not be opened. Note that fclose also expects only a resource, but Phantm

does not emit a second warning for the fourth line. The reason is that whenever
Phantm detects a type mismatch, it applies type refinement on the problematic
variable, assuming that the intended type was the one expected rather than
the one found. In many cases, this eliminates or greatly reduces the number of
warnings for the same variable.

We can change the code to properly handle failures to open the file as follows:

$inputFile = ”template.txt”;
$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
if($conf[”file”]) {

$content = fread($conf[”file”]);
echo $content;
fclose($conf[”file”]);

}
Now that the calls to fread and fclose are guarded by a check on $conf[”file”],
Phantm determines that their argument will never evaluate to false and there-
fore accepts the program as type correct.

As a special case, Phantm also detects uninitialized variables and array en-
tries.6 If we omit the first line in the source above, Phantm will warn that the
first argument of fopen is uninitialized, which could be used by an attacker to
reveal the content of arbitrary accessible file on the server.
6 These errors were a major source of vulnerabilities in past PHP versions, because

the register globals server configuration option was activated by default.



304 E. Kneuss, P. Suter, and V. Kuncak

Using runtime instrumentation. PHP allows the inclusion of dependencies
using dynamic paths. The following example, inspired by DokuWiki code, illus-
trates how such dynamic features rapidly result in a lot of false alarms when
analyzed purely statically:

$conf = array(’version’ ⇒ ’1.2.3’,
’path images’ ⇒ ’images/’,
’canWrite’ ⇒ is writeable(”data/”),
’path modules’ ⇒ is dir(’local/’) ? ’local/’ : ’default/’);

include ’config.php’;
if (empty($modules)) { // default modules

$modules = array(’smiley’ ⇒ array(’inc/smiley.inc’, ’inc/smiley2.inc’),
’acronyms’ ⇒ array(’inc/acronyms.inc’), ); }

foreach($modules as $files) {
foreach($files as $file) {

include getFullPath($conf, $file); } }
phantm collect state(get defined vars()); // record runtime state
function log msg($msg) {

global $conf;
if ($conf[’canWrite’]) {

file put contents(”data/log”, $msg, FILE APPEND); } }
function displaySmiley() {

global $conf;
echo $conf[’path images’].$conf[’smiley’][’image’][’:)’]; }

In this example, the list of modules is configuration-dependent. Also, based on
that list of modules, the code includes their associated files using a non-trivial
indirection to resolve the path via getFullPath(). Later on, the displaySmiley()
function accesses global and module-dependent configuration settings, assuming
that they are defined. Such code would be extremely difficult to analyze purely
statically without emitting any false positive. In order to analyze the rest of the
application, it is crucial to know the exact state of the program after all the
modules are initialized. Runtime instrumentation is a natural and convenient
way to obtain this information.

Benefits of hybrid analysis in program understanding. Note that
with runtime instrumentation, Phantm will inform the user that the call to
file put contents() is unreachable, if run in an environment where the data/ di-
rectory is not writeable. As another example, consider the following code:

if (is debug()) { $debug = true; } else { $debug = false; }
phantm collect state(get defined vars());
...
if ($debug) { ... }

Phantm detects that the final if branch is unreachable when the code runs in a
non-debug environment. Such warnings help the user understand which regions
of code are relevant in a given environment.
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3 Data-Flow Analysis for Flow-Sensitive Type Inference

We first outline the data-flow analysis that we use to infer types. Our description
applies regardless of whether the analysis starts from the initial program state
or from the dynamically recorded state captured as described in Section 4.

Concrete states. As a first step in providing the meaning of our analysis
representation, we present our model of runtime values, which are elements of
disjoint sets corresponding to the possible types (see Figure 1). A concrete pro-
gram state contains 1) a map from a set of constant strings (variable names) to
values, and 2) a heap. A heap maps object references to object states, where an
object state is a map from a set of constant strings (field names) to values.

Analysis representation and abstraction function. Our abstract domain is
presented in Figure 2. We use ⊥ to denote an empty set of elements of V�. Figure 3
describes the meaning of abstract type elements using function β that abstracts
the values of values of individual variables. The analysis abstracts boolean, string
and integer constants by their precise value when it is known, for instance when

V = {True, False, Null} ∪ Ints ∪ Floats ∪ Strings values

∪Maps ∪ Objs ∪ Resources
Maps = (Ints ∪ Strings) ↪→ V maps

Tags = {StdClass, all classes defined in the program}
H = Objs ↪→ (Tags × (Strings ↪→ V)) heap states

S = (Strings ↪→ V) × H program states

Fig. 1. Characterization of the concrete states. A ↪→ B denotes all partial functions

from A to B.

DV� = {True�, False�, Null�, Int�, Float�, String�, defined values

Resource�} ∪ Maps� ∪ Objs� ∪ Ints ∪ Floats ∪ Strings
AV� = {Undef�} ∪ DV� all values

V� = Pfin(AV�) ∪ {�} finite unions and top

Maps� = (Ints ∪ Strings ∪ {?}) ↪→ V� abstract maps

H� = Objs� ↪→ (Tags × (Strings ↪→ V�)) abstract heap states

S� = (Strings ↪→ V�) × H� abstract program states

Fig. 2. Definition of the abstract domain

β(Null) = Null�, β(False) = False�, β(True) = True�

β(i ∈ Ints) = i, β(s ∈ Strings) = s, β(f ∈ Floats) = f
β(o ∈ Objs) = o� ∈ Objs� where o was allocated at site o�

β(m ∈ Maps) = β2(m
�, 0)

β2(m /∈ Maps, i) = β(m)

β2(m ∈ Maps, i < 5) = {(β(k) �→ β2(v, i + 1)) | (k �→ v) ∈ m}
β2(m ∈ Maps, i ≥ 5) = (? �→ AV�)

Fig. 3. Abstraction β of variable values used to define the abstraction function α
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they serve as keys in a map. We refer to such precise values as singleton scalar types.
In maps, we use the special value ? to denote the set of keys that are not otherwise
represented by a constant. For example, to denote all maps where the key ”x” is
mapped to an integer and all other keys are undefined we use the abstract value
Map�[”x” �→ Int�,? �→ Undef�]. We use allocation-site abstraction [3] for objects.
Whereas Objs represents the set of possible memory addresses in the heap, Objs�

represents the set of program points where objects can be created.
PHP does not distinguish between variables that have never been assigned and

variables that have been assigned to the value null. However, using null as a value
can convey an intended meaning, while reading from an unassigned variable is
generally an error. To distinguish between these two scenarios, our analysis uses
two different abstract values for these two cases and handles them differently
in the transfer function. Our analysis thus incorporates a limited amount of
history-sensitive semantics.

Our goal is to approximate the set of types a variable can admit at a given
program point. To do so, we consider for our abstract domain not only the values
representing a specific type (such as Int�) and specific values (such as constant
strings), but also their combinations. We refer to such combinations of abstract
values as union types, and we use the symbol τ to denote such a type. Even though
we could in principle consider arbitrary union of arrays (i.e. maps), for termination
and efficiency reasons we chose to simplify them by computing them point-wise,

Map�[k�
1 �→ τ1, k

�
2 �→ τ2, . . . ,? �→ τD] � Map�[k�

1 �→ τ ′
1, k

�
3 �→ τ ′

3, . . . ,? �→ τ ′
D] =

Map�[k�
1 �→ τ1 ∪ τ ′

1, k
�
2 �→ τ2 ∪ τ ′

D, k�
3 �→ τD ∪ τ ′

3, . . . ,? �→ τD ∪ τ ′
D].

The set of union types forms a lattice where the partial order corresponds to the
notion of subtyping. We denote type unions by the symbol ∪, which is the exact
version of �. We define subtyping for unions by τ � (τ1∪τ2) ⇐⇒ τ � τ1∨τ � τ2

and (τ1∪τ2) � τ ⇐⇒ τ1 � τ∧τ2 � τ . We define the subtype relation point-wise
for array types:

Map�[k1 �→ τ1, k2 �→ τ2, . . . ,? �→ τD] � Map�[k1 �→ τ ′
1, k3 �→ τ ′

3, . . . ,? �→ τ ′
D]

⇐⇒ τ1 � τ ′
1 ∧ τ2 � τ ′

D ∧ τD � τ ′
3 ∧ . . . ∧ τD � τ ′

D

Therefore, Map�[? �→ ⊥] and Map�[? �→ �] are respectively the subtype and the
supertype of all array types. Our approach relies on the fact that arrays in PHP,
contrary to arrays in e.g. Java, are not objects and do not introduce a level of
reference indirection.

3.1 Transfer Functions

For space reasons we only highlight less standard aspects of our abstract transfer
functions. A compact description of the transfer functions of our analysis in Scala
is given in around 1000 lines of Scala source code.7

7 Please consult the file src/phantm/types/TypeTransferFunction.scala in the

repository at http://github.com/colder/phantm/

src/phantm/types/TypeTransferFunction.scala
http://github.com/colder/phantm/
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Type refinement. Since the PHP language allows programs with little to no
type annotations, it is often the case that types of values are completely un-
known before they are used. To reduce the number of false positives generated
by consecutive uses of such values, it is crucial that their types get refined along
the way. For example, the code $b = $a + 1; $c = $a + 2; generates only one no-
tice in Phantm. Namely, after the first statement Phantm assumes that $a is a
valid operand for mathematical operations, and refines its type to Int� ∪ Float�.
To achieve this in the general case, Phantm computes the lattice meet between
the type lattice elements corresponding to the current and the expected variable
types. For example, a typical computation of the intersection of array types gives

Map�[k�
1 �→ τ1, k

�
2 �→ τ2, . . . ,? �→ τD]  Map�[k�

1 �→ τ ′
1, k

�
3 �→ τ ′

3, . . . ,? �→ τ ′
D] =

Map�[k�
1 �→ τ1  τ ′

1, k
�
2 �→ τ2  τ ′

D, k�
3 �→ τD  τ ′

3, . . . ,? �→ τD  τ ′
D]

Such type refinement corresponds to applying an assume statement that is a
consequence of successful execution of an operation.

Conditional filtering. Phantm also applies type refinement for assume state-
ments implied by control structures. Note that PHP allows values of every type
to be used as boolean conditions, and gives different boolean values to inhabi-
tants of those types. This allows Phantm to do refinement on the types of values
used as boolean conditions. For example, the type null can only evaluate to false,
whereas integers may evaluate to either true or false (true unless the value is
0). This is especially useful for booleans, for which we also define true and false
as types. We can precisely annotate a function returning false on error, and a
different type on successful execution. Phantm can then use type refinement
to verify code that invokes a function and checks for errors in the invocation.
If the representation of the value becomes ⊥ during the refinement, Phantm

concludes that the branch cannot be taken, detecting unreachable code.

Enforcing Termination. Given our allocation-side model for handling the
heap, we identify two remaining potential sources of an infinite-height lattice:
nested arrays and unions of singleton scalar types. For arrays, we limit the
array nesting depth to a constant (five, in the current implementation). For
singleton scalar types, we make sure that new singleton scalar types cannot
be generated except when abstracting a literal or a run-time state value. Any
operation handling singleton scalar types will either have one of them as a result
type, or have a more general, widened type. We have found this approach to
work well in practice (see Figure 4 for analysis performance).

3.2 Reporting Type Errors Using Reconstructed Types

When the analysis reaches its fixpoint, it has effectively reconstructed the pos-
sible types for all variables at all program points. At this point, Phantm makes
a final pass over the program control-flow graph and reports type mismatches.
Because transfer functions already perform type refinement, they contain all the
necessary information to report type mismatches, and we reuse them to report
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type errors. Phantm reports a type mismatch whenever the computed type at
a given program point is not a subtype of the expected type. Phantm has a
number of options to control the verbosity of its warnings and errors.

4 Runtime Instrumentation

Many PHP applications can be separated into two parts: the bootstrapping
code and the core functionality of the application. The bootstrapping code is
responsible for handling configuration settings, loading external libraries, loading
sessions or including the appropriate definitions. Because this part of the code
strongly depends on the configuration of the environment at hand, it usually
cannot be analyzed statically. Compounding the problem of imprecision is that
these configuration values that are approximated imprecisely tend to be used
often in the rest of the code. To overcome this problem, Phantm includes a PHP
library to instrument the analyzed application; one uses it to define a milestone
in the code at which multiple aspects of the runtime state should get inspected.
Using the state captured at this program point as the alternative starting point
for static analysis, Phantm can use information that goes beyond the source
code and produce an overall better output.

4.1 State Recovery

The runtime information that Phantm extracts includes: 1) all defined vari-
ables and constants and their associated values 2) a trace of function and class
definitions, including the location in the code where the definition occurs, and
3) a trace of all included files. The library function used to mark the milestone
and to collect the runtime information is called phantm collect state. It takes an
array of variables as an argument, and is typically invoked as

phantm collect state(get defined vars());

When phantm collect state is called, the runtime state and the list of active
definitions are stored into a file. This file can then be imported back into Phantm

using the --importState option.
Phantm then loads the information and applies the following steps:

1. Attach the source of all included files to the AST of the main file.
2. Collect the function and class declarations that match the trace.
3. Create an abstract state s from the stored values for variables and constants.
4. Locate in the AST the program point p with the call to phantm collect state,

and attach s to that program point.
5. Apply the static analysis starting from p.

In the reconstructed abstract state s, all scalar variables are associated to a sin-
gleton type that precisely describes the value from the collected state. A fresh,
virtual, allocation site is associated to each object that was known at instrumen-
tation time, and arrays are reconstructed with the correct set of keys and values
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(up to a bounded array nesting depth). The only limitation in practice is that
resources cannot be reconstructed, because they typically cannot be serialized.

Summary of runtime analysis benefits. In our experience, runtime infor-
mation improves the precision of our analyzer in the following ways:

Global variables. Projects like DokuWiki make an extensive use of global vari-
ables, e.g. to store configuration settings and database connections. Global vari-
ables are difficult to analyze in a purely static approach. Because they are typi-
cally defined in an initialization phase, our runtime instrumentation can capture
their value; Phantm can then use it in the static analysis phase.

Increased and precise definition coverage. Phantm records the files that have
been included during execution. Often all necessary libraries are included at the
time of the phantm collect state indications, which means that all necessary func-
tions are defined. When such dependencies are dynamic, they are not resolved
with purely static analysis, resulting in warnings about undefined functions and
results that are either useless or unsound (depending on whether missing the
functions are assumed to perform arbitrary changes or no changes).

5 Evaluation

We evaluated Phantm on three PHP applications. The first one is an email
client which we will call WebMail, similar in functionality to IMP.8 It has been
in production for several years. There are currently over 5000 users registered to
the service. WebMail was written in PHP 4.1 and has not evolved much since
its launch. The source code is not public but has kindly been made available to
us by the development team. Our second application is the popular open source
wiki project DokuWiki and the third application is SimplePie, an open source
library to manage the aggregation of RSS and Atom news feeds.

We first summarize the results of our evaluation without runtime instrumen-
tation in Figure 4. “Warnings” is the number of warnings Phantm emitted with
normal verbosity, while “Filtered Warnings” is using a special mode which fo-
cuses on most relevant errors. “Problems” is the number of problems identified,
including actual bugs, dangerous implicit conversions, statements that could is-
sue notices in PHP, and errors in annotations. We see that even for large code
bases, the time required by the analysis remains reasonable.

In the sequel we show how runtime instrumentation helped improve these
results. Finally, we describe a number of issues discovered with Phantm.

We evaluated the impact of runtime instrumentation on DokuWiki and Web-
Mail. The code of of both projects is structured as a loading phase followed
by code that uses the configuration data. Consequently, the benefits of runtime
information are considerable. We illustrate the impact of runtime information
for DokuWiki in Figure 5, listing several functions among those for which run-
time instrumentation brought the most significant improvement. Note that a
comparison of the total number of warnings is not sensible, because using in-
strumentation can add code to the analysis that cannot be discovered statically.
8 http://www.horde.org/imp/

http://www.horde.org/imp/
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Lines of code Warnings Filtered Warnings Problems Analysis Time

DokuWiki 31486 1232 270 76 244s

WebMail 3621 272 59 43 11s

SimplePie 15003 881 327 84 21s

Total 50110 2385 656 203 276 s

Fig. 4. Summary of evaluation results without runtime instrumentation

Lines Without With Δ Reduction

updateprofile 62 19 0 19 100%

act resendpwd 90 16 5 11 69%

check 143 14 4 10 71%

auth ismanager 70 12 6 6 50%

auth login 49 10 4 6 60%

Fig. 5. Effects of runtime instrumentation on DokuWiki. “Without” is the number of

warnings emitted by Phantm without runtime instrumentation. “With” is the number

of warnings emitted by Phantm with the information from runtime instrumentation

about global variables and the type of arguments. In both cases, the function body is

analyzed entirely.

Observe that we obtain a substantial reduction in the case, for example, of
updateprofile. This is explained by the fact that this function primarily deals
with global variables, user-provided form elements, and the current logged user,
which is runtime-dependent. In essence, such functions illustrate the limitations
of purely static analyses, and show how helpful runtime instrumentation was in
overcoming these limitations.

Overall, for functions analyzed both with and without runtime informa-
tion, 109 warnings (12%) were eliminated when using runtime information for
DokuWiki and 18 (12%) for WebMail. Using the instrumentation had no notable
impact on the analysis time; the overhead was only in the one-time loading of
the saved state, which takes around one second in our implementation.

5.1 Issues Identified by Phantm

We now describe a small selection of issues in the three applications that we
identified by inspecting the warnings emitted by Phantm.

WebMail bug 1). In a function handling the conversion from one string format
to another, Phantm emitted a warning on the following line:

$newchar = substr($newcharlist, strpos($charlist, $char), 1);

The warning indicates that substr() expects a string as its second argument,
but that in this case the type False ∪ String was found. The developers were
assuming that $charlist would always contain $char even though it was not always
the case. Because of this bug, some of the passwords were improperly stored,
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potentially resulting in email accounts being inaccessible from WebMail and thus
compromising WebMail’s core functionality.

WebMail bug 2). In several places, two distinct functions were called with
too many arguments. This was apparently the result of an incomplete refactoring
during the development. Although these extra arguments did not cause any bug
(they are silently ignored by the PHP interpreter), they were clearly errors and
could have led to new bugs as the code evolves further.

WebMail bug 3). In a file containing definitions for the available languages,
Phantm reported a warning on the second of the following lines:

$dict[”en”][”fr”]=”anglais”;
$dist[”en”][”de”]=”englisch”;

The first line is well formed and stores the translation for “English” in French.
The second line is accepted by the standard PHP interpreter even though $dist is
undefined in the program; it contains a typographic error preventing the desired
value from being stored in the array $dict.

WebMail bug 4). The tool identified several warnings for code such as $i
= $str * 1, which casts a string into an integer using the implicit conversion
triggered by the multiplication. Although it is not incorrect, it is flagged as bad
style.

DokuWiki bug 1). We found multiple instances where the code relied on im-
plicit conversions. Even though this is a commonly used feature of PHP, relying
on them often highlights programming errors. For example, the following line

$hid = $this→ headerToLink($text,’true’);

calls the method headerToLink which is defined to take a boolean as its second
argument, not a string. This code is not wrong per se, as the string ”true”
evaluates to true, however, ”false” would evaluate to true as well!

DokuWiki bug 2). Keeping code documentation synchronized with the code
itself is often problematic. As an illustration of this fact, Phantm uncovered
over 25 errors in the existing annotations of arguments and return values.

DokuWiki bug 3). We found a potential bug resulting from an unchecked file
operation in the following function:

function bzfile($file) {
$bz = bzopen($file,”r”);
while (!feof($bz)){ $str = $str . bzread($bz,8192); }
bzclose($bz);
return $str;

}
If bzopen fails to open the file denoted by $file, it will return false and as a
consequence the call to feof will always return false, resulting in an infinite
loop.
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SimplePie bug 1). The following line of code assumes different operator prece-
dence rules than those used by PHP:

if (... && !($file→method & SP FILE SRC REMOTE === 0 ...))

The code first compares the constant SP FILE SRC REMOTE to 0, which always
results in false, and then computes the bitwise conjunction, while the goal is
clearly to check whether a flag is set in $file→method. Phantm finds the error
by reporting that the right-hand side of & is a boolean value, and that an integer
was expected.

SimplePie bug 2). Phantm flags the following code as type incorrect:

if (... && strtolower(trim($attribs[’’][’mode’]) == ’base64’))

An inspection of the statement shows that the right parenthesis of the call to
strtolower is misplaced, in effect computing the lower case version of a boolean.
As a result, the computation is incorrect when base64 is spelled with a capital
“b”, for instance.

6 Related Work

Data-flow analysis for type inference. Our work performs type inference
using an abstract interpretation, resulting in a flow-sensitive static analysis. A
systematic analysis of type analyses of different precision is presented in [4].

Static analysis of PHP. Existing work on statically analyzing PHP is pri-
marily focused on the specific task of detecting security vulnerabilities and pre-
venting attacks. Pixy [10] is a static analysis tool checking for vulnerabilities
such as cross site scripting (XSS) or SQL injections, which remain the main
attack vectors of PHP applications. Wassermann and Su [14] present work on
statically detecting SQL injections using grammar-based specifications. Huang
et al. [7] present a technique to conservatively prevent, rather than detect, sim-
ilar attacks. They use a combination of code instrumentation, to automatically
secure PHP scripts, and a static taint analysis, to reduce the number of addi-
tional checks. All these approaches focus on one analysis domain and make use of
specific techniques and annotations. Phantm on the other end ambitions to be
useful in improving the quality of arbitrary PHP code and code documentation,
while it can also serve to detect vulnerabilities, as illustrated in Section 5.1.

It is only recently that some work have been focusing on static analysis of
types in PHP applications. Notably, the Facebook HipHop project9 is relying
on a certain amount of type analysis in order to optimize the PHP runtime. In
essence, HipHop tries to find the most specific type used in order to map it to a
native C++ type. In case such a type cannot be inferred, it simply falls back to
a generic type.

9 http://github.com/facebook/hiphop-php/

http://github.com/facebook/hiphop-php/
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The recently released tool PHPLint
10 aims to detect bugs through type er-

rors. Even though its goal is close to the present work, Phantm has a much more
precise abstract domain, and therefore reports many fewer spurious warnings.
For instance, PHPLint fails to analyze precisely the initial example in Sec-
tion 2 because it does not support arrays containing mixed types. Furthermore,
it does not have union types, so many PHP functions will not be represented
both soundly and precisely enough to 1) detect defects such as the Dokuwiki
bug 3 of Section 5.1 and the fopen example of Section 2, while 2) avoiding false
warnings when the developer correctly checks for return codes.

Type inference for other languages. Researchers have also considered flow-
sensitive type inference in other languages. Soft typing approach has been ex-
plored primarily in functional languages [5, 1]. It supports first class functions,
but is not flow-sensitive and does not support value-array types.

In [11] researchers present an analysis of Cobol programs that recovers in-
formation corresponding to tagged unions. The work on the C programming
language [9, 2] deals with a language that allows subtle pointer and address
arithmetic manipulations, but already contains significant static type informa-
tion. PHP is a dynamically type safe language in that the run-time system stores
dynamic type information, which makes e.g. ad-hoc tagged unions often unnec-
essary. On the other hand, PHP by itself provides no static type checking, which
makes the starting point for analysis lower. In addition to considering a different
language, one of the main novelties of our work is the support for not only flat
types but also heterogeneous maps and arrays.

In [8] the authors present a type analysis for JavaScript also based on data-flow
analysis. The abstract domain for array types presented in our paper goes beyond
what is supported in [8]. On the other hand, the support for interprocedural
analysis and pointer analysis in [8] is more precise than in the present paper.
The main difference, however, is that we demonstrate the potential of combining
dynamically computed program states with data-flow analysis.

Combining static and dynamic analysis. Combining static and dynamic
analysis arises in a number of approaches. Our approach is closest to [12] and
[15]. Promising approach have been developed that combine testing, abstraction,
theorem proving [16] or combine may and must analysis [6]; these approaches
compute a sound overapproximation, in contrast to our runtime information that
performs a sample of an early stage of the execution to estimate properties of a
dynamic environment.

7 Conclusion

Our experience with over 50000 lines of PHP code showed our tool to be fast
enough and effective in identifying serious issues in code such as exploits, infinite
loops, and crashes. The use of runtime information was shown to be helpful in
reducing the number of false alarms in the tool and focusing the attention on true
10 http://www.icosaedro.it/phplint/

http://www.icosaedro.it/phplint/
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errors. We therefore believe that it is well-worthwhile to build into future static
analyses tools the ability to start the analysis from a recorded concrete program
state. This approach overcomes several limitations of purely static approach
while preserving certain predictability that help interpret the results that it
computes. Our tool Phantm is available for download and evaluation, and we
report verifiable experimental results on significant code bases, including popular
software whose source code is publicly available.
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Abstract. This paper presents experiences from five industry collabo-

ration projects performed between 2004 – 2009 where solutions for em-

bedded systems trace recording have been developed and evaluated; in

four cases for specific industrial systems and in the last case as a generic

solution for a commercial real-time operating system, in collaboration

with the RTOS company. The experiences includes technical solutions

regarding efficient instrumentation and logging, technology transfer is-

sues and evaluation results regarding CPU and RAM overhead. A brief

overview of the Tracealyzer tool is also presented, a result of the first

project (2004) which still is used by ABB Robotics and now in commer-

cialization.

Keywords: embedded-systems, scheduling, tracing, trace-recording,

monitoring, experiences, case-studies, overhead.

1 Introduction

Trace recording, or tracing, is a commonly used technique useful in debugging
and performance analysis. Concretely, trace recording implies detection and stor-
age of relevant events during run-time, for later off-line analysis. This work tar-
gets embedded computer systems, i.e., specialized control systems used in many
industrial products, for instance cars, trains, robotics and telecom systems. Em-
bedded systems come in all sizes, from single-chip 8-bit computers with a few KB
of RAM to 32-bit computers with features and performance comparable to PCs.
Embedded systems are often real-time systems, meaning that the correctness also
depends on response time, i.e., the latency from an input to the corresponding
output. This must not exceed a specified requirement, the deadline. Embedded
systems are typically implemented on multi-tasking real-time operating systems,
where tasks (threads) share the CPU using fixed-priority scheduling [3,5].

Trace recording for embedded systems can be performed at different abstrac-
tion levels and can be accomplished using software solutions, hardware solutions,
such as Lauterbach Trace321, or hybrid hardware/software solutions such as the

1 www.lauterbach.com

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 315–329, 2010.
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RTBx product of Rapita Systems2. A software-based approach means to add
code instrumentation which logs the desired information in a software recorder
module. This is typically performed without changing the application code but
implies an overhead on CPU and RAM usage which for embedded systems can be
of significance. Hardware solutions however require large, expensive equipment,
mainly intended for lab use, while software solutions can remain active also in
post-release use. This can be very valuable for reproducing customer problems,
such as transient timing problems which only occur under rare circumstances.

The type of trace recording discussed in this paper is software-based trace
recording for embedded systems, focusing on scheduling events, inter-process
communication (IPC) events and relevant operating system calls. This is a higher
abstraction level compared to, e.g., the work by Thane et al. [8] on replay de-
bugging. However, our approach often gives sufficient information to pinpoint
the cause of an error. If more information is necessary, this facilitates a de-
tailed analysis using a debugger. In return, such recording is easy to integrate
in existing systems since no application code instrumentation is required and
the run-time overhead is very low, which allows for having the recording active
also post-release. Many RTOS developers, including Wind River3, ENEA4 and
Green Hills Software5, provide tracing tools for their specific platform, but they
typically never reveal any details or overhead measurements regarding their solu-
tions. The main contribution of this paper is a synthesis of our experiences from
five industry collaboration projects where trace recording solutions have been
developed, including technical solutions used as well as results from recording
overhead measurements.

2 Software Trace Recording

Software trace recorders typically operate by storing relevant events in a circular
RAM buffer, as binary data in fixed-size records. In this manner, the recorder
always holds the most recent history. In all implementations presented in this
paper, a single ring-buffer is used for storing all types of events.

It is possible to detect scheduling events on most real-time operating systems,
either by registering callbacks (hooks) on system events like task-switches, task
creation and termination, or by modifying the kernel source code. The callback
approach is possible on at least VxWorks (from Wind River) and OSE (from
ENEA). Operating systems with available kernel source code, e.g., Linux and
RTXC Quadros6, can be modified to call the trace recorder module on relevant
events. Åsberg et al. [2] has shown that for Linux (2.6 kernel), the only kernel
modification required is to remove the “const” keyword from a specific func-
tion pointer declaration. It is however possible to realize Linux trace recording
without kernel modifications, if using a custom scheduler like RESCH [1].
2 www.rapitasystems.com
3 www.windriver.com
4 www.enea.com
5 www.ghs.com
6 www.quadros.com

www.rapitasystems.com
www.windriver.com
www.enea.com
www.ghs.com
www.quadros.com
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In our approach we abstract from the context-switch overhead posed by the
operating system and consider the task-switches as instantaneous actions. Only
a single time-stamp is stored for each task-switch event and the OS overhead
is instead accounted to the execution time of the tasks. Each task-switch event
corresponds to exactly one execution fragment, i.e., the interval of uninterrupted
execution until the next task-switch event. The rest of this section will discuss
the information necessary for task-switch recording, the “what”, “when” and
“why”. Due to space constraints, we focus of techniques for recording of task-
switch events. Recording of IPC and operating system calls are however very
similar.

2.1 Task Identity (The “What”)

Most operating systems use 32-bit IDs for tasks, even though many embedded
system only contain a handful of tasks. It is therefore often a good idea to
introduce a short task ID, STID, using only 8 bits or 16 bits in order to make
the task-switch events less memory consuming.

The STIDs needs to be allocated on task creation and quickly retrieved when
storing task-switch events. This can be implemented by storing the STIDs in a
data area associated with the task, for instance the task control block (TCB) in
VxWorks, where there are unused “spare” field. In OSE there is a “user area”
associated with each process, which can be used for this purpose.

Complex embedded systems with event-triggered behavior, such as telecom
systems, often create and terminate tasks dynamically. In that case it is im-
portant to recycle the STIDs to avoid that they run out. This means that the
termination of tasks must be registered in order to mark the particular STID as
no longer in use. An STID may however not be reused for newly created tasks
as long as there are references to a particular STID in the event ring-buffer.

2.2 Time-Stamping (The “When”)

Obtaining a time-stamp is normally a trivial operation, but standard libraries
typically only allow for getting clock readings with a resolution of maximum
1 or even 10 milliseconds, depending on the tick rate of the OS. This is too
coarse-grained for embedded systems timing analysis, since many tasks, and
especially interrupt routines, have execution times measured in microseconds.
Fortunately, embedded systems usually have hardware features for getting more
accurate time-stamps, such as real-time clocks (RTC ). In other cases, if the CPU
frequency is constant, it is possible to use a CPU instruction counter register.

In order to reduce the memory usage when storing the events, a good method
is to encode the time-stamps in a relative manner, i.e., to only store the time
passed since the previously stored event, i.e., the durations of the execution
fragments. If the absolute time of the last stored event is kept, it is possible to
recreate absolute time-stamps during off-line analysis. This allows for correlating
the trace recording with other time-stamped logs created by the system.

The relative time-stamp encoding allows for using fewer bits for storing time-
stamps, typically between 8 – 16 bits per event. A problem however occurs in
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cases where the duration of an execution fragment exceeds the capacity of the
time-stamp field, i.e., 255 or 65535 time units. Handling the overflow issue for
relative time-stamps introduces a tradeoff between memory usage and recorder-
induced jitter (i.e., predictability). The most reliable but least efficient solution
is to use enough bits for this purpose so that the overflow does not occur. A
more efficient solution is to reduce the number of time-stamp bits to better fit
the typical fragment duration, and instead introduce an alternative handling of
the few cases where the number of time-stamp bits are insufficient. In this case,
an extra “XTS” event (eXtended Time-Stamp) is inserted before the original
event, carrying the time-stamp using enough (32) bits. This however introduces
a control branch in the task switch probe, which might cause timing jitter in
the recorder overhead and thereby additional timing jitter in the system as a
whole, which can be bad for testability and predictability. We however believe
that this jitter is negligible compared to other sources of jitter, such as execution
time variations. The XTS approach is used in all five recorder implementations
presented in this paper. Storing time-stamps of higher resolution (e.g., nanosec-
onds instead of microseconds) results in higher RAM usage due to either a wider
time-stamp field or more frequent XTS events. However, if using a too low time-
stamp resolution (e.g., milliseconds), some execution fragments may get a zero
duration and thus becomes “invisible” in off-line visualization and analysis.

2.3 Task-Switch Cause (The “Why”)

In preemptive fixed-priority scheduling [3,5] a task-switch may occur for sev-
eral reasons: the running task might have been blocked by a locked resource, it
might have suspended itself, terminated, or a task of higher priority might have
preempted the task. This information is necessary to record in order to allow
grouping of execution fragments into task instances, also known as task jobs. A
task instance corresponds to one logical execution of the task, i.e., the processing
of one work-package. The end of an instance is referred to as the instance finish,
and corresponds to the termination of the task, i.e., exit from main function, or
for non-terminating tasks when the task has performed one iteration of the main
loop and enters a blocked or waiting state awaiting the next task activation, i.e.,
the start of the next instance.

From a trace perspective, a task instance corresponds to one or several con-
secutive execution fragments of the same task, possibly interleaved by execution
fragments of other tasks, where the last fragment is ended by the instance finish,
and where any previous fragments of the same instance is ended by preemption
or blocking. The concepts of instances and execution fragments are illustrated
by Figure 1, using an example with three tasks, where task H has the most
significant priority and task L the least significant priority. Each execution frag-
ment is labeled Ti,f , where T is the task name, i the instance number and f the
execution fragment number within the instance. The upper row indicates the
task-switch cause: preemption (P) or termination (T ) (i.e., instance finish).

What counts as an instance finish for non-terminating tasks is system specific
and depends on the software architecture. For non-terminating tasks there are
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Fig. 1. Execution fragments and task instances

two options for detecting instance finish: using the scheduling status or using
code instrumentation. If a certain scheduling status can be unambiguously as-
sociated with the inactive state of a task, a task-switch due to this scheduling
status can be regarded as the instance finish. The next execution fragment of
this task is thereby the start of the next instance. This approach is however dif-
ficult if the task may be blocked for other reasons (other semaphore or message
queues), since the scheduling status at best tells the type of resource causing
the blocking, but not the identity of the specific resource. A pragmatic solution
is to add code instrumentation in the task main loop, immediately before the
operating system call corresponding to the instance finish. A problem with code
instrumentation in the application code is that the application developer has to
be aware of the recorder solution, maintain the instrumentation points properly
and also adding such instrumentation when adding new tasks to the system.

3 The Tracealyzer Tool

The Tracealyzer is a visualization tool with analysis capabilities for various tim-
ing and resource usage properties. The first version of the Tracealyzer was devel-
oped in 2004, in the project described in Section 4.1 in collaboration with ABB
Robotics.

The main view of the tool displays a task trace using an novel visualization
technique. Other trace visualization tools, such as the Wind River WindView,
uses a trace visualization technique similar to a logic analyzer or Gantt-style
charts, where the status of every task is displayed at all times, with one row or
column per task. Such visualizations become hard to comprehend when zoom-
ing out to overview a longer scenario and the user may need to scroll in two
dimensions.

In contrast, the visualization used by the Tracealyzer focuses on the task
preemption nesting and only shows the currently active tasks, as depicted by
Figure 2. This makes the trace easier to overview, especially long and complex
scenarios with many tasks involved. The tool also provides a CPU load view
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Fig. 2. The Tracealyzer (version 2.0)

over the entire trace. The two views are synchronized; the time window display
in the main window is indicated in the CPU load overview and by clicking in
the CPU load overview the trace view displays the corresponding time window.
The tool has advanced features for searching, with several filters, and can also
generate a report with detailed timing statistics for each task. The tool also
allows for exporting timing data regarding tasks and other events to text format.
More information about the tool is available at www.percepio.sewhere a demo
version can be downloaded.

The Tracealyzer tool is since 2009 in commercialization by Percepio AB in
collaboration with Quadros Systems, Inc. who develops the real-time operating
system RTXC Quadros. A Quadros version will soon be marketed by Quadros
Systems, under the name RTXCview.

4 Five Industrial Trace Recorder Projects

Starting 2004, five industry collaboration projects have been performed by the
main author where trace recorders have been implemented for different existing
systems. Four of these projects have included evaluation with respect to CPU
and RAM usage. Three of the projects have lead to industrial deployment of the
results, in one case as the coming official tracing tool for a commercial real-time
operating system. The purpose of these projects have varied slightly, but all
have included trace recording and visualization using the Tracealyzer, described
in Section 3. The research motivation for these projects have been to verify the

www.percepio.se
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applicability of custom (third party) trace recording on common platforms for
embedded systems. The motivation of the industrial partners where mainly to
investigate the suitability of the Tracealyzer tool, which served as a “low-hanging
fruit” for collaboration.

4.1 The RBT Project

ABB develops a control system for industrial robots, IRC 5. This is a large and
complex embedded software system, consisting of around 3 million lines code.
The operating system used is VxWorks, and the hardware platform is an Intel-
based Industry PC. At the time of the evaluation, this system used an Intel
Pentium III CPU and had 256 MB of RAM. It moreover has a flash-based hard
drive, a network connection and an onboard FTP server.

Since VxWorks has features for registering callbacks on task-switch, task cre-
ation and task deletion, these events could be captured without kernel modifi-
cations. The task-switch callback function receives pointers to the task control
blocks (TCBs) of both the previously executing task and for the task that is
about to start. The developed recorder uses 8-bit STIDs, stored in an available
“spare” field in the TCB by the task create callback routine. The task names
are stored at creation time in a list of tasks, indexed by the STID.

All types of events are stored in a single ring buffer, using a fixed event size
of 6 bytes. This required the use of bit-wise encoding in order to fit the desired
information into the 48 bits available. The two first bytes are used to store two
pieces of information in an asymmetric manner, where 2 bits are used for the
event code and 14 bits for a relative time-stamp, obtained from an instruction
counter of the Intel CPU used by this system. Since the time-stamp resolution
used in this recorder is 1 μs, this solution allows for a execution fragment duration
up to 214 μs (16.4 ms). This is typically more than enough for this system; there
are usually several task-switch events every millisecond. However, in some system
modes, such as during system startup, the task-switch rate is much lower and
the 14 bits may then be insufficient. As a precaution, an additional “XTS” event
(eXtended Time-Stamp) is stored if the relative time-stamp does not fit in 14
bits. The XTS event stores the relative time-stamp using 32 bits and overrides
the time-stamp field of the associated (following) event.

Recording inter-process communication events was considered important and
this was accomplished by adding code instrumentation in the OS isolation layer.
Semaphore operations are however not instrumented; they are very frequent
in this system and it was feared that monitoring these would cause a major
additional recording overhead. The event rate of the ABB system when recording
task scheduling and IPC operations was found to be around 10 KHz. A ring
buffer capacity of 100 000 events (600 000 bytes) therefore gives a trace history
of around 10 seconds. The runtime of a recorder probe was found to be on
average 0.8 μs, which at the typical event-rate of 10 KHz translates into a CPU
overhead of 0.8 %.

As mentioned, ABB Robotics personnel decided after this project to integrate
the recorder in their control system IRC 5 and to keep it active by default, also
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in the production version. The Tracealyzer is today used systematically at ABB
Robotics for troubleshooting and for performance measurements. The recorder
is triggered by the central error handling system, so whenever a serious problem
occur a trace file is automatically stored to the system’s hard drive. A trace file
is in this case only about 600 KB and can therefore easily be sent by e-mail for
quick analysis, e.g., if a customer experiences a problem.

4.2 The ECU Project

The system in focus of this project was the software of an ECU, i.e., a computer
node in a vehicular distributed system developed by Bombardier Transporta-
tion7. Since also this system used VxWorks a similar recorder design could be
used as in the RBT project. The company developers were mainly interested
in the CPU usage per task, as well as for interrupt routines, during long-term
operation of the vehicle. The hardware platform was a Motorola8 PowerPC 603
running at 80 MHz.

In initial experiments using the Tracealyzer tool, the main problem was the
endianness; the Motorola CPU uses big endian encoding, while the Tracealyzer
expected little-endian encoding. In the first experiments in using the Tracealyzer
for this system, the solution was a recorder design where all data is stored in
little-endian format during run-time, by assigning each byte explicitly. This is far
from optimal with respect to the CPU overhead of the recording and should be
avoided. The latest version of the Tracealyzer assumes that the recorder writes
the data to a binary file in native format and therefore detects the endianness,
and converts if necessary, while reading the trace file. The endianness is detected
by using a predefined 32-bit value, where the four bytes have different values,
which is written to a predefined file location by the recorder, typically in the
very beginning. An off-line analysis tool can then find the endianness from the
order of these values.

Unlike the RBT project, this project included recording of interrupt routines.
The operating system VxWorks does not have any callback functionality or sim-
ilar for interrupts, but the interrupt controller of the CPU allowed for this.
Interrupt routines could thereby be recorded as high-priority tasks, by adding
task-switch events to the main ring buffer in the same way as for normal tasks.

An interesting requirement from Bombardier was that the recorded informa-
tion should survive a sudden restart of the system and be available for post-
mortem analysis. This was accomplished by using a hardware feature of the
ECU; the event buffer was stored in Non-Volatile RAM (NVRAM). During the
startup of the system, the recorder recovers any trace data stored in the NVRAM
and writes it to a file, thereby allowing for post-mortem analysis. The ECU was
equipped with 4 MB of NVRAM which is plenty since the company only needed
a 2.5 second trace history. Since it was only desired to log task-switch events in
this project, i.e., no IPC events like in the RBT case, it was possible to reduce
the event size from six to four bytes per event.
7 www.bombardier.com
8 Now Freescale.

www.bombardier.com
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A recorder and a company-specific analysis tool was developed in a Master’s
thesis at Bombardier[4], but the Tracealyzer was not used after the initial tests
leading to the thesis project. One of the Masters students was however employed
by the company after the thesis project.

4.3 The WLD Project

This system is also an ECU-like computer, although not in the vehicular domain
and the company is anonymous in this case. The computer system in focus is
a node in a distributed system, with the overall purpose of automated welding
for production of heavy industrial products. The computer in focus controls an
electrical motor and is connected to a set of similar computer nodes over a field
bus. The CPU used was an Infineon XC167, a 16-bit CPU running at only 20
MHz. The operating system used was RTXC Quadros.

Since the kernel source code of RTXC Quadros is available for customers, the
recorder could be integrated in a custom version of the kernel. It was however
not trivial to find the right location where to add the kernel instrumentation,
especially for the task-switch events, since parts of the context-switch handling
is written in assembly language. Time-stamps were obtained from the real-time
clock (RTC) feature of the Infineon XC167 CPU and stored in a relative manner
in the same way as in the previous cases.

There was no need for using short task IDs (STIDs) for reducing memory us-
age, since RTXC Quadros already uses 8-bit task handles. However, dynamic cre-
ation of tasks required an indirect approach, involving a lookup table, as the task
handles of the operating system are reused. The lookup table contains a mapping
between the RTXC task ID and the index of the task in an recorder-internal list of
tasks, which is included in the generated trace file. The recorder task list contains
the name and other information for up to 256 tasks. On task creation, the list is
searched in order to find a matching task, so repeated dynamic creations of a sin-
gle task only generates a single entry. However, there was no “garbage collection”
in the recorder task list, so tasks which are no longer in the trace history still oc-
cupy an entry. This issue is however solved in the latest recorder implementation,
described in Section 4.5. Interrupt routines were recorded by adding two probes
in every interrupt service routine (ISR). Task-switch events are stored in the be-
ginning and in the end of the ISR, using the interrupt code to look up a “faked”
task entry, specified in a static table containing all interrupts. Nested interrupts
are supported using a special purpose stack, holding the identity of the preempted
ISRs, as well as the currently executing task.

The CPU overhead of the recording was measured and found higher than in
previous cases, although still acceptable. The event rate was found to be around
500 Hz, i.e., about ten times less than in the ABB system, but the slow, low-end
CPU (16-bit, 20 MHz) caused relatively high probe execution times, around 60
μs. This is 75 times longer than the probe execution times in the ABB system (0.8
μs). With a 500 Hz event rate, this translates into a CPU overhead of 3 %, which
is significant, but probably not a serious issue compared to the potential benefits
of trace recording. However, this recorder was not optimized for CPU usage; it
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was rather a first prototype on this platform. Several optimizations/fixes are
possible in order to reduce the CPU usage of this recorder solution, as discussed
in Section 4.6.

In a first evaluation by developers at the company, the welding system recorder
was used together with the Tracealyzer tool in order to pinpoint the cause of
a transient error which they previously had not been able to find. By study-
ing a recorded trace in the Tracealyzer tool they could find that the error was
caused by a wrongly placed “interrupt disable” instruction, which allowed for
interrupts occurring during a critical section where interrupts should have been
disabled. The company did however not integrate the developed recorder solu-
tion on a permanent basis, but has used the solution later for similar purposes.
On those occasions, they have created a custom build using the instrumented
RTXC Quadros kernel. This can lead to probe effect [7] problems, i.e., that the
activation (or deactivation) of recording changes the system behavior.

4.4 The TEL Project

This project was performed together with an anonymous company in the telecom
industry, which develops products based on the operating system OSE from
ENEA. The particular system studied used a high-end PowerPC CPU, running
at 1 GHz and with 256 MB of RAM. This project had the goal of providing
means for exact CPU load measurements. Previously they had used a tool which
sampled the currently executing task at randomly selected times and in that
way got an approximate picture of the CPU usage of the various tasks. This
was however considered too inaccurate. A Master’s thesis project was initiated
in 2008 in order to develop a recorder for this system [6].

A recorder for the Tracealyzer tool was developed and evaluated using stan-
dard performance tests of the system. The recorder used the “kernel hooks”
feature of OSE, which is similar to the callback features in VxWorks, and 16-bit
STIDs for tasks (processes in OSE terminology), stored in the “user area” of
the process. The main problem was that OSE did not allow direct access to the
kernel memory, for reading the process control block. It was thereby not possible
to get the scheduling status of the tasks, which is necessary in order to identify
task instances. A workaround was implemented, the Tracealyzer was modified
for this case, so that priorities were used instead of status. This assumes that
the priorities are static since the recorder cannot read them at the task-switch
events, only at task creation. The resulting recorder was evaluated in the com-
pany lab using their normal test-cases for load testing. The CPU overhead of the
recorder was found to be 1.1 % at an event rate of 18 KHz and a CPU load of
30 %. This result has to be considered as most acceptable, especially since the
recorder was not optimized for CPU usage.

The project was successful in meeting the requirements, i.e., providing means
for exact CPU load measurement, but the Tracealyzer could not be used to its
full potential due to security restrictions in the OSE operating system, which
prevented direct access to the process control blocks. The CPU overhead of
the recorder was measured under realistic conditions and found to be relatively
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low despite a high event rate. The company did however not use the resulting
recorder since it was not mature enough for industrial deployment, which requires
a very robust solution, and since there was no obvious receiver at the company
who could take over the recorder development and verification.

4.5 The RTOS Project

In 2009 the thesis author was contacted by a representative of Quadros Systems,
Inc. who expressed interest in a collaboration aiming at developing a new trace
tool for their operating system. This resulted in the development of the second
generation Tracealyzer, along with a special version for Quadros Systems named
RTXCview. This project also included the development of a whole new recorder
design, in close collaboration with the chief engineer at Quadros Systems.

This recorder has little in common with the previous four versions. A major
difference is that this recorder is designed for logging of generic operating system
services without any hard-coded information in the recorder design. The recorder
contains no assumptions on the operating system services that should be logged,
this is configured through kernel instrumentation and using a configuration file of
the Tracealyzer/RTXCview. All information needed by the off-line tool is stored
in a single block of data which is statically initialized during compile-time. This
eliminates the need for calling a recorder initialization routine at system startup,
which was necessary in the previous versions. This design reduces the startup
time of the system and makes it easy to retrieve the trace recording, e.g., if the
system has stopped on a breakpoint using a debugger. This recorder does not
use any bit-wise manipulations, which should reduce its CPU usage significantly.
To achieve this, a larger event size was necessary, using eight bytes per event
instead of four or six bytes.

In this design, there is no explicit task-list, as in other earlier recorders, but
instead there is a generic symbol table which contains the names of tasks, user
events, semaphores, and other named objects. A string added to this symbol
table returns a 16-bit reference, the byte index of the string in the symbol table.
If an identical string already exists in the symbol table, a reference to the existing
string is returned instead of creating a new entry. This is therefore memory
efficient and solves the issue of repeatedly created dynamic tasks. The symbol
table lookup is fast since all symbol names which share a 6-bit checksum are
connected in a linked list, as depicted by Figure 3. This however requires two
extra bytes per symbol name, for storing the index of the next symbol with the
same checksum, and an array holding 64 16-bit values, the linked-list heads. If a
longer checksum (i.e., more checksum bits) is used, the look-up time is reduced,
but the amount of memory required for the array of linked-list heads doubles for
every extra checksum bit. For systems with plenty of memory, an 8-bit checksum
should however not be any problems, since it only requires 512 bytes.

On task-switch events, the 8-bit RTXC task handles are stored without both-
ering about possible later reuse of the handle, which then might change the
meaning of the currently stored handles. This is instead resolved off-line. The
names of the currently active tasks are stored in a “dynamic object” table which
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Fig. 3. The Symbol Table

is updated on task creation. When a task is terminated (“closed” in Quadros
terminology), the name from the dynamic object table is stored in the symbol
table and the resulting reference is stored, together with the RTXC task handle,
in a special “close” event, which informs the off-line analysis tool that this map-
ping was valid up until this point. The off-line analysis can then find the correct
task names of each execution fragment by reading the event trace backwards,
starting at the trace end, and for each close event update the current mapping
between RTXC task handle and name.

The described approach for handling reuse of dynamic task handles is used
for all types of dynamically created kernel objects in RTXC Quadros, i.e., tasks,
semaphores, mailboxes, alarms, etc. Time-stamps are stored in a relative manner,
using 8, 16 or 32 bits per event, depending on the number of bytes available for
each event type. Like in the other projects, XTS events are inserted when the
normal time-stamp field is insufficient. The time unit of the time-stamps does not
have to be microseconds as the time-stamp clock rate is specified in the recorder
and provided to the off-line analysis tool, which converts into microseconds. It is
thereby possible to use the hardware-provided resolution directly without run-
time conversion into microseconds. Another time-related aspect is that absolute
time-stamps are maintained also if the recording is stopped abruptly, e.g., due to
a crash or breakpoint. The absolute time of the last stored event is kept updated
in the recorder’s main data structure and is thereby available for the off-line
analysis. From this information and the relative time-stamps of the earlier events
it is possible to recreate the absolute time-stamps of all events in the trace.

A prototype of this recorder has been implemented and delivered to Quadros
Systems, who at the moment (Spring 2010) are working on integration of the
recorder in their kernel. There are no big problems to solve; it is mainly a ques-
tion of the limited development resources of Quadros Systems. No evaluation
regarding the CPU overhead of this recorder has yet been performed. Develop-
ing and verifying a trace recorder for an operating system is much harder than
for a specific embedded system, since an operating system recorder has to work
for all hardware platforms supported by the operating system.

4.6 Summary of Recording Overhead Results

This section summarizes the measured recording overhead imposed by the
recorders in the four cases where such measurements have been made, i.e.,
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Table 1. Measured recording overheads in four industrial cases

Case OS CPU F (MHz) ES (bytes) ET (μs) ER (KHz) CPU OH (%) RAM OH (KB/s)

RBT VW P. III 533 6 0.8 10.0 0.8 60.0

ECU VW PPC 603 80 4 2.0 0.8 0.2 3.1

WLD RTXC XC167 20 4 60.0 0.5 3.0 2.0

TEL OSE PPC 750 1000 4 0.6 18.0 1.1 72.0

all cases except for the RTOS case (Section 4.5). The results are presented in
Table 1.

In Table 1 “ES” means Event Size, i.e., the number of bytes used per event.
ET means average probe execution time, ER means average event rate, in a
typical recording. CPU OH means the corresponding CPU overhead and RAM
OH means the corresponding number of (event buffer) bytes used per second.
Note the relatively long probe execution time in the WLD case: 60 μs. The next
faster ET, for ECU, was 30 times shorter even though the clock frequency was
only four times higher in this case. This is probably due to the difference in CPU
hardware architecture, the CPU in the WLD case is a 16-bit micro-controller,
while more powerful 32-bit CPUs were used in the other cases.

Note that the four evaluated recorders were for low RAM usage, on the ex-
pense of higher CPU usage. It therefore possible to reduce the CPU overhead
significantly by instead optimizing for CPU overhad, e.g., by increasing event size
in order to avoid bit-wise encoding. Other possible optimizations are to move as
much functionality as possible off-line (e.g., time-stamp conversion) and by using
“inline” functions and macros instead of C functions. The latest recorder design,
presented in Section 4.5, includes these improvements and should thereby give
significantly lower CPU overhead, although not yet confirmed by experiments.

5 Lessons Learned

An important consideration is choosing an appropriate level of detail for the trace
recording, e.g., should the recording include interrupt routines, or semaphore op-
erations? This is a trade-off between the value of the information, with respect
to the purpose of the recording, compared to the consequences of the associated
recording overhead, such as a reduction in system performance, or increased unit
cost if compensating the overhead with better but more expensive hardware. In-
cluding too little information may however also lead to increased costs if quality
assurance becomes harder.

A related consideration is the trade-off between CPU usage and memory us-
age implied by using more advanced storage techniques, such a bit-wise encoding
or data compression, which are more memory efficient but also more CPU de-
manding. We however believe that such techniques should generally be avoided
in order to prioritize lower CPU overhead, since there is often unused RAM avail-
able, for a larger recording buffer, and if not so, a shorter trace history might be
acceptable. A lower CPU overhead however improves system responsiveness and
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also reduces the risk of probe effects. One exception could be low-end embedded
systems with very little RAM where a long trace history is very important, more
important than CPU overhead. No type of system matching this description is
however known to the authors.

Another consideration is whether the recorder should be integrated in the
system on a permanent basis, or only activated when necessary. A permanent
integration means that the CPU and memory overhead of the trace recording
becomes permanent and may therefore reduce the system performance as expe-
rienced by customers. We however recommend this approach for several reasons:
(1) the risk for probe effects is eliminated since the recording becomes an inte-
grated and tested part of the system, (2) a trace is always available for diagnostic
purposes, (3) the availability of a trace lowers the threshold for developers to be-
gin using the trace recorder, (4) the recording cost in terms of CPU and memory
usage is typically very small and therefore well motivated by the benefits. An
exception to this recommendation would be systems which are highly focused
on average-case performance and where the unit cost is a major issue, such as
low-end multimedia devices.

The authors recommend that all types of events are stored in a single ring-
buffer with fixed-size entries. This way, the chronological order of events is
maintained. More advanced solutions using multiple buffers and/or variable-
sized events may reduce memory usage, but leads to higher recorder complexity,
higher risk of errors in the recorder and higher CPU overhead.

A good strategy is to store the information in a single data structure, which is
statically allocated and initiated. This way, the recorder does not need a special
initialization routine, but is recording directly at startup. Moreover, using this
approach, the data can be easily fetched, e.g., using a debugger when stopped
on a breakpoint, without having to execute a special “save” routine. As file
format for the off-line tool, use a binary image of the run-time data structure.
Differences in endian encoding can be resolved when reading the file.

A recommendation is to design trace recorders as simple and robust as possible
and instead place the “intelligence” in the off-line tool. For instance, time-stamps
should not be converted during run-time, bit-wise encoding should be avoided
and startup initialization routines should be replaced by static initialization. A
simple recorder design is also important if the recorder is to be trusted and
maintained by the target system development organization. In that case, make
sure there is an explicit receiver, a developer or lower level manager, which can
take over the responsibility for the developed solution. This is believed to be the
key success factor in the projects which led to industrial use.

6 Conclusions

This paper has presented experiences from five industry collaboration projects
performed between 2004 – 2009 where solutions for embedded systems trace
recording have been developed and evaluated. Several technical solutions and
trade-off considerations have been presented and discussed. The CPU overhead
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of trace recording can be expected to be below 1 % on most systems using
32-bit CPUs, although it could reach about 3.6 % in the telecom system case
if extrapolating the event rate up to 60 KHz at maximum CPU load. This is
however an extreme case with respect to event rate. Implementation of trace
recorder was possible as a third party developer on all three operating systems,
although one required a different approach due to kernel security restrictions.
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5. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in hard-

real-time environment. Journal of the Association for Computing Machinery 20(1),

46–61 (1973)

6. Mughal, M.I., Javed, R.: Recording of Scheduling and Communication Events on

Telecom Systems. Master’s thesis, Mälardalen University, Väster̊as, Sweden (2008)

7. Schutz, W.: On the Testability of Distributed Real-Time Systems. In: Proceedings of

the 10th Symposium on Reliable Distributed Systems, Pisa, Italy. Institut f. Techn.

Informatik, Technical University of Vienna, A-1040, Austria (1991)

8. Thane, H., Hansson, H.: Using Deterministic Replay for Debugging of Dis-

tributed Real-Time Systems. In: 12th Euromicro Conference on Real-Time Systems

(ECRTS 2000), pp. 265–272. IEEE Computer Society, Los Alamitos (June 2000)



Verification of an AFDX Infrastructure Using
Simulations and Probabilities�

Ananda Basu1, Saddek Bensalem1, Marius Bozga1, Benôıt Delahaye2,
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Abstract. Until recently, there was not a strong need for networking

inside aircrafts. Indeed, the communications were mainly cabled and han-

dled by Ethernet protocols. The evolution of avionics embedded systems

and the number of integrated functions in civilian aircrafts has changed

the situation. Indeed, those functionalities implies a huge increase in the

quantity of data exchanged and thus in the number of connections be-

tween functions. Among the available mechanisms provided to handle

this new complexity, one find Avionics Full Duplex Switched Ethernet

(AFDX), a protocol that allows to simulate a point-to-point network be-

tween a source and one or more destinations. The core idea in AFDX is

the one of Virtual Links (VL) that are used to simulate point-to-point

communication between devices. One of the main challenge is to show

that the total delivery time for packets on VL is bounded by some pre-

defined value. This is a difficult problem that also requires to provide a

formal, but quite evolutive, model of the AFDX network. In this paper,

we propose to use a component-based design methodology to describe the

behavior of the model. We then propose a stochastic abstraction that al-

lows not only to simplify the complexity of the verification process but

also to provide quantitative information on the protocol.

1 Introduction

Until recently, there was not a strong need for networking inside aircrafts. Digital
technologies were initially introduced at the control platform of the aircrafts with
the fly-by-wire technologies.

The evolution of avionics embedded systems and the number of integrated
functions in civilian aircrafts implied a huge increase in the quantity of data
exchanged and thus in the number of connections between functions. The Air-
craft Data Networks used until now had either point to point connections, which
incurred a high cost in aircraft production as well as increase of weight, or mono
transmitter buses with very low performances (100Kbits/s). The innovation of
Avionics Full Duplex Switched Ethernet (AFDX) [2] was to use an open stan-
dard such as Ethernet and take advantage of its high bandwidth, 100Mbps, and
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the use of cheap COTS components. AFDX also offers the capability to easily
extend the avionic network with new devices, as well as to reduce the wiring.

For a network to be suitable for use in critical applications, it must be reli-
able and deterministic. In AFDX reliability is achieved with redundancy while
determinism with the definition of Virtual Links (VL), which put constraints
on the allowed traffic. A network is deterministic if we can guarantee an upper
bound for the time a message needs to be delivered to its destination. For AFDX
such upper bounds can be provided with analytical methods [10]. The bounds
obtained are over approximations of the worst case and the analysis can only be
performed on very abstract models [8]. There is thus the need for new methods
that will guarantee more realistic upper bounds on more realistic models.

In a very recent work [6], we suggested stochastic abstraction. This technique
can ease the verification process of large heterogeneous systems by abstracting
some of the components of the system with probability distributions. The ability
to add stochastic information can also be used to compute a probability for the
system to satisfy the property. The latter can efficiently be done with Statistical
Model Checking (SMC) [12,19,21] that has recently been proposed as an alter-
native to avoid an exhaustive exploration of the state-space of the model. The
core idea of SMC is to conduct some simulations of the system and then use
results from the statistic area in order to decide whether the system satisfies
the property. Statistical model checking techniques can also be used to estimate
the probability with which a system satisfies a given property [12,11]. Of course,
in contrast with an exhaustive approach, a simulation-based solution does not
guarantee a correct result. However, it is possible to bound the probability of
making an error. Simulation-based methods are known to be far less memory and
time intensive than exhaustive ones, and are sometimes the only option [22,14].
Statistical model checking gets widely accepted in various research areas such
as systems biology [9,15] or software engineering, in particular for industrial ap-
plications. The technique in [6], which combines statistical model checking and
stochastic abstraction, was capable of verifying properties of a model with more
than 23000 states in a few minutes.

In this experimental paper, we propose to apply the stochastic abstraction
principle on AFDX networks. Our contributions are twofolds:

1. Model of the network. In this paper, we propose a BIP model for AFDX
architecture. BIP [5] is a tool for specifying components and component in-
teractions. One of the very attractive features of BIP is its ability to generate
executions of composite systems. This is required to compute the stochastic
abstraction as well as to apply statistical model checking. Another advantage
of BIP is that it permits to give a very detailed description of each com-
ponent. Also, components can be developed by independent teams, which
decrease the complexity of the design.

2. Verification. We then examine the latency requirements property in AFDX,
i.e., we check that the total delivery time for packets on virtual links is smaller
than some predefined values. The difficulty is that our model of AFDX is
constituted of many BIP components – this is needed to obtain an accurate
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model of the network. Combining these components lead to a system that
is too big (in terms of states) to be analyzed by classical verification tech-
niques such as model checking. In order to overcome the problem, we suggest
to abstract some of these components with probability distributions, hence
producing another BIP model of the network that is a stochastic abstraction
of the original one. We then apply statistical model checking to estimate a
value of the bound for which the requirement is satisfied with probability
1. This is an important feature as correct upper bounds are mandatory for
certification. We also show that one can use our approach to compute the
probability that the latency requirement is satisfied for a given value of the
bound. This latest feature is of interest to adapt/reconfigure the network for
better average performances.

We believe that our work is interesting as it proposes (1) a very detailed and
accurate model of an AFDX network that is obtained by a component-based
design methodology (this also illustrate the advantages of the BIP toolset), and
(2) an efficient formal technique for verifying properties and provide quantitative
informations on this model.

Structure of the paper. Section 2 introduces BIP and SMC while Section
3 is dedicated to AFDX. In Section 4, we propose our compositional design
methodology to generate formal models of AFDX networks. Section 5 focuses
on a stochastic abstraction and presents our experiments. Finally, Section 6
concludes the paper and discuss related works.

2 Preliminaries

In this section, we briefly introduce the BIP framework that is used to define
components and component interactions. BIP has the ability to simulate execu-
tion of composite systems. We then introduce statistical model checking that is
a technique used to estimate/or validate the probability for a stochastic system
to satisfy some given property. Statistical model checking requires the ability to
simulate the model, which is exactly what BIP can provide.

2.1 The BIP Framework

The BIP framework, introduced in [5], supports a methodology for building
systems from atomic components. It uses connectors, to specify possible inter-
action patterns between components, and priorities, to select amongst possible
interactions. In BIP, data and their transformations can be written directly in
C. Atomic components are finite-state automata extended with variables and
ports. Ports are action names, and may be associated with variables. They are
used for synchronization with other components. Control states denote loca-
tions at which the components await for synchronization. Variables are used to
store local data. Composite components allow defining new components from
sub-components (atomic or composite). Components are connected through flat
or hierarchical connectors, which relate ports from different sub-components.
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Connectors represent sets of interactions, that are, non-empty sets of ports that
have to be jointly executed. They also specify guards and transfer functions for
each interaction, that is, the enabling condition and the exchange of data across
the ports of the interacting components. Priorities are used to select amongst
simultaneously enabled interactions. They are a set of rules, each consisting of
an ordered pair of interactions associated with a condition. When the condition
holds and both interactions of the corresponding pair are enabled, only the one
with higher-priority can be executed.

BIP is supported by an extensible tool-set which includes functional valida-
tion, model transformation and code generation features. Actually, code gen-
eration targets both simulation and implementation models (e.g., distributed,
multi-threaded, real-time, etc.). In particular, simulation is driven by a specific
middleware, the BIP engine, which allows to generate, explore and inspect exe-
cution traces corresponding to BIP models.

2.2 Statistical Model Checking

Consider a stochastic system S and a property φ. Statistical model checking
refers to a series of simulation-based techniques that can be used to answer two
questions : (1) Qualitative : Is the probability for S to satisfy φ greater or equal
to a certain threshold θ? and (2) Quantitative : What is the probability for S
to satisfy φ? Let Bi be a discrete random variable with a Bernoulli distribution of
parameter p. Such a variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p
and Pr[Bi = 0] = 1 − p. In our context, each variable Bi is associated with one
simulation of the system. The outcome for Bi, denoted bi, is 1 if the simulation
satisfies φ and 0 otherwise.

Qualitative Answer using Statistical Model Checking. The main ap-
proaches [21,19] proposed to answer the qualitative question are based on hypoth-
esis testing. Let p = Pr(φ), to determine whether p ≥ θ, we can test H : p ≥ θ
against K : p < θ. A test-based solution does not guarantee a correct result but
it is possible to bound the probability of making an error. The strength (α, β)
of a test is determined by two parameters, α and β, such that the probability of
accepting K (respectively, H) when H (respectively, K) holds, called a Type-I
error (respectively, a Type-II error ) is less or equal to α (respectively, β). A
test has ideal performance if the probability of the Type-I error (respectively,
Type-II error) is exactly α (respectively, β). However, these requirements make
it impossible to ensure a low probability for both types of errors simultaneously
(see [21] for details). A solution is to use an indifference region [p1, p0] (with θ in
[p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1. We now very briefly sketch
an hypothesis testing algorithm that is called the sequential probability ratio test
(SPRT in short) [20]. Our intention is not to give too much details on SPRT –
the interested reader will read [20].

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength (α, β) of the test is respected. Let m be the number of observations
that have been made so far. The test is based on the following quotient:
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p1m

p0m
=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm

1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A, and H1

if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of m until

either H0 or H1 is satisfied; the algorithm terminates with probability 1[20]. This
has the advantage of minimizing the number of simulations. In his thesis [21],
Younes proposed a logarithmic based algorithm SPRT that given p0, p1, α and
β implements the sequential ratio testing procedure. When one has to test θ≥1
or θ≥0, it is better to use Single Sampling Plan (SSP) (see [21,17,19] for details)
that is another hypothesis testing algorithm whose number of simulations is
pre-computed in advance. In general, this number is higher than the one needed
by SPRT, but is it known to be optimal for the above mentioned values. More
details about hypothesis testing algorithms and a comparison between SSP and
SPRT can be found in [17].

Quantitative Answer using Statistical Model Checking. In [12,16] Peyronnet et
al. propose an estimation procedure to compute the probability p for S to satisfy
φ. Given a precision δ, Peyronnet’s procedure, which we call PESTIMATION,
computes a value for p′ such that |p′ − p|≤δ with confidence 1 − α. The proce-
dure is based on the Chernoff-Hoeffding bound [13]. Let B1 . . . Bm be m discrete
random variables with a Bernoulli distribution of parameter p associated with
m simulations of the system. Recall that the outcome for each of the Bi, de-
noted bi, is 1 if the simulation satisfies φ and 0 otherwise. Let p′ = (

∑m
i=1 bi)/m,

then Chernoff-Hoeffding bound [13] gives Pr(|p′ − p| > δ) < 2e−
mδ2

4 . As a con-
sequence, if we take m≥ 4

δ2 log( 2
α ), then Pr(|p′ − p|≤δ) ≥ 1 − α. Observe that if

the value p′ returned by PESTIMATION is such that p′≥θ − δ, then S |= Pr≥θ

with confidence 1 − α.

Playing with Statistical Model Checking Algorithms. The efficiency of
the above algorithms is characterized by the number of simulations needed to
obtain an answer. This number may change from executions to executions and
can only be estimated (see [21] for an explanation). However, some generalities
are known. For the qualitative case, it is known that, except for some situations,
SPRT is always faster than SSP. PESTIMATION can also be used to solve the
qualitative problem, but it is always slower than SSP [21]. If θ is unknown, then
a good strategy is to estimate it using PESTIMATION with a low confidence
and then validate the result with SPRT and a strong confidence.

3 The Avionics Full Duplex Switched Ethernet

AFDX [2] is a standard developed by Airbus for building highly reliable, time
deterministic aircraft data networks (ADNs) based on commercial, off-the shelf
Ethernet technology.

The first standard defined for ADNs has been ARINC 429 [1]. This stan-
dard, developed over thirty years ago and still widely used today, has proven
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Fig. 1. Details of AFDX

to be highly reliable in safety critical applications. It relies on point-to-point
unidirectional bus with single transmitter and up to twenty receivers. Conse-
quently, ARINC 429 networks need a significant amount of wiring and imply a
non-negligible aircraft weight increase.

ARINC 664 has been defined as the next-generation ADNs standard. It is based
upon IEEE 802.3 Ethernet and uses commercial off-the-shelf hardware thereby
reducing costs and development time. AFDX is formally defined in Part 7 of the
ARINC 664 specification [2]. It has been developed by Airbus Industries for the
A380 and since then, it has been accepted by Boeing and used on the Boeing 787
Dreamliner. AFDX bridges the gap on reliability of guaranteed bandwidth from
the original ARINC 664 standard. It features a star topology network of up to 24
end-systems connected to a switch, where each switch can be bridged together to
other switches on the network. Based on this topology, AFDX is able to signifi-
cantly reduce wire runs thus reducing overall aircraft weight. Additionally, AFDX
provides dual link redundancy and Quality of Service (QoS).

Virtual Links. AFDX offer to avionics engineers the capability to think in terms
of point-to-point connections of their applications at design time, just as they
did in the past with ARINC 429. This capability is provided through the no-
tion of virtual links (VL), that are, logical unidirectional connections from one
transmitter end-system to one or many receiver end-systems. Moreover, virtual
links are used to define and control the QoS within AFDX networks. They are
annotated with non-functional characteristics including (i) the bandwidth alloca-
tion gap (BAG), the time interval allocated for the transmission of one packet,
(ii) the minimum and maximum packet size and (iii) the jitter allowed for trans-
mission, with respect to the beginning of the BAG. These characteristics can be
visualized in figure 1a.

End Systems. The end-systems are the entry points on AFDX networks.
They realize the interface between the application software and the network
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infrastructure. They mainly perform three tasks: traffic regulation, scheduling
and redundancy management. First, traffic regulation transforms arbitrary (not
regulated) flows of packets sent by applications such that they meet their corre-
sponding virtual links characteristics. More precisely, stores packets and delivers
them with the correct rate i.e., exactly one packet per BAG, without jitter.
Second, scheduling organize the global flow obtained from several virtual links
before their delivery on the channel. Packets coming from the traffic regulator
and corresponding to different virtual links are interleaved in order to ensure
QoS characteristics such as bounded delivery time or bounded jitter. Third, re-
dundancy management enforces dual redundancy. On transmission side, packets
are indexed, duplicated and sent towards destination on two distinct channels.
On reception side, a first valid wins policy is applied, that is, the first valid
packet received is delivered to the destination application, whereas the second
is silently discarded.

Switches. AFDX switches are the core elements of AFDX networks. They per-
form tasks such as frame filtering, traffic policing, switching, and monitoring.
Frame filtering discards invalid packets according to various integrity rules (con-
cerning packet size, sequence numbers, incoming path, etc). In a similar way,
traffic policing maintains the traffic for each virtual link within its (statically)
declared characteristics i.e., avoid fault propagation such as network flooding
because of faulty end-systems or switches. The switching functionality performs
the routing of packets towards their destination(s). The routes are statically de-
fined for every virtual link. Finally, monitoring realizes various logging and other
administrative operations.

Requirements. The use of AFDX in safety-critical systems is usually subject
to extra requirements. In particular, there are latency requirements, that are,
the total delivery time for packets on virtual links must be smaller than some
predefined values. For example, such requirements are mandatory when AFDX
is used to transport data needed for navigation and control applications running
on board. They usually have to be formally verified as part of the certification
process. Nevertheless, their verification is difficult since they are system-level
properties depending both on the network topology (physical infrastructure)
and on the whole set of virtual links (application traffic) deployed on it.

4 A BIP Model for AFDX Systems

We have developed a systematic way to construct accurate functional models of
AFDX networks in BIP. Network models are structural, that is, they are inter-
connected assemblies of models of AFDX entities (end-systems and switches),
following the physical connections and reflecting the static deployment on virtual
links. This construction arises naturally given the BIP modeling principles and
enforces a clear separation between functional (behavior) and architectural (con-
nection) elements. Moreover, it allows the development of models for real-sized
AFDX networks, of arbitrary complexity with no difficulty.
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The BIP components modeling AFDX end-systems and switches are paramet-
ric and can accommodate arbitrary but statically fixed numbers of virtual links.
Their inner architecture reflects the functional decomposition established by the
AFDX standard [2]. For example, the BIP model for end-systems is composed
of traffic regulator(s), scheduler, sender, receiver(s) and redundancy manager(s)
sub-components, inter-connected as shown in figure 2a.
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All sub-components are atomic and
have been explicitly modeled using dis-
cretized timed automata. As an example, we
provide the model of the atomic traffic regu-
lator component in figure 3. The BIP compo-
nent representing AFDX switches has been
constructed in a similar way. Its inner ar-
chitecture is shown in figure 2b. The switch
model includes atomic sub-components im-
plementing traffic classification, traffic polic-
ing, in packet buffering for each virtual link,
scheduling and finally, out packet buffering,
for each outgoing connection.

In particular, let us remark that the AFDX standard leaves open the schedul-
ing algorithms to be used within end-systems and switches. Nevertheless, our
BIP models provide concrete implementations, that is, round-robin on incoming
virtual links. We made this choice since, while being very easy to implement,
it introduces relatively low jitter for multiplexing regulated flows of packets in-
coming on several virtual links. Still, the model can be easily changed to use
other scheduling policy, if needed. We have identified nine types of atomic com-
ponents in BIP necessary to model any AFDX system (excluding the application
atomic components). As an example, a switch model with two input (each hav-
ing ten Virtual Links) and one output, contains twenty-four atomic components.
An end system generating ten Virtual Links is modeled by twenty-two atomic
components.

BIP components interact using two categories of connectors. First, there are
data connectors, as illustrated in figures 2a or 2b, which transport (abstractions
of) data packets between various components. These connectors have an unique
sender port and one or many receiver ports. At any interaction an abstract packet
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(a data structure containing the virtual link id, size, sequence numbers, etc.) is
transferred simultaneously from the sender to all the receivers. Second, there is
a global tick connector (not illustrated) which realizes the time synchronization
within the whole model. This connector synchronizes all the tick ports, occuring
within all the atomic components. Whenever a tick interaction takes place, it
correspond to a discrete progress of time by one time unit. Since all components
participate, the progress of time is therefore synchronously observed/followed by
all of them. The time step has been chosen as 1 μs (microsecond) in order to
correspond to the magnitude for sending frames on 100Mbps Ethernet networks.
That is, the transmission duration for an Ethernet frame takes between 5 and
117 time units (i.e., microseconds).

5 Verification Methodology and Experiments

In this section, we present the experiments we conducted using our BIP model
of the AFDX infrastructure. We are interested in verifying the latency require-
ment property introduced in Section 3. The problem with our model is that,
as we have seen, switches are complex components, providing multiples func-
tionalities. This complexity, which is needed to obtain a realistic model of the
system, may prevent the use of classical model checking algorithms (state-space
explosion). This is especially the case for AFDX systems made of many (e.g.,
tens) switches and supporting many (e.g., hundreds or thousands) virtual links.
However, in order to reason on the latency requirement, we are only interested
in the time needed for a message to go through the switch. We suggest to exploit
this observation in order to reduce the complexity of the verification process.

More precisely, our idea (which is similar to the one we recently introduced
in [6]) is to abstract switch complexity by replacing the switches with proba-
bility distributions on the delays for a message to cross them. We thus obtain
a stochastic abstraction of our AFDX model. We can then use statistical model
checking techniques to verify the end-to-end delay properties.

As a running example, let us consider the AFDX network given in Figure 5a.
This network is constituted of three switches, five source end-systems, and one
destination end system. The source end-systems are connected to the destination
end system with several virtual links. For such a network with ten Virtual Links
per end-system, the BIP model contains 213 atomic components. As we shall see
in the next section, the number of virtual links going out from an end-system
and the size of the BAGs may vary from experiments to experiments.

SW2SW1

ρ1 ρ2

ES

source

ES

dest.

Fig. 4. Abstract stochastic model

obtained for a designated virtual

link V L0

Our idea is to replace each switch by sev-
eral probability distributions, one for each
Virtual link. The result will be a BIP model
in where the switches are replaced by several
automata generating the distribution; an ex-
ample is given in Figure 4. One can again
simulate this model and then use statisti-
cal model checking algorithms to verify its



Verification of an AFDX Infrastructure Using Simulations and Probabilities 339

properties. As we shall see, these automata can directly be encoded in the BIP
engine, which simplify the structure of the model.

We first give details on how to compute the probability distributions and then
we discuss the experimental results for several scenarios, each of them depending
on the number of virtual links and size of BAGs.

5.1 Stochastic Abstraction

In this section, we briefly describe our approach to learn the probability distri-
butions that abstract switches behaviors.

Table 1. Simulation times in

seconds

VL’s per End System Switch Time
10 2 0:08:49

1 0:36:14
20 2 0:19:24

1 1:34:36
30 2 0:31:57

1 2:03:22

For each switch and each virtual link, we
try to estimate a probability distribution on
the delay for a packet to cross the switch.
This is done by running the BIP model cor-
responding to architecture of Figure 5a. For
example, let assume that we made 33 mea-
sures on a given switch, i.e. the virtual links
has sent 33 packets through the switch. The
result will be a series of delay values and, for
each value, the number of times it has been
observed. As an example, delay 5 has been observed 3 times, delay 19 has been
observed 30 times. The probability distribution is represented with a table of 33
cells. In our case, 3 cells of the table will contain the value 5 and 30 will contain
the value 19. The BIP engine will then select a value in the table in a uniform
way.

According to our observation, 1000 simulations are enough to obtain an accu-
rate estimation of the probability distribution. However, for confidence reasons,
we have conducted 4000 experiments. Table 1 reports on the time needed to
conduct these simulations switch by switch.

5.2 Experiments

We now report on our experiments. We are mainly interested in estimating
a bound on the total delivery time for packets on virtual links. We are also
interested in computing the probability that the total delivery time for packets
is smaller than a given bound. This bound may be a requirement provided by
the user. Verifying these properties is only illistrations of what we can do with
our stochastic abstraction.

We consider the AFDX architecture given in Figure 5a, but our methodology
applies to any AFDX architecture. We assume that the switches are replaced by
probability distributions computed as explained in Section 5.1. As we have seen
in the previous section, the number of virtual links and the size of the BAGs and
the frames may vary. It is important to study the influence of these variation on
the latency requirement. This will be done with the following scenarios.

Scenario 1. In this scenario, each source end-system (E.S. 1 to 5) is connected
to the destination end-system (E.S. 6) with a single virtual link. Each of these
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Fig. 5. Architecture of the Experiments and results for Scenario 1

five virtual links have the same parameters, that are BAG=4 ms, frame size=500
Bytes. Our first experiment was to compute, for each link, the probability that
the total delivery time for packets is smaller than a given bound, until we reach
probability one. We were using the ESTIMATION algorithm with a precision of
of 0.01 and a confidence of 0.01 to estimate probabilities for bounds between 1
and 400 micro seconds. The results, which were obtained in less than 2 seconds,
are given in Figure 5b. It is not surprising that End-system 1 gets a better
behavior as it is only connected to one switch. In the next scenarios we shall see
that these results can be validated with higher precision and confidence by using
SPRT and SSP.

Scenario 2. In this scenario, we consider an increasing number of virtual links:
10, 20, and 30 links. All the virtual links have the same characteristics: BAG =
4ms, and frame size varying between 100 and 500 octets (which is different from
the previous experiment in where this number was fixed). Our first experiment
was the same as for Scenario 1, except that we had to consider bigger values of
the bound in order to reach probability 1. The results are given in Figures 6a,
6b and 7a for respectively X = 10, X = 20 and X = 30 links. We shall observe
that the bound varies between 0μs and 2000μs for X = 10, between 0μs and
3000μs for X = 20 and between 0μs and 3500μs for X = 30.

The second and third experiment consisted in validating the results we ob-
tained in the first experiment using SPRT and SSP. Those algorithms cannot be
used to check for an exact probability (= θ) but for a bound on the probability
(≥ θ or ≤ θ with a simple modification of the algorithm [21]). This is not a
problem. Indeed, if ESTIMATION told us that the probability is x for a given
bound, then it means then it is also greater or equal to x. As outlined in Section
2.2, working with SSP and SPRT allows us to validate the results with a higher
confidence. More precisely, we worked with a precision of 10−7 and confidence
of 10−10 instead of 10−2. The results are given in Table 2 for X = 10.

Finally, we have measured the minimum and maximum delay and the jitter
(difference between these delays) for one of the virtual link of each End-system.
This is a proportion computed on a fixed number of simulations, here 2.3 ∗ 109.
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We obtained, a jitter of 915 with a maximum delay of 1032 and a minimum delay
of 117 for a virtual link between End-system 1 and End-system 6 with X = 20.
As the number of simulations is quite high, we believe that our results are quite
accurate. This show the interest of working with an executable model.

Scenario 3. In this scenario, we use a fixed number of ten virtual links. Those
links have different BAGS, and the packets size still varies between 100 and
500 octets. Figures 8a and 8b represents the repartition of the virtual links in
Switches 1 and 2 respectively. Switch 3 has the same repartition of virtual links
as Switch 2. We conducted the same experiments as for Scenario 2.

We first measure the probability of having a delay lower than a given bound,
varying between 0μs and 2000μs. The results are given in Figure 7b. We then
applied SPRT and SSP. The results are reported in Table 3. All the results are
obtained in less than 10 seconds. Finally, we have measured the minimum delay,
the maximum delay and the jitter for one virtual link of each group of virtual
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Table 2. Results of SPRT and SSP experiments for X = 10 for Scenario 2

End-system Bound Estimated proba Algorithm Checked against Result NSimulations

1 479 P = 0.831975 SPRT P ≥ 0.8 ? Y 1.21010

SPRT P ≥ 0.85 ? N 1.510−10

564 P = 1 SSP P ≥ 1 ? Y 2.3109

2 859 P = 0.730221 SPRT P ≥ 0.7 ? Y 1.61010

SPRT P ≥ 0.5 ? Y 2.5109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

3 760 P = 0.532258 SPRT P ≥ 0.5 ? Y 1.91010

SPRT P ≥ 0.3 ? Y 2.1109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

4 977 P = 0.931101 SPRT P ≥ 0.9 ? Y 6.8109

SPRT P ≥ 0.5 ? Y 1.3109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

5 512 P = 0.231049 SPRT P ≥ 0.2 ? Y 1.21010

SPRT P ≥ 0.1 ? Y 1.6109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109
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Fig. 8. Repartitions of the virtual links in the switches for Scenario 3

Table 3. Results of SPRT and SSP experiments Scenario 3

End-system-VL Bound Estimated proba Algorithm Checked against Result NSimulations

1-41 345 0.801593 SPRT P ≥ 0.8 Y 1.3 · 109

566 1 SSP P ≥ 1 Y 2.3 · 109

1-43 403 0.804363 SPRT P ≥ 0.8 Y 9.2 · 108

561 1 SSP P ≥ 1 Y 2.3 · 109

1-49 347 0.805792 SPRT P ≥ 0.8 Y 9.2 · 108

556 1 SSP P ≥ 1 Y 2.3 · 109

2-1 751 0.901582 SPRT P ≥ 0.9 Y 1.1 · 109

1044 1 SSP P ≥ 1 Y 2.3 · 109

2-6 785 0.902106 SPRT P ≥ 0.9 Y 1.1 · 109

1051 1 SSP P ≥ 1 Y 2.3 · 109

3-11 505 0.504159 SPRT P ≥ 0.5 Y 1.7 · 109

932 1 SSP P ≥ 1 Y 2.3 · 109

3-16 446 0.502088 SPRT P ≥ 0.5 Y 3.1 · 109

994 1 SSP P ≥ 1 Y 2.3 · 109

links with the same characteristics. As an example, we obtain, a jitter of 451
with a maximum delay of 556 and a minimum delay of 105 for VL 49 between
End-system 1 and End-system 6.
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6 Conclusion and Related Work

This paper proposes a model of the AFDX network based on the compositional
design approach as well as a verification technique based on statistical model
checking. To the best of our knowledge, this is the first complete, fully opera-
tional and timing accurate, model of AFDX developed using a formal framework.
Other models are either performance models built within network simulators
or timed automata models, restricted to few functionalities or describing very
simple network configuration. The work of [4] focused on redundancy manage-
ment and identified several issues occuring in the presence of particular net-
work faults. Alternatively, [7,8,18] deal with computing bounds for end-to-end
delays in AFDX networks. The papers [7,8] report experiments using three anal-
ysis methods: network calculus, stochastic simulation using QNAP2 and timed
model-checking using Uppaal. The results confirm the well-established knowl-
edge about these methods. Network calculus[10] provides pessimistic, unreach-
able bounds. Network stochastic simulation provide reachable bounds, however,
these bounds hardly depend on the simulation scenario considered and can be
too optimistic. Timed model-checking[3] provide exact bounds, however, it suf-
fers for state explosion and cannot scale to realistic networks. Finally, the work
in [18] provides a method for compositional analysis of end-to-end delays. It is
shown that, to measure delays for a given virtual link, it is enough to consider
only the traffic generated by the virtual links influencing, i.e., which share paths
within the network. This observation is exploited to reduce the complexity of any
forthcoming analysis. However (1) our global model is more detaillel and easier
to extend/modify due to the use of the component-based design approach, (2)
we are capable to retreive stochastic informations, (3) our approach is adaptive,
and (4) we exploit simulations to ease the verification process.
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Abstract. We address the problem of runtime monitoring for hard real-

time programs—a domain in which correctness is critical yet has largely

been overlooked in the runtime monitoring community. We describe the

challenges to runtime monitoring for this domain as well as an approach

to satisfy the challenges. The core of our approach is a language and com-

piler called Copilot. Copilot is a stream-based dataflow language that

generates small constant-time and constant-space C programs, imple-

menting embedded monitors. Copilot also generates its own scheduler,

obviating the need for an underlying real-time operating system.

1 Introduction

Safety-critical control systems, such as avionics and drive-by-wire systems, are
well-tested, sometimes certified, and perhaps even formally verified. Yet unde-
tected errors or incorrect environmental assumptions can cause failures resulting
in the loss of life—as these control systems become more complex and pervasive,
the risk of software failure grows. Hence, this domain begs for the application of
runtime monitoring.

Hard real-time systems are ones in which correctness depends on execution oc-
curring within a fixed period of time [GR04]. Surprisingly, most previous research
in runtime monitoring focuses either on non real-time programs or soft real-time
systems, in which occasionally missing deadlines is tolerated. To partially redress
this deficiency in the literature, we address the problem of monitoring the class
of hard real-time systems: in particular, we develop a monitoring framework for
periodically-scheduled hard real-time systems.

In designing our monitoring framework, we apply four guiding principles we
believe are fundamental constraints for any monitoring approach treating this
domain:

1. Functionality: Monitors cannot change the functionality of the observed pro-
gram unless a failure is observed.

2. Schedulability: Monitors cannot alter the schedule of the observed program.

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 345–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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3. Certifiability: Monitors must minimize the difficulty in re-validating the ob-
served program; in particular, we make it our goal to avoid modifying the
observed program’s source code.

4. SWaP overhead: Monitors must minimize the additional overhead required
including size, weight, and power (SWaP).

To satisfy these objectives, we have developed a simple stream language called
Copilot that compiles into small constant-time and constant-space (i.e., no dy-
namic memory allocation) C programs. The language follows a sampling-based
monitoring strategy in which global variables of the observed program (or pro-
grams) are periodically sampled; Copilot provides mechanisms for controlling
when to observe the variables. Furthermore, using the Atom compiler [Haw08]
as a back-end, Copilot automatically generates its own periodic schedule, al-
lowing for easy integration into the periodic schedule of the observed program.
By generating its own schedule, the monitor obviates the need for a real-time
operating system (RTOS) for scheduling and concurrency control and so can be
executed on minimal embedded hardware. The language is implemented as an
embedded domain-specific language (eDSL) in the popular functional language
Haskell [Jon02].

Outline. The remainder of the paper is organized as follows. Related work is
described in Section 2. We describe and defend the use of state-variable sampling
as our monitoring approach in Section 3. In Section 4, we present the syntax,
types, and semantics for our Copilot language. We then present a lower-level
semantics of the language with respect to logical time in Section 5; we also discuss
our scheduling assumptions in more detail there. In Section 6, we present a
synthesis (or compilation) algorithm for transforming a Copilot specification into
a state-machine and briefly describe the implementation. We make concluding
remarks and point to future work in Section 7.

2 Related Work

Monitoring and Checking (MaC) [KLKS04] and Monitor Oriented Programming
(MOP) [CDR04] represent the state-of-the-art in monitoring frameworks, but
are targeted at Java applications that are not hard real-time systems (a version
of MaC targeted at C programs is also under development). The Requirement
Monitoring and Recovery (RMOR) [Hav08] framework is (one of the first mon-
itoring frameworks) targeting C programs. RMOR differs from our approach in
that it requires that probes, built using aspect-oriented techniques, be inserted
in the code at each location where state is updated, and it does not address the
issues of monitoring real-time programs. Recent work on time-aware instrumen-
tation applies static analysis techniques and novel algorithms to calculate an
instrumentation that, when possible, satisfies the time budget [FL09]. Although
its focus is on soft real-time systems, predictable runtime monitoring defines
a monitor budget restricting the resources allowed to the monitor so that the
composed system can perform in a predictable fashion [ZDG09]. We have taken
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an alternative approach that does not require modifying the monitored program
(see Section 3). Pellizzoni et al. have constructed no-overhead monitors in which
the monitors are implemented on FPGAs; the framework targets properties of
a PCI bus [PMCR08].

The Copilot language is influenced by functional and stream-based languages.
The syntax and semantics of infinite Haskell lists influence the syntax and the
untimed semantics (see Section 4.3) of Copilot [Jon02]. The languages Lus-
tre [HCRP91], μCryptol [PSM06], and Lola [DSS+05] are all stream-based lan-
guages that influence the design of Copilot; in particular, Lustre and μCryptol
are designed for use on embedded microprocessors.

As explained in detail in Section 6.2, Copilot is a domain specific language
(DSL) that is embedded in the functional programming language Haskell. Similar
DSLs used to generate embedded C code include Feldspar [ACD+10], used for
digital signal processing, and Atom [Haw08], used for embedded control system
design. Indeed, Copilot uses Atom as a “back-end” in the compiler.

3 Sampling-Based Monitoring

Monitoring based on sampling state-variables has largely been disregarded as a
runtime monitoring approach, for good reason: without the assumption of syn-
chrony between the monitor and observed software, monitoring via sampling
may lead to false positives and false negatives [DDE08]. For example, consider
the property (0; 1; 1)∗, written as a regular expression, denoting the sequence
of values a monitored variable may take. If the monitor samples the variable
at the inappropriate time, then both false negatives (the monitor erroneously
rejects the sequence of values) and false positives (the monitor erroneously ac-
cepts the sequence) are possible. For example, if the actual sequence of values is
0, 1, 1, 0, 1, 1, then an observation of 0, 1, 1, 1, 1 is a false negative by skipping a
value, and if the actual sequence is 0, 1, 0, 1, 1, then an observation of 0, 1, 1, 0, 1, 1
is a false positive by sampling a value twice.

However, in a hard real-time context, sampling is a suitable strategy. Under
the assumption that the monitor and the observed program share a global clock
and a static periodic schedule, while false positives are possible, false negatives
are not. A false positive is possible, for example, if the program does not execute
according to its schedule but just happens to have the expected values when
sampled. If a monitor samples an unacceptable sequence of values, then either
the program is in error, the monitor is in error, or they are not synchronized, all
of which are faults to be reported.

Most of the popular runtime monitoring frameworks described in Section 2
inline monitors in the observed program to avoid the aforementioned problems
with sampling. However, in the domain of embedded real-time systems, that ap-
proach suffers the following problems, recalling our four criteria from Section 1.
First, inlining monitors changes the real-time behavior of the observed program,
perhaps in unpredicable ways. In a sampling-based approach, the monitor can
be integrated as a separate scheduled process during available time-slices (this is
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made possible by generating efficient constant-time monitors). Indeed, sampling-
based monitors may even be scheduled on a separate processor (albeit doing so
requires additional synchronization mechanisms), ensuring time and space par-
titioning from the observed programs. Such an architecture may even be nec-
essary if the monitored program is physically distributed. Another shortcoming
of inlining monitors is that certified code (e.g., DO-178B for avionics [Inc92])
is common in this domain. Inlining monitors could necessitate re-certifying the
observed program. We cannot claim our approach would obviate the need for
re-certification, but it is a more modular approach than one based on instru-
menting the source code of the observed program, which may result in a less
onerous re-certification process.

4 The Copilot Language

In this section, we overview the syntax, type system, and semantics of Copilot.

4.1 Syntax

The Copilot language is a synchronous language described by a set of stream
equations. A stream is an infinite sequence of values from some type. A stream
index i is a non-negative integer; for stream σ, σ(i) is the stream’s value at index
i. It is assumed that the value stored in stream index zero σ(0) is an initial value.

To get a feel for the Copilot language, consider the following property of an
engine controller:

If the temperature rises more than 2.3 degrees within 0.2 seconds, then
the engine is immediately shut off.

Assume the period at which the temperature variable temp is sampled is 0.1
seconds, and the shut-off variable is shutoff . Then the property can be specified
as follows in Copilot:

temps = [0, 0, 0] ++ extF temp 1
overTempRise = drop 2 var temps > const 2.3 + var temps

trigger = (var overTempRise) implies (extB shutoff 2)

When the stream trigger becomes false, the property has failed.
A Copilot monitor specification is a nonempty set of stream equations defining

typed monitor variables m0, m1, . . . , mn of the form mi = EXP where EXP
is an expression built from the BNF grammar in Figure 1. (We slightly simplify
the grammar from our implementation, omitting expression terminals and type
declarations.) In the grammar, the terminal <Identifier> is a valid C99 variable
name, and <n> is a non-negative integer. Streams of Boolean values are used
as triggers, signalling a property succeeding or failing.

Informally, the intended semantics for Copilot is the semantics of lazy streams,
like in Haskell [Jon02]. In particular, the operation ++ is lazy list-append, and
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stream definition EXP = V AR | CV AR | APP | DROP |FUN |CONST
monitor variable V AR = var <Identifier>
sample expression CV AR = CTY PE <Identifier> <n>
typed program variable CTY PE = extB | extI8 | extI16 | extI32 | extI64 |extW8 |

extW16 | extW32 | extW64 | extF | extD
stream drop DROP = drop <n> e

where e = V AR | CV AR | DROP | CONST
stream append APP = l ++ EXP

where l is a finite list of constants

function application FUN = f(e0, e1, . . . , en), where

ei = V AR | CV AR | DROP | FUN | CONST
constant stream CONST = const c

where c is a constant

Fig. 1. Simplified Copilot Grammar

appends a finite list onto a stream. The operation drop s n drops the first n
indexes from stream s.

Besides monitor variables, the other class of variables in Copilot are program
variables. Program variables reference global variables being sampled. Program
variables can be any shared state accessible by the compiled C program monitor,
including hardware registers or other C program variables. In a sampling expres-
sion, e.g., extW64 v 3, the integer refers to the phase (or offset) into the periodic
schedule at which v is to be sampled (see Section 5). In CTY PE expressions, the
‘ext’ in the constructor denotes ‘external’, ‘W denotes ‘word’, ‘I denotes ‘int’, ‘F’
denotes ‘float’, and ‘D’ denotes ‘double’. An expression containing no program
variables is a closed expression; otherwise it is an open expression. Monitors
are defined by open expressions, but closed expressions are useful as “helper
streams”—e.g., counters to create new clocks [HCRP91]—for other definitions.

An expression const 3 denotes a stream of the value 3.
The functions of the language include the usual arithmetic operators (e.g.,

+, −, ∗, /, modulo, ==, < and the other comparison operators), and the
logical operators not, and, or, implies. Other operators can be easily added to
the language.

The append operator binds more weakly than function application, which
binds more weakly than the drop operator. Variable operators bind most tightly.

Example 1 (Closed Monitor Expressions). We present simple closed monitor ex-
pressions below along with their intended semantics.

Monitor Intended semantics
m0 = [T, F] ++ var m0 T, F, T, F, . . .
m1 = [T] ++ const F T, F, F, F, . . .
m2 = drop 1 (var m3) 1, 2, 1, 2, . . .
m3 = [0, 1, 2] ++ var m2 0, 1, 2, 1, 2, . . .
m4 = [0, 1] ++ var m4 + drop 1 (var m4) 0, 1, 1, 2, 3, . . .

Note that m4 generates the Fibonacci sequence.
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One design choice with the language is to disallow stream append expres-
sions to appear within the context other operators. For example, the expressions
drop 1 ([0, 1] ++ var m) and ([0, 1] ++ var m)+ (const 3) are ill-formed. This
decision ensures there are no “anonymous streams” in the language—i.e., each
newly-constructed stream is either constant (const) or a function of streams
assigned to a monitoring variable. The choice provides better control over the
memory usage required by the monitor (it is a linear function of each monitor
variable defined; see Section 6).

Example 2 (Embedding past-time LTL). The past-time LTL (ptLTL) operators
are past-time analogues of the standard LTL operators. The ptLTL operators
include previously (P), has always been (A), eventually previously (E), and
since (S). Given their semantics defined in [MP92], they are defined in Copilot
as follows (assume the appropriate cT ype and fixed phases n and l):

Pp ≡ m0 = [F] ++ cT ype p n
Ap ≡ m1 = var m2 ∧ cT ype p n, where

m2 = [T] ++ var m2 ∧ cT ype p n
Ep ≡ m3 = var m4 ∨ cT ype p n, where

m4 = [T] ++ var m4 ∨ cT ype p n
p0Sp1 ≡ m5 = cT ype p1 n ∨ (cT ype p0 l ∧ m6), where

m6 = [F] ++ m6

4.2 Types

Copilot is statically and strongly typed—i.e., type-checking is done at compile-
time, and type-incorrect function application is not possible. In our implemen-
tation, Copilot types are embedded into Haskell’s type system (see Section 6.2).
Copilot specifications lift C types to streams. The C types lifted are the C types
corresponding to CTY PE in Figure 1.

In the following, let
→
T denote the type T lifted to the type of an infinite stream

of values of type T . We denote that “expression exp has type T ” by exp :: T .
The type of an expression is the smallest relation satisfying the following:

– If m is a monitor variable of type
→
T , then (var m) ::

→
T .

– For a program variable expression, (cT ype v n) ::
→
T , where T is the type

corresponding to the operator ctype.

– If c :: T for each constant c in the list l and exp ::
→
T ′, then (l ++ exp) ::

(
→
T ∪

→
T ′).

– If exp ::
→
T , then drop i exp ::

→
T .

– If f is a n-ary function such that f :: T0, T1, . . . , Tn → T , and exp′0 ::
→
T0, exp′1 ::

→
T1, . . . , exp′n ::

→
Tn, then f(exp′0, exp′1, . . . , exp′n) ::

→
T .

– If c :: T , then (const c) ::
→
T .

If exp ::
→
T and

→
T0,

→
T1⊆

→
T and T0 �= T1, then the expression is type incorrect.
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4.3 Untimed Semantics

Due to space considerations, we do not provide a formal semantics for Copilot.
Following [DSS+05], Copilot’s untimed semantics is defined in terms of evalua-
tion models. Informally, an evaluation model is the n-tuple of streams denoted
by a monitor specification, assuming a fixed set of streams denoting the values
of program variables. Evaluation models are constructed inductively over the
syntax of the specification assuming a fixed set of program variable values. A
specification is said to be well defined if the values of the monitor variables at
time t are uniquely defined by the values of the monitored variables at times
0 . . . t.

For example, well-definedness rules out specifications of the formm = ¬(var m)
no value for m can statisfy that equation. Well-definedness also rules out specifi-
cations of the form m = drop 1 (var m) since it admits several different solutions
(e.g., both of the streams T, T, . . . and F, F, . . .).

Monitor specifications can be restricted syntactically to ensure they are well-
defined. Define a dependency graph to be a directed, weighted, graph (V, E)
such that the vertexes V are the monitor and program variables. The edges E
are constructed as follows: for variables v and v′, v

w→ v′ ∈ E if and only if v′

appears in some subexpression in the right-hand side of the stream equation for
v (note that program variables are only sinks in the graph), and w = weight(v),
where

weight(exp) = case exp of
l ++ e → weight(e) − length(l)
drop i e → i + weight(e)
f(e0, e1, . . . , en) → max(weight(e0), . . . , weight(en))
var v′ → 0
cT ype v′ n → 0
const c → −∞

i

A walk of a dependency graph is a finite sequence of variables v0, v1, . . . , vn

such there exists an edge from vi to vi+1, for each vi of the sequence. Variable
vi depends on vj if vi and vj both appear in some walk, and i < j. A loop is a
walk v0, v1, . . . , vn such that v0 = vn. A closed walk is a walk v0, v1, . . . , vn

such that vi = vn for some 0 ≤ i < n. The weight of a walk v0, v1, . . . , vn is
the sum of the weights in the sequence.

Example 3. The dependency graphs for m2, m3, and m4 in Example 1 are
depicted below.

m2 m3

1

−3

m4

−1
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We make two restrictions to ensure that specifications are well-defined; one
constrains the dependencies between program variables, and one constrains the
dependencies of monitor variables on program variables. For the first constraint,
we preclude circular dependencies on future values in stream definitions. For
example, m = drop 1 (var m), has a circular dependency on its own future
values, and in

m0 = drop 1 (var m1)
m1 = var m0

m0 and m1 depend on each others’ future values. Both specifications are not well-
defined. A sufficient condition is to require the weight of loops in the dependency
graph to be less than zero.

The second restriction is analogous but ensures a specification does not at-
tempt to reference future program values: the weight of a walk terminating in a
program variable must be less than or equal to zero. Thus, we have the following
definition:

Definition 1 (Well-Formed Specification). A monitor specification is well-
formed if there exists

– No loop with a non-negative walk weight.
– No walk with a positive weight terminating in an external variable.

Theorem 1 (Well-Formedness Theorem). Every well-formed specification
is well-defined.

As noted in [DSS+05], the converse of the theorem does not hold:

m0 = (var m0) ∨ T
m1 = [0, 1] ++ if F then drop 1 (cT ype p n) else var m1

Both specifications are well-defined but not well-formed.
In addition to the well-formedness constraints, we introduce two minor addi-

tional constraints in Section 6 for the purpose of reducing the worst-case execu-
tion time and memory usage in our implementation.

5 Scheduling Semantics

In Section 4.3, we described an untimed semantics for Copilot. In this section,
we describe the semantics of a Copilot implementation with respect to logical
time [Lam78]. That is, we assume a global clock is the sequence of non-negative
integers, and every stream shares the global clock. A (clock) tick is a value from
the global clock sequence. We assume synchronization with respect to the ab-
stract global clock, so every stream agrees on the time, but we do not assume
an order of execution within a clock tick. Thus, one stream cannot depend on
another stream having computed its next-state value during the current tick.
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Not assuming an order of execution within a tick provides flexibility in imple-
menting a monitor; for example, a monitor might be distributed on separate
processors with the guarantee that synchronization is only required up to the
global clock [HCRP91]. The compiler ensures the same behavior regardless of
the order in which state variables are updated in the same tick (see Section 6).

We follow a standard model of hard real-time scheduling [GR04]. A monitor
is a collection of recurring tasks (in our setting, C functions) that obtain inputs
and compute output in a statically-bounded amount of time. We assume tasks
are periodic and have a round-robin non-preemptive schedule. Consequently, all
tasks have the same priority and run to completion without interrupts. The
global clock is an abstraction of the hardware clock; the duration of each tick of
the global clock is expected to be sufficiently long to account for the worst-case
execution time (WCET) of all possible computation that occurs within a tick.
A tick is triggered by sampling the hardware clock.

Typically, we assume the monitored program also has these scheduling charac-
teristics. In this case, the monitor can be integrated into the round-robin sched-
ule of the observed program, provided WCET constraints are met. However, the
monitor can also be scheduled as a single high-priority task that manages its own
sub-tasks (e.g., sampling) according to the schedule it generates. Care must be
taken that the monitor’s temporal assumptions are met under this framework.

At the ticks at which a state variable is scheduled to be assigned a new
value, we say the variable fires ; otherwise, we say the variable idles. A variable’s
schedule can be succinctly stated in terms of a positive integer p that is its period
and a non-negative integer h, where h < p, that is the stream’s phase. The period
denotes the number of ticks between successive firings for a state variable, and
the phase denotes the offset into each period for when it fires. For a clock tick
C, when (C − h) mod p ≡ 0, the variable fires; otherwise, it is idle.

Example 4 (Timed Semantics). Consider the stream specifications for m2 and
m3 from Example 1. Suppose m2 has period 3 and phase 0, and m3 has period 3
and phase 1. Then the stream’s timed semantics are as follows, where ⊥ denotes
“undefined” or “do not care”:

global clock = 0 1 2 3 4 5 6 7 8 9 10 . . .
m2 = 1 1 1 2 2 2 1 1 1 2 2 . . .
m3 = ⊥ 0 0 0 1 1 1 2 2 2 1 . . .

While the schedule of a monitor variable denotes when the variable fires, the
schedule of a program variable denotes when the monitor samples it. Conse-
quently, a sampling expression (i.e., cT ype v n) denotes that v is sampled at
phase n in each period. For period p, we require 0 < n < p. The constraint
0 < n ensures that the compiler has a tick to update state when variables are
not being sampled (see Section 6). Recall the initial specification in Section 4.1:
there we formalized“the engine is immediately shut off” by sampling the program
variable shutoff in the tick just after sampling temp.

Given our model, we can state the correctness condition for a stream in a
monitor specification to be implemented by a scheduled state variable:
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Definition 2 (Stream Implementation). We say that the state variable v
with period p and phase h implements the stream σ if for all clock times C,
v(C) = σ(idx(C)), where idx(C) =

⌊
C−h

p

⌋
if h ≤ C, and idx(C) =

⌈
C−h

p

⌉
otherwise.

6 Monitor Synthesis

In this section, we describe the synthesis of a Copilot specification to a state ma-
chine, which Atom [Haw08] compiles to C code. The state machine is represented
by a set of state variables associated with each stream in the specification, an ini-
tial state, a state-update function for each variable, and a schedule for applying
the state-update function. The synthesis algorithm is very simple and produces
code with a low and uniform WCET. However, the simple algorithm requires
us to make two additional well-formedness restrictions, generalizing Definition 1
slightly; we describe these additions in Section 6.1.

Besides synthesizing the specification, the compiler schedules the monitors
within the overall periodic schedule of the observed program. The synthesis
algorithm generates a schedule that (1) respects causality constraints—i.e., the
data required to compute a value is available and that (2) interferes with the
program’s real-time constraints as little as possible. In our implementation, these
two criteria are handled at different levels of the compiler. The purpose of (1) is
to ensure that the Stream Implementation definition (Definition 2) holds. (2) is
an optimization issue; the Atom scheduler handles (2) by optimizing the schedule
(see Section 6.2).

Remark 1 (Array and List Notation). We store state values in arrays, and define
some functions that operate over arrays and lists. We denote the value at index
j in an array or list a by a[j]. The function len(a) takes an array or finite list and
returns the length of a. The array <> is the empty array. The function l app a
takes a finite list l and array a and returns an array a′ formed by appending the
values in l onto the front of a.

In the following, assume a monitor specification consists of a finite sequence of
monitor variable definitions of the form

m0 = exp0, m1 = exp1, . . . , mn = expn

State. For each monitor variable mi, its state contains the following:

– History variables: stream values are stored in a history array, ai. The length
of the history array is statically-computed from the monitor specification.

– Update and output indexes: two elements of the history array are respectively
designated as an update index (upIdx), the index of the next-state value, and
an output index (outIdx), the index of the current output value.

Additionally, for each unique sampling expression cT ype v n, in a specification,
we introduce a temporary sampling variable vn that contains the value sampled
from v at phase n in the current period. The variable vn holds the sampled value
until it is used in the next-state function.
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State Update. The next-state value for stream mi is computed by nextSt(expi, 0),
where

nextSt(e, k) = case e of
l ++ e′ → nextSt(e′, k)
drop k′ e′ → nextSt(e′, k + k′)
f(e0, e1, . . . , en) → f(nextSt(e0, k), . . . , nextSt(en, k))
var mj → if k < len(aj) − 1

then aj [(k + outIdxj) mod len(aj)]
else nextSt(expj , k − (len(aj) − 1))

cT ype v n → vn

const c → c

Initial State. The initial state is computed as follows. For each monitor variable
mi, the initial state of history array ai = init(expi) app nextSt(expi, 0), where

init(e) = case e of
l ++ e′ → l app init(e′)
otherwise → <>

init(expi) may produce an empty array, but this array is always augmented
by one last index with an initial arbitrary value. Initially, the next-state index
points to that last index, while the output index is 0

For each temporary sampling variable vn, its initial value is ⊥, pronounced
‘undefined’, representing the undefined value of a program variable that has not
been sampled (⊥ is polymorphic and a member of all types).

Example 5. The following are initial values of the history arrays:

specification history array
m0 = [0, 1, 2] ++ extW64 x 3 + const 3 ai =< 0, 1, 2, ⊥>
m1 = var m0 + var m0 < 0 >
m2 = drop 2 (var m1) < 4 >

Scheduling. Each monitor variable in a specification has the same period, and
each program variable is sampled once each period. Just like in Lustre, new
logical clocks can be defined in terms of the underlying period [HCRP91]. This
allows control over when variables are sampled. For example, in the following
monitor, the program variable x sampled is only used every other period:

m0 = [T, F] ++ var m0

m1 = if var m0 then (extW8 x 3) else var m1

The period for a monitor specification is either provided as an input to the
compiler, or the compiler can compute the minimum necessary period. The pe-
riod must satisfy the following constraint: let n be the largest phase n that
appears in a sampling expression (of the form cT ype v n). Then the period p
must satisfy the constraints: 1 < p and n < p. The first constraint ensures there



356 L. Pike et al.

are enough ticks per period to perform the actions described below, and the
second constraint ensures all the program variables can be sampled within the
period. Thus, we have the following order of actions each period:

– Phase 0: apply the state-update function for each monitor variable.
– Phase 1: increment the update and output indexes by 1 mod len(ai). The

output is current for the current period from phase 1 until phase 0 of the
next period.

Our algorithm ensures that the output for each stream is updated synchronously,
in the same tick.

6.1 Well-Formedness Generalizations

The synthesis algorithm presented is simple and produces efficient code, but it
requires two small generalizations to the well-formedness restrictions given in
Definition 1. The algorithm guarantees that the Stream Implementation prop-
erty (Definition 2) is satisfied for any Copilot specification satisfying these the
constraints.

– We extend the restriction of no loop with a non-negative weight to no closed
walk with a non-negative weight. Without the extension, the following spec-
ification is valid, but it requires pre-computing the next 3 elements of the
stream generated by m0:

m0 = [0] ++ var m0 + 1
m1 = drop 3 (var m0)

A specification with a closed walk with a non-negative weight that does not
contain a loop with a non-negative weight is semantically equivalent to some
specification in which all closed walks have negative weights. For example,
the following specification is equivalent to the preceding one but does not
violate the new restriction:

m0 = [0, 1, 2, 3] ++ drop 3 ((var m0) + 1)
m1 = drop 3 (var m0)

– Let v0, v1, . . . , vn be a walk of a specification’s dependency graph such
that vn is a program variable, and let w be the weight of the walk. Then
we require that w ≤ −init(expv0), where expv0 is the defining expression
for monitor variable v0. The intuition behind this requirement is that our
synthesis algorithm does not keep track of previously-sampled values of ex-
ternal variables to be used in stream equations. For example, the following
specification violates this condition:

m0 = extW8 x 2
m1 = [0, 1, 2] ++ drop 1 (var m0)

Our experience is that monitors violating these extended well-formedness con-
straints are relatively contrived.



Copilot: A Hard Real-Time Runtime Monitor 357

6.2 Implementation

Copilot is implemented as an embedded domain-specific language (eDSL). In the
eDSL approach, a DSL is a set of operators defined in a host language. A DSL
specification defines data in the host language which can be manipulated; in
our case, we rewrite the specification to C code. Because the DSL is embedded,
there is no need to build custom compiler infrastructure—the host language’s
parser, lexer, type system, etc. can all be reused. In particular, the type system
of Copilot is embedded in the type system of Haskell, which provides a Hindley-
Milner polymorphic type system, extended with type classes [Jon02]. By using
a well-tested implementation, we have strong guarantees of correctness, and we
can keep the size of the compiler low (3000 lines of code at the time of writ-
ing). Finally, in a higher-order host language, one can write combinators over
the DSL, acting as a macro system for the language. The architecture of our
implementation of Copilot is shown in Figure 2. Copilot uses Atom, an open
source eDSL (see Section 2) as an intermediate language that does the C-code
generation and scheduler synthesis. Atom performs the schedule generation and
optimization (optimization is not described in this paper), too. Informally, the
Atom scheduler distributes events across the ticks of a period (without violating
causality constraints) to minimize the WCET per tick.

Atom

Copilot

Haskell

}
} Untimed stream

language/compiler

Scheduling,
C code generation{Host

language

Fig. 2. The eDSL architecture for Copilot

The Copilot compiler has been tested against a simple interpreter on thou-
sands of random streams, which discovered subtle issues, like the additional
restrictions on the dependency graph presented in Section 6.1.

We have executed Copilot-generated specifications on the Arduino Duemi-
lanove (ATmega328 microprocessor) as well as on ARM Cortex M3. The mon-
itors generate C99 code, so any processor for which a C compiler exists is a
potential target. However, the program’s hard real-time guarantees depend on
various hardware environmental assumptions; e.g., a cache can break hard real-
time guarantees.

We have constructed several small examples to corroborate our design and
approach. These examples are drawn from the domain of distributed and fault-
tolerant systems and include simple distributed computations, a simple Byzan-
tine agreement protocol, and a simple bus arbiter.

We are currently completing a more substantial case-study involving a fault-
tolerant pitot tube sensor (using air pressure for measuring airspeed) on dis-
tributed ARM Cortex M3 microprocessors with injected faults.
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Copilot will be released open-source (BSD3); please email the authors for an
advance copy.

7 Conclusion

Summary. In the Introduction, we presented four constraints for a hard real-time
monitoring framework: functionality, schedulability, certifiability, and SWaP over-
head. We have presented a framework that together satisfies these constraints. In
particular, our approach is based on sampling program variables and computing
properties over the sampled values. Copilot-generated monitors can be integrated
with the observed program without modifying its functionality or real-time guar-
antees. Finally, no real-time operating system is necessary for scheduling. Our lan-
guage is a highly-constrained language that makes compilation simple and the
ability to statically-compute memory and time usage straightforward. Neverthe-
less, it is powerful enough to encode typical monitoring formulas, such as past-time
LTL and bounded LTL formulas.

Future Work. Beyond additional case-studies, one area of future work is to en-
sure that Copilot monitors are correct. One approach is to borrow from the
coinductive verification techniques developed for hardware specifications, since
our language is a stream language [Min98]. We have performed initial experi-
ments using Frama-C [Fra] to verify the memory-safety of our generated C code.

We are current developing infrastructure to generate distributed monitors.
This allows a global property to be specified for a distributed system, and to
distribute the monitors to the system’s nodes.

Finally, another topic of interest is to apply statistical techniques to distin-
guish systematic software faults from transient hardware faults [SLSR07].
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Abstract. A study of Google’s data center revealed that the incidence

of main memory errors is surprisingly high. These errors can lead to

application and system corruption, impacting reliability. The high error

rate is an indication that new resiliency techniques will be vital in fu-

ture memories. To develop such approaches, a framework is needed to

conduct flexible and repeatable experiments. This paper describes such

a framework, StealthWorks, to facilitate research on software resilience

by behaviorally emulating memory errors in a live system. We illustrate

it to study program tolerance to random errors and in the development

of a new software technique to continuously test memory for errors.

1 Introduction

Today’s computing paradigms and applications owe much of their success to the
availability of inexpensive high-capacity main memory. The capacity of computer
memories has increased dramatically: A current laptop might have four gigabytes
of memory and a server might have tens or hundreds of gigabytes. With the
horsepower unleashed by chip multiprocessors, the pressure on memory capacity
will only increase as future applications operate on even larger data sets and
new execution environments (e.g., virtualization) gain popularity.

The ability to inexpensively construct a many-gigabyte main memory is thanks
to increased DRAM chip density (i.e., more memory bits fit in a fixed chip area).
Although DRAM improvements are a key enabler to numerous computing ad-
vancements, there is a sinister side to the story. As DRAM density improves, the
smaller bit cells are more susceptible to manufacturing variations and sensitivities
that can cause the cells to malfunction under certain environmental conditions.
These malfunctions cause application corruptions, increased service disruption,
and decreased system reliability. While it is commonly believed that the prob-
ability of “soft errors”, which result from background radiation flipping a bit (a
single-event upset, or SEU), is increased in large main memories, “hard errors” are
also likely. Transient and hard errors happen due to intermittent and permanent
failures in the memory circuits, rather than external events.

Indeed, a recent study about memory reliability for Google’s data centers
showed that there are 25,000 to 70,000 errors per billion device hours per year
and more than 8% of DRAM chips are affected each year [7]. Of these errors,
transient and hard errors were common. This result defies conventional wisdom
that application memory corruptions are only plagued by SEUs. An important
conclusion from this study is error correction techniques are necessary to achieve

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 360–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



StealthWorks: Emulating Memory Errors 361

the best reliability. However, these techniques do not come without cost. A typi-
cal hardware approach to protect against SEUs is a “SECDED” code, which re-
quires eight extra memory bits per 64-bit word to repair one bit error. Even with
this 12.5% information redundancy, the memory is still susceptible to multi-bit
errors, which necessitates more sophisticated schemes, like chipkill [1]. Unfortu-
nately, even a simple SECDED scheme is too expensive (in power and dollars)
for most machines. Thus, the use of a scheme, like chipkill, is even more unlikely
in the competitive marketplace of commodity computing. Given this situation,
run-time verification and testing techniques that improve resilience without in-
creasing system cost will serve a vital role [3–5].

To develop new software techniques for both soft and hard errors, a flexible
and efficient framework is needed to model, insert and monitor memory errors in
an experimentally repeatable and controlled manner. We developed such a frame-
work, called StealthWorks, that can inject and emulate soft and hard errors and
observe their impact on applications and the system. StealthWorks is hosted in
an actual computer system, and thus, is a fast vehicle for emulation and study
of errors. In this paper, we demonstrate StealthWorks with two case studies, one
for soft errors and the other for hard errors. The first study illustrates Stealth-
Works in evaluating application vulnerability to single-event upsets by randomly
injecting single bit flips. The second study demonstrates StealthWorks for the
development of a novel software-based approach to improve resilience of legacy
and commodity systems that cannot use or afford hardware error correction
methods for multi-bit hard errors.

2 StealthWorks

Figure 1 shows the components in StealthWorks, which are grouped into the
System-under-Test and the User Interface. The System-under-Test emulates
memory errors in an actual machine’s memory. The User Interface is a remote
client for interacting with the System-under-Test.
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Fig. 1. StealthWorks framework
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We focus on the System-under-Test, which has several modules. The Test
Bench runs experiments through user scripts. The Fault Modeler determines
the errors to inject and the Fault Injector emulates them. The Fault Checker
intercepts program memory operations to check addresses for the presence of an
error. Finally, the Control Server mediates communication between the System-
under-Test and the User Interface. The Fault Modeler, the Fault Injector, and the
Fault Checker form StealthWorks’ core. Figure 2 shows how these core modules
are organized and interact with one another. Next, we explain each module in
the System-under-test.

Instrumented Application

Data Value
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Fault Generation
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Interception
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Monitor

Kernel
Services

Operating System KernelApplication Process
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Fault Injector
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Fig. 2. Components comprising Fault Modeler, Fault Injector and Fault Checker

2.1 Test Bench

This component runs experiments through user-configurable scripts. An exper-
iment includes the workload (how to run it), parameters for modeling memory
errors, duration, and the statistics to collect. The scripts interact with the other
StealthWorks modules.

2.2 Fault Modeler

The Fault Modeler hosts a user-specified fault model. This fault model deter-
mines what errors should be present in the memory. As shown in Figure 2,
the Fault Modeler has two parts: Fault Generation and a Kernel Monitor. The
user implements the fault model in Fault Generation with services provided
by StealthWorks, including insert/delete an error, the Kernel Monitor, timers,
event triggers, simulated system temperature, usage meters, age meters, and
utility data types and functions. As shown in the figure, the fault model inter-
acts with the Fault Injector through a database of errors, called the Fault Table.
The fault model can insert and remove errors from the database.

The fault model indicates memory error addresses, error types, distribution,
run-time causes, and how to corrupt data values for error types. A memory
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address with an error is indicated by a physical address since errors occur in
hardware resources (i.e., physical pages). In addition to where to place errors,
the fault model can optionally indicate how to corrupt data values. To corrupt
a data value, the fault model marks a memory error address with a “corruption
annotation”. The annotation is user-defined. It can be used to specify the way
to corrupt a value, such as a random bit flip, a stuck-at-0 error, etc. Fault
Generation does not corrupt the actual data values because it cannot access
these values directly. Instead, this is done by the Fault Injector (discussed next).

The Kernel Monitor collects information about system operation for the fault
model. For instance, the Kernel Monitor can periodically sample memory uti-
lization of different physical memory regions. Because the Kernel Monitor needs
access to privileged information (e.g., page tables and allocation lists), it runs in
the kernel and system calls are done (via wrapper functions) to interact with it.

We have implemented several example fault models. One model statically
determines a fixed set of permanent errors, but it does not corrupt data values.
It is useful to study how often a program touches an error location. An extended
version can seed errors collected from a live system to create stress tests [5].
Another extension can corrupt data values for studying the inherent resilience
of programs to hard faults [4]. A final example model considers the operating
conditions identified in the Google study [7] as influential, including temperature,
memory utilization, and device age, to determine when to insert errors.

2.3 Fault Injector

The Fault Injector emulates the errors generated by the Fault Modeler. It has
three parts illustrated in Figure 2: the Fault Table, Fault Lookup, and Data Value
Corruption. The Fault Table is a kernel hashtable of errors, which is indexed by
physical memory word address. If an address is in the hashtable, it should be
emulated by the Fault Injector as having an error. A hashtable entry records
both the error type and the corruption annotation.

Fault Lookup is used by the Fault Checker to check whether a memory address
has an error. It is invoked with a system call that passes the address. If an error
is found, the system call returns a corruption annotation. If there is no error,
a sentinel value is returned to indicate an error-free address. Because the Fault
Checker intercepts memory operations, it operates on virtual addresses. Thus,
Fault Lookup maps a virtual address to a physical one using the program’s page
table. The physical address is used to access the Fault Table.

Finally, Data Value Corruption changes data values, as indicated by the cor-
ruption annotation returned from Fault Lookup. For example, an annotation
might indicate a stuck-at-0 fault for a particular bit. Data Value Corruption
would set the stuck-at bit to 0 in the data value. Because it needs access to pro-
gram data (instruction operands), it runs in the program’s address space (user
space). It is simplest and most efficient to perform the corruption in user space;
it also avoids the difficulty kernel modification.
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2.4 Fault Checker

The Fault Checker instruments program memory operations (instruction fetches
and memory reads/writes) with dynamic binary translation (DBT) to gather
an address trace. DBT can efficiently gather these address traces by optimizing
instrumentation code in the context in which it is injected [2, 6, 8].

Each operation is intercepted to send the effective virtual memory address
and access type (data/instruction, read/write, byte size) to the Fault Injector.
Memory operations are rewritten to call an analysis payload shown in Figure 2
as “Memory Operation Interception”. The analysis payload does a system call
to inform the Fault Injector via Fault Lookup about the access. When Fault
Lookup returns a corruption annotation, the Fault Checker invokes Data Value
Corruption to determine the actual corrupted data value.

The current implementation of the Fault Checker can use either Pin [6] or
Strata [8] DBT systems as the binary instrumenter. Pin offers easy-to-use in-
terfaces to quickly craft the analysis payloads to corrupt data values. Strata
provides lower-level facilities to inset and optimize the instrumentation code,
which can lead to low instrumentation overhead [2, 8].

2.5 Control Server

This module mediates communication between the System-under-Test and the
User Interface. It is a server that accepts connections from remote user interface
clients. The Client Server understands commands and queries to control the
System-under-Test and report information about an experiment. For example,
it has a command to change the emulated temperature and a query to report
application error rate.

3 Using StealthWorks

StealthWorks was developed in an ongoing project that aims to improve system
reliability with software resiliency strategies. The framework has been used to
run hundreds of experiments; we have found it to be robust and quite useful.

To illustrate StealthWorks’ usage, we describe two studies. In the first study,
we examine single-event upsets, which remain an important source of errors
for deep submicron technology. In this study, we used StealthWorks to inject
random SEUs into program data. We implemented a simple static fault model
that determines ten random memory addresses to receive an SEU. The addresses
are annotated with a “one-time bit flip” data value corruption. When a program
is run, the Fault Checker determines whether a memory read operand touches
an error address. If so, the Data Value Corruption flips a random bit in the word
at the error address. Once an error is hit, it is removed. This experiment injects
at most ten single-bit errors.

With this setup, we selected two example programs from SPEC2006 to de-
termine whether they would run to completion with a correct result. We picked
tonto and mcf because they are expected to touch a large number of memory
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pages and will likely hit the inserted errors. We ran each program ten times with
the same errors. Out of the ten runs, tonto crashed eight times and mcf crashed
five times. From a closer inspection, it appears that tonto’s control flow is more
data dependent and susceptible to errors than mcf.

In the second study, we used StealthWorks to evaluate a new online tech-
nique to continuously test memory. This second study illustrates StealthWorks
for another memory error source – multi-bit permanent errors, which cannot be
corrected by traditional memory error correction. We developed a software-only
memory testing and scrubbing technique for computers that cannot support or
afford hardware error correction techniques. Our approach constantly tests an
application’s virtual memory pages; it guarantees that every memory page has
been tested within a specified time limit. Pages with permanent errors are re-
tired from page allocation. To keep run-time performance overhead low, the test
strategy uses a spare core in a chip multiprocessor to concurrently test memory
with program execution. In developing this approach, we relied extensively on
StealthWorks for development and experimental evaluation.

Fig. 3. Time to first fault from StealthWorks

Figure 3 shows one experiment that used StealthWorks to determine whether
our online testing technique reduced application vulnerability. To measure vul-
nerability, we used StealthWorks to find the “time to first fault” (TTFF) of
mcf when executed under a varying number of emulated errors in a 1-gigabyte
memory. The figure compares our technique (bars labeled “w/testing”) against a
baseline without testing (bars labeled “w/o testing”). The X-axis is the amount
of time until the first fault, and the Y-axis is the number of errors injected by
StealthWorks. To determine a set of bars, we used the Monte Carlo method to
do multiple trials since virtual-to-physical page mappings can change. Each trial
was limited to the first ten minutes of mcf’s execution. The baseline (without
testing) is also instrumented with StealthWorks to ensure that the execution
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times with and without testing are the same. This permits a fair comparison be-
tween TTFF for runs without and with testing. The figure shows the minimum
and maximum of each trial as error bars.

As Figure 3 shows, without testing, mcf quickly encounters a memory location
with an error. As expected, the time to the first fault decreased (more vulnerable)
as the number of errors injected is increased. In comparison, our online testing
approach let mcf tolerate a higher number of errors before the first fault was
encountered.

The increased resilience comes at a small run-time cost; our continuous online
testing strategy incurs a modest average 3% degradation in performance. This
overhead comes from the additional memory pressure (on both the operating
system kernel’s memory allocator and the hardware memory subsystem) caused
by the testing process. This experiment shows the benefit of StealthWorks – the
framework permits development and study of software resiliency techniques with
different scenarios.

4 Conclusion

Memory errors are surprisingly common and can lead to application failure. To
mitigate errors, new resiliency techniques are needed. In this paper, we described
an extensible framework, StealthWorks, that can be used to develop and evaluate
methods to tolerate and correct memory errors. StealthWorks emulates memory
errors in a live machine. We have found it to be a robust and useful framework
for research on software resilience.
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Abstract. A major productivity hurdle for parallel programming is the presence of
data races. Data races can lead to all kinds of harmful program behaviors, includ-
ing determinism violations and corrupted memory. However, runtime overheads
of current dynamic data race detectors are still prohibitively large (often incurring
slowdowns of 10× or larger) for use in mainstream software development.

In this paper, we present an efficient dynamic race detector algorithm targeting
the async-finish task-parallel parallel programming model. The async and finish
constructs are at the core of languages such as X10 and Habanero Java (HJ).
These constructs generalize the spawn-sync constructs used in Cilk, while still
ensuring that all computation graphs are deadlock-free.

We have implemented our algorithm in a tool called TASKCHECKER and eval-
uated it on a suite of 12 benchmarks. To reduce overhead of the dynamic analysis,
we have also implemented various static optimizations in the tool. Our experi-
mental results indicate that our approach performs well in practice, incurring an
average slowdown of 3.05× compared to a serial execution in the optimized case.

1 Introduction

Designing and implementing correct and efficient parallel programs is a notoriously
difficult task, and yet, with the proliferation of multi-core processors, parallel program-
ming will need to play a central role in mainstream software development. One of the
main difficulties in parallel programming is that a programmer is often required to ex-
plicitly reason about the inter-leavings of operations in their program. The vast number
of inter-leavings makes this task difficult even for small programs, and intractable for
sizable applications. Unstructured and low-level frameworks such as Java threads allow
the programmer to express rich and complicated patterns of parallelism, but also make
it easy to get things wrong.

Structured Parallelism. Structured parallelism makes it easier to determine the context
in which an operation is executed and to identify other operations that can execute in
parallel with it. This simplifies manual and automatic reasoning about the program, en-
abling the programmer to produce a program that is more robust and often more efficient.

Realizing these benefits, significant efforts have been made towards structuring par-
allel computations, starting with constructs such as cobegin-coend [11] and monitors.
Recently, additional support for fork-join task parallelism has been added in the form
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of libraries [15,18] to existing programming environments and languages such as Java
and .NET.

Parallel languages such as Cilk [5], X10 [8], and Habanero Java (HJ) [3] provide
simple, yet powerful high level concurrency constructs that restrict traditional fork-
join parallelism yet are sufficiently expressive for a wide range of problems. The key
restriction in these languages is centered around the flexibility of choosing which tasks
a given task can join to. The async-finish computations that we consider generalize
the more restricted spawn-sync computations of Cilk, and similarly, have the desired
property that the computation graphs generated in the language are deadlock-free [17]
(unlike unrestricted fork-join computations).

Data Race and Determinism Detection. A central property affecting the correctness
of parallel algorithms is data-race freedom. Data-race freedom is a desirable property
as in some cases it can imply determinism [16,7]. For instance, in the absence of data
races, all parallel programs with async and finish, but without isolated constructs, are
guaranteed to be deterministic. Therefore, if we can prove data-race freedom of pro-
grams which do not contain isolated constructs, then we can conclude that the program
is deterministic.

We present an efficient dynamic analysis algorithm that checks the presence of data
races in async-finish style parallel computations. These constructs form the core of the
larger X10, HJ and Cilk parallel languages. Using async, finish and isolated, one can
express a wide range of useful and interesting parallel computations (both regular and
irregular) such as factorizations and graph computations.

Our analysis is a generalization of Feng and Leiserson’s SP-bags algorithm [12]
which was designed for checking determinism of spawn-sync Cilk programs. The reason
why the original algorithm cannot be applied directly to async-finish style of program-
ming is that this model allows for a superset of the executions allowed by the traditional
spawn-sync Cilk programs. Both, the SP-bags algorithm, as well as our extension to it,
are sound for a given input: if a data race exists for that input, a violation will be reported.

Main Contributions. To the best of our knowledge, this is the first detailed study of the
problem of data race detection for async-finish task-parallel programs as embodied in
the X10 and HJ languages. The main contributions of this paper are:

– A dynamic analysis algorithm for efficient data race detection for structured async-
finish parallel programs. Our algorithm generalizes the classic SP-bags algorithm
designed for the more restricted spawn-sync Cilk model.

– An implementation of our dynamic analysis in a tool named TASKCHECKER.
– Compiler optimizations to reduce the overhead incurred by the dynamic analysis

algorithm. These optimizations reduces the overhead by 1.59× on average for the
benchmarks used in our evaluation.

– An evaluation of TASKCHECKER on a suite of 12 benchmarks written in the HJ pro-
gramming language1. We show that for these benchmarks, TASKCHECKER is able to
perform data race detection with an average (geometric mean) slowdown of 4.86×
in the absence of compiler optimizations, and 3.05× with compiler optimizations,
compared to a sequential execution.

1 These benchmarks also conform with version 1.5 of the X10 language.
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2 Background

In this paper we present our approach to data race detection for an abstract language
AFPL, Async Finish Parallel Language. We first present our language AFPL and infor-
mally describe its semantics. To motivate the generalization of the traditional SP-bags
algorithm to our setting, we illustrate where our language allows for broader sets of
computation dags than those expressible with the spawn-sync constructs in the Cilk
programming language.

2.1 Syntax

Fig. 1 shows the part of the language syntax for AFPL that is relevant to parallelism.
The language allows nesting of finish and async statements. That is, any statement
can appear inside these two constructs. However, the language restricts the kind of
statements that can appear inside isolated sections: no synchronization constructs such
as async and finish are allowed inside isolated sections. However, isolated blocks may
contain loops, conditionals, and other forms of sequential control flow.

Program : P ::= main { finish { s } }
Statement : s ::= finish { s }

| async { s }
| isolated { r }
| ST (s)
| s ; s

Restricted r ::= RT (r)
Statement | r ; r

Fig. 1. The syntax of synchronization statements for AFPL

To reflect that, we use the shortcut parametric macros ST and RT (to stand for
standard statements and restricted statements respectively). ST (s) will generate the set
of usual statements and for any statement, it will replace its sub-statement, if necessary,
with s. For instance, one of the several statements in the set for ST (s) will be the
conditional if(b) s else s, while for ST (r), it will be if(b) r else r. The set of statements
generated by RT includes all statements of ST except procedure calls. This restriction
is placed to avoid synchronization constructs in methods called from within isolated
sections.

While languages such as X10 and HJ also allow for more expressive synchronization
mechanisms such as futures, conditional isolated sections, clocks or phasers, the core of
these languages is based around the constructs shown in Fig. 1. We note that a similar
language, called Featherweight X10 (FX10) has been recently considered in [17]. FX10
considers a more restricted calculus (e.g. it has one large one-dimensional array for the
global store) and does not support isolated sections. Our data race detection algorithm
is largely independent of the sequential constructs in the language. For example, the
sequential portion of the language can be based on the sequential portions of C, C++,
Fortran or Java.
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Fig. 2. An example AFPL program and its computation graph

2.2 Informal Language Semantics

Next, we briefly discuss the relevant semantics of the concurrency constructs. For for-
mal semantics of the async and finish constructs, see FX10 [17]. Initially, the program
begins execution with the main task. When an async { s } statement is executed by
task A, a new child task, B, is created. The new task B can now proceed with executing
statement s in parallel with its parent task A. For example, consider the AFPL code
shown in Fig. 2. Suppose the main task starts executing this piece of code. The async
statement in line 7 creates a new child task, which will now execute the block of code
in lines 7-14 in parallel with the main task. When a finish { s } statement is executed
by task A, it means that task A must block and wait at the end of this statement until all
descendant tasks created by A in s (including their recursively created children tasks),
have terminated. That is, finish can be used to create a join point for all descendant
tasks dynamically created inside its scope. In the example in Fig. 2, the finish in line 15
would wait for the tasks created by asyncs in lines 16 and 17 to complete. The statement
isolated { s } means that the statement s is executed atomically with respect to other
isolated statements2.

2 As advocated in [14], we use the isolated keyword instead of atomic to make explicit the fact
that the construct supports weak isolation rather than strong atomicity.
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2.3 Cilk vs. AFPL

Our data race detection algorithm, ESP-bags, presented in later sections, is an adap-
tation of the SP-bags algorithm [12] developed for the Cilk programming language.
Unfortunately, the SP-bags algorithm cannot be applied directly to our language and
needs to be extended. The reason is that our language supports a more relaxed concur-
rency model than the spawn-sync Cilk computations. The key semantic relaxation lays
in the way a task is allowed to join with other tasks. In Cilk, at any given (join) point of
the task execution, the task should join with all of its descendant tasks (including all re-
cursive descendant tasks) created in between the start of the task and the join point. The
join is accomplished by executing the statement sync. The sync statement in Cilk can
be directly translated to a standard finish block, where the start of the finish block is the
start of the procedure and the end of the finish block is the label of the sync statement.
For instance, we can translate the following Cilk program:

spawn f1(); sync; spawn f2(); sync; s1;

into the following AFPL program:

finish { finish { async f1(); }; async f2(); }; s1;

That is, each spawn statement is replaced by an async statement and each sync statement
is replaced with a finish block, where the scope of the finish ranges from the start of the
task to the label of the corresponding sync.

In contrast, with the use of nested finish operations in AFPL, it is possible for a task
to join with some rather than all of its descendant tasks. The way these descendant tasks
are specified at the language level is with the finish construct: upon encountering the
end of a finish block, the task waits until all of the descendant tasks created inside the
finish scope have completed.

The computation graph in Fig. 2 illustrates the differences between Cilk and AFPL.
Each vertical sequence of circles denotes a task. Here we have four sequences for four
tasks. Each circle in the graph represents a program label and an edge represents the
execution of a statement at that label. Note that at label 22, the main task waits only for
T3 and T4 and not for T2, which is not possible using the spawn-sync semantics used
in Cilk.

Further, another restriction in Cilk is that every task must execute a sync statement
upon its return. That is, a task cannot terminate unless all of its descendants have ter-
minated. In contrast, in AFPL, a task can outlive its parents, i.e., a task can complete
even while its children are still alive. For instance, in the example of Fig. 2, in Cilk, T3
would need to wait until T4 has terminated. That is, the edge from node 19 to 22 would
change to an edge from 19 to 21. As we can see, this need not be the case in AFPL: task
T3 can terminate before task T4 has finished.

More generally, the class of computations generated by the spawn-sync constructs is
said to be fully-strict [6], while the computations generated by our language are called
terminally-strict [2]. The set of terminally-strict computations subsumes the set of fully-
strict computations. All of these relaxations mean that it is not possible to directly con-
vert a AFPL program into the spawn-sync semantics of Cilk, which in turn implies that
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we cannot use its SP-bags algorithm immediately and we need to somehow generalize
that algorithm to our setting. We show how that is accomplished in the next section.

3 ESP-Bags Algorithm

In this section, we briefly summarize the existing SP-bags algorithm used for spawn-
sync computations. Then, we present our extension of that algorithm for detecting
data races in AFPL programs. The original SP-bags algorithm was designed for Cilk’s
spawn-sync computations. As mentioned earlier, we can always translate spawn-sync
computations into async-finish computations. Therefore, we present the operations of
the original SP-bags algorithm in terms of async and finish, rather than spawn and sync
constructs, so that the extensions are easily understood.

3.1 SP-Bags

We assume that each dynamic task (async) instance is given a unique task id. The basic
idea behind the SP-bags algorithm is to attach two “bags”, S and P, to each dynamic
task instance. Each bag contains a set of task id’s. When a statement E that belongs to a
task A is being executed, the S-bag of task A will hold all of the descendant tasks of A
that always precede E in any execution of the program. The S-bag of A will also include
A itself since any statement G in A that executes before E in the sequential depth first
execution will always precede E in any execution of the program. The P-bag of A holds
all descendant tasks of A that may execute in parallel with E.

At any point during the depth-first execution of the program, a task id will always
belong to at most one bag. Therefore, all these bags can be efficiently represented using
a single disjoint-set data structure. The intuition behind the algorithm can be stated
as follows: when a program is executed in depth-first manner, a write W1 to a shared
memory location L by a task τ1 races with an earlier read/write to L by any task τ2

which is in a P-bag when W1 occurs and it does not race with read/write by any task
that is in an S-bag when W1 occurs. A read races with an earlier write in the same way.

Although the program being tested for data races is a parallel program, the SP-bags
algorithm is a serial algorithm that performs a sequential depth-first execution of the
program on a single processor. Each memory location is instrumented to contain two
additional fields: a reader task id and a writer task id. The following table shows the
update rules for the SP-bags algorithm:

Async A : SA ← {A}, PA ← ∅
Task A returns to Task B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅
EndFinish F in a Task B : SB ← SB ∪ PB , PB ← ∅

When a task A is created, its S bag is initialized to contain its own task id, and its P
bag is initialized to the empty set. When a task A returns to a task B in the depth-first
execution, then both of its bags, S and P, are moved to the P bag of its parent, B, and
its bags are reset. When a join point is encountered in a task, the P bag of that task is
moved to its S bag.
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In addition to the above steps, during the depth-first execution of a program, the
SP-bags algorithm requires that action is taken on every read and write of a shared
variable. Figure 3 shows the required instrumentation for read and write operations.
For each operation on a shared memory location L, we only need to check those fields
of L that could conflict with the current operation.

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag t h e n Data Race ;
3 I f L . r e a d e r i s i n a S−bag t h e n L . r e a d e r = t ;

1 Wri t e l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 t h e n Data Race ;
4 L . w r i t e r = t ;

Fig. 3. Instrumentation on shared memory access. Applies both to SP-bags and ESP-bags.

3.2 ESP-Bags

Next, we present our extensions to the SP-bags algorithm. Recall that the key difference
between AFPL and spawn-sync lays in the flexibility of selecting which of its descen-
dent tasks a parent task can join to. The following table shows the update rules for the
ESP-bags algorithm. The extensions to SP-bags are highlighted in bold.

Async A - fork a new task A : SA ← {A}, PA ← ∅
Task A returns to Parent B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅
StartFinish F : PF ← ∅
EndFinish F in a Task B : SB ← SB ∪ PF , PF ← ∅

The key extension lays in attaching P bags, not only to tasks, but also to identifiers
of finish blocks. At the start of a finish block F, the bag PF is reset. Then, when a
finish block ends in a task, the contents of its P bag are moved to the S bag of that task.
Further, when during the depth-first execution a task returns to its parent, say B, B may
be both a task or a finish scope. The actual operations on the S and P bags in that case
are identical to SP-bags.

The need for this extension comes from the fact that at the end of a finish block,
only the tasks created inside the finish block are guaranteed to complete and therefore
will precede the tasks that follow the finish block. Therefore, only the tasks created
inside the finish block need to be added to the S-bag of the parent task when the finish
completes and those tasks created before the finish block began need to stay in the P-bag
of the parent task.

This extension generalizes the SP-bags presented earlier. This means that the ESP-
bags algorithm can be applied directly to spawn-sync programs as well by first trans-
lating then to async-finish as shown earlier, and the applying the algorithm. Of course,
if we know that the finish blocks have a particular structure, and we know that trans-
lated spawn-sync programs do, then we can safely optimize away the P bag for the
finish id’s and directly update the bag of the parent task (as done in the original SP-bags
algorithm).
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3.3 Discussion

In summary, the ESP-bags algorithm works by updating the reader and writer fields of
a shared memory location whenever that memory location is read or written by a task.
On each such read/write operation, the algorithm also checks to see if the previously
recorded task in these fields (if any) can conflict with the current task, using the S and
the P bags of the current task. We now show an example of how the algorithm works
for the AFPL code in Fig. 2. Suppose that the main task, T1, starts executing that code.
We refer to the finish in line 4 by F1 and the first instance of the finish in line 15 by F2.
Also, we refer to the first instance of the tasks generated by the asyncs in lines 7, 16,
and 17 by T2, T3, and T4 respectively.

Table 1. ESP-bags Example

PC T1 F1 T2 F2 T3 T4 B[0]
S P S P P S S Writer

1 {T1} - - - - - - -
4 {T1} ∅ - - - - - -
7 {T1} ∅ {T2} - - - - -
8 {T1} ∅ {T2} - - - - T2

14 {T1} {T2} ∅ - - - - T2

15 {T1} {T2} ∅ ∅ - - - T2

16 {T1} {T2} ∅ ∅ ∅ {T3} - T2

17 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T2

*18 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T4

19 {T1} {T2} ∅ ∅ {T4} {T3} ∅ T4

21 {T1} {T2} ∅ {T4,T3} ∅ ∅ ∅ T4

22 {T1,T4,T3} {T2} ∅ ∅ ∅ ∅ ∅ T4

Table 1 shows how the S and P bags of the tasks (T1, T2, T3, and T4) and the P
bags of the finishes (F1 and F2) are modified by the algorithm as the code in Fig. 2
is executed. Each row shows the status of these S and P bags after the execution of a
particular statement in the code. The PC refers to the statement number (from Fig. 2)
that is executed. This table only shows the status corresponding to the first iteration of
the for loop in line 5. The table also tracks the contents of the writer field of the memory
location B[0]. The P bags of the tasks T1, T2, and T4 are omitted here since they remain
empty through the first iteration of the for loop.

In the first three steps in the table, the S and P bags of T1, F1, and T2 are initialized
appropriately. When the statement in line 8 is executed, the writer field of B[0] is set
to the current task, T2. Then, on completion of T2 in line 14, the contents of its S and
P bags are moved to the P bag of F1. When the write to B[0] in line 18 (in Task T4)
is executed, the algorithm finds the task in its writer field, T2, in a P bag (P bag of
F1). Hence this is reported as a data race. Further, when T4 completes in line 19, the
contents of its S and P bags are moved to the P bag of its parent T3. Similarly, when
T3 completes in line 21, the contents of its S and P bags are moved to the P bag of its
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parent F2. When the finish F2 completes in line 22, the contents of its P bag are moved
to the S bag of its parent T1.

4 Handling Isolated Blocks

In this section, we briefly describe an extension to the ESP-bags algorithm to accom-
modate handling of isolated sections. Isolated sections are useful since they allow the
programmer to write data-race-free parallel programs in which multiple tasks interact
and update shared memory locations.

1 I s o l a t e d Read of l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag t h e n Data Race ;
3 I f L . i s o l a t e d R e a d e r i s i n a S−bag t h e n L . i s o l a t e d R e a d e r = t ;

1 I s o l a t e d Wri t e o f l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 t h e n Data Race ;
4 I f L . i s o l a t e d W r i t e r i s i n a S−bag t h e n L . i s o l a t e d W r i t e r = t ;

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . i s o l a t e d W r i t e r i s i n a P−bag
3 t h e n Data Race ;
4 I f L . r e a d e r i s i n a S−bag t h e n L . r e a d e r = t ;

1 Wri t e l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 or L . i s o l a t e d W r i t e r i s i n a P−bag or L . i s o l a t e d R e a d e r i s i n a P−bag
4 t h e n Data Race ;
5 L . w r i t e r = t ;

Fig. 4. ESP-bags algorithm for AFPL, with support for isolated blocks

The extension to handle isolated sections includes checking that isolated and non-
isolated accesses that may execute in parallel do not interfere. For this, we extend
ESP-bags as follows: two additional fields are added to every memory location, iso-
latedReader, and isolatedWriter. These fields are used to hold the task that performs
an isolated read or write on the location. We need to handle reads and writes from iso-
lated blocks differently as compared to non-isolated operations. Fig. 4 shows the steps
needed to be performed during each of the operations: read, write, isolated-read, and
isolated-write.

5 Compiler Optimizations

The ESP-bags algorithm is implemented as a Java library. Recall that the ESP-bags
algorithm requires that action is taken on every read and write to a shared memory
location. To test a given program for data-race freedom using the ESP-bags algorithm,
we need a compiler transformation pass that instruments read and write operations on
shared memory locations in the program with appropriate calls to the library. In this
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section, we describe the static analyses that we used to reduce the instrumentation and
hence improve the runtime performance of the instrumented program.

Main Task Check Elimination in Sequential Code Regions. A parallel program will
always start and end with sequential code regions and will contain alternating parallel
and sequential code regions in the middle. There is no need to instrument the operations
in such sequential code regions. In an AFPL program, the sequential code regions are
executed by the main task. Thus, in an AFPL program, there is no need to instrument
the read and write operations in the sequential code regions of the main task.

Read-only Check Elimination in Parallel Code Regions. The input program may have
shared memory locations that are written by the sequential regions of the program and
only read within parallel regions of the program. Such read operations within parallel
regions of the program need not be instrumented because parallel tasks reading from
the same memory location will never lead to a conflict. To perform this optimization,
the compiler implements an inter-procedural side-effect analysis [4] to detect potential
write operations to shared memory locations within the parallel regions of the given
program. If there is no possible write to a shared memory location M in the parallel
regions of the program, that clearly shows that all accesses to M in the parallel regions
must be read-only and hence the instrumentations corresponding to these reads can be
eliminated.

Escape Analysis. The input program may include many parallel tasks. A race occurs
in the program only when two or more tasks access a shared memory location and at
least one of them is a write. Suppose an object is created inside a task and it never
escapes that task, then no other task can access this object and hence it cannot lead to a
data race. To ensure the task-local attribute, the compiler performs an inter-procedural
escape analysis [10] that identifies if an object is shared among tasks. This also requires
an alias analysis to ensure that no alias of the object escapes the task. Thus, if an object
O is proven to not escape a task, then the instrumentations corresponding to all accesses
to O can be eliminated.

Loop Invariant Check Optimization. If there are multiple accesses of the same type
(read or write) to M by a task, then it is sufficient to instrument one such access be-
cause other instrumentations will only add to the overhead by unnecessarily repeating
the steps. Suppose the input program accesses a shared memory location M uncondi-
tionally inside a loop, the instrumentation corresponding to this access to M can be
moved outside the loop to prevent multiple calls to the instrumented function for M . In
summary, given a memory access M that is performed unconditionally on every itera-
tion of a sequential loop, the instrumentation for M can be hoisted out of the loop by
using classical loop-invariant code motion.

Read/Write Check Elimination. In this optimization, we claim that if there are two ac-
cesses M1 and M2 to the same memory location in a task, then we can use the following
rules to eliminate one of them.
1. If M1 dominates M2 and M2 is a read operation, then the instrumentation for M2

can be eliminated (since M1 is either a read or write operation).
2. If M2 post-dominates M1 and M1 is a read operation, then the check for M1 can

be eliminated (since M2 is either a read or write operation). This rule tends to be
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applicable in fewer situations than the previous rule in practice, because computa-
tion of post-dominance includes the possibility of exceptional control flow.

6 Evaluation

We report the performance results of our experiments on a 16-way (quad-socket, quad-
core per socket) Intel Xeon 2.4GHz system with 30 GB memory, running Red Hat
Linux (RHEL 5). The JVM used is the Sun Hotspot JDK 1.6. We applied the ESP-
bags algorithm to a set of 8 Java Grande Forum (JGF) benchmarks shown in Table 2.
Though we performed our experiments on different sizes of the JGF benchmarks, we
only report the results of the maximum size in each case. We were unable to get the
results of size B for MolDyn since the both the versions (original and instrumented)
runs out of memory. We also evaluated our algorithm on 3 Shootout benchmarks and 1
EC2 challenge benchmark. All the benchmarks used were written in HJ using only the
AFPL constructs and are available from [1].

Table 2. List of Benchmarks Evaluated

Source Benchmark Description

JGF (Section 2)

Series Fourier coefficient analysis
LUFact LU Factorisation
SOR Successive over-relaxation
Crypt IDEA encryption
Sparse Sparse Matrix multiplication

JGF (Section 3)
MolDyn Molecular Dynamics simulation
MonteCarlo Monte Carlo simulation
RayTracer 3D Ray Tracer

Shootout
Fannkuch Indexed-access to tiny integer-sequence
Fasta Generate and write random DNA sequences
Mandelbrot Generate Mandelbrot set portable bitmap file

EC2 Matmul sMatrix Multiplication (two 1000*1000 double matrix)

Results of ESP-bags algorithm. Table 3 shows the results of applying the ESP-bags
algorithm on our benchmarks. This table gives the original time taken for each bench-
mark, i.e., the time taken to execute the benchmark without any instrumentation. It also
shows the slowdown of the benchmark when instrumented for the ESP-bags algorithm
with and without the optimizations described in Section 5. The outcome of the ESP-
bags algorithm is also included in the table, which clearly shows there are no data races
in any of the benchmarks. The same was observed for all the input sizes. Hence all the
benchmarks are free of data races for the inputs considered. Note that though RayTracer
has some isolated conflicts, it is free of data races since there were no conflicts between
isolated and non-isolated accesses.
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Table 3. Slowdown of ESP-bags Algorithm

Benchmark Number Time ESP-bags Result
of (s) Slowdown Factor

asyncs w/o opts w/ opts

Crypt - C 1.3e7 15.24 7.63 7.29 No Data Races
LUFact - C 1.6e6 15.19 12.45 10.08 No Data Races

MolDyn - A 5.1e5 45.88 10.57 3.93 No Data Races
MonteCarlo - B 3.0e5 19.55 1.99 1.57 No Data Races

RayTracer - B 5.0e2 38.85 11.89 9.48 No Data Races
(Isolated conflict)

Series - C 1.0e6 1395.81 1.01 1.00 No Data Races
SOR - C 2.0e5 3.03 14.99 9.05 No Data Races

Sparse - C 6.4e1 13.59 12.79 2.73 No Data Races
Fannkuch 1.0e6 7.71 1.49 1.38 No Data Races

Fasta 4.0e0 1.39 3.88 3.73 No Data Races
Mandelbrot 1.6e1 11.89 1.02 1.02 No Data Races

Matmul 1.0e3 19.59 6.43 1.16 No Data Races

Geo Mean 4.86 3.05

ESP-bags slowdown. On an average, the slowdown of the benchmarks with the ESP-
bags algorithm is 4.86× without optimization. When all the static optimizations are
applied, the average slowdown drops to 3.05×. The slowdown of all the benchmarks
except LUFact is less than 10×. The slowdown for benchmarks like MolDyn, Monte-
Carlo and Sparse are less than 5×. There is no slowdown in the case of Series because
most of the code uses stack variables. In HJ none of the stack variables can be shared
across tasks and hence we do not instrument any access to these variables. On the other
hand, the slowdown for SOR and RayTracer benchmarks are around 9×.

Performance of Optimizations. We now discuss the effects of the compiler optimiza-
tions on the benchmarks. The static optimizations that were performed include check
elimination in sequential code regions in the main task, read-only check elimination
in parallel code regions, escape analysis, loop invariant check motion, and read/write
check elimination. As is evident from the table, some of the benchmarks like SOR,
Sparse, MolDyn, and Matmul benefit a lot from the optimizations, with a maximum
reduction in slowdown of about 78% for Sparse. On the other hand, for other bench-
marks the reduction is relatively less. The optimizations does not reduce the slowdown
much for Crypt and LUFact because in these benchmarks very few instrumentations are
eliminated as a result of the optimizations. In the case of MonteCarlo and RayTracer,
though a good number of instrumentations are eliminated, a significant fraction of them
still remain and hence there is not much performance improvement in these benchmarks
due to optimizations. On an average, there is a 37% reduction in the slowdown of the
benchmarks due these optimizations.
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Fig. 5. Breakdown of static optimizations

Breakdown of the Optimizations. We now describe the effects of each of the static
optimizations separately on the performance of the benchmarks. Figure 5 shows the
breakdown of the effects of each of the static optimizations. The graph also shows the
slowdown without any optimization and with the whole set of optimizations enabled.
The Main Task Check Elimination optimization described in Section 5 is applied to
all the versions included here, including the unoptimized version. This is because we
consider that optimization as a basic step without which there could be excessive in-
strumentations.

The read-only check elimination performs much better than the other optimizations
for most of the benchmarks, like MolDyn, SOR, and SparseMatmult. This is because
in these benchmarks the parallel regions include reads to many arrays which are writ-
ten only in the sequential regions of the code. Hence, this optimization eliminates the
instrumentation for all these reads. It contributes the most to the overall performance
improvement in the full optimized version. The read-write optimization works well in
the case of SOR, but does not have much effect on other benchmarks. The Loop invari-
ant code motion helps improve the performance of Montecarlo the most and the Escape
analysis does not seem to help any of these benchmarks to a great extent.

Note that the performance of these four static optimizations do not directly add up
to the performance of the fully optimized code. This is because some of these opti-
mizations creates more chances for other optimizations. Hence their combined effect is
much more than their sum. For example, the loop invariant code motion creates more
chances for the Read-only and Read-Write optimization. So, when these two optimiza-
tions are performed after loop invariant code motion their effect would be more than that
is shown here. Finally, we only evaluated the performance of these optimizations on the
set of benchmarks shown here. For a different set of benchmarks, their effects could be
different. But we believe that these static optimizations, when applied in combination,
are in general good enough to improve the performance of most of the benchmarks.
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7 Related Work

The original Cilk paper [12] introduces SP-bags for spawn-sync computations. We ex-
tend that algorithm to the more general setting of async-finish computations. An ex-
tension to SP-bags was proposed by Cheng et al. [9] to handle locks in Cilk programs.
Their approach includes a data race detection algorithm for programs that satisfy a par-
ticular locking discipline. However, the slowdown factors reported in [9] were in the
33× - 78× range for programs that follow their locking discipline, and upto 3700×
for programs that don’t. In this work, we detect data races in programs with async, fin-
ish, and isolated constructs.We outline and implement a range of static optimizations to
reduce the slowdown factor to just 3.05× on average.

A recent result on detecting data races by Flanagan et al. [13] (FastTrack) reduces the
overhead of using vector clocks during data race detection. Their technique focuses on
the more general setting of fork-join programs. The major problem with using vector
clocks for race detection is that the space required for vector clocks is linear in the
number of threads in the program and hence any vector clock operation also takes time
linear in the number of threads. In a program containing millions of tasks that can run in
parallel it is not feasible to use vector clocks to detect data races (if we directly extend
vector clocks to tasks). Though FastTrack reduces this space (and hence the time for any
vector clock operation) to a constant by using epochs instead of vector clocks, it needs
vector clocks whenever a memory location has shared read accesses. Even one such
instance would make it infeasible for programs with millions of parallel tasks. On the
other hand, our approach requires only a constant space for every memory location and
a time proportional to the inverse Ackerman function. Also, FastTrack just checks for
data races in a particular execution of a program, whereas our approach can guarantee
the non-existence of data races for all possible schedules of a given input. The price we
have to pay for this soundness guarantee is that we have to execute the given program
sequentially. But given that this needs to be done only during the development stage we
feel our approach is of value.

Sadowski et al. [20] propose a technique for checking determinism by using inter-
ference checks based on happens before relations. This involves detecting conflicting
races in threads that can run in parallel. Though they can guarantee the non-existence
of races in all possible schedules of a given input, the fact that they use vector clocks
makes these infeasible in a program with millions of tasks that can run in parallel.

The static optimizations that we use to eliminate the redundant instrumentations and
hence reduce the overhead is similar to the compile-time analyses proposed by Mellor-
Crummey [19]. His technique is applicable for loop carried data dependences across
parallel loops and also for data dependences across parallel blocks of code. In our ap-
proach, we concentrate on the instrumentations within a particular task and try to elim-
inate redundant instrumentations for memory locations which are guaranteed to have
already been instrumented in that task.

8 Conclusion

In this paper, we proposed a sound and efficient dynamic data-race detection algorithm
called ESP-bags. ESP-bags targets the async-finish parallel programming model, which
generalizes the spawn-sync model used in Cilk.
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We have implemented ESP-bags in a tool called TASKCHECKER and augmented it
with a set of static compiler optimizations that reduce the incurred overhead by 1.59×
on average. Evaluation of TASKCHECKER on a suite of 12 benchmarks shows that the
dynamic analysis introduces an average slowdown of 4.86×without compiler optimiza-
tions, and 3.05×with compiler optimizations, making the tool suitable for practical use.

In future work, we plan to investigate the applicability of ESP-bags to the fork-join
concurrency model.
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Abstract. Assertion based specifications are not suitable for optimistic

concurrency where concurrent operations are performed assuming no

conflict among threads and correctness is cast in terms of the absence or

presence of conflicts that happen in the future. What is needed is a for-

malism that allows expressing constraints about the future. In previous

work, we introduced tressa claims and incorporated prophecy variables

as one such formalism. We investigated static verification of tressa claims

and how tressa claims improve reduction proofs.

In this paper, we consider tressa claims in the run-time verification

of optimistic concurrency implementations. We formalize, via a simple

grammar, the annotation of a program with tressa claims. Our method

relieves the user from dealing with explicit manipulation of prophecy

variables. We demonstrate the use of tressa claims in expressing complex

properties with simple syntax.

We develop a run-time verification framework which enables the user

to evaluate the correctness of tressa claims. To this end, we first describe

the algorithms for monitor synthesis which can be used to evaluate the

satisfaction of a tressa claim over a given execution. We then describe our

tool implementing these algorithms. We report our initial test results.

1 Introduction

The main challenge in reasoning about concurrent programs is taking into ac-
count the interactions among threads on shared memory. An effective way to
cope with the complexity of concurrent shared-memory programming is to spec-
ify and verify partial safety properties which are typically expressed as assertions
over program variables.

For implementations based on optimistic concurrency, our experience suggests
that expressing properties about concurrency control mechanisms in the form
of assertions is unnatural and counter-intuitive. In optimistic concurrency, a
thread accesses a shared resource as if there are no competing threads for the
same resource and eventually validates whether this assumption was correct.
If it was, then it commits ; if not, it rolls-back any visible global change and,
optionally, re-starts. Correctness in these implementations, such as those of non-
blocking data structures or Software Transactional Memories (STM’s) [1], cannot
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be easily expressed as variations of assertions. Instead, one needs to express the
desired properties in terms of future behavior, for instance, what needs to hold
at the present program state if the method call or transaction completes without
conflict.

In our previous work [2], we have introduced tressa claims and incorporated
prophecy variables in order to relate the program state at which a tressa claim
is executed to the rest of the execution. Our objective was to simplify the use
of qed [3] in reduction proofs of optimistic concurrent programs. Intuitively,
tressaϕ(p) executed at state s expresses the belief that ϕ(p) holds at s as long as
the rest of the execution agrees with the current value of the prophecy variable
p. For instance, imagine that the (boolean) return value res of a method m is
mapped to the prophecy variable, pRes: An execution of m returns true iff pRes
is equal to true during the execution of m. Then, the expression tressa pRes ⇒ φ
executed at state s claims that φ at s is required to hold only in those executions
in which m returns true.

In this paper, we investigate the tressa construct with an eye towards specifi-
cation and run-time verification. Tressa claims are suitable for specifying prop-
erties for optimistic concurrency because they provide a means to relate the
outcome of a sequence of events yet to occur with the program state at which
the tressa claim is executed. Reading in contrapositive form, the tressa claim
of the previous paragraph expresses the requirement that if φ is false, then m
should return false. This pattern appears often in optimistic concurrency if, for
instance, φ expresses non-interference.

Instead of cluttering our specification methodology by prophecy variables, we
define a grammar for expressing tressa claims. It is possible to address the value
last/first written to or read from a variable by a particular subset of all active
threads, or the value of a variable immediately after a desired method terminates.
For instance, the above tressa claim would be replaced with tressaExit(res) ⇒
x = y, where Exit(res) is the value of res immediately after m terminates.
Thanks to this approach, the user is not required to look for and then annotate
the proper places in the code where prophecy variables have to be managed, a
process which is both error-prone and tedious.

The truth value of a tressa claim is a function of the program state where
the tressa claim occurs and the execution suffix following this occurrence. Given
the rather simple semantics, they are amenable to low complexity run-time ver-
ification which could help uncover subtle bugs of concurrency. Accordingly, we
develop a run-time verification tool for tressa claim based specifications. We first
describe monitor synthesis algorithms. We show that the complexity of monitor
synthesis is linear in the sum of the size of the tressa claims checked during the
execution.

We then present our framework which implements these algorithms. Our im-
plementation is built on top of the Chess tool [4]. Chess allows complete cov-
erage of interleaving executions up to a desired bound on the number of context
switches. Since the number of context switches as well as the number of different
variables and threads that manifest interesting bugs are typically small [5], the
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use of Chess makes our tool stronger than random testing, that is, synthesiz-
ing tressa monitors over random interleavings. We demonstrate our tool over a
sample of interesting implementations.

Related Work. The specification formalisms to generate monitors for run-time
verification usually employ a variant of linear temporal logic, LTL [6,7,8]. As non-
regular properties cannot be expressed in LTL, more expressive formalizations
have recently been developed [9,10,11]. Our formalization is not more expressive
than the latter formalizations; the strength in our approach comes from two
aspects. First, tressa claims have a relatively simple syntax with intuitive con-
structs. This we believe will lead to a short learning phase. Second, the constructs
we use transfer the burden of identifying, in the code, places corresponding to an
event of interest from the user to the run-time verification tool. This removes the
possibility of incomplete or erroneous annotation (with auxiliary variables) by
the user. As far as the complexity of monitor synthesis and run-time verification
is concerned, we propose an on-the-fly algorithm of linear time complexity in
the number of tressa claims and of logarithmic space complexity in the length
of the execution, on par with other recent work [9,10].

2 Motivation

In this section, we will give an example where assertion based reasoning fails to
capture the natural correctness requirement.

Specifications with tressa claims. Consider the code given in Fig. 1 which
is a simplified version of an atomic snapshot algorithm (e.g., [12]). The snapshot
algorithm aims at obtaining a consistent view of a set (here, a pair) of addresses
shared among concurrent threads each of which might either be trying to take

public Pair Snapshot(int a, int b)
{
int va, vb, da, db;
boolean s = true;

atomic{ va = m[a].v; da = m[a].d; } // Rda
atomic{ vb = m[b].v; db = m[b].d; } // Rdb

// if method is to succeed, da and db form a consistent snapshot.

atomic{ if (va<m[a].v) { s = false; } } // Vala
atomic{ if (vb<m[b].v) { s = false; } } // Valb

if (s) { return new Pair(da,db); } // Comm
else { return null; } // Abrt

}

public void Write(int a, int d)
{
atomic{ m[a].d = d; m[a].v ++; }

}

Fig. 1. A collection that implements an atomic read of two distinct variables, Snapshot,

and random access updates, Write
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a snapshot or updating a shared address. For convenience, we assume that code
blocks tagged with atomic are executed atomically (without interleaving).

The method Snapshot takes in two addresses, and tries to return a consistent
pair of values stored in these two addresses. In any lock-based implementation,
shared variables are accessed only after obtaining their exclusive ownership, e.g.,
via locks. This implementation, however, uses optimistic concurrency because as
m[b] is being read (line Rdb), the lock for m[a] is not owned and any thread
is free to update m[a]’s value. This is an absence of conflict assumption which
needs to be eventually validated (the second round of reads of the same addresses
at lines Vala and Valb). Each location is assumed to contain a version number
which is incremented whenever a value is written by a call to Write. It is this
version number which Snapshot uses in validation: a different (greater value)
version number than the local copy indicates that its copy of the address is
stale.

A correct snapshot algorithm should either terminate unsuccessfully and re-
turn a default value such as null, or, it should appear to take an instantaneous
snapshot (of m[a].d and m[b].d) and return the values read. The implementa-
tion in Fig. 1 is correct in this sense. Intuitively, if the version number m[a].v
has not been incremented by another concurrent write between lines Rda and
Vala, then it is ensured that m[a].d is unchanged in this time interval, and
m[a].d is equal to da. A similar argument holds for lines Rdb, Valb, m[b].d and
db. It is most natural to put a claim about this desired property at the point in
the program where it needs to hold, i.e., between Rdb and Vala.

Observe that if Snapshot is to terminate successfully, it must be the case
that m[a].d= da and m[b].d=db between the lines Rdb and Vala. However, this
guarantee is not about the past or the execution prefix, but rather of possible
future behavior or the execution suffix. As such, any assertion, which can only
relate execution prefixes to program states, placed between the first pair of reads
and the rest of the method will fail to capture this property. For instance, we
cannot assert s==>(da==m[a].d) between Vala and Valb because immediately
after m[a] is found to be untouched (local and global version numbers are found
to be equal at Vala), a context switch might occur and another thread might
update m[a] which will violate the assertion. Assertions before Vala or after
Valb will fail in a similar manner to express the desired property.

Generalizing the above arguments for arbitrary optimistic concurrency imple-
mentations, we can state that typically the programmer will need to specify a
condition to be satisfied at the present state where the condition itself depends
on the rest of the execution. For this class of specifications, we propose the use
of tressa claims. Simply put, a tressa claim holds true only if the remaining part
of the execution conforms to the claim. Capturing the remaining part of the
execution is accomplished via special constructs (prophecy variables) denoting
values of variables attained after a certain event occurs. This enables us to relate
the present state to the eventual outcome and express the desired correctness
property naturally.



388 A. Sezgin et al.

...

atomic{ vb = m[b].v; db = m[b].d; }

tressa Exit(s) ==> (da==m[a].d && db==m[b].d);

atomic{ if (va<m[a].v) { s = false; } }

...

Fig. 2. A possible specification for Snapshot expressed in terms of future behavior

Now, consider the modification given in Fig. 2 containing a tressa claim. The
claim states that if the method commits (in the future) (Exit(s), which denotes
the value of s when Snapshot terminates, is true), the current values of the
pair of da and db will constitute a consistent snapshot of addresses a and b.
The claim is located where we expect the condition to hold and (the implicit
prophecy variable) Exit(s) allows the claim to be checked for only successfully
terminating Snapshot executions.

da=1
db=2
//tressa fails

s=true

m[a].d=1

m[a].v++

m[b].d=2

m[b].v++

da=1
db=0

//tressa fails

s=true

...

...

Tx Tu Tv Ty

Fig. 3. An interleaving that exhibits an inconsistent snapshot

Bug Manifestation. In order to illustrate how tressa claims can help distin-
guish faulty behavior from correct ones, consider another implementation which
uses the same Snapshot method, but has a broken non-atomic Write whose
body is given as:

m[a].d = d; atomic{ m[a].v ++; }

That is, in the Write method, there can be arbitrarily many actions between
the update of the data value, m[a].d, and the incrementing of the version num-
ber, m[a].v. This is a faulty implementation and the tressa claim we introduced
in Fig. 2 will be violated in some executions and thus catch the bug. Incidentally,
the underlying correctness criterion for our sample implementation is lineariz-
ability [13], but a discussion on linearizability goes beyond the scope of this paper.
This buggy version allows executions which cannot be linearized, an example of
which is given below.

Consider the execution given in Fig. 3. Dashed arrows represent time flow,
each column represents the execution of a thread whose id is given at the top
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of each column and each row corresponds to a time instant when one of these
threads makes a transition. In this sample execution, threads Tx and Ty execute
Snapshot(a,b), taking snapshots of addresses a and b. Threads Tu and Tv ex-
ecute Write(a) and Write(b) updating the contents of a and b, respectively.
Assume that the initial value of each address is 0.

Thread Tx reads 0 for m[a].d, 2 for m[b].d. Thread Ty reads 1 for m[a].d,
0 for m[b].d. Since the version numbers are updated non-atomically, in this
particular execution, both snapshot methods will conclude success and return
their snapshot. However, both of the returned snapshots is inconsistent in any
possible linearization of this sequence. This is an erroneous execution and the
tressa should fail; it indeed does. When the tressa claim is evaluated in thread
Tx, Exit(s) is true, because Tx does not observe any of the updates done by Tu
and Tv and ends Snapshot deciding non-interference (s is set to true when Tx
terminates), but da (0) is not equal to the current value of m[a].d (1). Similarly,
the tressa of thread Ty also fails as its copy of Exit(s) is also true but the values
of db (0) and m[b].d (2) are not equal.

Once the violation is generated, the user will be presented with the counter
example which clearly identifies the failing tressa claims. Since the tressa claim
depends on the outcome of the Snapshot method, and the values held in da
and db after executing Rdb, its failure means that even though there was an
interference from concurrent threads, the validation part of Snapshot failed to
detect this. This would point to two possible sources of failure: (i) the validation
part is erroneous, or (ii) the interference is not properly reported. In our case,
it is the latter and the tressa violation helps the user identify the nature of the
bug.

The tressa claim we gave above was an approximate specification of lineariz-
ability (or atomicity). This is for illustration purposes only. We will present other
examples of tressa claims which express properties tailored to the implementation
under consideration and not just general correctness criteria like linearizability.

3 Formalization

Programs. A concurrent program text is a collection of procedures, where each
procedure is written according to a given grammar representing the underlying
programming language. Each procedure has well-defined entry and exit points.
Each well-formed sentence in the programming language assumed to be executing
atomically is called a statement. A program is a mapping from a set of live threads
T id to the procedures of the program text. Intuitively, a program identifies
which thread is running which procedure. We imagine a potentially infinite set
of program states. Each program state holds all the necessary control information
and the valuation of each program variable. We ignore the details of how this
information is encoded in a program state. We distinguish a subset of program
states, called the initial states, which are intuitively those states from which a
program can start its execution.

Each program generates a set of runs, alternating sequences of program states
and dynamic statements. For t ∈ T id and s a statement, the pair (t, s) is called
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a dynamic statement. Each run, q0
d1−→ q1 . . .

dn−→ qn, where qi’s represent states,
di’s represent dynamic statements, satisfies the usual initial and transition con-
ditions: The state q0 is an initial state and for each triple qi−1

di−→ qi, it is possible
to make a transition from program state qi−1 to qi by executing the dynamic
statement di. The semantics of each transition is governed by the programming
language.

Tressa Claims. A tressa claim is a special statement of the form tressaφ,
where tressa is assumed to be part of the programming language lexeme and φ
is a tressa predicate, an element of the set Pred whose syntax is given below.

Pred : ::= relk(Exprk) | Pred ∧ Pred | ¬Pred
Expr : ::= Term | fk(Exprk)

Term : ::= First(var,AType, tSet) | Last(var,AType, tSet, cond) | Exit(var) | var
AType : ::= Rd | Wr | RW

Each predicate is either the result of the application of some k-ary relation to k
expressions (Expr) or a boolean combination of predicates. Each expression is
either some term (Term) or some k-ary function fk over expressions. AType is
the access type indicator: Rd is used for only read accesses, Wr for write accesses,
and RW for read or write accesses.

Example. Our example is drawn from software transactional memory implemen-
tations. Consider the code given in Fig. 4, snippets from a program intended as
a test harness for the Bartok STM implementation [14]. It starts by initializing
the transaction (DTM.Start). The value stored in the shared object o1 is then
transactionally read (DTM.OpenForRead) and this read value incremented by 1
is then transactionally written (DTM.OpenForUpdate) into o2. We require that if
the transaction succeeds after doing these two operations, the values in o1 and
o2 turn out to be exactly as updated by this transaction, i.e., (o1.d)+1=o2.d.
This is expressed by the first tressa claim. We also require that an object that is
only read (not updated) in a transaction should have its value constant through-
out the execution span of a transaction that commits. In our code, o1 is one such
object and the second tressa claim expresses this property.

As another interesting property, we want to express correct roll-back in the
case of aborting a transaction. In our STM, each update is logged in a thread
local list. As a variable is updated, an entry is inserted into this list, specifying
the overwritten value. Then, to roll back the changes made to the shared address
space, the list is traversed in reverse order, canceling the effect of each update
until all the variable values are restored. In order to express correct undoing,
we record the value of o2.d prior to the update done by this transaction in the
local variable pre_start. We then require that the very last value written by
an aborting transaction be equal to the initial value kept in pre_start. Notice
that, due to the possibly more than one entry in the log list for o2.d, it would
be harder to express this property using either assertions or temporal logical
formulations.
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public void Foo(Xact Tx) {
...

DTM.Start(Tx); //Transaction Tx starts

...

DTM.OpenForRead(Tx, o1);

tmp = o1.d;

tmp = tmp + 1;

...

DTM.OpenForUpdate(Tx, o2);

pre_start = o2.d;

o2.d = tmp;

tressa (Exit(success) ==> (o2.d == o1.d + 1);

...

// At every later read of o1.d

tressa (Exit(success) ==> (tmp == o1.d + 1));

...

success = DTM.Commit(Tx); // Transaction Tx attempts to commit.

// success==true if it commits.

if (!success) {
done = false;

tressa (Last(o2,Wr,{this},done)==pre_start);
DTM.UndoUpdates(Tx);

done = true;

}
}

Fig. 4. Specifying properties in a code built on the Bartok STM

Semantics. We will describe the valuation of each term using diagrams. For the
following, we say that a dynamic statement (t, st) matches (v, a, T ) if t ∈ T , st
accesses v and the access type agrees with the access-type a.

First(v, a, T ) denotes the value of the variable v after the first occurrence of
a matching dynamic statement in the execution suffix. If the action sequence
represented by δ above does not contain any dynamic statement that matches
(v, a, T ), the value of the term is the value written (or the value read) by dj , as
the wavy line suggests. If no such dj exists, First(v, a, T ) = ⊥.
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Last(v, a, T, c) denotes the value of the variable v after the last occurrence of
a matching dynamic statement prior to c becoming true. In the diagram above,
we assume that all djl

match (v, a, T ) but only the very last one, djk
, determines

the value of Last(v, a, T, c). If c stays false until termination or no matching
statement occurs prior to c becoming true, Last(v, a, T, c) = ⊥.

Exit(v) denotes the value of the variable v immediately after the procedure
p in which the term occurs terminates. In the diagram above, letting t denote
the thread which executed the instruction containing Exit(v), we assume that
the number of calls to p and that of returns from p executed by t are equal
(recursion is allowed). If the execution blocks before p terminates, Exit(v) = ⊥.

A tressa claim is ready in a run if none of its terms evaluates to ⊥. A program
run violates tressaφ if tressaφ occurs during the run, the tressa claim is ready
and φ evaluates to false. A program p satisfies a tressa claim tc if no instance of
p has a run violating tc.

Let us further illustrate our formalization with the following example. Assume
that φ is given as First(v, Rd, T id) = Last(x, Wr, {t}, done) and let (t, tressaφ) be
the dynamic statement executed at qi.

In the above diagram, we assume that the dashed lines represent sequences
of statements that match neither (v, Rd, T id) nor (x, Wr, {t}). At qj , an update
to x is done by t, but since this is not the last matching statement prior to done
becoming true, its value is ignored. Then, at qk, the dynamic statement that
matches (v, Rd, T id) occurs. The value of v returned by this read determines the
value of First(v, Rd, T id) which we assume to be 5. At ql, another update to x is
done by t. According to the diagram, this is the last update to x by t prior to
done becoming true at qm+1. Thus, Last(x, Wr, {t}, done) = 3 in this run. Since
all the terms of φ are determined by the execution segment ending at qm+1, φ
can be evaluated, which is found to be false. Thus, tressa φ fails. It is important
to note that we need the execution segment qi . . . qm+1 to evaluate the tressa
claim but the claim itself fails at qi+1.

4 Run-Time Verification

In this section, we first describe the algorithms we use to check tressa claims
over a given run. Then, we give an overview of the implementation of these
algorithms.
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4.1 Monitoring Algorithm

In this section, we explain how a tressa claim occurring in a given run can
be evaluated. We present an algorithm that manipulates the tressa claims it
observes throughout the course of an execution. We first explain what is being
done at each transition, then delve into specific operations.

Algorithm 1. Monitoring Transitions
1: procedure Step(dstmt)
2: for all te ∈ TressaTable do
3: te.termSet ← EvalTerms(te.termSet,dstmt)
4: end for
5: for all pred ∈ ParseStmt(dstmt) do
6: InitTressa(pred)

7: end for
8: for all te ∈ TressaTable do
9: if te.termSet = ∅ then

10: Check(te)
11: Remove te from TressaTable
12: end if
13: end for
14: end procedure

Algorithm 1 shows the three phases that the monitor performs by each transi-
tion. It gets the label of the transition, the dynamic statement dstmt, as an input
parameter. All the tressa claims which have been seen so far in the execution and
whose value is not yet determined are kept in the TressaTable. In the first phase
(lines 2-4), TressaTable is traversed and each term whose value is yet to be deter-
mined is analyzed and any of its terms that becomes determined is evaluated (line
3). In the second phase (lines 5-7), all the tressa claims that occur in dstmt are han-
dled. In the third and final phase (lines 8-13), the tressa claims whose value can be
calculated after this transition are found (line 9), their value is calculated (line 10)
and is removed fromTressaTable (line 11). We should point out that the implemen-
tation of this algorithm is slightly different where each variable points to the set of
terms that are affected by the accesses to that variable. Then, instead of checking
all live tressa claims, only those terms which depend on the accessed variables are
checked. We used this alternative algorithm for ease of presentation.

Algorithm 2 shows how a new tressa claim is handled. Each entry in the
TressaTable holds the predicate of the tressa claim and a set containing all the
distinct terms of the predicate. These are assigned to a new entry, tressaEntry,
at lines 2 and 3, respectively. Then, all the Val-terms are evaluated (lines 6-7)
and each of these terms are removed from the set of undetermined terms (line
8). For all other term types, the value of the term is set to ⊥ (line 9-10). For
the Exitterms, we record the most recent value of the variable mentioned in
the term (line 12-13). The resulting entry is inserted into the TressaTable (line
14). Observe that if a tressa claim has only Val-terms, its value is ready to be
evaluated immediately after it occurs in the execution.
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Algorithm 2. Initializing for a New Tressa
1: procedure InitTressa(pred)

2: tressaEntry.pred ← pred
3: tressaEntry.termSet ← Parse(pred)

4: termSet ← tressaEntry.termSet
5: for all term ∈ termSet do
6: if IsVTerm(term) then
7: term.val ← EvalVTerm(term)

8: tressaEntry.termSet ← tressaEntry.termSet \ {term}
9: else

10: term.val ← ⊥
11: end if
12: if IsETerm(term) then
13: term.preval ← Eval(term)

14: end if
15: end for
16: Insert tressaEntry into TressaTable
17: end procedure

Algorithm 3 shows how a set of terms is evaluated. It receives as input a term
set, termSet, and a dynamic statement, dstmt. Each term in termSet initially
has its value set to ⊥, denoting undetermined value. We evaluate each term
depending on its type and dstmt. For instance, if the term is a First-term and
if dstmt is a dynamic statement which matches the term (line 4), the value of
the term is evaluated and assigned to the term (line 5).1 Similar checks and
assignments are made for each type except for the Val type as their values were
already evaluated when the tressa was initialized as in Algorithm 2. If the term’s
value is determined, then it is removed from the set of undetermined terms (lines
13-14). The algorithm returns the new set of undetermined terms (line 17).

Algorithm 2 has time complexity linear in the length of the tressa claim where
the length of a tressa claim is given as the number of distinct terms the claim
contains. Algorithm 3 has time complexity linear in the number of terms the
parameter termSet contains because each call takes constant time. Algorithm 1
then has time complexity O(sizett) where sizett is the sum of the lengths of all
tressa claims observed throughout the execution. In terms of space complexity,
the only non-constant complexity comes from EvalETerm which counts the num-
ber of pending calls in case of recursion. This introduces a logarithmic space
complexity in the length of the execution.

4.2 Implementation

We start by giving an architectural overview of the implementation. We then
highlight several implementation related issues.

1 The call to EvalETerm is simplified. Due to recursion, we actually keep track of the

recursion depth by counting the number of pending calls.
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Algorithm 3. Term Evaluation
1: procedure EvalTerms(termSet,dstmt)
2: cSet ← termSet
3: for all term ∈ cSet do
4: if IsFTerm(term) ∧ IsCompat(term,dstmt) then
5: term.val ← EvalFTerm(term,dstmt)
6: end if
7: if IsLTerm(term) ∧ IsCompat(term,dstmt) then
8: term.val ← EvalLTerm(term,dstmt)
9: end if

10: if IsETerm(term) ∧ IsCompat(term,dstmt) then
11: term.val ← EvalETerm(term,dstmt)
12: end if
13: if term.val �= ⊥ then
14: termSet ← termSet \ term
15: end if
16: end for
17: return termSet
18: end procedure

Architecture. Figure 5 gives an operational description of our testing frame-
work. In the first phase, the user annotates the test harness s/he wishes to verify
with tressa claims according to a partial specification of correctness. The test
harness is the input program wrapped with a specific test scenario. We currently
accept programs written in c#, but in principle, any program written for the
.net framework can be easily handled.

In the second phase, we perform controlled executions of the given program.
The annotated program is first processed by the Tressa library. The tressa library
contains the code implementing the monitoring algorithm explained in Sec. 4.1.
The output of this process, the original test harness along with its monitors,
is fed into Chess. The Chess tool is responsible for two main tasks. First, it
explores all possible interleavings of the Test Input (see below). Second, as each

Fig. 5. The architectural diagram of the testing framework
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interleaving is being executed, all memory accesses and method calls and exits
are reported as events back to the Tressa library.

Tressa claims are evaluated as soon as they can be evaluated per the algorithm
given in Sec. 4.1. If the tressa claim is satisfied, no further action is taken.
Otherwise, the execution halts with a report specifying the failing tressa. Chess

can then be used to reproduce the failing execution for the analysis of the bug.

The Chess Tool [4]. The use of Chess is rather simple. The programmer spec-
ifies a particular test scenario on which s/he would like to check the outcome of
her/his program. Chess then runs the scenario so that all possible interleavings,
up to a bound on the number of context switches specified by the programmer,
are explored. It is well known that a concurrent program typically manifests its
bug with only a few context switches over a few variables [4,5]. Thus, a small
scenario with a context switch bound of two is likely to unravel subtle concur-
rency bugs. Case in point, the counter-example we gave in Sec. 2 for the buggy
implementation (see Fig. 3), there is a single context switch per thread, there
are four threads and two distinct addresses. Complete coverage of a set of in-
terleavings reduces one degree of uncertainty about the outcome of a test-case.
The user is still responsible for coming up with a scenario and a correct bound
that would uncover the bug, but the additional uncertainty about whether the
correct schedule would be chanced is removed.

Conceptually, Chess achieves complete coverage by placing semaphores prior
to all accesses to volatile variables or calls to synchronization methods from the
C# System.Threading namespace such as the Thread.Start() method used for
creating a thread or the Thread.Join() method used for waiting for a child
thread to terminate. The places where semaphores are placed are the candidate
context switching points. As Chess explores a particular interleaving, each time
a candidate context switching point is reached, exactly one semaphore is put
in a non-blocking state which forces the scheduler to choose the desired thread.
Chess records down the set of interleavings it has already explored and as long
as there remain unexplored interleavings, it resets the test harness, runs the
program according to a new interleaving. A detailed explanation of the exact
mechanism is beyond the scope of this paper.

The Tressa Library. The crux of the implementation lies in the Tressa library
which implements the monitoring algorithm of Sec. 4.1. Tressa claims are gener-
ated by constructing a Tressa object whose constructor takes in its predicate in
the form of a string. This string is then parsed into its constituent terms. Each
term has a reference to the Tressa object it is part of. Additionally, for each of
its terms, a handle denoting the term (its type and contents) and the variable
referred to in the term is inserted into a global table.

An additional feature of Chess has been crucial in the operation of the moni-
tor implemented in the Tressa Library. As Chess explores a particular execution,
it keeps track of the relevant synchronization operations via an event generation
mechanism. Each memory access, method call, method return and the like gen-
erate events which are then caught by Chess in order to have complete control
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over the execution of the Test Input. We are making use of these events to
instrument each memory access as well as the method calls/returns so that the
monitoring algorithm is called at every relevant transition. For instance, every
time a variable is read, it generates an event which supplies the address accessed,
the value read. Thus, accesses to variables are instrumented. As a variable is ac-
cessed, it is checked whether there are terms dependent on it by inspecting the
global table for an entry for that variable. If the variable’s entry is non-empty,
for each term in its entry, a check is performed to see whether the term becomes
determined. This step can be seen as a call to the Step with the instrumented
instruction as its input parameter, dstmt.

Following the algorithms given in Sec. 4.1, when a term becomes determined,
it is removed from the variable’s entry. For each term about to be removed, we
also check whether the owning tressa claim has still undetermined terms. If all
the terms of a tressa claim become determined, the truth value of the predicate
is calculated. If the predicate evaluates to false, the violation along with the
tressa claim causing it is reported. Thanks to the bug reproduction capability
of the Chess tool, the user can then trace the buggy execution to see what the
cause for the violation is. Currently, the Tressa library is implemented in C#.
We are using the CLR wrapper of Chess, and the overall system is run under the
.NET framework.

5 Experiments

In this section, we report our experience with an initial proof-of-concept imple-
mentation where instrumentation of memory accesses is done manually. We are
currently working on automating the instrumentation and will provide a public
release of the implementation.

We have tried our framework on three programs: the atomic snapshot imple-
mentation (see Sec. 2), a concurrent stack implementation [15] and a model of
the Bartok STM [14]. We ran the examples on a Mac laptop with 1GB of RAM
running at 2.8GHz.

In the atomic snapshot implementation, we have tried both the correct and
the buggy versions on the test scenario given in Fig. 3. As expected, thanks to
full coverage provided by Chess, the bug was caught by our implementation
after exploring 191 different schedules. The correct implementation generated
no violations in 979 total schedules which is the total number of schedules with
at most two context switches per thread.

For the concurrent stack, we ran a test scenario of three threads, two of them
pushing five elements, the third popping five elements. In the push method we
placed the tressa claim tressa First(top, Wr, {t}) = Val(n) which expressed the
property that the first write by the thread t currently executing the method into
the stack (top) is equal to the element with which push is called (n). Contrary
to our expectations, the tressa failed after 113 schedules. The reason was due to
an elimination round which bypasses pushing if there is a concurrently pending
pop operation. This example highlights that even deceptively simple looking
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tressa claims can be valuable tools in comprehending or debugging concurrent
implementations. Later correcting this incorrect tressa claim removed the failure.

In the Bartok model, we uncovered a subtle bug by running a scenario with
two threads, each running a transaction of at most two instructions. The bug
was caught after 104 schedules, which takes about ten seconds, by the tressa
claim tressa o.owner �= t∧o.IsOwned⇒ ¬Exit(s). This claim, placed after a read
of o, states that if o is currently owned by some other transaction, then this
transaction should not commit. Corrected version was verified after completing
all 112 possible schedules in approximately ten seconds.
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1 Introduction

Highly complex and safety-critical systems are not only present in traditional
areas such as the aerospace and nuclear power industries, but are also becoming
ubiquitous in other areas including the automobile, health care, and the man-
ufacturing industries. Integrated System Health Management (ISHM) systems
are being created to detect, diagnose, predict, and potentially mitigate adverse
events during the operation of such systems. ISHM systems obtain data from
multiple sensors and perform reasoning about the state of health of the sys-
tem based on data and physical models. Usually, major electromechanical or
hydraulic subsystems in aircraft are monitored by an ISHM system.

More sophisticated ISHM systems detect and diagnose the root-cause of an
anomaly and can also predict the remaining useful component life based on
the sensor data. This prognostic capability is not only being used to increase
safety, but also to substantially cut maintenance and environmental costs: in
contrast to schedule-based maintenance, where parts are replaced after a fixed
time regardless of usage and deterioration, condition-based maintenance uses
sensor data and estimates to only replace a component when it is necessary.

A modern ISHM system is a complex piece of software in itself. In the follow-
ing, we therefore refer to it as Health Management Software (HMSW). Internally,
the HMSW operates on a model of the component to be monitored [1,2,3]. Based
upon sensor signals and other dynamic information, the HMSW detects if the
component is working nominally, or if a failure has occurred. The failure will be
identified and, if applicable, recovery actions started. It is obvious that such a
system must work correctly and reliably. False alarms are not only a nuisance,
but can lead to substantially higher maintenance costs or even safety-hazards if
the operators get into the habit of ignoring the warning system. On the other
hand, missed alarms can produce serious problems. So the question arises “Quis
custodiet ipsos custodes?” (“Who guards the guardians?”, Juvenal.)

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 399–404, 2010.
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Obviously, theHMSWmustundergo rigorous verification andvalidation (V&V)
to at least the same level of assurance as for the system monitored. However, there
has been only limited research on that topic. Although there are many techniques
for verifiable and verified monitors as well as reliable mitigation mechanisms, V&V
challenges can be identified in the HMSW component, which performs reasoning in
order to identify the fault anddetect themost likely root causes. In this short paper,
we will present major ISHM components, identify V&V challenges, and outline
potential V&V approaches for HMSW.

2 ISHM Architecture

An ISHM system performs FDDR (Fault Detection, Diagnosis, and Recovery) by
monitoring the host system. Based upon readings from sensors, the ISHM engine
uses the ISHM model (which can be an explicit model or implicitly coded as a set
of rules, for example) to determine if the system is working nominally, or if a failure
has occurred (diagnostics) or will occur in the near future (prognostics).

Because most system faults manifest themselves in multiple ways, and a symp-
tom can be caused by multiple faults, it is critical to determine the root-cause(s)
of symptoms. Thus, the ISHM engine must be able to distinguish between poten-
tially hundreds of potentially interacting root-causes.For example, lowoil pressure
and vibration could point to many different problems if looked at separately. Only
when considered in combination, a worn-out engine bearing can be diagnosed. If
present, a prognostic capability for an ISHM engine can be used to also estimate
the remaining useful (safe) life of the system.

Depending on the application, an ISHM system must perform rapidly in order
to provide suitable feedback to the operator and to be able to successfully mitigate
the adverse event. Finally, most ISHM systems contains components that help to
mitigate or recover from the error. In this paper, we focus on the HMSW core com-
ponents: the ISHM engine and the ISHM model.

A wide range of FDIR modelling approaches are available; each of them may
have several associated reasoning algorithms. These modelling approaches and
algorithms are again supported by diagnostic software such as Livingstone [1],
Hyde [2], or ProDiagnose [3,4]. Other software tools include TEAMS [5] and the
Generic Modeling Environment (GME) [6].

3 V&V Challenges for ISHM

Although it is possible that the overall gain in safety and reliability of a system
due to ISHM may be significant, it comes at a price. Poorly designed or malfunc-
tioning HMSW can produce false alarms (“false positives”) or can miss important
failures (“false negatives”). A false alarm occurs if the HMSWsystem reports a fail-
ure, whereas the monitored system is working flawlessly. A continuously lit “Check
Engine” light in the car can be such a nuisance signal.Although false alarms are not
primarily a safety concern (in contrast to false negatives), they can severely impede
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the system operation by performing unnecessary fixes and reconfigurations. More-
over, they can lead to a situation where operators ignore the output of the system,
thereby leading to other significant problems. Thus, the HMSW must be designed
and validated carefully to avoid false negatives and false positive, and its imple-
mentation has to undergo rigorous V&V as errors will not only deliver unreliable
results but can cause severe problems in the host system.

In addition, ISHM approaches can contain algorithmic elements, for which cur-
rent V&V standards do not provide any guidance. For example, they may use non-
traditional reasoning algorithms, some of which are “difficult” to perform V&V on,
as they rely on randomization, iterative search, or large, complicated, or dynamic
data structures.

We also note that the ISHM system is designed to detect adverse conditions in
which the host system is in an off-nominal condition. Thus, the implications for
V&V of the ISHM system and its underlying software must be able to accommo-
date off-nominal behavior in some of the inputs. This poses a significant challenge
from a V&V perspective for traditional software, because the conditions of the off-
nominal behavior are, by definition, unknown. Presumably, if a known off-nominal
condition existed in the system, it would be removed during the design process.
V&V research must address this issue to develop reliable and dependable HMSW.

4 Toward V&V of Health Management Software

In order to address the V&V issues discussed in Section 3, specific tools and tech-
niques must be developed. In this paper, we want to focus on two critical ISHM
components identified in Section 2: the analysis of the ISHM model, and the V&V
of the ISHM engine, seen as a piece of code (“Code-level V&V”). We think that this
separate analysis can be justified because in most approaches, the ISHM model is
translated or compiled into a highly compact and efficient data structure, which
is then accessed by the ISHM engine. For example, Bayesian networks (one class
of ISHM models) can be translated into arithmetic circuits [8]. Other approaches
transform rules and models into tables, which enable fast look-up and avoid the
call to resource-consuming (iterative) reasoning algorithms.

Although health management can be seen as one approach for run-time verifi-
cation and validation (failures are detected and mitigated with the system in oper-
ation), V&V of the HMSW will take place during its development and will not be
performed while the HMSW is running.

4.1 Model-Level V&V

An ISHM model captures essential information about nominal and off-nominal
operation of the host system on various levels of abstraction and is used by the
ISHM engine to perform reasoning. Thus, V&V has to make sure that the model is
adequate for the given domain and ISHM requirements and that it is as complete
and consistent as possible. State-of-the-art V&V approaches include exhaustive
model enumeration using a model checker, for example, Livingston Pathfinder [9].
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Larger and hybrid models can be tested using parametric testing. This statistical
approach combines n-factor combinatorial exploration with advanced data analy-
sis [12] to exercise the ISHM model with wide ranges of sensor inputs and internal
parameters. This approach scales to large systems, like fault detection models for
the Ares I rocket [13].

For the goal of a complete model coverage during model validation, we have
defined ISHM-specific coverage metrics (e.g., cover all failure modes, cover all rea-
soning paths) and used model checking with symbolic execution (e.g., Symbolic
Pathfinder (SPF) [11]) as well as specific algorithms for the automatic generation
of small test suites for full model coverage, which we are studying with ADAPT
ISHM models [3]. Finally, sensitivity analysis for Bayesian Networks [8] is useful
to assess the quality of the model parameters. The results of all these analysis tech-
niques provide arguments about the quality of themodel and its expectedbehavior.

4.2 Code-Level V&V

Since the health management functions are performed by software, this software—
even if the model has been verified—has to undergo rigorous V&V (“code-level
V&V”). Here, the HMSW is treated like a regular piece of software, which has to
be tested and validated. In most cases, this will include testing according to estab-
lished code coverage criteria, e.g., the MCDC (Modified Condition Decision Cover-
age) as required by the DO-178B standard [14], worst case execution time analysis,
stack and memory analysis, etc.

Often,model translation and compilation (e.g., into arithmetic circuits [8]) elim-
inates or reduces the problems associated with non-traditional reasoning algo-
rithms (see Section 3), and the resulting algorithms can be shown to have limited
resource bounds and do not require dynamic memory allocation. The minimalistic
ISHM engines that are the target of model translation and compilation might even
be amenable to formal verification. Because of the high complexity of the model
translation process, it is hard to provide any guarantees about the compiler imple-
mentation. In that case, techniques known from the area of compilers, like proof
carrying code [15] might be applicable.

In all cases, the HMSW takes inputs from many different sources (hardware,
sensors, software sensors, operating system, etc.) and thus has to interact with
the host system as well as other software systems on multiple levels. The resulting
HMSW architecture can therefore become rather complicated, requiring careful
V&V. Research has been performed to develop architectures that provide specific
capabilities for ISHM integration [16].

Code-level V&V for HMSW can utilize many V&V techniques that have been
developed for traditional software.Their extension to handling code that is specific
for HMSW is possible, but requires care. For example, ISHM specific notions and
their meaning for HMSW V&V must be clearly defined. Otherwise, terminological
misunderstandings (e.g., on terms like “non-deterministic”, “search”, or “recur-
sive”) can lead to unnecessary delays in V&V and certification.
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5 Conclusions

ISHM systems have a growing potential in safety-critical areas. The health man-
agement software helps to ensure that the (hardware or software) system under
scrutiny performs reliably and safely by monitoring the host system’s behaviour
during runtime.

RigorousV&Vof theHMSWis a prerequisite forwidespread and safe applicabil-
ity of such systems. Although approaches for V&V of monitors and fault recovery
exist, we have identified V&V gaps in diagnosis and root cause analysis. We believe
that by separating out model V&V from code-level V&V, different approaches can
be combined to demonstrate that Health Management Software can correctly and
reliably guard the monitored host system.

In this paper, we have presented V&V challenges and discussed how exhaus-
tive techniques (based upon model checking and symbolic execution), parametric
testing, and traditional code V&V techniques (like execution time analysis, code
coverage, or stack analysis) could help to address the challenges.

References

1. Williams, B.C., Nayak, U.: A model-based approach to reactive self-configuring sys-

tems. In: Proceedings of AAAI 1996, pp. 971–978 (1996)

2. Narasimhan, S., Brownston, L.: Hyde: a general framework for stochastic and hybrid

model-based diagnosis. In: Proc. DX 2007, pp. 162–169 (2007)

3. Mengshoel, O.J., Darwiche, A., Cascio, K., Chavira, M., Poll, S., Uckun, S.: Diag-

nosing faults in electrical power systems of spacecraft and aircraft. In: Proc. 10th

Innovative Applications of Artificial Intelligence Conf. (IAAI 2008), pp. 1699–1705

(2008)

4. Ricks, B.W., Mengshoel, O.J.: Methods for probabilistic fault diagnosis: An electrical

power system case study. In: Proc. PHM 2009 (2009)

5. Qualtech Systems Inc.: The Testability, Engineering and Maintenance System,

TEAMS (1993), http://www.teamqsi.com

6. Manders, E.J., Biswas, G., Mahadevan, N., Karsai, G.: Component-oriented mod-

eling of hybrid dynamic systems using the generic modeling environment. In: Proc.

MDB/MOMPES, pp. 159–168. IEEE, Los Alamitos (2006)

7. Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D., Lee, C., Mengshoel,

O.J., Neukom,C., Nishikawa, D., Ossenfort, J., Sweet, A., Yentus, S., Roychoudhury,

I., Daigle, M., Biswas, G., Koutsoukos, X.: Advanced diagnostics and prognostics

testbed. In: Proc. DX 2007, pp. 178–185 (2007)

8. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Univer-

sity Press, Cambridge (2009)

9. Lindsey, A.E., Pecheur, C.: Simulation-based verification of autonomous controllers

via Livingstone Pathfinder. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,

vol. 2988, pp. 357–371. Springer, Heidelberg (2004)

10. Pipatsrisawat, K., Darwiche, A., Mengshoel, O., Schumann, J.: Software Health

Management: A Short Review of Challenges and Existing Techniques. In: Proc.

SMC-IT (2009)

11. Pasareanu, C.S., Visser, W.: Symbolic execution and model checking for testing. In:

Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 17–18. Springer, Heidelberg (2008)

http://www.teamqsi.com


404 J. Schumann, A.N. Srivastava, and O.J. Mengshoel

12. Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., Barrett, T.: Software

V&V support by parametric analysis of large software simulation systems. In: Proc.

IEEE Aerospace. IEEE Press, Los Alamitos (2009)

13. Schumann, J., Bajwa, A., Berg, P.: Parametric testing of launch vehicle FDDR mod-

els. In: AIAA Space (2010)

14. DO-178B: Software considerations in airborne systems and equipment certification

(1992), http://www.rtca.org

15. Necula, G.C.: Proof-carrying code. In: Proc. 24th ACM Symp. Principles of Pro-

gramming Languages, pp. 106–119. ACM Press, New York (1997)

16. Dubey, A., Karsai, G., Kereskenyi, R., Mahadevan, M.: A Real-Time Component

Framework: Experience with CCM and ARINC-653. In: IEEE International Sym-

posium on Object-Oriented Real-Time Distributed Computing (2010)

http://www.rtca.org


Aspect-Oriented Instrumentation with GCC

Justin Seyster1, Ketan Dixit1, Xiaowan Huang1, Radu Grosu1,
Klaus Havelund2, Scott A. Smolka1, Scott D. Stoller1, and Erez Zadok1

1 Department of Computer Science, Stony Brook University, USA
2 Jet Propulsion Laboratory, California Institute of Technology, USA

Abstract. We present the InterAspect instrumentation framework

for GCC, a widely used compiler infrastructure. The addition of plug-

in support in the latest release of GCC makes it an attractive plat-

form for runtime instrumentation, as GCC plug-ins can directly add

instrumentation by transforming the compiler’s intermediate representa-

tion. Such transformations, however, require expert knowledge of GCC

internals. InterAspect addresses this situation by allowing instrumen-

tation plug-ins to be developed using the familiar vocabulary of Aspect-

Oriented Programming pointcuts, join points, and advice functions.

InterAspect also supports powerful customized instrumentation, where

specific information about each join point in a pointcut, as well as results

of static analysis, can be used to customize the inserted instrumentation.

We introduce the InterAspect API and present several examples that

illustrate how it can be applied to useful runtime verification problems.

1 Introduction

GCC is a widely used compiler infrastructure that supports a variety of input
languages, e.g., C, C++, Fortran, Java, and Ada, and over 30 different tar-
get machine architectures. GCC translates each of its front-end languages into
a language-independent intermediate representation, called GIMPLE, which then
gets translated to machine code for one of GCC’s many target architectures.
GCC is a very large software system with over 100 developers contributing over
the years and a steering committee consisting of 13 experts who strive to main-
tain its architectural integrity.

In earlier work [5], we extended GCC to support plug-ins, allowing users to
add their own custom passes to GCC in a modular way without patching and
recompiling the GCC source code. Released in April 2010, GCC 4.5 [14] includes
plug-in support that is largely based on our design.

GCC’s support for plug-ins presents an exciting opportunity for the devel-
opment of practical, widely-applicable program transformation tools, including
program instrumentation tools for runtime verification. Because plug-ins operate
at the level of GIMPLE, a plug-in is applicable to all of GCC’s front-end languages.
Transformation systems that manipulate machine code may also work for mul-
tiple programming languages, but low-level machine code is harder to analyze
and lacks the detailed type information that is available in GIMPLE.

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 405–420, 2010.
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Implementing instrumentation tools as GCC plug-ins provides significant ben-
efits but also presents a significant challenge: despite the fact that it is an in-
termediate representation, GIMPLE is in fact a low-level language, requiring the
writing of low-level GIMPLE Abstract Syntax Tree (AST) traversal functions in
order to transform one GIMPLE expression into another. Therefore, as GCC is
currently configured, the writing of plug-ins is not for everyone but rather only
for those intimately familiar with GIMPLE’s peculiarities.

To address this challenge, we developed the InterAspect program instru-
mentation framework, which allows instrumentation plug-ins to be developed
using the familiar vocabulary of Aspect-Oriented Programming (AOP). In-

terAspect is itself implemented using the GCC plug-in API for manipulating
GIMPLE, but it hides the complexity of this API from its users, presenting instead
an aspect-oriented API in which instrumentation is accomplished by defining
pointcuts. A pointcut denotes a set of program points, called join points, where
calls to advice functions can be inserted by a process called weaving.

InterAspect’s API allows users to customize the weaving process by defining
callback functions that get invoked for each join point. Callback functions have
access to specific information about each join point; the callbacks can use this to
customize the inserted instrumentation, and to leverage static-analysis results
for their customization.

In summary, InterAspect offers the following novel combination of features:

– InterAspect builds on top of GCC, a compiler infrastructure having a
large and dedicated following.

– InterAspect exposes an API, which encourages and simplifies open-source
collaboration.

– InterAspect has access to GCC internals, which allows one to exploit static
analysis and meta-programming during the weaving process.

To illustrate the practical utility of the InterAspect framework, we have de-
veloped a number of program-instrumentation plug-ins that use InterAspect

for custom instrumentation. These include a heap visualization plug-in for antic-
ipated use by the JPL Mars Science Laboratory software development team; an
integer range analysis plug-in that finds bugs by tracking the range of values for
each integer variable; and a code coverage plug-in that, given a pointcut and test
suite, measures the percentage of join points in the pointcut that are executed
by the test suite.

The rest of the paper is structured as follows. Section 2 provides an overview
of GCC and the InterAspect framework architecture. Section 3 introduces the
InterAspect API. Section 4 presents the three applications: heap visualization,
integer range analysis, and code coverage. Section 5 summarizes related work,
and Section 6 concludes the paper.

2 Overview of GCC and the InterAspect Architecture

As Fig. 1 illustrates, GCC translates all of its front-end languages into the GIMPLE

intermediate representation for analysis and optimization. Each transformation
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Fig. 1. A simplified view of the GCC compilation process

on GIMPLE code is split into its own pass. These passes, some of which may be plug-
ins, make up GCC’s middle-end. Moreover, a plug-in pass may be InterAspect-
based, enabling the plug-in to add instrumentation directly into the GIMPLE code.
The final middle-end passes lower the optimized and instrumented GIMPLE to the
Register Transfer Language (RTL), which the back-end translates to assembly.

GIMPLE is a C-like three-address (3A) code. Complex expressions (possibly with
side effects) are broken into simple 3A statements by introducing new, tempo-
rary variables. Similarly, complex control statements are broken into simple 3A

(conditional) gotos by introducing new labels. Type information is preserved for
every operand in each GIMPLE statement.

Fig. 2 shows a C program and its corresponding GIMPLE code, which preserves
source-level information such as data types and procedure calls. Although not
shown in the example, GIMPLE types also include pointers and structures.

int main() { 1. int main {
int a, b, c; 2. int a, b, c;
a = 5; 3. int T1, T2, T3, T4;
b = a + 10; 4. a = 5;
c = b + foo(a, b); => 5. b = a + 10;
if (a > b + c) 6. T1 = foo(a, b);

c = b++ / a + (b * a); 7. c = b + T1;
bar(a, b, c); } 8. T2 = b + c;

9. if (a <= T2) goto fi;
10. T3 = b / a;
11. T4 = b * a;
12. c = T3 + T4;
13. b = b + 1;
14. fi: bar (a, b, c); }

Fig. 2. Sample C program and corresponding GIMPLE representation

A disadvantage of working purely at the GIMPLE level is that some language-
specific constructs are not visible in GIMPLE code. For example, targeting a specific
kind of loop as a pointcut is not currently possible because all loops look the
same in GIMPLE. InterAspect can be extended with language-specific pointcuts,
whose implementation would examine the AST.

InterAspect architecture. InterAspect works by inserting a pass that first
traverses the GIMPLE code to identify program points that are join points in a



408 J. Seyster et al.

Front-end

Middle-end

Back-end

GCC

Compiled
Binary

InterAspect
Framework

Weave
Module

Specification
Compiler

Source FileAOP Spec

Plug-in

Weaving Instructions

Advice
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specified pointcut. For each such join point, it then calls a user-provided weaving
callback function, which can insert calls to advice functions. Advice functions
can be written in any language that will link with the target program, and they
can access or modify the target program’s state, including its global variables.
Advice that needs to maintain additional state can declare static variables and
global variables.

Unlike traditional AOP systems which implement a special AOP language to
define pointcuts, InterAspect provides a C API for this purpose. We believe
that this approach is well suited to open collaboration. Extending InterAspect

with new features, such as new kinds of pointcuts, does not require agreement
on new language syntax or modification to parser code. Most of the time, col-
laborators will only need to add new API functions.

As Fig. 3 illustrates, InterAspect can further serve as the instrumenta-
tion back-end for a traditional AOP specification language. The specification
compiler’s job is to split an AOP specification into pointcut definitions, as-
sociated weaving instructions, and advice code. The first two are sent to an
InterAspect-based weave module for evaluation during the instrumentation
plug-in pass, whereas the advice code is sent to GCC for compilation.

3 The InterAspect API

This section describes the functions in the InterAspect API, most of which
fall naturally into one of two categories: (1) functions for creating and filtering
pointcuts, and (2) functions for examining and instrumenting join points. Note
that users of our framework can write plug-ins solely with calls to these API
functions; it is not necessary to include any GCC header files or manipulate any
GCC data structures directly.
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Creating and filtering pointcuts. The first step for adding instrumentation
in InterAspect is to create a pointcut using a match function. Our current
implementation supports the four match functions given in Table 1, allowing one
to create four kinds of pointcuts.

Table 1. Match functions for creating pointcuts

struct aop pointcut *aop match function entry();

Creates pointcut denoting every function entry point.

struct aop pointcut *aop match function exit();

Creates pointcut denoting every function return point.

struct aop pointcut *aop match function call();

Creates pointcut denoting every function call.

struct aop pointcut *aop match assignment by type(struct aop type *type);

Creates pointcut denoting every assignment to a variable or memory location that matches a type.

Using a function entry or exit pointcut makes it possible to add instrumen-
tation that runs with every execution of a function. These pointcuts provide a
natural way to put instrumentation at the beginning and end of a function the
way one would with before-execution and an after-returning advices in a tradi-
tional AOP language. A call pointcut can instead target calls to a function. Call
pointcuts can instrument calls to library functions without recompiling them. For
example, in Section 4.1, a call pointcut is used to intercept all calls to malloc.

The assignment pointcut is useful for monitoring changes to program values.
For example, we use it in Section 4.1 to track pointer values so that we can
construct the heap graph. We plan to add several new pointcut types, including
pointcuts for conditionals and loops. These new pointcuts will make it possible
to trace the complete path of execution as a program runs, which is potentially
useful for coverage analysis, profiling, and symbolic execution.

After creating a match function, a plug-in can refine it using filter functions.
Filter functions add additional constraints to a pointcut, removing join points
that do not satisfy those constraints. For example, it is possible to filter a call
pointcut to include only calls that return a specific type or only calls to a certain
function. Table 2 summarizes filter functions for call pointcuts.

Table 2. Filter functions for refining function-call pointcuts

void aop filter call pc by name(struct aop pointcut *pc, const char *name);

Filter function calls with a given name.

void aop filter call pc by param type(struct aop pointcut *pc, int n, struct aop type *type);

Filter function calls that have an nth parameter that matches a type.

void aop filter call pc by return type(struct aop pointcut *pc, struct aop type *type);

Filter function calls with a matching return type.
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Instrumenting join points. InterAspect plug-ins iterate over the join
points of a pointcut by providing an iterator callback to the join function, shown
in Table 3. InterAspect then calls the iterator callback for each join point so
that it can instrument the join point with a call to an advice function.

Table 3. Join function for iterating over a pointcut

void aop join on(struct aop pointcut *pc, join callback callback, void *callback param);

Supply callback function with any data structure as callback param.

Callback functions use capture functions to examine values associated with a
join point. Capture functions expose two kinds of values: static values that are
known at compile time and runtime values that will not be known until program
execution time. Static values, such as the name of the variable assigned by an
assignment statement, are directly readable in the callback itself. The callback
cannot access runtime values, such as the values assigned by an assignment state-
ment, but it can pass them as parameters to advice functions, so that they are
available to instrumentation code at runtime. These runtime values are repre-
sented in the callback function as special aop dynval objects. Capture functions
are specific to the kinds of join points they operate on. Tables 4 and 5 summarize
the capture functions for function-call join points and assignment join points,
respectively.

Table 4. Capture functions for function-call join points

const char *aop capture function name(aop joinpoint *jp);

Captures the name of the function called in the given join point.

struct aop dynval *aop capture param(aop joinpoint *jp, int n);

Captures the value of the nth parameter passed in the given function join point.

struct aop dynval *aop capture return value(aop joinpoint *jp);

Captures the value returned by the function in a given call join point.

AOP systems like AspectJ [17] provide Boolean operators, such as and and
or, to refine pointcuts. The InterAspect API could be extended with cor-
responding operations. Even without them, a similar result can be achieved in
InterAspect by including the appropriate logic in the callback. For example, a
plug-in can instrument calls to malloc and calls to free by joining on a pointcut
with all function calls and using the aop capture function name facility to add
advice calls only to malloc and free. Simple cases like this can furthermore be
handled by using regular expressions to match function names, which will be
added to the framework.

After capturing, a callback can add an advice function call before or after the
join point using the insert function of Table 6. The aop insert advice function
takes any number of parameters to be passed to the advice function at run-
time, including values captured from the join point and values computed during
instrumentation by the plug-in itself.
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Table 5. Capture functions for assignment join points

const char *aop capture lhs name(aop joinpoint *jp);

Captures the name of a variable assigned to in a given assignment join point, or returns NULL if

the join point does not assign to a named variable.

enum aop scope aop capture lhs var scope(aop joinpoint *jp);

Captures the scope of a variable assigned to in a given assignment join point. Variables can have

global, file-local, and function-local scope. If the join point does not assign to a variable, this

function returns AOP MEMORY SCOPE.

struct aop dynval *aop capture lhs addr(aop joinpoint *jp);

Captures the memory address assigned to in a given assignment join point.

struct aop dynval *aop capture assigned value(aop joinpoint *jp);

Captures the assigned value in a given assignment join point.

Using a callback to iterate over individual join points makes it possible to
customize instrumentation at each instrumentation site. A plug-in can capture
values about the join point to decide which advice function to call, which pa-
rameters to pass to it, or even whether to add advice at all. In Section 4.2, this
feature is exploited to uniquely index named variables during compilation. Cus-
tom instrumentation code in Section 4.3 separately records each instrumented
join point in order to track coverage information.

Table 6. Insert function for instrumenting a join point with a call to an advice function

void aop insert advice(struct aop joinpoint *jp, const char *advice func name,

enum aop insert location location, ...);

Insert an advice call, before or after a join point (depending on the value of location), passing any

number of parameters. A plug-in obtains a join point by iterating over a pointcut with aop join on.

Function duplication. InterAspect provides a function duplication facility
that makes it possible to toggle instrumentation at the function level. Although
inserting advice at the GIMPLE level creates very efficient instrumentation, users
may still wish to switch between instrumented and uninstrumented code for high-
performance applications. Duplication creates two or more copies of a function
body (which can later be instrumented differently) and redefines the function to
call a special advice function that runs at function entry and decides which copy
of the function body to execute.

When joining on a pointcut for a function with a duplicated body, the caller
specifies which copy the join should apply to. By only adding instrumentation to
one copy of the function body, the plug-in can create a function whose instrumen-
tation can be turned on and off at runtime. Alternatively, a plug-in can create a
function that can toggle between different kinds of instrumentation. Section 4.2
presents an example of using duplication to reduce overhead by sampling.
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4 Applications

To demonstrate InterAspect’s flexibility, we present several example applica-
tions of the API. The plug-ins we designed for these examples provide instru-
mentation that is tailored to specific problems (memory visualization, integer
range analysis, code coverage). Though custom-made, the plug-ins themselves
are simple to write, requiring only a small amount of code.

4.1 Heap Visualization

The heap visualizer uses the InterAspect API to expose memory events that
can be used to generate a graphical representation of the heap in real time dur-
ing program execution. Allocated objects are represented by rectangular nodes,
pointer variables and fields by oval nodes, and edges show where pointer variables
and fields point.

In order to draw the graph, the heap visualizer needs to intercept object
allocations and deallocations and pointer assignments that change edges in the
graph. Fig. 4 shows a prototype of the visualizer using Graphviz [2], an open-
source graph layout tool, to draw its output. The graph shows three nodes in a
linked list during a bubble-sort operation. Each node is labeled with its size, its
address in memory, and the addresses of its fields. Variables that point to NULL

or to an invalid memory location are drawn with a dashed border. Edges are
labeled with the line number of the assignment that created the edge, as well as
the number of assignments to the source variable that have occurred so far.

struct node*
0x1392010 [16]

struct node*
0x1392030 [16]

struct node*
0x1392050 [16]

.next
0x1392018

.next
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sort.c:52
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.next
0x1392038 sort.c:50

updates:3
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0x7FFF1675ACD8 sort.c:50
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sort.c:55
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curr
0x7FFF1675ACA8

sort.c:45
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next
0x7FFF1675ACA0

sort.c:46
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Fig. 4. A visualization of the heap during a bubble sort operation on a linked list

The InterAspect code for the heap visualizer instruments each allocation
(call to malloc) with a call to the heap allocation advice function, and it instru-
ments each pointer assignment with a call to the pointer assign advice function.
These advice functions update the graph. Instrumentation of other allocation
and deallocation functions, such as calloc and free, is handled similarly.

The InterAspect code in Fig. 5 instruments calls to malloc. The function
instrument malloc calls constructs a pointcut for all calls to malloc and then
calls aop join on to iterate over all the calls in the pointcut. Only a short main
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static void instrument_malloc_calls()
{

/* Construct a pointcut that matches calls to: void *malloc(unsigned int). */
struct aop_pointcut *pc = aop_match_function_call();
aop_filter_call_pc_by_name(pc, "malloc");
aop_filter_call_pc_by_param_type(pc, 0, aop_t_all_unsigned());
aop_filter_call_pc_by_return_type(pc, aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, malloc_callback, NULL);

}

/* The malloc_callback() function executes once for each call to malloc() in the target
program. It instruments each call it sees with a call to heap_allocation(). */

static void malloc_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *object_size;
struct aop_dynval *object_addr;

/* Capture the size of the allocated object and the address it is allocated to. */
object_size = aop_capture_param(jp, 0);
object_addr = aop_capture_return_value(jp);

/* Add a call to the advice function, passing the size and address as parameters.
(AOP_TERM_ARG is necessary to terminate the list of arguments
because of the way C varargs functions work.) */

aop_insert_advice(jp, "heap_allocation", AOP_INSERT_AFTER,
AOP_DYNVAL(object_size), AOP_DYNVAL(object_addr),
AOP_TERM_ARG);

}

Fig. 5. Instrumenting all memory allocation events

function (not shown) is needed to set GCC to invoke instrument malloc calls

during compilation.
The aop match function call function constructs an initial pointcut that in-

cludes every function call. Additional filter functions narrow down the pointcut
to include only calls to malloc. First, aop filter call pc by name filters out calls
to functions that are not named malloc. Then, aop filter pc by param type and
aop filter pc by return type filter out calls to functions that do not match the
standard malloc prototype, which takes an unsigned integer as the first parame-
ter and returns a pointer value. This filtering step is necessary because a program
could define its own function with the name malloc but a different prototype.

For each join point in the pointcut (in this case, a statement that calls malloc),
aop join on calls malloc callback. The two capture calls in the callback function
return aop dynval objects for the call’s first parameter and return value: the size
of the allocated region and its address, respectively. Recall from Section 3 that
an aop dynval serves as a placeholder during compilation for a value that will not
be known until runtime. Finally, aop insert advice adds the call to the advice
function, passing the two captured values. Note that InterAspect chooses
types for these values based on how they were filtered. The filters used here
restrict object size to be an unsigned integer and object addr to be some kind
of pointer, so InterAspect assumes that the advice function heap allocation

has the prototype:
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void heap_allocation(unsigned long long, void *);

To support this, InterAspect code must generally filter runtime values by type
in order to capture and use them.

The InterAspect code in Fig. 6 tracks pointer assignments, such as

list_node->next = new_node;

The aop match assignment by type function creates a pointcut that matches as-
signments, which is additionally filtered by the type of assignment. For this
application, we are only interested in assignments to pointer variables.

static void instrument_pointer_assignments()
{

/* Construct a pointcut that matches all assignments to a pointer. */
struct aop_pointcut *pc = aop_match_assignment_by_type(aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each pointer assignment.
It instruments each assignment it sees with a call to pointer_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *address;
struct aop_dynval *pointer;

/* Capture the address the pointer is assigned to, as well as the pointer address itself. */
address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign", AOP_INSERT_AFTER,
AOP_DYNVAL(address), AOP_DYNVAL(pointer),
AOP_TERM_ARG);

}

Fig. 6. Instrumenting all pointer assignments

For each assignment join point, assignment callback captures address, the
address assigned to, and pointer, the pointer value that was assigned. In the
above examples, these would be the values of &list node->next and new node,
respectively. The visualizer uses address to determine the source of a new graph
edge and pointer to determine its destination.

The function that captures address, aop capture lhs addr, does not require
explicit filtering to restrict the type of the captured value because an address
always has a pointer type.

The value captured by aop capture assigned value and stored in pointer has
a void pointer type because we filtered the pointcut to include only pointer
assignments. As a result, InterAspect assumes that the pointer assign advice
function has the prototype:

void pointer_assign(void *, void *);
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4.2 Integer Range Analysis

Integer range analysis is a runtime tool for finding anomalies in program behavior
by tracking the range of values for each integer variable [12]. A range analyzer
can learn normal ranges from training runs over known good inputs. Values that
fall outside of normal ranges in future runs are reported as anomalies, which
can indicate errors. For example, an out-of-range value for a variable used as an
array index may cause an array bounds violation.

Our integer range analyzer uses sampling to reduce runtime overhead. Missed
updates because of sampling can result in underestimating a variable’s range,
but this trade-off is reasonable in many cases. Sampling can be done randomly
or by using a technique like Software Monitoring with Controlled Overhead [15].

InterAspect provides function-body duplication as a means to add instru-
mentation that can be toggled on and off. Duplicating a function splits its body
into two copies. A distributor block at the beginning of the function decides which
copy to run. An InterAspect plug-in can add advice to just one of the copies,
so that the distributor chooses between enabling or disabling instrumentation.

Fig. 7 shows how we use InterAspect to instrument integer variable up-
dates. The call to aop duplicate makes a copy of each function body. The first
argument specifies that there should be two copies of the function body, and the

static void instrument_integer_assignments()
{

struct aop_pointcut *pc;

/* Duplicate the function body so there are two copies. */
aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/* Construct a pointcut that matches all assignments to an integer. */
pc = aop_match_assignment_by_type(aop_t_all_signed_integer());

/* Visit every statement in the pointcut. */
aop_join_on_copy(pc, 1, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each integer assignment.
It instruments each assignment it sees with a call to int_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

const char *variable_name;
int variable_index;
struct aop_dynval *value;
enum aop_scope scope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {
/* Choose an index number for this variable. */
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, scope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,
AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG);

}
}

Fig. 7. Instrumenting integer variable updates
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second specifies the name of a function that the distributor will call to decide
which copy to execute. When the duplicated function runs, the distributor calls
distributor func, which must be a function that returns an integer. The dupli-
cated function bodies are indexed from zero, and the distributor func return
value determines which one the distributor transfers control to.

Using aop join on copy instead of the usual aop join on iterates only over join
points in the specified copy of duplicate code. As a result, only one copy is
instrumented; the other copy remains unmodified.

The callback function itself is similar to the callbacks we used in Section 4.1.
The main difference is the call to get index from name that converts the vari-
able name to an integer index. The get index from name function (not shown for
brevity) also takes the variable’s scope so that it can assign different indices to
local variables in different functions. It would be possible to directly pass the
name itself (as a string) to the advice function, but the advice function would
then incur the cost of looking up the variable by its name at runtime. This opti-
mization illustrates the benefits of InterAspect’s callback-based approach to
custom instrumentation.

The aop capture lhs name function returns a string instead of an aop dynval

object because variable names are known at compile time. It is necessary to check
for a NULL return value because not all assignments are to named variables.

To better understand InterAspect’s performance impact, we benchmarked this
plug-in on the compute-intensive bzip2 compression utility using empty advice.
The instrumented bzip2 contains advice calls at every integer variable assign-
ment, but the advice functions themselves do nothing, allowing us to measure
the overhead from calling advice functions independently from actual monitor-
ing overhead. With a distributor that maximizes overhead by always choosing
the instrumented function body, we measured 24% runtime overhead. Function
duplication by itself contributes very little to this overhead; when the distribu-
tor always chooses the uninstrumented path, the overhead from instrumentation
was statistically insignificant.

4.3 Code Coverage

A straightforward way to measure code coverage is to choose a pointcut and
measure the percentage of its join points that are executed during testing. In-

terAspect’s ability to iterate over each join point makes it simple to label join
points and then track them at runtime.

The example in Fig. 8 adds instrumentation to track coverage of function entry
and exit points. To reduce runtime overhead, the choose unique index function
assigns an integer index to each tracked join point, similar to the indexing of
integer variables in Section 4.2. Each index is saved along with its corresponding
source filename and line number by the save index to disk function. The runtime
advice needs to output only the set of covered index numbers; an offline tool
uses that output to compute the percentage of join points covered or to list the
filenames and line numbers of covered join points. For brevity we omit the actual
implementations of choose unique index and save index to disk.
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static void instrument_function_entry_exit()
{

struct aop_pointcut *entry_pc;
struct aop_pointcut *exit_pc;

/* Construct two pointcuts: one for function entry and one for function exit. */
entry_pc = aop_match_function_entry();
exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL);

}

/* The entry_exit_callback function assigns an index to every join
point it sees and saves that index to disk. */

static void entry_exit_callback(struct aop_joinpoint *jp, void *arg)
{

int index, line_number;
const char *filename;

index = choose_unique_index();
filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);

save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_BEFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

}

Fig. 8. Instrumenting function entry and exit for code coverage

5 Related Work

Aspect-oriented programming was first introduced for Java with AspectJ [10,17].
There, weaving takes place at the bytecode level. The AspectBench Compiler
(abc) [3] is a more recent extensible research version of AspectJ that makes
it possible to add new language constructs (see for example [4]). Similarly to
InterAspect, it manipulates a 3A intermediate representation (Jimple) spe-
cialized to Java.

Other frameworks for Java, including Javaassist [7] and PROSE [19], offer an
API for instrumenting and modifying code, and hence do not require the use of a
special language. Javaassist is a class library for editing bytecode. A source-level
API can be used to edit class files without knowledge of the bytecode format.
PROSE has similar goals.

AOP for other languages such as C and C++ has had a slower uptake. As-
pectC [8] was one of the first AOP systems for C, based on the language con-
structs of AspectJ. ACC [18] is a more recent AOP system for C, also based on
the language constructs of AspectJ. It transforms source code and offers its own
internal compiler framework for parsing C. It is a closed system in the sense that
one cannot augment it with new pointcuts or access the internal structure of a
C program in order to perform static analysis.

The XWeaver system [21], with its language AspectX, represents a program
in XML (srcML, to be specific), making it language-independent. It supports
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Java and C++ . A user, however, has to be XML-aware. Aspicere [20] is an
aspect language for C based on LLVM bytecode. Its pointcut language is inspired
by logic programming. Adding new pointcuts amounts to defining new logic
predicates. Arachne [9,11] is a dynamic aspect language for C that uses assembler
manipulation techniques to instrument a running system without pausing it.

AspectC++ [22] is targeted towards C++. It can handle C to some extent, but
this does not seem to be a high priority for its developers. For example, it only
handles ANSI C and not other dialects. AspectC++ operates at the source-code
level and generates C++ code, which can be problematic in contexts where only
C code is permitted, such as in certain embedded applications. OpenC++ [6] is
a front-end library for C++ that developers can use to implement various kinds
of translations in order to define new syntax and object behavior. CIL [13] (C
Intermediate Language) is an OCaml [16] API for writing source-code transfor-
mations of its own 3A code representation of C programs. CIL requires a user to
be familiar with the less-often-used yet powerful OCaml language.

Additionally, various low-level but mature tools exist for code analysis and
instrumentation. These include the BCEL [1] bytecode-instrumentation tool for
Java, and Valgrind [23], which works directly with executables and consequently
targets multiple programming languages.

6 Conclusions

We have presented InterAspect, a framework for developing powerful instru-
mentation plug-ins for the GCC suite of production compilers. InterAspect-
based plug-ins instrument programs compiled with GCC by modifying GCC’s
intermediate language, GIMPLE. The InterAspect API simplifies this process by
offering an AOP-based interface. Plug-in developers can easily specify pointcuts
to target specific program join points and then add customized instrumenta-
tion at those join points. We presented several example plug-ins that demon-
strate the framework’s ability to customize runtime instrumentation for specific
applications.

As future work, we plan to add pointcuts for all control flow constructs,
thereby allowing instrumentation to trace a program run’s exact path of exe-
cution. We also plan to investigate API support for pointcuts that depend on
dynamic information, such as AspectJ’s cflow, by introducing filters that are
evaluated at run-time. Dynamic pointcuts can already be implemented in In-

terAspect with advice functions that maintain and use appropriate state, but
API support would eliminate the need to write those advice functions.
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Runtime Verification for Software Transactional
Memories
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Abstract. Software transactional memories (STMs) promise simple and

efficient concurrent programming. Several correctness properties have

been proposed for STMs. Based on a bounded conflict graph algorithm

for verifying correctness of STMs, we develop TRACER, a tool for runtime

verification of STM implementations. The novelty of TRACER lies in

the way it combines coarse and precise runtime analyses to guarantee

sound and complete verification in an efficient manner. We implement

TRACER in the TL2 STM implementation. We evaluate the performance

of TRACER on STAMP benchmarks. While a precise runtime verification

technique based on conflict graphs results in an average slowdown of 60x,

the two-level approach of TRACER performs complete verification with

an average slowdown of around 25x across different benchmarks.

1 Introduction

Software transactional memory (STM) [18,23] holds promise as a programming
paradigm for managing concurrency. STM gives the programmer an intuitive
interface, and at the same time allows maximal concurrency on part of the
underlying system. STM takes over the responsibility of correct synchronization
of concurrent programs, making programming easier for the programmer. With
this shift of responsibility, the verification of STM implementations becomes
more important.

Over time, several correctness properties have been proposed for STMs. To
start with, some basic correctness notions like serializability and strict serializ-
ability [20] were borrowed from the database community. As research grew in
STM implementations, it was noticed [6,17] that these correctness notions are
often insufficient for STMs. This led to the formalization of a new correctness
property called opacity [15].

Despite the different correctness properties, a central theme in correctness
of STMs is to require a sequential execution of a subset of transactions. While
database notions required a sequential execution only for the committing subset
of transactions, new correctness properties like opacity also restrict the behavior
of aborting transactions. Opacity requires that there exists a sequential execution
consisting of all transactions (committed, aborted, and active). These different
correctness properties can be captured using conflict graphs [20]. Conflict graphs
are a common technique to study correctness properties in databases. A conflict
graph represents an execution, where the transactions of the execution are the

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 421–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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vertices in the graph, and the conflicts between transactions are directed edges.
Conflict graphs reduce the problem of checking correctness of an execution to
checking that a graph is acyclic.

Static verification of STMs has been addressed using model checking [12,13,14]
and theorem proving [4,5]. However, static verification is often limited in appli-
cation to STM algorithms due to the inherent complexity of STM implementa-
tions. Moreover, static verification often does not fill the gap between the STM
algorithm and the optimizations introduced in the STM implementations by the
programmer or the underlying compiler and hardware. Although Guerraoui et
al. [14] verify STM algorithms under relaxed memory models, these approaches
cannot be extended to real world STM implementations. The complexity of
the STM implementations thus calls for efficient runtime verification techniques
which can be coupled with the STM implementations to check correctness of
executions on-the-fly.

This paper firstdescribes a compositional framework to construct conflict graphs
for different correctness properties of STMs. We formalize correctness properties as
a set of conflicts on a subset of vertices in the conflict graph. As the size of a conflict
graph increases with the number of transactions in the execution, it is essential to
remove completed transactions to keep the conflict graph bounded. This pruning
of the conflict graph has to be carefully done in order to maintain all conflicts in-
troduced by the completed transactions being pruned. Several methods have been
proposed for pruning conflict graphs [3,8,12,13,16]. We describe a bounded con-
flict graph based algorithm for verifying STM implementations. This algorithm is
adapted from our earlier work on static verification of STMs [12,13].

The main contribution of this paper is the use of the bounded conflict graph
algorithm to develop TRACER, a novel, sound and complete, runtime verification
tool for STM implementations. Soundness and completeness imply that TRACER
declares a history to be correct if and only if the history is indeed correct with
respect to the given correctness property. TRACER instruments every transac-
tional memory access, and every transaction commit and abort with the required
instructions to modify the conflict graph. We observe that the approach of chang-
ing the conflict graph precisely at every step has a huge impact on performance
of TRACER. This is due to the expensive operations required to maintain the
precise set of edges in the conflict graph. Thus, we build two modes in TRACER:
a coarse mode and a precise mode. The coarse verification mode uses Bloom fil-
ters [1] for fast and inaccurate (overapproximate) storage of access sets, and runs
our conflict graph algorithm using these inaccurate access sets. The overapprox-
imation of access sets often results in spurious cycles in the conflict graph. When
such a cycle is detected, the precise verification mode is triggered. The precise
verification runs a precise conflict graph algorithm to verify the correctness of
the execution. While the coarse mode accounts for the soundness and efficiency
of TRACER, the precise mode guarantees the completeness of TRACER.

We implement TRACER as a part of TL2 [6], a state-of-the-art STM imple-
mentation. We evaluate the performance of TRACER on STAMP benchmarks [2].
These benchmarks include different domains of parallel computing, and provide
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a versatile data access pattern for STMs. To emphasize the importance of the
coarse verification technique in improving the efficiency, we first measure the
time taken by directly adopting a precise verification technique. We observe
that the precise construction of the conflict graph slows down the execution by
up to 150x in the worst case, and around 60x on average with 8 threads on
an 8-core machine. Then, we turn on the coarse verification, and show that the
intermediate sound but incomplete verification step can drastically improve the
speed of execution, by reducing the slow down to 60x in the worst case, and
around 25x on average with 8 threads on an 8-core machine.

This paper proceeds as follows. Section 2 describes a framework for correct-
ness properties in STMs. Section 3 describes the bounded conflict graph based
algorithm. Section 4 presents our runtime verification tool TRACER. Section 5
evaluates the performance of TRACER. Section 6 presents related work and Sec-
tion 7 concludes the paper.

2 Framework

We first present a general framework to describe a shared memory system consist-
ing of a set T = {t1 . . . tk} of threads that communicate by executing commands
on a set X = {x1 . . . xn} of shared variables.

2.1 Histories

Operations. The threads execute sequences of operations, whose subsequences
(transactions) should execute as if atomically. To distinguish the start and end
point of a sequence of operations that should be atomic, we define special op-
erations: start to start a new sequence, operation commit to finish a sequence
successfully (commit), and abort to finish a sequence with a failure (abort). We
define a set Oper of operations as ({start, commit, abort}∪ ({rd,wr}×X))×T . A
history h ∈ Oper∗ is a sequence of operations. Let H be the set of all histories.
Given a history h, we refer to its ith operation as operation i.

Transactions. A transaction of a thread t is a subsequence oper1 . . . opern of a
history h such that (i) oper1 is a start operation, (ii) either operation opern is
the last operation of t in h, or we have opern ∈ {commit, abort}, and (iii) all
operations oper2, . . . , opern−1 are read or write operations.1

We say that a history h is sequential if, for every transaction x in h, every
operation between the first operation of x and the last operation of x in h is a
part of x. A transaction T is committed (resp. aborted) in a history h if the last
operation of T is a commit operation (resp. an abort operation).

2.2 Conflicts

A conflict enforces an order between a pair of operations in a history. Many of the
correctness properties in STMs require a justifying serial history such that the
1 We do not consider nested transactions in this work.
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(b) Conflict graph of h under serializability (left)

and strict serializability or opacity (right). The

shaded circles represent writing or committed

transactions

Fig. 1. Conflict graphs for checking correctness of a history

order of conflicting operations is the same as the one in the original history. We
define a conflict c as a function c : H×Oper×Oper → B. We define two conflicts
that allow us to specify serializability, strict serializability, and opacity. Note
that one can define new conflict functions and adapt our verification algorithm
for those conflicts.

– access conflict cac(h, i, j) = true if i < j and operations i and j are accesses
of a variable x and one of them is a write.

– real time conflict crt(h, i, j) = true if i < j and operation i is a commit of a
transaction and operation j is the start of a transaction.

2.3 Conflict Graphs

Given a set C of conflicts and a history h, a conflict graph of the history h with
respect to C is a directed graph G = (V, E) such that the vertices V are the set
of transactions in h, and E is a set of directed edges such that there is an edge
e ∈ E from a vertex v1 to a vertex v2 if and only if there is an operation i in
transaction v1 and an operation j in transaction v2 and a conflict c ∈ C such
that c(h, i, j) = true.

2.4 Correctness Properties

We define a correctness property as π = 〈C, f〉, where C is a set of conflicts and
f : V → B is a function on the vertices. Given a correctness property π = 〈C, f〉,
we say that a history h is correct with respect to the π if there does not exist a
cycle v0, . . . vn in the conflict graph of h, where for all i such that 0 ≤ i ≤ n, we
have f(vi) = true. We now characterize some correctness properties.

Serializability is captured using the access conflict, and the vertices that cor-
respond to transactions that are sure to commit. Formally, the correctness prop-
erty serializability is defined as 〈Cser, fc〉, where we have Cser = {cac} and
fc(v) = true if the transaction corresponding to vertex v has committed or
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written to a variable. Strict serializability is defined as 〈Csser, fc〉, where we have
Csser = {cac, crt}. In other words, strict serializability adds the real-time order-
ing requirement for committed transactions to serializability. Opacity is defined
as 〈Csser, f〉, where f(v) = true for all vertices. Intuitively, opacity enforces strict
serializability for all transactions: committed, aborted, or active.

Figure 1 shows an example of a history and its conflict graph under different
correctness properties. While the history is serializable, it is neither strictly seri-
alizable nor opaque. This is because the transaction of thread 2 has a real time
conflict with the transaction of thread 3, which creates a cycle in the conflict
graph for strict serializability and opacity. Consider the case when the transac-
tion of thread 3 does not commit: then, there is a cycle in the conflict graph for
opacity, but not in the conflict graph for strict serializability.

3 The Conflict Graph Algorithm

It is straightforward to produce conflict graphs where the number of vertices
is the number of transactions. However, as an STM execution consists of mil-
lions of transactions, it becomes impractical to check for cycles in the conflict
graph. We thus present an algorithm that constructs conflict graphs bounded
in the number of threads instead of the number of transactions. This algorithm
is adapted from our earlier work [12] on static verification of STM algorithms.
The idea of the algorithm is to remove committed transactions from the conflict
graph after capturing their access sets in the form of prohibited access sets of
active transactions. For example, let a transaction read a variable x and write a
variable y. Let another transaction read variable y before the write by the first
transaction. Now, if the first transaction commits, it is sufficient to remember for
the second (active) transaction that it is prohibited to read/write to y or write
to x. Algorithm 1 presents an incremental algorithm that creates and uses the
bounded conflict graphs to verify a history with respect to a correctness property
〈C, f〉. We consider the access and real-time conflicts, and thus the algorithm
can be used for checking serializability, strict serializability, and opacity. The
algorithm can be adapted for other conflicts.

Description. We now define some functions that we use in Algorithm 1. The
function status : V → {active, aborted, committed, pending} describes the status
of the transaction corresponding to a vertex. The function writing : V → B
describes whether a transaction corresponding to a vertex writes to a variable or
not. The functions rs : V → 2Obj and ws : V → 2Obj describe the read and write
sets of the active transaction corresponding to a vertex, respectively. Similarly,
the functions prs and pws describe the prohibited read and write sets of the active
transaction corresponding to a vertex. Together, we call the read and write sets
as the access sets of the transactions, and the prohibited read and write sets
as the prohibited sets. We adapt the colored DFS algorithm for detecting cycles
in the conflict graph as shown in Algorithm 2. Our algorithm ensures that if a
cycle is found in the conflict graph, then all transactions in the cycle satisfy the
function f in the correctness property 〈C, f〉.
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Complexity. To get a practical runtime verification tool, it is important to design
the data structures for verification in a way that the cost of instrumentation for
each operation in Algorithm 1 is minimal. Software transactions consist of a
long sequence of reads and writes followed by a commit operation. Moreover,
in a transaction, it is often the case that the number of reads is more than
the number of writes. Thus, it is important to keep the overhead associated
with the instrumentation of a read low. The access sets and the prohibited sets
for verification as described above have to be stored differently from the access
sets of the STM implementation. The access sets of STM implementations are
often stored as linked lists, as the only required operation is insertion. But, for
verification access sets, we often need to search in the sets. For example, the
instrumentation for the read operation requires an insertion into the read set of
the transaction, and a search in the write set of all other transactions. Assuming
access sets are implemented as binary search trees, the instrumentation has a cost
O(k · log n) in the worst case. Similarly, a write operation requires an insertion
into the write set of the transaction, and a search in the read and write sets of

Algorithm 1. Incremental algorithm for verifying a history with respect to the
correctness property 〈C, f〉

On an operation start by transaction t:
add a new vertex t to the conflict graph

set status(t) as active
if crt ∈ C then

for all vertices u �= t
if status(u) = pending then

add edge from u to t
return 1

On an operation (rd, x) by transaction t:
if x ∈ prs(t) then

add edge from t to t
if cac ∈ C then

for all vertices u �= t
if u writes to x then

add edge from u to t
return acyclic(G, f)

On an operation (wr, x) by transaction t:
set writing(t) as true
if x ∈ pws(t) then

add edge from t to t
if cac ∈ C then

for all vertices u �= t
if u reads or writes x then

add edge from u to t
return acyclic(G, f)
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Algorithm 1. continued
On an operation commit by transaction t:

set status(t) as committed
for all vertices u �= t

if there is an edge from t to u then
for all vertices u′ �= t then

if there is an edge from u′ to t then
add edge from u′ to u

set status(u) as pending
if cac ∈ C then

pws(u) = pws(u) ∪ pws(t) ∪ ws(t) ∪ rs(t)
prs(u) = prs(u) ∪ prs(t) ∪ ws(t)

if acyclic(G, f) = 0 then return 0

set writing(t) as false
set rs(t), ws(t), prs(t), and pws(t) to ∅
remove all edges (v1, v2) where v1 = t or v2 = t
return 1

On an operation abort by transaction t:
set status(t) as aborted
set writing(t) as false
set rs(t), ws(t), prs(t), and pws(t) to ∅
remove all edges (v1, v2) where v1 = t or v2 = t
return 1

all other transactions. A commit operation is expensive as it requires to copy the
read and write sets into the prohibited access sets. Thus, the commit requires an
instrumentation of cost O(k ·n ·log n). An abort operation removes the incoming
and outgoing edges from a vertex, and thus requires O(k) instrumentation.

4 The TRACER Tool

We develop TRACER, an online runtime verification tool for checking the correct-
ness of execution of STM implementations. We instrument every load and store
instruction on transactional variables, and every commit and abort instruction
according to Algorithm 1. The execution of TRACER is completely synchronized
with the history produced by the STM implementation. This implies that if an
STM implementation is run with TRACER, it is guaranteed not to produce an
incorrect history. Moreover, the completeness of TRACER guarantees that if an
STM implementation produces a correct history, then TRACER does not raise
any errors. To achieve soundness and completeness efficiently, TRACER runs two
levels of verification. The first level gives an incomplete answer, but in a sound
and fast manner. The second level guarantees complete verification. The working
of the two modes is described in more detail below, and illustrated in Figure 2.
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Algorithm 2. Algorithm for detecting cycles in the conflict graph G with respect
to a correctness property 〈C, f〉

acyclic(G, f) :

for all vertices v
if f(v) = true then

v.mark = white
else

v.mark = black
for all vertices v

if v.mark = white then
if visitTwice(G, v) then

return false
return true

visitTwice(G, v) :

set v.mark = grey
for all edges (v, v′) ∈ G

if v′.mark = grey then
return true

if v′.mark = white then
if visitTwice(G, v′) then

return true
v.mark = black
return false

4.1 Coarse Verification

Our coarse verification technique uses Bloom filters [1] to store the access and
prohibited sets of all threads. Bloom filters give a fast, though overapproximate,
means of storing these sets. The time required for insertion and search in a Bloom
filter is constant. However, the precision of storage decreases as the number of
accesses of a transaction increases. Bloom filters give an O(k) instrumentation
for read, write, commit, and abort operations. We implement Bloom filters of size
B. For our implementation, we vary B from 32 bits to 256 bits. For a memory
address x, the function bloom(x) gives a B-bit binary number. Now, we list the
instructions for search, insertion, and multiple insertion using Bloom filters.

search(x, b) : (b & bloom(x)) = bloom(x)
add(x, b) : b := b | bloom(x)
add(b’,b) : b := b | b’

Note the constant time instruction for adding a set of addresses from one
access set to another using Bloom filters. This is often required in the commit
operation of Algorithm 1. Note that for a transaction with read set represented
as b, the operation search(x,b) may return true even if the transaction never
read x. Due to the overapproximation, the coarse verification technique may find
cycles in the conflict graph even if the history satisfies the required correctness
property. To tackle this situation, the coarse verification maintains a record of
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Fig. 2. The working of TRACER

the history. When a cycle is observed by the coarse verification technique, the
precise verification technique is triggered to find out whether the cycle observed
is spurious or indeed genuine. If the precise verification finds the cycle to be
genuine, the history is reported back as erroneous. Otherwise, the predecessor
relation of the coarse verification is reset to be the predecessor relation of the
precise verification, and the coarse verification is continued.

4.2 Precise Verification

The precise verification technique is responsible for the completeness of our re-
sults. This requires the precise verification technique to remember the exact
access sets for every transaction. We implement the access sets as hash tables.
When the precise verification technique is triggered, it starts from the state of
the precise conflict graph when the precise verification technique was last trig-
gered. It executes Algorithm 1 for all operations invoked since then. This ensures
no repetition of work. Note that in many cases, TRACER ends up performing
a precise verification regularly due to false alarms generated by the coarse ver-
ification. However, as the precise verification in this case is performed by one
particular thread, it is very efficient in terms of cache performance, and easily
covers the extra overhead of the coarse verification. In other words, updating
the precise conflict graph and looking for cycles in the precise conflict graph
at every step is very expensive. The coarse verification does away with most of
the overhead, and still guarantees sound verification. Whenever correctness is
under doubt, the precise verification step catches up with the coarse verification
to check whether the counterexample generated is genuine or spurious. These
points are marked as 1© and 2© in Figure 2.

5 Evaluation of TRACER

We implement TRACER as part of the TL2-x86 implementation. We use the
STAMP benchmarks to evaluate our tool by verifying serializability of the
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obtained histories. We briefly describe the STAMP benchmarks and the TL2
algorithm here.

5.1 STAMP Benchmarks

STAMP consists of eight different benchmarks from a variety of application
domains that may benefit from STMs: computational biology, security, engi-
neering, and machine learning. Different benchmarks are characterized by their
transaction length and the size of access sets. Bayes implements an algorithm
for Bayesian network learning. This benchmark consists of long transactions
with relatively large read and write sets. Genome is an application for gene
sequencing, which matches numerous DNA segments to construct the original
source. The transactions, read and write sets are all moderate sized. Intruder is
a security application for detecting intrusion in networks. It has relatively short
transactions and small read and write sets. Kmeans implements the kmeans-
algorithm to cluster a set of objects into a set of partitions. The transactions
in Kmeans are small with small read and write sets. Labyrinth implements a
routing algorithm in a three dimensional grid between a start and an end point.
It has large read and write sets, and long transactions. SSCA2 is a scientific ap-
plication for efficient graph construction, using adjacency arrays and auxiliary
arrays. The transactions in SSCA2 are small, with small read and write sets,
and little contention. Vacation is an application from online transaction process-
ing domain that emulates a travel reservation system. The transactions are of
medium length, with moderate read and write sets. Yada is based on Ruppert’s
algorithm for Delaunay mesh refinement, and consists of long transactions.

5.2 Integrating TRACER with TL2

Transactional Locking II (TL2) is an efficient lock-based STM algorithm. TL2
uses a global clock and version numbers for checking the correctness of the
execution. Now, we describe in brief how TL2 works and the instrumentation
that we introduce.

On the start of a transaction t, the transaction t reads the value of the global
clock and stores it locally as gc. We instrument the read of the global clock
with the TRACER start transaction. On a transactional read of variable x, the
transaction checks the version number of x and whether x is locked. If the version
number is not more than gc and x is not locked, the transaction reads the
variable. We instrument the read of x with the TRACER read variable x. It is
again checked that the version number is not more than gc and that x is not
locked: otherwise the transaction is aborted. On a transactional write of x, the
variable is locally updated. Note that the conflict graph is not updated on a local
write. On a commit, the transaction in TL2 acquires the locks for all variables
it writes to. Then, the transaction checks that the version number for all read
variables has not changed since the transaction performed the read. If this does
not hold, the transaction aborts. Otherwise, the transaction writes globally to the
written variables, and then commits. We instrument the global write of variable
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Table 1. Average execution time (in seconds) and slowdown with only precise verifica-

tion. The slowdown is with respect to the execution of the uninstrumented TL2 STM

implementation.

Benchmark 1 thread 2 threads 4 threads 8 threads

Bayes 3.45 (1.02x) 3.70 (1.04x) 3.72 (1.05x) 3.74 (1.07x)

Genome 4.58 (2.95x) 17.41 (20.70x) 26.07 (48.51x) 45.93 (88.71x)

Intruder 1.629 (7.22x) 5.90 (23.04x) 14.13 (46.47x) 51.93 (159x)

Kmeans 1.887 (7.12x) 4.53 (17.69x) 10.93 (47.39x) 28.34 (89.05x)

Labyrinth 0.288 (1.154x) 0.171 (1.14x) 0.110 (1.07x) 0.125 (1.37x)

SSCA2 30.56 (1.333x) 33.79 (2.28x) 47.34 (4.07x) 69.03 (7.61x)

Vacation 1.92 (4.36x) 4.463 (20.23x) 5.616 (43.19x) 14.71 (94.3x)

Yada 2.39 (2.61x) 7.928 (9.65x) 14.083 (24.86x) 36.742 (58.69x)

x with the TRACER write variable x, and the final cleanup phase of the commit
with the TRACER commit transaction. Moreover, we instrument the cleanup of
the abort with the TRACER abort transaction.

5.3 Results

We run our experiments on a quad dual core Intel Xeon 1.86 GHz server. First of
all, we execute the uninstrumented TL2 STM implementation with the STAMP
benchmarks. Then, we run TRACER to verify serializability in three different
modes: only the precise verification, only the coarse verification, and then both
verification techniques together. We average every execution for 10 runs.

Only precise verification. Table 1 shows the execution time and the slowdown
without the coarse verification step. We observe very large slowdown as we in-
crease the number of threads.

Only coarse verification. Table 2 gives the results of running only the coarse
verification. We observe that the slowdown is very less as compared to the precise
verification. However, the number of false alarms drastically increases as the
number of threads increases in many of the benchmarks. As the size of the
conflict graph increases, the chances of a spurious cycle due to overapproximation
increases.

Both coarse and precise verification. Table 3 gives the results of running TRACER
with both coarse and precise verification strategies. In this case, we get a larger
slowdown than that achieved by running only the coarse verification strategy.
However, we do not get any false alarms. Moreover, the slowdown observed is
significantly less than running only the precise verification step (Table 1). For
example, with 8 threads, the slowdown is at most 58x in the Vacation benchmark.
With only the precise verification step, the slowdown is as high as 159x in the
Intruder benchmark. Moreover, with 1 thread, as there are no cycles, the precise
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Table 2. Average execution time (in seconds), slowdown, and number of false alarms

per execution in TRACER without precise verification. The slowdown is with respect

to the execution of the uninstrumented TL2 STM implementation.

Benchmark 1 thread 2 threads 4 threads 8 threads

Bayes 3.431 (1.01x) 3.62 (1.01x) 3.68 (1.04x) 3.70 (1.06x)

0 9 11 12

Genome 3.821 (2.46x) 5.274 (6.27x) 6.67 (12.41x) 17.97 (34.71x)

0 3549 4812 7207

Intruder 0.79 (3.5x) 1.70 (6.64x) 5.72 (18.81x) 16.39 (50.19x)

0 9341 10256 10482

Kmeans 0.848 (3.2x) 1.751 (6.21x) 4.341 (18.82x) 11.11 (34.91x)

0 12623 28843 30347

Labyrinth 0.282 (1.13x) 0.169 (1.13x) 0.109 (1.07x) 0.102 (1.12x)

0 1 3 5

SSCA2 27.732 (1.21x) 19.98 (1.35x) 16.06 (1.38x) 22.67 (2.50x)

0 1327 3681 12148

Vacation 1.06 (2.41x) 1.54 (6.98x) 2.46 (18.92x) 8.378 (53.7x)

0 1742 2319 4026

Yada 1.311 (1.43x) 2.447 (2.98x) 5.354 (9.45x) 10.881 (17.38x)

0 4281 9122 14253

Table 3. Average execution time (in seconds) and slowdown in TRACER with both

coarse and precise verification turned on. The slowdown is with respect to the execution

on the uninstrumented TL2 STM implementation.

Benchmark 1 thread 2 threads 4 threads 8 threads

Bayes 3.433 (1.01x) 3.63 (1.01 x) 3.69 (1.04 x) 3.70 (1.06 x)

Genome 3.868 (2.49x) 8.2 (9.75x) 15.1 (28.1x) 26.56 (51.3x)

Intruder 0.81 (3.6x) 2.59 (10.23x) 6.12 (20.05x) 15.67 (47.9x)

Kmeans 0.846 (3.2x) 4.031 (14.3x) 7.75 (33.6x) 13.78 (43.3x)

Labyrinth 0.283 (1.13x) 0.171 (1.14x) 0.112 (1.09x) 0.103 (1.12x)

SSCA2 27.732 (1.21x) 20.12 (1.36x) 16.975 (1.45x) 23.92 (2.64x)

Vacation 1.06 (2.41x) 1.79 (8.12x) 2.75 (21.17x) 9.12 (58.5x)

Yada 1.312 (1.43x) 3.89 (4.73x) 7.871 (13.9x) 15.21 (24.3x)

verification step is never triggered and the slowdown due to instrumentation is
exactly same as the one obtained in the coarse verification step.

Analysis and Discussion. We observe that combining the coarse and the pre-
cise analyses yields results closer to the only-coarse analysis as compared to the
only-precise analysis. The large part of the overhead is due to the acquisition and
release of the global lock for every instrumentation. To justify this, we measured
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the time of instrumentation after turning off both the coarse and precise verifi-
cation (and just storing the sequence of operations). The time is nearly the same
as that for the coarse verification. Basically, STM implementations are designed
to be highly efficient, and their performance increases almost linearly with the
number of processors available. However, any online runtime verification would
need to sequence the order of operations, which requires certain synchronization
for every transaction access. As the number of threads increases, the penalty
of synchronization increases. Moreover, the size of the conflict graph increases
with the number of threads. This makes the performance of TRACER deteriorate
as compared to the uninstrumented STM implementation when the number of
threads increases.

6 Related Work

Several dynamic tools [7,10,21] for verifying race freedom in concurrent programs
have been built. These tools cannot be directly used to verify STM implementa-
tions as STMs often contain data races for reasons of performance. Tools [8,9,11]
for detecting atomicity violations in multithreaded programs have been devel-
oped. These tools can indeed be adapted to prove atomicity of transactions in
STM implementations. However, the performance of these tools is not known un-
der STM benchmarks, which generally consist of large access sets and millions
of transactions per execution.

Manovit et al. [19] used testing to find errors in STM implementations. Their
approach is more suited for offline verification of STM implementations. Runtime
verification for serializability of transactional memories based on conflict graphs
has been done by Chen et al. [3]. This work uses hardware support to reduce the
overhead of instrumentation. On the other hand, we provide an online runtime
verification tool that relies on multiple levels of verification to provide efficiency.

There is considerable amount of work on static verification of STM algorithms.
Tasiran [24] verified the correctness of the Bartok STM. The author manually
proves the correctness of the Bartok STM algorithm, and uses assertions in
the Bartok STM implementation to ensure that the implementation refines the
algorithm. Cohen et al. [5] model checked STM applied to programs with a
small number of threads and variables, against the strong correctness property
of Scott [22]. Guerraoui et al. [12,13] used model checking to verify the correct-
ness of STM algorithms. They also check the correctness of STM algorithms
under relaxed memory models [14]. However, due to state space explosion with
model checking, their verification techniques cannot be easily extended to STM
implementations.

7 Conclusion

We presented a framework to verify STM implementations with respect to dif-
ferent correctness properties like serializability, strict serializability, and opacity.
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Our framework can be extended to other correctness properties that can be ex-
pressed in terms of cycles in a conflict graph. We developed and implemented
TRACER, an efficient tool for sound and complete verification of STM imple-
mentations. TRACER combines a fast, coarse analysis with a precise analysis to
verify executions of STM implementations at run-time. On average, TRACER
has an overhead of around 25x for the STAMP benchmarks.

We believe that there is a lot of room for improvement in the performance
that we obtain. As TRACER freezes the execution of all threads on every transac-
tional memory access, TRACER has higher overhead when the number of threads
is large. We target performance obtained by dynamic tools for data race detec-
tion and atomicity violations [11,10], which achieve complete verification with
slowdown of 10x. In future work, we shall explore techniques for more efficient
instrumentation. For example, we plan to use more sophisticated locking tech-
niques for updating the transactional access sets. Also, we plan to study inex-
pensive algorithms for sound but incomplete updates to the conflict graphs and
cycle detection.
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Abstract. SystemC is a modeling language built as an extension of

C++. Its growing popularity and the increasing complexity of designs

have motivated research efforts aimed at the verification of SystemC

models using assertion-based verification (ABV), where the designer as-

serts properties that capture the design intent in a formal language such

as PSL or SVA. The model then can be verified against the properties

using runtime or formal verification techniques. In this paper we focus

on automated generation of runtime monitors from temporal properties.

Our focus is on minimizing runtime overhead, rather than monitor size or

monitor-generation time. We identify four issues in monitor generation:

state minimization, alphabet representation, alphabet minimization, and

monitor encoding. We conduct extensive experimentation on a synthetic

workload and identify a configuration that offers the best performance

in terms of runtime overhead.

1 Introduction

SystemC (IEEE Standard 1666-2005) is a system modeling language built as an
extension of C++, providing libraries for modeling and simulation of systems
on chip. It leverages the object-oriented encapsulation and inheritance mecha-
nisms of C++ to allow for modular designs and IP transfer/reuse [1]. Various
libraries provide further functionality, for example, SystemC’s Transaction-Level
Modeling (TLM) library defines structures and protocols that streamline the
development of high-level models. Thanks to its open-source license, actively
involved community, and wide industrial adoption, SystemC has become a de
facto standard modeling language, within a decade after its first release.

The growing popularity of SystemC and the increasing complexity of designs
have motivated research efforts aimed at the verification of SystemC models
using assertion-based verification (ABV) – an essential method for validation of
hardware-software models [2]. With ABV, the designer asserts properties that
capture design intent in a formal language, e.g., PSL1 [3] or SVA2 [4]. The
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model then is verified against the properties using runtime verification or formal
verification techniques.

Most ABV efforts for SystemC focus on runtime verification (also called dy-
namic verification, testing, and simulation). This approach involves executing
the model under verification (MUV) in some environment, while running moni-
tors in parallel with the model. The monitors observe the inputs to the MUV and
ensure that the behavior or the output is consistent with the asserted proper-
ties [1]. The complementary approach of formal verification attempts to produce
a mathematical proof that the MUV satisfies the asserted properties. Our focus
in this paper is on runtime verification.

A successful ABV solution requires two components: a formal declarative
language for expressing properties, and a mechanism for checking that the MUV
satisfies the properties. There have been several attempts to develop a formal
declarative language for expressing temporal SystemC properties by adapting
existing languages (see [5] for a detailed discussion). Tabakov et al. [5] argued
that standard temporal property languages such as PSL and SVA are adequate
to express temporal properties of SystemC models, after extending them with
a rich layer of Boolean assertions that capture the event-based semantics of
SystemC, which, together with existing clock-sampling mechanisms in PSL and
SVA, enables specification of properties at different levels of abstraction. Tabakov
and Vardi then showed [6] how a nominal change of the SystemC kernel enables
monitoring temporal assertions expressed in the framework of [5] with overhead
of about 0.05% – 1% per monitor (note that [6] used hand-generated monitors,
while this work focuses on automatically generated monitors).

The second component needed for assertion-based verification, a mechanism
for checking that the MUV satisfies the asserted properties, requires a method
for generating runtime monitors from formal properties. For simple properties
it may be feasible to write the monitors manually (c.f., [7]); however, in most
industrial workflows, writing and maintaining monitors manually would be an ex-
tremely high-cost, labor-intensive, and error-prone process [8]. This has inspired
both academia and industry to search for methods for automated generation of
monitors from temporal properties.

Formal, automata-theoretic foundations for monitor generation for temporal
properties have been laid out in [9], which showed how a deterministic finite word
automaton (DFW) can be generated from a temporal property such that the
automaton accepts the finite traces that violate the property. Many works have
elaborated on that approach, cf. [10, 11, 12, 13, 14, 15]); see the discussion below
of related work. Many of these works, e.g. [10], handle only safety properties,
which are properties whose failure is always witnessed by a finite trace. Here,
as in [12], we follow the framework of [9] in its full generality and we consider
all properties whose failure may be witnessed by a finite trace. For example, the
failure of the property “eventually q” can never be witnessed by a finite trace,
but the failure of the property “always p and eventually q” may be witnessed by
a finite trace.
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Apriori it is not clear how monitor size is related to performance, and most
works on this subject have focused on underlying algorithmics or heuristics to
generate smaller monitors or on fast monitor generation. This paper is an at-
tempt to shift the focus toward optimizing runtime overhead that monitor exe-
cution adds to simulation time. We believe that this reflects more accurately the
priorities of the industrial applications of monitors [10]. A large model may be
accompanied by thousands of monitors, most of which are compiled once and ex-
ecuted many times, so lower runtime overhead is a crucial optimization criterion,
much more than monitor size or monitor-generation time. In this paper we iden-
tify several algorithmic choices that need to be made when generating temporal
monitors for monitoring frameworks implemented in software. We conduct ex-
tensive experimentation to identify the choices that lead to superior performance
on a synthetic SystemC loads.

We identify four issues in monitor generation: state minimization, should non-
deterministic automata be determinized online or offline; alphabet representation,
should alphabet letters be represented explicitly or symbolically; alphabet min-
imization, should inconsistent alphabet letters be eliminated; and monitor en-
coding, how should the transition function of the monitor be expressed. These
options give us a configuration space of 27 different ways of generating a monitor
from nondeterministic automata.

Lacking an extensive benchmark suite of SystemC models and temporal prop-
erties, we evaluate performance on a synthetic workload. We use a model repre-
senting an adder [6]. Its advantages are that it is scalable and creates events at
many different level of abstractions. For temporal properties we use linear tem-
poral formulas. We use a mixture of pattern and random formulas, giving us a
collection of over 1,300 temporal properties. Our experiments identify a specific
configuration that offers the best performance in terms of runtime overhead.

2 Related Work

Most related papers that deal with monitoring focus on simplifying the moni-
tor or reducing the number of states. Using smaller monitors is important for
in-circuit monitoring, say, for post-silicon verification [16], but for pre-silicon
verification, using lower-overhead monitors is more important. Very few prior
works focus on minimizing runtime overhead.

Several papers focus on building monitors for informative prefixes, which are
prefixes that violate input assertions in an “informative way.” Kupferman and
Vardi [9] define informative prefixes and show how to use alternating automata
to construct nondeterministic finite word automata (NFW) of size 2O(ψ) that ac-
cept informative prefixes of ψ. Kupferman and Lampert [17] use a related idea
to construct NFW automata of size 2O(ψ) that accept at least one prefix of every
trace that violates a safety property ψ. Two constructions that build monitors for
informative prefixes are by Geilen [14] and by Finkbeiner and Sipma [13]. Nei-
ther provide experimental results. Armoni et al. [10] describe an implementation
based on [9] in the context of hardware verification. Their experimental results fo-
cus on both monitor size and runtime overhead. They showed that the overhead is
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significantly lower than that of commercial simulators. Stolz and Bodden [18] use
monitors constructed from alternating automata to check specifications of Java
programs, but do not give experimental results.

Morin-Allory and Borione [19] show how to construct hardware modules im-
plementing monitors for properties expressed using the simple subset of PSL.
Pierre and Ferro [20] describe an implementation based on this construction,
and present some experimental results that show runtime overhead, but do not
present any attempts to minimize it. Boulé and Zilic [16] show a rewriting-based
technique for constructing monitors for the simple subset of PSL. They pro-
vide substantial experimental results, but focus on the monitor size and not on
runtime overhead.

D’Amorim and Roşu [12] show how to construct monitors for minimal bad
prefixes of temporal properties without any restrictions whether the property is
a safety property or not. They construct a nondeterministic finite automaton of
size 2O(ψ) that extracts the safety content from ψ, and simulate a deterministic
monitor on the fly. They present two optimizations: one reduces the size of the
automaton, while the other searches for a good ordering of the outgoing transi-
tions so that the overall expected cost of running the monitor would be smallest.
They measure experimentally the size of the monitors for a few properties, but
do not measure their runtime performance. A similar construction, but without
any of the optimizations, is also described by Bauer et al. [11].

3 Theoretical Background

Let AP be a finite set of atomic propositions and let Σ = 2AP be a finite
alphabet. Given a temporal specification ψ, we denote the set of models of the
specification with L(ψ) = {w ∈ Σω | w |= ψ}. Let u ∈ Σ∗ denote a finite word.
We say that u is a bad prefix for L(ψ) iff ∀σ ∈ Σω : uσ �∈ L(ψ) [9]. Intuitively, a
bad prefix cannot be extended to an infinite word in L(ψ). A minimal bad prefix
does not have a bad prefix as a strict prefix.

A nondeterministic Büchi automaton (NBW) is a tuple A = 〈Σ, Q, δ, Q0, F 〉,
where Σ is a finite alphabet, Q �= ∅ is a finite set of states, δ : Q × Σ → 2Q

is a transition function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set
of accepting states. If q′ ∈ δ(q, σ) then we say that we have a transition from
q to q′ labeled by σ. We extend the transition function δ : Q × Σ → 2Q in the
usual way to δ : 2Q × Σ∗ → 2Q. A run of A on a word w = a0a1 . . . ∈ Σω is
a sequence of states q0q1 . . ., such that q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for some
ai ∈ Σ. For a run r, let Inf(r) denote the states visited infinitely often. A run r
of A is called accepting iff Inf(r)∩F �= ∅. The word w is accepted by A if there is
an accepting run of A on w. For a given Linear-Time Logic (LTL) or PSL/SVA
formula ψ, we can construct an NBW that accepts precisely L(ψ) [21]. We used
SPOT [22], an LTL-to-Büchi-automata tool, which is among the best available
in terms of performance [23]. Using our framework for PSL or SVA would require
an analogous translator.
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A nondeterministic automaton on finite words (NFW) is a tuple A =
〈Σ, Q, δ, Q0, F 〉. An NFW can be determinized by applying the subset con-
struction, yielding a deterministic automaton on finite words (DFW) A′ =
〈Σ, 2Q, δ′, {Q0}, F ′〉, where δ′(S, a) =

⋃
s∈S δ(s, a) and F ′ = {S : S∩F �= ∅}. For

a given NFW A, there is a canonical minimal DFW that accepts L(A) [24]. In
the remainder of this paper, given an LTL formula ψ, we use ANBW(ψ) to mean
an NBW that accepts L(ψ), and ANFW(ψ) (respectively, ADFW(ψ)) to mean
a an NFW (respectively, DFW) that rejects (respectively, accepts) the minimal
bad prefixes of L(ψ).

Building a monitor for a property ψ requires building ADFW(ψ). Our work is
based on the construction by d’Amorim and Roşu [12], which produces ANFW(ψ).
Their construction assumes an efficient algorithm for constructing ANBW(ψ)
(e.g., [22], when the specification is expressed in LTL, or [25], when the specifica-
tion is in PSL). We sketch their construction and then we show how we construct
ADFW(ψ).

Given an NBW A = 〈Σ, Q, δ, Q0, F 〉 and a state q ∈ Q, define Aq =
〈Σ, Q, δ, q, F 〉. Intuitively, Aq is the NBW automaton defined over the struc-
ture of A but replacing the set initial states with {q}. Let empty(A) ⊆ Q consist
of all states q ∈ Q such that L(Aq) = ∅}, i.e., all states that cannot start an
accepting run. The states in empty(A) are “unnecessary” in A because they
cannot appear on an accepting run. We can compute empty(A) efficiently using
nested depth-first search [26]. Deleting the states in empty(A) is functionality
available in SPOT.

To generate a monitor for ψ, d’Amorim and Roşu build ANBW(ψ) and remove
empty(ANBW(ψ)). They then treat the resulting automaton as an NFW, with
all states taken to be accepting states. That is, the resulting NFW is A =
〈Σ, Q′, δ′, Q0 ∩ Q′, F ∩ Q′〉, where Q′ = Q − empty(A), and δ′ is δ restricted to
Q′×Σ. When started with ANBW(ψ), we call the resulting automaton AdR

NFW(ψ).

Theorem 1. [12] AdR
NFW(ψ) rejects precisely the minimal bad prefixes of ψ.

From now on we refer to AdR
NFW(ψ) simply as ANFW(ψ). ANFW(ψ) is not useful

as a monitor because of its nondeterminism. d’Amorim and Roşu describe how to
use ANFW(ψ) to simulate a deterministic monitor. Their description is in terms
of nondeterministic multi-transitions and binary transition trees [12]. Instead of
introducing these formalisms, here we use instead the approach in [10,27], which
presents the same concept in automata-theoretic terms. The idea in both papers
is to represent ADFW(ψ) symbolically, and perform the subset construction on
the fly, as we read the inputs from the trace. Given ANFW(ψ) = 〈Σ, Q, δ, Q0, Q〉
and a finite trace a0, . . . , an−1, we construct a run P0, . . . , Pn of ADFW(ψ) as
follows: P0 = {Q0} and Pi+1 =

⋃
s∈Pi

δ(s, ai). The run is accepting iff Pi = ∅
for some i ≥ 0 , which means that we have read a bad prefix. Notice that each
Pi is of size linear in the size of ANFW(ψ), thus we have avoided the exponential
blowup of the determinization construction, with the price of having to compute
transitions on the fly [10, 27].
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Another way of constructing a monitor from ANFW(ψ) is to determinize it ex-
plicitly using the subset construction. In the worst case the resulting ADFW(ψ)
is of size exponential of the size of ANFW(ψ), which is why explicit determiniza-
tion has rarely been used. We note, however, that we can minimize ADFW(ψ),
getting a minimal DFW. (If the minimal DFW has a single state, then either the
property is not satisfiable, or it can never have a bad prefix.) It is not clear, a
priori, what impact this determinization and minimization will have on runtime
overhead.

4 Monitor Generation

We now describe various issues that arise when constructing ADFW(ψ).
State Minimization. As noted above, we can describe ADFW(ψ) symboli-

cally. We discuss in detail below how to express ADFW(ψ) as a collection of C++
expressions. The alternative is to feed ANFW(ψ) into a tool that constructs a min-
imal equivalent ADFW(ψ). Here we use the BRICS Automaton tool [28]. Clearly,
determinization and minimization, as well as subsequent C++ compilation, may
incur a nontrivial computational cost. Still such a cost might be justifiable if the
result is reduced runtime overhead, as assertions have to be compiled only once,
but then run many times. A key question we want to answer is whether it is
worthwhile to determinize ANFW(ψ) explicitly, rather than on the fly.

Alphabet Representation. In our formalism, the alphabet Σ of ANFW(ψ)
is Σ = 2AP , where AP is the set of atomic propositions appearing in ψ. In prac-
tice, tools that generate ANBW(ψ) (SPOT in our case) often use B(AP ), the set
of Boolean formulas over AP , as the automaton alphabet: a transition from state
q to state q′ labeled by the formula θ is a shortcut to denote all transitions from
q to q′ labeled by σ ∈ 2AP , when σ satisfies θ. When representing ADFW(ψ)
symbolically, we can use formulas as letters. Automata-theoretic algorithms for
determinization and minimization of NFWs, however, require comparing ele-
ments of Σ, which makes it impractical to use Boolean formulas for letters. We
need a different way, therefore, to describe our alphabet. BRICS Automaton rep-
resents the alphabet of the automaton as Unicode characters, which have 1-to-1
correspondence to the set of 16-bit integers. Below we show two ways to describe
the alphabet of ANFW(ψ) in terms of 16-bit integers.

The explicit approach is to represent Boolean formulas in terms of their satis-
fying truth assignments. Let AP = {p1, p2, . . . , pn} and let F(p1, p2, . . . , pn) be
a Boolean function. An assignment to AP is an n-bit vector a = [a1, a2, . . . , an].
An assignment a satisfies F iff F(a1, a2, . . . , an) evaluates to 1. Let An be the set
of all n-bit vectors and let I : An → Z+ return the integer whose binary represen-
tation is a, i.e., I(a) = a12n−1 +a22n−2 + . . .+an20. We define sat(F) = {I(a) :
a satisfies F}. Thus, the explicit representation of the automaton ANFW(ψ)
= 〈B(AP ), Q, δ, Q0, F 〉 is Aass

NFW(ψ)= 〈{0, . . . , 2n − 1}, Q, δass, Q
0, F 〉 , where

q′ ∈ δass(q, z) IFF q′ ∈ δ(q, σ) and z ∈ sat(σ).
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The symbolic approach to alphabet representation leverages the fact that
Ordered Binary Decision Diagrams (BDDs) [29] provide canonical representation
of Boolean functions. A BDD is a rooted, directed acyclic graph with one or two
terminal nodes labeled 0 or 1, and a set of variable nodes of out-degree two. The
variables respect a given linear order on all paths from the root to a leaf. Each
path represents an assignment to each of the variables on the path. For a fixed
variable order, two BDDs are the same iff the Boolean formulas they represent are
the same. The symbolic approach enumerates all Boolean formulas that appear
as transition labels in ANFW(ψ) using their BDD representation (in our case,
such representation is computed by SPOT), and assigns each unique formula
a unique integer. We thus obtain Abdd

NFW(ψ) by replacing transitions labeled by
Boolean formulas with transitions labeled by the corresponding integers. While
the size of B(AP ) is doubly exponential in |AP |, the automaton ANBW(ψ) is
exponential in |ψ|, so the number of Boolean formulas used in the automaton is
at most exponential in |ψ|.

Here we provide both Aass
NFW(ψ) and Abdd

NFW(ψ) as inputs to BRICS Automaton,
producing, respectively, minimized Aass

DFW(ψ) and Abdd
DFW(ψ). We note that nei-

ther of these two approaches is a priori a better choice. LTL–to–automata tools
use Boolean formulas rather than assignments to reduce the number of transi-
tions in the generated nondeterministic automata, but when using Abdd

DFW(ψ) as a
monitor, the trace we monitor is a sequence of truth assignments, and Abdd

DFW(ψ)
is not deterministic with respect to truth assignments.

Alphabet Minimization. While propositional temporal specification lan-
guages are based on Boolean atomic propositions, they are often used to spec-
ify properties involving non-Boolean variables. For example, we may have the
atomic propositions a==0, a==1, and a>1 in a specification involving the values
of a variable int a. This means that not all assignments in 2AP are consistent.
For example, the assignment (a==0) && (a==1) is not consistent. By eliminate
inconsistent assignments we may be able to reduce the number of letters in the
alphabet exponentially. Identifying inconsistent assignments requires calling an
SMT (Satisfiability-Modulo-Theory) solver [30]. Here we would need an SMT
solver that can handle arbitrary C++ expressions of type bool. Not having
access to such an SMT solver, we used the compiler as an improvised SMT
solver.

A set of techniques called constant folding allow compilers to reduce constant
expressions to a single value at compile time (see, e.g., [31]). When an expression
contains variables instead of constants, the compiler uses constant propagation
to substitute values of variables in subsequent subexpressions involving the vari-
ables. In some cases the compiler is able to deduce that an expression contains
two mutually exclusive subexpressions, and issues a warning during compilation.
We construct a function that uses conjunctions of atomic propositions as condi-
tionals for dummy if/then expressions, and compile the function (we use gcc
4.0.3). To gauge the effectiveness of this optimization we apply it using two
sets of conjunctions. Full alphabet minimization uses all possible conjunctions
involving propositions or their negations, while partial alphabet minimization
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uses only conjunctions that contain each atomic proposition, positively or
negatively.

We compile the function and then parse the compiler warnings that identify
inconsistent conjunctions. Prior to compiling the Büchi automaton we augment
the original temporal formula to exclude those conjunctions from consideration.
For example, if (a==0) && (a==1) is identified as an inconsistent conjunction,
we augment the property ψ to ψ ∧ G(!((a == 0) ∧ (a == 1))).

Monitor encoding. We describe five ways of encoding automata as C++
monitors. Not all can be used with all automata directly, so we identify the
transformations that need to be applied to an automaton before each encoding
can be used.

The strategy in all encodings is to construct the run P0, P1, . . . of the monitor
using two bit-vectors of size |Q|: current[] and next[]. Initially next[] is
zeroed, and current[j] = 1 iff qj ∈ Q0. Then, after sampling the state of the
program, we set next[k] = 1 iff current[j] = 1 and if there is a transition
from qj to qk that is enabled by the current program state. When we are done
updating next[] we assign it to current[], zero next[], and then repeat the
process at the next sample point. Intuitively, current[] keeps track of the set of
automaton states that are reachable after seeing the execution trace so far, and
next[]maintains the set of automaton states that are reachable after completing
the current step of the automaton. The details of the way we update current[]
and next[] are reflected in the different encodings.

1

2

42

p ∧ q

q
q

¬q

Fig. 1. A (nondeterministic)

automaton with Boolean for-

mula transitions

The two encodings front nondet and
back nondet expect that the automaton tran-
sitions are Boolean formulas, and do not
assume determinism. Thus, front nondet and
back nondet can be used with ANFW(ψ) directly.
They can also be used with Aass

DFW(ψ) and
Abdd

DFW(ψ), once we convert back the transition
labels from integers to Boolean formulas as
follows. In Aass

DFW(ψ), we calculate the assignment
corresponding to each integer, and use that
assignment to generate a conjunction of atoms

if (current[1]) {

if (p && q) {next[42] = 1;}

if (!q) {next[1] = 1;}

}

if (current[2]) {

if (q) {next[42] = 1;}

if (q) {next[1] = 1}

}
(a) front nondet encoding

next[1] =(current[1] && !q) ||

(current[2] && q);

next[42]=(current[1] && (p && q)) ||

(current[2] && q);

(b) back nondet encoding

Fig. 2. Illustrating front nondet and back nondet encoding
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or their negations. In Abdd
DFW(ψ) we relabel each transition with the Boolean

function whose BDD is represented by the integer label.
The front nondet encoding uses an explicit if to check if each state s of

current[] is enabled. For each outgoing transition t from s it then uses a nested
if with a conditional that is a verbatim copy of the transition label of t to
determine if the destination state of t is reachable from s. The back nondet
encoding uses a disjunction that represents all of the ways in which a state
in next[] can be reached from the currently reachable states. Encoding the
automaton in Fig. 1 is illustrated in Fig. 2.

The three encodings front det switch, front det ifelse, and back det
assume that the automaton is deterministic and that the transitions are integers
corresponding to assignments. Thus, these three encodings can be used only with
Aass

DFW(ψ). At the beginning of each step of the automaton we use the state of
the MUV (i.e., the values of all public and private variables) [5] to derive an
assignment a to the atomic propositions in AP (ψ). We then calculate an integer

1

2

42

10

15
21

11

Fig. 3. A deterministic au-

tomaton with integer transi-

tions

representing the relevant model state mod st =
I(a), where a is the current assignment, and use
mod st to drive the automaton transitions. The
back det encoding is similar to back nondet in
that it encodes the automaton transitions as a
disjunction of the conditions that allow a state
in next[] to be enabled. The difference is that
here the transitions are driven by mod st instead
of Boolean functions. See Fig. 4 for an illustra-
tion of this encoding. The front det switch and
front det ifelse encodings differ in the C++
constructs that we use to take advantage of the
determinism in the automaton; see Fig. 5 for an

illustration of the encodings of the automaton in Fig. 3.

// Calculate the value of mod_st

int mod_st = 0;

mod_st += q ? 16 : 0;

mod_st += p ? 8 : 0; //...

next[1] = (current[1] && (mod_st == 11) ||

(current[2] && (mod_st == 21);

next[42] = (current[1] && (mod_st == 10)) ||

(current[2] && (mod_st == 15));

Fig. 4. Illustrating back det

Configuration Space. The different options give us 27 possible combina-
tions for generating a monitor, summarized in Table 1.
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// Calculate the value of mod_st

int mod_st = 0;

mod_st += q ? 16 : 0;

mod_st += p ? 8 : 0; //...

if (current[1]) {

if (mod_st==10) {next[42] = 1;}

else if (mod_st==11) {next[1] = 1;}

else {error();}

}

if (current[2]) {

if (mod_st==15) {next[42] = 1;}

else if (mod_st==21) {next[1] = 1;}

else {error();}

}

(a) front det ifelse encoding

// Calculate the value of mod_st

int mod_st = 0;

mod_st += q ? 16 : 0;

mod_st += p ? 8 : 0; //...

if (current[1])

switch(mod_st) {

case 10: next[42] = 1; break;

case 11: next[1] = 1; break;

default: error();

}

if (current[2])

switch(mod_st) {

case 15: next[42] = 1; break;

case 21: next[1] = 1; break;

default: error();

}

(b) front det switch encoding

Fig. 5. Illustrating front det ifelse and front det switch

Table 1. The configuration space for generating monitors

State

Minimization

Alphabet

Representation

Alphabet

Minimization
Monitor Encoding

no N/A

none

partial

full

front nondet

yes

BDDs back nondet

assignments

front nondet

back nondet

front det ifelse

front det switch

back det

5 Experimental Issues

SystemC model: Our experimental evaluation is based on the Adder3 model
presented in [6]. The Adder implements a squaring function by using repeated
incrementing by 1. We used the Adder to calculate 1002 with 1,000 instances of
a monitor for the same property. Since we are mostly concerned with monitor
overhead, we focus on the time difference between executing the model with
and without monitoring. We established a baseline for the model’s runtime by
compiling the Adder model with a virgin installation of SystemC (i.e., without
the monitoring framework of [6]) and averaging the runtime over 10 executions.
To calculate the monitor overhead we averaged the runtime of each simulation
over 10 executions and subtracted the baseline time. Notice that the overhead

3 Source code available at http://www.cs.rice.edu/∼vardi/memocode10.tar.bz2
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as calculated includes the cost of the monitoring framework and the slow-down
due to all 1,000 monitors.

Properties: We used specifications constructed using both pattern formulas
and randomly generated formulas. We used LTL formulas, as we have access to
explicit-state LTL-to-automata translators (SPOT, in our case), but the frame-
work is applicable to any specification language that produces NBWs.

We adopted the pattern formulas used in [32] and presented below:
lu(n) := (. . . (p1Up2)) . . .Upn)Upn+1

ru(n) := p1U(p2U(. . . (pnUpn+1) . . .))

c1(n) :=
n∨

i=1

GFpi

c2(n) :=
n∧

i=1

GFpi

qq(n) :=
n∧

i=1

(Fpi ∨ Gpi+1)

rr(n) :=
n∧

i=1

(GFpi ∨ FGpi+1)

ss(n) :=
n∨

i=1

Gpi

In addition to these formulas we also used bounded F and bounded G formu-
las, and a new type of nested U formulas, presented below:

f1(n) := G(p → (q ∨ Xq ∨ . . . ∨XX . . .Xq))
f2(n) := G(p → (q ∨ X(q ∨ X(q ∨ . . . ∨Xq) . . .)))
g1(n) := G(p → (q ∧ Xq ∧ . . . ∧XX . . .Xq))
g2(n) := G(p → (q ∧ X(q ∧ X(q ∧ . . . ∧Xq) . . .)))
uu(n) := G(p1 → (p1U(p2 ∧ p2U(p3 . . . (pn ∧ pnUpn+1)))) . . .)

In our experiments we replaced the generic propositions pi in each pattern
formula with atomic formulas (a==100^2-100(n-i-1)), where a is a variable
representing the running total in the Adder. Since most pattern formulas assert
some form of eventuality, using such atomic propositions ensures that failure of
the property cannot be detected until the last few cycles of the simulation. This
forces the monitor to stay active during the entire duration of the simulation,
which makes it easier to measure monitoring overhead. For each pattern we
scaled up the formulas until all 27 configurations either timed out or crashed.
Most configurations can be scaled up to n = 5, except for the bounded properties,
which can be scaled to n = 17. We identified 127 pattern formulas for which at
least one configuration could complete the monitoring task.

The random formulas that we used were generated following the framework
of [33]. For each formula length there are two parameters that control the number
of propositions used and the probability of selecting an U or a V operator
(formula length is calculated by adding the number of atomic propositions, the
number of logical connectives, and the number of temporal operators). We varied
the number of atomic propositions between 1 and 5, the probability of selecting
an U or a V was one of {0.1, 0.3, 0.7, 0.95}, and we varied the formula length
from 5 to 30 in increments of 5. We used the same style of atomic propositions
as in the pattern formulas. For each combination of parameters we generated 10
formulas at random, giving us a total of 1200 random formulas.
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6 Results

We ran all experiments on Ada, Rice’s Cray XD1 compute cluster.4 Each
of Ada’s nodes has two dual core 2.2 GHz AMD Opteron 275 CPUs
and 8GB of RAM. We ran with exclusive access to a node so all 8GB
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Fig. 6. Monitor overhead with and with-

out state minimization. State minimization

lower the overhead by orders of magnitude.

of RAM were available for use. We
allowed 8 hours (maximal job time
on Ada) of computation time per
configuration per formula for gen-
erating Büchi automata, automata-
theoretic transformations, generating
C++ code, compilation, linking with
the Adder model using the monitoring
framework presented in [6], and exe-
cuting the monitored model 10 times.

We first evaluate the individual ef-
fect of each optimization. For each for-
mula we partition the configuration
space into two groups: those configu-
rations that use the optimization and
those that do not. We form the Carte-
sian product of the overhead times
from both groups and present them
on a scatter plot.

State minimization. In Fig. 6 we show the effect of state minimization on
the runtime overhead. A few outliers notwithstanding, using state minimization
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Fig. 7. Using assignments for alphabet rep-

resentation leads to better performance

than using BDDs

dramatically lowers the runtime over-
head of the monitor. This result
can be explained partly by the size
of the automaton with and with-
out optimization. For some formu-
las we see four orders of magni-
tude smaller automata. State min-
imization sometimes produces big-
ger automata, which is not sur-
prising as nondeterministic automata
can be exponentially more succinct
than the equivalent minimal deter-
ministic ones [24]. Our data show
that when the minimized automaton
(Abdd

DFW(ψ) or Aass
DFW(ψ)) has more

states than the unminimized automa-
ton (ANFW(ψ)), generating a monitor

4 rcsg.rice.edu/ada
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Fig. 8. Comparison of the monitor overhead when using different encodings. Each

subplot shows the performance when using one of the encodings (x-axis) vs. all other

encodings (y-axis).

using ANFW(ψ) leads to smaller runtime overhead. This observation can be used
as a heuristic.

Alphabet Representation. Fig. 7 shows that using assignments leads to
better performance than BDD-based alphabet representation. Our data shows
that in the vast majority of cases, using assignments leads to smaller au-
tomata, which again suggests a connection between monitor size and monitor
efficiency.

Alphabet Minimization. Our data shows that partial– and full– alpha-
bet minimization typically slow down the monitor. We think that the rea-
sons behind it are two-fold. On one hand, the performance of gcc as a deci-
sion engine to discover mutually exclusive conjunctions is not very good (in
our experiments it was able to discover only 10%–15% of the possible mutu-
ally exclusive conjunctions). On the other hand, augmenting the formula in-
creases the formula size, but SPOT cannot take advantage of the extra infor-
mation in the formula and typically generates bigger Büchi automata. If we
manually augment the formula with all mutually exclusive conjunctions we do
see smaller Büchi automata, so we believe this optimization warrants further
investigation.
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Monitor Encoding. Finally, we compared the effect of the different mon-
itor encodings (Fig. 8). Our conclusion is that no encoding dominates the oth-
ers, but two (front nondet and front det switch) show the best performance
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Fig. 9. Best overall performance

relative to all others
(front det switch has a slight
edge over front nondet), and
back det has the worst performance.

Best Configuration: The final
check of our conclusion is presented in
Fig. 9, where we plot the performance
of the winning configuration against
all other configurations. There are a
few outliers, but overall the configu-
ration gives better performance than
all others.

Based on the comparison of indi-
vidual optimizations we conclude that
front det switch encoding with
assignment–based state minimization
and no alphabet minimization is the
best overallconfiguration.

7 Discussion

Together with the specification formalism proposed in [5], and the monitoring
framework described in [6], this work provides a general ABV solution for tem-
poral monitoring of SystemC models. We have identified a configuration that
generates low-overhead monitors and we believe that it would serve as a good
default setting. We note, however, that practical use of our tool may involve
monitoring tasks that are different than the synthetic load that we used for our
tests. Recent developments in the area of self-tuning systems show that even
highly optimized tools can be improved by orders of magnitude using search
techniques over the configuration space (c.f., [34]). Thus we have left the user
full control over tool configuration.

Acknowledgment. We thank Kristin Y. Rozier for her code for generating the
random formulas used in our experiments.
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12. D’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K.,

Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidel-

berg (2005)

13. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.

Methods Syst. Des. 24(2), 101–127 (2004)

14. Geilen, M.: On the construction of monitors for temporal logic properties. Electr.

Notes Theor. Comput. Sci. 55(2) (2001)

15. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-

erties on running programs. In: Int. conf. on Automated Software Engineering,

Washington, DC, USA, p. 412. IEEE, Los Alamitos (2001)
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Abstract. We desire a capability for the lifelong verification of complex

embedded systems that degrade over time, such as a semi-autonomous

car. The field of runtime verification has developed many tools for moni-

toring the safety of software systems in real time. However, these tools do

not allow for uncertainty in the system’s state or failure, both of which

are essential for monitoring hardware as it degrades. This work augments

runtime verification with techniques from model-based estimation in or-

der to provide a capability for monitoring the safety criteria of mixed

hardware/software systems that is robust to uncertainty and hardware

failure.

We begin by framing the problem as runtime verification of stochas-

tic, faulty, hidden-state systems. We solve this problem by performing

belief state estimation over the combined state of the Büchi automata

representing the safety requirements and the probabilistic hierarchical

constraint automata representing the embedded system. This method

provides a clean framing of safety monitoring of mixed stochastic sys-

tems as an instance of Bayesian filtering.1

Keywords: stochastic systems, hidden state, belief state update.

1 Introduction

1.1 Runtime Verification for Faulty Embedded Systems

The field of runtime verification seeks to check software correctness at runtime.
Runtime verification complements testing methods by providing a framework
for automated testing that can be extended into a capability for monitoring
a system post-deployment. With a runtime verification capability in place, an
operational system can detect deviations from formally specified behavior and
potentially take corrective action, providing a capability for fault-tolorance which
is desirable for safety critical systems.

Runtime verification has also been used in complex mixed systems, that is,
systems that involve a mix of hardware and software [10, 2]. However, runtime
1 This research was supported in part by the Ford-MIT Alliance agreement of 2007,

and by a grant from the Office of Naval Research through Johns Hopkins University,

contract number 960101.
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verification for such systems assumes observability of properties to be monitored.
We argue that for complex hardware systems, such as a space probe or a car,
the system’s state is generally unobservable, due to the high cost of sensing all
variables reliably. Hence, in order to perform safety monitoring of these mixed
systems, this thesis extends proven runtime verification techniques so that they
handle systems with hidden states.

To deal with hidden states, we draw upon inference techniques from the field
of Model-based diagnosis (MBD) [14], which are based on a model of the system
components and constraints. MBD applies conflict-directed search techniques in
order to quickly enumerate system configurations, such as failure modes, that
are consistent with the model and observations. These techniques are suitable for
mixed systems and scale well to systems with large numbers of components [8,14].

A second issue, not directly addressed by runtime verification, is that com-
plex systems with long life cycles experience performance degradation due to
seemingly random hardware failure. Many systems function well when manufac-
tured, but may become unsafe over time, especially when they are in use for
longer than their intended life span. For example, car owners occasionally fail to
have their vehicles inspected promptly, which can result in a component, such
as the braking system, receiving more use than it was designed for. We want to
be able to detect any breaches of safety due to wear and tear in such a situation.

Thus, this work advocates the use of a plant model that incorporates stochas-
tic behavior [14], allowing wear and tear to be modeled as stochastic hardware
failure. With such a model, specification violations resulting from performance
degradation can be detected online and recovery action can be taken, such as
the removal of unsafe functions.

1.2 Architecture of the Proposed Solution

We propose a capability for the monitoring of formal specifications for mixed
systems that are written in Linear Temporal Logic (LTL) [11]. Linear Temporal
Logic is a well studied logic that is similar to plain English and expressive enough
to capture many important high-level safety requirements. Additionally, we allow
requirements to be written over hidden system states.

Our safety monitoring capability will also have a model of the stochastic, faulty
plant captured as a Probabilistic Hierarchical Constraint Automaton (PHCA)
[14]. This automaton representation allows for the abstract specification of em-
bedded software, as well as the specification of discrete hardware modes, includ-
ing known failure modes. Additionally, stochastic transitions may be specified in
order to model random hardware failure. Such a model of the system allows the
safety monitoring capability to identify hidden system state, including in the case
of sensor failure, unmodeled failures, intermittent failures, or multiple faults.

Given sensory information, the safety monitoring capability will then com-
pute online the likelihood that the LTL safety requirements are being met. We
accomplish this by framing the problem as an instance of belief state update
over the combined state of the Büchi Automaton and Probabilistic Hierarchical
Constraint Automaton, as described in Section 4.2.
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Together, LTL and PHCA offer an orderly specification method for performing
safety monitoring of mixed stochastic systems. Viewing safety monitoring as
belief state update on a hybrid of BA and PHCA state provides a clean framing
of the problem as an instance of Bayesian filtering.

1.3 Related Work

Some examples of the successful application of runtime verification techniques in
software systems are JPaX, by Havelund and Roşu [6], DBRover, by Drusinsky
[3], and MaC [7], by Kim et al. In this paper we build on such work by extending
these techniques to deal with mixed stochastic systems.

Peters and Parnas [10], and Black [2] have developed monitors for runtime
verification of systems that include hardware, but these works do not consider
hidden state, which is the primary focus of this paper. Sistla and Srinivas [13],
and Sammapun et al. [12] present sound monitoring algorithms for software
systems exhibiting probabilistic behavior, but neither work is concerned with
properties written over hidden system states, and thus their methods do not
suffice for the purpose of safety monitoring of mixed systems.

Runtime verification has been moving towards the monitoring of general prop-
erties for mixed stochastic systems, but no work we are aware of has attempted
to monitor properties written over unobservable system states. Additionally, no
work has employed a system model appropriate for faulty hardware systems.
The approach presented in this paper provides these novel capabilities.

2 Temporal Logic and Büchi Automata

2.1 Linear Temporal Logic

In this paper we consider safety requirements written in next-free Linear Tem-
poral Logic (LTL) [11,5]. An LTL statement α may be comprised of propositions
connected with the usual boolean operators (¬, ∧, ∨, →), as well as the tem-
poral operators always (�), eventually (♦), until (U), and release (R). These
operators are formally defined as is usual in the literature.

2.2 LTL to NBA Conversion

In order to automate the monitoring of a Linear Temporal Logic statement Λ, it
may be converted into a nondeterministic Büchi Automaton (NBA) and executed
on the finite program trace W . To perform this conversion, we use the method
specific to Büchi Automata on finite inputs described by Giannakopoulou and
Havelund in [5], which is based on earlier work [4] on converting LTL to a form
of Büchi Automaton for the purposes of model checking. This method results in
NBA with finite-trace semantics.
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2.3 Nondeterministic Büchi Automata

Nondeterministic Büchi Automata (NBA) extend nondeterministic finite au-
tomata (NFA) to operate on infinite-length words, allowing us to use a non-
deterministic Büchi Automaton to represent the language of a Linear Temporal
Logic statement [1].

A nondeterministic Büchi Automaton is a tuple 〈Q, Q0, F, Σ, T 〉, such that Q
is a finite set of states, Q0 ⊆ Q is a set of start states, F ⊆ Q is a set of accepting
states, Σ is the input alphabet, and the transition function is T : Q × Σ → 2Q.

We refer to Q hereafter as the safety state of the physical system. The alphabet
Σ of a NBA consists of all possible physical configurations of the system. These
NBA are modified from canonical NBA to accept finite traces.

2.4 Deterministic Büchi Automata

Runtime verification for stochastic systems as described in this paper requires
a model of the safety requirements with a complete transition function, which
a NBA does not guarantee. We obtain this function by converting the NBA of
the safety requirements into a deterministic Büchi Automaton (DBA). A DBA is
defined similarly to an NBA except that it may only have one start state q0 ∈ Q,
and the transition relation T : Q × Σ → Q must be complete.

NBA on finite traces can be converted to an equivalent deterministic Büchi
automaton without loss of expressiveness through subset or powerset construc-
tion. A method for doing so is described by Giannakopoulou in [5].

After conversion, a DBA contains a special state q∅ that denotes a violation
of the safety requirements, and is the only non-safe state of the DBA.

3 The Probabilistic Hierarchical Constraint Automata
Model

When safety properties are written over hidden system states, runtime verifica-
tion of these properties requires a model of system behavior. We use the Prob-
abilistic Hierarchical Constraint Automaton (PHCA) [14] formalism because it
allows us to concisely and accurately model mixed hardware/software systems
that degrade or fail, such as planetary rovers or cars. PHCA allow for proba-
bilistic behavior, which is a reasonable model of random hardware failure.

PHCA are derived from HMMs. Like an HMM, a PHCA may have hidden
states and transition probabilistically. Unlike an HMM, PHCA introduce the
notion of constraints on states as well as a hierarchy of component automata.
Systems are modeled as a set of individual PHCA components that communicate
through shared variables. Discrete modes of operation representing nominal and
faulty behavior are specified for each component. Components may transition
between modes probabilistically or based on system commands. Additionally,
modes and transitions may be constrained by the modes of other components.

For an example and more detail, the reader is referred to [9]. Note that another
model providing the transition and observation probabilities required in Section
4.2 may be substituted, such as a less sophisticated HMM.
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4 Runtime Verification for Stochastic Systems

Traditional runtime verification does safety monitoring of software systems in
which state can be directly observed. In this section we extend the problem to
that of safety monitoring of mixed hardware / software systems that can fail,
and solve this problem by incorporating stochastic behavior and hidden state.

If it is assumed that the state of a mixed system is observable, then runtime
verification may be used to monitor the safety of such a system. However, due
to incomplete or faulty sensing, it is not realistic to assume that the state of
an embedded system is generally observable. Therefore, in the case in which
the system state x is hidden and Λ involves these hidden states, we estimate
the safety of the system as a belief distribution, as described in Section 4.1.
Section 4.2 derives an expression for this belief distribution in terms of system
probabilities.

4.1 Extension to Hidden-State

Our system is drawn as a time-evolving graphical model in Figure 1.
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Fig. 1. A graphical model of an embedded system. The commands into the system are

represented by c, observations z, physical system (hardware and software) state is x,

and safety state is q. Subscripts denote time. Arrows denote conditional dependencies.

In this graphical model, q is the safety state of the system, defined as the state
of the Deterministic Büchi Automaton (DBA) that describes a safety constraint
on the system. Under the assumption that x is observable, the state qt of the
DBA at time t may be calculated from available information. However, when
we remove the assumption that x is observable, qt may no longer be directly
calculated; the problem of safety monitoring can no longer be solved by runtime
verification methods alone.

Instead, we want a capability that will evaluate the safety of the system
given the available information: a safety specification Λ, a plant model Φ, the
control sequence c1:t, and observation sequence z1:t.2 This capability estimates

2 Here subscripts denote time, hence z1:t is the vector of z’s from time 1 to t.
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the probability that the system remains consistent with Λ, that is, the probability
that the system is safe. Let Q denote the set of states of the DBA for Λ, and
let Qsafe denote the set Q/q∅. That is, Qsafe is the set Q with the trap state q∅

removed. The probability P(safe) is then equivalent to the probability of being
in a safe state of the DBA at time t:3

P(safe) = P(qt ∈ Qsafe)

This probability can be derived from the probability distribution over states
q of the DBA at time t, given the commands and observations, by summing over
the safe states Qsafe:

P(safe) =
∑

qj∈Qsafe

P(qj
t |z1:t, c1:t) (1)

Thus the problem of stochastic safety monitoring of embedded systems reduces
to the problem of finding the probability distribution over DBA states q, condi-
tioned on the history of observations and commands. This probability distribu-
tion over q is often called a belief state, hence we abbreviate it as B(qt).

4.2 Calculating Safety Belief

Let yt represent the complete system state < qt, xt > and let B(yt) denote the
belief over y at time t, that is B(yt) = P(qt, xt|z1:t, c1:t). The graphical model
in Figure 1, viewed in terms of y, is equivalent to a canonical hidden Markov
model:
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Fig. 2. Graphical model from Figure 1 with clustered state y = q ⊗ x

The belief B(qt) is obtained by marginalizing xt out of B(yt) =
P(qt, xt|z1:t, c1:t):

B(qt) = P(qt|z1:t, c1:t) =
∑
xt

P(qt, xt|z1:t, c1:t) (2)

and B(yt) = P(yt|z1:t, c1:t) is obtained through standard HMM filtering:

B(yt) = ηP(zt|yt)
∑
yt−1

P(yt|yt−1, ct)B(yt−1) (3)

3 Summing over all states of the automaton except the trap state is necessary for the

correct monitoring of liveness conditions.
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Equation (3) computes the belief state over the combined system state y,
which can also be thought of as the combined DBA / PHCA state. To obtain
a relation in terms of functions specified by these models, we manipulate (3)
further by expanding y in the observation probability P(zt|yt) and the transition
probability P(yt|yt−1, ct), giving us (4). Applying the Chain Rule and simplifying
based on conditional independence arguments yields (5):

B(yt) = ηP(zt|qt, xt)
∑
yt−1

P(qt, xt|qt−1, xt−1, ct)B(yt−1) (4)

= η P(zt|xt)
∑
yt−1

P(qt|xt, qt−1)P(xt|xt−1, ct) B(yt−1) (5)

Substituting Equation (5) into (2) produces the following, where η is a normal-
ization constant:

B(qt) = η
∑
xt

P(zt|xt)
∑
yt−1

P(qt|xt, qt−1)P(xt|xt−1, ct) B(yt−1) (6)

Equation (6), which computes the belief state over the BA, is similar to the
standard Forward algorithm for HMM belief state update (3). First, the next
state is stochastically predicted based on each previous belief B(yt) and on the
transition probabilities of the models, then this prediction is corrected based
on the observations received. An additional sum marginalizes out xt, and the
result is normalized by η. The observation probability P(zt|xt) and the transi-
tion probability P(xt|xt−1, ct) are both functions of the model of the physical
system. In an HMM, these are specified as a part of the model of the system.
For PHCA, these system-wide probabilities must be calculated from the spec-
ified component transition and observation probabilities [14, 8]. The transition
probability P(qt|xt, qt−1) in Equation (6) can be obtained from the transition
function TD of the specified deterministic Büchi Automaton as follows:

P(qt|xt, qt−1) =
{

1 if TD(qt−1, xt) = qt

0 otherwise (7)

The cost of computing (6) is entirely dependent on the sizes of Q and X . In
order to find the probability of each qt, we must loop twice over these sets. If n
is the size of the combined set, n = |Q× X |, then we have a time complexity of
O(n2), and a space complexity of O(n).

Finally, given the belief state determined by Equation (6), the probability
that the system is currently safe is given by:

P(safe) =
∑

qt∈Qsafe

η
∑
xt

P(zt|xt)
∑
yt−1

P(qt|xt, qt−1)P(xt|xt−1, ct) B(yt−1) (8)

5 Summary

In this paper we extended traditional runtime verification to deal with faulty
mixed hardware/software systems by assuming a stochastic plant with hidden
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state, and then performing belief state update on the combined state of the de-
terministic Büchi Automata representing the safety requirements and the Prob-
abilistic Hierarchical Constraint Automata representing the plant behavior. This
method is innovative in its allowance for hidden state and probabilistic failure.

Preliminary validation has shown that our method is capable of quickly and
accurately detecting safety violations on small models. Further work will seek to
characterize the utility of these methods on larger models.
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Abstract. There is a gap between the information available at the time of a soft-
ware failure and the information actually shipped to developers in the correspond-
ing bug report. As a result, identifying the cause of the bug based on this bug
report is often difficult. To close this gap, we propose bug fingerprints—an aug-
mentation of classic automated bug reports with runtime information about how
the reported bug occurred in production.

Classic automated bug reporting systems contain at most a coredump that de-
scribes the final manifestation of a bug. In contrast, bug fingerprints contain addi-
tional small amounts of highly relevant runtime information that helps understand
how the bug occurred. We show how these “fingerprints” can be used to speed up
both manual and automated debugging. As a proof of concept, we present DCop,
a system for collecting such runtime information about deadlocks and including
it in the corresponding bug reports. The runtime overhead introduced by DCop is
negligible (less than 0.17% for the Apache Web server), so it is suitable for use
in production.

1 Introduction

Software debugging is time-consuming and labor-intensive, with most of the work go-
ing into understanding how the reported bug occurred in the field. For example, 70% of
the concurrency bugs reported to Microsoft take days to months to fix [4]. This labor-
intensive aspect makes software debugging expensive. Our work is aimed at reducing
the often needless labor involved in debugging.

A classic bug report contains at best a coredump that describes the final state of the
failed application. State-of-the-art automated bug reporting systems, such as Windows
Error Reporting (WER) [3], produce a trimmed version of the coredump, which reduces
the overhead and privacy problems of a full coredump. Most other software relies on
users to provide a coredump and a description of how to manually reproduce the bug.

The absence of precise information about how the bug occurred in the field leads
to incorrect diagnosis. Non-deterministic bugs are particularly hard to reproduce and
diagnose, forcing developers to guess the cause of the failure based on the bug report.
Since bug reports offer no runtime information about how the bug occurred, guessing
often leads to incorrect fixes; e.g., one study reports that 30% of concurrency bugs are
initially fixed incorrectly [8]. Ideally, developers should not have to rely so much on
guessing.

There do exist tools that help reduce guessing by employing full system record-
replay [2]. However, they can incur runtime recording overheads that make them im-
practical for in-production use. Other approaches use post-factum analysis to eliminate

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 460–468, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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completely the need for runtime recording (execution synthesis [15]), or to require less
recording (ODR [1], SherLog [14]). However, post-factum analysis may not be effective
for all bugs and can involve substantial compute time at the developer’s site.

The inherent trade-off between runtime recording overhead and the fidelity/ease of
subsequently reproducing bugs forms a spectrum of solutions, with full system re-
play [2] at one end, and execution synthesis [15] at the other. This spectrum is still
poorly understood, and an important question remains: which is the least amount of in-
formation that is practical to record at runtime, yet still makes it easy to diagnose bugs
of a certain type.

Our observation is that, given a class of bugs, it is possible to record a small amount
of bug-specific runtime information with negligible overhead, and this information can
substantially improve debugging. Based on this observation, we propose bug finger-
prints, small additions to classic bug reports that contain highly relevant “breadcrumbs”
of the execution in which the bug occurred. These breadcrumbs ease the reconstruction
of the sequence of events that led to the failure.

We show that this idea works for deadlocks, an important class of concurrency bugs.
We built DCop, a prototype deadlock fingerprinting system for C/C++ software—it
keeps track at runtime of each thread’s lock set and the callstacks of the corresponding
lock acquisitions; when a deadlock hangs the application, this information is added to
the bug report. DCop’s runtime overhead is negligible (e.g., less than 0.17% for the
Apache Web server), yet these breadcrumbs enable faster, even automated, debugging.

In the rest of this paper we describe the design of DCop (§2), evaluate it (§3), dis-
cuss the generalization of bug fingerprints to other bug types (§4), illustrate the use of
fingerprints for automated debugging (§5), review related work (§6), and conclude (§7).

2 Deadlock Fingerprints

Despite being frequent (e.g., 30% of the bugs reported in [8] are deadlocks), dead-
lock bug reports are scarce, because deadlocks do not produce a coredump—instead,
they render the application unresponsive. Normal users restart the application without
submitting a bug report, while expert users may attach a debugger to the program and
capture each thread’s callstack. Systems such as WER can be used to create a core-
dump, but it is still hard to debug deadlocks based on this information that describes
only the end state.

Deadlocks become straightforward to debug if we have information on how the pro-
gram acquired every mutex involved in the deadlock. In particular, the callstacks of the
calls that acquired mutexes held at the time of deadlock, together with the callstacks of
the blocked mutex acquisitions, provide rich information about how the deadlock came
about. Alas, the former type of callstack information is no longer available at the time
of the deadlock, and so it does not appear in the coredump.

Fortunately, it is feasible to have this information in every bug report: First, the
amount of information is small—typically one callstack per thread. Second, it can be
maintained with low runtime overhead, because most programs use synchronization in-
frequently. As it turns out, even for lock-intensive programs DCop incurs negligible
overhead.
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DCop’s deadlock fingerprints contain precisely this information. Regular deadlock
bug reports contain callstacks, thread identifiers, and addresses of the mutexes that are
requested—but not held—by the deadlocked threads. We call these the inner mutexes,
corresponding to the innermost acquisition attempt in a nested locking sequence. Addi-
tionally, deadlock fingerprints contain callstack, thread id, and address information for
the mutexes that are already held by the threads that deadlock. We call these the outer
mutexes, because they correspond to the outer layers of the nested locking sequence.
Outer mutex information must be collected at runtime, because the functions where the
outer mutexes were acquired are likely to have already returned prior to the deadlock.

We illustrate deadlock fingerprints with the code in Fig. 1a, a simplified version of
the global mutex implementation in SQLite [11], a widely used embedded database
engine. The bug occurs when two threads execute sqlite3EnterMutex() concurrently.
Fig. 1b shows the classic bug report, and Fig. 1c shows the deadlock fingerprint.

sqlite3EnterMutex: pc5pthread_mutex_lock: pc1
m1 sqlite3EnterMutex: pc4 pthread_mutex_lock: pc2

m2

Thread t1 Thread t2

Thread t1 Thread t2sqlite3EnterMutex: pc4pthread_mutex_lock: pc2
m2

sqlite3EnterMutex: pc4pthread_mutex_lock: pc1
m1

sqlite3EnterMutex: pc5pthread_mutex_lock: pc1
m1

sqlite3EnterMutex: pc4pthread_mutex_lock: pc2
m2

T
im
e

     void sqlite3EnterMutex(){ 
pc1 :    pthread_mutex_lock(&m1);       if (inMutex==0) {
pc2 :      pthread_mutex_lock(&m2);         ...
       }
pc3 :    pthread_mutex_unlock(&m1);       ++inMutex;
     }
     void main(){
       ...
pc4 :    sqlite3EnterMutex();       ...
pc5 :    sqlite3EnterMutex();       ...

(a) (c)

(b)

Fig. 1. (a) SQLite deadlock bug #1672. (b) Regular bug report. (c) DCop-style deadlock
fingerprint.

A regular bug report shows the final state of the deadlocked program: t1 attempted
to lock mutex m1 at pc1 and t2 attempted to lock mutex m2 at pc2—we invite the reader
to diagnose how the deadlock occurred based on this information. The bug report does
not explain how t1 acquired m2 and how t2 acquired m1, and this is not obvious, since
there are several execution paths that can acquire mutexes m1 and m2.

The deadlock fingerprint (Fig. 1c) clarifies the sequence of events: t1 acquired m2

at pc2 in a first call to sqlite3EnterMutex, and t2 acquired m1 at pc1. This allows a
developer to realize that, just after t1 unlocked m1 at pc3 and before t1 incremented the
inMutex variable, t2 must have locked m1 at pc1 and read variable inMutex, which still
had the value 0. Thus, t2 blocked waiting for m2 at pc2. Next, t1 resumed, incremented
inMutex, called sqlite3EnterMutex the second time, and tried to acquire m1 at pc1. Since
m1 was held by t2 and m2 was held by t1, the threads deadlocked. This is an example of
how DCop can help debug the deadlock and reveal the data race on inMutex.

To acquire this added information, DCop uses a lightweight instrumentation layer
that intercepts the program’s synchronization operations. It records the acquisition
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callstack for currently held mutexes in a per-thread event list. A deadlock detector is
run whenever the application is deemed unresponsive, and it determines whether the
cause is a deadlock.

The runtime monitor is designed to incur minimal overhead. First key decision was
to avoid contention at all costs, so each thread records the callstack information for
its lock/unlock events in a thread-local private list. The private lists are merged solely
when a deadlock is found (and thus the application threads are stuck anyway). This
avoids introducing any additional runtime synchronization.

A second design choice was to trim the private lists and keep them to the minimum
required size: every time a mutex is unlocked, DCop finds the corresponding lock event
in the list and discards it—mutexes that are no longer held cannot be involved in dead-
locks. Thus, DCop only keeps track of mutexes that have not yet been released, and so
the size of a per-thread event list is bounded by the maximum nesting level of locking
in the program. In our experience, no event lists ever exceeded 4 elements.

As a result of this design, DCop’s runtime overhead is dominated by obtaining the
backtrace on each mutex acquisition. To reduce this overhead to a minimum, DCop
resolves backtrace symbols offline, since this is expensive and need not be done at
runtime.

The deadlock detection component of DCop is activated when the user stops an
application due to it being unresponsive. The detector processes each thread’s list and
creates a resource allocation graph (RAG) based on the events in the lists. The RAG
contains a vertex for each active thread and mutex, and edges correspond to mutex
acquisitions (or acquisition requests that have not succeeded yet). Edges are labeled
with the thread id of the acquiring thread and the callstack corresponding to the lock
operation. Once the RAG is constructed, the detector checks for cycles in the graph—a
RAG cycle corresponds to a deadlock. If a deadlock is found, the detector assembles
the corresponding fingerprint based on the callstacks and thread identifiers found on the
cycle’s edges.

DCop’s deadlock detector has zero false positives. Furthermore, since the size of the
threads’ event lists is small, assembling a deadlock fingerprint is fast.

We implemented DCop inside FreeBSD’slibthrPOSIX threads library;our changes
added 382 LOC. One advantage of recording fingerprints from within the existing
threading library is the opportunity to leverage existing data structures. For example,
we added pointers to DCop’s data structures inside the library’s own thread metadata
structure. An important optimization in DCop is the use of preallocated buffers for stor-
ing the backtrace of mutex acquisitions—this removes memory allocations from the
critical path.

3 Performance Evaluation

Having discussed DCop’s design, we now turn our attention to the key question of
whether it is suitable for use in production? We evaluate DCop’s performance on a
workstation with two Intel 4 × 1.6GHz-core CPUs with 4GB of RAM running
FreeBSD 7.0.

First, we employ DCop on interactive applications we use ourselves, such as the
emacs text editor. There is no perceptible slowdown, leading to the empirical conclusion
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that user-perceived overhead is negligible. However, since recording mutex operations
adds several instructions at each synchronization operation, (e.g., obtaining the back-
trace for a lock operation), some lock intensive programs may exhibit more overhead.
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Fig. 2. Comparative request throughput for the Apache
2.2.14 server at various levels of client concurrency

Next, we use DCop for the
Apache Web server with 50 worker
threads. We vary the number of
concurrent clients and, for each
concurrency level, we execute 5×
105 GET requests for a 44-byte
file. In Fig. 2 we compare the
aggregate request throughput to
a baseline without DCop. The
overhead introduced by DCop is
negligible throughout, with the
worst-case being a less than 0.17%
drop in throughput for 200 concur-
rent clients. Both baseline and DCop throughput decrease slightly with concurrency
level, most likely because there are more clients than worker threads. The maximum
synchronization throughput (lock operations/second) reaches 7249 locks/second.

To analyze DCop’s overhead in depth, we wrote a synchronization-intensive bench-
mark that creates 2 to 1024 threads that synchronize on 8 shared mutexes. Each thread
holds a mutex for δin time, releases it, waits for δout time, then tries to acquire another
mutex. δin and δout are implemented as busy loops, thus simulating computation done
inside and outside a critical section. The threads randomly call multiple functions within
the microbenchmark, in order to build up highly varied callstacks (“fingerprints”).
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Fig. 3. Overhead of collecting deadlock finger-
prints as a function of the number of threads

We measure how synchronization
throughput varies with the number of
threads. In Fig. 3 we show DCop’s
overhead for δin=1 microsecond and
δout=1 millisecond, simulating a pro-
gram that grabs a mutex, updates in-
memory shared data structures, re-
leases the mutex, and then performs
computation outside the critical sec-
tion. The worst case overhead is less
than 0.33% overhead. The decreasing
overhead shows that indeed DCop in-
troduces no lock contention. Instead,
the application’s own contention amortizes DCop’s overhead.

We repeat the experiment for various combinations of 1 ≤ δin ≤ 104 and 1 ≤ δout ≤
104 microseconds, simulating applications with a broad range of locking patterns. The
measured overhead ranges from 0.06% in the best case to 0.77% in the worst case. The
maximum measured synchronization throughput reaches 831,864 locks/second.

These results confirm that DCop introduces negligible runtime overhead, thus mak-
ing it well suited for running in production, even for server applications. We hope
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this advantageous cost/benefit trade-off will encourage wider adoption of deadlock
fingerprinting.

4 Generalizing Bug Fingerprinting

Having seen how bug fingerprinting works for deadlocks, we now turn our attention
to generalizing bug fingerprinting to other kinds of bugs. In §5 we discuss how bug
fingerprints can be employed in automated debugging.

In essence, a bug fingerprint serves to disambiguate executions: when faced with a
bug report, a developer must find (guess) which of the many (often infinite) possible
executions of the software could have led to the observed failure. The bug report pro-
vides clues for trimming down the set of possible executions, and the bug fingerprint
should narrow it down to only a handful of possibilities. Fingerprint information must
be small, to avoid undue recording overheads. Choosing what runtime information to
include in a given fingerprint is therefore specific to each class of bugs. We illustrate
this process with two examples: data races and unchecked function returns.

A bug fingerprint for a data race-induced failure contains information on the races
that manifested during execution prior to the failure in the bug report. This way, it is
possible to determine which potential data races influenced the execution and which did
not. However, monitoring memory accesses efficiently is not easy.

An efficient data race fingerprinting system employs static analysis to determine of-
fline, prior to execution, which memory accesses are potential data races. It then mon-
itors at runtime only these accesses. There are two options to perform such monitoring
with low overhead: debug registers and transactional memory (TM). x86 debug reg-
isters [6] can be configured to deliver an interrupt to a monitor thread whenever two
memory accesses to the same address are not ordered by a happens-before relation and
at least one of the access is a write (i.e., a data race occurred). The corresponding pro-
gram counters and memory address are then saved for later inclusion in the bug report,
should a failure occur. One drawback is that today’s CPUs can monitor only a small
set of addresses at a time, so debug registers can be used to watch only a subset of the
statically-discovered potential races. An alternative approach is to use the conflict de-
tection mechanism of TM to detect data races, and record the fingerprint. If TM features
are available in hardware, this can be done quite efficiently.

Another interesting class of bugs appears in code that “forgets” to check all possible
return values of a library function. For example, not checking whether a socket read()
call returned -1 can lead to data loss (if caller continues as if all data was read) or
even memory corruption (if return value is used as an index). For such unchecked-
return bugs, the fingerprint contains (a) the program locations where a library function
call’s return value was not checked against all possible return values, and (b) the actual
return value. Such fingerprinting can be done with low overhead by statically analyzing
the program binary to determine the places in the program where library calls are not
properly checked (e.g., using the LFI callsite analyzer [9]), and monitoring at runtime
only those locations.

For most bug types, a general solution is to incrementally record the execution in-
dex [12] and include it in the bug fingerprint. The execution index is a precise way to
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identify a point in an execution and can be used to correlate points across multiple exe-
cutions. Such a bug fingerprint can be used to reason with high accuracy about the path
that the program took in production, but has typically high recording overhead (up to
42% [12]). It is possible to reduce the overhead by recording only a partial execution
index (e.g., by sampling) that, although less precise, can still offer clues for debugging.

It is practical to fingerprint any class of bugs, as long as the runtime information
required to disambiguate possible executions that manifest the bug can be recorded
efficiently. Fingerprinting mechanisms can leverage each other, so that collecting fin-
gerprints for n classes of bugs at the same time is cheaper than n times the average
individual cost.

5 Debugging Using Deadlock Fingerprints

Augmenting bug reports with bug fingerprints can substantially speed up debugging.
For example, a developer debugging a deadlock can get from the deadlock fingerprint all
mutexes involved in the deadlock and the callstacks corresponding to their acquisition
calls. This allows the developer to insert breakpoints at all outer mutex locations and
understand how the deadlock can occur.

Bug fingerprints are also an excellent aid for automated debuggers, like ESD [15].
ESD is based on execution synthesis, an automated technique that starts from a bug
report and finds an execution path and a thread schedule that reproduce the bug de-
terministically, with no human intervention. The technique employs a static analysis
phase, that proceeds backward from the coredump and identifies critical transitions that
take the program to the state contained in the coredump. Then a forward symbolic ex-
ecution phase searches for the necessary inputs and thread schedule to reproduce the
bug.

Bug signatures can improve the efficiency of execution synthesis, since they help dis-
ambiguate between possible executions. The more execution paths appear to be likely
to reach the end state contained in the coredump, the longer ESD has to search. Bug
signatures, however, contain clues that can substantially prune this search space.

For example, a major challenge in execution synthesis for deadlocks is identifying
the thread schedule that leads to deadlock. DCop’s deadlock fingerprints narrow down
the set of possible schedules, thus reducing search time. In preliminary measurements,
we find that for a program with three threads and an average lock nesting level of three,
the thread schedule synthesis phase of ESD can be reduced by an order of magnitude.
Similarly, in the case of data races, we expect orders of magnitude improvement in
search performance, if data race fingerprints are available.

The combination of low-overhead bug fingerprinting with ESD-style automated de-
bugging promises to improve the productivity of software developers. Thus, we con-
sider a combined deployment to be an appealing solution for the software industry.

6 Related Work

Runtime support for debugging ranges from classic bug reporting systems, that provide
a partial or complete coredump, to heavyweight whole-system record-replay systems.
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Special hardware can be used to make the latter approach faster. In between these ex-
tremes, there exist multiple approaches that record less information and use post-factum
analysis to reconstruct the missing pieces offline. We briefly survey this spectrum of
solutions.

The state of the art in automated bug reporting systems, such as Windows Error
Reporting [3], collect bug reports from a large number of users. These bug reports reveal
some information about the bug (e.g., the end state of the application), but not how the
application got there. Bug fingerprints enrich bug reports with bug-specific runtime
information that can help these systems classify failures more accurately. As shown
earlier, bug fingerprints preserve the low runtime overhead of classic bug reporting
systems.

FDR [13] uses modified hardware to perform efficient execution recording. It piggy-
backs on the cache coherence hardware to record thread ordering information. While
this approach can help debugging, it requires hardware features that are not available
today and that are uncertain to exist in the future. In contrast, a system like DCop can
be used today, without requiring any hardware or software changes.

Other approaches record system execution at the virtual machine level and use this
information to deterministically replay executions. They are highly precise, but can
incur significant overhead (e.g., up to 260% for Revirt [2]); recording multiprocessor
executions has typically several orders of magnitude higher overhead. Bug fingerprints
operate at a higher level: they leverage knowledge about the bug class to identify minute
pieces of runtime information that help reproduce the bugs with minimal recording.
Although they require more human effort and they lack the precision of VM-based
record-replay, bug fingerprints are an effective debugging aid with virtually no runtime
overhead.

R2 [5] performs record-replay at the library level, and can interpose at high-level
APIs to reduce the recording overhead. R2 offers the flexibility of choosing what ex-
actly to record, so it is in essence a mechanism for performing selective recording. We
believe R2 could be used to obtain fingerprints for certain classes of bugs, although R2
has limited support for nondeterministic executions. That being said, DCop incurs two
orders of magnitude less overhead than R2 on Apache, for identical workloads.

ODR [1] and PRES [10] are recent systems for replaying concurrency bugs; they
trade runtime overhead for post-factum analysis time, and thus explore new points in
the spectrum of solutions. The benefit of deterministic replay comes at a cost of more
than 50% runtime overhead, which makes them less compelling for production use.
In DCop we forgo the goal of deterministic replay in exchange for negligible runtime
overhead.

Dimmunix [7] also collects deadlock fingerprints, but for a different reason: immu-
nity against deadlocks. Once a deadlock occurs, Dimmunix records a signature of the
deadlock that is then used to identify and avoid that same deadlock pattern in subse-
quent executions. Since DCop is focused on collecting fingerprints, not on avoidance,
it can perform the collection with two orders of magnitude less runtime overhead and
produce fingerprints that are richer than Dimmunix’s signatures.
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7 Conclusions

This paper described bug fingerprints, an augmentation of classic bug reports with run-
time information about how the reported bug occurred. Fingerprints contain clues that
substantially help in both manual and automated debugging. A proof-of-concept system
fingerprints deadlocks with negligible overhead (less than 0.17% for Apache). We dis-
cussed how to extend this approach to other types of bugs, and argued that coupling bug
fingerprints with automated debugging techniques can make debugging more efficient.
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1 Introduction

An increasingly important area of runtime monitoring is the incorporation of
techniques for diagnosis and repair, for example, in autonomic control appli-
cations [9], in robotics, and in e-business process change [12]. In particular, a
runtime monitor becomes a ‘supervisor’ - a process which not only monitors but
may evolve the running system dynamically. In [4], a framework for the logi-
cal modelling of hierarchically structured supervised component systems was set
out. The modelling captures the following key behavioural concepts: at runtime,
a supervisory component can (i) monitor its supervisee to ensure conformance
against desired behaviour, (ii) analyse reasons for non-conformance, should that
arise, (iii) evolve its supervisee in a pre-programmed way following diagnosis, or
via external stimulus received from higher-level supervisory components. Struc-
turally, components may contain sub-components, actions over the state of the
component, and programs over the actions. In this logical framework, compo-
nents are specified by first-order logic theories. Actions are either basic revisions
to the state of the component or combinations of actions. Crucially, a supervisory
component is treated as a logical theory meta to its supervisee, thus providing
access to all facets of the supervisee’s structure. A supervisory component pro-
gram is executed meta to its supervisee’s program. Synchronisation between the
two may occur through a variety of schemes, from lock-step synchronisation
to asynchronous execution with defined synchronisation points. A supervisory
program action may evolve its supervisee by making changes to its state, to
its actions, to its sub-components, or to its program. This occurs in the logical
framework via a theory change induced from the meta-level.

The logical framework introduces a new design methodology whereby evolu-
tionary concerns are built into system designs at various levels. The hierarchical
aspect of this framework allows for localised monitoring and evolution, improv-
ing the manageability of evolution in large systems. As the logic for specifying
supervised component systems is revision-based, programs over the actions can
be directly executed. This execution is performed using ESAT, the Evolvable
Systems Animator Tool. ESAT is written in Java and makes use of automatic
theorem provers to simulate systems. ESAT animates abstract logical specifi-
cations of evolvable systems. The tool was developed in order to support case
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studies which explored and tested this particular design methodology and to
prototype systems. Furthermore, the animation of logical models enables the
reasoning and verification of various properties of models of evolvable systems.
ESAT differs from other formal specification tools such as Perfect Developer [6]
and Maude [11] in its support for meta-level descriptions and runtime evolution-
ary change.

2 ESAT: Evolvable Systems Animator Tool

2.1 Input Component Specifications

An overview of the tool is given in Fig. 1. The input to the tool is a textual repre-
sentation of component schema definitions. Figure 2 outlines an example specifi-
cation of an autonomic rover system. It consists of three specifications of theories:
Rover is an abstract description of an autonomous rover system, Planner is a
specification of a supervisor as a planning agent, and Supervised Rover combines
instances of the previous specifications. The logic of the specification is a many-
sorted (typed) first-order logic with enumerated types, sub-typing, product types
and lists. A schema may declare types, functions, predicates, sub-components,
constraints, an initial state, actions and a program. In addition to the system-
wide types such as Int and String, a schema may introduce its own types as well
as functions. A schema may introduce predicates as either: (i) observation predi-
cates: the state of a component is defined as a subset of the positive ground atoms
of these predicates (ii) abstraction predicates: other predicates that may appear
in the schema’s constraints or actions. For a supervisor component, special pred-
icates are used for its meta relation with its supervisee. As an example, the su-
pervisor formula “holds(φ, c)” is used to denote that an object formula φ holds
at the supervisee level at an object configuration named by the supervisor as c. A
schema may define sub-components that will be instantiated from other schemas.
Components can be either standalone or supervisor-supervisee pairings. The con-
straints of a schema are a set of parametrised schematic first-order logic formulae.
Actions can be one of four kinds (i) basic actions specified in a STRIPS-style via
pre-conditions, and additions and deletions of state atomic formulae, i.e. via state
revisions. Pre-conditions may contain free variables that are bound at execution
time, (ii) paired actions: the pairing of a supervisor action with a supervisee ac-
tion, (iii) joint actions: the lock step parallel execution of several actions from sev-
eral components, (vi) choice actions: the non-deterministic choice between several
actions. ESAT incorporates a guarded choice language (with non-deterministic
choice) with iteration for specifying a program for each component.

2.2 Animation

For animating a specification, ESAT provides both a command line interface
(CLI) and a graphical user interface (GUI). The CLI simulates an input specifi-
cation from start to finish (or to a pre-determined action count execution limit)
without user intervention and is suitable for running large simulations. The GUI
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Fig. 1. ESAT Overview
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Fig. 2. Rover Example Specification
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allows for running, pausing and stepping through a simulation, and provides de-
tailed feedback about the actions being executed and the state of the system at
any point during animation.

The input specification is animated by executing its programs and producing
a tree of all traces. This animation requires the use of automated theorem provers
(see [1]) in order to: (i) Verify the consistency of the theory and of the state of
each component at system start-up, after executing actions and after performing
evolutions. This checking may throw logical error reports when the theory of
a component does not have a model i.e. it is unsatisfiable, (ii) Establish the
validity of each action’s pre-conditions from the component’s theory and state,
(iii) Check that the meta-level relations hold, i.e. that the supervisee’s reflection
in the supervisor in each supervisor-supervisee pair is correct.

ESAT can use any automated theorem prover for first-order logic which sup-
ports the TPTP [16] format and which has the capability to determine the sat-
isfiability of a set of formulae and the deducibility of a formula from a formula
set.

Although the component specifications use typed formulae, these are encoded
as untyped first-order formulae by ESAT as TPTP input to the theorem provers.
The translation from typed to untyped logic adds axioms and predicates to
encode typing information (see [8]). When a decision is required from a theorem
prover, multiple provers may be fired in parallel: theorem provers differ in their
proof capability and speed of decision making. The tool supports using different
theorem provers for satisfiability and deducibility. We found that using multiple
theorem provers increases the overall simulation speed by an average of 30% in
our case studies as it is often the case that one theorem prover will be particularly
fast at the given problem. We have experimented with 14 theorem provers and
model finders, with the main emphasis on Paradox [5], iProver [10], Vampire [14]
and E [15].

The animation of a system potentially generates a large number of proof obli-
gations. As the overhead of discharging proof obligations can be as much as 90%
of the running time, the simulation of a simple system may spend a substantial
amount of time communicating theories and results with theorem provers. A sim-
ple caching mechanism is used by ESAT to eliminate, in the examples we have
run, over 60% of these obligations. For each component, the caching mechanism
associates a mini-cache that stores the list of previously proven formulae as well
as the the set of previously unproven sets of formulae. In the case of a cache hit,
the lookup is much faster than firing external theorem provers. The caching also
improves the performance of theorem provers by supplying the previously proven
formulae as axioms. On the Rover system, the caching mechanism reduces the
simulation time from 6 minutes to 90 seconds.

A problem with running large system simulations is the complexity of the
execution trace and the difficulty of inspecting a tree of traces in a linear fashion.
The tool facilitates system modelling and execution by providing a GUI with the
following views:
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– A text editor with syntax highlighting for creating system specification files.
Import statements canbeused to include schemadefinitions frommultiple files.

– A trace viewer that graphically displays a system’s execution trace. The
user can step through the execution of a specification’s programs. The proof
obligations that were generated for each action are displayed for inspection.
Statistics about the number of proof obligations, the provers that successfully
returned a result and the proof obligations that were eliminated using the
caching mechanism are summarised in this view.

– A configuration viewer that graphically displays the system’s component
tree and the properties of each component such as its state and program.
This view is helpful for examining evolutions that change the hierarchical
structure of a system.

– A theory editor for testing logical theories. In this view, the user can directly
write theories in the input format of the theorem provers and test satisfiability
or deducibility. Proof obligations that were generated during the simulation
of a specification can be verified here to examine the model generated in sat-
isfiability mode or the proof generated in deducibility mode. This is useful for
refining the theories of the component schema specifications.

3 Concluding Remarks

ESAT has been used on a variety of case studies which include (i) an evolvable
version of the traditional ‘blocks world’ in which a supervisor monitors a table
and blocks being moved around the table, and can invoke changes to the system
e.g. changing the table size or number of tables, (ii) a simple model of a banking
system comprising a network of ATMs in which not only are there standard local
evolutions such as stocking notes and upgrading card readers, but also diagnostic
system-wide recognition of potential fraud and evolution of security mechanisms,
and (iii) an abstraction of a hierarchic reactively planned autonomous rover
where a putative rover’s exploration plan can be updated by supervisors as more
information about the environment and the rover’s internal state is received
and analysed. The development of the tool and animation of these case studies
enabled us to thoroughly test both the mathematical setting and the syntactic
descriptions of this logical framework for evolvable systems. In the future, we
see ESAT as both a tool for prototyping evolvable systems and also as part of a
runtime monitoring system of implemented (e.g. in Java) evolvable systems.

ESAT is still under development. Currently, only TPTP theorem provers that
accept classical first-order logic are used to determine the computation steps.
System specifications that use arithmetic or other theories such as lists or arrays
need to axiomatise the theories as first-order logic formulae suitable for these
provers, e.g. Presburger Arithmetic. In the future, TPTP theorem provers that
support arithmetic such as SPASS+T [13] and MetiTarski [2] will be explored.
Also, a new verification condition generator needs to be implemented to use SMT
solvers that support the Ints, Reals and Arrays theories, such as Z3 [7] and
CVC [3]. Furthermore, ESAT can be extended to enable the runtime monitoring
and evolution of components written as real Java programs.
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A Tool Which Mines Partial Execution Traces to
Improve Static Analysis
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Abstract. We present a tool which performs abstract interpretation

based static analysis of numerical variables. The novelty is that the anal-

ysis is parametric, and parameters are chosen by applying a variant of

principal component analysis to partial execution traces of programs.

Abstract interpretation based static analysis [5] may be used to prove run-time
properties of program variables such as “all the array indexes are contained
within the correct bounds”. It discovers assertions which hold when execution
reaches specific program points. The expressive power of assertions depends on
the particular choice of the abstract domain. The simplest abstract domain for
numerical properties is the interval domain [4], which allows assertions of the
form m ≤ x ≤ M where x is a program variable and m, M are constants.

A lot of research is devoted to explore the trade-off between precision, ex-
pressive power and computational cost of abstract domains. In this context, we
have recently proposed a family of parametric parallelotope domains [1]. They
are similar to the interval domain, except that intervals are expressed in a non-
standard basis in the vector space of variable’s values. The non-standard basis
is the parameter of the domain: given a change of basis matrix A, our domain
includes all the assertions of the form m ≤ Ax ≤ M , where x is the vector of
program variables and A is fixed for the entire analysis. When the basis is clev-
erly chosen, parallelotopes approximate the invariants with a greater precision
than intervals, as illustrated in Figures 1, 2 and 3 on a partial execution trace.

In order to find the “optimal“ basis, we propose a new technique based on a
pre-analysis of the partial execution traces of the program. First, we collect the
values of numerical variables in all the program points for different inputs. Then,
we apply to the sample data a statistical technique called orthogonal simple com-
ponent analysis (OSCA) [2], which is a variant of principal component analysis
(PCA). It finds a new orthonormal coordinate system maximizing the variance
of the collected values. More explicitly, PCA finds new axes such that the vari-
ance of the projection of the data points on the first axis is the maximum among
all possible directions, the variance of the projection of the data points on the
second axis is the maximum among all possible directions which are orthogonal
to the first axis, and so on. If we apply PCA to the values collected from partial
executions traces of the program in Figure 1, we get the new basis (x′, y′) in
Figure 3. OSCA returns an approximation of PCA such that the principal com-
ponents are proportional to vectors of small integers, a property which helps the
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xyline = function(x)

{

assume(x>=0)

y=-x

while(x>y) {

① x= x-1

y= y+1

}

}

Fig. 1. The example

program xyline
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Fig. 2. Interval abstrac-

tion of a partial execu-

tion trace, observed at

program point ①
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•

x
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x′

y′
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Fig. 3. Parallelotope abstrac-

tion with axes rotated by 45

degrees

correct implementation of parallelotope operators. For the program in Figure 1,
OSCA finds the change of basis matrix

[
1 1

−1 1

]
whose columns correspond to the

axes (x′, y′) in Figure 3. Whereas the standard analysis on the interval domain
is not able to discover any invariant for the while-statement, the parallelotope
domain is able to find out that x + y = 0 and the combined analysis finds out
that x ≥ −1, y ≤ 1, x + y = 0, at the program point ①.

1 Using the Tool

We have implemented in the R programming language a tool which performs
the following steps:

1. Given a program written in an imperative fragment of the R language, the
tool instruments the program in order to collect variables’s values in all the
program points.

2. On the collected values, the tool computes the PCA (using the standard R
library), which is afterward refined to get the OSCA. The result is a matrix
which describes the (hopefully) optimal basis.

3. The tool performs a static analysis of the program using intervals, parallelo-
topes and their combination. As a result, it returns a set of assertions for
each program point.

The easiest way to use the tool is to start the R interactive environment, load
the tool and the program to analyze, and use the function compare.analyses.
When the function to analyze has no arguments, it is enough to use:

compare.analyses( <function name> )

If the function requires some arguments, we need to provide user-supplied val-
ues. These are not needed for the static analysis, but as input for the instru-
mented program. User-supplied values are passed in the second argument of
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compare.analyses as a list of value assignments, where each value assignment
is a map from variable names to values. For instance, if we want to analyze the
example program xyline, using the input values 10, 20, 50 for x, we write

compare.analyses(xyline,list(list(x=10),list(x=20),list(x=50)))

Note that in R the type list is used both for lists and maps.
The result of compare.analyses is a list with five components. The first two

components are the matrices generated by PCA and OSCA. In our case:

x y x y
PC1 0.7072070 0.7070065 PC1 −1 1
PC2 −0.7070065 0.7072070 PC2 1 1

The other three components are the results of the static analyses with the do-
mains of boxes, parallelotopes and their combination. The tool returns a set of
assertions for each program point, which are generally displayed as an annotated
program.

"[ y=0 ]"
assume(x > 0)
"[ 0<=x , y=0 ]"
y = -x
"[ 0<=x , y<=0 ]"
while ({

"[ ]"
x > y

}) {
"[ ]"
x = x - 1
"[ ]"
y = y + 1
"[ ]"

}
"[ ]"

"[ ]"
assume(x > 0)
"[ ]"
y = -x
"[ x+y=0 ]"
while ({

"[ x+y=0 ]"
x > y

}) {
"[ -x+y<=0 , x+y=0 ]"
x = x - 1
"[ -x+y<=1 , x+y=-1 ]"
y = y + 1
"[ -x+y<=2 , x+y=0 ]"

}
"[ 0<=-x+y , x+y=0 ]"

"[ y=0 : ]"
assume(x > 0)
"[ 0<=x , y=0 : -x+y<=0 , 0<=x+y ]"
y = -x
"[ 0<=x , y<=0 : -x+y<=0 , x+y=0 ]"
while ({

"[ -1<=x , y<=1 : -x+y<=2 , x+y=0 ]"
x > y

}) {
"[ 0<=x , y<=0 : -x+y<=0 , x+y=0 ]"
x = x - 1
"[ -1<=x , y<=0 : -x+y<=1 , x+y=-1 ]"
y = y + 1
"[ -1<=x , y<=1 : -x+y<=2 , x+y=0 ]"

}
"[ -1<=x<=0 , 0<=y<=1 : 0<=-x+y<=2 , x+y=0 ]"

The analysis with the box domain does not depend on the result of the PCA.
In this case, the analyses is not able to determine any constraints, if not the trivial
ones before the beginning of the while. For the parallelotope domain, the axes
are rotated according to the change of basis matrix in the second component, and
therefore the domain is able to express intervals of the form m ≤ −x + y ≤ M
and m ≤ x + y ≤ M . The tool shows that, at the end of the program, the
constraints 0 ≤ −x + y and x + y = 0 hold, but it cannot prove any upper
bound for −x+ y. Finally, the domain which combines boxes and parallelotopes
enhances the precision of both analyses.

The function compare.analyses takes many optional parameters which may
heavily modify the result of the analyses. For example, the parameter vars
allows to specify the list of variables to be considered during the analysis. The
standard behaviour includes all the variables in the program since, for most
domains, considering more variables (and thus more relationships) improves the
result of the static analysis. Our tool shows that, in some cases, reducing the
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space of variables may considerably improve the precision of the parallelotopes
and combined domains.

For example, consider the standard bubblesort pro-
gram on the right. If we perform an analysis with the
standard parameters, the combined domain proves
that "[ 0<=b , 0<=j , 0<=t : 0<=b ]". The re-
sult of the OSCA is the matrix

b j t tmp
PC1 0 −1 −1 1
PC2 0 1 0 1
PC3 0 −1 2 1
PC4 1 0 0 0

It is worth noting that the variable tmp is included
in the first three simple components, although it con-
tains values from the array k, hence it is not corre-
lated to the variables b, j and t which are used to
index the array.

function(k) {
b = 100
while (b>=1) {
j=1
t=0
while (j<=(b-1)) {
if (k[j]>k[j+1]) {
tmp = k[j+1]
k[j+1] = k[j]
k[j]=tmp
t=j

}
j=j+1

}
if (t==0) return(k)
b=t

}
return(k)

}

If we perform the analysis with the option vars=c("b","j","t") which ex-
cludes the variable tmp, we get the change of basis matrix:

b j t
PC1 0 1 1
PC2 0 −1 1
PC3 1 0 0

and the combined domain is able to find more precise constraints:
”[1<=b<=100 , 0<=j<=100 , 0<=t<=99 : 0<=j+t<=199 , −100<=−j+t<=0 , 1<=b<=100]”

If the result of the statistical analysis of traces is not satisfactory, the tool has
an option to provide a user-supplied change of basis matrix.

2 Implementation

The tool has been almost entirely implemented in R. This has at least three
advantages. First of all, the analyzed language is R itself, and not an ad-hoc,
artificial language. The second advantage is that we exploit metaprogramming on
R, viewing a program both as a list and a function. Finally, R is very well-suited
for statistical applications and manipulation of vectors, which are native types.
On the contrary, the main disadvantage is that the performance of the analyzer in
R is not comparable to other analyzers’, since R uses a call-by-value semantics
and is not well-suited for manipulating complex data structures. Anyway, we
believe that it is a good choice for rapid prototyping.

The program to be analyzed is instrumented by inserting, at each program
point, a call to a function which collects the values of variables. The same func-
tion can also interrupt the program after a certain number of steps. The option
whileonly considers only a single program point for each while cycle, just before
checking the while guard. From several experiments, it does not seem to make
a lot of difference.
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The instrumented program is executed and the collected values are stored in
a matrix, which is fed to the native function prcomp which computes PCA. The
resulting matrix is then refined by the OSCA, that we have implemented by
scratch, since, at the best of our knowledge, there exists no available implemen-
tation. The resulting change of basis matrix is the input for the static analysis.
Since static analysis must return only correct results, we need to ensure that
numerical approximations do not introduce any error. In the case of the box
domain, it is enough to appropriately round the result of operations in such a
way that boxes are always overapproximated. To this aim, we have written a
small foreign procedure (in C language) to change the floating point rounding
mode of the CPU. For the parallelotope and combined domains, we have used
exact rational arithmetic through the GMP library. We also wrote a wrapper
library, to support infinite values.

3 Conclusion

This is the first tool which uses partial trace information for feeding a subse-
quent static analysis. The tool is still a prototype, which should be improved
in many ways. We may use techniques of code coverage to improve the qual-
ity of partial execution traces. We may partition the set of program variables
into groups and perform PCA separately on each group. We may also parti-
tion the program code itself, and perform a different PCA on each partition. As
a future work, the tool could also be extended with different statistical meth-
ods, in order to discover better bases, and with a user-friendly front-end, es-
pecially for parameter tuning. Moreover, porting the code of the parallelotope
domain to a faster programming language, possibly within some well-known
library such as APRON [6] or PPL [3], would make it available to a wider commu-
nity, while improving performance. Finally, the tool is available at the web page
http://www.sci.unich.it/~amato/random.
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Abstract. Execution paths expose non-functional information such as system
reliability and performance, which can be collected using runtime verification
techniques. Statistics gathering and evaluation can be very useful for processing
such information for areas ranging from performance profiling to user modelling
and intrusion detection. In this paper, we give an overview of LarvaStat — a
runtime verification tool extending L���� [2] with the ability to straightforwardly
specify real-time related statistical properties. Being automaton-based, LarvaStat
also makes explicit the overhead induced by monitoring.

1 Introduction

Runtime verification tools mainly focus on the analysis of system traces for the veri-
fication of functional aspects of the system. However, system executions are also rich
in information related to non-functional system properties, such as system security, de-
pendability and performance. LarvaStat extends the runtime verification tool L���� [2]
with the capability of collecting statistical information, and verifying non-functional
requirements based on such statistics. Taking security as an example application area,
LarvaStat allows for the characterisation of suspicious user behaviour through statistical
evaluation, which can subsequently be used to blacklist users deemed suspicious. This
mechanism has been applied to develop an intrusion detection system based on tech-
niques presented in [4] and an integrated system profiler used for measuring system
performance.

LarvaStat’s statistical constructs are based on the notion of incrementally computable
statistics [5], characterising a class of statistics which can be eÆciently evaluated in
both time and space. An incrementally computable statistic involves (i) storing the cur-
rent statistic’s valuation, and (ii) executing an update function when a new value is to
be added to the input data set. Many statistics such as the count, average, maximum,
minimum and variance all admit incrementally computable behaviour, although others,
such as the median, do not.

All statistics LarvaStat collects are themselves exposed to the monitoring tool as sta-
tistical events — exposing the latest statistic valuation upon each update. This allows
for (i) writing specifications based on these events (such as blocking users upon the
statistic valuation exceeding a certain threshold); and (ii) the specification of multilay-
ered statistics — statistics over statistics, such as the mean of the maximum download
file size.

Moreover, it is often the case that statistics are required to be collected only for
certain subtraces. For example, a statistic intent on counting the number of bytes sent
during some communication is only interested from the moment of opening to that of
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closing of a communication channel. LarvaStat allows for the specification of intervals
of interest for statistics.

2 LarvaStat

LarvaStat is an event-driven runtime verification framework, and is concerned with in-
terpreting observed event information. Parametrised events can be either observable
system actions (such as a method call), timer events, automata-generated events or a
combination thereof.

Definition 1. Given a set basicevent of basic events (parametrised over a set of values
V) and set timer of timer variables, we define a composite parametrised event event as
either (i) a basic event, (ii) a timeout on a timer (over �), (iii) a choice between events
through the general choice operator

�
, or (iv) the complement of an event (e).

event ::� basicevent � timer @ Æ �
�

2event � event

The first statistical construct is the statistic aggregator, and is defined as (i) an initial
statistic valuation (eg. initialising the count), and (ii) an update rule (eg. incrementing
the count upon the occurrence of an event).

Definition 2. A statistical aggregator ranging over � is defined through (i) the initial
memory value �0 � �; and (ii) the update rule entailing a parametrised event (trig-
gering the update), a condition (acting as an event filter), an update function on the
memory, and an event on which to signal the updated value. We assume that values
over � can be mapped to V to pass the value over the output event.

event � V � (cond � (� � �)) � event
Note that cond stands for a condition on the system state and timer configuration.

Given a sequence of timestamps, basic events and system states (ti� ei(vi)� �i) (with i
ranging from 1 to n) and statistical aggregator with initial memory �0 and update action
(in� s� out), statistical events would be triggered at each point in the trace where a basic
event ei(vi) triggers in and such that the condition is triggered — c holds, where (c� u) �
s(vi). At each such position, � (starting with value �0) is updated to u(�), with the
result being output as an event: out(u(�)). Formal definitions of trace semantics of event
triggering are given in [2].

Example 1. A statistical aggregator counting the number of bytes sent requires memory
storage containing the current amount, and is initialised to 0. The statistic is updated on
each basic even send(v) (v represents the number of bytes sent), with the update action
defined as: (send� �v�(�x�true� �n�n � v)� result).

See Fig. 1(a) for an example point statistic written in LarvaStat, specifying a statistic
aggregator for counting the number of successful user logins.

LarvaStat also supports statistics evaluated over intervals of interest, defined as a
statistic aggregator and an interval characterisation. This interval dictates which system
trace subsequence is relevant to the specified statistic aggregator. Intervals are char-
acterised by identifying the opening and closing events (eg. an interval specifying the
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opening and closing of a connection channel). Through the use of timers, one can use
this approach to define intervals by giving the opening event and the duration of time
during which to calculate the statistic (eg. a statistic counting the number of user down-
loads in the first thirty minutes of logging in).

Definition 3. Statistics aggregation over an interval of interest is defined as (i) a statis-
tic aggregator; (ii) the event and condition marking the interval opening event � V �

cond; and (iii) the event and condition marking the interval closing V � (event� V �

cond).

Note that the closing event is also parametrised by the parameter given to the opening
event. Every time an opening event (satisfying the condition) is triggered, a new statistic
aggregator is created and initialised, which continues calculating the value until the
closing event appears.

Example 2. A statistical aggregator over interval of interest evaluating the number of
bytes sent on a per connection basis is defined through (i) the statistic aggregator de-
fined in example 1, (ii) interval opening (openConnection,�port�true), and (iii) interval
closing �port0�(closeConnection� �port1�port0 � port1). Note that it is assumed that
both openConnection and closeConnection are parametrised by the port number.

See Fig. 1(b) for an example interval statistic written in LarvaStat, specifying the statis-
tic aggregator over interval of interest defined above (ignoring port number to simplify
presentation).

3 Case Study

LarvaStat has been used for implementing a probabilistic intrusion detection and inte-
grated system profiler sitting above an ftpd server implemented in Java1. The system
profiler is responsible for quantifying system performance, whereas the intrusion de-
tection system observes user behaviour, with the aim of capturing suspicious behaviour
through the use of misuse detection and anomaly detection techniques [4]. Moreover,
given that the monitoring of users is expensive, an additional mechanism has been im-
plemented for the probabilistic choice of users to monitor. This choice is dependent
on two parameters: user risk factor and system load. Both parameters are extrapolated
from statistical information collected by LarvaStat.

System profiling is carried out by quantifying the current system load (assuming that
the server’s performance is tightly bound to bandwidth usage and the current count
of logged in users), and analysing system load history for predictive purposes. For
example, counting the number of currently logged in users is specified through three
statistics, as seen in Fig. 1(a). UsersLoggedIn counts the number of user logins, User-
sLoggedOut counts the number of log out events, while CurrentUserCount is a layered
statistic which listens to the previous two statistics.

The intrusion detection uses various techniques, (i) a Markov chain analysing the
user’s command sequence, with each ftpd command being related to a risk factor, and

1 http:��www.anomic.de�AnomicFTPServer
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marking the user as suspicious if the command sequence exceeds a threshold; and (ii)
the use of statistical moments for the characterisation of abnormal user behaviour, mon-
itoring each user’s download and upload behaviour patterns, and assuming a statistically
predictable pattern.
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Fig. 1. LarvaStat statistic construct examples (a) and (b)

Fig. 2 shows automata (which are processed by L����) which are automatically gen-
erated by LarvaStat to calculate the statistics UsersLoggedIn and byteCount from the
description in Fig. 1. Transitions are tagged by the event which fires them, the event
which they fire, and the action to update the statistic. The initial state is tagged with the
action to initialise the statistic. LarvaStat does not extend L����’s expressivity, but rather
is a syntactic sugar for the intuitive high-level specification of statistical properties.

usersLoggedIn Events,u1)

S0 S1

UsersLoggedIn.setValue(new Integer(0))

S0

(downloadStarting,�,skip)

(downloadComplete,�,skip)

(sendInfo,byteCount Event,u2)

byteCount.setValue(new Integer(0))

(successfulLogin,

Fig. 2. DATEs executing statistical constructs (a) and (b)

The case study contains the specification of twenty statistics, some of which are
evaluated on the system, whereas others are evaluated on a per user basis. All statistics
are incrementally computable and intuitively defined, while also being implemented
without altering a line of the underlying ftpd system code.

System overhead was measured by simulating multiple users logging in concurrently
and exhibiting varied download and upload behaviour patterns. This setting was run
multiple times with and without the additional intrusion detection system, whereby
the system on average exhibited approximately a 9% processing overhead while being
monitored.
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4 Related Work and Conclusions

Three existing related approaches have been identified. The approach in [5] specifies
a framework focusing on the asynchronous collection of statistics over runtime execu-
tions. This is achieved by presenting a Linear Temporal Logic extension focused on
evaluating numerical queries on the trace, and admits a tractable evaluation strategy
given complete trace knowledge. Lola [3] is another tool, and presents a functional
stream computation language allowing for the expression of system properties, numer-
ical queries as well as guaranteeing bounded memory requirements. EAGLE [1] is a
third approach, whose use of meta operators allows for the encoding of multiple for-
malisms such as interval temporal logics, finite state automata, as well as logics for the
expression of numerical queries. Our approach supports real-time related statistics col-
lection, and enables interval masking over traces. The automaton-based approach, also
makes explicit the overhead induced by monitoring over and above that due to statistics
state storage and update.

LarvaStat shows the potential of applying runtime verification techniques for the col-
lection of non-functional metrics about the system being monitored, which can then be
used to verify properties over these metrics. By extending an existing runtime verifi-
cation tool, the resulting framework is able to both collect statistics over system exe-
cutions, as well as monitoring system properties quantified through statistical queries.
The ftpd case study, shows the applicability of the approach, by adding probabilistic
intrusion detection and a system profiler to an existing tool.
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Abstract. Web service composition is a new paradigm to develop dis-

tributed and reactive software-intensive systems. Due to the autonomous

attribute of each basic service, validation of composite services must be

extended from design time to run-time. In this paper, we describe a novel

tool chain called WS-PSC Monitor to monitor temporal and timing prop-

erties in composite service based on graphical specification property se-

quence chart and timed property sequence chart. The tool chain provides

a completely graphical front-end which can make software designers do

not have to deal with any particular textual and logical formalism.

Keywords: Composite service, run-time monitor, property sequence

chart, timed property sequence chart.

1 Introduction

In recent years, the idea of software as a service has added a new paradigm
to the service oriented architecture(SOA). In SOA, basic services are seen as
autonomous agents acting according to certain contracts. For example, through
work flow languages BPEL [6], service requestors may compose existing basic
services to provide more powerfully composite services. For such systems, verifi-
cation is particularly challenging as the overall behavior of such systems depends
heavily on the involved agents, which renders the analysis of such systems prior to
execution next to impossible [5]. Consequently, runtime analysis techniques, such
as runtime monitoring [2], are being pursued as a lightweight verification tech-
nique complementing traditional verification techniques, such as model checking
and testing, and establishes another trade-off point between these forces.

The property specifications for monitored properties focus mostly on logic-
based or scenario-based specification formalisms. Logic-based formalisms are of-
ten more expressive than scenario-based formalisms. However, scenario-based
� This work is supported partial by the Fundamental Research Funds for the Cen-
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approaches provide a graphical modeling formalism that is widely accepted in
industrial practice. Consequently, this paper focuses on monitoring temporal and
timing properties of a composite service based on existing graphical specification
formalisms Property Sequence Chart(PSC) [1] and Timed Property Sequence
Chart (TPSC) [8], since PSC and TPSC specifications are as simple as possi-
ble, without losing expressive power. A corresponding tool chain called WS-PSC
Monitor is developed.

2 The Approach

2.1 Theoretical Foundations

Monitors are typically generated automatically from some high-level specifica-
tions. As defined in [5], the generated monitor is a device that reads a finite trace
and yields a certain result (for example, true, false or inconclusive). To ensure
the correctness of the monitor itself and to reduce costs, different monitoring
approaches have been developed over the last years to automatically generate
monitors for high-level property specification formalisms.

According to the formal semantics of PSC [1], we have defined four different
functions of the message in PSC specifications [9], i.e. Constraint, NextCor-
rect, NextFail, and NextIgnore. The messages constrained by the messages are
contained in Constraint function; the next expected messages are contained in
NextCorrect according to the PSC specifications; the next unexpected messages
are contained in NextFail ; the next ignored messages are contained in NextIgnore.
The four functions of each occurred message in PSC can be counted iteratively,
and results are placed into a Property Database. The Property Database is used
as monitor for further analyzing temporal properties.

According to the formal semantics of TPSC [8], we can also define the for-
mal translational semantics that maps TPSC specifications into a corresponding
timed Büchi automata(TBAs) [10]. The rules are divided into basic and com-
positional rules. Basic rules discuss how to translate single TPSC into a TBA
while compositional rules show how to compose these basic automata with struc-
tured operators, such as par, loop and alt. The generated TBAs are also used as
monitor for analyzing timing properties.

2.2 Framework Overview

The flow of the WS-PSC Monitor framework is shown in Figure 1 and divided
into the following steps:

1) AOP(Aspect-Oriented Programming) based approach [4] is used to extend
the BPEL engine. According to PSC and TPSC specifications, the monitoring
aspects are automatically generated to intercept the messages among the inter-
actions of each basic service. The interceptor intercepts the run-time messages
in BPEL-based composite service, then sends these messages to the Observer;

2)According to property types, the observer can classify the intercepted mes-
sages. If property type is temporal property, the observer can only record all the
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interaction messages; if property type is timing property, the observer needs also
to record the time frames for each interaction message.

3)The informal requirements are represented by PSC and TPSC specifications,
where PSC specifications are used to represent temporal properties and TPSC
specifications are used to represent timing properties.

4)We can use the two translators of the system and translate PSCs and TPSCs
into property database and timed Büchi automata, respectively.

5)Analyzers receive the intercepted messages and the properties represented
by PSC and TPSC, then Analyzers check whether the runtime information sat-
isfies the desired properties. If property type is temporal property, Analyzer1
is used. If property type is timing property, Analyzer2 is used.

6)The analysis results are shown for designers. Then designers can further
analyze and correct the possible errors in the systems.

BPEL
Runtime

Informal temporal 
requirements

Informal timing 
requirements

Properties

Analyzer

Checking
Results

(3) (3)

(4)

(1)

(2)
(5)

(6)

PSCs TPSCs

PSC2PD TPSC2TA

Property
Database

Timed
AutomataObserver1

Observer2

Analyzer1
Analyzer2

Interceptor

Fig. 1. The framework of tool chain WS-PSC Monitor

2.3 The Implementation

The tool is developed on the Eclipse Rich Client Platform (RCP). It has 122
java classes and about 20 thousand lines of codes. Figure 2 shows the main user
interface with Prop3 of a TA (TeleAssistant) BPEL composite service, which is a
software and telecommunication-based service which is designed to help patients
needing daily assistance in remote areas. The tool has the following additional
components and interfaces: Navigator, TPSC Editor, Automata view, Property
view, BPEL files view, Message view and Console. The navigator is used to man-
age and show the opened projects and files. The PSC and TPSC Editor allows
users to manually specify temporal properties in PSC and timing properties in
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Fig. 2. The main interface of the tool WS-PSC monitor
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Fig. 3. The performance measurement of the tool WS-PSC monitor

TPSC, respectively. There is a Palette window, which is used to help users to
drag and drop the PSC or TPSC elements. The lifeline or message elements
of each property can be shown in the property view, where the first message
e:[inv]alarm(high) of Prop3 and its constraint is shown under clock constraints
in the screen shot. The Automata view is used to show the generated TBA for
the property in the PSC or TPSC Editor. We use the textual representation of
TBA. The BPEL files view shows the monitored BPEL specification and the
message view shows the monitored messages including its time information. Fi-
nally, the Console is used to show that whether the collected messages satisfying
the desired timing property and the time the algorithm takes.
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The performance measurement of the monitoring approach is presented in
Figure 3, where t shows the time for checking the trace for TBA and �t shows
the time consumed for monitoring 1000 system interactions. From the curves,
we can see that the time for the process will grow when the number of system
interactions increases and it will just take about 3000 ms even when the number
of system interactions is 105. The curve for �t shows that the time consumed
per 1000 system interaction is between 250ms and 300ms.

3 Conclusion

This demonstration of WS-PSC tool chain aims to show the process of moni-
toring temporal and timing properties in composite services by the use of PSC
and TPSC specifications. Compare to other approaches, our approach provides
a complete graphical front-end for software designers that do not have to deal
with any particular textual and logical formalisms. In the future, we will extend
this work to automatically generate monitors for probabilistic properties from
Probabilistic TPSC (PTPSC) specifications [7,3].
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