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Preface

Testing has steadily become more and more important within the development
of software and systems, motivating an increasing amount of research aimed at
trying to solve both new challenges imposed by the advancement in various areas
of computer science and long-standing problems. Testing has evolved during the
last decades from an ad-hoc and under-exposed area of systems development to
an important and active research area.

The 22nd International Conference on Testing Software and Systems (ICTSS)
involved the merger of two traditional and important events which have served
the testing community as an important venue for discussing advancements in
the area. Those events, namely, TestCom (the IFIP TC 6/WG 6.1 Interna-
tional Conference on Testing of Communicating Systems), and FATES (Interna-
tional Workshop on Formal Approaches to Testing of Software), together form
a large event on testing, validation, and specification of software and systems.
They have a long history. TestCom is an IFIP-sponsored series of international
conferences, previously also called International Workshop on Protocol Test Sys-
tems (IWPTS) or International Workshop on Testing of Communicating Systems
(IWTCS). It is devoted to testing of communicating systems, including testing
of communication protocols, services, distributed platforms, and middleware.
The previous events were held in Vancouver, Canada (1988); Berlin, Germany
(1989); McLean, USA (1990); Leidschendam, The Netherlands (1991); Montreal,
Canada (1992); Pau, France (1993); Tokyo, Japan (1994); Evry, France (1995);
Darmstadt, Germany (1996); Cheju Island, South Korea (1997); Tomsk, Russia
(1998); Budapest, Hungary (1999); Ottawa, Canada (2000); Berlin, Germany
(2002); Sophia Antipolis, France (2003); Oxford, UK (2004); Montreal, Canada
(2005); and New York, USA (2006). Fates — Formal Approaches to Testing
of Software — is a series of workshops devoted to the use of formal methods
in software testing. Previous events were held in Aalborg, Denmark (2001);
Brno, Czech Republic (2002); Montreal, Canada (2003); Linz, Austria (2004);
Edinburgh, UK (2005); and Seattle, USA (2006). From 2007 on, TestCom and
Fates have been jointly held in Tallinn, Estonia (2007), Tokyo, Japan (2008) and
Eindhoven, The Netherlands (2009).

The objective of ICTSS 2010 was to be a forum for researchers from academia
as well as industry, developers, and testers to present, discuss, and learn about
new approaches, theories, methods and tools in the field of testing software
and systems. This volume contains the proceedings of ICTSS 2010. Out of 60
submitted papers the Program Committee selected 16 papers for publication as
full papers and presentation at the conference. Together with the two invited
presentations by Ina Schieferdecker of Fraunhofer Institut, Berlin, Germany and
by Connie Heitmeyer of Naval Research Laboratory, Washington, DC, USA,
they form the contents of these proceedings. The conference itself, in addition,
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contained presentations of short papers, which were separately published as a
technical report by CRIM.

We would like to thank the numerous people who contributed to the suc-
cess of ICTSS 2010: the Steering Committee, the Program Committee and the
additional reviewers for their support in selecting papers and composing the con-
ference program, and the authors and the invited speakers for their contributions
without which, of course, these proceedings would not exist. We thank CRIM,
Conformiq and Microsoft Research for their financial support, and Springer for
its support in producing these proceedings. We acknowledge the use of Easy-
Chair for conference management and wish to thank its developers. Last, but
not least, we thank the Department of Informatics and Applied Mathematics of
Federal University of Rio Grande do Norte, in particular, Marcel Oliveira, Thais
Batista and David Deharbe, for all matters regarding the local organization and
for making ICTSS 2010 run smoothly.

August 2010 Alexandre Petrenko
Adenilso Simão

José Carlos Maldonado
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Hervé Marchand, and Laurent Mounier

Alternating Simulation and IOCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Margus Veanes and Nikolaj Bjørner

Reducing the Cost of Model-Based Testing through Test Case
Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Hadi Hemmati, Andrea Arcuri, and Lionel Briand

Built-in Data-Flow Integration Testing in Large-Scale
Component-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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Test Automation with TTCN-3 - State of the Art and a 
Future Perspective 

Ina Schieferdecker 

TU Berlin/Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany 
ina.schieferdecker@fokus.fraunhofer.de  

Abstract. Test automation encompasses all activities to automate various steps 
in the overall testing process including automation of test management, test 
generation, or test execution. The standardized Testing and Test Control Nota-
tion (TTCN-3) addresses selected challenges by defining a test specification 
language and a test system architecture that enables the implementation and 
execution of TTCN-3 test suites. Over the years, the standard has continuously 
being maintained and evolved. For example, concepts for static test configura-
tions or for advanced parameterization and typing have been defined. The paper 
reviews the history and current status of TTCN-3 and concludes by giving an 
overview on recent extensions of TTCN-3 and future plans.  

Keywords: test automation, test specification, test framework, test execution, 
test management, TTCN-3. 

1    Introduction 

With the Testing and Test Control Notation (TTCN-3) the testing community ob-
tained a generic technology, standardized by ETSI and ITU, which allows the  
development and design of systematic tests and their reuse independently from tech-
nologies, product lines and manufacturers. TTCN-3 is a living, widely established and 
continuously maintained testing technology, available in a version 4.2.1 from July 
2010. 

However, the access to this testing technology is not always easy; here, the preju-
dices of the testing automation are pairing with the acceptance threshold of a new 
technology. Thereby, research done by Motorola shows that the application of this 
technology is not only increasing the quality of tests, but also the efficiency of its 
development and the grade of its reutilization [1]. Moreover, studies in China [2] 
show that this technology is immediately applicable by the testing personnel and can 
be actively used by people being familiar with the needs, methods and solutions of 
testing already after a 1-2 day instruction. 

TTCN-3 is a powerful testing technology – powerful enough to solve a big variety 
of testing problems – and with it at first glance also rather complex. However, please 
allow me to relate a mind game from a discussion with Mark Harman from Brunel 
University at a Dagstuhl seminar in 2009: Please imagine that the total loss of your 
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system or the corresponding testing system is imminent. You will only be able to 
reduce the damage if you will decide or to save the system or the testing system. 
Whereas some years ago in its majority the system would have been saved (because 
this is the goal), nowadays the voices demanding the salvation of the testing system 
are increasing, since it is not only preserving the knowledge on the system to be de-
veloped, but also the knowledge about its safeguarding. The testing system allows us 
to reconstruct the system at any time and simultaneously to save the system in its 
evolution.  

This more-of-knowledge is corresponding with the efforts of developing of every 
system: there is an increasing number of products where the same – if not more – 
efforts are being invested into the testing system as into the system itself. This shifting 
of efforts towards the testing system has been observed e.g. with Microsoft during the 
development of Windows XP, which was beneficial for all of us in terms of the stabil-
ity of the operating system. At the same time, this additional investment is also re-
flected in technologies used for the development oft the testing systems. Who is not 
familiar with the huddle of testing tools, where every tool is already complex, but 
only the combination allows an adequate analysis and validation of a system. The 
main purpose of TTCN-3 is to thin out this huddle of tools – if not to abolish it. Thus, 
it is not amazing that this testing technology has been designed as powerful as it needs 
to be to consolidate the testing concepts, in the result achieving a simplification. And 
there is no end to be seen: continuously we are being asked to integrate additional 
concepts into TTCN-3. But we will recur to this later. In the following, the paper 
gives outline of the history, state of the art and possible future of TTCN-3. 

2    TTCN-3 Yesterday: A Short Retrospection on the TTCN-3 
History 

TTCN-3 was worked out by ETSI as a new edition of the TTCN (Tree and Tabular 
Combined Notation), mainly developed for conformance, interoperability and per-
formance tests of communication-based systems including protocols, services, inter-
faces, etc. TTCN-3 is a modern language for test specification and implementation, by 
means of which tests can be developed and specified textually or graphically, imple-
mented and executed automatically.  

TTCN-3 has first been presented in public in September 2000, and with the version 
v2.2.1 gained the necessary stability and maturity for tool development and its im-
plementation in industry. The following versions have been amplified by new con-
cepts, but designed with a backwards compatibility with former versions. The new 
versions for example included importable types defined in IDL or XML, dynamic 
templates and a logging-interface. In version v3.3.1, the addressing within the testing 
system has been improved. In version v3.3.2, a template-restriction was made possi-
ble, and in v3.4.1 user-defined attributes for testing judgment (verdicts) have been 
introduced. Recently for v4.1.1, a package concept has been created in order to allow 
the definition of specific concepts (e.g. for real-time) which are needed in dedicated 
domains or for selected applications of TTCN-3, but which would overload the 
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language if being defined for the core language. These packages are made optional 
and can be chosen depending on specific requirements of a given test solution. All the 
changes to TTCN-3 have been made transparent for everybody and can be tracked 
since 2005 by the change request (CR) procedure for TTCN-3.  

The parts that currently constitute TTCN-3 are shown in Fig. 1. A user typically 
works with TTCN-3 via the textual format (the core language), the graphical format 
(based on Message Sequence Charts) or the tabular format (resembling the old style 
TTCN tables), although the textual format is used in the majority of cases. The opera-
tional semantics and the execution interfaces are most often relevant for tool vendors, 
but help users also to understand TTCN-3 and to apply it precisely. Language map-
pings for ASN.1, IDL and XML schemata help to use TTCN-3 for systems under tests 
using these languages for their data, interfaces, services, or protocols. Specific lan-
guage concepts (most often extending not only the core language and its operational 
semantics, but also the execution interfaces) are defined in extension packages for 
optional use in specific usage contexts or for specific test applications or target sys-
tems under tests. 

 

Fig. 1. The TTCN-3 Test Specification Language 

In contrast to numerous testing and modeling languages, TTCN-3 does not only 
comprise a language for the specification of tests, but also a test system architecture 
and runtime and execution interfaces for TTCN-3 based testing systems (see Fig. 2). 
In the test system architecture, within the test engine (TE) the tests specified in 
TTCN-3 are executed – the TE is the runtime environment for the compiled TTCN-3 
code of a set of TTCN-3 modules defining a test suite. The TE is wrapped by a num-
ber of adaptors that mediate between the TE and the system under test (SUT), the test  
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system, the test management, the logging, the encoding and decoding, and last but not 
least the (potentially distributed) handling of test components. The functionality of 
these adaptor components are defined via a number of operations specified in the 
Interface Definition Language (IDL) and mapped to programming languages for the 
test devices, i.e. to C. C++, C#, and Java. 

 

Fig. 2. The TTCN-3 Test Implementation Architecture 

In the following, a small example for TTCN-3 is shown (see also Fig. 3) in order to 
give an insight into this technology: in a well known testing example of G.J. Meyers 
[3] for the classification of triangles (a triangle is defined by its side lengths und has 
to be classified), the question of typing is always posed. In TTCN-3, you are explic-
itly defining it: 
 

type integer Triangle[3] (0..infinity);  
// whole numbers to characterize a triangle 
 type enumerated Classification {  

  // properties of a triangle 
  syntacticallyIncorrect, 
  noTriangle, 
  scaleneTriangle, 
  isoscelesTriangle, 
  equilateralTriangle 
 } 
 type port DetermineTriangle message  

   { out Triangle; in Classification }  
  // Interface to SUT 

 type component TriangleTester  
   { port DetermineTriangle b }  
  // Test Component 

 testcase Simple() runs on TriangleTester {  
  // a simple test case 

     b.send(Triangle: {2,2,2});      
    // the triangle to be checked 

     b.receive(Classification: equilateralTriangle);  
    // the expected response 

     setverdict(pass); // a successful test 
 } 
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Fig. 3. A TTCN-3 Integrated Development Environment based on Eclipse 

This test specification is wiring the testing data firmly with the testing activity, 
which is not very easy to maintain. Another method would be to separate the test data 
from the test behavior: 
 
 type record TestVector {  
  // combination of inputs and expected outputs 

  Triangle input, 
  Classification output 
 } 
 template TestVector valid1:= {{2,2,2}, isoscelesTriangle};  
 // valid triangle 
 template TestVector valid2:= {{2,2,1}, equilateralTriangle}; 
 // etc. 
 template TestVector invalid1:= {{1,0,3}, noTriangle };  
 // invalid triangle 
 template TestVector invalid2:= {{1,2,3}, noTriangle }; 
 // etc. 
     
 testcase Extended(TestVector tv) runs on TriangleTester {  
 // a parameterised test 
  timer noResponse:= 1.0; 
  // timer with 1 second timeout duration 
  b.send(tv.input); noResponse.start; 
  alt { 
     [] b.receive(tv.output) {setverdict(pass);}  

       // expected correct response 
       [] b.receive {setverdict(fail);}  
    // unexpected incorrect response 
       [] noResponse.timeout {setverdict(fail);}  
    // no response at all 
    } 
 } 
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In the extended test case given above, we are additionally taking into account that the 
SUT could also be failing or not answer at all. This could be followed up by you by 
e.g. starting queries with two parallel testing components to the SUT or by fixing two 
testing sequences, which first are checking all the valid, and afterwards, in depend-
ence of positive testing results, all the non-valid triangles. Additional variations are 
possible, but cannot be demonstrated in this paper. 

3    TTCN-3 Today: 10 Good Reasons to Use TTCN-3 

This is leading us to a description of today’s situation with TTCN-3, summarized in 
several “good reasons” for TTCN-3. 

 

1. One is able to learn and apply TTCN-3 directly: TTCN-3 is a testing specific lan-
guage, developed from testing persons for testing persons. A couple of key con-
cepts, which one needs typically in the majority of the test cases like test cases, 
test verdicts or test data (called templates), allow one to design and specify tests 
directly and easily. But this is not the only advantage of TTCN-3: a great number 
of additional concepts allow one to develop also test for heterogeneous interfaces, 
distributed tests, dynamic tests etc. If this is not enough, one has the possibility to 
integrate further concepts into the language or to directly contribute to the 
TTCN-3 standards. I would like to draw your attention to the large number of 
books, magazines or articles dealing with this technology, its application and the 
respective tools (see also the TTCN-3 bibliography given in Fig. 4). 

 

2. One is able to verify ones testing knowledge and get a certificate with successful 
attendance. On the basis of the certified Tester Schema of the International Soft-
ware Testing Qualification Boards (ISTQB), the German Testing Board (GTB) 
has developed a TTCN-3 training scheme (see Fig. 4). Certified training providers 
are offering TTCN-3 courses training in the applications of TTCN-3. An inclusion 
of the TTCN-3 certificate into the Certified Tester Expert Level with ISTQB is in 
preparation. 

 

3. One is able to contribute to the development of TTCN-3 by oneself. At ETSI, the 
Change Request (CR) process for TTCN-3 is administered and corrections, 
amendments and proposals for improvements can be placed (see Fig. 4). When-
ever you will see the need of further development in your practical applications, 
you will be able to write this as CR and track the path to the solution in a transpar-
ent procedure. CRs can lead to corrections, clarifications, extensions or amend-
ments. They can also be appointed as copies of an already existing CR or be 
closed well-founded without changes on the standard. 

 

4. One is able to use a wide range of TTCN-3 tools. As TTCN-3 is a standard, it 
allows the development of off-the-shelf tools. Hence, it is possible to detach the 
extensive care and development of proprietary in-house tools by license and main-
tenance contracts and to concentrate on the design and specification of test cases. 
The development and maintenance of tool components for the test development, 
application, reporting or integration will be carried out by a third party. The avail-
ability of a large number of TTCN-3 tools requires no dead-end-decisions for one 
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provider – the investment in TTCN-3 remains secure independently from a con-
crete tool. The future spread of TTCN-3 is linked to a growing number of tool 
providers, like e.g. IBM, Elvior or Testing Technologies. A reference to commer-
cial, free and open source tools is given in Fig. 4. 

 

5. At present, TTCN-3 is used in a major extent. It is applied in the areas of e.g. 
telecommunication, Internet technologies, for control devices in automotive, avi-
onics, transport and medical technologies, software and Web services of business 
applications and in eGovernment etc. Different bodies – not only ETSI or ITU – 
are voting for TTCN-3: 3GPP is using it for UMTS and LTE tests for wireless in-
terfaces and backbones. Also, the WIMAX Forum for certification of hardware, 
the AUTOSAR consortium for basic software the automotive software middle-
ware and the OMA for functional tests of enablers and mobile services are provid-
ing TTCN-3 tests. Thus, one is often be able to resort to existing libraries and 
TTCN-3 test suites and does not have to develop them right from the start. Further 
applications are emerging in the context of XÖV (XML-based exchange of data  
in the public administration), HL7 (communication stacks in integrated medical 
environments [4]) or MOST (entertainment application and components in the 
automobile).  

 

6. One has the possibility to become a member of the permanently growing TTCN-3 
community, meeting regularly at the annual TTCN-3 User Conference (T3UC, see 
Fig. 4) in order to share experience on applications, case studies, experiments, 
tools and new developments of TTCN-3. The 7th T3UC was taking place 2010 in 
Beijing. At T3UC, one has the chance to meet users, experts and tool manufactur-
ers and to obtain new information about recent developments in the TTCN-3 tool 
and service area. Moreover, tutorials are held on a wide number of conferences 
such as SOFTEC, IQNITE, EuroStar or CONQUEST. 

 

7. And most important: with TTCN-3 one has the possibility to tackle the testing 
tasks in an effective and efficient way. Thereby, TTCN-3 does not require a direct 
and absolute change of the current testing methods and environments, but allows a 
step by step migration to the new testing technology. One is able to combine exist-
ing solutions with new TTCN-3 testing solutions and thus use the established test-
ing basis until one does not need it any more, when e.g. the tested systems are 
phased out. 

 

8. Besides different programming languages like C, C++, Java or C#, which are 
supported by TTCN-3 tools, one gets a wide range of accesses to interface-
technologies of the systems to test. This includes accesses for ASN.1, IDL and 
XML based systems – interfaces and formats which are elements of the TTCN-3 
standard series. Additionally, tool manufacturers have been developing accesses 
for Java, C/C++, Tcl, Python, WSDL, BPEL, etc., which – although not (yet) 
standardized – are at disposition. 

 

9. One is able to adequately comment the test cases and test suites with TTCN-3 by 
means of documentation annotations (documentation tags) and thus enhance the 
legibility, reutilization and maintainability of the tests. Additionally, one has the 
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possibility to use metric, samples, anti-samples and refactoring for TTCN-3, ana-
lyzing and optimizing the test suites. 

 

10. TTCN-3 can be used for different kinds of testing and phases. The strengths of 
TTCN-3 are lying in the specification and application of tests, using interfaces or 
other communication means as test-accesses to the SUT. In some cases one has to 
deal with the heterogeneity of the system or part of the system with regards to in-
terfaces, the used programming languages, the combination of SW and HW com-
ponents, etc. It is exceptionally useful for integration, system and acceptance test-
ing. Moreover, TTCN-3 can be used not only with functional testing, but also for 
non-functional testing like e.g. for performance tests (see e.g. [6)). In case one ex-
ploits the reuse potential of TTCN-3 test cases in different testing phases and 
types, one will not only win by a wide use of the testing technology, but also by 
reducing the input for instructions and training of the employees and the care of 
testing tools. At the same time, existing TTCN-3 test suites or libraries can be 
used more often. 

Home Page: www.ttcn-3.org
Quick Reference Guide: http://www.blukaktus.com/
Bibliography:  www.ttcn-3.de
Mailing List:  ttcn3@list.etsi.org
Change Requests:  http://www.ttcn-3.org/ChangeRequest.htm
TTCN-3 Certificate:  http://www.german-testing-board.info/de/ttcn3_certificate.shtm
TTCN-3 User Conferences:  www.ttcn-3.org  Events 
Tools:  www.ttcn-3.org  Tools 
Tutorials: www.ttcn-3.org  Courses and Tutorials  

Fig. 4. TTCN-3 Sources 

4    The Current TTCN-3 Version: TTCN-3 v4.2.1 

In 2009, version 4.1.1 was prepared and completed in version 4.2.1 summer 2010. 
Here, the focus is on concepts for a more efficient application of testing configura-
tions, on a better assistance of libraries and a further dynamization of testing specifi-
cations, e.g. by type-parameterization. Furthermore, concepts for the testing of  
real-time systems and for performance testing have been considered. In fact, such  
tests can already be formulated and applied by former TTCN-3 versions, but the  
objectives were to achieve a more efficient application of TTCN-3 by a more  
direct support of decided concepts, like those used with automotive engineering, 
automation, aeronautical and medical engineering.  

Let us first however shortly review version v3.1.1 as several major extensions have 
been introduced. The following is not an exhaustive list of extensions but rather name 
the major ones only. The first group of extensions dealt with test components: test 
components can be alive test components meaning that several test behaviors can be 
executed on such a test component without termination of test component after termi-
nation of the test behavior. Hence, the test component state, i.e. the values of its port 
queues, local timers and variables, can be passed and reused between the tests behav-
iors started on an alive component. Furthermore, inheritance for test component 
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types has been introduced, so that test component types can extend other test compo-
nent types – for example, to share a common set of ports.  

The second group of extensions addressed the communication means. So far, uni-
cast communication could be used only. In addition, multicast communication, i.e. 
communicating to or from a set of test components, and broadcast communication, 
i.e. communicating to or from all test components connected to the communicating 
test component, have been defined. 

The third group of new concepts provided means for handling templates, i.e. test 
data, in TTCN-3 dynamically. So far, templates could be predefined in the module 
scope only. Parameters allowed to pass values into templates, however, neither the 
parameterization of templates with templates was not possible nor the construction of 
templates at runtime – in particular the dynamic combination of matching mecha-
nisms according to the responses from the SUT. Therefore, v3.1.1 added the concepts 
of template variables, template parameters, template returning functions, and 
local templates, so that templates became as flexible as values. 

A fourth group of extension added nested type definitions: so far, every type used 
within a structured type – for example the type of a record field – had to be explicitly 
defined before being referenced in the structured type definition. Now, type definitions 
can be made at the place where they are used – without giving them an explicit type 
name. This eases the mapping of external type systems like e.g. XML to TTCN-3. 

Furthermore, the logging has been extended. The log statement has been enabled to 
log the “status” of any object in TTCN-3, i.e. of values and expressions, test compo-
nents, timers, ports, and defaults. Test components can be named in the create opera-
tion, which eases the reading of test executions logs. Furthermore, the TCI was  
extended with an explicit logging interface – the TTCN-3 logging interface TLI [10] 
via which a test execution can be traced in various details – providing the various 
events during test execution with its timing and additional information.  

Last but not least, documentation support has been added as a new part [14]: 
documentation comments with predefined documentation tags such as “@author”, 
“@remark”, “@desc”, etc. can be used to document TTCN-3 modules on the basis of 
which documentation artifacts like html-pages can be generated. An example docu-
mentation for the triangle tests presented above is given in Fig. 5. 

 

Fig. 5. Selected Documentation Elements for the Triangle Tests 
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Major extensions in version 4.1.1 and 4.2.1 have been the definition of visibility 
rules to control the reuse of definitions, i.e. public, private and friend, and the import 
of import statements. However, above all, TTCN-3 packages have been defined. 
The intention of TTCN-3 packages is to support additional concepts required by spe-
cific TTCN-3 targets such as application domains, without making them mandatory 
for all tool environments. Rather, these packages are optional and can be freely com-
bined with the core language depending on specific requirements of a given applica-
tion context. For example, a tool environment for automotive electronic control units 
may require the real-time package of TTCN-3, but not the behavior types package. 

The Advanced Parameterization Package [15] defines static value parameterization 
of types, static type parameterization of types, templates, functions, altsteps and test-
cases, and default types for type parameters like default values/templates for value 
parameters. This allows e.g. to define message types with fields of “open” type or 
functions performing actions on data of “open” types as shown below: 

 
type record Data <in type p_PayloadType>  
{ Header hdr, p_PayloadType payload} 
// a data record with header and payload field 
// the hdr field is statically typed 
// the payload field receives the type via the type parameter 
 
 
type record of p_myType MyList <in type p_myType>; 
// a list of p_MyType elements 
 
function f_addElem <in type p_myType >  
// adding an element to a list 
( in MyList<p_myType> p_list, in p_myType p_elem)   

   return MyList<p_myType> 
{ p_list[lengthof(p_list)]:= p_elem; return p_list; } 
 
f_addElem <integer> ({1,2,3,4}, 5); 
// returning {1,2,3,4,5} 
 

The Behaviour Types Package [16] allows to define types of functions, altsteps and 
testcases (FAT) as “prototypes” and to have module parameters, constants, variables 
and templates of FAT types and to store references to “real” FATs in them. Refer-
ences to FATs can be stored, passed as parameters and sent to other components. 
FATs can be called via their references. 

 
type function MyFuncType ( in integer p1 ) return integer;        
// definition of a function type  
// with an integer parameter and an integer return 
function f_myFunc ( in integer p_int ) return integer  
{ return 2*p_int }; 
// definition of a concrete function compatible to MyFuncType 
: 
var MyFuncType v_func;  
// definition of a variable of function type 
v_func := f_myFunc; 
// assignment of function f_myFunc to v_func 
: 
var integer x:= apply(v_func(10)); 
// execution of the function assigned to v_func, returning 20 
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The Configuration and Deployment Support Package [17] allows to have predefined 
static test components/configurations which exist across test cases. These “static”  
test configurations can be created and destroyed in the control part and used for  
several test cases sequentially. The test cases may add “dynamic” test components 
and connections to the test configuration but cannot destroy parts of the static test 
configuration. 

 
configuration f_StaticConfig() 
// the static test configuration f_StaticConfig 
runs on MyMtcType  
// having a main test component of MyMtcType 
system MySystemType  
// testing system under tests of MySystemType 
{ 

myStaticPTC:= MyPTCType.create static; 
   // creation of the static parallel test component myStaticPTC 

map (myStaticPTC:PCO,system:PCO) static; 
   // mapping the PTC port to the system port 
} 
: 
testcase tc_test1 () execute on f_StaticConfig  
// test case tc_test1 executing on f_StaticConfig 
// having main test component, test system interface and parallel 
// test component as defined above 
{  

: 
myDynamicPTC:= MyPTCType.create; 

   // creation of an additional parallel test component myDynamicPTC 
    // which ceases to exist when the test case terminates 
 : 
} 
testcase tc_test2 () execute on f_StaticConfig {…} 
// test case tc_test1 executing on f_StaticConfig as well 
 
control { 

var configuration myStaticConfig; 
// definition of the configuration variable myStaticConfig 
myStaticConfig := f_StaticConfig();  // configuration setup 
// setup of the static configuration  
execute(tc_test1()); 
// execution of tc_test1 on the static configuration 
// the status of the static main and parallel test component  
// and of the statically mapped ports are kept for  
// test case tc_test2 
execute(tc_test2()); 
// execution of tc_test2 on the static configuration  
// having the status when tc_test1 was completed 

} 
 

Last but not least, the Real-Time and Performance Testing Package [18] introduces 
system time progress (since the start of a test case), delays and timestamps. It allows 
specifying the required precision of time in the test system, to get the actual time, to 
suspend the execution of a test component until a given point in time, to specify ports 
with real-time requirements at which entering messages in the test system interface 
can be time stamped. The time stamps can be accessed and further used in the TTCN-
3 specification.  
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module MyModule { 
 : 
 type port MyPortType message realtime  

// the message-based real time port type MyPortType 
// the received messages of ports of that type are time stamped 
{...} 
: 
port MyPortType myPort; 
// the message-based real time port myPort 
: 

 var float v_specifiedSendTime:=1.0, v_sendTime, v_receiveTime; 
// time variables to store time stamps 

 : 
 wait (v_specifiedSendTime);  

// wait one second 
 myPort.send(m_out); 

// send message m_out immediately 
 v_sendTime:= now; 

// assign the current time to v_sendTime 
if (v_sendTime - v_specifiedSendTime > 0.01)  
// too late sending by the test system 
{ … } // react accordingly 
: 

 myPort.receive(t)-> timestamp v_receiveTime; 
// assign receive time to v_receiveTime 
if (v_receiveTime - v_sendTime > 10.0)  
// too late response from the system under test 
{ … } // react accordingly 
: 

} with {stepsize ”0.001”};  
// defines the time precision of that module to be millisecond 
 

This paper allows providing impressions of the recent extensions to TTCN-3 only. 
The interested reader is asked to refer to the packages their selves for further details. 

5   TTCN-3 Tomorrow: An Outlook 

TTCN-3 has progressed a lot in the past. It is successfully used across various do-
mains. A plethora of tools is available that support TTCN-3 in different scale. Further 
test experts are looking into the adoption of TTCN-3 in additional domains such as 
scientific computing or cloud computing. Still, more needs to be done. In particular 
people need to be trained in order to enable an efficient use and adoption of this test 
technology. The established TTCN-3 Certificate provides a good basis – however 
more reading and training material and training courses should be provided. Also, 
TTCN-3 is rarely lectured at universities – although free tools help in this. In particu-
lar, it is not enough to spread the knowledge about TTCN-3 and its success stories, 
but also a thorough methodology including guidelines and best practices for the  
application of TTCN-3 should be provided. 

A strong basis will be the further maintenance and evolution of TTCN-3. Although 
already a quite exhaustive and powerful set of testing concepts is supported by 
TTCN-3, still more requirements appear – for example to have native support for 
object-oriented data types. However, like in the past every new concept is very criti-
cally reviewed and discussed before being added to the core language or to one – if 
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not to a new – extension package of TTCN-3 in order to keep TTCN-3 handy for the 
users and tool vendors. 

Thinking further, our focus is on establishing TTCN-3 as a middleware for auto-
mated tests, like we know it with SQL for databases or with IDL for object-oriented 
systems. Even if software-based systems differ in its area of application and in its 
tests, a common number of key concepts for the development of testing solutions can 
be identified. On this common number of key concepts, implemented in TTCN-3, a 
corresponding test middleware, dedicated methods and tools for the different applica-
tion areas can be efficiently and effectively developed. In my view, testing should 
more and more be seen as an engineering discipline, using common automated meth-
ods with educated personnel. The times of manual and proprietary testing solutions 
should be replaced sooner or later. 

For this purpose, the methodology in the application of TTCN-3 should be better 
mediated and the tools should be oriented even stronger on the needs of the testing 
personnel. Up-to-date methods of software development should also be offered for the 
development of testing systems. This includes, among others, refactoring, metrics, 
verifications, debugging, and even simulations and tests. A major development is the 
model-based testing methodology [5], which in combination with the TTCN-3 mid-
dleware is exploiting its potential at a maximum. 
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Abstract. To integrate the theoretical concepts of composition and

refinement with the engineering notions of software models and compo-

nents, the Naval Research Laboratory has formulated a set of practical

composition-based methods, with associated modeling and proof tech-

niques, for developing critical software systems. The general approach

is to develop a set of software components and to use various forms of

composition to combine the components in a manner that guarantees

properties of the composite system. An assumption underlying this re-

search is that much of the software code can be generated automatically

from models using automatic code generators. A problem is that the

code generated by such tools still requires testing to ensure that the

software delivers its critical services correctly and that the software be-

havior satisfies critical properties, such as safety properties. The need for

testing arises in part because only some of the required code is generated

automatically: Stubs are provided for code that cannot be generated au-

tomatically (for example, certain algorithms), and such code must be

constructed manually. This talk describes model-based methods for de-

veloping software, and how the models and properties developed using

these methods can be used as the basis for automatically constructing

tests for evaluating the correctness of software code. These tests are de-

signed to satisfy various coverage criteria, such as branch coverage. An

example is presented showing how our model-based method can be used

to construct a suite of tests for evaluating the software code controlling

the behavior of an autonomous system.
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Abstract. In the context of Object-Oriented software, many works have investi-
gated the Class Integration and Test Order (CITO) problem, proposing solutions
to determine test orders for the integration test of the program classes. The exist-
ing approaches based on graphs can generate solutions that are sub-optimal, and
do not consider the different factors and measures that can affect the stubbing pro-
cess. To overcome this limitation, solutions based on Genetic Algorithms (GA)
have presented promising results. However, the determination of a cost function,
which is able to generate the best solutions, is not always a trivial task, mainly for
complex systems with a great number of measures. Therefore, we introduce, in
this paper, a multi-objective optimization approach to better represent the CITO
problem. The approach generates a set of good solutions that achieve a balanced
compromise between the different measures (objectives). It was implemented by
a Pareto Ant Colony (P-ACO) algorithm, which is described in detail. The algo-
rithm was used in a set of real programs and the obtained results are compared
to the GA results. The results allow discussing the difference between single and
multi-objective approaches especially for complex systems with a greater number
of dependencies among the classes.

Keywords: Integration testing, object-oriented software, multi-objective, ant
colony algorithm.

1 Introduction

Software test is considered a fundamental activity to ensure software quality. It should
be conducted in an incremental strategy [16]. In the context of Object Oriented (OO)
software, this strategy includes different levels [10,2]: method, class, cluster and system
levels. In general terms, the base code (or component) should be developed, unit-tested,
integrated and tested. A common problem in the integration phase is to determine the
order in which classes are integrated and tested. This order is generally referred to the
inter-class test order and is important because it affects [17]: the order in which classes
are developed; the design of test cases; the number of created stubs for classes; the order
in which inter-class faults are detected.

Sometimes, the class under test requires another class to be available before it can
be executed. This kind of relationship is named dependency between classes, and can

� This work is partially supported by CNPq.
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require the creation of a stub to emulate the functionality that is used by the first class.
The creation of stubs is an expensive and error-prone operation, and for that reason,
the minimization of the number of stubs created during the integration testing is an
important problem to be solved, called the Class Integration and Test Order (CITO)
problem [1].

When there are no dependency cycles, the CITO problem can be solved by a simple
reverse topological ordering of classes considering their dependency [12]. However, re-
cent studies with real Java systems show that the presence of complex cycles is very
common [13], and solutions to find an optimal order to minimize the stubbing effort
are essential. Given such importance, we find in the literature, many works that address
this subject. These works propose solutions based on graphs [17,1,12,18,6]. In gen-
eral, the solution is obtained by removing, from the graph, dependencies that maximize
the number of broken cycles. However, many times, these solutions are sub-optimal.
Other disadvantage of the graph based approaches is that the cost to construct a stub
may depend on many factors and can not be completely measured or estimated [4].
For example, number of attributes of a class, number of calls or distinct methods in-
voked, constraints related to organizational or contractual reasons, etc. To adapt the
most graph-based solutions to consider these factors seems difficult or even impossible.

Due to the computational complexity, the CITO problem has been subject of the
Search Based Software Engineering (SBSE), a recent research field that explores the
use of meta-heuristic techniques to the Software Engineering problems [9]. A solution
based on Genetic Algorithms (GA) was proposed in [4]. The authors use coupling mea-
sures to determine the stubbing complexity. The implemented GA is evaluated in real
programs by using different four functions: number of broken dependencies, number of
attributes, number of methods, and a geometric average of attributes and methods [3].
The obtained results are very promising when compared with the graph based solutions,
which consider only the dependency. This solution allows considering different factors
to establish the test orders. However, the choice of the more adequate evaluation func-
tion for the GA is not always a trivial task. The authors propose a procedure to find
weights for all coupling measures, which is based on subjective steps and can be very
expensive and labor-intensive for complex cases. This makes difficult the use of the
solution based on GA in practice.

To overcome this limitation and to obtain solutions more adequate that consider the
real constraints and diverse factors that may influence the CITO problem, we propose, in
this paper, the use of a multi-objective search based approach. Such approach treats the
CITO problem as a combinatorial constrained multi-objective optimization problem,
more precisely, a problem where the goal is to find a set of test orders which satifies
constraints and optimizes different factors.

To implement and evaluate the introduced approach, we can find in the literature
many multi-objective algorithms. In this work, a multi-objective algorithm based on
Ant Colony Optimization [8,7] is explored. This algorithm is a meta-heuristic and has
been successfully applied to solve many combinatorial optimization problems, such as,
traveling salesman problem, sequential ordering problem, set covering problem, etc. To
apply Ant Colony Optimization (ACO), the optimization problem is transformed into
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the problem of finding the best path on a weighted graph. For that reason, we consider
ACO one of the most suitable algorithm to the CITO problem.

The solutions returned by the multi-objective algorithm are evaluated according to
Pareto dominance concepts [14] and represent a good trade off between the coupling
measures: number of methods and attributes. To allow comparison with the GA ap-
proach, we conducted an experiment using the same benchmark used by Briand et
al [3]. This benchmark is composed by real systems with varying complexities, what
permits good insights about the use of both approaches. The results point out that
the multi-objective approach presents a variety of good solutions even for complex
cases.

The paper is organized as follows. Section 2 presents a review of works related to
the CITO problem including the GA approach. Section 3 introduces our multi-objective
approach and describes the implemented Ant Colony algorithm. Section 4 discusses
the experimental results obtained. Section 5 concludes the paper and contains future
research works.

2 The Class and Integration Test Order Problem

The integration test has the objective to detect faults associated to the interfaces between
the modules when these are integrated to build the structure of the software, established
in the project phase. It checks if the integrated system components work as desired. In
the Object Oriented (OO) context the modules are classes that need to be integrated one
at a time or, in some case in small groups. Inside this context, the CITO problem can
be described as the identification of a priority order for integrating the classes. Once,
an order of integration of the components has been assumed, this order can cause the
implementation of components called stubs needed to simulate the behavior of tested
and not yet integrated classes. The stubs represent additional costs to the project and its
number must be reduced to the possible minimum. The minimization of the number of
stubs created during the integration testing is an important problem to be solved, called
the Class Integration and Test Order (CITO) problem [1].

Most approaches to the CITO problem are based on directed graphs, named ORD
(Object Relation Diagrams), where the nodes represent classes and the edges repre-
sent their relationships. When there are no dependency cycles between the classes, the
CITO problem can be solved by a simple reverse topological ordering of classes con-
sidering their dependencies [12]. However, this is not always the case, because most
systems contain cycles. The approach proposed by Kung et al [12] was the first one
to address this problem. The idea of this work is to identify strongly connected com-
ponents (SCCs) in the graph and removing associations until no cycles remain. When
there are more than one candidate associations for cycle breaking, a random selection
is performed.

Tai and Daniels [17] define two class levels. Major-level numbers are assigned to
classes based on inheritance and aggregation dependencies only. Then within each ma-
jor level, minor-level numbers are assigned, based on association dependencies only.
SCCs are identified in the major level and each edge of the SCCs receives a weight
based on the related incoming and outgoing dependencies. Edges with higher weights
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are selected to break cycles because it is supposed to be related with more cycles. How-
ever, according to Briand et al [6] this assumption is not always true. There are cases
where class associations are not involved in cycles, and this solution is suboptimal in
terms of the required number of test stubs.

In the work of Le Traon et al [18] the weights are assigned by the sum of incoming
and outgoing frond dependencies for a given class within the SCC identified by Tarjan’s
algorithm. The frond dependency is a kind of edge, which is defined as going from a
vertex (class) to one of its ancestors (a vertex that is traversed before it in a depth-
first search that is the class depends on it, directly or indirectly). For each nontrivial
SCC (with more than one vertex), the procedure above is then called recursively. The
approach is non-deterministic because different sets of edges can be labeled as frond
depending on the starting node, and when two or more nodes have the same weight, the
selection is arbitrary.

A graph-based approach that combines the works of Le Traon et al and Tai and
Daniels was proposed by Briand et al [6]. They also use Tarjan’s algorithm to identify
SCCs. The association edges in the SCCs are assigned with weights corresponding
to the estimated number of involved cycles. This number is calculated according to
the number of incoming and outgoing dependencies. The edge with highest weight is
removed. The process is repeated until no SCC remains. The main advantages of this
approach are that it does not break inheritance and aggregation edges, and computes the
weights in a more precise way.

The works mentioned above present several limitations [4]. The most graph-based
solutions consist in recursively identifying SCCs and in each SCC removing one depen-
dency that maximizes the number of broken cycles. They optimize the decision with-
out determining the consequences on the ultimate results. There are situations where
breaking two dependencies has a lower cost than breaking only one that would make
the graph acyclic in one step. Other disadvantage pointed out by Briand et al [4] is that
the cost to construct a stub may be depend on many factors and can not be completely
measured or estimated. For example, number of attributes of a class, number of calls or
distinct methods invoked, constraints related to organizational or contractual reasons,
and etc. To adapt the most graph-based solutions to consider these factors seems diffi-
cult or even impossible.

The work of Abdurazik and Offutt [1] consider more information in the minimiza-
tion of the stubbing effort. The weights are derived from quantitative analysis of nine
introduced kind of couplings, and are assigned to the edges and nodes. The coupling
measures use number of parameters, number of return value types, number of variables
and number of methods. The node weight is related to the estimated cost of removing it.
If a class is used by multiple classes, then all or part of the same stub for that class may
be shared among all classes that use it, thus reducing the cost of stubbing. The weight
of a node is at least as high as the maximal weight of all incoming edges (assuming total
sharing of the stub), and no higher than the sum of the weights of all incoming edges
(assuming no sharing of the stub). The evaluation of this approach present positive re-
sults when compared with the approaches described before.

With this same objective, to allow the use of different kind of constraints and cou-
pling measures, the approach based on Genetic Algorithms [4] has presented the most



20 R. da Veiga Cabral, A. Pozo, and S.R. Vergilio

Table 1. Solutions found by GA algorithm

ATM System

Function 1 2 3 4 5 6 7 8 9 10
Dependencies (52,19) (54,19) (67,13) (67,19) (52,19) (46,19) (46,19) (45,19) (59,19) (47,13)
Attributes (39,13) (39,19) (39,13) (39,19) (39,19) (39,19) (39,13) (39,13) (39,19) (39,13)
Methods (39,13) (67,13) (59,13) (67,13) (46,13) (46,13) (60,13) (61,13) (39,13) (67,13)
Average (39,13) (39,13) (39,13) (39,13) (39,13) (39,13) (39,13) (39,13) (39,13) (39,13)

ANT System

1 2 3 4 5 6 7 8 9 10
Dependencies (187,26) (187,26) (157,26) (187,26) (187,26) (213,22) (187,26) (157,26) (157,26) (157,26)
Attributes (131,33) (131,33) (131,33) (131,33) (131,33) (131,33) (131,33) (131,33) (131,33) (131,33)
Methods (178,19) (184,19) (184,19) (197,22) (227,22) (227,22) (197,22) (229,22) (226,22) (197,22)
Average (136,29) (136,29) (136,29) (136,29) (136,29) (136,29) (136,29) (136,29) (136,29) (136,29)

BCEL System

Functions 1 2 3 4 5 6 7 8 9 10
Dependencies (128,73) (128,70) (125,72) (125,75) (128,73) (125,72) (127,73) (127,73) (125,72) (125,72)
Attributes (47,86) (47,87) (47,85) (46,84) (46,85) (46,84) (46,76) (46,83) (46,85) (46,84)
Methods (131,67) (125,70) (131,70) (131,70) (131,67) (134,69) (133,69) (134,69) (138,70)
Average (56,70) (55,72) (58,72) (48,73) (54,73) (53,73) (59,73) (47,74) (59,73) (50,74)

DNS System

Functions 1 2 3 4 5 6 7 8 9 10
Dependencies (22,11) (28,11) (28,11) (19,11) (22,11) (19,11) (22,11) (28,11) (28,11) (19,11)
Attributes (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11)
Methods (28,11) (28,11) (19,11) (19,11) (19,11) (19,11) (22,11) (28,11) (28,11) (22,11)
OCplx (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11) (19,11)

SPM System

Functions 1 2 3 4 5 6 7 8 9 10
Dependencies (149,28) (149,28) (149,28) (149,28) (146,27) (146,27) (149,28) (149,28) (149,28) (149,28)
Attributes (146,27) (146,27) (146,27) (146,27) (146,27) (146,27) (146,27) (146,27) (146,27) (146,27)
Methods (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26)
Average (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26) (148,26)

promising results. The authors used a fitness cost function based on different coupling
measures. Number of attributes and methods necessary for the stubbing procedure are
considered besides the dependency factor. Briand et al [3,5] conducted an experiment
with a set of real programs and studied four different fitness functions: 1) number of
dependencies; 2) method coupling; 3) attributes coupling; and 4) an aggregation of at-
tribute and method coupling given by a geometric average. For each function the GA
was executed 10 times. Thus, they have generated 40 solutions for each of the men-
tioned system. The solutions reported by Briand et al [3,5] are presented in Table 1. For
example, we can observe that for ATM System, the GA approach found the best solu-
tions (highlighted entries in the table), with respectively 39 attributes and 13 methods,
by using an average as fitness function.

The aggregation function is in fact a multiple objectives cost function, and is an al-
ternative method to use a mono-objective algorithm to solve a multi-objective problem.
However, Briand et al [4,3] conclude that a practical issue when using a multiple ob-
jectives cost function is to determine appropriate weights. For that reason, Briand et
al [4,3] suggest a set of steps to select the best weights to be used. This set involves
subjective aspects, such as the choice of minimal values for the measures. In com-
plex cases the best solution can never be reached and the proposed procedure can be
very difficult to apply for a great number of coupling measures or for complex cases.
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Therefore, we introduce in next section a multi-objective approach, which obtains a set
of good solutions and achieves a balanced compromise between the measures.

3 A Multi-objective Approach

We observe in the last section that the CITO problem is a constrained multi-objective
optimization problem as it may involve a number of different objectives; different cou-
pling measures can be used as well as diverse factors that may influence the stubbing
process. Therefore, we introduce, in this section, a multi-objective approach. We de-
scribe a representation for the solutions, objectives to be evaluated and implemented
algorithm - a Multi-objective Ant Colony algorithm.

3.1 Multi-objective Optimization

Optimization problems with two or more objective functions are called multi-objective.
In such problems, the objectives to be optimized are usually in conflict, which means
that they do not have a single solution. In this way, the goal is to find a good ”trade-off”
of solutions that better represent the possible compromise among them.

The general multi-objective maximization problem (with no restrictions) can be
stated as to maximize Equation 1.

−→
f (−→x ) = (f1(

−→x ), ..., fQ(−→x )) (1)

subjected to −→x ∈ Π , where: −→x is a vector of decision variables and Π is a finite set of
feasible solutions.

Let −→x ∈ Π and −→y ∈ Π be two solutions. For a maximization problem, the solution−→x dominates−→y if:

∀fi ∈ −→
f , i = 1...Q, fi(

−→x ) ≥ fi(
−→y ), and ∃fi ∈ −→

f , fi(
−→x ) > fi(

−→y )

−→x is a non-dominated solution if there is no solution −→y that dominates−→x .
The goal is to discover solutions that are not dominated by any other in the objective

space. A set of non-dominated objective vectors is called Pareto optimal and the set of
all non-dominated vectors is called Pareto Front.

The Pareto optimal set is helpful for real problems, for example, engineering prob-
lems. It provides valuable information about the underlying problem [11]. In most appli-
cations, the search for the Pareto optimal is NP-hard [11], then the optimization problem
focuses on finding an approximation set, as close as possible to the Pareto optimal.

3.2 Representing the CITO Problem as Multi-objective

An important issue in the implementation of a meta-heuristic algorithm is the chosen
representation to describe the solutions of the problem. This choice will influence on the
implementation of all the stages of the algorithm. In this case, the chosen representation
for the problem is simple, with the solution being represented by a vector whose posi-
tions assume an integer number in the interval [1, N], being N the number of classes.
Thus, being each class represented by a number, an example of valid solution for a
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problem with 10 class would be (2,8,1,3,10,4,5,6,7,9). In this example, the first class to
be tested and integrated would be the class represented by number ’2’. A solution for
the CITO problem is a permutation of the classes.

Other issue related to multi-objective algorithms is the choice of the objective func-
tions. As mentioned before, many possible measures and factors can be used to the
CITO problem: for example, coupling, cohesion, fault-proneness, contractual, process
and time constraints, etc. Different meta-heuristics can be used. In this work, we chose
an ACO algorithm and to allow comparison with the GA approach, we use two func-
tions based on the same coupling measures used in the works of Briand et al [4,3].

The stubbing complexity of an order o is based on its attribute and method coupling.
Two complexities are then calculated in the following way:

– ACplx(o) (attribute complexity): The attribute complexity counts the maximum
number of attributes that would have to be handled in the stub if the dependency
were broken (the number of attributes locally declared in the target class when
references/pointers to the target class appear in the argument list of some methods
in the source class).This information is an input for the algorithm and is represented
by a matrix A(i, j), where rows and columns are classes and i depends on j. Then,
for a given test order o and a set of d dependencies to be broken, the attribute
complexity ACplx is calculated according to Equation 2.

ACplx(o) =
∑

i=1,n

∑
j=1,n

A(i, j); j �= k (2)

Where n is the total number of classes and k is any class included before the class
i, in test order o.

– MCplx(o) (method complexity): The method complexity counts the number of
methods that would have to be emulated in the stub if the dependency were broken
(the number of methods locally declared in the target class which are invoked by
the source class methods). This information is an input for the algorithm and is
represented by a matrix M(i, j), where rows and columns are classes and i depends
on j. Then, for a given test order o and a set of d dependencies to be broken, the
method complexity MCplx is computed as defined by Equation 3.

MCplx(o) =
∑

i=1,n

∑
j=1,n

M(i, j); j �= k (3)

Where n is the total number of classes and k is any class included before the class
i, in test order o.

– Constraints: In this work, following Briand et al [4,3] work, Inheritance and Com-
position dependencies cannot be broken. This means the base/container classes
must precede child/contained classes in any order test order o. The dependencies
that cannot be broken are inputs for the algorithm, provided by a precedence table.

Based on the measures and constraints presented above, the problem is the search for
an order that minimizes two objectives: the method and attribute complexities.
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3.3 Multi-objective Ant Colony Optimization Algorithm

The Ant Colony Optimization Algorithm (ACO) was introduced by [8]. ACO is in-
spired by the behavior of real ant colonies, in particular, by their foraging behavior. One
of its main ideas is the indirect communication among the individuals of a colony or
agents, called (artificial) ants, based on an analogy with trails of a chemical substance,
called pheromone, which real ants use for communication. The (artificial) pheromone
trails are a kind of distributed numeric information which is modified by the ants to
reflect their experience accumulated while solving a particular problem.

The basic idea of ACO algorithms come from the ability of ants to find shortest paths
from their nest to food locations. Considering a combinatorial optimization problem, an
ant iteratively builds a solution. This constructive procedure is conducted using at each
step a probability distribution, which corresponds to the pheromone trails in real ants.
Once a solution is completed, pheromone trails are updated according to the quality
of the best solution built. Hence, cooperation between ants is performed by a common
structure that is the shared pheromone matrix. In addition to this, the algorithm dis-
cussed in this paper is based on the Pareto Ant Colony (P-ACO) algorithm, which is
based on the Ant Colony System algorithm and was originally proposed to solve the
Multiobjective Portfolio Selection problem [7].

P-ACO works with k pheromone matrices, where k is the number of objectives, and
uses an aggregation heuristic function computed from the k objectives. The transition
rule used to choose the next class j to be included in a test order o is given by Equation 4.

j =

{
argmaxj∈U

[∑K
k=1 pk · τk

ij

]α
· ηβ

ij if q ≤ q0

p (j) otherwise
(4)

where p(j) is given by the probability, represented in Equation 5.

p(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[∑K
h=1 pk · τk

ij

]α
· ηβ

ij∑
h∈U

[∑K
h=1 pk · τk

ij

]α if j ∈ U

0 otherwise

(5)

where the pheromone matrices are represented by τk .
According to Pasia et al [15] this rule is a straightforward extension for multiple

pheromone matrices of the rule used in the Ant Colony System [8]. The parameters
α and β determine the relative influence of the pheromone and heuristic information,
respectively; ηk

ij is the heuristic information of the objective k, pk ∈ [0, 1] are weights,

which are uniformly distributed such that
∑k

k=1 = 1. In each iteration, a weight vector
is assigned to each ant. The parameter q is a random number uniformly distributed in
the interval [0, 1], and q0 ∈ [0, 1] is a parameter that defines the intensification and
diversification properties of the algorithm.

The local pheromone update for all matrices is performed whenever an ant chooses a
sequence of classes (i, j) and uses the following rule: τk

ij = (1− ρ) · τk
ij + ρ · τ0, where

ρ is the rate of evaporation and τ0 is the initial pheromone value.
The global pheromone update is performed after all ants of the population have built

a test order. For each objective k best and second-best solution is determined and then,
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Algorithm 1. Pseudocode of P-ACO

/* Let C the number of classes */
/* Let N the number of iterations and Ants the number of ants */
F1, F2 are the objective functions
Initialize pheromone (F1, F2, τ0)

while nriter ≤ N do
for all ant in Ants do

p1 = rand (0, 1)
p2 = 1 − p1

TakeInitialCandidates = ()

s = GenerateInitialPath ()

BuildPath s = (s, q, q0, p1, p2, F1, F2)

LocalPheromoneUpdate (s, F1, F2)

s1 = LocalSearch (s, F1)

s2 = LocalSearch (s, F2)

end for
for all objective k do

Determine best b and second-best b′

GlobalPheromoneUpdate (b, b′, Fk)

end for
ParetoSetUpdate (P, s1, s2)

nriter += 1

end while

the following rule is used: τk
ij = (1− ρ)·τk

ij +ρ·Δτk
ij , where Δτk

ij receives as value: 15
if the (i, j) component belongs to the best and second best solutions; 10 if (i, j) belongs
only to the best path; 5 if it belongs just to the second best path; and 0 otherwise.

Algorithm 1 describes the main steps of the P-ACO algorithm. First, an initial pro-
cedure is executed where the pheromone matrices are set to τ0. The next step is an
iterative loop, at each iteration, all the ants built a set, s, a test order solution.

The Build Path procedure is used for each ant to build a test order. The ant chooses,
based on a probabilistic decision (Equation 4), a class that has not yet been included
in the test order s. The ant uses a candidate list composed by classes which do not
have any precedence constraint, that is, either the class does not have any precedence
by itself or all its precedence’s classes had already been placed on the test order vec-
tor (precedence table). When the ant obtains a test order vector a local update is per-
formed(LocalPheronomeUpdate).

After then, local searches are performed to achieve a strong exploitation of the search
space. For each objective, a local search is performed on each ant (LocalSearch).

Finally, all ants are evaluated and a global pheromone update is performed
(GlobalPheromoneUpdate)based on the best solutions of the iteration. The archive
of the best solutions found so far (that is, the approximation of the Pareto front), is also
updated (ParetoSetUpdate). At the end of the iterative loop, the solutions pre-
sented in the archive are the solutions obtained by the algorithm.
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4 Experimental Results

The goal of this section is to describe the application of the P-ACO algorithm for the
CITO problem in real systems and to compare its results with the GA approach. To do
this, we used the same benchmark from the work of Briand et al [3]. This benchmark
is composed of five real systems: ATM, ANT, SPM, BCEL and DNS. According to [3]
these systems are deemed to be of sufficient size and of varying complexity. This al-
lows a better evaluation considering different characteristics of the systems, which are
described in Table 2. The systems ATM, ANT, SPM, and BCEL have class diagrams of
reasonable (and comparable) sizes (between 19 and 45), but with very different num-
bers of cycles (from 30 for ATM to 416,091 for BCEL). On the other hand, the DNS
system has the greatest number of classes and almost the same number of relationships
of BCEL system, but the smallest number of cycles (fewer number than ATM, ANT,
and SPM).

The P-ACO algorithm was executed with the following parameters: q0 = 0.4, α =
1, β = 1, τmin = 0.0001 and τ0 = 1.0. These values were got from the original
P-ACO [7]. The number of ants is equal to the number of classes of each system, and
the number of iterations is equal to twice this number except for the DNS system,
where a lower number was used. These parameters are presented in Table 3. Observe
that the population (number of ants) and iterations are lower than the values used by
Briand et al [3]. The GA used a population size of 100 and a number of generation of
500.

As explained on Section 3.3, the P-ACO algorithm uses two local searches, on this
implementation, a neighbor of 20 is explored and the stopping criterion is a number
of 100 iterations without improvement on the best solution. The P-ACO algorithm was
executed five times for each system. A performance evaluation between the proposed
algorithm and the Briand et al [3] algorithm is not possible because their algorithm is
not available. Then, this work tries to understand the benefit of one approach or the
other based on the differences and similarities of the results.

Table 2. Detailed Information about the Systems

System Classes Uses Associations Compositions Inheritance Cycles LOC

ATM 21 39 9 15 4 30 1390
ANT 25 54 16 2 11 654 4093
SPM 19 24 34 10 4 1178 1198

BCEL 45 18 226 4 46 416,091 3033
DNS 61 211 23 12 30 16 6710

Table 3. Number of Ants and Iterations

System ATM ANT SPM BCEL DNS

Ants 20 20 20 40 60
Iterations 40 40 40 80 80
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4.1 Results and Analysis

The P-ACO results are presented for each system in Table 4. Each line presents the at-
tribute and method complexities of the solutions for one independent run of the P-ACO
algorithm. The non-dominated solutions, considering all the executions are highlighted.
In this section, the obtained results are compared to the GA results presented in Table 1,
considering the approximation of the Pareto front.

For ATM system the P-ACO algorithm found solutions with attribute complexity of
13 and method complexity of 39. These values are the best known approximation of
the Pareto Front. For the GA algorithm, the same solutions are found when the used
function is the average of the attribute and method complexities, as mentioned before.
On the other hand, when the function uses only one complexity measure, the solutions
are only good with respect to the metric employed.

In the ANT system, the P-ACO algorithm found solutions with better balance be-
tween the attribute and method complexities, forming the best approximation of the
Pareto Front. The GA algorithm also found some of these solutions when the used
function is the average of the attribute and method complexities. However, P-ACO has
found two more solutions in the approximation of the Pareto Front. Again, when the
GA algorithm uses a function based only on one complexity metric, the solutions are
only good with respect to the metric employed, but the GA has more problems to find
the best solutions and some runs found sub-optimal solutions.

For SPM, the approximation of the Pareto Front contains two non-dominated solu-
tions with (146,27) and (148,26) respectively for attribute and method complexities.
The P-ACO and GA algorithms found these solutions. But, the GA has found one solu-
tion when the attribute complexity function is used and the other one when the method

Table 4. Solutions found by P-ACO algorithm

ATM System

1 (39,13)
2 (39,13)
3 (39,13)
4 (39,13)
5 (39,13)

ANT System

1 (157,26) (136,29) (184,19) (162,25) (183,22) (131,33)
2 (136,29) (157,26) (183,22) (168,25) (184,19)
3 (157,26) (136,29) (184,19) (183,22) (170,25) (131,33)
4 (157,26) (136,29) (178,19) (163,22)
5 (157,26) (162,25) (136,29) (183,22) (184,19) (131,33)

BCEL System

1 (45,77) (130,66) (57,69) (78,68) (55,71) (54,73)
2 (79,69) (128,68) (129,67) (45,77) (49,72) (131,66) (54,71)
3 (129,68) (45,77) (98,70) (46,75) (130,67) (133,66) (52,72) (56,71) (126,69)
4 (45,77) (130,66) (54,69) (53,75) (50,76)
5 (105,68) (57,70) (45,76) (54,71) (134,66) (127,67)

DNS System

1 (19,11)
2 (19,11)
3 (19,11)
4 (19,11)
5 (19,11)

SPM System

1 (146,27) (148,26)
2 (146,27) (148,26)
3 (148,26) (146,27)
4 (146,27) (148,26)
5 (148,26) (146,27)
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complexity function is used. Moreover, these solutions were not found when the aggre-
gated function is used.

For BCEL, note that there are only two solutions from the GA algorithm in the ap-
proximation of the Pareto Front. These solutions have (47,74) and (48,73) for attribute
and method complexity respectively, and they were found by the function that aggregates
both complexity measures. Besides these solutions, the P-ACO algorithm found another
six solutions that are on the approximation of the Pareto Front. The BCEL System has
the greatest number of solutions in the approximation of the Pareto Front, and this fact
reveals a difference between the comparative study between GA and P-ACO algorithms.

The DNS System has the greatest number of classes, however, its complexity seems
like to the ATM system since for all P-ACO executions only one solution was found
with (19,11) as attribute and method complexities, respectively. These values are the
best known approximation of the Pareto Front. For the GA algorithm, the same solu-
tions are found when the used function is the aggregation of the attribute and method
complexity. On the other hand, when the function uses only one complexity metric, the
solutions are only good with respect to the metric employed.

Table 5 presents a comparison between the number of solutions found in the ap-
proximation of the Pareto Front by the compared algorithms. It is possible to observe
that GA and P-ACO present similar behaviour for some systems. This behaviour can
be explained because some systems have similar measures for attribute and method
complexities, that is, when the attribute complexity grows the method complexity also
grows. On the other hand, systems like BCEL exhibit different behaviour for attribute
and method complexities. In these cases the P-ACO algorithm is the most suitable.

It is important to remark that the GA used four different complexity functions and
the solutions were not always found by the same function. Consequently, some effort
must be spent to determine the best function for the GA approach. It seems that this

Table 5. Number of Solutions on the Approximation of the Pareto Front

Systems ATM ANT SPM BCEL DNS

P-ACO 1 6 2 6 1
GA 1 4 2 2 1

Total 1 6 2 8 1

Table 6. Attribute and Method Complexities of BCEL system

Solutions Algorithms Attribute Complexity Method Complexity

1 P-ACO 45 76
2 P-ACO 46 75
3 GA 47 74
4 GA 48 73
5 P-ACO 49 72
6 P-ACO 54 69
7 P-ACO 68 78
8 P-ACO 130 66
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effort is greater for complex systems, with a great number of dependencies between
classes, such as BCEL. This does not happen with the P-ACO approach.

Table 6 details the solutions found by P-ACO and GA algorithms for BCEL system.
In this table it is possible to note different solutions that have in common a good trade
off between the two complexity metrics. Remark that all these solutions are non domi-
nated, hence no one can be considered to be better than any other with respect to both
complexity metrics.

When the P-ACO approach is used, the tester can take advantage from the variety
of these solutions according to his (or her) preferences (needs). He (or she) can con-
duct the integration test by prioritizing either attribute or method complexities. On the
other hand, the tester can use other preference information about the classes, such as
constraint related to contractual aspects to select an order from a larger range of good
solutions than if the GA approach is used.

5 Conclusions

In this paper we introduce a new approach based on multi-objective optimization to the
CITO problem. The approach uses a Pareto Ant Colony algorithm that was adapted to
produce test orders that represent a good tradeoff between the number of attributes and
methods in the stubbing process.

The algorithm was evaluated in a benchmark of five real programs and its perfor-
mance was compared to the GA performance by considering the approximation of the
Pareto front. In this evaluation we observe that the multi-objective is very advantageous
because different factors can be considered and a set of good solutions that achieve a
balanced compromise between the considered measures is obtained without human in-
tervention. In addition to this, the approach is applicable and present better results in
complex cases, when the system being tested contains a large number of dependency
cycles.

It is possible to argue that the greater the number of solutions found in the approx-
imation of the Pareto Front and their distributions, the greater the ways to satisfy inte-
gration test plans considering the real world needs. This fact points out that the P-ACO
algorithm and the research in multi objective combinatorial problems are more suitable
to solve software engineering complex problems, such as the CITO.

Now, we intend to conduct experiments with other multi-objective algorithms, such
as Non-dominated Sorting Genetic Algorithm (NSGA-II). Besides this, other objectives
can be included in the CITO problem, as mentioned in this text. The performance of the
P-ACO with more than two objectives should be evaluated in further studies, with other
benchmarks.
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2 Verimag, Université Grenoble I, France

Firstname.Lastname@inria.fr, Firstname.Lastname@imag.fr

Abstract. In this paper, we explore the set of testable properties within

the Safety-Progress classification where testability means to establish by

testing that a relation, between the tested system and the property under

scrutiny, holds. We characterize testable properties wrt. several relations

of interest. For each relation, we give a sufficient condition for a property

to be testable. Then, we study and delineate, for each Safety-Progress

class, the subset of testable properties and their corresponding test oracle

producing verdicts for the possible test executions. Finally, we address

automatic test generation for the proposed framework.

1 Introduction

Due to its ability to scale up well and its practical aspect, testing remains one
of the most effective and widely used validation technique for software systems.
However, due to recent needs in the software industry (for instance in terms of
security), it is important to reconsider the classes of requirements this technique
allows to validate or invalidate. The aim of a testing stage may be either to find
defects or to witness expected behaviors on an implementation under test (IUT).
From a practical point of view, a test campaign consists in producing a test suite
(test generation) from some initial system description, and executing it on the
system implementation (test execution). The test suite consists in a set of test
cases, where each test case is a set of interaction sequences to be executed by
an external tester (performed on the points of control and observation, PCOs).
Any execution of a test case should lead to a test verdict, indicating if the system
succeeded or not on this particular test (or if the test was not conclusive).

One way to improve the practical feasibility of a test campaign is to use
a property to drive the test execution. In this case, the property is used to
generate the so-called test purposes [2,3] so as to select the most relevant test case
behaviors. A property may also represent the desired behavior of the system. In
this setting, the property may be a formalization of a security policy describing
prohibited behaviors and expectations from the users, as considered in [4,5].
Several approaches (e.g., [6]) combine classical testing techniques and property
verification so as to improve the test activity. Most of these approaches used

� An extended version of this paper with complete proofs can be found in [1].

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 30–46, 2010.
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safety and co-safety properties. A natural question is the existence of other kinds
of properties that can be “tested”, i.e., to define a precise notion of testability.

In [7,8], Nahm, Grabowski, and Hogrefe addressed this issue by discussing
the set of temporal properties that can be tested on an implementation. A pro-
perty is said to be testable if it is possible to determine if a given relation (e.g.,
inclusion) holds between the sequences described by a property and the set of
execution sequences that can be produced by interacting with the IUT, after
the execution of a finite sequence on the IUT. In their work, testability of pro-
perties is studied wrt. the Safety-Progress classification ([9] and Section 3) for
infinitary properties. The announced classes of testable properties are the safety
and guarantee1 classes. Then, it is not too surprising that most of the previously
depicted approaches used safety and co-safety properties during testing.

Context. In this paper, we shall use the same notion of testability. We consider
a generic approach, where an underlying property is compared to the possibly
infinite execution sequences of the IUT by a tester. This property expresses finite
and infinite2 observable behaviors (which may be desired or not). Usually, IUT’s
execution sequences are expressed in a different alphabet than the one used to
describe the property and have thus to be interpreted. However, testability and
the test oracle problem (i.e., the problem of deciding verdicts) can be studied
while abstracting this alphabet discrepancy. A second characteristic is that we do
not require the existence of an executable specification to generate the test cases.
This allows to encompass several conformance testing approaches by viewing the
specification as a special property.

Motivations and contributions. The main motivation of this paper is to leverage
the use of an extended version of the Safety-Progress classification of properties
dedicated to runtime techniques. We give a precise characterization of testable
properties and provide a formal basis for several previous testing activities. We
extend the results of [7] by showing that lots of interesting properties (neither
safety nor guarantee) are also testable. Moreover, this framework allows to simply
obtain test oracles producing verdicts according to the test execution.

Paper organization. The remainder of this paper is organized as follows. In
Section 2, some preliminary concepts and notations are introduced. A quick
overview of the Safety-Progress classification of properties for runtime validation
techniques is given in Section 3. Section 4 introduces the notion of testability
considered in this paper. In Section 5, testable properties are characterized. Au-
tomatic test generation is addressed in Section 6. Next, in Section 7, we overview
the related work and propose a discussion on the results provided by this paper.
Finally, Section 8 gives some concluding remarks and raised perspectives.

1 In the Safety-Progress classification the guarantee class is the co-safety class in the

Safety-Liveness classification.
2 The tester observes a finite sequence of the IUT and should state a verdict about all

potential continuations of this execution sequence (finite and infinite ones).
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2 Preliminaries

Given an alphabet of actions Σ, a sequence σ on Σ is a total function σ : I → Σ
where I is either the interval [0, n] for some n ∈ N, or N itself. The empty
sequence is denoted by ε. We denote by Σ∗ the set of finite sequences over Σ
and by Σω the set of infinite sequences over Σ. Σ∗ ∪ Σω is noted Σ∞. The
length (number of elements) of a finite sequence σ is noted |σ| and the (i+1)-th
element of σ is denoted by σi. For σ ∈ Σ∗, σ′ ∈ Σ∞, σ · σ′ is the concatenation
of σ and σ′. The sequence σ ∈ Σ∗ is a strict prefix of σ′ ∈ Σ∞ (equivalently σ′

is a strict continuation of σ), noted σ ≺ σ′, when ∀i ∈ [0, |σ| − 1] : σi = σ′
i and

|σ| < |σ′|. When σ′ ∈ Σ∗, we note σ � σ′ def= σ ≺ σ′ ∨ σ = σ′. For σ ∈ Σ∞ and
n ∈ N, σ···n is the sub-sequence containing the n + 1 first elements of σ. The set
of prefixes of σ ∈ Σ∞ is pref (σ) def= {σ′ ∈ Σ∗ | σ′ � σ}. For a finite sequence
σ ∈ Σ∗, the set of finite continuations is cont∗(σ) def= {σ′ ∈ Σ∗ | ∃σ′′ ∈ Σ∗ : σ′ =
σ · σ′′}.

The IUT is a program P abstracted as a generator of execution sequences.
We are interested in a restricted set of operations that influence the truth
value of tested properties and are made on PCOs. We abstract these opera-
tions by an alphabet Σ. We denote by PΣ a program with alphabet Σ. The
set of execution sequences of PΣ is denoted by Exec(PΣ) ⊆ Σ∞. This set
is prefix-closed, that is ∀σ ∈ Exec(PΣ) : pref (σ) ⊆ Exec(PΣ). We will use
Execf(PΣ) (resp. Execω(PΣ)) to refer to the finite (resp. infinite) execution
sequences of PΣ, that is Execf(PΣ) def= Exec(PΣ) ∩ Σ∗ and Execω(PΣ) def=
Exec(PΣ) ∩Σω.

Properties as sets of execution sequences. A finitary property (resp. an infinitary
property, a property) is a subset of execution sequences of Σ∗ (resp. Σω, Σ∞).
Given a finite (resp. infinite) execution sequence σ and a property φ (resp. ϕ),
we say that σ satisfies φ (resp. ϕ) when σ ∈ φ, noted φ(σ) (resp. σ ∈ ϕ, noted
ϕ(σ)). A consequence of this definition is that properties we will consider are re-
stricted to linear time execution sequences, excluding specific properties defined
on powersets of execution sequences and branching properties.

Runtime properties [10]. Runtime properties should characterize satisfaction for
both kinds of sequences (finite and infinite) in a uniform way. To do so, we define
r-properties as pairs Π = (φ, ϕ) ⊆ Σ∗×Σω. We say that σ ∈ Exec(PΣ) satisfies
(φ, ϕ) (noted Π(σ)) when σ ∈ Σ∗ ∧ φ(σ) ∨ σ ∈ Σω ∧ ϕ(σ). The definition of
the negation of an r-property follows from definition of the negation for finitary
and infinitary properties. Boolean combinations of r-properties are defined in a
natural way. For ∗ ∈ {∨,∧}, (φ1, ϕ1) ∗ (φ2, ϕ2)

def= (φ1 ∗ φ2, ϕ1 ∗ ϕ2).
An r-property Π ⊆ Σ∗ ×Σω is said to be negatively (resp. positively) deter-

mined [11] by σ ∈ Σ∗ if ¬Π(σ)∧∀μ ∈ Σ∞ : ¬Π(σ · μ) (resp. Π(σ)∧∀μ ∈ Σ∞ :
Π(σ · μ)), denoted �−determined(σ, Π) (resp. ⊕−determined(σ, Π)).
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3 A Safety-Progress Classification for Runtime
Techniques

The Safety-Progress (SP) classification of properties [12,9] introduced a hierar-
chy between regular (linear time) properties3 defined as sets of infinite execution
sequences. In [10], we extended the classification to deal also with finite-length
execution sequences by revisiting it using runtime properties (r-properties). The
Safety-Progress classification is an alternative to the classical Safety-Liveness
[13,14] dichotomy. Unlike this later, the Safety-Progress classification is a hie-
rarchy and not a partition, and provides a finer-grain classification of properties
in a uniform way according to 4 views [15]: a language-theoretic view (seeing pro-
perties as sets of sequences), a logical view (seeing properties as LTL formulas),
a topological view (seeing properties as open or closed sets), and an automata
view (seeing properties as accepted words of Streett automata [16]).

unrestricted automata

Guarantee

Response Persistence

Safety
Progress

Safety

Obligation

Reactivity

P = ∅, R � R
(Ef (ψ), E(ψ))

(Rf (ψ), R(ψ))

P = ∅
(Pf (ψ), P (ψ))

R = ∅

(Af (ψ), A(ψ))
R = ∅, P � P

Pi � Pi, Ri � Ri

⋂
i[Safetyi ∪ Guaranteei]

⋂
i[Responsei ∪ Persistencei]

Fig. 1. SP classification

A graphical representation of the Safety-
Progress classification of properties is de-
picted in Fig. 1. Further details and results
can be found in [17]. Here, we consider only
the language and the automata views.

The language-theoretic view of r-properties.
The language-theoretic view of the SP classi-
fication is based on the construction of infini-
tary properties and finitary properties from
finitary ones. It relies on the use of four op-
erators A, E, R, P (building infinitary pro-
perties) and four operators Af , Ef , Rf , Pf

(building finitary properties) applied to fi-
nitary properties. Formal definitions can be

found in [17]. In the following ψ is a finitary property.
A(ψ) consists of all infinite words σ s.t. all prefixes of σ belong to ψ. E(ψ)

consists of all infinite words σ s.t. some prefixes of σ belong to ψ. R(ψ) consists
of all infinite words σ s.t. infinitely many prefixes of σ belong to ψ. P (ψ) consists
of all infinite words σ s.t. all but finitely many prefixes of σ belong to ψ.

Af (ψ) consists of all finite words σ s.t. all prefixes of σ belong to ψ. One
can observe that Af (ψ) is the largest prefix-closed subset of ψ. Ef (ψ) consists
of all finite words σ s.t. some prefixes of σ belong to ψ. One can observe that
Ef (ψ) = ψ · Σ∗. Rf (ψ) consists of all finite words σ s.t. ψ(σ) and there exists
an infinite number of continuations σ′ of σ also belonging to ψ. Pf (ψ) consists
of all finite words σ belonging to ψ s.t. there exists a continuation σ′ of σ s.t. σ′

persistently has continuations staying in ψ (i.e., σ′′ s.t. σ′ · σ′′ belongs to ψ).

The automata view of r-properties [10]. We define a variant of deterministic
and complete Streett automata (introduced in [16] and used in [15]). We add to
original Streett automata an acceptance condition for finite sequences in such a
way that these automata uniformly recognize r-properties .
3 In the remainder of this paper, the term property will stand for regular property.
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Fig. 2. Schematic illustrations of the shapes of Streett automata for basic classes

Definition 1 (Streett automaton). A deterministic Streett automaton A is
a tuple (QA, qAinit, Σ,−→A, {(R1, P1), . . . , (Rm, Pm)}). The set QA is the set of
states, qAinit ∈ QA is the initial state. −→A: QA × Σ → QA is the (complete)
transition function. {(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, for all
i ≤ n, Ri ⊆ QA and Pi ⊆ QA are the sets of recurrent and persistent states.

We refer to an automaton with m accepting pairs as an m-automaton. A plain-
automaton is a 1-automaton, and we refer to R1 and P1 as R and P . Moreover,
for σ = σ0 · · ·σn−1 ∈ Σ∗ and q, q′ ∈ QA, we note q

σ−→ q′ when ∃q1, . . . , qn−2 ∈
QA : q

σ0−→ q1 ∧ . . . ∧ qn−2
σn−2−→ q′. For q ∈ QA, ReachA(q) = {q′ ∈ QA |

∃σ ∈ Σ∗ \ {ε} : q
σ−→A q′} ∪ {q} is the set of reachable states from q. For

σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the execution
of σ on A. It is formally defined as run(σ,A) = q0 · q1 · · · where ∀i : (qi ∈
QA∩ReachA(qAinit)∧qi

σi−→A qi+1)∧q0 = qAinit. For an execution sequence σ ∈ Σω

on a Streett automaton A, we define vinf (σ,A) as the set of states appearing
infinitely often in run(σ,A).

Definition 2 (Acceptance conditions). For σ ∈ Σω, A accepts σ if ∀i ∈
[1, m] : vinf (σ,A) ∩ Ri �= ∅ ∨ vinf (σ,A) ⊆ Pi. For σ ∈ Σ∗ s.t. |σ| = n, A
accepts σ if (∃q0, . . . , qn−1 ∈ QA : run(σ,A) = q0 · · · qn−1 ∧ q0 = qAinit and
∀i ∈ [1, m] : qn−1 ∈ Pi ∪Ri). A defines an r-property (φ, ϕ) ∈ 2Σ∗×Σω

iff the set
of finite (resp. infinite) sequences accepted by A is equal to φ (resp. ϕ).

The hierarchy of r-properties. The hierarchical organization of r-properties can
be seen in the language view using the operators and in the automata view using
syntactic restrictions on Streett automata (illustrated in Fig. 2 for basic classes).

Definition 3 (Safety-Progress classes). An r-property Π defined by (QAΠ ,
qAΠ
init , Σ,−→AΠ , {(R1, P1), . . . , (Rm, Pm)}), Π is said to be

– A safety r-property if Π = (Af (ψ), A(ψ)) for some ψ ⊆ Σ∗ or equivalently
AΠ is a plain-automaton s.t. R = ∅ and there is no transition from P to P .

– A guarantee r-property if Π = (Ef (ψ), E(ψ)) for some ψ ⊆ Σ∗ or equivalently
AΠ is a plain-automaton s.t. P = ∅ and there is no transition from R to R.

– An m-obligation r-property if Π =
⋂m

i=1(Si(ψi)∪Gi(ψ′
i)) or Π =

⋃m
i=1(Si(ψi)

∩Gi(ψ′
i)) where S(ψi) (resp. G(ψ′

i)) are safety (resp. guarantee) r-properties
defined over the ψi and the ψ′

i; or equivalently AΠ is an m-automaton s.t. for
i ∈ [1, m] there is no transition from Pi to Pi and from Ri to Ri.

– A response r-property if Π = (Rf (ψ), R(ψ)) for some ψ ⊆ Σ∗ or equivalently
AΠ is a plain-automaton s.t. P = ∅.
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– A persistence r-property if Π = (Pf (ψ), P (ψ)) for some ψ ⊆ Σ∗ or equiva-
lently AΠ is a plain-automaton s.t. R = ∅.

– A reactivity r-property if Π is obtained by finite boolean combinations of
response and persistence r-properties or equivalently AΠ is unrestricted.

An r-property of a given class is pure when not belonging to any other sub-class.

Example 1 (r-properties). Let us consider Σ1 = {a, b, c} and ψ1 = a∗ ·(b∗+c·(c+
a)∗·b+

)
defined by the deterministic finite-state automaton (DFA) in Fig. 3a with

accepting states 1, 2. The Streett automaton in Fig. 3b defines (Af (ψ1), A(ψ1)).
Let Σ2 = {a, b}, and the finitary property ψ2 = (a · b)+ recognized by the DFA
depicted in Fig. 4a. The Streett automaton in Fig. 4b (resp. Fig. 4c) represents
the guarantee (resp. response) r-property built upon ψ2.

4 Some Notions of Testability

From its finite interaction with the underlying IUT, the tester produces a se-
quence of events in Σ∗. We study the conditions for a tester, using the produced
sequence of events, to determine whether a given relation holds between the set
of all (finite and infinite) execution sequences that can be produced by the IUT
(Exec(PΣ)), and the set of sequences described by the r-property Π . Roughly
speaking, the challenge addressed by a tester is thus to determine a verdict
between Π and Exec(PΣ), from a finite sequence extracted from Execf(PΣ)4.

Let us recall that the r-property is a pair made of two sets: a set of finite
sequences and a set of infinite sequences. In the sequel, we shall compare this
pair to the set of execution sequences of the IUT which is a set constituted of
finite and infinite sequences. As noticed in [7], one may consider several possible
relations between the execution sequences produced by the program and those
4 Or from a finite set of finite sequences, as a straightforward extension.
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described by the property. Those relations are recalled here in the context of
r-properties . In [1], further relations are studied.

Definition 4 (Relations between IUT sequences and an r-property [7]).
The possible relations of interest between Exec(PΣ) and Π are:

– Execf(PΣ) ⊆ Π ∩ Σ∗ and Execω(PΣ) ⊆ Π ∩ Σω (noted Exec(PΣ) ⊆ Π).
– Execf(PΣ)∩(Π∩Σ∗) �= ∅ and Execω(PΣ)∩(Π∩Σω) �= ∅ (noted Exec(PΣ)∩Π �= ∅).
The test verdict is thus determined according to the conclusions that one can
obtain for the considered relation. In essence, a tester can and must only deter-
mine a verdict from a finite interaction σ ∈ Execf(PΣ). In Section 5, we will
study the conditions to state weaker verdicts on a single execution sequence.

Definition 5 (Verdicts [7]). Given a relation R between Exec(PΣ) and Π and
a test execution σ, the tester produces verdicts as follows:

– pass if σ allows to determine that R holds;
– fail if σ allows to determine that R does not hold;
– unknown otherwise.

We note verdict(σ,R(Exec(PΣ), Π)) the verdict that the observation of σ allows
to determine. Let us remark the two following practical problems:

– In general, the IUT may be a program exhibiting infinite-length execution
sequences. Obviously these sequences cannot be evaluated by a tester wrt. Π .

– Moreover, finite execution sequences contained in the r-property cannot be
processed easily. For instance, if the test execution exhibits a sequence σ /∈ Π ,
deciding to stop the test is a critical issue. Actually, nothing allows to claim
that a continuation of the test execution would not exhibit a new sequence
belonging to the r-property, i.e., σ′ ∈ Σ∞ s.t. σ · σ′ ∈ Π .

Thus, the test should be stopped only when there is no doubt regarding the
verdict to be established. Following [7], we propose a notion of testability, that
takes into account the aforementioned practical limitations, and that is set in the
context of the Safety-Progress classification. We suppose the existence of a tester
that can interpret the execution sequences with the IUT PΣ on Execf(PΣ).

Definition 6 (Testability). An r-property Π is said to be testable on PΣ wrt.
the relation R if there exists an execution sequence σ ∈ Σ∗ s.t.:

σ ∈ Execf(PΣ)⇒ verdict(σ,R(Exec(PΣ), Π)) ∈ {pass , fail}
Intuitively, this condition compels the existence of a sequence which, if played
on the IUT, allows to determine for sure, whether the relation holds or not. Let
us note that this definition entails to synthesize a test oracle which allows to
determine R(Exec(PΣ), Π

)
from the observation of a sequence σ ∈ Execf(PΣ).

A test oracle is a finite state machine (FSM) parametrized by a test relation
as shown in Definition 4. It reads incrementally an interaction sequence σ ∈
Execf(PΣ) and produces verdicts in {pass , fail , unknown}.
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Definition 7 (Test Oracle). A test oracle O for an IUT PΣ, a relation R and
an r-property Π is a 4-tuple (QO, qOinit,−→O, ΓO). The finite set QO denotes
the control states and qOinit ∈ QO is the initial state. The complete function
−→O: QO × Σ → QO is the transition function. The output function ΓO :
QO → {pass , fail , unknown} produces verdicts with the following constraints:

– all states emitting a pass or a fail verdict are final (sink states),
– ∃σ ∈ Execf(PΣ) : qOinit

σ−→O q ∧ Γ (q) = pass ⇒R(Exec(PΣ), Π),
– ∃σ ∈ Execf(PΣ) : qOinit

σ−→O q ∧ Γ (q) = fail ⇒ ¬R(Exec(PΣ), Π).

5 Testable Properties without Executable Specification

The framework of r-properties (Section 3) allows to determine the testability
of the different classes of properties using positive and negative determinacy.
Moreover, this framework provides a computable oracle, which is a sufficient
condition for testing. Furthermore, we will be able to characterize which test
sequences allow to establish sought verdicts. Then, we will determine which
verdict has to be produced in accordance with the played test sequence.

In this paper, we focus on the relation Exec(PΣ) ⊆ Π . Characterizations for
the relation Exec(PΣ) ∩Π �= ∅ (by duality) and others relations are in [1].

Obtainable verdicts and sufficient conditions. For this relation, the unique ver-
dicts that may be produced are fail and unknown. We explicit this below.

A pass verdict means that all execution sequences of PΣ belong to Π . The
unique case where it is possible to establish a pass verdict is in the trivial case
where Π = (Σ∗, Σω), i.e., the r-property Π is always verified. Obviously, every
implementation with alphabet Σ satisfies this relation. In other cases, it is im-
possible to obtain such a verdict (whatever is the property class under considera-
tion), since the whole set PΣ is usually unknown from the tester. In Section 5, we
will study the conditions under which it is possible to state weak pass verdicts,
when reasoning on a single execution sequence of the IUT.

A fail verdict means that there exists some sequences of the program which
are not in Π . In order to produce this verdict, a sufficient condition is to exhibit
an execution sequence of PΣ s.t. Π is negatively determined by this sequence:

∃σ ∈ Execf(PΣ) : �−determined(σ, Π) ⇒ verdict(σ,Exec(PΣ) ⊆ Π) = fail

Testability of this relation in the Safety-Progress classification. For each SP class,
we state the conditions under which the properties of this class are testable.

Theorem 1 (Testability of Exec(PΣ) ⊆ Π). For AΠ = (QAΠ , qAΠ
init ,−→AΠ ,

{(R1, P1), . . . , (Rm, Pm)}) recognizing an r-property Π, according to the class
of Π, the testability conditions expressed both in the language-theoretic and au-
tomata views are given in Table 1.
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Table 1. Summary of testability results wrt. the relation Exec(PΣ) ⊆ Π

Exec(PΣ) ⊆ Π Testability Condition Testability Condition

(language view) (automata view)

Safety

(Af (ψ),A(ψ)) |R = ∅, P � P ψ �= ∅ P �= ∅
Guarantee

(Ef (ψ), E(ψ))|P = ∅, R � R {σ ∈ ψ | pref (σ) ∪ cont∗(σ) ⊆ ψ} �= ∅ {q ∈ R | ReachAΠ (q) ⊆ R} �= ∅
Obligation⋂k

i=1(Si(ψi) ∪ Gi(ψ
′
i))
⋃k

i=1

(
ψi ∩ {σ ∈ ψ′

i | pref (σ) ∪ cont∗(σ) ⊆ ψ′
i}
) �= ∅⋃k

i=1(Si(ψi) ∩ Gi(ψ
′
i))
⋂k

i=1

(
ψi ∪ {σ ∈ ψ′

i | pref (σ) ∪ cont∗(σ) ⊆ ψi}
) �= ∅

Pi � Pi, Ri � Ri

⋃k
i=1(Pi ∩ {q ∈ Ri | ReachAΠ (q) ⊆ Ri}) �= ∅

Response

(Rf (ψ), R(ψ)) |P = ∅ {σ ∈ ψ | cont∗(σ) ⊆ ψ} �= ∅ {q ∈ R | ReachAΠ (q) ⊆ R} �= ∅
Persistence

(Pf (ψ), P (ψ)) |R = ∅ {σ ∈ ψ | cont∗(σ) ⊆ ψ} �= ∅ {q ∈ P | ReachAΠ (q) ⊆ P} �= ∅

Verdicts to deliver. We now state the verdicts that should be produced by a tester
for the possibly infinite sequences of the IUT. Each testability condition in the
language view is in the form f({ψi}i) �= ∅ where the ψi ⊆ Σ∗ (i ∈ [1, n]) are used
to build the r-property and f is a composition of set operations on ψi. When
σ ∈ Execf(PΣ)∩f({ψi}i), the test oracle should deliver fail since the underlying
r-property is negatively determined. Conversely, when σ ∈ Execf(PΣ)\f({ψi}i),
the test oracle can deliver unknown. In practice, those verdicts are determined
by a computable function, reading an interaction sequence, i.e., a test oracle. In
our framework, the test oracle is obtained from a Streett automaton5:

Property 1 (Test oracle for the relation Exec(PΣ) ⊆ Π). Given AΠ = (QAΠ ,
qAΠ
init , Σ,−→AΠ , {(R1, P1), . . . , (Rm, Pm)}) defining Π , the test oracle (QO,

qOinit,−→O, ΓO) for the relationExec(PΣ) ⊆ Π is defined as follows.QO is the smal-
lest subset of QAΠ , reachable from qOinit by −→O (defined below) with qOinit = qAΠ

init .

– ΓO is defined as follows:
– If Π is a pure safety, guarantee, obligation, or response property ΓO(q) =

fail if q ∈ ⋃k
i=1(Pi ∩{q ∈ Ri | ReachAΠ (q) ⊆ Ri} and unknown otherwise,

– If Π is a pure persistence property ΓO(q) = fail if q ∈ {q ∈ P | ReachAΠ (q)
⊆ P} and unknown otherwise;

– −→O is defined as the smallest relation verifying:
– q

e−→O q if ∃e ∈ Σ, ∃q′ ∈ QO : q
e−→AΠ q′ and ΓO(q) = fail ,

– −→O=−→AΠ otherwise.

The proof of this property follows from Theorem 1 and Definition 7.

Example 2 (Testability of some r-properties wrt. Exec(PΣ) ⊆ Π). We present
the testability of three r-properties introduced in Example 1. The safety r-property
Π1 is testable wrt. the relation Exec(PΣ1) ⊆ Π1. Indeed in the language view,
there are sequences belonging to ψ1 (the corresponding DFA has a non accept-
ing state). In the automata view, we have sink ∈ P (reachable from the initial
state). The guarantee r-property Π2 is testable wrt. the relation Exec(PΣ2) ⊆ Π2.

5 The test oracle can be also obtained from the r-properties described in others views

(language, logic). Indeed, in [17] we describe how to express an r-property in the

automata view from its expression in the language or the logic view.
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Indeed, there are sequences belonging to ψ2 s.t. all prefixes of theses sequences and
all its continuations are also in ψ2. In the automata view, there is a (reachable)
state in R from which all reachable states are in R. The response r-property Π3

is testable wrt. the relation Exec(PΣ2) ⊆ Π3. Indeed, there are sequences belon-
ging to ψ2 s.t. all continuations of these sequences belong to ψ2. In the automata
view, there is a (reachable) state in R from which all reachable states are in R.
Thus, we have clarified and extended some results of [7]. First, we have shown
that the safety r-property (Σ∗, Σω) always lead to a pass verdict and is vacuously
testable. Moreover, we exhibited some r-properties of other classes which are
testable, i.e., some obligation, response, and persistence r-properties .

Refining verdicts. Similarly to the introduction of weak truth values in runtime
verification [18,10,17], it is possible to introduce weak verdicts in testing. In this
respect, stopping the test and producing a weak verdict consists in stating that
the test interaction sequence produced so far belongs (or not) to the property.
The idea of satisfaction “if the program stops here” in runtime verification [18,10]
corresponds to the idea of “the test has shown enough on the implementation” in
testing. In this case, testing would be similar to a kind of “active runtime verifica-
tion”: one is interested in the satisfaction of one execution of the program which
is steered externally by a tester. Basically, it amounts to not seeing testing as a
destructive activity, but as a way to enhance confidence in the implementation
compliance wrt. a property.

Under some conditions, it is possible to determine weak verdicts for some
classes of properties in the following sense: the verdict is expressed on one single
execution sequence σ, and it does not afford any conclusion on the set Exec(PΣ).

We have seen that, for Exec(PΣ) ⊆ Π , the only verdicts that can be produced
were fail and unknown. Clearly, fail verdicts can still be produced. Furthermore,
unknown verdicts can be refined into weak pass verdicts when the sequence σ
positively determines the r-property. In this case, the test can be stopped since
whatever is the future behavior of the IUT, it will exhibit behaviors that will
satisfy the r-property. In this case, it seems reasonable to produce a weak pass
verdict and consider new test executions in order to gain in confidence.

We revisit, for each Safety-Progress class, the situations when weak pass ver-
dicts can be produced for this relation.

For safety r-properties . Let Π be a safety r-property, then there exists ψ ⊆ Σ∗

s.t. Π can be expressed (Af (ψ), A(ψ)). When the produced sequence belongs to
{σ ∈ ψ | pref (σ) ∪ cont∗(σ) ⊆ ψ}, the tester can produce a weak pass verdict.

For guarantee r-properties . Let Π be a guarantee r-property, then there exists
ψ ⊆ Σ∗ s.t. Π can be expressed (Ef (ψ), E(ψ)). It is possible to produce a weak
pass verdict if the set ψ is not empty: guarantee r-properties are always positively
determined when they are satisfied.

For obligation r-properties . Let Π be an m-obligation r-property.

- If for m ∈ N∗, Π is expressed
⋂m

i=1(Si(ψi)∪Gi(ψ′
i)) where Si(ψi) (resp. Gi(ψ′

i))
is a safety (resp. guarantee) r-property built upon ψi (resp. ψ′

i), i ∈ [1, m]. The
tester can produce a weak pass verdict when the interaction sequence belongs
to
⋂m

i=1 ψ′
i.
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- If for m ∈ N∗, Π is expressed
⋃m

i=1(Si(ψi)∩Gi(ψ′
i)) where Si(ψi) (resp. Gi(ψ′

i))
is a safety (resp. guarantee) r-property built upon ψi (resp. ψ′

i), i ∈ [1, m]. The
tester can produce a weak pass verdict when the interaction sequence produced
by the program belongs to

⋃m
i=1({σ ∈ ψi | pref (σ) ∪ cont∗(σ) ⊆ ψi} ∩ ψ′

i).

For response and persistence r-properties . The reasoning is similar to the one
used for safety r-properties . Let Π be a response (resp. persistence) r-property,
then there exists ψ ⊆ Σ∗ s.t. Π can be expressed (Rf (ψ), R(ψ)) (resp. (Pf (ψ),
P (ψ))). When the interaction sequence belongs to {σ ∈ ψ | pref (σ)∪cont∗(σ) ⊆
ψ}, the tester can produce a weak pass verdict.

6 Automatic Test Generation

In this section, we address test generation for the testing framework introduced
in this paper. Here, test generation is based on r-properties , and the purpose
of the test campaign is to detect verdicts for a relation between an r-property
and an IUT. Before entering into the details of test generation, we first discuss
informally some practical constraints that have to be taken into account for test
generation. After that, we are able to compute the canonical tester, discuss test
selection, and show how quiescence can be taken into account in our framework.

Which sequences should be played? The sequences of interest to play on the
IUT are naturally those leading to a fail or a weak pass verdict and these can
be used to generate test cases. In the language view (resp. automata view),
these sequences are those belonging to the exhibited sets (resp. leading to the
exhibited set of states) in testability conditions. For instance, for a safety r-
property ΠS = (Af (ψ), A(ψ)) built upon ψ, and defined by a safety automaton
AΠS , one should play sequences in ψ or equivalently those leading to P in AΠS .

When to stop the test? When the tested program produces an execution sequence
σ ∈ Σ∗, a raised question is when to safely stop the test. Obviously, a first answer
is when a fail or weak pass verdict has been issued since this verdict is definitive.
Although in other cases, when the test interactions produced some test sequences
leading so far to unknown evaluations, the question prevails. It remains to the
tester appraisal to decide when the test should be stopped (see Section 6.2).

Vocabularies and test architecture. In order to address test generation, we will
need to distinguish inputs and outputs and the vocabularies of the IUT and the
r-property. The alphabet Σ of the property is now partitioned into Σ? (input
actions) and Σ! (output actions). The alphabet of the IUT becomes ΣIUT and is
partitioned into ΣIUT

? (input actions) and ΣIUT

! (output actions) with Σ? = ΣIUT

?

and Σ! = ΣIUT

! . As usual, we also suppose that the behavior of the IUT can be
modeled by an IOLTS I = (QI , qIinit, Σ

IUT ,−→I).

6.1 Computation of the Canonical Tester

We adapt the classical construction of the canonical tester for our framework.
The canonical tester that we build for a relation R between an IUT PΣ and
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a r-property Π is purposed to detect all verdicts for the relation between the
r-property and all possible interactions that can be produced with PΣ .

We define canonical testers from Streett automata. To do so, we will use a
set of subsets of Streett automaton states that we introduced in [10] for runtime
verification. For a Streett automaton AΠ , the sets GAΠ , GAΠ

c , BAΠ
c , BAΠ form

a partition of QAΠ and designate respectively the good (resp. currently good,
currently bad, bad) states:

– GAΠ = {q ∈ QAΠ ∩⋂m
i=1(Ri ∪ Pi) | ReachAΠ (q) ⊆ ⋂m

i=1(Ri ∪ Pi)}
– GAΠ

c = {q ∈ QAΠ ∩⋂m
i=1(Ri ∪ Pi) | ReachAΠ (q) �⊆ ⋂m

i=1(Ri ∪ Pi)}
– BAΠ

c = {q ∈ QAΠ ∩⋃m
i=1(Ri ∩ Pi) | ReachAΠ (q) �⊆ ⋃m

i=1(Ri ∩ Pi)}
– BAΠ = {q ∈ QAΠ ∩⋃m

i=1(Ri ∩ Pi) | ReachAΠ (q) ⊆ ⋃m
i=1(Ri ∩ Pi)}

It is possible to show [10] that if a sequence σ reaches a state in BAΠ (resp. GAΠ ),
then the underlying property Π is negatively (resp. positively) determined by σ.

The canonical tester is defined as follows.

Definition 8 (Canonical Tester). From a Streett automaton AΠ = (QAΠ ,
qAΠ
init , −→AΠ , {(R1, P1), . . . , (Rm, Pm)}) defining a testable r-property Π, the

canonical tester is the IOLTS T = (QT , qT
init, Σ,−→T ) defined as follows:

– QT = BAΠ
c ∪GAΠ

c ∪ {Fail} ∪ {WeakPass} with qT
init = qAΠ

init ;
– −→T is defined as follows:

• ∀e ∈ Σ : Fail e−→T Fail ∧WeakPass e−→T WeakPass,
• q

e−→T Fail if q
e−→AΠ q′ ∧ q′ ∈ BAΠ , for any e ∈ Σ,

• q
e−→T WeakPass if q

e−→AΠ q′ ∧ q′ ∈ GAΠ , for any e ∈ Σ,
• q

e−→T q′ if q
e−→AΠ q′ ∧ q, q′ ∈ GAΠ

c ∪BAΠ
c , for any e ∈ Σ.

A Streett automaton is transformed as follows. Transitions leading to a bad
(resp. good) state are redirected to Fail (resp. WeakPass). Those latest states
are terminal: the test can be stopped and the verdict produced.

6.2 Test Selection

For a given r-property, the set of potential sequences to be played is infinite. In
practice, one may use the underlying Streett automaton to constrain the states
that should be visited during a test. Furthermore, as usual, one needs to select
a test case that is controllable [3]. It can be done on the canonical tester by first
disabling input actions that do not permit to reach sought verdicts. Second, for a
state in which several input actions are possible, one needs to generate different
test cases with one input per state. More details can be found in [1].

Test selection plays also a role to state weak pass verdicts. Indeed, when deal-
ing with sequences satisfying a r-property so far and not positively determining
it, test selection should plan the moment for stopping the test. It can be, for
instance, when the test lasted more than a given expected duration or when the
number of interactions with the IUT is greater or equal than an expected number.
However, one should not forget that there might exist a continuation, that can
be produced by letting the test execution continue, not satisfying the r-property
or even negatively determining it. Here, it thus remains to the tester expertise
to state the halting criterion (possibly using quiescence, see Section 6.3).
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6.3 Introducing Quiescence

Quiescence [19,3] was introduced in conformance testing in order to represent
IUT’s inactivity. In practice, several kinds of quiescence may happen (see [3] for
instance). Here we distinguish two kinds of quiescence. Outputlocks (denoted δo)
represent the situations where the IUT is waiting for an input and produces no
outputs. Deadlocks (denoted δd) represent the situations where the IUT cannot
interact anymore, e.g., its execution is terminated or it is deadlocked. Thus, we
introduce those two events in the output alphabet of the IUT. We have now the
following additional alphabets: ΣIUT

!,δ = ΣIUT

! ∪ {δo, δd}, ΣIUT

δ = ΣIUT

!,δ ∪ΣIUT

? .
We also have to distinguish the set of traces of the IUT from the set of poten-

tial interactions with the IUT. This latest is based on the observable behavior
of the IUT and potential choices of the tester. The set of executions of the
IUT is now Exec(PΣIUT ) ⊆ (ΣIUT

δ )∞. The set of interactions of the tester with
the IUT is Inter(ΣIUT ) ⊆ (ΣIUT + δo)∗ · (δd + ε), i.e., the tester can observe
IUT’s outputlocks and finishes by the observation of a deadlock or program ter-
mination. When considering quiescence, characterizing testable properties now
consists in comparing the set of interactions to the set of sequences described by
the r-property. The intuitive ideas are the following:

– the tester can observe self-terminated executions of the IUT with δd,
– the tester can decide to terminate the program when observing an outputlock.

The notion of negative determinacy is now modified in the context of quiescence
as follows. We say that the r-property Π is negatively determined upon quies-
cence by the sequence σ ∈ Inter(PΣIUT ) (denoted �−determined−q(σ, Π)) if
�−determined(σ↓ΣIUT , Π)∨ (|σ| > 1∧ last(σ) ∈ {δd, δo} ∧ ¬Π((σ···|σ|−2)↓ΣIUT

),
where σ↓

ΣIUT
is the projection of σ on ΣIUT .

For the proposed approach, the usefulness of quiescence lies in the fact that
the current test sequence does not have any continuation. Consequently, testa-
bility conditions may be weakened. Indeed, when one has determined that the
current interaction with the IUT is over, it is not necessary that the r-property
should be evaluated in the same way. In some sense, it amounts to consider that
the evaluation produced by the last event before observing quiescence “termi-
nates” the execution sequence. Thus, if the r-property is not satisfied by the last
observed sequence, then the r-property is negatively determined by it.

Revisiting previous results. With quiescence, the purpose of the tester is now to
“drive” the IUT in a state in which the underlying r-property is not satisfied,
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Unknown
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Fig. 5. Schematic illustrations of the canonical tester for basic classes
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Table 2. Testability wrt. Inter(PΣIUT ) ⊆ Π with quiescence

Exec(PΣ) ⊆ Π Possible Verdicts Testability Condition

Safety fail, unknown

(Af (ψ),A(ψ)) ψ �= ∅
Guarantee fail, unknown

(Ef (ψ), E(ψ)) {σ ∈ ψ | pref (σ) ⊆ ψ}} �= ∅
Obligation fail, unknown⋂k

i=1(Si(ψi) ∪ Gi(ψ
′
i))

⋃k
i=1

(
ψi ∩ {σ ∈ ψ′

i | pref (σ) ⊆ ψ′
i

) �= ∅⋃k
i=1(Si(ψi) ∩ Gi(ψ

′
i))

⋂k
i=1

(
ψi ∪ {σ ∈ ψ′

i | pref (σ) ⊆ ψ′
i} �= ∅

Response fail, unknown

(Rf (ψ),R(ψ)) ψ �= ∅
Persistence fail, unknown

(Pf (ψ), P (ψ)) ψ �= ∅

and then observe quiescence. Informally, the testability condition relies now on
the existence of a sequence s.t. the r-property is not satisfied. Testability results,
upon the observation of quiescence and in order to produce fail verdicts when
the tested r-property is not satisfied, are updated using the notion of negative
determinacy with quiescence as shown in Table 2.

The canonical tester construction is also updated by adding the following
rules for −→T : ∀q ∈ BAΠ

c : q
δo,δd−→T Fail , ∀q ∈ GAΠ

c : q
δo−→T q ∧ q

δd−→T WeakPass .
Illustrations of the construction of the canonical tester for basic classes with
quiescence is given in Fig. 5, where the original (resp. modified) transitions from
the Streett automaton are in plain (resp. dotted) lines.

Example 3 (Testability with quiescence). We illustrate the usefulness of quies-
cence. Consider the IUT depicted in Fig. 6a with observable actions ΣIUT

? = {?a}
and ΣIUT

! = {!b}. This IUT waits for an ?a, produces a !b, and then non deter-
ministically terminates or waits for an ?a, and repeats the behavior consisting
in receiving an ?a and producing a !b. The executions and possible interactions
with the tester are (“?” and “!” are not represented and x& stands for x + ε):

Exec(PΣIUT ) = δo
& ·
(
a& + a · b · (δd + δo

&) · (a · [δo
& · ((a · b)&)∗

]∗ · a&)&
)

Inter(PΣIUT ) = δo
& ·
(
(a · b)& · (δd + δo

&) · (a · [δo
& · ((a · b)&)∗

]∗ · δo
&)&

)&

Now let us consider the r-property defined by the Streett automaton depicted in
Fig. 6b. Its vocabulary is {?a, !b}, and it has one recurrent state: R = {1}. The
underlying r-property states that every input ?a should be acknowledged by an out-
put !b. Though being not testable under the conditions expressed in Section 5, this
r-property is testable with quiescence. One can observe that Inter(PΣIUT ) �⊆ Π

!δo

?a

?a
!b

!b !δd
?a

!δo

?a

!δo
!b

(a) IUT

1 2

!b ?a

!b

?a

(b) Response r-
property

1 2

WPass Fail

!b, !δo ?a

!δd

!b

?a

!δd, !δo

ΣIUT

ΣIUT

(c) Canonical tester

Fig. 6. Illustrating the usefulness of quiescence
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because the existence of ?a·!b·?a·!δo in Inter(PΣIUT ). The synthesized canonical
tester is depicted in Fig. 6c.

7 Related Work and Discussion

In this section we overview related work or work that may be leveraged by the
results proposed in this paper. Then, we propose a discussion on the results
afforded by this paper. A deeper treatment of related work is provided in [1].

Testing oriented by properties for generating test purposes. One of the limits of
conformance testing [19] lies in the size of the generated test suite which can be
infinite or impracticable. Some testing approaches oriented by properties were
proposed to face off this limitation by focusing on critical properties. In this case,
properties are used as a complement to the specification in order to generate test
purposes which will be then used to conduct and select test cases [3,20]. For a
presentation of some general approaches, the reader is referred to [21].

Combining testing and formal verification. In [6], the complementarity between
verification techniques and conformance testing is studied. Notably, the authors
shown that it is possible to detect (using testing) violations of safety (resp.
satisfaction of co-safety) properties on the implementation and the specification.

Requirement-Based testing. In requirement-based testing, the purpose is to gen-
erate a test suite from a set of informal requirements. For instance, in [22,23], test
cases are generated from LTL formula using a model-checker. Those approaches
were interested in defining a syntactic test coverage for the tested requirements.

Property testing without a behavioral specification. In previous approaches, we
used the notion of tiles which are elementary test modules testing specific parts
of an implementation and which can be combined to test more complex behaviors
using a property (see [24,25]).

Using the Safety-Progress classification in validation techniques. The Safety-
Progress classification of properties is rarely used in validation techniques. We
used (e.g., [10]) the Safety-Progress classification to characterize the sets of pro-
perties that can be verified and enforced during the runtime of systems. In some
sense, this previous endeavor similarly addressed the expressiveness question for
runtime verification and runtime enforcement.

Discussion. Several approaches fall in the scope of the generic one proposed in this
paper. For instance, our results apply and extend the approach where verification
is combined to testing as proposed in [6]. Furthermore, this approach leverages the
use of test purposes [2,3] in testing to guide test selection. Indeed, the characteriza-
tion of testable properties gives assets on the kind of test purposes that can be used
in testing. Moreover, the properties considered in this paper are framed into the
Safety-Progress classification of properties [12,9] which is equivalently a hierarchy
of regular properties. Thus the results proposed by this paper concern previous de-
picted approaches in which the properties at stake can be formalized by a regular



More Testable Properties 45

language. Furthermore, classical conformance testing falls in the scope of the pro-
posed framework. Indeed, suspended traces of an implementation preserving the
ioco relation wrt. a given specification can be expressed as a safety property [6].

8 Conclusion and Perspectives

Conclusion. In this paper, we study the space of testable properties. We use a
testability notion depending on a relation between the set of execution sequences
that can be produced by the underlying implementation and the r-property. Lever-
aging the notions of positive and negative determinacy of properties, we have iden-
tified for each Safety-Progress class and according to the relation of interest, the
testable fragment. Moreoverwe have seen that the framework of r-properties in the
Safety-Progress classification provides a decidable test oracle in order to produce
a verdict depending on the interaction between the tester and the IUT. Further-
more, we also propose some conditions under which it makes sense for a tester to
state weak verdicts. Finally, results of this paper are implemented in an available
prototype tool for which a description is given in [1].

Perspectives. A first research direction is to investigate the set of testable pro-
perties for more expressive formalisms. Indeed, the Safety-Progress classification
is concerned with regular properties, and classifying testable properties for e.g.,
context-free properties would be of interest. Another perspective is to combine
the approach proposed with weak verdicts to a notion of test coverage. Indeed, in
order to bring any confidence in the fact that e.g., the implementation respects
the property, it involves to execute the test several times to make it relevant.
The various approaches [22,23] for defining test coverage for property-oriented
testing could be used to reinforce a set of weak verdicts.
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Abstract. We propose a symbolic framework called guarded labeled as-
signment systems or GLASs and show how GLASs can be used as a

foundation for symbolic analysis of various aspects of formal specifi-

cation languages. We define a notion of i/o-refinement over GLASs as

an alternating simulation relation and provide formal proofs that relate

i/o-refinement to ioco. We show that non-i/o-refinement reduces to a

reachability problem and provide a translation from bounded non-i/o-

refinement or bounded non-ioco to checking first-order assertions.

1 Introduction

The view of a system behavior as a labeled transition system (LTS) provides the
semantical foundation for many behavioral aspects of systems in the context of
formal verification and testing. The central problem in testing is to determine
if an implementation LTS conforms to a given specification LTS and to find a
counterexample if this is not the case. In the case of open systems, or in the
presence of input (controllable) and output (observable) behavior, the confor-
mance relation is commonly described as input-output conformance or ioco [18].
A closely related notion of alternating simulation [3] is used in the context of
open system verification, in particular for interface automata refinement [9,8].
In this paper we propose a theory of guarded labeled assignment systems or
GLASs that formally relates these two notions and provides a foundation for
their symbolic analysis.

GLASs are a generalization of non-deterministic model programs [23] to a
purely symbolic setting, by abstracting from the particular background universe
and the particular (action) label domain. The semantics of GLASs uses classical
model theory. A GLAS is a symbolic representation of behavior whose trace se-
mantics is given by an LTS that corresponds to the least fix-point of the strongest
post-condition induced by the assignment system of the GLAS. We define the
notion of i/o-refinement over GLASs that is based on alternating simulation
and show that it is a generalization of ioco for all GLASs, generalizing an earlier
result [21] for the deterministic case. The notion of i/o-refinement is essentially
a compositional version of ioco. We provide a rigorous account for formally deal-
ing with quiescence in GLASs in a way that supports symbolic analysis with or
without the presence of quiescence. We also define the notion of a symbolic com-
position of GLASs that respects the standard parallel synchronous composition
of LTSs [15,16] with the interleaving semantics of unshared labels. Composition
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of GLASs is used to show that the i/o-refinement relation between two GLASs
can be formulated as an condition of the composite GLAS. This leads to a map-
ping of the non-i/o-refinement checking problem into a reachability checking
problem for a pair of GLASs. For a class of GLASs that we call robust we can
furthermore use established methods developed for verifying safety properties
of reactive systems. We show that the non-i/o-refinement checking problem can
be reduced to first-order assertion checking by using proof-rules similar to those
that have been formulated for checking invariants of reactive systems. It can also
be approximated as a bounded model program checking problem or BMPC [23].
Detailed proofs of all statements omitted here can be found in the technical
report [22].

Although the focus of the paper is theoretical, GLASs provide a foundation
of applying state-of-the-art satisfiability modulo theories [5] (SMT) technology
to a wide range of problems that are difficult to tackle using other techniques.
SMT solving is a hybrid technology that has a flavor of model checking, SAT
solving, and theorem proving. An advantage over model checking is avoidance of
state-space explosion. Compared to SAT solving, bit blasting can be avoided by
encoding operations over unbounded universes, such as integers, more succinctly.
Compared to many automated theorem proving techniques, a solution is pro-
vided as a witness of satisfiability. The following three are sample applications:
1) symbolic model-checking of a given specification GLAS [23] with respect to
a given property automaton; 2) symbolic refinement checking between two sym-
bolic LTSs represented as GLASs; 3) incremental model-based parameter gener-
ation during on-the-fly testing for increased specification GLAS coverage. In all
cases, the use of GLAS composition is central, e.g., for symbolic i/o-refinement
or ioco, composition is used in Theorem 5. All examples used in the paper are
tailored to such analyses and illustrate the use of background theories that are
supported by state-of-the-art SMT solvers such as Z3 [10].

2 Preliminaries

We use classical logic and work in a fixed multi-sorted universe U of values. For
each sort σ, Uσ is a sub-universe of U . The basic sorts needed in this paper
are the Boolean sort B, (UB = {true, false}), and the integer sort Z. There
is a collection of functions with a fixed meaning associated with the universe,
e.g., arithmetical operations over UZ. These functions (and the corresponding
function symbols) are called background functions. For example, the background
function < : Z × Z → B denotes the standard order on integers. There is also a
generic background function Ite: B× σ × σ → σ where σ is a given sort.

Terms are defined by induction as usual and are assumed to be well-sorted.
The sort σ of a term t is denoted by sort(t) or by t: σ. We write FV(t) for the set
of free variables in t. Boolean terms are also called formulas or predicates. We
use x′ as an injective renaming operation on variables x, and lift the renaming
to sets of variables, Σ′ def= {x′ | x ∈ Σ}. A term t over Σ has FV(t) ⊆ Σ.
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A Σ-model M is a mapping from Σ to U .1 The interpretation of a term t over
Σ in a Σ-model M , is denoted by tM and is defined by induction as usual. In
particular, Ite(ϕ, t1, t2)M equals tM1 , if ϕM is true; it equals tM2 , otherwise.

M satisfies ϕ or ϕ is true in M , denoted by M |= ϕ, if ϕM is true. A formula
ϕ is satisfiable if it has a model and valid, denoted by |= ϕ, if ϕ is true in all
models. For two formulas ϕ and ψ, ϕ |= ψ means that any model of ϕ is also a
model of ψ. We use elements in U also as terms and define the predicate of a
Σ-model M as the predicate PM

def=
∧

x∈Σ x = xM over Σ.

3 Guarded Labeled Assignment Systems

This section introduces Guarded Labeled Assignment Systems, GLAS for short.
The definition of GLAS combines labels, guarded updates, and internal choice.
They capture the semantics of model programs. We start by providing the formal
definition, which is followed by examples illustrating the definition. An assign-
ment is a pair x := u where x is a variable, u is a term, and sort(x) = sort(u).

Definition 1. A Guarded Labeled Assignment System or GLAS G is a tuple
(Σ, X, �, ı, α, γ, Δ) where

– Σ is a finite set of variables called the model signature;
– X is a finite set of variables disjoint from Σ called the choice signature;
– � is a variable not in Σ or X , called the label variable;
– ı is a satisfiable formula over Σ called the initial condition;
– α is a formula over {�} called the label predicate;
– γ is a formula over Σ ∪X ∪ {�} called the guard ;
– Δ is a set {z := uz}z∈Σ where each uz is a term over Σ ∪ X ∪ {�}, called

the assignment system.

The set Σ ∪X is called the internal signature of G.

We first illustrate a simple two-state GLAS.

Example 1. Consider the FSM A:

0 1 2
�/IsReq(�)

�/IsRes(�)
�/IsRes(�)

Intuitively, A specifies a sequence of request and response labels where a single re-
quest is followed by one or more respones. Suppose that the labels have sort L and
that L is associated with predicates IsReq, IsRes: L → B. A can be represented by
the GLAS GA = ({z:Z}, {x: B}, �:L, z = 1, IsReq(�)∨ IsRes(�), Ite(IsReq(�), z =
1, z = 2), {z := Ite(z = 1, 2, Ite(x, 1, 2))}). Note that x represents a nondeter-
ministic choice of the target state of a response transition. �
1 More precisely, variables are viewed as fresh constants expanding the background

signature. Note that the background function symbols have the same interpretation

in all models (and are thus implicit).
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The following example illustrates how an AsmL [4] program can be repre-
sented as a GLAS. Other encodings are possible using different techniques. The
example makes use of several background sorts. Such sorts are derived from the
given program. An important point regarding practical applications is that all
sorts and associated axioms that are used are either directly supported, or user
definable without any significant overhead, in state-of-the-art SMT solvers.

Example 2. We consider the following model program called Credits that de-
scribes the message-id-usage facet of a client-server sliding window protocol [14].

var ranges as Set of (Integer,Integer) = {(0,0)}
var used as Set of Integer = {}
var max as Integer = 0
var msgs as Map of Integer to Integer = {->}

IsValidUnusedMessageId(m as Integer) as Boolean
return m notin used and Exists r in ranges where First(r)<=m and m<=Second(r)

[Action] Req(m as Integer, c as Integer)
require IsValidUnusedMessageId(m) and c > 0
msgs(m) := c
add m to used

[Action] Res(m as Integer, c as Integer)
require m in msgs and 0<=c and c<=msgs(m)
remove m from msgs
if c>0 add (max, max+c) to ranges
max := max+c

Let us assume a sort L derived from the method signatures of the program; UL is
an algebraic data type. In addition to the predicates IsReq and IsRes introduced
in Example 1, L is associated with the constructors: Req,Res: Z × Z → L and
accessors: Req m ,Res m,Req c,Res c: L → Z. For example, IsReq(Res(6, 7)) is
false and Req c(Req(3, 4)) is equal to 4.

The example uses tuples. There is a generic n-tuple sort T(σ0, . . . , σn−1)
of given element sorts σi for i < n. An n-tuple constructor is denoted by
〈t0, . . . , tn−1〉 and the projection functions are denoted by πi for i < n. For
example π1(〈t0, t1〉) = t1.

The example also uses arrays, the sort A(σ, ρ) is a generic sort for extensional
arrays (mathematical maps) with domain sort σ and range sort ρ. The functions
on arrays are reading and storing elements in the array:

Read : A(σ, ρ) × σ → ρ, Store: A(σ, ρ) × σ × ρ→ A(σ, ρ).

The empty array ε maps every domain element to a default value of the range
sort. (For Z the default is 0 and for B the default is false . The axioms assumed for
arrays are the usual ones for propagating reads over store and the extensionality
axiom.)

We map Credits to the GLAS GCredits : (Σ, ∅, �, ı, IsReq(�) ∨ IsRes(�), γ, Δ)
where Σ = {ranges : A(T(Z, Z), B), used :A(Z, B),max : Z,msgs : A(Z, Z)}. The
initial condition ı is

ranges = Store(ε, 〈0, 0〉, true) ∧ used = ε ∧max = 0 ∧msgs = ε.



Alternating Simulation and IOCO 51

Given by the require-statements, the guard γ is:

(IsReq(�) ∧ Req m(�) /∈ used
∧ ∃r (r ∈ ranges ∧ π0(r) ≤ Req m(�) ∧Req m(�) ≤ π1(r))
∧ Req c(�) > 0) ∨

(IsRes(�) ∧ Res m(�) ∈ msgs ∧ 0 ≤ Res c(�)
∧ Res c(�) ≤ Read(msgs ,Res m(�)))

The assignment system Δ consists of the assignments:

ranges :=Ite(IsReq(�), ranges , Ite(Res c(�) > 0,
Store(ranges , 〈max ,max + Res c(�)〉, true), ranges))

used :=Ite(IsReq(�),Store(used ,Req m(�),Req c(�)), used)
max :=Ite(IsReq(�),max ,max + Res c(�))
msgs :=Ite(IsReq(�),Store(msgs ,Req m(�),Req c(�)),

Store(msgs ,Res m(�), default
Z
))

The right-hand-sides of the assignments are easy to automatically generate from
the program, but much harder to comprehend than the original assignments in
the program, since they combine all the assignments from the separate actions
by doing a case split based on the action label. They also add trivial assignments
that take care of the implicit frame condition in AsmL that states that all
variables not updated retain their previous values. �

A GLAS is a symbolic representation of a labeled transition system (LTS). In
order to keep the paper self-contained and to fix the notations we include the
standard definitions of LTSs and traces.

Definition 2. An LTS is a tuple L = (S,S0, L, T ), where S is a set of states ;
S0 ⊆ S is a nonempty set of initial states ; L is a set of labels ; T ⊆ S× L× S is
a transition relation. A label a ∈ L is enabled in a state S if (S, a, S′) ∈ T for
some S′ ∈ S. L is deterministic if L has a single initial state and for all a ∈ L
and S ∈ S there is at most one S′ ∈ S such that (S, a, S′) ∈ T .

We use L as a subscript to identify its components. If (S, a, S′) ∈ TL we write
S

a→L S′ or S
a→ S′ if L is clear from the context. If a ∈ LL is enabled in S ∈ SL

write S
a→L. If a ∈ LL is not enabled in S ∈ SL, we write S

a
�L. In this paper

we are only concerned with finite traces.

Definition 3. A label sequence a = (ai)i<k such that Si
ai→L Si+1, i < k, is a

trace of L from S0 or a trace of L if S0 ∈ S0
L; we write S0

a→ Sk and S
ε→ S

where ε is the empty sequence. The set of all traces of L is denoted by Tr(L).

When L is deterministic, we view L as a function from all label sequences a to
states or the value ⊥L when a is not a trace of L. Thus,

L(a) def=
{⊥L, if a /∈ Tr(L);

S, otherwise, where S0
L = {S0} and S0 a→L S.

(1)
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Note that L(ε) is the unique initial state of a deterministic LTS L.
A GLAS is associated with a transition relation formula that describes a

single application of its assignments and a predicate transformer that maps a
given predicate to a new predicate. The predicate transformer is used below to
define semantics of GLASs in terms of LTSs.

Definition 4. Let G = (Σ, X, �, ı(Σ), α, γ(Σ), {z := uz(Σ)}z∈Σ) be a GLAS.
We define the transition relation TRG, and the strongest post-condition predicate
transformer SPG, for G, where P (Σ) is a predicate over Σ:

TRG(Σ′, �, Σ) def= α ∧ ∃X (γ(Σ′) ∧
∧

z∈Σ

z = uz(Σ′))

SPG(P, �) def= ∃Σ′ (P (Σ′) ∧ TRG(Σ′, �, Σ))

Note that, for a ∈ Usort(�), SPG(P, a) is a predicate over Σ. Next, we define two
related semantics of a GLAS G in terms of LTSs. One is the concrete semantics
�G� and the other one is the symbolic semantics �G�. In the concrete semantics,
states are ΣG-models. In the symbolic semantics, states are predicates over ΣG

in the SPG-closure of {ıG}. We define the set of labels of G as

LG
def= {�M

G |M |= αG}.
Definition 5. �G� = (S, {M | M |= ıG}, LG, T ) where S, T are the least sets
such that S0

�G� ⊆ S and (M, a, N) ∈ T for a ∈ LG, M ∈ S, and N |= SPG(PM , a),
then N ∈ S.

Definition 6. �G� = (S, {ıG}, LG, T ) where S, T are the least sets such that
ıG ∈ S, (P, a,SPG(P, a)) ∈ T for a ∈ LG, P ∈ S where SPG(P, a) is satisfiable.

The notion of traces of G is based on the symbolic semantics of G.

Definition 7. Tr(G) def= Tr(�G�).
We show that both semantics yield the same traces, i.e., �G� does not introduce
new traces, although several models of �G� may collapse into a single state in
�G�. We use the following technical lemma. Note that �G� is deterministic and
recall (1); let ⊥�G�

def= false. Given a sequence a and an element a, we write a · a
for the extended sequence. The empty sequence is denoted by ε.

Lemma 1. For all a, {M |M |= �G�(a)} = {M | ∃M0 ∈ S0
�G� (M0

a→�G� M)}.
Proof. By induction over the length of a. The base case, a = ε, holds trivially
by {M | M |= �G�(ε)} = S0

�G� = {M | ∃M0 ∈ S0
�G� (M0

ε→�G� M)}. Assume by
IH that the statement holds for a, we prove it for a · a.

{M |M |= �G�(a · a)} (def 6)
= {M |M |= SPG(�G�(a), a)}

(def 4)
= {M |M |= ∃Σ′(�G�(a)(Σ′) ∧ TRG(Σ′, a, Σ))}
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=
{M | ∃N(N |= �G�(a),

M |=∃Σ′(PN (Σ′) ∧TRG(Σ′, a, Σ)))}
(IH)
=

{M | ∃N ∃M0 ∈ S0
�G� (M0

a→�G� N,

M |=∃Σ′(PN (Σ′) ∧TRG(Σ′, a, Σ)))}
(def 4)

=
{M | ∃N ∃M0 ∈ S0

�G� (M0
a→�G� N,

M |=SPG(PN , a))}
(def 5)

=
{M | ∃N ∃M0 ∈ S0

�G� (M0
a→�G� N,

N
a→�G� M)}

= {M | ∃M0 ∈ S0
�G� (M0

a·a→�G� M)}
The statement follows by the induction principle. �

The lemma implies the following theorem that is a fundamental property of the
symbolic semantics. It justifies the whole approach presented in the paper and
provides a symbolic generalization of the classical LTS determinization.

Theorem 1. Tr(�G�) = Tr(�G�).
Proof. Tr(�G�) equals {a | {M |M |= �G�(a)} �= ∅} that, by Lemma 1, equals
{a | {M | ∃M0 ∈ S0

�G�(M0
a→�G� M)} �= ∅} that equals {a | ∃M ∃M0 ∈

S0
�G�(M0

a→�G� M)} that is the definition of Tr(�G�). �

There is an important point about this choice of trace-style semantics. It is
tailored for the case where internal choices of GLASs are opaque. Symbolic se-
mantics plays an important role when we later define alternating simulation and
conformance, where G may be nondeterministic, i.e., �G� is nondeterministic,
but where �G� is used, which, by Theorem 1, does not change the intended
trace semantics of G. Moreover, �G� directly reflects the symbolic unfolding of
the transition relation of a GLAS, that is fundamental in the construction of
first-order assertions for reduction to symbolic analysis.

Example 3. The Credits program in Example 2 is deterministic. The following is
a trace of GCredits : (Req(0, 3),Res(0, 2),Req(2, 1),Req(1, 1),Res(2, 0),Res(1, 0)).
Intuitively, the trace describes a valid communication scenario between the client
and the server (based on a sliding window protocol), where the client is able to
use message ids based on credits granted earlier by the server. �

3.1 GLAS Composition

Composition of GLASs is a purely symbolic construction.

Definition 8. Let Gi = (Σi, Xi, �, ıi, αi, γi, {z := uz}z∈Σi), for i ∈ I, be GLASs
with disjoint internal signatures. The composition of Gi for i ∈ I, is the GLAS⊗
i∈I

Gi
def= (
⋃
i∈I

Σi,
⋃
i∈I

Xi, �,
∧
i∈I

ıi,
∨
i∈I

αi,
∧
i∈I

(αi ⇒ γi),
⋃
i∈I

{z := Ite(αi, uz, z)}z∈Σi)



54 M. Veanes and N. Bjørner

We abbreviate
⊗

i∈I Gi by
⊗

I Gi and for
⊗

{1,2} Gi we write G1 ⊗ G2. Note
that

⊗
I Gi is indeed well-defined as a GLAS. In particular, ı⊗

I Gi
is satisfiable

because all the individual initial conditions are satisfiable and do not share free
variables. The other side conditions in Definition 1 hold similarly. The following
technical lemma is used below. Let Gi, for i ∈ I, be as above.

Lemma 2. Let G =
⊗

I Gi. Assume LGi = LGj for i, j ∈ I. Let Pi be a
predicate over Σi for i ∈ I. Then |= SPG(

∧
i∈I Pi, a)⇔ ∧i∈I SPGi(Pi, a).

Proof. We first show (*): |= TRG(Σ′
G, �, ΣG) ⇔ ∧i∈I TRGi(Σ′

Gi
, �, ΣGi) by us-

ing the assumption, definition of TRG, Definition 8, and standard logical trans-
formations (that use disjointness of the internal signatures of Gi for i ∈ I). The
lemma follows by using (*), Definition 4, and further logical transformations. �

One can show that composition of GLASs respects the standard parallel syn-
chronous composition of LTSs with the interleaving semantics of unshared labels.
Here we assume the special case of all labels being shared, i.e. LGi = LGj for
i, j ∈ I. A general statement can be formulated that describes the interleaving
of unshared labels, but the special case is sufficient for this paper.

Theorem 2. Let G =
⊗

I Gi. Assume LGi = LGj for i, j ∈ I.
(i) For all a, |= �G�(a)⇔ ∧i∈I�Gi�(a).
(ii) Tr(G) =

⋂
i∈I Tr(Gi).

Proof. We prove (i) by induction over a. The base case holds trivially since
�G�(ε) =

∧
i∈I ıi =

∧
i∈I�Gi�(ε). Assume (i) holds for a; we prove (i) for a · a:

�G�(a · a)
(def 6)⇔ SPG(�G�(a), a)

(IH)⇔ SPG(
∧

I�Gi�(a), a)
(lemma 2)⇔ ∧

I SPGi(�Gi�(a), a)
(def 6)⇔ ∧

I�Gi�(a · a)

Statement (i) follows by the induction principle. We now prove (ii):

Tr(G) = {a | �G�(a) �= false} by (i)
= {a | ∧I�Gi�(a) is satisfiable}
= {a | ∀i ∈ I(�Gi�(a) �= false)}
= {a | ∀i ∈ I(a ∈ Tr(Gi))}

The third equality assumes disjointness of ΣGi for i ∈ I. �

Example 4. Consider the composition G = GCredits ⊗GA with GCredits and GA

from examples 2 and 1, respectively. The traces of G are the traces of both
GCredits and GA, i.e., the traces that conform to the Credits specification while
restricted to the scenarios described by A. For example, the trace illustrated in
Example 3 is therefore not a trace of G. �
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4 I/O GLAS

Here we consider GLASs where the labels are divided into input and output
labels that describe reactive or open system behavior.

Definition 9. An i/o-GLAS G is an extension (G′, αout) of a GLAS G′ where
αout is a formula such that αout |=αG called the output label predicate.

In the corresponding i/o LTS the labels are separated so that Lout
G is the set of all

labels that satisfy αout
G and Lin

G is the set of all labels that satisfy αG ∧¬αout
G . We

say GLAS (LTS) to also mean i/o-GLAS (i/o LTS) and let the context determine
whether the labels are separated into input and output labels.

Example 5. Consider the Credits program and assume that Req is marked as an
input-action and Res is marked as an output-action. The output label predicate
αout is a disjunction over all cases of action labels in the AsmL program that are
marked as output-actions, i.e, in this case αout is IsRes(�). �

When dealing with formal notions of conformance, in particular ioco [18], an
important aspect is how to deal with quiescence, that is a special output label,
usually denoted by δ, indicating absence of other enabled output labels in a given
state. An LTS can be extended to include δ as a new output label [18]:

Definition 10. Let L be an LTS and δ /∈ LL. Then Lδ is the extension of L
where Lout

Lδ = Lout
L ∪ {δ} and S

δ→Lδ S iff for all a ∈ Lout
L , S

a
�L.

We define a corresponding symbolic extension for GLASs.

Definition 11. For G = (Σ, X, �, ı, α, γ, {z := uz}z∈Σ, αout), δ ∈ Usort(�) \ LG:

Gδ def= ( Σ, X, �, ı, α ∨ � = δ, Ite(� = δ,¬∃� X (αout ∧ γ), γ),
{z := Ite(� = δ, z, uz)}z∈Σ , αout ∨ � = δ)

Thus, in Gδ there is a new output label δ and M
δ→�Gδ� if and only if for all

a ∈ Lout
G , M

a
��G�. The intended meaning of Gδ is made precise by the following

theorem that says that the symbolic extension precisely captures the intended
suspension trace semantics [18] of �G�.
Theorem 3. (i) �Gδ� = �G�δ. (ii) Tr(Gδ) = Tr(�G�δ).
Proof. (i) follows from definitions. (ii) uses (i), Definition 7 and Theorem 1. �

Note however that Tr(Gδ) �= Tr(�G�δ) as illustrated by the following example
which also illustrates the use of choice variables in a GLAS.

Example 6. The example is derived from a standard example that is used to
illustrate properties of quiescence during determinization of non-deterministic
LTSs [18, Figure 6]. The GLAS G is represented below by an FSM where there
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is a single input label 1 and a single output label 0. We assume the following
representation for G:

G = ( {z:Z}, {x: B}, �:Z, z = 1, 0 ≤ � ≤ 1, � = 0⇔ z = 2,
{z := Ite(z = 1, Ite(x, 2, 4), 3)}, � = 0 )

Gδ is the following GLAS where we have simplified γGδ by using that the formula
¬∃� x (� = 0 ∧ (� = 0⇔ z = 2)) is equivalent to z �= 2. (Let, e.g. δ = 2),

Gδ = ( {z:Z}, {x:B}, �: Z, z = 1, 0 ≤ � ≤ 1 ∨ � = δ,
Ite(� = δ, z �= 2, � = 0⇔ z = 2),
{z := Ite(� = δ, z, Ite(z = 1, Ite(x, 2, 4), 3))}, � = 0 ∨ � = δ )

We can illustrate the GLASs as follows:

�G� : 1 2 3

4

1 0

1

�Gδ� : 1 2 3

4

1 0

1

δ δ

δ

�Gδ� : z=1 z=2∨z=4 z=3

z=4

1 0

δ

δ δ

δ

�G� : z=1 z=2∨z=4 z=3
1 0 �G�δ : z=1 z=2∨z=4 z=3

1 0

δ δ

Thus �Gδ� �= �G�δ. Moreover, Tr(�Gδ�) �= Tr(�G�δ). �

Example 7. Consider G = GCredits from Example 2. The formula that defines
absence of outputs in G, ¬∃� XG(αout

G ∧ γG), is, after simplifications, equivalent
to the formula msgs = ε. Intuitively, there should not be a response from the
server, i.e. the server must be quiescent, if there is no pending request from the
client, i.e., δ is enabled in any model of �Gδ� where msgs is empty. �

We define a notion of conformance between two GLASs that is based on al-
ternating simulation [3] between two LTSs and show below that this notion of
conformance coincides with ioco for GLASs.

LetMi = (Si, {S0
i }, Li, L

in
i , Lout

i , Ti), for i = 1, 2, be deterministic LTSs.2 The
intuition behind the following definition is that M1 can only make outputs that
M2 can make, and M2 can only make inputs that M1 can make.

Definition 12. M1 i/o-refines M2, M1 � M2, iff there exists an alternating
simulation ρ from M1 to M2 such that (S0

1 , S0
2) ∈ ρ, where an alternating

simulation fromM1 toM2 is a relation ρ ⊆ S1×S2 such that, for all (S1, S2) ∈ ρ

2 Deterministic LTSs are called interface automata in [9].
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∀o ∈ Lout
1 (S1

o→M1 S′
1 ⇒ ∃S′

2(S2
o→M2 S′

2 ∧ (S′
1, S

′
2) ∈ ρ))

∀i ∈ Lin
2 (S2

i→M2 S′
2 ⇒ ∃S′

1(S1
i→M1 S′

1 ∧ (S′
1, S

′
2) ∈ ρ))

Given GLASs G and H then G � H
def= �G� � �H�.

Definition 12 is consistent with [8]. In particular, several foundational properties
of � (like reflexivity and transitivity) are established in [8] that show that � is
a suitable refinement relation.

Example 8. Consider two GLASs Spec and Impl where �:B and αout is ¬�.

Spec :S1 S1
false

Impl :S2 S2
true

�Spec� = ({S1}, {S1},UB, {true}, {false}, {(S1, false, S1)})
�Impl� = ({S2}, {S2},UB, {true}, {false}, {(S2, true, S2)})

It is easy to see that Impl � Spec and Spec �� Impl . �

A useful characterization of i/o-refinement uses counter-examples.

Definition 13. A sequence a · a is a witness of M1 �� M2 if a ∈ Tr(M1) ∩
Tr(M2) and either a ∈ Lin

1 and a · a ∈ Tr(M1) \ Tr(M2), or a ∈ Lout
1 and

a · a ∈ Tr(M2) \ Tr(M1).

For example, the (singleton) sequence true is a witness of �Spec� �� �Impl� in
Example 8. The following lemma justifies Definition 13.

Lemma 3. M1 �M2 ⇐⇒ M1 �� M2 has no witnesses.

For symbolic analysis, we are interested in the approximations of i/o-refinement
that hold for a given upper length bound on traces.

Definition 14. M1 �n M2
def= M1 �� M2 has no witness of length ≤ n.

It follows directly from Lemma 3 that M1 � M2 iff M1 �n M2 for all n > 0.
For example, Spec ��1 Impl in Example 8. We are interested in the following
decision problem. For GLASs G and H , a witness of G �� H is a witness of
�G� �� �H� and we let G �n H

def= �G� �n �H�.
Definition 15. Bounded Non-Conformance or BNC is the problem of deciding
if G ��n H , for given G, H and n > 0, and finding a witness of G ��n H .

We show how to reduce BNC to the BMPC problem [23] for a class of GLASs.
There is a mapping of the BMPC problem over AsmL model programs and the
encoding described in [23] to GLASs: given G, n, and a reachability condition ϕ
that is a formula such that FV(ϕ) ⊆ ΣG, decide if there exists a trace a of G of
length ≤ n such that M |= ϕ for some M |= �G�(a). For this reduction we need
to consider GLASs that are robust in the following sense.
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Definition 16. For a ∈ LG and P ∈ S�G�, a is robust in P if P
a→�G� implies

M
a→�G� for all M |=P .

Intuitively, if a is robust and enabled in a symbolic state, then a is enabled in
all of the corresponding concrete states.

Definition 17. G is output-robust (input-robust) if for all P ∈ S�G� and all
a ∈ Lout

G (a ∈ Lin
G), a is robust in P . G is robust if it is both input-robust and

output-robust.

The intuition behind robustness is that internal choices should behave uni-
formly in terms of external behavior. For example, deterministic GLASs (such
as GCredits) are trivially robust, since there are no internal choices. The following
example illustrates a nontrivial example of a robust GLAS that is nondetermin-
istic and where internal choices arise naturally as a way of abstracting externally
visible behavior.

Example 9. We consider the Credits program and modify it by abstracting the
message ids from the labels. The constructors of the L sort are also modified so
that Req,Res : Z → L and the accessors Req m and Res m are removed. We
call the resulting program Credits2 :

[Action] Req(c as Integer)
require exists m where IsValidUnusedMessageId(m) and c > 0
choose m where IsValidUnusedMessageId(m)

msgs(m) := c
add m to used

[Action] Res(c as Integer)
require exists m where m in msgs and 0<=c and c<=msgs(m)
choose m where m in msgs and 0<=c and c<=msgs(m)

remove m from msgs
if c>0 add (max, max+c) to ranges
max := max+c

We write Credits and Credits2 also for the corresponding GLASs. Credits2 has
two choice variables, say mReq and mRes , the guard and the assignment system
of Credits2 is obtained from the guard and the assignment system of Credits by
replacing each occurrence of Req m(�) (Res m(�)) with mReq (mRes). It is easy to
see that Credits2 is non-deterministic. For example, a = (Req(3),Res(3),Req(1))
is a trace of Credits2 . After Req(3) there is a pending request with id 0. After
Res(3) the range of possible message ids contains the pair 〈1, 3〉 and the used
set of messages in {0}. After Req(1), i.e., in the state S = �Credits2 �(a), there
are 3 possible models. One can show that Credits2 is both input-robust and
output-robust, the key property that determines enabledness of a request is the
number of available message ids, similarly for responses. �

The following example illustrates a GLAS that is not output-robust.

Example 10. We consider the Credits program again and this time we mod-
ify only the Req action as in Example 9. We call it Credits3 . For example,
consider the trace a = (Req(3),Res(0, 3),Req(1)) of Credits3 . The state S =
�Credits2 �(a) contains 3 models, where, for example, the output label Res(1, 1)
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is only enabled in the model in S where request 1 is pending but not in the
model where request 2 is pending. So Credits3 is not output-robust. �
The key insight of reducing BNC to BMPC comes from Lemma 3 and the use
of composition. Let αin stand for the formula α ∧ ¬αout. We assume that G and
H below have disjoint internal signatures.

P
(G, H) def= ∀� (((αout
G ∧ ∃XG γG)⇒ (αout

H ∧ ∃XH γH))∧
((αin

H ∧ ∃XH γH)⇒ (αin
G ∧ ∃XG γG)))

The intuition behind P
 is that if an output label � is possible in G then � must
be possible in H , and vice versa for input labels. We get the following corollary
by using the definition P
, Lemma 3, and Theorem 2.

Corollary 1. G �� H ⇐⇒ ∃a ∈ Tr(G⊗H)(�G⊗H�(a) |=¬P
(G, H)).

In the following theorem we assume, without loss of generality, that L�G� = L�H�.
The proof uses Lemma 3.

Theorem 4. Assume G is input-robust and H is output-robust. G �n H ⇐⇒
forall a ∈ Tr(G⊗H), if length(a) < n then �G⊗H�(a) |= P
(G, H).

The robustness assumptions are not needed for the direction⇐= of the theorem.
It is easy to show that the direction =⇒ does not hold without the assumption.

Example 11. Consider the GLAS G illustrated by the FSM in Example 6. Note
that G is not output-robust. Let G1 be a copy of G where z is replaced by z1

and x is replaced by x1. Clearly �G� � �G1� (since �G� � �G� by reflexivity of
�). Now consider G⊗G1, where

ıG⊗G1 = (z = 1) ∧ (z1 = 1);
γG⊗G1 = (� = 1 ∧ z = 1 ∧ z1 = 1) ∨ (� = 0 ∧ z = 2 ∧ z1 = 2);
ΔG⊗G1 = {z := Ite(z = 1, Ite(x, 2, 4), 3),

z1 := Ite(z1 = 1, Ite(x1, 2, 4), 3)}.
The LTSs �G ⊗ G1� and �G ⊗ G1� can be illustrated as follows where a pair
〈z, z1〉 shows the values of the respective model variables:

�G⊗G1� �G⊗G1�
G : 〈1, 1〉 〈2, 2〉 〈3, 3〉

〈2, 4〉
〈4, 2〉
〈4, 4〉

1 0

1
1

1
G : {〈1, 1〉} {2, 4} × {2, 4} {〈3, 3〉}1 0

Consider the singleton trace 1. Fix M = {z �→ 2, z1 �→ 4} |= �G⊗G1�(1). It is
easy to see that M �|= P
(G, G1) because M ∪ {� �→ 0} �|= z1 = 2. �
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The following example illustrates a case when H in Theorem 4 is nondetermin-
istic but robust.

Example 12. We consider a model program CreditsImpl that describes the ab-
stracted behavior of a protocol implementation.

var cs as Seq of Integer = []
[Action] Req(c as Integer)

require true
cs := cs + [c]

[Action] Res(c as Integer)
require c <> [] and c <= Head(cs) and c >= 0
cs := Tail(cs)

The GLASs Credits2 (from Example 9) and CreditsImpl are robust. On can
show that CreditsImpl �n Credits2 for any n by using the product encoding and
Theorem 4. �

Theorem 4 identifies conditions where we can use standard techniques for veri-
fication of safety formulas. We use this in Theorem 5 to formulate checking for
P
(G, H) as a symbolic bounded model checking problem.

Theorem 5. Assume that G is input-robust and H is output-robust. There is
an effective procedure that given G, H and a bound n > 0, creates a formula
BNC (G, H, n) of size O(n(|G| + |H |)) with free variables �i for i < n, such
that BNC (G, H, n) is satisfiable iff G ��n H, and if M |= BNC (G, H, n) then for
some a, and m < n, (�M

0 , . . . , �M
m , a) is a witness of G ��n H.

Proof. Given a GLAS G, we can characterize the set of states reachable after
n steps by unfolding of the transition relation of G n times. The corresponding
formula is Reach(G, n) def= ıG ∧

∧n−1
i=0 TRG(Σi

G, �i, Σ
i+1
G ) where Σ0

G = ΣG and
Σi+1

G = (Σi
G)′. The bounded non-conformance checking formula BNC (G, H, n)

is now Reach(G⊗H, n) ∧ ∨n
i=0 ¬P
(G, H)(Σi

G⊗H). The formula is satisfiable
if and only if P
(G, H) is violated within n steps. The size of the formula is
O(n(|G⊗H |+ |¬P
(G, H)|)). Theorem 4 ensures that it suffices to check P
 as
a state invariant. �

An LTS L is input-enabled if in all states in L that are reachable from the initial
state, all input-labels are enabled.3 The following definition of ioco is consistent
with the definition in [18] provided that δ is part of the output labels.

Definition 18. Let L be an LTS and M an input-enabled LTS. M ioco L iff,
for all a ∈ Tr(L) and output-labels a, if a · a ∈ Tr(M) then a · a ∈ Tr(L).

Theorem 6. If �G� is input-enabled then �G� ioco �H� ⇐⇒ G � H.

Proof. Assume �G� is input-enabled. (=⇒): Assume G �� H . We show that
�G� ioco �H� does not hold. From Definition 12 follows that there exists a trace
a such that S0

G
a→ S′

G and S0
H

a→ S′
H , and there is a label a such that either

3 Such LTSs are called input-output transition systems in [18].
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1) a is a output-label that is enabled in S′
G but not enabled in S′

H , or 2) a is
a input-label that is enabled in S′

H but not enabled in S′
G. The second case

cannot be true since �G� is input-enabled. Thus, there is a trace a ∈ Tr(�H�)
and an output-label a such that a · a ∈ Tr(�G�) but a · a /∈ Tr(�H�). (⇐=):
Assume �G� ioco �H� does not hold. We show that G �� H . From Definition 18
follows that there exists a trace a ∈ Tr(�H�) and an output-label a such that
a · a ∈ Tr(�G�) but a · a /∈ Tr(�H�). Now use Lemma 3. �

5 Related work

The current paper generalizes the notion of model programs to GLASs and gen-
eralizes the results in [21] related to deterministic input-output model programs
to GLASs. We introduced the notion of robustness as a nontrivial extension of
deterministic GLASs by supporting “safe” internal nondeterminism, while re-
taining the property that non i/o-refinement checking reduces to safety analysis.

The literature on ioco [6,19,20] and various extension of ioco is extensive. A
recent overview and the formal foundations are described in [18]. An extension
of ioco theory to symbolic transition systems is proposed in [13]. Composition
of GLASs is related to composition of symbolic transition systems [12]. The
application of composition for symbolic analysis and formal relation to open
system verification has not been studied in those contexts as far as we know. We
believe that the results presented here can be used and complement the work on
symbolic transition systems in [13,12].

We believe that GLASs can be used as a foundation for symbolic analysis of
Event-B models [2] that is an extension of the B-method [1] with events (corre-
sponding to labels of a GLAS) that describe atomic behaviors, where each event is
associated with a guard and an assignment, that causes a state transition when the
guard is true is a given state. Composition of Event-B models is discussed in [17,7].

BMPC [23], that is used in Section 4, is a generalization of SMT based
bounded model checking [11] to GLASs. The notion of i/o-refinement of GLASs
builds on the game view of systems [8], that can also be used to formulate other
problems related to input-output GLASs, such as finding winning strategies to
reach certain goal states.
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Abstract. Model-based testing (MBT) suffers from two main problems which 
in many real world systems make MBT impractical: scalability and automatic 
oracle generation. When no automated oracle is available, or when testing must 
be performed on actual hardware or a restricted-access network, for example, 
only a small set of test cases can be executed and evaluated. However, MBT 
techniques usually generate large sets of test cases when applied to real sys-
tems, regardless of the coverage criteria. Therefore, one needs to select a small 
enough subset of these test cases that have the highest possible fault revealing 
power. In this paper, we investigate and compare various techniques for reward-
ing diversity in the selected test cases as a way to increase the likelihood of 
fault detection. We use a similarity measure defined on the representation of the 
test cases and use it in several algorithms that aim at maximizing the diversity 
of test cases. Using an industrial system with actual faults, we found that re-
warding diversity leads to higher fault detection compared to the techniques 
commonly reported in the literature: coverage-based and random selection. 
Among the investigated algorithms, diversification using Genetic Algorithms is 
the most cost-effective technique. 

Keywords: Test case selection; Model-based testing; Search-based testing; 
Clustering algorithms; Similarity measure; Genetic Algorithms; Adaptive Ran-
dom Testing; Jaccard Index; UML state machines.  

1   Introduction 

The idea of model-based testing (MBT) [1] is to generate executable test cases by 
systematically analyzing specification models (e.g. represented as UML state ma-
chines) following a test strategy such as a coverage criterion, that aims to cover cer-
tain features of the model (e.g., all transitions). MBT brings many advantages but also 
entails the additional cost of modeling the software under test (SUT). In addition, 
there are two factors that significantly increase the cost of MBT: (1) the lack of auto-
mated oracle (e.g., when assessing the subjective perception of a media quality in a 
videoconference system), and (2) the high cost of test case execution (e.g., when test-
ing must be performed on actual hardware or a restricted-access network). In both 
situations, the test suite must be as small as possible while, to the extent possible, 
preserving its fault revealing power. However, for real world size models, MBT  
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techniques usually generate large sets of test cases regardless of the applied coverage 
criteria. Therefore, a model-based technique is required to select an optimal subset of 
test cases to be executed, which is, in general, a NP-hard problem.  

In similarity-based test case selection, the idea is to diversify the selected test cases 
with respect to a similarity measure. In [2, 3], we proposed a similarity-based selec-
tion technique for testing based on UML state machines (SMBT). We compared dif-
ferent similarity measures in terms of what information from the test cases they have 
to evaluate (test case encodings) and how this evaluation should be done (similarity 
functions). The results showed that, in the context of SMBT, the similarity measure 
that represents a test case as a set of trigger-guards [2] and uses Jaccard Index [4] as 
the similarity function [3] is the most effective measure in terms of fault detection rate 
(FDR).  

In this paper, we take a deeper look into the idea of diversifying test cases and in-
vestigate why similarity-based selected test cases are effective in finding faults. We 
also study different strategies that, given a similarity measure and a test suite, we can 
use to select a subset of the test suite. We applied our experiments on an industrial 
software system and a set of actual faults, and the results clearly showed that reward-
ing diversity is effective. The main explanation is that the test cases that find different 
faults belong to distinct clusters based on the similarity measure. In addition we found 
that, among different selection strategies, Genetic Algorithms (GAs) [5] are the most 
cost-effective technique for similarity-based test case selection. We also have shown 
that, in our case study, we could save up to 80% of test case executions, and get more 
than 99% FDR, by using a GA compared to a coverage-based selection technique.  

The rest of the paper is organized as follows. Section  2 introduces the similarity-
based test case selection technique. Section 3 discusses the different strategies which 
are used in this paper to diversify test cases. Section 4 provides a brief overview of 
related works covering similarity-based selection techniques. Section 5 reports the 
experimentation results of applying the selection techniques on an industrial case 
study. Section 6 concludes the paper and outlines our future work plan. 

2   Similarity-Based Test Case Selection 

Unlike coverage-based selection, where the goal is maximizing the coverage of the 
test model by the selected test cases (e.g. transition coverage in SMBT) to maximize 
chances of fault detection, similarity-based selection techniques maximize diversity 
among the selected subset. Diversity is calculated using a (dis)similarity measure 
between pairs of test cases. A similarity measure is the value that a similarity function 
assigns to two inputs which are being compared. In a testing context, inputs are usual-
ly encoded as a set or sequence of elements. In the context of MBT, the inputs are 
abstract test cases defined on the test model rather than concrete test cases. We do not 
use the execution information of the test case as, in our context, the goal is to select 
them before execution. Abstract test cases are naturally generated as a first step by 
MBT and can hide the unnecessary information for similarity comparisons. For ex-
ample, in SMBT an abstract test case representation can be a path in the state machine 
specifying the SUT. In general, different faults can be detected by the same test  
path instantiated with different test data (e.g., event parameter values). Therefore, to 
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compare different techniques, it is necessary to run the selected test paths with differ-
ent input data and analyze their FDR distribution. 

Representation (encoding) of the test cases has an important effect on the similarity 
measure. Though in SMBT a test path represents an encoded abstract test case, the 
test path can be described at different levels of details. In [2], we studied three encod-
ings for a test path in UML state machine: state-based, transition-based, and trigger-
guard-based, and reported that trigger-guard-based encoding is the most effective one 
in terms of fault detection, where a test path(tp) is represented as: <tp>      ::= <TrGu> | <TrGu> “,” <tp> < TrGu > ::= trig |guard | id | guard “+” trig 
where trig is the identification of a trigger, and guard is the identification of a guard 
in the state machine. In this representation, a transition is identified by its trigger and 
guard. It can be only a trigger, or a guard or both together. If there is a transition with 
no guard and trigger, we use the transition id (id) as its identifier.  

Given an encoding, one may use different similarity functions to calculate the simi-
larity value. In [3] we studied different set-based and sequence-based similarity func-
tions and proposed Jaccard Index as the most cost-effective. Given a set of n encoded 
test cases (sn) and a similarity function (SimFunc), the test case selection problem is 
reformulated as minimizing SimMsr(sn): ( ) =  , ,    

where SimFunc(tpi , tpj) returns the similarity of two test paths (or other encoded 
abstract test cases in MBT) in sn represented by tpi and tpj. The last step in similarity-
based selection is using a strategy to select a subset of test cases with minimum aver-
age pair-wise similarity (SimMsr). In the rest of this paper, we focus on finding the 
best strategy for this selection.  

3   Strategies for Maximizing Diversity 

Given a similarity measure we have two strategies to select the most diverse test cas-
es. One is based on clustering test cases and taking samples from each cluster and the 
second is searching for the most diverse subsets. In this section, we introduce one 
clustering and two search techniques that will be investigated.  

3.1   Clustering-Based Techniques  

Clustering algorithms divide data instances into natural groups by maximizing their 
internal homogeneity and external separation [6]. Regardless of the specific algorithm 
which is used for clustering, most clustering techniques use a proximity measure as a 
mean to determine the closeness (similarity), or dissimilarity (distance) between pairs 
of instances and pairs of clusters. 
In this study, we are using one of the simplest clustering algorithms, which has been 
frequently used in software engineering, including software testing [7]: Agglomera-
tive Hierarchical Clustering (AHC) [6]. AHC starts with forming clusters containing 
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each exactly one object (a test case in this study). A sequence of merge operations is 
then performed until the desired number of clusters is achieved. At each step, the two 
most similar clusters will be joined together. The measure that we used for assessing 
similarity between two clusters, inter-cluster similarity, is Average Linkage and it is 
defined as the average of all pair-wise similarities between all instances of those two 
clusters [6]. After applying clustering, we need a sampling technique for selecting one 
or more test case per cluster. We use one-per-cluster sampling where the number of 
clusters is the same as the selected sample size and then randomly select one member 
from each cluster. The pseudo-code of the employed AHC follows: (1) Make one cluster (Ck) per test path (tpi). (2) While the number of clusters is more than sampleSize (3)   Find the two most similar clusters Cx and Cy (with the maximum  InterClusterSim(Cx, Cy)). Where: , = ∑  ,| |  (4) Merge the two clusters.  
3.2   Test Case Selection Using Adaptive Random Testing 

Another technique that we investigate is Adaptive Random Testing (ART), which has 
been proposed as an extension to Random Testing [8]. Its main idea is that diversity 
among test cases should be rewarded, because failing test cases tend to be clustered in 
contiguous regions of the input domain. This has been shown to be true in empirical 
analyses regarding applications whose input data are of numerical type [8]. Recently, 
Object-Oriented software has been also shown to manifest such a property [9]. There-
fore, ART is a candidate selection strategy in our context as well. In this paper, we 
use the basic ART algorithm described in [8], but we ensure that no replicated test 
case is given in output. The pseudo-code for ART is: (1) Z={} (2) Add a random test case to Z  (3) Repeat until |Z|= sampleSize (4)  Sample K random test cases that are different from Z (5)  For each of these test cases k  (6)   k.maxSim = max(SimFunc(k , z  Z)) (7)   Add the k with minimum maxSim to Z 
3.3   GA-Based Test Case Selection 

A GA [5] is used in this paper since the nature of our problem, which is a form of 
optimization, resembles typical problems addressed in search-based software  
engineering [10]. GAs are the most used and successful reported technique in this 
domain [10] and rely on four basic features: population, selection, crossover and mu-
tation. More than one solution is considered at the same time (population). At each 
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generation (i.e., at each step of the algorithm), some good solutions in the current 
population, selected by the selection mechanism, generate offspring using the cros-
sover operator. This operator combines parts of the chromosomes (i.e., the solution 
representation) of the offspring with a certain probability; otherwise it just produces 
copies of the parents. These new offspring solutions will fill the population of the next 
generation. The mutation operator is applied to make small changes in the chromo-
somes of the offspring. Eventually, after a number of generations, an individual that 
solves the addressed problem will be evolved.  

In this paper, we use a steady state GA as a selection technique, in which only the 
offspring that are not worse than their parents are added to the next generations. An 
individual in our context is a subset of size n from the original test suite (denoted sn). 
Given a similarity function SimFunc(tpi , tpj), the fitness function f to minimize is the 
sum, for all pairs (tpi , tpj) in sn, of SimFunc(tpi , tpj), denoted SimMsr. We use a sin-
gle point crossover with probability of Pxover to combine two different parents  and  . A mutated test path is replaced by a test path that is selected at random from the 
set of all possible test paths. A valid solution is a set of test cases in which there is no 
duplicate. We have applied two types of stopping criteria for the GA in this study: (1) 
stopping after specific number of fitness evaluations, and (2) stopping after a fixed 
period of time (e.g., 350ms). The pseudo-code of the employed GA follows: (1) Sample a population G of m sets of test cases uniformly from the search space (i.e., the set of all possible valid sets with a given size n) (2) Repeat until the stopping criterion is met (3)  Choose s  and s  from G  (4) ś  , ś = crossover (s  , s , P ) (5) Mutate(ś , ś ) (6)   If valid (ś  , ś )  min (f(ś ), f(ś ))  min ( f(s ), f(s )) (7)  Then s = ś  and s = ś  
4   Related Work 

There are three approaches reported in the literature to select a subset of test cases 
from a test suite that can be applied in our context: (1) Random or semi-random selec-
tion [11], where there is no guidance to select test cases; (2) Coverage-based selec-
tions, where we hypothesize that “the test cases which have more coverage are more 
likely to detect faults” (e.g., in [12] a Greedy search selects, at every step, the test case 
that covers the most uncovered statements whereas in [13, 14] a GA is used to find 
the maximum coverage.); (3) Similarity-based selections try to diversify test cases, 
given a similarity measure, assuming that maximizing diversity among the selected 
test cases maximizes the number of detected faults. 

Diversifying test cases has been studied on code-based test case selection and 
mostly in the context of regression testing. The similarity measure in such cases is 
usually based on code coverage [7, 15-18]. In [19] a sequence of memory operations 
is used to calculate the similarity and in [20] the authors use the whole test script in 
string format as the input for similarity function. The work in [21] is the only one 
where the similarity function is based on model-level information. Test cases are 
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represented as sequence of transitions in a LTS model of the system and the number 
of identical transitions in the sequence is the similarity function. Our similarity meas-
ure is different from theirs, both in terms of encoding and similarity function—we use 
trigger-guard sets on UML state machines and apply the Jaccard Index. In [2, 3] we 
have compared the effectiveness of our similarity measure with the measure in [21] 
and the results showed a great improvement using our technique, which therefore is 
applied in this study as well. Given a similarity measure, different strategies have 
been used to diversify the selected subsets: Greedy search in [17, 19-21], Neural net-
work based classification in [18], ART in [17], AHC in [7, 15, 16]. In this paper, 
using our similarity measure, we compare ART, AHC, and a GA. 

5   Empirical Evaluation 

5.1   Case Study Description 

The SUT under study is a typical safety monitoring component in a safety-critical 
control system implemented in C++ and modeled as UML state machines comple-
mented by constraints specifying state invariants and guards. This SUT is typical of a 
broad category of reactive systems interacting with sensors and actuators. The first 
and the subsequent maintained versions of the system (including models and code) 
were developed and verified by company experts and our research team. The correct 
and the most up-to-date UML state machine, representing the latest version of the 
SUT’s behavior, consists of one orthogonal state, 17 simple states, six simple-
composite states, and a maximum hierarchy level of two. The unflattened state ma-
chine contains 61 transitions and the flattened state machine consists of 70 simple 
states and 349 transitions. 

The correct latest UML state machine was given to our test case generation tool 
(TRUST) [22] as an input model. Using All-Transitions coverage, 281 test paths and 
corresponding executable test cases were automatically generated. In our case study, 
if a test path has the ability to detect a fault, it can be detected by any valid test data 
for that test path. Therefore, in our experiment, we have one test case per test path and 
the FDR of a test path is equal to the FDR of the corresponding test case. As it  
is typical in many embedded systems, the average execution time for these test cases 
is in the order of minutes, which makes running all the 281 test cases very time  
consuming. 

We use 15 faulty versions of the code that are made by introducing one real fault 
per program. The 15 faults used in the study were introduced during maintenance 
activities by developers and re-introduced for the purpose of the experiment in the 
latest version of the SUT. Each of these faults belongs to one of the following catego-
ries: wrong guards on transitions, wrong state invariant, missing transition, and wrong 
OnEntry action in states. Among 281 test cases, 207 cannot detect any faults and 74 
catch at least one fault. The average number of detected faults per test case for the 15 
faulty versions is 0.72 and the maximum is five. Each fault is also detected on average 
by 13 test cases. There are nine faults which are only detected by three test cases and 
two faults are detectable by 65 test cases. 
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5.2   Experiment Design 

In our industrial case study, we investigate the following research questions: 

─ RQ1. Why does diversifying test cases improve fault detection? 
o RQ1.1. Do test cases that find the same faults tend to be more similar 

to each other than with other test cases?  
o RQ1.2. Do test cases that find different faults tend to be more different 

from each other than test cases that find the same faults? 
─ RQ2. What is the most cost-effective way to diversify (given our similarity meas-

ure) a set of test cases? 
o RQ2.1. Does clustering-based test case selection improve the average 

FDR compared to coverage-based and random selection?  
o RQ2.2. Are search-based techniques more cost-effective than cluster-

ing-based selection in terms of fault detection? 
─ RQ3. How cost-effective is diversifying test cases compared to state of practice 

techniques for test case selection? 

In RQ1 we are analyzing why diversifying test cases improves FDR. In other words, 
are test cases distinctly clustered with respect to different faults? We have carried out 
an exhaustive analysis based on our industrial case study. Given N=281 test cases, we 
ran all of them on the actual SUT and all its faulty version to check which of the M 
faults they are able to detect (in our case study M=15). We then calculated the simi-
larity of each pair of test cases, for a total of N*(N-1)/2 pairs. Note that the exhaustive 
analysis of the search space landscape is based on the similarity values of all test case 
pairs. However, test case selection is performed for any arbitrary sampleSize where 
using an exhaustive search is not an option, since the search space size for selecting a 
subset of size sampleSize is equal to the number of possible sampleSize combinations 
within a test suite of a given size. In our case, as an example, the search space size for 
sampleSize =28 (~10% of the test suite) is 2.9*10^38.  

To address RQ1, we investigate two hypotheses: (1) For each fault cluster, the si-
milarity between pairs of test cases that find the same faults is, on average, signifi-
cantly higher than the similarity of other test case pairs in the test suite, and (2) For 
each pair of fault clusters, the similarity between test cases that find different faults is 
significantly lower than the similarity of test case pairs that find the same fault in the 
test suite. If hypothesis (1) holds, then test cases finding the same faults will cluster in 
close areas of the test case space. As a result, rewarding diversity in test case selection 
would be beneficial. But hypothesis (2) should also hold, otherwise diversity might be 
harmful since we would need more than one test case from the same area to detect all 
faults.   

In RQ2, we are interested in how to diversify the test cases, given the similarity 
measure used in RQ1. Our baselines of comparison are random selection (Rnd) and a 
coverage-based selection technique (CovGr) which is based on one of the most used 
selection techniques in the literature: it applies a Greedy search to maximize the cov-
erage of the selected test cases [12]. In this paper, in each step of the Greedy search in 
CovGr, we look for the test cases which cover the most yet uncovered transitions on 
the UML state machine representing the SUT. Finally, in RQ3 we look at the practical 
benefits of our proposed approach based on our industrial SUT. In this study, as  
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mentioned in Section 3, AHC is used as our clustering algorithm and a GA and ART 
as search-based techniques. Our measure of effectiveness is the FDR of the selected 
subset from the original test suite. Ideally, given the same amount of computational 
cost, we would say that a technique is better than the other if it obtains higher average 
FDR. For practitioners, such cost would typically be measured as the time that an 
algorithm takes before completing its task. Comparing algorithms using time is not a 
robust option from a practical standpoint though. Low-level implementation details 
may have a strong effect on computational time. If we use time as stopping criterion, 
then we may not truly compare algorithms but instead their implementations [23]. To 
cope with this problem, a measure that is independent from implementation details 
would be useful. For example, when comparing search algorithms, it is a common 
practice to allow each algorithm to run until a maximum number of fitness evalua-
tions is executed (e.g., 100,000 [24]). However, the assumption here is that the total 
search cost is proportional to the number of fitness evaluations and the cost of other 
operations than fitness evaluation is either equal or negligible in both algorithms.  

To compare GAs with ART, following the same general reasoning, we use the 
number of similarity comparisons (C) as stopping criterion, where n is the size of the 
output test case set. We hence can run both the GA and ART with the same preset 
number of similarity comparisons. For a GA that runs for W fitness evaluations (each 
consisting of Q similarity comparisons), we have that C(GA) = W * Q = W * n * (n-
1)/2 whereas for ART we have [8]: C(ART) = K * n * (n-1)/2.  

We would like to run both ART and the GA such that C(ART)=C(GA), but that 
might not be possible because K (the size of the candidate set in ART) is a constant 
that is upper bounded by N (281 in our case). In other words, the basic ART cannot be 
run for an arbitrary amount of computational resources as it is the case for GAs (for 
which we can choose arbitrarily high values for W). To cope with this problem, we 
can just run ART several independent times (e.g., J times), and then take the best 
result out of these J runs. Therefore, to obtain fair comparisons using similarity meas-
ures, we can simply enforce W=J*K. 

Whenever we could not use a fair metric (as the number of fitness evaluations) for 
comparing different algorithms for test selection, we used the time expressed in milli-
seconds as stopping criterion, which is the time spent by our implementation of the 
algorithms on a PC with Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory run-
ning Windows 7. As we previously discussed, though this is not particularly robust in 
general, it is a reasonable option in our context as a significant effort was made to 
optimize implementations and the execution environment was stable.        

To account for the randomness of the results, which exists for all selection algo-
rithms, we ran each experiment 100 times and analyzed distributions. We report the 
results for different techniques for sample sizes less than 140 (~50% of the test suite) 
with intervals of 10, since our focus is, for practical reasons, on smaller size subsets. 
(In practice, test case selection is mostly used for selecting a relatively small sample 
of large test suites.) Furthermore, for large sample sizes, all selection techniques will 
usually be as good as random selection and typically detect most faults. We have 
performed non-parametric (Mann-Whitney U-test) statistical tests, using a signific-
ance level of 0.05, to compare the FDR distribution of the proposed and alternative 
selection techniques. Non-parametric tests are more robust than a parametric test (e.g., 
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the t-test) when there are strong departures from normality and for large enough sam-
ples, as this is the case in this study (100 observations). 

5.3   Experiment Results 

5.3.1   Why Does Diversifying Test Cases Improve Fault Detection? 
For each of the M=15 faults, we calculated the similarity of the test case pairs that 
both found each of these faults (groups of test case pairs, from F1 to F15). Mann-
Whitney U-tests were performed (α =0.05) to see whether there was a difference in 
similarity value between the pairs in F1 to F15 and the set of all remaining pairs of 
test cases (T - Fi). Table 1 summarizes the results where bold median values represent 
statistically significant differences between the distributions of these Fi with T - Fi. 
Note that F1 and F2, F3 and F4, and F7 to F15 are on the same table row, as they have 
the same descriptive statistics. This is due to the fact that most test case pairs are the 
same and those that are not the same have high similarity values (according to our 
similarity measure).   

The results show that the difference is significant for the first six groups. The other 
groups also show a high difference in terms of mean and median but, since there are 
only three observations for each of those groups, we cannot get statistically significant 
differences. Therefore, the first hypothesis of RQ1.1: “Test cases that find the same 
faults tend to be more similar to each other than with other test cases” is confirmed. 

To investigate RQ1.2, for each pair of fault clusters Fi and Fj, let us consider the 
similarity distribution (Dd) of test case pairs which belong to two different clusters, 
i.e., test cases that find different faults. We compare Dd with the similarity distribu-
tion (Ds) of test case pairs which both are in one of those two clusters, i.e., test cases 
that find the same fault. The median of Dd and Ds per cluster pair is reported above 
the diagonal in Table 2.   

There are cases where fault clusters Fi are exactly the same, i.e., their respective 
faults are found by exactly the same set of test cases. Distinguishing them does not 
have any effect on the FDR results (either all or none of the faults will be revealed by 
a selected set of test cases) and therefore such clusters are not distinguished. As a 
result, there are seven distinct fault clusters (labeled as A to G) matching the columns 
and rows of Table 2. Their mapping to the 15 fault clusters is as follows: A(F1 and 
F2), B(F3 and F4), C(F5), D(F6), E(F7 to F9), F(F10 to F12), G(F13 to F15). 

The bold values show the cases where there is a statistically significant difference 
between Dd and Ds, based on a Mann-Whitney U-test. The presence of significant 
differences support the claim that fault clusters are far away from each other and 
therefore that rewarding diversity is useful. In cases where two clusters are overlap-
ping, the size of the overlap compared to the size of their union will determine wheth-
er rewarding diversity is harmful. If the ratio of the overlapping part (intersection) 
over the union is high, a test case that finds one of the two faults would have a high 
probability of finding the other. In this case, rewarding diversity is still a reasonable 
option. We measure this ratio by dividing the size of two clusters’ intersection |I| by 
the size of their union |U|: IU=|I|/|U|. The cells below the diagonal of Table 2 report 
this measure per cluster pair. 

Among 21 cluster pairs, 15 contain distinct clusters with significant differences be-
tween Dd and Ds. There are three clusters (E, F, and G) that only contain a few test 
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cases (three per cluster), which are not amenable to statistical analysis and show no 
statistically significant differences. Clusters B and D which are not significantly dif-
ferent from each other show a high overlapping value (0.57), implying that although 
these clusters are not distinct, there is a 57% probability that a test case that is selected 
from their union can find both faults. Two cluster pairs, <A,D> and <C,D>, show 
unexpected results—Dd median lower than the Ds median—and they are not highly 
overlapping. Therefore, since among 21 pairs, 15 pairs fit the situation where similari-
ty-based selection is effective, two do not, and four are neutral, we can conclude that, 
overall, in most cases “test cases that find different faults tend to be more different 
from each other than test cases that find the same faults”.  

Table 1. Min, max, median, mean, and standard deviation of similarity values of the test cases 
that find the same faults 

Groups Pairs Min Median Mean Max SD 
T 39340 0.076 0.250 0.291 1.000 0.166 
F1,F2 2080 0.181 0.4 0.432 1.000 0.173 
F3,F4 91 0.375 0.571 0.561 0.833 0.143 
F5 28 0.200 0.464 0.475 0.800 0.168 
F6 28 0.714 0.714 0.714 0.714 0.000 
F7 to 15 3 0.375 0.428 0.434 0.500 0.062 

Table 2. Each cell above the diagonal shows the median of Dd and Ds (Dd/Ds) and each cell 
below the diagonal shows the overlapping measure (IU), per cluster pairs. Bold median values 
highlight significant differences (Mann-Whitney U-test) between the Dd and Ds.  

 A B C D E F G 
A - 0.33/0.42 0.33/0.40 0.71/0.40 0.18/0.40 0.18/0.40 0.18/0.40 
B 0.21 - 0.37/0.57 0.71/0.66 0.37/0.57 0.37/0.57 0.37/0.57 
C 0.12 0 - 0.71/0.71 0.37/0.42 0.37/0.42 0.37/0.42 
D 0.12 0.57 0 - 0.11/0.71 0.11/0.71 0.11/0.71 
E 0 0 0 0 - 0.37/0.42 0.37/0.42 
F 0 0 0 0 0 - 0.37/0.42 
G 0 0 0 0 0 0 - 
 
Overall, the results of our analysis confirm that diversity in test case selection 

should be encouraged and that our similarity measure is adequate. It also seems that 
since test cases finding the same faults are clustered together and these clusters are 
mostly distinct, clustering algorithms are a reasonable candidate approach to achieve 
diversity, though we will investigate what is the best strategy in the next research 
question. 

5.3.2   What Is the Most Cost-Effective Way to Diversify a Set of Test Cases? 
To answer RQ2 we first compare the AHC clustering algorithm with CovGr and Rnd 
introduced in Section  5.2. Fig. 1 shows the FDR results of the algorithms.  

Overall, the results show that for all sample sizes AHC is more effective than its 
two alternatives except that for sample sizes less than 30 (~10% of the test suite) the 
difference between the average FDRs of CovGr and AHC is not statistically signifi-
cant (based on Mann-Whitney tests). Considering the fact that in practice the results 
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for smaller sample sizes are more important, AHC may not be preferred to CovGr 
given the high cost of a clustering technique compared to simple Greedy search. On 
average (for all sample sizes over 100 runs) each selection requires 350ms, 10ms, and 
less than 1ms when using AHC, CovGr, and Rnd, respectively. Though those time 
differences may not seem relevant, they may become so on much larger test suites of 
thousands of test cases. However, for sample sizes higher than 40, there is a huge (up 
to 40%) improvement using AHC compared to CovGr. In addition, AHC ensures 
100% FDR with 80 test cases whereas CovGr and Rnd find less than 95% of the 
faults even with 140 test cases.  

Note that, in theory, since Rnd does not use any heuristic to increase FDR, we can-
not improve it. However, we can improve CovGr by running it several time with 
different random selections, wherever the coverage among alternative test cases is 
equal, and reporting the best result out of all runs. To compare the FDR results of 
CovGr when it costs exactly the same as AHC, we let CovGr improve its results by 
random reselection and stopped the algorithm after 350ms. The results showed that in 
our case, there is no practically significant difference in CovGr FDR for 10 and 350 
ms of running time. 

Addressing RQ2.1, given that the FDR of AHC is always equal or superior to that 
of CovGr or Rnd, and the fact that we cannot predict for a given test suite the sample 
size threshold above which AHC will be certain to fare significantly better, we favor 
the systematic use of AHC over CovGr and Rnd. Moreover, in practice, this strategy 
makes even more sense when considering that test case execution time (which in our 
case is in the range of minutes) is usually much higher than selection time for any of 
the techniques (which in our case is in the range of milliseconds). 

Comparing search-based techniques with AHC, first we need to find out which 
search technique is more cost-effective. In this study, we compare the FDR of ART 
and a GA. The GA is stopped after 10,000 fitness evaluations, and ART is run 1000 
times with K=10 (so both algorithms use the same number of similarity comparisons).  
Fig. 2 shows the average FDR of the techniques for each sample size over 100 runs. 
In general, the GA fares better and more particularly so from sample size 20 (~7% of 
the test suite) to 70 (~25% of the test suite). For sample sizes larger than 70, the FDR 
of both techniques converges to 1.0. The differences for smaller sample sizes are 
statistically significant but, because these differences may not practically significant 
(at most 10% improvement for the GA), we need to look closely at the relative cost of 
ART and the GA.  

As we mentioned earlier, the number of fitness evaluations is usually a good plat-
form-independent measure for the cost of search techniques. However, in our imple-
mentation, a matrix made of all pair-wise similarities is created before any search. 
Therefore, this overhead is the same for all search algorithms and the fitness evalua-
tion is not an expensive part of the search. Therefore, we cannot be sure that total cost 
is proportional to the number of fitness evaluation. In Fig. 3, we have plotted the 
actual time spent by the two algorithms (ART and the GA with 10,000 fitness evalua-
tions). The required time for 10,000 fitness evaluations using both techniques is ex-
ponentially increasing and they both spend almost the same time for very small sam-
ple sizes (less than 20). For sample sizes higher than 20 (~7% of the test suite), ART 
quickly gets more expensive than the GA. Given that it always has equal or worse 
FDR results, there is no reason for choosing ART over the GA.  
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6   Discussion on Validity Threats 

The main threats to the validity of this study are firstly the fairness of comparisons in 
terms of cost and secondly the generalizability of the results.  

Similarity comparisons of test cases and clusters are the most influential part of se-
lection techniques. In our implementations of the algorithms, all pair-wise similarities 
are pre-calculated in a similarity matrix which is given to the selection algorithm as 
an input parameter. Obviously, this implementation is not scalable and the similarity 
matrix will face memory limitations for large test suites. However, if we can afford 
pre-calculation, then the most expensive part of the search algorithms may not be the 
fitness evaluation anymore. We can see its effect on comparing ART and the GA 
where having the same number of similarity evaluations ART requires much more 
time. We have not studied on-demand similarity calculations, which might give dif-
ferent FDR results using the same stopping time. In addition, inter-cluster similarity 
calculation in AHC is very expensive and in our implementation it is repeated for 
each iteration of the algorithm. The code can be optimized by caching the similarities 
between clusters in each iteration and in the next iteration only calculate the similari-
ties if it is not already available. However, implementing this improvement is not 
trivial since saving similarities of all combinations of clusters in all iterations may be 
not possible due to memory limitations. There is a tradeoff to be made between mem-
ory cost and execution speed.  

The second issue is due to the fact that all our results and conclusions rely on a 
single industrial case study using a given set of real faults. Though running such stu-
dies is time consuming, it must obviously be replicated. However, as discussed earli-
er, the system used here is typical of a broad category of industrial systems: control 
systems with state-dependent behavior, controlling sensors and actuators. 

7   Conclusion and Future Work 

In practice, executing test cases generated by model-based testing (MBT) techniques 
is costly. This cost is due to the large test suites which are typically generated by 
MBT tools on industrial-scale systems to systematically achieve a coverage/adequacy 
criterion. However, for system level testing, in many situations testing should take 
place on the deployment platform where the cost (time and resource) of each test 
execution may be high. This may be due to the cost of using actual hardware, poten-
tial damages in case of failure, or access to restricted infrastructure (e.g., test net-
work). In addition, for many systems, automatically generating oracles from models is 
very difficult or impossible. In such cases, test cases should be evaluated manually, 
greatly increasing the cost of test execution and analysis. In cases such as the ones 
mentioned above, one must execute a subset of the generated test suite whose size is 
dependent on context. In this paper, we propose a new approach for test case selection 
from UML state machines, by maximizing the diversity of the selected test cases. To 
measure diversity we used a specific test case representation for UML state machines 
(triggers-guards sets), which should be adapted in case of using other models, and a 
model-independent similarity function (Jaccard Index). We investigated why diversi-
fying test cases with respect to our similarity measure increases fault detection rates 
and compared different strategies to diversify the test cases: Clustering, Adaptive 
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Random Testing, and Genetic Algorithms (GAs). The results of our study on an in-
dustrial software system and actual faults showed that: (1) rewarding diversity leads 
to finding more faults, (2) our proposed similarity-based selection (using Jaccard 
Index on the set of trigger-guards with a GA selection) is the most cost-effective ap-
proach compared to the other alternatives. In addition, we showed that in practice this 
approach can reduce the cost of test case execution in MBT by selecting a small set of 
test cases which can find all (or most) faults in short amount of time. In the future, we 
plan to replicate the study on another industrial system. In addition, we will evaluate 
alternative optimization and search techniques.  
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Abstract. Modern large-scale component-based applications and ser-
vice ecosystems are built following a number of different component
models and architectural styles, such as the data-flow architectural style.
In this style, each building block receives data from a previous one in
the flow and sends output data to other components. This organisa-
tion expresses information flows adequately, and also favours decoupling
between the components, leading to easier maintenance and quicker evo-
lution of the system. Integration testing is a major means to ensure the
quality of large systems. Their size and complexity, together with the
fact that they are developed and maintained by several stake holders,
make Built-In Testing (BIT) an attractive approach to manage their in-
tegration testing. However, so far no technique has been proposed that
combines BIT and data-flow integration testing. We have introduced the
notion of a virtual component in order to realize such a combination.
It permits to define the behaviour of several components assembled to
process a flow of data, using BIT. Test-cases are defined in a way that
they are simple to write and flexible to adapt. We present two implemen-
tations of our proposed virtual component integration testing technique,
and we extend our previous proposal to detect and handle errors in the
definition by the user. The evaluation of the virtual component test-
ing approach suggests that more issues can be detected in systems with
data-flows than through other integration testing approaches.

1 Introduction

The component paradigm and the service paradigm advocate to the rapid con-
struction of large-scale systems-of-systems. Both help facilitate the integration
of third-party building blocks through fostering loose coupling, and ameliorating
system maintenance to the extent that it can be carried out online. Many large-
scale systems-of-systems, such as situational awareness systems, support-systems
of all kinds, swarm robotics, and distributed sensor and actuator networks, em-
ploy powerful data sharing and event processing techniques and middleware plat-
forms. Such event- and data-driven systems or parts thereof are more naturally
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expressed through event processing, data-flow processing, or message-driven ar-
chitectural styles, implemented on top of, or being part of the component and
service platforms. The size and complexity of these large systems, together with
the fact they are developed and maintained by multiple parties, make the quality
assurance activities focus not only on unit testing but also on the validation of
the adaptation and integration process [6,8].

Built-In Testing (BIT) [9,20,18] is a powerful method for validating the adap-
tation and integration of systems-of-systems of such dynamic and hybrid nature.
BIT prescribes components to be equipped with the ability to check their exe-
cution environment, and the ability of being checked by their execution environ-
ment [10], before or during runtime. BIT also aims at a better maintainability
of testing aspects surrounding each component. The responsibility in validat-
ing the components’ environment is distributed and assigned to the components
themselves which makes this method viable to assessing the integration and also
the evolution of dynamic systems-of-systems.

The objective of integration testing is to uncover errors in the interaction
between components or services, and their execution environment, i.e., other
components and services, or the underlying middleware platform. The integra-
tion of a system must be assessed in its final context, because typically, such
systems are extremely difficult to duplicate for testing. The integration must
also be re-validated along with every reconfiguration, when services are replaced
and reconfigured, or the system’s topology is changed in any kind, in order to
address evolving requirements.

Various techniques to support integration testing of systems following the
event- or data-processing architectural styles exist, but in this paper we con-
centrate on testing data-flows as units. In earlier work, we have introduced the
concept of a virtual component [16] that combines integration testing of data-
flow-type systems with the advantages that built-in testing offers. In this article,
we extend this work with the following contributions:

– We extend the component enumeration algorithm with additional functions
to detect ill-formed flow definitions, allowing efficient development and main-
tenance of the tests.

– We present approaches for realizing the virtual component testing technique,
and demonstrate how this should be done in two different platform styles,
namely, client-server and publish-subscribe styles.

– We evaluate our proposed method using part of a concrete industry-scale
surveillance system-of-systems [5,19].

The paper is structured as follows. In Section 2, some background and related
work is presented, including the concept of a virtual component. Section 3 in-
troduces the new algorithms and methods to extend the concept of virtual com-
ponent. A description of the implementation of the concept for two different
component frameworks is outlined in Section 4, and the assessment of the effec-
tiveness of virtual components for integration testing of typical data-flow-based
systems is presented in Section 5. Finally, Section 6 concludes this article and
presents future work.
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2 Background and Related Work

Integration testing. In order to validate complex systems, one primordial
step consists in performing unit testing on different levels of granularity of the
system, such as module-level, class-level, component -level, etc. Even if every
unit respects its own specification and has been successfully unit tested, there
is the chance of residual system defects through component coordination issues
and adaptation [1]. A common approach to ensure component integration is
integration testing [6,8], that validates the interactions between sets of black-box
components [22]. In contrast to full system testing, it concentrates on subsets of
the system to be assessed in combination, allowing early checking, e.g., before
all components are available.

Data-flow and call-reply architectural styles. Architectural styles [17] de-
termine the assembly and “wiring” of components in a system, and have con-
sequences for integration testing. Our systems of interest are aimed at high-
volume data processing, and organised following the data-flow paradigm, also
termed as “message-driven architectures”, “data push technology”, or “publish-
subscribe architectures”. They all have in common that components receive input
data, process it, and generate output data for other, subsequent components in
a so-called “flow”. Typically processing is performed asynchronously. Another
architectural style is the “call-reply” style typically found in service-oriented ar-
chitectures. Here, client components are “aware” of their servers. Data is passed
to the server, processed, and passed back to the client, mostly in a synchronous
fashion. In data-flow styles, components do not have such “mutual awareness,”
which is significant for testing. Figure 1 illustrates these two styles. Both are suit-
able for the same application, although the implementation of their components
would be different. For instance component A in the call-reply organisation must
be “aware” of the component B, of the data it receives, the returned information,
and even what to do next with this result.

The main advantage of the data-flow organisation is that the system archi-
tecture follows closely the data processing organisation of a physical system.
This helps the designer to translate a data-flow into an implementation. It also

(a) Data-flow (b) Call-reply

Fig. 1. Examples of two typical architectural styles
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facilitates concurrent execution of components without blocking and waiting,
and components are loosely coupled, since they have no mutual behavioural
expectation (contract), but only a defined data type.

Built-In Testing. Built-In Testing (BIT) is a useful paradigm in order to sim-
plify the testing of dynamic component-based systems [18,20] and to improve
the maintainability of the tests. BIT has two facets. First, components can be
equipped with special ports supporting their testability, e.g., in order to control
or observe internal state, or for separating testing and nominal operations [18]
(test awareness). Second, the direct association of test-cases with the compo-
nent [7] facilitates maintainability and traceability of test operations by keeping
the test-cases and the test material closely linked together with the compo-
nent [2]. This associates tests with the component throughout its life-cycle and
supports re-assessment in various operation contexts. It also permits distribution
of the test responsibility to the components themselves, maintaining indepen-
dence of components and fostering their loose coupling, by decentralising both
the definition of the tests and the testing.

Fig. 2. Built-in Integration Testing – Example

Several approaches have been proposed to use BIT also for integration test-
ing. In most approaches, each component carries out all or part of its integration
testing itself [4,7]. The component’s requirements on its execution environment
(implicit execution context), and on other associated components (explicit ex-
ecution context) can be validated using test-cases contained in the component,
or delivered as test component in its own right [9]. We call this pattern provider
integration testing. A typical example of such integration testing is depicted
schematically in Figure 2. The Visualiser component tests its own integration
with the Monitor component on which it depends. The Visualiser contacts the
TestManager (one of the BIT facilities) through the Acceptance port (AC). Test
Manager “knows”, through the TC port, where to find the MonitorTest (a test
service assessing the Monitor), and it notifies the Monitor that it will be tested,
through TSC. Test results are reported back to the Visualiser. Because test-
ing is performed from a component’s perspective, it is only possible to validate
the underlying platform and the components on which it depends directly. For
the call-reply architectural style this kind of testing is sufficient. However, in a
data-flow organisation, integration testing would be very limited.
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Data-flow integration testing using virtual components. Earlier ap-
proaches were proposed for integration testing in data-flow architectural styles.
Bertolino et al. have presented a method [3] to determine in a data-flow-based
system which flows are the most relevant for assessing component integration.
Their study deals with the combinations of concurrent executions of components,
which is useful to determine a test goal. Unfortunately, they do not elaborate
upon how this could be done.

Paul [15] describes “end-to-end” testing, a technique for assessment of system
behaviour with respect to inputs and corresponding expected outputs. This is not
an integration testing technique, but a system-level testing technique focusing on
system use cases which does not address distribution of tests in large systems.
Similarly, Jorgensen [13] describes “thread testing” as a series of inputs and
expected outputs to validate the functional behaviour at the system level. It
only focuses on the theoretical design of the test cases, and does not treat their
implementation on any specific platform.

Another technique for integration testing relies on the generation of a large
number of random input-data sequences to probe the various possible combina-
tions of executions [21]. Each sequence is considered one test-case. Drawbacks
are the sheer number of test-cases necessary to execute this technique, and that
the oracle must fit any randomly generated sequence. Therefore the oracle only
detects generic fault behaviour such as non-handled Java exceptions. Alterna-
tively, the oracle can be based on a “golden” implementation, but this exists only
in mature projects. There is no possibility to explicitly test typical component
protocol interactions.

In our earlier work [16] to test data-flow-based component systems and ser-
vices, we introduced the notion of virtual component, which permits the de-
termination of one data-flow (or a part of a flow) through a system, and its
representation in terms of a component in its own right, i.e. the virtual com-
ponent. The data-flow may involve several physical components and represents
them and their data exchange as one single “unit of high cohesion and low cou-
pling with contractually specified ports for external communication”. Testing
this representation is then equivalent to integration testing the data-flow and its
components associated. Here, BIT can be used to maintain tests for each flow,
by associating them with the corresponding virtual component, in the same way
as outlined above, in Figure 2. Consequently, tests can be managed indepen-
dently in separate parts of the system. The component framework can set up
the tests associated with the virtual components, execute the tester components,
process and report any issues found, and maintain a history of testing along the
evolution of the system.

Compared to a composite component, which is made of sub-components and
is present in hierarchical component models [14], a virtual component does not
influence the topology of the system. It is only a logical entity used for testing.
Each virtual component is independent from any other one, so they can overlap,
corresponding to the presence of several data-flows involving the same physical
components. For instance, in Figure 3, two virtual components V C1 and V C2
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Fig. 3. Example of two virtual components

are defined to represent the two data-flows B, C, E and B, D, whose integration
can be tested independently.

Another difference between a virtual component and a composite component
is the way it is defined. The latter is defined by the set of enclosed compo-
nents, and the connections between its interfaces and the interfaces of the sub-
components. A virtual component is only defined by the connections between its
interfaces and the interfaces of the sub-components (situated on the edges of the
flow). The set of components it encloses is computed dynamically according to a
specific algorithm. This permits to adapt easily to the evolution of the system:
when a component is added or removed, or when a connection is modified, if the
modifications are not on the edges of the flow, the virtual component adapts to
the new data-flow automatically. This is a strong advantage in the context of
large systems where the virtual components are created by the testers while the
architecture is modified by the developers. For example in Figure 3, the virtual
component V C1 is defined to represent the data-flow going from component B
to E. It is defined only by the input port m of B, and the output port p of E.

The algorithm to compute the set of components enclosed in a virtual com-
ponent has been defined [16] so that in the typical cases its result is “intuitive”.
The set C of components contained in a virtual component specified by its sets
of inputs Pi and outputs Po is computed as follow:

1. The set Cp is computed by iteratively adding all the components predecessor
to Po. For each output port, the component owner of this port is added to
the set. For each newly added component, the input ports which are not in
Pi are followed, and the component generating input for this port is again
added to the set Cp. This is repeated until the set has not been extended.

2. The set Cs is computed similarly by iteratively adding all the components
successor to Pi.

3. C is defined as Cp ∩ Cs.

For example, the set of components in the virtual component V C1 of Figure 3,
defined with Pi = {mB} (the port m of B) and Po = {pE} (the port p of E),
is computed by finding the sets Cs, which is {B, C, E, D, A}, and Cp, which is
{E, C, B}. The intersection of these two sets is {B, C, E}, the components in the
data-flow.

As we will see in the next section, in practice, this algorithm is not sufficient to
detect and correctly report errors in the definition of a virtual component, which
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can be caused either by a mistake during the definition or by a modification of
the system architecture.

3 Realizing Virtual Components in Component Models

Additional concepts and techniques are required in order to practically use vir-
tual components in real component models. This section gives an overview of
the properties of virtual components, and outlines additional requirements in
order to realize the concepts of virtual components in two concrete component
execution frameworks.

3.1 Detecting Ill-Formed Virtual Components

Virtual components are defined solely via their inputs and outputs. The algorithm
to determine which components are part of a flow, and hence a virtual component,
was presented in [16]. In practice, only a limited combination of inputs and out-
puts will lead to a meaningful data-flow. Incorrect combinations can be due to user
errors in flow definition, or due to changes in the system architecture. Such com-
bination can lead to tests validating component interactions not representative of
the interactions in the complete system, prevent the test component to connect to
the virtual component, or reveal directly that the implementation does not con-
form to the specification. In order to provide a user-friendly integration testing
environment, ill-formed virtual components must be detected and reported with
enough information, so that it is easy to correct or accept them. In the following,
we discuss algorithms to handle most of the issues in flow definition.

Weak flows. A virtual component should always correspond to a complete set
of component interactions, i.e. incorporate all components that contribute to the
considered flow. However, some components in a flow might receive inputs from
components which have not been defined as being part of that particular flow.
We refer to these flows as weak flows. For example, the flow in Fig. 4, does not
incorporate the input to sC as part of the virtual component. In real systems,
the combined behaviour of the components in the flow will also likely depend
on these inputs unidentified in the virtual component. This might depend on
the particular context of the running system and cannot be determined from
the topology of the system alone. An integration test may fail because of a

Fig. 4. Example of a weak flow
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poorly defined virtual component, and not because of a fault. Inversely, the test
could pass while in the actual system, with all the inputs, the implementation
behaves wrongly. Generally, weak flows are signs of an oversight from the tester.
Weak flows must be detected and indicated, so that the integration tester may
determine the full test flow. Let us note that this is different for the symmetrical
case with outputs, because not taking into account an output in the test cannot
change the behaviour of the components.

The following algorithm can be used to verify the completeness of virtual
components. Pi is the set of input ports, Po is the set of output ports, Pw is
empty initially, and C is the set of components in the virtual component:

1. For each input of each component in C, add it to the set Pw.
2. For each output of each component, for each of the input ports to which

they are connected, remove the input port from Pw.
3. Remove all inputs of Pi from Pw.

If the Pw is not empty, the flow is weak, and the inputs contained in this set are
the ones causing the weak flow.

Empty flows. Another problem of a virtual component is that of an empty
flow, as illustrated in Fig. 5: there is no flow from input nD to output pE . Such
ill-formedness appears if an input or an output explicitly part of the virtual
component is not used in component interaction. In Fig. 5, the error is either
the absence of port tF in the virtual component (an error in the test definition),
or the need for component D to also transmit its output to E (an error in the
implementation). Such topologies should not be accepted as virtual component,
and should be reported to the user as an error. The following algorithm permits
to verify such condition:

1. For each input in Pi, add the component owning it to Cm.
2. For each output in Po, add the component owning it to Cm.
3. Remove from Cm all the components in C.

In case the set Cm is not empty, there is one or more empty flow. Each empty
flow starts or ends with one of the component in Cm.

Fig. 5. Example of an empty flow

Parallel flows. The third peculiar topology of a virtual component is parallel
flows, illustrated in Fig. 6, in which the virtual component has been defined to
correspond to two independent flows C, E and D, F . This is likely a sign that
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Fig. 6. Example of a parallel flow

inputs and outputs which were related in the specification are not related to
each other in the implementation. In such a case, the implementation is probably
incorrect. At least, this ill-formedness is an indicator that one large-scale virtual
component could be redefined as several smaller-scale virtual components, which
would be easier to test and to maintain. However, this is not necessarily an issue
caused by the tester, it could be intentional, for example, to validate the timing
between the two flows. This is why only a warning should be displayed in such a
case. Detecting parallel flows is equivalent to the connected component problem
in graph theory, which may be addressed through techniques described in [11]:

1. Select i, one of the inputs in Pi, and remove from Pi.
2. Initialize Cc as an empty set.
3. Starting from the component owning i, recursively add all the successors

and predecessors to Cc. For each of these components remove all their input
ports from Pi.

4. Add Cc to the set of sets SCc.
5. Repeat until Pi is empty.

If SCc contains more than one set, then the virtual component contains parallel
flows. Each of the flows corresponds to one of the sets in SCc.

3.2 Extending the Component Model

For a component framework to support virtual components, its API and im-
plementation must be extended. Here, we describe the amendments in general
terms, as most component models provide comparable concepts supporting these
modifications. Two concrete implementations are described in Section 4.

Typically, an API provides functions to start and stop components, to bind
and unbind their interfaces – unless connections are implicit and components are
automatically linked when using the same data type – and to add components
to and remove components from the framework. The most essential change to
be introduced in the component model is the concept of a “virtual” component.
This adds to the concepts of composite and primitive types of most component
models. In hierarchical frameworks, we propose to associate each virtual compo-
nent with the composite component that is parent of all components comprising a
data-flow. In other words, each composite component has a set of virtual compo-
nents to test several interactions between its sub-components. This organisation
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permits to follow the component and BIT paradigms naturally. That is, compo-
nents are black boxes, and their development and deployment are separate. This
allows for a scalable virtual component approach. Every component will have
its own integration testing facility, which is also managed independently. Later
in the development and testing process, additional virtual components can be
associated with larger composite components to validate the global composites
of these building blocks.

A new interface is added to the composite components for adding/removing
virtual components. Note that composite components have already an interface
to add/remove components but it is better not to use it, in order to avoid mixing
testing functionality with nominal functionality. Using a separate interface to
manage the virtual components means that only the parts of the framework
involved with testing must be updated, and it ensures that they are completely
transparent for the normal existing components.

The new component type “virtual” shares many of the typical component in-
terfaces, but also has its own characteristics. The BIT interface used to associate
and run test-cases can be realized exactly like in the other component types. The
BIT interface used to notify a component of the fact that it is tested is also iden-
tical to the normal interface. It notifies all components contained in the flow.
Similarly, the interface to request the start and stop of a component passes the
requests to the components contained in the flow. This is used to initialise and
end the components during a test. The interface found in composite components
used to add and remove sub-components is not necessary for the virtual compo-
nents, as components are automatically enclosed. Nevertheless, the functionality
to list the sub-components inside a component is replicated in order to retrieve
the information about which components are contained in a flow.

In composite components, the bind and unbind interface allow to associate the
external interfaces with the sub-component interfaces. This API can be exploited
to specify the inputs and outputs of the virtual component, with the idiosyncrasy
that this specifies the actual shape of the virtual component. It should be noted
that if multiple modifications to the connections are required and successively
applied, the topology of the virtual component might be temporary incorrect
(as specified in Subsection 3.1). Therefore, unless the framework supports to
group modifications in an atomic way, the construct verification cannot be done
directly after a change. The verification should be done either whenever the set
of contained components is queried, or just before the test-cases associated with
the flow are executed.

4 Implementation

In the context of this research, the concepts of virtual components have been
implemented in two different component models. One adaptation was performed
for the OpenSplice1 framework, which is a non-hierarchical publish-subscribe
platform in which components are not explicitly connected, but are automati-
cally assembled when they share common “topics”. This adaptation is not freely
1 http://www.opensplice.org

http://www.opensplice.org
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<virtual-composite name="flowRawData2FilteredData">
<interface name="in" role="server" signature="AISin"/>
<interface name="out" role="client" signature="AISin"/>
<binding client="this.in" server="ais-listener.ais-in"/>
<binding client="filter.ais-out0" server="this.out"/>
<test provider="JUnitProviderFlow" name="RawProcess" definition="RawProcess"/>

</virtual-composite>

Listing 1.1. Definition of a virtual component with a test-case in an ADL file

available due to confidentiality restrictions. The other adaptation was performed
for our Atlas component framework, which is based on the Fractal component
model2. This framework supports hierarchical structure, has explicit connec-
tions, and permits reflective view on the components. It is freely available from
our website3, including the virtual component extension.

The Atlas extension introduces a new component type to represent virtual
components, as well as the interfaces discussed above. Because the framework
is fully aware of the virtual components, tests can be executed automatically
during initialisation of system. Moreover, if the system is modified, the notifica-
tion of changes are passed to the virtual component infrastructure, which will
automatically reset the test status for the data-flows affected. The instantiation
of the test component and its binding and unbinding are also handled automat-
ically by the framework. In case a test-case fails, the failure is displayed on the
framework console, and the system cannot be started until this is fixed.

The Architecture Description Language (ADL) used by Atlas for describing
the system has also been extended to support these new concepts. Listing 1.1
presents an example of a virtual component expressed in this ADL. This flow
is taken from the example system described in Section 5. The interface tags
define the interface of the component. The binding tags define the beginnings
and ends of the flow, by identifying the specific components at its edges. Finally,
the test tag denotes the test component containing the test-cases for this flow.
The JUnitProviderFlow is a component belonging to the BIT infrastructure
of Atlas, which is in charge of handling the execution of test components.

Test-cases for data-flow integration testing are defined in terms of a JUnit
class, provided that this class also implements the complementary interfaces of
the flow. An excerpt of such a class is displayed in Listing 1.2. This corresponds
to the flow mentioned in the previous listing, with one test-case oneMessage

which validates the correct transmission of a message through the flow. The
method init() is executed just before the test-cases are executed (and after
the component has been created and bound to the flow). The method AISin()

corresponds to the input interface of the testing component.
The OpenSplice implementation follows a different approach, mainly due to

the lack of component hierarchy, and of centralised management functions (com-
ponents can start and stop completely independently from the rest of the sys-
tem). A special program was created to handle all the virtual components of a
2 http://fractal.ow2.org
3 http://swerl.tudelft.nl/bin/view/Main/Atlas

interface
binding
test
JUnitProviderFlow
oneMessage
init()
AISin()
http://fractal.ow2.org
http://swerl.tudelft.nl/bin/view/Main/Atlas
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public class RawProcess implements AISin, BindingController {
private AISin myServer;
private List<AISMessage> AISrcv;

@Before
public void init() {
AISrcv = new ArrayList<AISMessage>();

}

@Test
public void oneMessage() throws NoSuchInterfaceException {
AISMessage mes = new DynamicAISMessage("32w@HUP0380@O‘s@1T1P06", 5925L);
myServer.AISin(mes);
assertEquals("Message not received.", AISrcv.get(0), mes);

}

public void AISin(AISMessage m) {
AISrcv.add(m);

}
...

}

Listing 1.2. Definition of a test-case for validating the flow

given system. Following the definition of the flows given in separate files, and the
information about which components have been modified (to be provided by the
user, because automatic notification of changes is not available), the program
establishes the flows to be tested. Each flow is associated with an OpenSplice
component written as a JUnit class. This contains all the test-cases for test-
ing the integration of all components associated with the flow. The framework
automatically connects components with compatible topics, so the test-cases,
integrated as yet another component, are directly attached with the right flow.
It is important to note that we use existing operations of the component model
in order to implement these mechanisms.

In the next section, we use the Atlas implementation to evaluate with a real
system to which extent the advantages of the virtual component approach pay
off during integration testing.

5 Evaluation

In addition to performing a feasibility study, the goal of this evaluation is the as-
sessment of whether the virtual component approach improves the failure detec-
tion rate during integration testing compared to the provider testing approach
presented in Section 2. In order to being able to compare the performance of the
two approaches in terms of failure detection, mutations are introduced in the sys-
tem and for each of them, integration tests are executed, according to the princi-
ples of the two approaches. The evaluation is performed on a part of a maritime
surveillance system used as case study.
Study Subject. Before going into more details on the evaluation, we briefly
present the case study system. The surveillance system receives information
broadcasts from ships, called AIS messages [12], and it processes them in order
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Fig. 7. Architecture of the surveillance system used, with 3 virtual components

to form a situational picture of the coastal waters. The (simplified) architec-
ture of this system is displayed in Fig. 7. The World component simulates the
ships transmitting data, by replaying AIS messages recorded from reality. The LS
component receives all AIS data from the antennas physically spread along the
coast. The Filter component suppresses duplicate messages, because some re-
ceivers cover overlapping areas. The Merger acts as a temporary database of AIS
messages, and client components can consult it to receive tracking information
of a ship. The clients must send typical database query requests for retrieving
the ship tracks. They are connected following a call-reply architectural style.
However, at a high level of abstraction, they are organised according to a data-
flow architectural style. The Monitor and the Plotter are both clients of the
Merger. The former detects discrepancies in the data, while the latter displays
the ship tracks on the screen of the command and control centre (by sending
vector drawings to the actual display system). The components are implemented
as Atlas components in Java.

Test-cases. Three virtual components were defined, i.e., RawProcess,
TrackProcess, and ReceivedInDisplay (Fig. 7). These correspond to three
data-flows each of which has a defined expected behaviour. Every flow (i.e., each
virtual component) is associated with several test-cases used to validate the de-
fined behaviour. For example, one of the test-cases of ReceivedInDisplay sends
AIS messages from two ships and verifies that instructions to display both ships
are sent. For the provider integration testing, the components are also equipped
with test-cases for assessing the correct responses of the components on which
they depend. As an example, the LS component has a test-case which transmits
some AIS messages and validates that no exceptions happened. The Plotter
component comes with test-cases validating the interpretation of the database
protocol by the Merger component.

Component Mutation Testing. Mutation testing is a technique in which
faulty programs, i.e., the mutants, are generated in order to check the efficiency
of a test method to uncover failures. A mutant is a semantic modification in the
implementation of a component introducing a fault.

World
LS
Filter
Merger
Monitor
Plotter
Merger
RawProcess
TrackProcess
ReceivedInDisplay
ReceivedInDisplay
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Table 1. Mutation test results

Source True
positive

False
positive

True
negative

False
negative

Total

Provider
testing

Filter 36 26 2 0 64
Merger 51 62 4 0 117

Virtual
component

Filter 36 7 21 0 64
Merger 51 41 25 0 117

We had these mutants generated through the μJava4 tool for the Merger and
Filter component. Each of the mutations was applied separately, providing a
different version of the system, for which both integration testing methods were
executed. “Equivalent” mutants, i.e., modifications that cannot lead to a fault
because the system performs nominally as if it was the original version, were
sorted out manually. Out of the 181 generated mutants, 94 were deemed as non-
equivalent and included in the study. When a test does not find any errors, i.e.,
the mutated system is considered to operate fine, the result is termed “positive”.
When an error is reported, the result is termed “negative”. “False positives” are
the mutants which are said to be working fine, although it was manually verified
that they behave outside of the specification. “False negative” represent cases for
which a correct system is classified as having an error.

All tests pass when applied to the original (non-mutated) system. Table 1
summarizes the integration testing results obtained when using the provider
and virtual component testing approaches. None of the tests applied has pro-
duced false negatives. This had been expected because all the tests passed on the
original system. The provider integration testing approach is only able to trigger
a few failures, i.e., 6% of the faulty mutants detected. In contrast, the virtual
component integration testing approach is able to detect a much larger popula-
tion of the faulty mutants, i.e., 49%. All the failures triggered by the provider
testing approach are also identified by the virtual component testing approach.

Architecture mutation testing. To evaluate the detection of faults in the
architecture, we seeded faults in the case study system by changing or removing
connections between components. All the 5 mutated configurations had signifi-
cant incorrect behaviour. The provider testing method detected 2 of the 5 faults,
while the virtual component method detected all the 5 faults. More precisely, 3
of the faults were directly detected by the well-formedness checks, therefore not
even requiring the execution of the test-cases.

Discussion. First, these results confirm our initial supposition that the virtual
component integration testing approach is successful in detecting failures in the
specific context of a data-flow architectural style. Second, the results suggests
a much better capacity of detecting problems compared with a more “tradi-
tional” or “typical” integration testing approach. It should be noted that the
4 http://cs.gmu.edu/~offutt/mujava/

http://cs.gmu.edu/~offutt/mujava/
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tests were written without knowledge of the mutants. The creation of additional
tests specifically crafted to detect the mutants, would have probably increased
the true negatives.

Unit tests for the two mutated components were able to detect 75% of the bugs
introduced, and 100% would probably be achievable with more elaborate test
suites. However this would not be a fair comparison. Integration testing can only
detect bugs in program sections which are executed, and therefore cannot detect
all the mutations. Moreover, the integration testing also targets faults that are
due to different interpretations of a same specification, or due to mistakes in the
architecture of the system. This cannot be simulated by mutation testing alone,
and unit testing cannot detect such issues, as highlighted by the architecture
mutations, which none of the unit tests would have revealed.

6 Conclusions and Future Work

We have presented the implementation and usage of virtual components to facili-
tate the integration testing of component systems organised following a data-flow
architectural style. First, three algorithms have been introduced to enforce well-
formedness of the virtual components. They are key to a user-friendly realization
of this new concept in a component middleware platform. A guideline to extend
the typical component interfaces for the manipulation of virtual components
was presented. Second, we introduced two implementations of virtual compo-
nent testing for two types of component middleware platforms, demonstrating
the applicability of the approach in practice. Finally, the evaluation of this inte-
gration testing approach using mutation testing on a system from our industrial
partner showed the effectiveness in detecting errors in systems organised follow-
ing a data-flow schema. We could show that on this system half of the component
mutants were detected by this approach, in contrast to 6% detected by the tra-
ditional provider integration testing approach. All 5 architecture mutants were
also detected instead of the 2 detected using provider testing.

In future work, we will study ways to minimize the number of test-cases
executed during regression integration testing. For example, a test might be
repeated only if it assesses non-functional properties, or it is repeated depending
on a modification performed.
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Abstract. Testing real-time embedded systems (RTES) is in many ways chal-
lenging. Thousands of test cases can be potentially executed on an industrial
RTES. Given the magnitude of testing at the system level, only a fully auto-
mated approach can really scale up to test industrial RTES. In this paper we
take a black-box approach and model the RTES environment using the UML/-
MARTE international standard. Our main motivation is to provide a more practi-
cal approach to the model-based testing of RTES by allowing system testers, who
are often not familiar with the system design but know the application domain
well-enough, to model the environment to enable test automation. Environment
models can support the automation of three tasks: the code generation of an envi-
ronment simulator, the selection of test cases, and the evaluation of their expected
results (oracles). In this paper, we focus on the second task (test case selection)
and investigate three test automation strategies using inputs from UML/MARTE
environment models: Random Testing (baseline), Adaptive Random Testing, and
Search-Based Testing (using Genetic Algorithms). Based on one industrial case
study and three artificial systems, we show how, in general, no technique is better
than the others. Which test selection technique to use is determined by the failure
rate (testing stage) and the execution time of test cases. Finally, we propose a
practical process to combine the use of all three test strategies.

Keywords: Search based software engineering, branch distance, model based
testing, environment, context, UML, MARTE, OCL.

1 Introduction

Real-time embedded systems (RTES) represent a major proportion of the software be-
ing developed [1]. The verification of their correctness is of paramount importance,
particularly when these RTES are used for business or safety critical applications (e.g.,
controllers of nuclear reactors and flying systems). Testing RTES is particularly chal-
lenging since they operate in a physical environment composed of possibly large num-
bers of sensors and actuators. The interactions with the environment can be bound by
time constraints. For example, if the RTES of a gate is informed by a sensor that a train
is approaching, then the RTES should command the gate to close down before the train
reaches the gate. Missing such time deadlines can have disastrous consequences in the
environment in which the RTES works. In general, the timing of interactions with the
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real-world environment in which the RTES operates can have a significant effect on the
resulting behavior of test cases.

In this paper our objective is to enable the black-box, automated testing of RTES
based on environment models. More precisely, our goal is to make such environment
modeling as easy as possible, and allow the testers to automate testing without any
knowledge about the design of the RTES. This is typically a practical requirement for
independent system test teams in industrial settings. In addition, the test must be auto-
mated in such a way to be adaptable and scalable to the specific complexity of a RTES
and available testing resources. By adaptable, we mean that a test strategy should enable
the test manager to adjust the amount of testing to available resources, while retaining
as high a fault revealing power as possible.

The system testing of a RTES requires interactions with the actual environment or,
when necessary and possible, a simulator. Unfortunately, testing the RTES in the real
environment usually entails a very high cost and in some cases the consequences of fail-
ures would not be acceptable, for example when leading to serious equipment damage
or safety concerns. In our context, a test case is a sequence of stimuli, generated by the
environment or its simulator, that is sent to the RTES. If a user interacts with the RTES,
then the user would be considered as part of the environment as well. There is usually a
great number and variety of stimuli with differing patterns of arrival times. Therefore,
the number of possible test cases is usually very large if not infinite. A test case can
also contain changes of state in the environment that can affect the RTES behavior. For
example, with a certain probability, some hardware components might break, and that
has effect on the expected and actual behavior of the RTES. A test case can contain
information regarding when and in which order to trigger such changes.

Testing all possible sequences of environment stimuli/state changes is not feasible.
In practice, a single test case of an industrial RTES could last several seconds/minutes,
executing thousands of lines of code, generating hundreds of threads/processes running
concurrently, communicating through TCP sockets and/or OS signals, and accessing
the file system for I/O operations. Hence, systematic testing strategies that have high
fault revealing power must be devised.

The complexity of modern RTES makes the use of systematic testing techniques,
whether based on the coverage of code or models, difficult to apply without generating
far too many test cases. Alternatively, manually selecting and writing appropriate test
cases based on human expertise for such complex systems would be far too challenging
and time consuming. If any part of the specification of the RTES changes during its de-
velopment, a very common occurrence in practice, then many test cases might become
obsolete and their expected output would potentially need to be recalculated manually.
The use of an automated oracle is hence another essential requirement when dealing
with complex industrial RTES.

In this paper we present a Model-Based Testing (MBT) [2] methodology to carry
out system testing of RTES in a fully automated, adaptable, and scalable way. We tailor
the principles of Adaptive Random Testing (ART) [3] and Search-Based Testing (SBT)
[4] to our specific problem and context. For our empirical evaluation, we use Random
Testing (RT) [5] as baseline. One main advantage of ART and SBT is that it can be
tailored to whatever time and resources are available for testing: when resources are
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expended and time is up, we can simply stop their application without any side effect.
A coverage-based strategy could not be, for example, interrupted at any time. Further-
more, ART and SBT attempt, through different heuristics, to maximize the chances to
trigger a failure within time constraints. We will also see how their combined use can be
helpful to gain the most out of testing resources in practice. The RTES under test (SUT)
is treated as a black box: no internal detail or model of its behavior is required, as per
our objectives. The first step is to model the environment using the UML standard and
its MARTE profile, the latter being necessary to capture real-time properties. The use
of international standards rather than academic notations is dictated by the fact that our
solutions are meant to be applied by our industry partners. Environment models support
test automation in three different ways:

– The environment models describe some of the structural and behavioral properties
of the environment. Given an appropriate level of detail, they enable the automatic
generation of an environment simulator to satisfy the specific needs of software
testing.

– The models can be used to generate automated oracles. These could for example be
invariants and error states that should never be reached by the environment during
the execution of a test case (e.g., an open gate while a train is passing). In general,
error states can model unsafe, undesirable, or illegal states in the environment. We
used error states as oracles in our case studies.

– Test cases can be automatically selected based on the models, using various heuris-
tics to maximize chances of fault detection. In our case studies we use ART and
SBT.

In this paper we focus on the third item above and assess RT, ART, and SBT on the pro-
duction code of a real industrial RTES. Due to space constraints, and because our focus
in this paper is test automation, we do not explain in detail how to use UML/MARTE
to model the environment of a RTES and how simulator code can be automatically
generated (which we investigated in [6]). To the best of our knowledge, no MBT au-
tomation results for ART and SBT on an actual RTES have ever been reported in the
research literature. Since no freely available RTES was available, we also constructed
three different artificial RTES in order to extend our investigation and better understand
the influence of various factors on test cost-effectiveness such as the failure detection
rate. The use of publicly available artificial RTES will also facilitate future empirical
comparisons with our work since, due to confidentiality constraints, our industrial case
study cannot be made public.

The paper is organized as follows. Section 2 provides an overview of related work.
How the context is modeled and simulated is shortly discussed in Section 3. Section 4
describes the different strategies we used to generate test cases. Their empirical valida-
tion is described in Section 5 and threats to validity are discussed in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

A large body of literature has been dedicated to test RTES. For reason of space, here
we can only give a very brief and incomplete overview.
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Most of the approaches to test RTES are based on violating their timing constraints
[7] or checking their conformance to a specification [8]. The specification is generally
a formal model of the system and this model is then used to generate test cases. A num-
ber of approaches have been proposed over the years to address the above problem.
The most widely discussed approaches model the system using Timed Automata [9].
A number of Timed Automata extensions, such as Timed I/O Automata [10], have also
been used for conformance testing. For the same purpose, UML statechart [11], Ex-
tended Finite State Machines [12] and Attributed Event Grammar [13] have also been
used.

There are several works using SBT techniques for testing different aspects of RTES
[14], as for example identify deadline misses [15] and testing functional properties [16].

The work presented here is significantly different from most the above approaches
as we adopt, for practical reasons presented above, a black-box approach to system
testing that relies on modeling the RTES environment rather than its internal design
properties. As noted above, this is of practical importance as independent system test
teams usually do not have easy access to precise design information. Most existing work
does not focus on system testing, hence their emphasis on modeling the RTES internal
behavior and structure. Another difference of practical importance, though this is not
detailed in this paper, is that we use UML and its standard extensions for modeling the
environment. Last but not least, as opposed to published case studies (e.g., [13,12]), we
assess our test strategies on the actual production code of an industrial RTES.

3 Environment Modeling and Simulation

For RTES system testing, software engineers would typically be responsible for devel-
oping the environment models. Therefore, the modeling language should be familiar to
them and therefore based on software engineering standards. In other words, it is im-
portant to use a modeling language for environment modeling that is widely accepted
and used by software engineers. Furthermore, standard modeling languages are widely
supported in terms of tools and training. The Unified Modeling Language (UML) and
its extensions are therefore a natural choice to consider in our context.

Several modeling and simulation languages are available and can be used for mod-
eling and simulating the context (e.g., DEVS [17]). But in our case using these simula-
tion languages raises a number of issues, including the fact that software engineers in
the development team are usually not familiar with the notations and concepts of such
languages.

Higher level programming languages (such as Java or C) can also be used as simu-
lation languages. The major problem with the use of such languages is the low level of
abstraction at which they “model” the environment. The software engineers will have to
deal with all the programming language constructs (such as threads) while at the same
time trying to focus on the details of the environment itself.

RTES testing through an environment simulator faces the question of how time is
handled. Indeed, many properties of the RTES depend on whether some time constraints
are fulfilled or not. Ideally, we would like to be able to simulate the passing of time in a
deterministic way, but it is not always possible for large and complex RTES.
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The opposite approach to time simulation would be to run the RTES with its simu-
lated environment using the real clock of the CPU used to run the empirical analysis.
On one hand, it has the benefit that we do not have any particular constraint on the
type of RTES that can be analyzed. On the other hand, it adds noise and variance in the
scheduled time events. If time constraints of the RTES are very tight (e.g., in the order
of few milliseconds), then this approach is not a viable option.

In our work, we have used UML/MARTE as a simulation language. Models are de-
veloped in UML as classes and their state-machines. These models are then transformed
into Java using model to text transformations. The activities and actions are written in
Java and are converted into Java method calls. This was appropriate for the RTES con-
sidered in this paper. For other types of RTES, different programming languages could
be necessary. Notice that our methodology is general. We chose Java only for prac-
tical reasons. In particular, in our empirical analyses we did not face the problem of
the garbage collector interfering with time properties. The garbage collector was never
called during the execution of a test case.

4 Automated Testing

4.1 Test Case Representation

In our context, a test case execution is akin to executing the environment simulator.
Each state machine represents a component of the environment. There can be more
instances of a state machine with different settings to represent different sensors/actu-
ators of the same type. For example, in a gate controller RTES, we can have a state
machine representing the trains. For each simulated train we will have an independent
running instance of that state machine. The domain model is used to identify how many
instances can or should run in parallel for each state machine. Based on the domain
model, there could be different possible configurations of the environment, but in this
paper we focus only on one fixed configuration.

In the behavioral models of the environment (i.e., the state machines) there can be
non-deterministic parts. For example, a timeout transition could be triggered within a
minimum and a maximum time value but the exact value cannot be determined. This is
very typical when real-world components are modeled, in which for example there is
always a natural variance when time-related properties are represented. Another exam-
ple is when we assign probabilities p in the models to represent failure scenarios, as for
example the breakdown of sensors/actuators. In our context, input data of a test case are
the choice of the actual values to use in these non-deterministic events.

In our modeling methodology, we have non-deterministic choices only in the tran-
sitions between states. They can be in the trigger, the guard and the action of the tran-
sition. A transition might be taken several times, and this number might be unknown
before executing the test case. Therefore, for each instance of the environment state
machines, for each non-deterministic choice, we allocate in the test case a vector of
possible values. The length of this vector is l. Each time such non-deterministic choice
needs to be made, a value from the corresponding vector is selected. Because the vector
has finite length l, it is used as a ring: The values are taken in order, and after l request
for values, it starts again from the beginning of the vector. Figure 1 shows an example.
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Fig. 1. Example of a reduced UML/MARTE state machine

Let the transition C → D have a non-deterministic choice in [0,1], for example the
timeout T ∈ [0,1]. Given for example l = 2, we would have a data vector containing
for example {0.4,0.32}. The first time the transition C → D is taken, the value 0.4
is used fort the non-deterministic choice. The second time, the value 0.32 is used. The
third time, the value 0.4 is used again, and so on.

Given n state machine instances, and m non-deterministic choices in each of them
(for simplicity, because in general instances of different machines will have a different
number of non-deterministic choices), we would have that each test case contains L =
n∗m∗ l values, which can be represented as a vector. The choice of l is arbitrary but has
significant consequences. On one hand, a small number of possible values could make
it impossible to represent sequences of event patterns that lead to failures in the RTES.
On the other hand, a high number of possible values will lead to long vectors and might
harm the effectiveness of test selections techniques such as ART and SBT (discussed in
more details in the next sections).

In our case studies, the values to include in the test case data are chosen before the
execution of the test cases. This means that the domain of these values should be static
and not depending on the dynamic execution of the test cases. For example, if a variable
is constrained within a minimum and maximum limit, then these boundaries should be
known before test execution. This is the case for the industrial RTES analyzed in this
paper and for other RTES we have worked with. When this is not the case, we would
need to enable the choice of non-deterministic options at runtime.

4.2 Testing Strategies

As described in the previous section, a test case can be seen as a vector V . Elements in
this vector can be of different types, but their domain of valid values should be known.
Given D(i) the domain of the ith variable in V , we obtain that the number of possi-
ble valid test cases is

∏ |D(i)|, which is an extremely large number. An exhaustive
execution of all possible test cases is infeasible.

In this paper we consider the testing problem of sampling test cases to detect failures
of the RTES with automated oracles derived from the environment models. For all test
strategies, the oracle checks whether a transition to an error state specified in the model
occurs during test execution. We choose and execute test cases one at a time. We stop
sampling test cases as soon as a failure has been found. A test strategy that requires the
sampling of fewer test cases to detect failures should obviously be preferred.

The simplest, automated technique to choose test cases is Random Testing (RT). For
each variable in V , we simply sample a value from its domain with uniform probability.
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Although RT can be considered to be a naive technique, it has been shown to be effective
in many testing situations [18,19].

Another technique that we investigate is Adaptive RT (ART) [3], which has been
proposed as an extension of RT. The underlying idea of ART is that diversity among test
cases should be rewarded, because failing test cases tend to be clustered in contiguous
regions of the input domain. ART can be automated if one can define a meaningful
similarity function for test cases. To the best of our knowledge, we are aware of no
previous application of ART to test RTES. In this paper we use the basic ART algorithm
described in [3].

Because in our case studies all the variables in V are numerical, for the distance
between two test case data vectors V 1 and V 2 we use the following dis(V 1,V 2) =∑

abs(V 1[i]−V 2[i])/|D(i)|. We sum the absolute difference of each variable weighted
by the cardinality of the domain of that variable. Often, these variables represent the
time in timeout transitions. Therefore, ART rewards diversity in the triggering time of
events.

In this paper we also investigate the use of search algorithms to tackle the testing
of RTES. In particular we consider the use of Genetic Algorithms (GAs), which are
the most used search algorithms in the literature on search-based testing (SBT) [14].
To use search algorithms to tackle a specific problem, a fitness function needs to be
defined tailored to solve that problem. Search algorithms exploit the fitness function
to guide the search toward promising areas of the search space. The fitness function is
used to heuristically evaluate how “good” a test case is. In our case, the fitness function
is used to estimate how close a test case is from triggering a failure in the RTES, that
is when at least one component of the environment enters an error state. This is once
again determined by analyzing the environment models.

To tackle the testing problem described in this paper, we developed a novel fitness
function f that can be seen as an extension of the fitness functions that are commonly
used for structural testing [4] and MBT [20]. In our case, the goal is to minimize the
fitness function f . If at least one error state is reached when a test case with test data V
is executed, then f(V ) = 0. For each error state E in each state machine instance we
employ the so called approach level A and branch distance B. The approach level cal-
culates the minimum number of transitions in the state machine to reach an error state
from the closest executed state. The branch distance is used to heuristically score the
evaluation of the Object Constraint Language (OCL) constraints in the closest executed
state from which the approach level is calculated. The branch distance is used to guide
the search to find test data that satisfy those OCL constraints. A transition could be trig-
gered several times but never executed because the guard fails. For the branch distance,
we calculate it every time but then we only consider the minimum value it obtains. Be-
cause the branch distance is less important than the approach level, it is normalized in
the range [0,1]. We use the following normalizing function nor(x) = x/(x+1), which
has been shown to be better than other normalizing functions used in the literature [21].
Notice that, in the case of MBT, it is not always possible to calculate the branch dis-
tance when the related transition has never been triggered. In these cases, we assign to
the branch distance B its highest possible value.
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The extension of the fitness function we make in this paper exploits the time prop-
erties of the RTES. Some of the transitions are triggered when a time-threshold is vio-
lated. For example, an error state could be reached if a sensor/actuator does not receive
a message from RTES within a time limit. If such transitions exist on the path toward
the execution of the error states, then we need a way to reward test data that get the exe-
cution closer to violate those time constraints. If a transition is taken after a threshold z,
then we calculate the maximum consecutive time t the state machine stays in the state
from which that transition can be triggered (this would be the same state from which the
approach level is calculated from). Then, to guide the search we can use the following
heuristic T = z − t, where t ≤ z.

Finally, the fitness function f for a test data vector V is defined as:

f(V ) = minE(AE(V ) + nor(TE(V )) + nor(BE(V ))).

Notice that, to collect information such as the approach level, the source code of the
simulator needs to be instrumented. This is automatically done when this code is gen-
erated from the environment models.

Once the fitness function is defined, we can use it to guide the GA to select test
cases. But GAs have many parameters that need to be set. In this paper we use a Steady
State GA [4]. We employ rank selection with bias 1.5 to choose the parents. A single
point crossover is employed with probability Pxover = 0.75. This operator chooses a
random point inside the data vectors V of the parents sx and sy. The elements in the
data vector after that splitting point are swapped between the two parent solutions. Each
of the L elements in a data vector is mutated with probability 1/L. A mutation consists
of replacing a value with another one at random from the same domain. The population
size is chosen to be 10. The optimal configuration of search algorithms is in general
problem dependent [22]. Due to the large computational cost of running our empirical
analysis, we have not tuned the GA. We simply use reasonable parameter values given
in the literature of GAs.

5 Empirical Study

5.1 Case Study

To validate the novel approach presented in this paper, we have applied it to test an
industrial RTES. The analyzed system is a very large and complex controller that inter-
acts with several sensors/actuators. The company that provided the system is a market
leader in its field. For confidentiality reasons we cannot provide full details of the sys-
tem. Information of the environment models of this RTES is provided in Table 1. Notice
that for this case study there are several state machines, and for each of them there can
be one or more instances running in parallel at the same time. For each test case, 23 in-
stances of state machines run in parallel, each of them can start several threads. The total
number of non-deterministic choices (NDCs) is 82. The UML/MARTE context models
were developed in IBM Rational Software Architect. Constraints, such as guards, were
expressed in OCL.
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Table 1. Summary of the state machines of the environment of the industrial RTES. NDC stands
for “Non-Deterministic Choice”.

State Machine States Transitions Error States Instances NDCs for Instance
S1 19 29 1 10 6
S2 4 7 0 11 2
S3 3 8 1 1 0
S4 5 5 0 1 0

Table 2. Properties of the three artificial problems. LoC stands for “Lines of Code”, whereas
NDC stands for “Non-Deterministic Choice”.

Artificial LoC of LoC of State States Transitions Instances Total NDCs
Problem RTES Environment Machines
AP1 227 259 1 5 7 10 20
AP2 409 271 1 5 7 2 4
AP3 337 318 2 9 13 5 18

To facilitate future comparisons with the techniques described in this paper, it would
be necessary to also employ a set of benchmark systems that are freely available to re-
searchers. Unfortunately, we have not found any RTES satisfying this criterion. There-
fore, in addition to our industrial case study, we have designed three artificial RTES,
called AP1, AP2 and AP3. Two of them are inspired by the industrial RTES used in
this paper, whereas the third is inspired by the control gate system described in [12].
The RTES are written in Java to facilitate their use on different machines and operating
systems. For the same reason, the communications between the RTES and their envi-
ronments are carried out through TCP. The use of TCP was also essential to simplify the
connection of the RTES with its environment. For example, if the simulator of the en-
vironment is generated from the models using a different target language (e.g., C/C++),
then it will not be too difficult to connect to the artificial RTES written in Java. These
RTES are all multithreaded. Table 2 summarizes the properties of these artificial RTES.
In each of them, there is only one error state. We introduced by hand a single non-trivial
fault in each of these RTES.

5.2 Experiments

We have carried out two different sets of experiments. One for the artificial problems,
and one for the industrial RTES. In all these experiments, the value l for the non-
deterministic choices is set to l = 3. This means that the number of input variables
in each test case is 60 for AP1, 12 for AP2, 54 for AP3 and finally 246 for the industrial
RTES.

In the first step of the experiments, we ran RT, ART and GA on each of the three
artificial problems. Because the execution of a single test case takes 10 seconds, we
stop each algorithm after 1000 sampled test case or as soon as one of the error state is
reached. Notice that the value 10 seconds is fixed, and it does not depend on the used
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Table 3. Success rate (out of 100 runs)
for the three artificial problems.

Algorithm AP1 AP2 AP3
RT 6 35 49
ART 0 40 74
GA 90 21 31

Table 4. Number of sampled test cases
to detect the first failure in the consid-
ered industrial RTES. “SD” stands for
Standard Deviation.

Algorithm Min Median Mean Max SD
RT 1 73.0 131.9 912 164.9
ART 1 75.5 104.6 525 99.7
GA 1 99.0 160.0 767 155.2

execution platform. Using faster hardware would not change the amount of time re-
quired to run these experiments. The only requirement is that the hardware used for the
experiments is fast enough to sustain the CPU load without introducing delays higher
than a few milliseconds. Because in these simulations most of the time the CPU is in
idle state, the computers used in the experiments were appropriate.

For each test strategy and each case study, we ran the algorithms 100 times with
different random seeds. Because these algorithms are randomized, a large number of
experiments is required to obtain statistically significant results. The total number of
sampled test cases is hence at most 3 ∗ 3 ∗ 1000 ∗ 100 = 900,000, which can take up
to 104 days on a single computer. To cope with this problem, we used a cluster to run
these experiments.

Given an upper bound of 1000 test cases, it is not always the case that any of the test
strategies is able to trigger a failure in the RTES. In Table 3 we report how many times
each algorithm was able to do so out of the 100 experiments. Because the process of
detecting failures in 100 experiments can be considered to be a binomial process with
unknown probability [23], we use the Fisher Exact test to compare the success rate of
RT with the ones of ART and GA. The significance level of the tests is set to 0.05.
Results show that the only case in which there is no significant difference in the success
rate is for problem AP2 when RT is compared to ART.

The second set of experiments has been carried out on an industrial RTES. In sys-
tem testing of RTES, the simulation of the environment can in general be run for any
arbitrary amount of time. But there should be enough time to render possible the exe-
cution of all the functionalities of the RTES. For example, in the RTES for a train/gate
controller, we should run the simulation at least long enough to make it possible for a
train to arrive and then leave the gate. Choosing for how long to run a simulation (i.e.,
a test case) is conceptually the same as the choice of test sequence length in unit testing
[24] (i.e., many short test cases or only few ones that are long?). But in contrast to unit
testing in which often the execution time of a test case is in the order of milliseconds,
in the system testing of RTES we have to deal with much longer execution time. In this
paper, we run each test case for 20 seconds. This choice has been made based on the
properties of the RTES and discussions with its software testers.

We evaluated the use of RT, ART and GA to find failures in this RTES. We could
not run this empirical analysis on a cluster due to technical reasons. We used a single
dedicated computer, and it took nearly ten days to run these experiments. The failure
rate of the SUT in these experiments was quite high, so we did not use any upper bound
for the number of sampled test cases. The results of experiments are shown in Table 4.

To analyze the results in a sound manner we carried out a set of statistical tests
on the data presented in Table 4. We used parametric t-tests to see whether there is
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Table 5. Results of the statistical tests for the data in Table 4

Comparison t-tests p-value Cohen D U-test p-value Vargha-Delaney A
RT vs ART 0.1588 0.2012 0.9708 0.5015
RT vs GA 0.2150 -0.1768 0.0334 0.4129
ART vs GA 0.0030 -0.4272 0.0193 0.4042

any statistical difference between the mean values of sampled test cases among the
three analyzed algorithms. The scientific or practical significance of these differences
is evaluated using the Cohen D coefficient. We also carried out non-parametric Mann-
Whitney U tests to see whether any of the results of these algorithms is stochastically
greater than the others. The scientific significance of this test is measured with the
Vargha-Delaney A statistic. For both t-tests and Mann-Whitney U tests the significant
level is set to 0.05. For the Cohed D coefficient (value d), we classify the effect size
as follows [25]: small for abs(d) = 0.2, medium for abs(d) = 0.5, and finally large
for value abs(d) = 0.8. In the case of Vargha-Delaney A statistic (value a), we use
the following classification [26]: small for abs(a − 0.5) = .06, medium for abs(a −
0.5) = 0.14 and large for abs(a− 0.5) = 0.21. Table 5 summarizes the results of these
statistical tests.

5.3 Discussion

In the results of the experiments on the artificial problems shown in Table 3, we can see
that no testing technique generally dominates the others. GA is statistically better on
the first problem, but it is the worst on the other two problems. Regarding RT and ART,
they are equivalent on the second problem, but RT is best on the first, whereas ART is
best on the third problem.

The results in Table 3 for GA can be precisely explained. Covering all the non-
error states and transitions in the environment models of these problems is very easy,
practically all test strategies achieve this. The only difficult part is the transition to the
error state. For the first problem AP1, that transition is a time transition with no guard.
After a time threshold, that transition is triggered. The novel fitness function proposed
in this paper can take advantage of this information, rewarding test cases that get closer
to violate that time constraint. In fact, for each test case we can automatically calculate
the time that it spends in the state that could lead to the error state. This automated
fitness function produces an easy fitness landscape that can be efficiently searched by
GA. This explains the fact that GA gets to the error state 90% of the time, whereas RT
reaches it only in 6% of the time. However, why do we obtain so much worse results in
the other two problems AP2 and AP3? The reason is that the fitness function in these
cases is practically a needle-in-the-haystack function. In the transition to the error state,
there is a guard that is checking whether one Boolean variable is equal to true. The
value of this variable depends on the interactions with the SUT, particularly whether a
specific message has been received or not. This type of guard in search-based testing
is a known, very difficult problem denoted as the flag problem [27]. In this case, the
fitness function provides no gradient, and this makes the search difficult. Unfortunately,
testability transformations [27] cannot be used in this case, because in our context the
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SUT is a black box. Even if we had access to the SUT, it would still be problematic,
because we are aware of no work dealing with the flag problem for the system testing
of concurrent programs. Though the above issue is a limitation, in practice, we can
automatically determine before running GA whether it will work.

Though we can explain why GA does not work well on AP2 and AP3, why does it
behave even worse than RT? The reason is exactly the same for which ART is better
than RT: the diversity of the test cases. If there is no gradient in the fitness function,
all the sampled test cases would have same fitness value (i.e., the fitness landscape
would have a large plateau). So any new sampled test case would be accepted and
added to the next generation in GA. The crossover operator does not produce any new
value in the data vector V , it simply swaps values between two parent test cases. The
mutator operator does only small changes to a data vector, because on average only
one variable is mutated. During the search, the offspring have genetic material (i.e.,
the data vectors) that is similar to the one of the parents. Therefore, the diversity of
test cases during GA evolution is much lower than the one of RT. If the hypothesis of
contiguous regions of faulty test cases is true for a RTES, then, when there is no gradient
in the fitness function, we would a-priori expect this following relationship regarding
the performance of testing strategies: GA ≤ RT ≤ ART . For problems AP2 and AP3,
this is verified in the results of Table 3.

In the experiments on the industrial RTES, we can see that GA is statistically worse
than the other approaches, although the difference is only small/medium in size from
a scientific point of view. The results on the industrial RTES shown in Table 4 are
important to stress out that the choice of a testing strategy is also heavily dependent
on when the SUT is tested. The version of the industrial RTES used in this paper was
not a finished product. It was in an early phase of development. The types of failure
scenarios introduced with our models were not something that was fully tested before.
This explains the high failure rate shown in Table 4. Notice that the failure rate θ can be
simply estimated from the mean value of RT, i.e. θ = 1/mean(RT ). The reason is that
RT follows a geometric distribution with parameter θ, therefore mean(RT ) = 1/θ. In
our case, we have θ = 1/131.9 = 0.007, which can be considered to be a high failure
rate.

5.4 Practical Guidelines

For high failure rates, it makes sense to use a simple RT instead of more sophisticated
techniques, since the expected number of sampled test cases would be low on average.
In practice, we would expect high failure rates at the beginning of the testing phase. The
failure rate would hence be expected to decrease throughout the development process as
faults get fixed. Therefore, we would expect to get good results for RT at the beginning,
but then more sophisticated techniques could be required at later stages.

Our results lead us to suggest the following heuristics to apply RT, ART, and SBT
in practice: In the early stages of development and testing, when failure rates are still
high, one should use RT as it will be very efficient and quick to detect the first failure,
without requiring any overhead like ART or SBT. One exception to this rule is when the
time of executing a test case is high (e.g., in the order of several seconds or minutes),
where we then suggest to use ART as one should enforce test execution diversity to
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Fig. 2. Decision tree and and application timeline of the three analyzed testing strategies

prevent the execution of too many test cases. Once the failure rate decreases due to the
fixing of easy-to-detect faults, then use SBT, but only if a proper fitness function can be
derived automatically from the models, that is a fitness function that is likely to provide
effective guidance for the search of failing test cases. Otherwise, use RT. ART should
not be used when the failure rate is low as the overhead of distance calculations would
get too high, due to the large number of test cases executed.

Figure 2 summarizes the above heuristic in a decision tree and it shows when to apply
each testing technique. We provide practical advice regarding when to switch from ART
to RT below. But for the switch from RT to SBT, we need more empirical/theoretical
analyses to provide practical guidelines.

In the literature, it has been shown that ART can be twice as fast as RT [3]. Let
us consider ttc the execution time of a test case, tdis the execution time of a distance
calculation with d the total number of distances computed, θ the failure rate, E[RT ]
and E[ART ] the expected number of test cases sampled by RT and ART. We know
that E[RT ] = 1/θ and that, under optimal conditions, E[ART ] = E[RT ]/2. We can
develop a heuristic that is based on the following equation: E[RT ]·ttc = E[ART ]·ttc+
d·tdis, which is a loose approximation to determine the failure rate θ∗ above which ART
is going to yield better results than RT. From that equation, it follows θ∗ ≈ tdis

4·ttc
. This

optimal threshold for ART for the failure rate can be estimated before test execution.
Finally, we can suggest to run ART for 1/2θ∗ iterations, but only as long as the number
of sampled test cases is not high enough to make the decision to switch to SBT. The
above recommendations are heuristics and will need to be evaluated and refined as we
gather more empirical data.

6 Threats to Validity

Due to the complexity of the industrial RTES used in the empirical study of this paper,
we could not run the RTES and its simulated environment in such a way to obtain a
precise and deterministic handling of clock time. We used the CPU clock instead. This
could be unreliable if time constraints in the RTES are very tight, as for example in the
order of milliseconds, because these constraints could be violated due to unpredictable
changes of load balance in the CPU because of unrelated processes. Although the time
constraints in this paper were in the order of seconds, the problem could still remain. To
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evaluate whether our results are reliable, we hence selected a set of experiments, and we
re-ran them again with exactly the same random seeds. We obtained equivalent results.
For example, if RT for a particular seed obtained a failing test case after sampling 43 test
cases, then, when we ran it again with the same seed, it was still requiring exactly 43 test
cases. However, the experiments were not exactly the same. For example, for debugging
purposes we used time stamps on log files. In these time stamps, small variances of a
few milliseconds were present, but this did not have any effect on the testing results.
Notice that our novel methodology can obviously be applied also when time clocks are
simulated.

7 Conclusion

In this paper we proposed a black-box system testing methodology, based on environ-
ment modeling and various heuristics for test case generation. The focus on black-box
testing is due to the fact that system test teams are often independent from the devel-
opment team and do not have (easy) access to system design expertise. Our objective
is to achieve full system test automation that scales up to large industrial RTES and
can be easily adjusted to resource constraints. The environment models are used for
code generation of the environment simulator, selecting test cases, and the generation
of corresponding oracles. The only incurred cost by human testers is the development
of the environment models. This paper, due to space constraints, has focused on the
testing heuristics and an empirical study to determine the conditions under which they
are effective, plus guidelines to combine them in practice.

In contrast to most of the work in the literature, the modeling and the experiments
were carried out on an industrial RTES in order to achieve maximum realism in our
results. However, in order to more precisely understand under which conditions each
test heuristic is appropriate and how to combine them, we complemented this industrial
study with artificial case studies, that will be made publicly available to foster future
empirical analyses and comparisons.

We experimented with different testing heuristics, which have the common property
to be easily adjustable to available time and resources: Random Testing (RT), Adaptive
Random Testing (ART) and Search-Based Testing using Genetic Algorithms (GAs).
All these techniques can be adjusted to project constraints as they can be run as long as
time and access to CPU are available. Though RT was originally used as comparison
baseline, it turned out to be the best alternative under certain conditions.

On the artificial problems, in one case GA is the best search algorithm, and the
difference is very large. But on the other two cases, GA has the worst results, which are
due to poor fitness functions. In one case RT and ART are equivalent, but in the other
two, RT is better in one case and worse in the other.

However, on the industrial RTES, results are quite different from the artificial case
studies: there is no statistical difference between RT and ART, whereas GA is slightly
worse than the others (the effect size is between small and medium). After investigation,
this was found to be due to the RTES high failure rate and a fitness function that offered
little guidance to the search due to a Boolean guard condition. To support the claims
above, we followed a rigorous experimental method based on five types of statistical
analyses.
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Based on our results, we have provided practical guidelines to apply the three testing
techniques described in this paper, i.e. RT, ART, and GA. In fact, none of them dom-
inates the others in all testing conditions and they must be, in practice, combined to
achieve better results. However, more empirical and theoretical studies are needed to
develop more precise, practical guidelines.

One current limitation of our testing approach is that the domains of valid values
for the non-deterministic test inputs need to be static: they should be known before test
case execution. Research will need to be carried out to design novel testing strategies
for non-deterministic inputs that can only be determined at runtime.
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Abstract. A Software Product Lines (SPL) is "a set of software-intensive sys-
tems sharing a common, managed set of features that satisfy the specific needs 
of a particular market segment or mission and that are developed from a com-
mon set of core assets in a prescribed way". Variability is a central concept that 
permits the generation of different products of the family by reusing core assets. 
It is captured through features which, for a SPL, define its scope. Features are 
represented in a feature model, which is later used to generate the products from 
the line. From the testing point of view, testing all the possible combinations in 
feature models is not practical because: (1) the number of possible combina-
tions (i.e., combinations of features for composing products) may be untreat-
able, and (2) some combinations may contain incompatible features. Thus, this 
paper resolves the problem by the implementation of combinatorial testing 
techniques adapted to the SPL context.  

Keywords: testing, software product lines, combinatorial testing, feature  
coverage, pairwise. 

1   Introduction 

A Software Product Line (SPL) is a set of software-intensive systems sharing a com-
mon, managed set of features which satisfy the specific needs of a particular market 
segment or mission and which are developed from a common set of core assets in a 
prescribed way [1]. Products in a line share a set of characteristics (commonalities) 
and differ in a number of variation points, which represent the variabilities of the 
products. Software construction in SPL contexts involves two levels: (1) Domain 
Engineering, which refers to the development of common features and the identifica-
tion of the variation points; (2) Product Engineering, where each concrete product is 
built. At this second level, commonalities must be included in the products, and the 
corresponding variation points must be adequately managed.  

Traceability and reuse are fundamental aspects in SPL development and, thus, test-
ing is an essential task in this kind of software development paradigm. In fact, and 
error introduced in a common part which remains undetected may affect all the prod-
ucts in the line; in the same way, an error in a variation point will be propagated to all 
the products which include that variation.  
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In previous works [2], a framework for model-driven testing in SPL was defined. 
The framework includes a methodological approach to automate the generation of test 
models from SPL design models, and specifies a way to deal with variability: given a 
SPL design, the approach produces a test model which includes enough information 
to build specific test cases both for the common features of the line, as well as for the 
specific characteristics of the variation points finally implemented in each product.  

However, just as the execution of integration testing is required after unit testing in 
a classic testing process, features of a SPL must be also tested when they are inte-
grated into a single product; finding no faults in core assets at the Domain Engineer-
ing level does not mean that its transformation into a concrete product (generated at 
the Product Engineering level) does not introduce defects. In the same way, the fact of 
not discovering errors when an isolated feature is tested does not guarantee that a 
given product with that very same feature, together with others, will be free of de-
fects, even in those features which, apparently, were previously error-free.  

From a testing point of view, testing all the possible feature combinations in a SPL 
is unfeasible. In a SPL with just 5 features and 4 variants, the number of products that 
can be generated is 45=1024. Testing each possible product is expensive and unrealis-
tic for software industry. 

This paper defines a strategy for testing products proceeding from SPL feature 
models. The strategy uses pairwise as its covering criterion, in the sense that all the 
pairs of features must be included and tested in at least one product. The Orthogonal 
Variability Model (OVM, [3]) is used to represent the variation points and its variants. 
This does not mean any loss of generality in the proposal, since any other metamodel 
can be used to represent the feature model. In fact, the same rules would be applied to 
obtain the test suite of products to test.  

One of the most widely-used strategies to obtain pairwise coverage is the AETG 
algorithm [4], which works in polynomial time. In the SPL context, the algorithm 
must be modified to deal with requires and excludes relationships between features. If 
a variant in a feature excludes a variant in another feature, then the pair between both 
variants must not be present in any product. One of the SPLs we use as a case study 
consists of a system to play board games over the internet. Thus, we may be dealing 
with four variation points (Game, Dice, Opponent and Number of Players) and sev-
eral variants in each ({Ludo, Trivial, Chess, Checkers}, {Dice, No-dice} {Person, 
Computer}, {2, >2}). Ludo or Trivial with No-dice make no sense, and neither do 
Chess or Checkers with Dice or with more than two players (>2). Restrictions be-
tween pairs such as these are not contemplated by AETG and, therefore, the algorithm 
has been modified to not consider undesired pairs. 

This change to the algorithm is not restricted to SPL testing, since it is common to 
test systems excluding invalid combinations of test values. Pairwise assumes that 
many errors only arise from the specific interaction of certain values of two or more 
parameters [5], but in the actual practice of software testing, test cases containing 
undesired pairs are often removed from the final test suite. For these situations, the 
improved version of AETG can be also used. 

2   Representing Variability in SPL 

Variability is a central concept in product family development. It allows for the gen-
eration of different products in the family by reusing core assets. Variability is  
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captured through features. A feature can be a specific requirement, a selection 
amongst optional or alternative requirements, or can be related to certain product 
(functionality, usability, performance, etc) or implementation characteristics (size, 
execution platform, standards compliance, etc)[6]. 

Domain engineering techniques are used to systematically extract features from ex-
isting or planned members of a product line. Feature trees are used to relate features 
to each other in various ways, showing sub-features, alternative features, optional 
features, dependent features or conflicting features [6]. Examples of these methods 
are FODA [7], FORM [8], FeatuRSEB [9], among others. Figure 1 shows a feature 
model example. 

In this work, the proposal by Pohl et al. [3] is used to manage the variability, de-
fined in their Orthogonal Variability Model (OVM). In OVM, variability informa-
tion is saved in a separate model containing data about variation points and variants. 
A variation point may involve several variants in, for example, several products. 
OVM allows the representation of dependencies between variation points and variable 
elements, as well as associations among variation points and variants with other soft-
ware development models (i.e., design artifacts, components, etc.). Variation points 
and variants are the core concepts of the OVM language. Each variation point offers 
at least one variant. Additionally, the constraints-associations between these elements 
describe dependencies between variable elements [3]. 

 

Fig. 1. Feature Model for Board Game SPL 

OVM includes a graphical notation: Variation Points are represented by triangles 
and their variants with a rectangle. Dotted lines represent optional variants (i.e., they 
can be omitted in some products), whereas solid lines represent mandatory variants 
(they are present in all products). The associations between variants may be re-
quires_V_V and excludes_V_V, depending on whether they denote that a variation 
requires or excludes another variation. In the same way, associations between a varia-
tion and a variation point may be requires_V_VP or excludes_V_VP, also to denote 
whether a variation requires or excludes the corresponding variation point.  

Figure 2 shows the OVM model for the board game SPL. The board games share a 
wide set of characteristics, such as the existence of a board, one or more players, the 
use of dice, possibility of taking pieces, presence or absence of cards, policies related 
to the assignment of the turn to the next player, etc. As we showed in the previous 
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section, there are 4 four variation points (Game, Dice, Number of players and Oppo-
nent) and 4, 2, 2, and 2 variants respectively. 

In previous works, a specific UML profile to represent OVM models was 
defined[10]. Figure 3 shows the same information as in Figure 2 but using the profile.  

The use of one or another metamodel is independent for the process: Roos-Frantz, 
Benavides and Ruiz-Cortés[11] have shown that it is possible to use model-to-model 
transformation in order to generate a target model conforming to an OVM metamodel, 
preserving all the semantics in the source models.  

 

Fig. 2. OVM model for Board Game SPL 

 

Fig. 3. Board Games SPL using UML profile for OVM 
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3   Combination Testing Strategies and Related Works 

Combination strategies are a class of test-case selection methods where test cases are 
created by the combination of “interesting values”, which have been previously iden-
tified by the tester. The input of all these testing strategies is a set of sets (parameters), 
each with some elements (values). The output is a set of combinations, all of them 
composed of one element from each input set. 

Like many test-case selection methods, combination strategies are based on cover-
age. In the case of combination strategies, coverage is determined with respect to the 
use of the parameter values that the tester decides are interesting. Thus, for example, a 
test suite satisfies Each-use (also known as 1-wise) coverage when each test value is 
included in at least one test case in the test suite. Pairwise (also known as 2-wise) 
coverage requires that every possible pair of interesting values of any two parameters 
be included in some test case. Note that the same test case may cover more than one 
unique pair of values. A natural extension of pairwise coverage is t-wise, which re-
quires that every possible combination of interesting values of t parameters be in-
cluded in some test case in the test suite. 

Different test generation strategies have been published for pairwise testing, some 
of them collected in a survey article by Grindal, Offut and Andler [12]. Since the 
problem of generating minimum pairwise test sets is NP-complete, different research-
ers have developed strategies to generate near-minimum pairwise test sets, such as 
algorithms based on orthogonal arrays [13] or covering Arrays [14]. One important 
drawback to these two methods is that they can only be applicable to sets (parameters) 
with the same number of elements (test values), which restricts the actual application 
of these techniques.  

One very interesting approach for pairwise coverage was proposed by Cohen et al. 
[4], who developed the AETG algorithm for t-wise coverage (Figure 4).  

Considering the combinatorial strategies in SPL context, Perrouin et al. [15] uses t-
wise for feature coverage using SAT solvers, dividing the set of clauses (transformed 
from a feature diagram) into solvable subsets. They use the features as parameters; each 
parameter may receive two values (true or false) to represent the presence or absence of 
the feature: thus, the combination strategy followed up by these authors may produce 
much more products  to be tested that those required. Actually, the feature model should 
have information enough to consider the relationship between a variation point and its 
variants. The authors take into account mandatory and optional features, the requires 
relationship, but no the excludes one. In our approach, variation points are considered as 
the parameters: instead of having two boolean values for each feature, we process the 
feature model to consider that each feature variant is a parameter value. Moreover, all 
the relationships defined in OVM are processed to include or exclude pairs. The use of 
combinatorial testing to cover features in SPLs has also been the focus of previous 
works by McGregor[16] and Cohen et al.[17], who address the issue of pairwise testing 
through orthogonal arrays and covering arrays respectively. However, we consider that 
these approaches have a key limitation in that they that require all of the features to have 
the very same number of variants. In our experience (also corroborated by examples 
found in the literature[18]), this is unrealistic, since features very rarely offer the very 
same number of variants. Moreover, these works neither consider the excludes relation-
ship between features. Indeed, we decided to improve the AETG algorithm because the 
number of values in each parameter can be variable.  
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Assume that we have a system with k test parameters and that the i-th parameter has li
different values. 

 Assume that we have already selected r test cases. We select the r + 1 by first 

generating M different candidate test cases and then choosing one that covers the most 

new pairs.  

Each candidate test case is selected by the following greedy algorithm: 

1. Choose a parameter f and a value l for f such that that parameter value 

appears in the greatest number of uncovered pairs. 

2. Let f1 = f. Then choose a random order for the remaining parameters. Then, 

we have an order for all k parameters f1, ..., fk.  

3. Assume that values have been selected for parameters f1, ..., fk. For 1 ≤ i ≤ k, 

let the selected value for fi be called vi. Then, choose a value vk+1 for fk+1 as 

follows.  

For each possible value v for fk, find the number of new pairs in the set of 

pairs {fk+1 = v and fi = vi for 1 ≤ i ≤ k}. Then, let vk+1 be one of the values that 

appeared in the greatest number of new pairs. 

Note that, in this step, each parameter value is considered only once for 

inclusion in a candidate test case. Also, that when choosing a value for 

parameter fj+1, the possible values are compared with only the k values 

already chosen for parameters f1,..., fk.   

Fig. 4. Original explanation of the AETG algorithm for covering pairwise [4] 

4   Selection of Products to Test in SPL 

Testing all the existing combinations in a feature model is similar to exhaustive test-
ing in traditional software development and is economically unviable. The objective, 
then, is to select a testing strategy to decide what products will be tested, assuming 
that these products are representative of the set of all the possible products in the line.  

Obviously, if the core assets are tested in isolation, it is less likely to find defects 
when they are assembled in a product. However, it is necessary to ensure that there are 
no undesired results when the product is generated. Rather than exhaustive testing, a 
combinatorial approach can help SPL engineers to decide what combinations of fea-
tures are more interesting to test, based on feature coverage and feature dependencies. 

In our proposal, the variation points are the parameters for the pairwise, whereas 
variations are the values of the parameters. First, we define how pairs between fea-
tures are generated from the OVM model and second, how the test cases are selected 
using the modified version of the AETG algorithm. Each test case is a combination of 
features, i.e., a product of the line. 

4.1   Building the Pairs Set 

We use the OVM model to describe the features and the relationships between fea-
tures. As described in Section 2, OVM is used to exemplify the proposal, since the 
results of this study can be extrapolated to any other representation of feature models. 
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Table 1. Features and variants 

 

There are four parameters in the example of the Board Games SPL: Game, Dice, 
Players and Opponent. The values for the parameters are the Variations for each Varia-
tion Point. Table 1 shows the parameters and its values for the Board Games SPL.  

Actually, the information in Table 1 is incomplete, as it is necessary to add the in-
formation about the relations between the parameters and their values. Table 1 is 
augmented with the following information: 

• Variation Point: If the variation point is optional, then a new value is added. 
This value states that the entire variation point is not selected for the product.  
The rule is: 

If VP is an optional Variation Point with n variants, then the VP parameter has 
n+1 values: one for each variant and one more for the value “no”. 

In the example, the variation point Dice is optional and the “no” value is added. 
• Variants: In OVM the relationship between a Variation Point and a Variant can 

be optional, mandatory or alternative. For each case:  

• Optional: The optional variability dependency states that a variant can (but 
does not need to) be part of a product line application [3]. No values are 
added for this relationship. 

• Mandatory: The mandatory variability dependency states that a variant must 
be selected for an application if and only if the associated variation point is 
part of the application [3]. For example, variant 2 in Figure 2 for the Players 
variation point is mandatory: then, value 2 can be present in all products of 
the line (because the Player variation point is also mandatory) and the variant 
More than 2 is optional. The rule is: 

If VP is a variation point with n variants, being k mandatory and n-k  
optional, then the parameter VP has (n-k)+1 values, where the first value is 
the selection of all the k mandatory values together, and the n-k remaining 
values are pairs of each optional value with the first value. 

For the example, since value 2 is mandatory, it must be added to the other 
values: i.e., MoreThan2 and (2,MoreThan2), which is the second value for 
the parameter Player. 

• Alternative: The alternative choice groups a set of variants that are related 
through an optional variability dependency to the same variation point and 
defines the range for the amount of optional variants to be selected for this 
group [3]. The alternative contains two attributes: min and max. The rule is: 
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If VP is a variation point with n optional variants, where the alternative  
dependency is [j, k], the values for the parameter VP are the result of 
Comb(n,i) where Comb is the combinatorial function of i values taken from  
n values, with i = j..k. 

With this information, the table of parameters is built as shown in Table 2. 

Table 2. Parameters for pair-wise 

 

The next step is to build the tables of pairs between the parameters shown in Table 3. 

Table 3. Pairs between parameters 

 

The OVM model also states the relationship between variation points or variants 
belonging to different variation points. The relationship can be:  

• Variant requires variant (requires_V_V): The selection of one variant v1 in 
the variation point VP1 requires the selection of another variant vk in the varia-
tion point VPk, without taking into account the variants associated. The rule is: 

For each pair (v1, vj), where vj is different from vk, the value vk is added to the 
pair, thus getting (v1,vj,vk). 

• Variant excludes variant (excludes_V_V): The selection of one variant v1 in 
the variation point VP1 excludes the selection of another variant vk in the varia-
tion point VPk, without taking into account the variants associated. The rule is: 

The (v1, vk) pair is deleted from the corresponding pairs table. 

In the example in Figure 2, the Chess variant excludes the MoreThan2 variant 
(the same occurs with the Checkers variant). Thus, the pairs (Chess-2,More2) and 
(Checkers-2,More2) are deleted from the (Type-Players) pair table. 
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• Variant requires Variation Point (requires_V_VP): The selection of one vari-
ant v1 in the variation point VP1 requires the consideration of a variation point 
VPk. The rule is: 

If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. The (v1, no) pair is deleted from the pairs between VP1 and VPk 

In the example in Figure 2, the Ludo variant requires Dice (the same occurs with 
the Trivial variant). The pairs (Trivial,no) and (Ludo, no) are deleted from the 
pairs between type and dice. 

• Variant excludes Variation Point (excludes_V_VP): The selection of one vari-
ant v1 in the variation point VP1 excludes the consideration of variation point 
VPk. The rule is: 

If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. All pairs between (v1, vk) are deleted from the pairs between 
VP1 and VPk except the pair (v1, no) 

In the example of Figure 2, the Chess and Checkers variants exclude Dice: thus, 
(Chess, dice) and (Checkers, dice) are deleted from the pairs between type and 
dice. 

• Variation Point requires Variation Point (requires_VP_VP): The selection of 
one variation point VP1 requires the consideration of variation point VPk. The 
rule is: 

If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. The pair (vi, no) is deleted from the pairs between VP1 and VPk 
where vi represents all values of VP1 

• Variation Point excludes Variation Point (excludes_VP_VP): The selection of 
one variation point VP1 excludes the consideration of variation point VPk. The 
rule is: 

If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. All pairs between (vi, vk) are deleted from the pairs between 
VP1 and VPk except the pair (v1, no), 

Table 4 shows the resulting pairs between the parameter values, excluding the rela-
tionships between features. 

Table 4. Pairs between parameters excluding relationships between features 
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Once the pairs table is built, the AETG algorithm must be modified to remove the 
undesired pairs from the final products. 

4.2   Modifications to the AETG Algorithm  

The next step is to calculate the test cases using pairwise. Achieving pairwise cover-
age requires each pair to be covered by at least one test case. The AETG heuristic 
algorithm must be adapted to consider feature dependencies.  

AETG selects the value for each parameter that appears in most unvisited pairs. 
The problem in this case is that, after removing the undesired pairs, not all pairs are 
present in the final set of pairs. Therefore, the algorithm must find the value in each 
parameter that appears in most unvisited pairs, but taking into account that the pairs 
between the selected values exist. Considering, for example, the pairs in Table 4, the 
execution of the original AETG algorithm selects {ludo, dice, person, 2} as first test 
case. The second test case selected will be {trivial, no dice, computer, 2-moreThan2}; 
however, the (trivial, no dice) pair is not present in the set of pairs. The original 
AETG algorithm (Figure 4) is improved in step 3: instead of leaving “the pair selected 
appears in the greatest number of new pairs”, adding “and the pair exists in the pairs 
set” is required.  

The stop condition for the algorithm also must be changed. The original AETG al-
gorithm stops when all pairs in the pairs set have been visited. In our case, pairs may 
exist that are unreached. This is the case for the pair (no dice, 2-moreThan2), which is 
never visited because is not possible to find a combination of feature values where 
this pair is valid. Then, this pair remains unvisited at the end of the algorithm. The 
stop condition is changed and the algorithm stops when the test case selected does not 
visit any unvisited pair. We have called the AETG algorithm with these improve-
ments Customizable AETG. 

4.3   Implementation of a Customizable AETG Algorithm  

Previously, a framework for combinatorial testing called Combinatorial Testing for 
Software Product Lines (CTSPL) was implemented as a web application1. Any of the 
testing strategies supported by the framework can be resumed as an algorithm which  
 

 

Fig. 5. Partial view of the hierarchical structure of Customizable AETG 

                                                           
1 http://161.67.140.42/CombTestWeb/ 
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takes a set of sets as input (S={S1, S2, …,Sn}, which correspond to the parameters or 
variation points) and produces a set of combinations of the elements in the sets (which 
correspond to the parameter values, or products in the SPL context). Thus, the algo-
rithm implementing each strategy can be seen as a specialization of an abstract Algo-
rithm (Figure 5), which builds its corresponding collection of elements by means of an 
abstract operation (buildCombinations), which is implemented in each specialization.  

As seen in the figure, each algorithm holds a collection of sets, which represent the 
parameters. Moreover, each algorithm has a collection of integers (selectedPositions), 
which hold the positions of the selected combinations.  

1. Build pairTables for S, the set of parameters ( pairTables does not includes the 

unrequired pairs). 

2. let c=combination #0  

3. Add c to the selected set  

4. Update pairTables with the pairs visited by c  

5. while there are unvisited pairs in pairTables and continue

1. initialize c putting the value which visits more unvisited pairs in pairTables  

2. complete c with the values of the remaining sets in such way most pairs are 
jointly visited and the pairs selected exists in pairTables  

3. if c covers some unvisited pair

3.1  Add c to the selected set  

3.2  Update pairTables with the pairs visited by c  

else continue := false  

Fig. 6. Pseudocode of the Customizable AETG algorithm 

Each Combination keeps an array of as many integers as there are sets in its posi-
tions field. Each integer in positions represents the index of the selected element from 
the corresponding set. Given a combination, the algorithm extracts the parameter 
values by visiting its collection of sets.  

Figure 6 shows a pseudocode of this new version of AETG. Note the changes in-
troduced in the stop condition (step 5) and in the selection of values (step 5.2). 

4.4   Description of the Web Application  

The web application accepts the description of the elements in the sets (sets are dis-
tributed in columns; their elements in rows) and allows the application of any of the 
implemented combination algorithms. Moreover, the application also accepts xmi files 
representing the feature model of the SPL. In Figure 7, the user has selected and is ready 
to submit the xmi file corresponding to the feature model of the Board Games SPL.  
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Fig. 7. Uploading the feature model shown in Figure 3 

 

Fig. 8. The user selects the pairs to be removed 

Once the application has received the feature model with the xmi file, it analyzes it 
and shows the pairs tables (Figure 8) leaving the user to select those that should not 
be included in the final suite. At this time, we are modifying the code of the subsys-
tem in charge of processing the xmi file to detect, via the relationships defined in the 
model (excludes and requires), which pairs should be removed. 
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Table 5. Visited pairs and test cases in Customizable AETG 

 

Table 6. Test cases that visit each pair in Customizable AETG 

 

Then, the user is ready to select any of the provided algorithms (left side of Figure 
7) and obtain the results. If s/he selects the Customizable Pair AETG algorithm, the 
algorithm shows the results. 

We will illustrate how the results are reached describing the steps followed by the 
Customizable AETG in Figure 6. The first step in the algorithm is “Build pairTables 
for S, the set of parameters, the pairTables does not include the restricted pairs”, the 
pairTables is shown in Table 6. At the beginning, the column corresponding to the 
test case that visits this pair is blank. Table 5 shows the visited pairs in each step of 
the algorithm. In the first step, the ludo value appears in 5 unvisited pairs (see  
Table 6). When the combination # 0 ={ludo, dice, person,2}, is selected, Table 6 is 
updated and for step 2, the ludo value appears now in 2 unvisited pairs. 

The algorithm selects the value for each parameter that visits the most pairs. In step 
2, it first selects computer because this value appears in 8 pairs; the selected test case 
up to now is {-,-,computer,-}. Then for the rest of the parameters, the algorithm selects 
the value that visits the most pairs. The first parameter selected is Type and the value 
trivial is selected because it appears in 5 pairs. The test case is now {trivial,-
,computer,-}. For the parameter Dice, the value no dice appears 6 times, but the pair 
(trivial, no dice) does not exist in pairsTable, so the value dice is selected. The test case 
is {trivial, dice,computer,-}. For the parameter player, value 2, moreThan2 appears 6 
times and is selected. The test case is {trivial, dice, computer, 2-MoreThan2}. Once the 
test case is selected, Table 6 is updated with the visited pairs for the test case. 

The algorithm continues 9 more steps and the test cases selected are shown in  
Table 5. In the last step, only one pair is unvisited, this pair is (no dice, 2-
MoreThan2). This pair is unreacheable by a combination of pairs, so in step 10 the 
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algorithm selects {chess,no dice, person, 2}. Due to the fact that this pair does not 
visit any unvisited pair, the algorithm stops. 

Using the CustomizedAETG algorithm the test cases obtained are shown in  
Table 5, this mean that the test engineer must test the followings products in the line 
(where CF refers the set of common features to all the products in the line):  

Product 1 = CF U {ludo, dice, person, 2} 
Product 2 = CF U {trivial, dice, computer, 2, MoreThan2} 
Product 3 = CF U {chess, person,2} 
Product 4 = CF U {checkers, computer,2} 
Product 5 = CF U {trivial, dice, person, 2, MoreThan2}  
Product 6 = CF U {ludo, dice, computer, 2, MoreThan2}  
Product 7 = CF U {chess, computer, 2}  
Product 8 = CF U {trivial, dice, person, 2}  
Product 9 = CF U {checkers, person, 2 }  

5   Conclusions 

This paper describes the application of combinatorial testing to the context of Soft-
ware Product Lines. Products proceeding from a SPL consist of different types of 
combinations of the variants and variation points composing the line. Since exhaus-
tive testing is not viable and, furthermore, many of the possible combinations will not 
belong to any of the final products, several authors have also approached combinato-
rial testing strategies for SPL testing, especially applying pairwise coverage. How-
ever, even some combinations proceeding from this kind of coverage criterion will 
not be present in any product (in the Board Games example, neither chess nor check-
ers will match with more than two players). Thus, the AETG algorithm for pairwise 
coverage has been modified to remove the unfeasible products from the final suite. 

The modified version of the algorithm has been included on a web page, which fur-
thermore makes it possible to upload a feature model described in xmi. The tool loads 
the variants and variation points and is capable of applying a variety of algorithms. In 
current SPL practice, there are pairs of combinations which the tester is more inter-
ested in testing. Therefore, we are also improving the algorithm to give weight to each 
pair, in order to more exhaustively test the most important pairs. 
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Abstract. This paper addresses the challenge of generating test sets

that achieve functional coverage, in the absence of a complete specifi-

cation. The inductive testing technique works by probing the system

behaviour with tests, and using the test results to construct an internal

model of software behaviour, which is then used to generate further tests.

The idea in itself is not new, but prior attempts to implement this idea

have been hampered by expense and scalability, and inflexibility with re-

spect to testing strategies. In the past, inductive testing techniques have

tended to focus on the inferred models, as opposed to the suitability of

the test sets that were generated in the process. This paper presents a

flexible implementation of the inductive testing technique, and demon-

strates its application with case-study that applies it to the Linux TCP

stack implementation. The evaluation shows that the generated test sets

achieve a much better coverage of the system than would be achieved by

similar non-inductive techniques.

1 Introduction

The quality of a test set is conventionally measured by the extent to which it
exercises the System Under Test (SUT). Various different notions of ‘coverage’
have been developed for different testing techniques, such as the proportion of
branches / basic-blocks covered in structural source code testing, or the number
of mutants killed in mutation testing (a comprehensive overview of coverage
measures is provided by Zhu et al. [1]). Functional coverage is conventionally
measured with respect to a program specification. The goal of a functional test
set generator is to generate a finite set of tests that is sufficiently large and
diverse to fully exercise the specification, and identify any implementation faults
or failures in the process.

Unfortunately, specifications that fully encapsulate the desired system be-
haviour are rarely available, because they are often deemed to be too time-
consuming to construct and maintain. If they exist at all, they are usually par-
tial; for instance, it is possible to obtain a list of the main interface functions for a
system, perhaps coupled with some of the more important pre-/post-conditions.
However, it is unrealistic to presume the existence of a complete and up-to-
date specification that could be used to ensure that the underlying system is
functionally correct.

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 126–141, 2010.
c© IFIP International Federation for Information Processing 2010
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Inductive testing [2,3,4,5,6,7,8,9,10,11,12,13] offers a partial solution to this
problem. It is based on the observation that testing and inductive inference are
two sides of the same coin. In software testing the challenge is to identify a finite
set of tests that will fully exercise some software system. In inductive inference
the challenge is to work out what the (hidden) system is from a finite sample
of examples of its behaviour. The success of techniques in either area
depends on the depth and breadth of the set of examples or tests. In
testing, a broader test set is more likely to lead to some unexpected / faulty state.
In inductive inference, a broader set of examples will lead to a more accurate
inferred model. Inductive testing exploits this symmetry between the two areas
by inferring specifications from tests; the inferred model shows what has been
tested already, so that the test-generator can attempt to find new, contradicting
test cases. The process is iterative, and terminates once no further tests can be
found that conflict with the inferred specification.

Although the idea of inductive testing is well-established (Weyuker’s early
work on this [2] dates back to 1983), its application has been restricted to small
systems, and has not been widely adopted. This is mainly due to the fact that in-
ductive inference techniques tend to scale poorly, coupled with the fact that some
techniques are tied to very specific and expensive systematic test-generation ap-
proaches (e.g. Angluin membership queries [14]). Besides the scalability and flex-
ibility problems, reluctance to adopt such techniques could also be due to the
fact that they do not explicitly answer the following question: To what extent
does inductive testing improve on the coverage achieved by conventional testing
techniques?.

If it can be shown that inductive testing techniques can (a) be applied to
large, realistic systems and (b) that they achieve better functional coverage
than conventional black-box testing techniques, such techniques are bound to
appeal to the broader testing community. This paper details a case-study that
is intended to illustrate those two points. It uses an inductive testing framework
that has been developed by the authors [13], which is flexible (allows the user
to select their own testing algorithm / implementation), and can infer models
from incomplete test sets with the help of heuristic inference algorithms [15,16].
The practicality of the technique is underpinned by the fact that it incorporates
the Erlang QuickCheck testing framework, which means that it can be applied
to a wide range of Erlang applications and network protocols. In our case, we
demonstrate its applicability by automatically constructing a test set for the
Linux TCP/IP stack. The main contributions of this paper are as follows:

– The practical applicability of inductive testing is demonstrated in a practical
context on a real black-box system – the Linux TCP/IP stack.

– It is shown how the system can be combined with a network-protocol testing
framework to enable the testing of arbitrary network protocols.

– The functional coverage, and average depth of the tests is measured, and
compared against the results from an equivalent non-inductive testing
technique.
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Section 2 discusses the background; it discusses the general problem of achiev-
ing functional test coverage, the inductive testing technique, and its problems.
Section 3 presents a high-level view of the inductive testing technique. Section
4 shows how we have implemented the various aspects of the technique, and
shows how this has been applied to automatically generate test sets for the
Linux TCP/IP stack. It presents results that show how the coverage and depth
of test sets generated by the inductive testing technique compare favourably
against test sets generated by an equivalent non-inductive version of the tech-
nique. Finally, section 5 concludes, and discusses future work.

2 Background

2.1 Context: Achieving Functional Test Coverage without a Model

This paper is concerned with the challenge of producing a test set for a system
that is a black-box, and for which there is at best only a partial specification. Ex-
haustively enumerating every input is infeasible for most realistic programs, and
the conventional approach of using random inputs is only likely to exercise those
states of the system that are easy to reach by chance. Such approaches often
fail to reach those areas of the state-space that are most likely to elicit unex-
pected program behaviour, such as an unhandled exception or a straightforward
program failure.

As opposed to conventional model-based testing, the aim is not to demon-
strate that the behaviour of the system is functionally correct. This is impossible
without a complete and reliable specification. Instead the aim is to identify a
set of test cases that fully exercise the SUT, in the hope that one of these will
elicit program behaviour that is obviously incorrect, such as a program failure.
Conventional coverage-driven testing approaches aim to fully exercise the SUT
in terms of its source code or specification [1]. In the absence of either of those,
the aim in our case is to obtain a test set that fully exercises SUT in terms of
its observable behaviour.

The definition of “observable behaviour” depends on the characteristics of the
SUT. The observable behaviour of a network protocol would be the sequences
of outputs that are returned in response to sequences of inputs. The observable
behaviour of a continuous function would be the numerical value that is returned
for a particular input value. The ultimate aim is to explore the full range of
functionality offered by the SUT, where this functionality is manifested in the
variation of outputs in response to different inputs.

2.2 Inductive Testing

A test set is deemed to be adequate if it achieves a given level of coverage. Many
coverage measures exist to suit different testing techniques [1], such as source
code branch coverage, or transition coverage in state machines, etc. In our setting
we cannot count on access to a specification or on access to the source code.
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One solution to the above problem is offered by a technique that was first out-
lined by Weyuker [2] almost 30 years ago. She related the challenge of identifying
an adequate test set to the machine-learning field of inductive inference, where
the challenge is to infer a model from a finite set of examples. She observed that
the two problems are in effect two sides of the same coin. An accurate model
can only be inferred with a sufficiently broad set of examples. Importantly from
a testing perspective, a better model will ultimately result in a more compre-
hensive test set.

Weyuker suggested that this intuitive symmetry could be exploited, and it is
this idea that forms the basis for what is referred to here as inductive testing.
The idea is as follows: a set of tests can be considered adequate if, when fed to an
inductive inference engine, the resulting model is equivalent to the SUT1. Since
then, the idea of combining inductive inference with testing has reappeared in
various guises [3,4,5,6,7,8,9,10,17,11,12,13].

Problem: flexibility and scale. Current inductive testing approaches are ham-
pered by the fact they are often tied to very specific systematic testing strate-
gies, which in turn lead to problems in terms of scalability. Testing strategies
are designed to produce a test set that will, when used as a basis for inference,
produce a model that is exact. However, obtaining a sufficiently large test set
to do so is often infeasible in practice, especially when tests are expensive to
execute. Though cheaper, heuristic approaches have been proposed [13], their
applicability has not been demonstrated with respect to a realistic black-box
system. None of the proposed techniques have been explicitly evaluated in terms
of their ability to achieve functional coverage of substantial black-box systems.

3 A Flexible Inductive Testing Technique

This section describes an inductive testing technique that is designed to be
flexible. It permits the developer to choose a model-based testing technique to
suit the circumstances (i.e. the complexity of the software system). To account
for incomplete test sets, it adopts heuristics to infer models. Every time a model
is inferred, the selected testing strategy is invoked to generate a test set from
the model, which is executed on the SUT. This process continues until a set of
tests has been generated that infer a model for which no further conflicting tests
can be generated.

For this paper, we will restrict discussion to systems that can be modelled
and tested as deterministic Labelled Transition Systems (LTS’s).

Definition 1 (Labelled Transition System (LTS)). A LTS is a quadruple
(Q, Σ, Δ, q0), where Q is a finite set of states, Σ is a finite alphabet, Δ : Q×Σ →
1 Although this is the essential idea, she considered a different problem-setting to

the one considered here; her setting presumed that the system was white-box, that

there was also a specification, and that the inductive inference engine was inferring

executable source code as opposed to arbitrary models.
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Input: Prog, Alphabet
Data: Alphabet, Pos, Neg, test, fail, failedLTS
Uses: inferLTS(T+, T−), generateTests(LTS)

Uses: runTest(t,P rog), generateInit(Alphabet)
Result: LTS
Pos ← ∅;1

Neg ← ∅;2

LTS ← generateInitLTS(Alphabet);3

Test ← generateTests(LTS);4

foreach test ∈ Test do5

(trace, pass) ← runTest(test,P rog);6

if pass then7

Pos ← Pos ∪ {trace};8

if trace ∈ Σ∗ \ L(LTS) then9

LTS ← inferLTS(Pos, Neg);10

Test ← generateTests(LTS);11

12

else13

Neg ← Neg ∪ {trace};14

if trace ∈ L(LTS) then15

LTS ← inferLTS(Pos, Neg);16

Test ← generateTests(LTS);17

18

end19

end20

return LTS21

Algorithm 1. Basic iterative algorithm

Q is a partial function and q0 ∈ Q. This can be visualised as a directed graph,
where states are the nodes, and transitions are the edges between them, labelled
by their respective alphabet elements.

Some parts of this section will refer to the language of the LTS. This is defined
as follows.

Definition 2 (The Language of an LTS). For a state p and a string w, the
extended transition function δ̂ returns the state p that is reached when starting
in state p and processing sequence w [18]. For the base case δ̂(q, ε) = q. For the
inductive case, let w be of the form xa, where a is the last element, and x is the
prefix. Then δ̂(q, w) = δ(δ̂(q, x), a).

Given some LTS A, for a given state q ∈ Q, L(A, q) is the language of A

in state q, and can be defined as: L(A, q) = {w|δ̂ is defined for (q, w)}. The
language of a LTS A can be defined as: L(A) = {w|δ̂ is defined for (q0, w)}.
The inductive testing process is presented in algorithm 1. It takes the alphabet
of the machine as input (i.e. the message types that can label transitions), and
uses these to generate its initial most general machine (line 3). This is then fed
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to a model-based tester to generate test cases (line 4). For each test case, if it
has passed, its trace trace is added to the set of traces that are positive Pos and
if it fails it is added to the set of negative traces Neg. In either case, the test
case is checked against the current LTS model to make sure that it produced the
correct result. If this isn’t the case, a conflicting test case has been discovered,
and a new LTS is inferred to account for the new traces (lines 10 and 16). When
this is the case, a new set of test cases Test is generated, and the whole process
iterates. The rest of this section provides a more in-depth description of the key
components in algorithm 1. The generateInitLTS function is described below,
followed by a more detailed description of the processes used to test and infer
the models.

To begin with the inductive testing process an initial model is needed. In
the algorithm this is generated by the generateInitLTS function on line 3. No
prior knowledge is required about the (hidden) state transition structure of the
subject system, but it does assume that the set of labels (or possible software
inputs) is known. An initial LTS is a simple transition system that is produced
where any sequence in Σ∗ is valid. This will always consist of a single state,
with one looping transition that is labelled by all of the elements in Σ. Formally,
Q = {q0}, ∀σ ∈ Σ, δ(q0, σ) = q0. The tests that are generated from this will can
be used by the inference process to produce more refined models.

3.1 Test Generation and Execution

The generateT ests function represents a conventional model-based test set gen-
erator. It takes as input a model in the form of a LTS and generates a set of tests
(paths through the state machine) that are expected to be either be possible or
impossible in the implementation.

Given a LTS A and a test case t, the execution of a test case by the runTest
function results in a tuple (test, Pass), where test is the test (if it failed, its
last element is the point at which it failed), and Pass states whether it passed
or failed. The algorithm then matches this against the expected outcome; if
Pass == false but t ∈ L(A), or Pass == true but t /∈ L(A), there is a conflict
and A has to be re-inferred.

The generateT ests function can invoke a range of model-based testing al-
gorithms. One the one hand there are ‘formal’ testing techniques that aim to
guarantee certain levels of coverage of the given state machine. On the other
hand, it is possible to adopt less rigorous but cheaper alternatives.

3.2 Model Inference

The inference process is denoted by the inferLTS function. Its purpose is to in-
fer an LTS from a set of test cases. The Evidence Driven State-Merging (EDSM)
method [15] is currently accepted to be the leading approach for inferring LTS’s
from sparse sets of examples.

Conceptually, given a collection of test executions, one would expect that the
executions traverse the same states in the SUT multiple times. State-merging
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Pos:
< Listen/−, Syn/Syn + Ack, Ack/−, Close/F in >
< Listen/−, Syn/Syn + Ack, Ack/−, F in/Ack >
Neg:

< Listen/−, Syn + Ack/Ack >
< Listen/−, Syn/Syn + Ack, Ack/−, Ack/− >
< Connect/SynAck/− >
< Ack/− >

(a) APTA (b)After first merge (d) Final machine

Fig. 1. Augmented Prefix Tree Acceptor and illustration of merging. Dashed transi-

tions are deemed to be invalid, multiple transitions between states are drawn as single

transitions with multiple labels.

approaches arrange the presented set of traces into one large tree-structured
state machine that exactly represents the executions, and then proceed to merge
those states that are deemed to correspond to the same SUT state, with the aim
of producing the minimal, most general LTS. The benefit of EDSM approach
versus other traditional approaches is that it uses heuristics to choose suitable
state-pairs, weighing up the likelihood that two states are equivalent in terms of
their outgoing paths of transitions (i.e. their future behaviour). This has been
shown to substantially increase the accuracy of the final machine [15,16].

A brief illustration will be provided with respect to a small part of the TCP
example from the case study. Let us assume that we have reached a point where
six tests have been executed, resulting in the traces Pos and Neg shown in
figure 1. These can be aggregated into a single tree - referred to as an augmented
prefix tree acceptor (APTA) [15], shown in (a). The tree is constructed so that
any identical execution-prefixes lead to the same state, and any unique suffixes
form unique branches in the tree. The APTA represents the most specific and
precise LTS possible, and exactly corresponds to the provided sets of executions,
not accepting any other sequences.

The goal of the inference is to identify states in this tree that are actually
equivalent, and to merge them. The merging process takes two states q and q′.
In effect, the state q′ is removed, all of its incoming transitions are routed to
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q instead and all of its outgoing transitions are routed from q. Every time a
pair of states is merged, the resulting state machine may be non-deterministic
(new transitions from q may carry the same labels as old transitions). Non-
determinism is eliminated by recursively merging targets of non-deterministic
transitions. For a more detailed description, the reader is referred to previous
work by Dupont et al.[16].

The merging process is iterative - many subsequent merges are required to
reach the final machine. At each iteration, a set of state-pairs is selected using the
Blue-Fringe algorithm [15] (an effective search-windowing strategy that restricts
the set of state pairs to be evaluated at each iteration to a subset that are
most likely to be suitable merge-candidates). Each candidate pair is assigned
a heuristic score, which indicates the likelihood that the states are equivalent.
The score is computed by comparing the extent to which the suffixes of each
state overlap with each other2. A pair of states is incompatible if a sequence is
possible from one state, but impossible from the other - this leads to a score
of -1. Any pairs with non-negative scores can potentially be merged. Once the
scores have been computed, the pair with the highest score is merged, and the
entire process of score-based ranking and merging starts afresh, until no further
pairs can be merged.

To provide an intuition of the scoring process, we refer back to the example
prefix-tree in Figure 1 (a). State ‘a’ is marked red (a double-circle in the figure),
and the states ‘b’, ‘c’ and ‘d’ are marked blue (shaded in the figure - this is
the ‘blue fringe’). The EDSM algorithm considers any red-blue pair with a non-
negative score as a possible merge-candidate. Pairs (a,c) and (a,d) have a score
of 0, because they share no overlapping outgoing label-sequences. Pair (a,b) has
a score of 1 (the event Ack/− is impossible from both states) and, since this
pair produces the highest score, it is selected to be merged. The result is shown
in Figure 1 (b). This process continues until no further valid merges can be
identified, and the final machine is shown in (c).

4 Testing the Linux TCP Stack

To illustrate the inductive testing approach, and to demonstrate its ability to
improve functional coverage, we use it to explore the behaviour of the Linux
TCP stack [19,20]. For this study we assume a certain, limited degree of prior
knowledge about the system. We know the set of messages that can be sent to
the stack, and how they affect its data-state (these are specified in the TCP RTP
documents [19]). For the sake of assessing our inductive testing technique, we
will assume that there is no prior knowledge of the order in which these messages
can be sent. We also assume that we have no access to the internals of the stack
itself, but we can reliably reset it (by restarting the Linux networking service).

The challenge for us is to generate a set of test cases that extensively exercises
the functionality of the stack, by eliciting a range of behaviours that is as diverse
2 The Blue-Fringe algorithm ensures that the suffixes of one state are guaranteed to

form a tree (i.e. a graph without loops), which facilitates this score computation.
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as possible. This section will show how the induction testing approach is able
to elicit a much broader range of behaviour than the standard alternative of
attempting random input combinations.

4.1 Inductive Testing Infrastructure

The case study exactly follows algorithm 1. Here we show how the various al-
gorithm functions have been implemented. Specifically we describe the imple-
mentation of the three key functions: generateT ests, runTest, and inferLTS.
The implementation elaborates on earlier work by the authors [13], and can in
principle be applied to test any system where the behaviour is based on an LTS
(if this is not the case, the inferLTS and generateT ests functions have to be
adapted accordingly).

This case study involves running tests by sending messages over a network.
Due to its comprehensive networking infrastructure, we use the Erlang pro-
gramming language and its Open Telecom Platform (OTP) libraries [21]. This
is exploited by the network-testing interface developed by Paris and Arts [20]
(described in detail below). This distributed mechanism can be coupled with
the powerful QuickCheck model-based testing infrastructure [22] (also described
below), to provide a comprehensive network protocol testing framework.

Generating tests with QuickCheck (the generateTests function). For
the model-based test set generation, we use the QuickCheck framework [22], a
tool that has proved popular for the model-based testing of Erlang and Haskell
programs. It has become one of the standard testing tools used by Erlang de-
velopers. The model is conventionally provided by a developer, either as a set of
simple temporal logic properties, or as an abstract state machine.

We use abstract state machine models in this case study. Abstract state ma-
chine models are constructed by taking a labelled transition system (see defini-
tion 1). Each transition function in Δ is then associated with a transformation
on a data state M , along with a set of optional pre-/post-conditions that have
to hold when the function is executed.

QuickCheck generates tests with the help of generator functions. These are
functions that, for a given data type, will produce a suitable random input.
QuickCheck has several built-in generators, which can be used to produce ran-
dom inputs for simple data types, such as integers, or lists of integers. To
illustrate the use of these generators, a very simple property is provided be-
low. The prop reverse property takes a list of integers as input. It tests the
lists:reverse function by ensuring that, when applied twice to a list, it re-
turns the original list. The call to list(int()) generates a list of random length,
populated with random integers. For a more extensive example, including an ab-
stract state machine example, the reader is referred to Walkinshaw et al.[13].

prop_reverse() ->

?FORALL(Xs,list(int()),

lists:reverse(lists:reverse(Xs)) == Xs).
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Fig. 2. Communication between tester and subject

The network-testing interface (the runTest function). Paris and Arts
[20] developed a network protocol testing framework that enables model-based
testing of network protocols on remote machines. The basic process is shown
in figure 2. Two channels are used to interact with the system under test. One
channel is the network itself, messages are synthesised by the tester and sent to
the subject, and responses from the subject are sent back, which are monitored
by the tester (using a network sniffer). The other channel is an Erlang commu-
nication channel that is linked to an Erlang process that is running on the SUT.
It is used to control the SUT when necessary. For example if we want to test the
TCP protocol in a scenario where the SUT initiates communication, this can be
triggered by sending a command via this channel to the controller on the SUT,
which will in turn make the stack send the corresponding message across the
network link to the tester.

The network-testing interface is implemented on top of QuickCheck. The ab-
stract state machine model keeps track of the necessary data elements (i.e. the
last message received from the SUT, the Port number and IP address). For each
possible message that can be sent to the SUT, a QuickCheck generator function
is used to construct and send the suitable TCP packet and, if appropriate, to
wait for a response from the SUT and update the data state in the abstract state
machine. For a full description, the reader is referred to Paris and Arts [20].

For the sake of extensively testing TCP stacks with this framework, Paris and
Arts produced a comprehensive QuickCheck model of the stack. For the inductive
testing process discussed in this paper, we use a skeleton version of this model,
having removed the LTS. This is instead replaced with the “universal” LTS,
where every function is always possible (as generated by generateInitLTS – see
definition in section 3).

LTS Inference (the inferLTS function). Walkinshaw et al. have developed
the openly-available StateChum model inference framework [23,13] that was used
to infer the models. It implements the Blue-Fringe state merging approach that
is presented in section 3.2. A front-end was developed that, given a template
QuickCheck model, would append the appropriate inferred labelled transition
system, and so produce a suitable model that could be used to generate test sets
for the following iteration. Usually, the output LTS generated by StateChum
is displayed on-screen. To enable its use in an inductive testing context, an
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extension for StateChum has been developed that converts the output LTS into
a QuickCheck model.

4.2 Exploring the TCP Stack Behaviour by Inductive Testing

The three functions (generateT ests, runTests and inferLTS) are linked to-
gether by a simple Unix Bash script. Test sets are executed until a test fails.
When this is the case, a new model is inferred, and the testing process starts
afresh. The process will either terminate when no more conflicting tests can be
found or by simply putting a limit on the number of test runs.

The basic rationale for inductive testing is that the ability to infer a model
provides a picture of what has already been tested, enabling the test set generator
to generate more elaborate, diverse test sets the next time round. To assess
whether this is the case we compare the test sets that are generated by inductive
testing to those that are generated by an identical set-up3, but without the ability
to replace the model with inferred models (i.e. where the model is always stuck
on the most general model produced by the generateInitLTS function).

For both runs, the limit was set to 285 iterations (i.e. 285 test sets could be
generated and executed). This limit was chosen because it corresponded to a
couple of hours of test runs (allowing for time-outs when unexpected packet-
sequences resulted in deadlocks). In practice, it would be up to the developer to
select a suitable limit, based on the constraints of the project.

Measuring coverage and depth. Every time a test is executed, the sequence
is recorded to a text file, and it is prefixed by a “+” if it passed, or a “-” if it
failed (a failure leads to the termination of the current test set execution and the
generation of a new one). At any given point we are interested in the complete
set of tests, i.e. all of the tests that were generated in all previous iterations
leading up to that point.

The suitability of a test set is measured by the extent to which it covers the
functionality of the SUT, coupled with its ability to reach “deep” states – states
that require an elaborate combination of inputs to reach, and are hard to reach
by random inputs. The metrics that are used to assess these are presented below:

Functional coverage. There is no accepted means of measuring functional cover-
age without access to an existing specification. The conventional way to estimate
it so far has been to measure code-coverage, however this merely provides a crude
approximation of the extent to which the actual functional behaviour of the pro-
gram has been covered. Indeed, it is the recognition of this fact [2] that spawned
the idea of inductive testing in the first place. The model that we infer from
the test sets provides a functional perspective on the test sets, and in this work
we use the inferred model as a basis for measuring the functional coverage. A
larger model means that the test set exercises a broader range of SUT behaviour,
3 There are several systematic black-box testing techniques that would outperform

this näıve approach, but we choose this one for the sake of control, to ensure that

the only factor to make a difference in the assessment is the ability to infer models.
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because it is able to distinguish between lots of different states (otherwise the
inference approach would simply merge them together). So, to assess functional
coverage we count the number of individual transitions in the model – these can
be of two kinds; conventional state transitions, and state transitions that lead
to a failure / termination state.

Although this measure seems to be more appropriate than code-coverage, it
should still only be interpreted as an indicator. The EDSM inference technique
operates on heuristics, and is therefore open to error. The addition of a test to
a test set could under certain circumstances produce a machine that is slightly
smaller than the previous version. Nonetheless, as will be shown in the results,
such dips tend to be very small, and the measure still presents a good overview
of the breadth of the test set.

Test depth. It is generally acknowledged that longer test sequences tend to lead
to a higher level of coverage [24]. A long sequence of steps can be required to
put a system into a configuration where it is possible to reach particular parts
of the system that would remain unreachable otherwise. Every time a test set
is executed in this case study, the average length of its tests is recorded. Longer
test sequences imply that a test set is reaching states in the system that are
harder to reach.

4.3 Results

Figures 3 (a) and (b) compares the functional coverage achieved by inductive
testing, and compares it to the level of coverage that is achieved by näıve non-
inductive testing. The coverage is plotted for every iteration. This is split between
transitions that lead to a failing / terminating state, and transitions that lead
to a normal state.

The charts show that the inductive testing technique is better at exploring
new system behaviour. It finds a much larger number of unique tests, and does so
at a much faster rate. The non-inductive approach never surpasses 83 transitions,
whereas this level is achieved within the first 60 iterations by the inductive testing
approach. The charts show clearly that, by relying on random tests alone, it is
much harder to identify a diverse test set that thoroughly exercises the SUT.
The coverage of the system only increases very slowly as the process iterates.

The difference between the test sets generated by the two approaches is also
illustrated in figure 4. This figure shows the APTA’s that are generated from the
final test sets. Figure (a) is generated by the non-inductive version; although it
represents a similar number of tests, many of them are simple repetitions, and
do not lead to unexplored behaviour, meaning that the APTA is much smaller.
Figure (b) on the other hand is much larger; there are far fewer repetitions
amongst the tests because the inferred model encourages the discovery of new
test sequences that build on the outcomes of previous tests.

Inductive testing leads to the generation of longer test sequences, which has
been shown to be a significant factor in the ability to achieve high levels of test
coverage [24]. Without the ability to build on the knowledge gained through
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(a) Non-inductive testing (b) Inductive testing

Non−inductive Inductive

5
1

0
1

5
2

0
2

5

D
e

p
th

(c) Box-plot that compares average depths of test cases

Fig. 3. Functional coverage and comparison of average test case depth

previous test cases, the non-inductive approach relies on randomly finding se-
quences to find “deep” states – states that can only be reached by a particular
test sequence. In inductive testing, these sequences are remembered; they form
part of the inferred model, making it easy for subsequent tests to revisit and
explore these deep states. Consequently, there is a substantial difference in the
average test sequence length, as shown in the box plots in figure 3(c). The limits
of the box denote the upper and lower quartiles, the line through the middle
represents the median, the whiskers mark the maximum and minimum values,
and the small circles denote outliers.

Summary. The use of test outputs to infer a model of system behaviour is a
valuable tool for the further exploration of system behaviour, and is practical.
This is demonstrated in the results above. With no prior knowledge about the
possible sequences in which messages can occur, the inductive testing approach
has nonetheless managed to build an extensive and diverse set of test cases that
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Fig. 4. Visual comparison of the APTAs generated for the non-inductive tests (on top)

and the inductive tests (below)

exercise the TCP stack. In comparison to the non-inductive approach, the set of
test cases is much more diverse, and also manages to consistently reach states
at a greater depth.

5 Conclusions and Future Work

The main aims of this paper were to show that inductive testing can be ap-
plied to realistic black-box systems, and to demonstrate that inductive testing
can achieve a better functional coverage of the system than conventional non-
inductive strategies. The presented inductive testing technique is flexible; it is
not necessarily tied to a specific inference or testing technique, but a frame-
work is provided that enables the two to interact, and to feed off each other.
For our case study, we selected a realistic system; the Linux TCP/IP stack. We
used an heuristic inductive inference technique that has been shown to deal well
with incomplete test sets [15,16,23], and we combined this with a simple black-
box network testing framework [20] that is built on top of the well-established
QuickCheck Erlang testing framework [22].

The approach is flexible; different combinations of inference and testing tech-
niques could produce better results. However, the main purpose was to demon-
strate that inductive testing is a practical technique, and can produce better,
more efficient test sets than näıve black-box alternatives. The best combinations
of techniques will invariably depend on the characteristics of the SUT, and is
one of the main areas we intend to investigate in future work.

The test set generation technique that was used to generate the test cases
(both for the non-inductive and inductive cases) was deliberately simple, to
ensure that any improvements in the results were not an artefact of the test-
generation technique, but were entirely due to the inferred model. In practice,
it makes sense to combine the model induction with a more sophisticated test-
generation procedure. The QuickCheck framework has several facilities that can
enable this. For example, it is possible to associate probabilities with different
transitions in the LTS, to ensure that certain areas of the machine are tested
more often than others. Future work will look into exploiting such features, to
emphasise the exploration of new areas in the SUT that have not been explored
by previous tests.
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In our case study, the number of iterations were restricted to 285. This sufficed
to serve its purpose of showing that inductive testing produces better test sets
than non-inductive testing. However, it does raise the question of when the
process should be terminated in general; when is the test set good enough?
This is the question that originally motivated Weyuker to devise the inductive
testing process [2]. She envisaged that test generation should continue until no
tests could be found that conflict with the inferred model (or program in her
case). In practice, the complexity of the SUT and the selected testing technique
may make it unrealistic to achieve this goal. The convention is to declare a time-
limit, and to simply execute as many tests as possible [17]. Even if this approach
is adopted, this work has shown that the inferred model can be used to provide
an estimation of functional coverage during the testing process, and there is a
strong argument to be made for the fact that this is more suitable than the
convention of using code-coverage as an approximation.
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Abstract. Recently there has been an upsurge of interest in both,

Search–Based Software Testing (SBST), and Dynamic Symbolic Execu-

tion (DSE). Each of these two approaches has complementary strengths

and weaknesses, making it a natural choice to explore the degree to

which the strengths of one can be exploited to offset the weakness of the

other. This paper introduces an augmented version of DSE that uses a

SBST–based approach to handling floating point computations, which

are known to be problematic for vanilla DSE. The approach has been

implemented as a plug in for the Microsoft Pex DSE testing tool. The

paper presents results from both, standard evaluation benchmarks, and

two open source programs.

1 Introduction

It is widely believed that automating parts of the testing process is essential for
successful and cost effective testing. Of the many approaches to automated test
data generation in the literature, two important and widely studied schools of
thought can be found in the work on Search–Based Software Testing (SBST)
and Dynamic Symbolic Execution (DSE). This paper proposes an augmented
approach to tackle the problem of floating point computations in DSE. It has
been implemented as an extension to the Microsoft DSE testing tool Pex.

SBST and DSE have different strength and weaknesses. For instance, SBST
provides a natural way to express coverage based test adequacy criteria as a
multi–objective problem [6], while DSE is better suited to discover the structure
of the input to the system under test. Yet there has been little work in trying
to combine SBST and DSE.

Inkumsah and Xie [8] were the first authors to propose a framework (EVA-
CON) combining evolutionary testing with DSE. Their framework targets test
data generation for object oriented code written in JAVA. They use two exist-
ing tools, eToc [18], an evolutionary test data generation tool, and jCUTE [16],
a DSE tool. eToc constructs method sequences to put a class containing the
method under test, as well as non–primitive arguments, into specific desirable
states. jCUTE is then used to explore the state space around the points reached
by eToc.

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 142–157, 2010.
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Majumdar and Sen [10] combined random testing with DSE in order to ad-
dress the state problem in unit testing. A random search is used to explore the
state space, while DSE is used to provide a locally exhaustive exploration from
the points reached by the random search.

Neither of the two approaches addresses the issue of floating point compu-
tations in DSE, which originate from limitations of most constraint solvers.
Constraint solvers approximate constraints over floating point numbers as con-
straints over rational numbers. Because computers only have limited precision,
solutions which are valid for rational numbers are not always valid when mapped
to floating point numbers. Thus, Botella et al. [2] proposed a constraint solver
based on interval analysis in order to symbolically execute programs with float-
ing point computations. A limitation of their work is that it does not consider
combinations of integers and floating point expressions.

The approach proposed in this paper differs from previous work in that it pro-
vides a general framework for handling constraints over floating point variables.
It is also the first paper to propose a combination of DSE with SBST in order
to improve code coverage in the presence of floating point computations.

The rest of the paper is organized as follows: Section 2 presents a brief
overview of SBST and DSE, and the two search algorithms implemented. Sec-
tion 3 describes the DSE tool Pex and how it has been extended with arithmetic
solvers for floating point computations. The empirical study used to evaluate the
solvers, analysis of the results, and threats to validity are presented in Section 4.
Section 5 concludes.

2 Background

2.1 Dynamic Symbolic Execution

In DSE [5,17] the goal is to explore and execute the program to achieve structural
coverage, based on analysis of the paths covered thus far. DSE combines sym-
bolic and concrete execution. Concrete execution drives the symbolic exploration
of a program, and runtime values can be used to simplify path constraints pro-
duced by symbolic execution to make them more amenable to constraint solving.
Consider the example shown in Figure 1 and suppose the function is executed
with the inputs a=38 and b=100. The execution follows the else-branch at the
if-statement. The corresponding path condition is (int) Math.Log (a0) �= b0,
where a0 and b0 refer to the symbolic values of the input variables a and b respec-
tively. In order to explore a new execution path, the path condition is modified,
for example by inverting the last constraint, i.e. (int) Math.Log (a0) = b0.
However, suppose that the expression (int)Math.Log(a) cannot be handled by
a particular constraint solver. In order to continue testing, DSE replaces the
expression (int)Math.Log(a) with its runtime value, for example 3. The path
condition can thus be simplified to 3 == b0, which can now be solved for b0.
Executing the program with the (updated) input values a=38 and b=3 traverses
the then-branch of the if-statement.
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void testme2(double a, int b)

{

if( (int)Math.Log(a) == b )

//

}

Fig. 1. Example used for demonstrating dynamic symbolic execution and search–based

testing

2.2 Search–Based Testing

The field of SBST began in 1976 with the work of Miller and Spooner [11], who
applied numerical optimization techniques to generate test data which traverses
a selected path through the program. In SBST, an optimization algorithm is
guided by an objective function to generate test data. The objective function is
defined in terms of a test adequacy criterion. Recall the example from Figure 1
and suppose the condition in the if-statement must be executed as true. A
possible objective function is |(int)Math.Log(a) − b|. When this function is 0,
the desired input values have been found. Different functions exist for various
relational operators in predicates [9] and objective functions have been developed
to generate test data for a variety of program structures, including branches and
paths [19].

2.3 Alternating Variable Method

A simple but effective optimization technique [7], known as the Alternating Vari-
able Method (AVM), was introduced by Korel [9] in the 1990s. It is a form of hill
climbing and works by continuously changing an input parameter to a function
in isolation. Initially all (arithmetic type) inputs are initialized with random val-
ues. Then, so called exploratory moves are made for each input in turn. These
consist of adding or subtracting a delta from the value of an input. For integral
types the delta starts off at 1, i.e., the smallest increment (decrement). When
a change leads to an improved fitness value, the search tries to accelerate to-
wards an optimum by increasing the size of the neighborhood move with every
step. These are known as pattern moves. The formula used to calculate the delta
added or subtracted from an input is: δ = 2it ∗ dir ∗ 10−preci , where it is the
repeat iteration of the current move (for pattern moves), dir either −1 or 1, and
preci the precision of the ith input variable. The precision applies to floating
point variables only (i.e. it is 0 for integral types). It denotes a scale factor for
the size of a neighborhood move. For example, setting the precision (preci) of
an input to 1 limits the smallest possible move to ±0.1. Increasing the precision
to 2 limits the smallest possible move to ±0.01, and so forth.

Once no further improvements can be found for an input, the search continues
optimizing the next input parameter, and may recommence with the first input
if necessary. In case the search stagnates, i.e. no move leads to an improvement,
the search restarts at another randomly chosen location in the search–space.
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This is known as a random restart strategy and is designed to overcome local
optima and enable the AVM to explore a wider region of the input domain for
the function under test.

2.4 Evolution Strategies

Evolution Strategies (ES) date back to the 1960s and were popularized in the
early ‘70s by Rechenberg [14] and Schwefel [15]. They belong to the family of
Evolutionary Algorithms (EA). In an EA, a population of individuals evolves
over a number of generations. Between each generation, genetic operators are
applied to the individuals, loosely representing the effects of mating (crossover)
and mutation in natural genetics. The net effect of these operations is that the
population becomes increasingly dominated by better (more fit) individuals.

In an ES, an individual has at least two components: an object vector (i.e.
containing the inputs to the function under test) and a strategy parameter vec-
tor. The strategy parameters ‘evolve’ themselves as the search progresses. Their
role is to control the strength of the mutations of the object vector, so that
the ES can self–adapt to the underlying search landscape. For example, if the
search is far away from a global optimum, large mutations enable it to make
faster progress towards an optimum. Conversely, the closer the search is to an
optimum, smaller mutations may be necessary to reach the optimum.

3 Implementation

We will now describe how the AVM from Section 2.3 and the ES from
Section 2.4 have been implemented as a Pex extension called FloPSy (search-
based Floating Point constraint solving for Symbolic execution). The extension
is open source and available online from the codeplex website; URL: http://
pexarithmeticsolver.codeplex.com.

3.1 Pex

Pex [17] is a test input generator for .NET code, based on DSE; test inputs
are generated for parameterized unit tests, or for arbitrary methods of the code
under test.

Pex can symbolically represent all primitive values and operations, including
floating point operations and calls to pure functions of the .NET Math class.
Note that unlike traditional DSE, Pex only simplifies constraint systems by
using concrete values when the code under test invokes an environment-facing
method, i.e. a method that is defined outside of .NET, and not part of the Math
class.

Pex implements various heuristics to select execution paths. The constraint
solver Z3 [3] is used to decide the feasibility of individual execution paths. Z3 is a
Satisfiability Modulo Theories (SMT) solver, which combines decision procedures
for several theories. However, Z3 does not have a decision procedure for floating
point arithmetic. When Pex constructs constraint systems for Z3, all floating
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point values are approximated by rational numbers, and most operations are
encoded as uninterpreted functions. Pex supports custom arithmetic solvers to
work around this restriction.

Path selection and path constraint solving. Given a program with input
parameters, Pex generates test inputs in an iterative fashion. At every point
in time, Pex maintains a representation of the already explored execution tree
defined by the already explored execution paths of the program. The branches
of this tree are annotated by the branch conditions (expressed over the input
parameters). In every step of the test input generation, Pex selects an already
explored path prefix from the tree, such that, not all outgoing branches of the
last node of the path prefix have been considered yet. An outgoing branch has
been considered when it has been observed as part of a concrete execution path,
when it has been classed as infeasible, or when constraint solving timed out.
Pex then constructs a constraint system that represents the condition under
which the path prefix is exercised, conjoined with the negation of the disjunction
of all outgoing branch conditions. If a solution of this constraint system can
be obtained, then we have found a new test input which – by construction –
will exercise a new execution path which was not part of the already explored
execution tree. The path is then incorporated into the tree.

The successive selection of path prefixes plays a crucial role for the effective-
ness of test generation. If the program contains unbounded loops or recursion,
the execution tree might be infinite, and thus the selection of path prefixes must
be fair in order to eventually cover all paths. Even if loops and recursion are
bounded, or if the program does not contain loops and recursion, a fair selection
is still important to achieve high code coverage fast. Pex implements various
heuristic strategies to select the next path prefix [21], incorporating code cover-
age metrics and fitness functions.

Each constraint system is a Boolean-valued expression over the test inputs.
Pex’ expression constructors include primitive constants for all basic .NET data
types (integers, floating point numbers, object references), and functions over
those basic types representing particular machine instructions, e.g. addition and
multiplication, and the functions of the .NET Math class. Pex uses tuples to
represent .NET value types (“structs”) as well as indices of multi-dimensional
arrays, and maps to represent instance fields and arrays, similar to the heap
encoding of ESC/Java [4]: An instance field of an object is represented by a
field map which associates object references with field values. For each declared
field in the program, there is one location in the state that holds the current
field map value. An array type is represented by a class with two fields: a length
field, and a field that holds a mapping from integers (or tuples of integers for
multi-dimensional arrays) to the array elements. Constraints over the .NET type
system and virtual method dispatch lookups are encoded in expressions as well.
Most of Pex’ expressions can be mapped directly into SMT theories for which
Z3 has built-in decision procedures, in particular propositional logic, fixed sized
bit-vectors, tuples, arrays, and quantifiers. Floating point values are functions
that are a notable exception.



FloPSy 147

Extension mechanism for floating point constraint solving. If some con-
straints refer to floating point operations, then Pex performs a two-phase solving
approach: First, all floating point values are approximated by rational numbers,
and most operations are encoded as uninterpreted functions, and it is checked
whether the resulting constraint system is satisfiable; if so, a model, i.e. a sat-
isfying assignment, is obtained. (Note that this model includes a model for the
uninterpreted functions, which might not reflect the actual floating point se-
mantics.) Second, one or more custom arithmetic solvers are invoked in order to
correct the previously computed model at all positions which depend on floating
point constraints.

Consider for example the following method.

void foo(double[] a, int i){
if (i >= 0 && i < a.Length &&

Math.Sin(a[i]) > 0.0) {
...

}
}

In order to enter the then-branch of the if-statement, the three conjuncts must
be fulfilled. Using Z3, we may obtain a model, i.e. a satisfying assignment, where
i = 0 and a.Length = 1 and a[i] = 0/1 (0 or 1) and Math.Sin(0/1) = 1/1 is a
solution of the constraint system, when approximating floating point values with
rational numbers, and treating Math.Sin as an uninterpreted function (which
gets an interpretation as part of the model).

As this model does not hold with the actual interpretation of Math.Sin over
floating point values, in a second phase custom arithmetic solvers are invoked.
Here, there is a single relevant arithmetic variable x, which represents the heap
location a[i], and a single relevant arithmetic constraint Math.Sin(x) > 0.0.
The relevant constraints and variables are computed by a transitive constraint
dependency analysis, starting from the constraints which involve floating point
operations. To avoid reasoning about indirect memory accesses by the custom
arithmetic solver, each symbolic heap location, e.g. a[i] is simply treated as a
variable, ignoring further dependent constraints relating to the sub-expressions
of the symbolic heap location.

Default behavior for floating point constraints. By default, Pex version
0.91 employs two custom arithmetic solvers: a solver based on trying a fixed num-
ber of (pseudo) random values, and a solver based on an early implementation
of the AVM method. To conduct the experiments presented later in Section 4,
all custom solvers can be selectively enabled and disabled.

3.2 Custom Solvers

The extension for the custom arithmetic solvers can be enabled by including the
PexCustomArithmeticSolver attribute at a class, or, at the assembly level (via
[assembly: PexCustomArithmeticSolver]) of the assembly being tested with
Pex.
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Table 1. Relational operators used in Pex and corresponding distance functions. K is

a failure constant (set to 1).

Operator Pex representation Distance function

a = b a = b if |a − b| = 0 then 0 else |a − b|
a �= b (a = b) = 0 if |a − b| �= 0 then 0 else K
a < b a < b if a − b < 0 then 0 else a − b
a ≤ b (b < a) = 0 if a − b ≤ 0 then 0 else a − b
a > b b < a if b − a < 0 then 0 else b − a
a ≥ b (a < b) = 0 if b − a ≤ 0 then 0 else b − a

Fitness Function. The fitness function used by the custom solvers is defined in
terms of the comparison operators that appear in the constraints, and is similar
to what is commonly referred to as the branch distance measure in SBST [19].
The inputs to the fitness function are the original set of constraints, alongside
the current model constructed by the custom solvers. The function computes a
distance value for each constraint, and the overall fitness is the sum of these val-
ues. The computation of the distance value depends on the comparison operators
in the constraints, as shown in Table 1.

AVM. The AVM starts by building a vector of symbolic variables that forms
the basis of the exploratory moves. An index variable is used to keep track of
the element in the vector currently being optimized. Further, each element has
an associated precision variable. The precision is used to control the size of a
neighborhood move, as described in Section 2.3, and is initialized to 0 for all
variables, regardless of type (i.e. float,double, etc.).

Neighborhood Moves
Every delta is computed as a double precision variable before being converted
to the type of the variable (i.e. decimal, integer etc.) currently being modified.
For an exploratory move, dir (from Section 2.3) starts off as −1. If the move
is rejected, dir is changed to 1. If neither exploratory move is accepted (i.e.
produces a lower fitness value than the current best model), the AVM moves
on to the next element in its vector and resets dir to −1. Conversely, if a move
is accepted, the AVM continues with pattern moves for as long as there is an
improvement in fitness values. Every pattern move simply increases the variable
it from Section 2.3 by 1. When a pattern move is rejected, the AVM restarts
with exploratory moves for the first element in its vector.

Once the AVM reaches the last element in its vector, and each exploratory
move of that element is rejected, the search is stuck (either on a plateau or local
optima).

Precision of Floating Point Variables
One possible cause for the search to get stuck is that the size of the neighborhood
move is too coarse. Therefore, before performing a random restart, the AVM
checks if the precision of a variable (see Section 2.3) can be increased. In C#,
single–precision variables (i.e. float) contain about 7 decimal digits of precision,
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while double–precision variables (i.e. double) contains about 15 decimal digits
of precision. The AVM only changes the precision (preci) for a variable, if adding
the value 10−preci has an effect, or, preci is less than 7 or 15 for single and double
precision type inputs respectively.

Random Restarts
The main strategy for overcoming local optima is to perform a random restart.
Two types of restarts are considered. The first is a global, and the second a
local restart. In a global restart, all variables in the AVM’s vector are assigned
new random values. This is likely to place the starting point for the next hill
climb far away from the local optimum where the search got stuck. While this
is desirable in many cases, it is not an ideal strategy when a global optimum
is surrounded by many local optima. Chances are the search will just get stuck
at the same local optimum again. Therefore, the AVM also uses a local restart,
which is designed to stay in the vicinity of the current search space while still
being able to escape from the optimum.

In a local restart, a random number r (between 0 and 1) is created for each
variable. This number is ‘scaled’ by the formula 10−preci ∗ r, where preci is
the current precision of the ith variable. The ‘scaled’ random number is then
added to the existing value of the variable. If a local restart does not enable the
search to make further progress, a global restart is performed. Thus, the AVM
alternates between local and global restarts.

ES. Most EAs allow a wide range of configuration options and ES are no dif-
ferent. A user can configure the solver through various environment variables.
es_solver_parents controls the size of the parent population μ (default: 15);
es_solver_offspring sets the size of the offspring population (default: 100);
es_solver_recomb sets the recombination strategy; es_solver_mut sets the
mutation strategy.

The ES solver starts by creating an initial parent population of μ individ-
uals. Each individual contains a model and a strategy parameter vector such
that every variable in the model has a corresponding strategy parameter. The
parameters are initialized to 1 and all the variables in the models are assigned
random values.

The main loop of the ES solver involves recombination, mutation and selection
steps. If a user specified a recombination strategy, two parents are repeatedly
recombined to produce a single offspring until the offspring population is full.
Then, a mutation operator is applied to each offspring in turn. The mutation
operators first mutate the strategy parameter(s), and then the input variables.
Once all offspring have been evaluated, they are combined with the parent popu-
lation and ranked according to their fitness value. The top ranked individuals are
then chosen to replace the parent population, thus forming the next generation
of parents. We will now describe the reproduction operators in more detail.

Recombination. One of the genetic operators in an ES is the recombination
operator where two or more parents are combined to produce one offspring. The
ES solver supports the following recombination strategies:
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Discrete
In a discrete recombination, two parent individuals are chosen uniformly from
the parent population. Then, each variable in the offspring is assigned the value
from either parent. Parents have an equal probability of contributing towards
the offspring. The same applies for the strategy parameter vector, that is, the
offspring receives each strategy parameter from either parent with equal proba-
bility.

Global Discrete
This recombination strategy is similar to discrete recombination. The only dif-
ference is that for each variable (and each strategy parameter), a new set of
parents is chosen (uniformly).

Intermediate
During an intermediate recombination, two parents are chosen uniformly. For
each variable in the offspring, the values of the corresponding parent variables
are added together, and the sum is multiplied by 0.5, before being assigned to
the offspring. The same is done for each strategy parameter.

Global Intermediate
Similarly, in a global intermediate recombination, each variable and each strategy
parameter are chosen from a new set of parents, before combining them in the
same way as described in the intermediate strategy.

Mutation. Traditionally mutation was the main means of reproduction in ES.
The custom solver supports the following mutation strategies:

Single
In a single mutation strategy an individual only uses one strategy parameter, σ,
for all variables. In addition, the mutation operator contains a learning parameter
τ . It implements the following equations:

τ := 1/
√

n (1)
σ′ := σ ∗ exp (τ ∗N(0, 1)) (2)
vi := vi + σ′ ∗Ni(0, 1), i = 1, . . . , n (3)

First, the strategy parameter σ of an offspring is mutated to produce σ′. N(0, 1)
denotes a random number from a standard univariate normal distribution. The
mutated strategy parameter is then used to control the mutation of the vari-
ables. For each variable (from 1, . . . , n), a new random number from a standard
univariate normal distribution is multiplied by σ′, and then added to the existing
value of the variable.

Multi
This mutation strategy contains two learning parameters, a global one, τ0, and a
local one, τ . Further, each variable uses its own strategy parameter. The following
equations are implemented:
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τ0 := 1/
√

2 ∗ n (4)

τ := 1/

√
2 ∗ √n (5)

σ′
i := σi ∗ exp (τ0 ∗N(0, 1) + τ ∗Ni(0, 1)), i = 1, . . . , n (6)

vi := vi + σ′
i ∗Ni(0, 1), i = 1, . . . , n (7)

4 Empirical Study

The empirical study was split into two parts. The first part contains a set of
benchmark functions which are commonly used to evaluate optimization algo-
rithms [12]. The second part consists of two real world programs comprising
152, 372 lines of C# code (as reported by the SLOCCount tool [20]).

4.1 Benchmark Functions

Details of the benchmark subjects are recorded in Table 2. The optimization
problem is to find the minimum of each function (i.e. 0). The functions were
formulated as a single if-statement, with the then-branch declared as a test
data generation goal for Pex. 100% block coverage of the methods indicates that
the Pex goal has been reached.

Table 2. Summary of the benchmark functions and their C# representation

Function C# representation
Beale (1.5 - x1 * (1 - x2)) == 0
Freudenstein And Roth (-13 + x1 + ((5 - x2) * x2 - 2) * x2) + (-29 + x1 + ((x2 + 1) * x2 -

14) * x2) == 0
Helical Valley Function double theta(double x1,double x2) { if(x1 > 0) return Math.Atan(x2

/ x1) / (2 * Math.PI); else if (x1 < 0) return (Math.Atan(x2 / x1) /
(2 * Math.PI) + 0.5); else return 0; }

(10 * (x3 - 10 * theta(x1, x2))) == 0 && (10 * (Math.Sqrt(x1 * x1 +
x2 * x2) - 1)) == 0 && x3 == 0

Powell (Math.Pow(10, 4) * x1 * x2 - 1) == 0 && (Math.Pow(Math.E, -x1)
+ Math.Pow(Math.E, -x2) - 1.0001) == 0

Rosenbrock Math.Pow((1 - x1), 2) + 100 * (Math.Pow((x2 - x1 * x1), 2)) == 0
Wood (10 * (x2 - x1 * x1)) == 0 && (1 - x1) == 0 && (Math.Sqrt(90) *

(x4 - x3 * x3)) == 0 && (1 - x3) == 0 && (Math.Sqrt(10) * (x2 +
x4 - 2)) == 0 && (Math.Pow(10, -0.5) * (x2 - x4)) == 0

4.2 Real World Open Source Programs

Details for the two open source programs are shown in Table 3. Both programs
are written in C# and were chosen specifically because they contain arithmetic
operations over floating point variables. Alglib [1] is a numerical analysis and
data processing library, and QLNet [13] is a library for quantitative finance
operations.



152 K. Lakhotia et al.

Table 3. Details of the open source programs

Program SLOC Pex Methods Tested

Alglib 62,271 608 514

QLNet 90,101 3,123 3,068

Total 152,372 3,731 3,582

4.3 Experimental Setup

The benchmark functions, Alglib, and QLNet source files were assembled into
a single Visual Studio (VS) project each. We then created three test projects
via the Pex → Create Parameterized Unit Tests command. This generates a
PexMethod for every public method in the original source code. A PexMethod
represents a parametrized unit test and serves as an entry point for the DSE.

If the arguments to a test function contain complex type objects, Pex may
need help in constructing meaningful inputs in order to achieve a higher level of
code coverage. Pex provides various mechanisms to that effect such as factory
methods and the Moles framework. For the experiments, none of the generated
parameterized unit tests were modified, and no factory methods or ‘moled’ ob-
jects were used.

The fitness budget for the random search used by Pex, the AVM and ES was
limited to 100, 000 fitness evaluations. The ES was configured to have 15 par-
ents, produce 100 offspring per generation, use a Global Discrete recombination
strategy and the Single mutation operator described in Section 3.2.

Setup for Benchmarks
Pex contains a number of options to bound its exploration. For example, the
default time out for Pex’s constraint solver is 1 second. We increased this limit
to 10, 000 seconds for the constraint solvers (/mcst option) and also increased
the time limit for an exploration to the same amount. Then, we ran Pex for each
PexMethod with: 1) only the constraint solver Z3 enabled, 2) a random search
and Z3 enabled, 3) the AVM and Z3 enabled, 4) the ES and Z3 enabled.

Apart from the configuration with only Z3 enabled, we repeated the runs
30 times for each benchmark, due to the stochastic nature of both the AVM
and the ES. A list of 30 random number seeds was used to seed the random
number generator in Pex (by setting the environment variable er_random_seed).
Repeating experiments for a stochastic algorithm samples its behavior for a given
problem, and thus reduces the risk that any observed change in effectiveness is
due to chance.

Setup for Open Source Programs
For the open source programs it was necessary to restrict the execution time
of Pex and its constraint solvers to make the study scalable. Many of the func-
tions tested contained unbounded loops and complex constraints over arithmetic
types, which slow down the exploration of a program. Therefore, we allowed Pex
60 seconds per PexMethod (/to option), and set the time out for its constraint
solvers to 20 seconds (/mcst option).
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Further, because the programs comprised 3, 731 functions, we did not repeat
the experiments 30 times for each function. We believe that the risk of any
observed difference when using the custom solvers being due to chance, is suffi-
ciently mitigated by using such a large pool of functions.

4.4 Analysis

Benchmarks
Figure 2 summarizes the results in terms of block coverage for the benchmark
functions. Overall, the ES solver is the most effective, achieving 100% block
coverage for 5 out of 6 functions. It is also the only algorithm that finds the
optimum of the Rosenbrock function, which has a large, almost flat valley near
the optimum. The AVM fails to reach the Pex goal for the Rosenbrock function,
and also fails in 3 out of 30 runs for the Beale function. Neither solver achieves
full coverage of the Powell function.

These figures show that the custom solvers can improve the coverage of Pex for
floating point computations. However, they also show that the mapping between
rational numbers and floating point numbers is not always a problem in practice.
For 3 out of 6 functions Pex was able to achieve 100% block coverage without
using any heuristics on top of Z3.

Fig. 2. Block coverage achieved with the different configurations of Pex on the bench-

mark problems. 100% coverage means the testing goal has been reached.

Open Source Programs
Next, we looked at two open source programs to gain a better understanding of
what benefits the custom solvers might offer to a user in practice. During this
study, the random search in Pex remained enabled, and we turned on the AVM
and ES solvers on top of it; i.e. they only get invoked when Z3 or the random
search fail to find a solution.

Table 4 reports the coverage for Pex (with a random search), Pex and the
AVM, and Pex and the ES solver enabled. Coverage was measured using the
reports produced by Pex and shows the ratio of blocks covered to the total num-
ber of blocks discovered by Pex (during its DSE). The ‘Failed Methods’ column
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Table 4. Block coverage achieved by Pex, Pex+AVM, and Pex+ES for the open source

programs. Coverage is reported as a percentage of blocks discovered by Pex and blocks

covered. The ‘Failed Methods’ columns indicate the number of methods for which Pex

was terminated after 1 minute. Any blocks covered in those methods are not counted.

The ‘Time’ column reports the total wall clock time spent inside the AVM and ES

solvers.

Program Pex Pex+AVM Pex+ES

Cov. Failed Cov. Failed Time Cov. Failed Time

Methods Methods Methods

Alglib 43.86% 32 41.04% 40 02:42:42 44.13% 77 01:53:15

QLNet 43.54% 24 44.46% 31 01:06:02 46.84% 45 00:54:39

indicates the number of methods for which Pex was terminated abnormally af-
ter 60 seconds. Those methods do not contribute to the coverage reported, i.e.
blocks covered during runs which were terminated, are ignored.

Strikingly, the results show that the coverage with the AVM solver enabled, is
less than with the custom solvers disabled. The ES solver only marginally increases
the coverage compared to Pex’s default solvers (i.e. Z3 and random search). When
the custom solvers are enabled, they will, on average, take around 5 seconds to ei-
ther find a solution or exhaust their fitness budget. However, as can be seen from
Table 5, there are instances where the AVM (438 times) and ES (310 times) were
terminated after 20 seconds. Obviously, any time spent in one of the custom solvers
is no longer available to Pex to explore different parts of the program. A random
search is very fast, and if it fails, Pex can quickly ‘move on’. Thus, it can spend
more time exploring execution paths which do not depend on floating point com-
putations, thereby increasing the overall level of coverage.

The results from Table 4 suggest that the custom solvers proposed in this
paper should only be enabled if the code is known to produce many constraints
over floating point variables. In such an event, sufficient resources, in terms of
fitness evaluations as well as runtime, should be allocated for the solvers to be
effective (e.g. as was the case for the benchmark functions). One has to also
bear in mind that we do not know how many of the constraints passed to the
custom solvers were infact infeasible. Since the solvers have no way of checking,
infeasible constraints will cause the solvers to exhaust either their fitness budget
or their time out, thus wasting valuable exploration time.

Another interesting question is how often constraints over floating point vari-
ables are a problem for DSE in practice. Table 5 shows that, for Alglib, over a third
of its methods contain constraints over floating point numbers that could not be
solved by either Z3 or a random search. For the QLNet library on the other hand,
this figure is much smaller at around 3% of its methods. This suggests that it very
much depends on the type of application being tested. Nevertheless, the number
of constraints per application (first column in Table 5) which cannot be solved by
a random search or Z3, is large enough to present a problem in practice, especially,
since this number will be higher if Pex is given more exploration time.

The final part of the study was to analyze the data types of the variables
involved in floating point constraints, and the arithmetic operators over them.
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Table 5. This table shows how often either the AVM or ES solvers have been in-

voked by Pex. ‘UM’ stands for ‘Unique Methods’ and shows the number of methods

that contained one or more constraints which could not be solved by Z3 or a random

search. The ‘Succ.’ columns show how often the AVM or ES solvers were successful,

while ‘Timeouts’ counts the number of times the AVM or ES were terminated after 20

seconds. The ‘Fail’ column lists the number of unsuccessful attempts by the AVM or

ES to find a solution. The numbers in brackets show the number of methods for which

the custom solvers were invoked, but did not receive any variables to optimize from

Pex.

Program Pex+AVM Pex+ES

Inv. (UM) Succ. Timeouts Fail Inv. (UM) Succ. Timeouts Fail

Alglib 1828 (220) 646 398 784 (269) 1170 (172) 521 153 496 (269)

QLNet 557 (93) 37 40 480 (0) 495 (87) 10 0 485 (0)

Success rate 28.64% 31.89%

Figure 3 shows that constraints passed to the AVM and ES solvers only included
variables of type double and integral types (e.g. short, int etc.). Thus, it is im-
portant that any approach dealing with constraints over floating point variables
can handle mixed floating point and integral type constraints.

Fig. 3. Distribution of the data types of

the variables passed to the AVM and ES

solvers

Fig. 4. Distribution of arithmetic oper-

ators in the constraints passed to the

AVM and ES solvers

Figure 4 summarizes the observed arithmetic operators in the constraints
attempted by the AVM and ES solvers. Most commonly the constraints involved
multiplication of input variables, followed by the power operator (e.g. xy). These
two operators are likely to produce non–linear constraints, and thus are especially
hard for constraint solvers. The third most frequent operator was addition of two
variables, followed by system library calls involving floating point variables, such
as Double.IsNaN.

4.5 Threats to Validity

Naturally there are threats to validity in any empirical study such as this. The
first issue to address is the internal validity of the experiments, i.e. whether
there has been a bias in the experimental design that could affect the obtained
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results. One potential source of bias comes from the settings used for Pex and
the custom solvers. For the open source programs, the time out for Pex explo-
rations was set at 60 seconds, while constraint solvers were given 20 seconds
per invocation. These limits, together with the fitness budget of 100, 000 eval-
uations, were necessary to control the scope of the study. However, as a result,
the benefit of using the custom arithmetic solvers was diminished, because the
functions tested were so complex that they required longer execution times and
bigger fitness budgets.

Another potential source of bias comes from the inherent stochastic behavior
of the meta–heuristic search algorithms used in the custom solvers. The most
reliable (and widely used) technique for overcoming this source of variability is to
perform tests using a sufficiently large sample of result data. In order to ensure
a large sample size, experiments for the benchmark functions were repeated 30
times. The open source programs comprised 3, 731 functions, thus also providing
a large pool of data from which to draw observations.

A further source of bias includes the selection of the functions used in the em-
pirical study, which could potentially affect its external validity, i.e., the extent
to which it is possible to generalize from the results obtained. The benchmark
functions have been used to evaluate different optimization algorithms before,
thus were considered a good candidate to test Pex and each custom solver (imple-
menting an optimization algorithm) in the extreme. The open source programs
were chosen because they represent non-trivial sized programs and because they
contain complex floating point arithmetic. As with any empirical study such as
this, caution is required before making any claims as to whether these results
would be observed on other functions. More experiments are needed to validate
or refute such claims.

5 Conclusions

This paper has presented an extension to DSE for floating point computations,
based on SBST techniques. The extension has been implemented as a plug in for
the Microsoft Pex DSE testing tool. Results from a set of benchmark functions
show that it is possible to increase the effectiveness of what might be called
“vanilla DSE”. However, a study on two open source programs also shows that
for the solvers to be effective, they need to be given adequate resources in terms
of wall clock execution time, as well as a large fitness budget. Otherwise any
increase in coverage is, at best, marginal. More experiments are needed to check
if longer exploration times for Pex make the custom solvers more effective.
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Abstract. We present a novel algorithm for test data generation that

is based on techniques used in formal software verification. Prominent

examples of such formal techniques are symbolic execution, theorem

proving, satisfiability solving, and usage of specifications and program

annotations such as loop invariants. These techniques are suitable for

testing of small programs, such as, e.g., implementations of algorithms,

that have to be tested extremely well.

In such scenarios test data is generated from test data constraints

which are first-order logic formulas. These constraints are constructed

from path conditions, specifications, and program annotation describing

program paths that are hard to be tested randomly. A challenge is, how-

ever, to solve quantified formulas. The presented algorithm is capable

of solving quantified formulas that state-of-the-art satisfiability modulo

theory (SMT) solvers cannot solve. The algorithm is integrated in the

formal verification and test generation tool KeY.

1 Introduction

Testing has been influenced in the last decade by formal methods. Prominent
examples of such formal techniques are symbolic execution, theorem proving,
satisfiability solving, and the usage of formal specifications and program anno-
tations such as loop and class invariants. Formal testing techniques can achieve
a high code coverage or they can generate a low number of tests that very likely
exhibit software faults. Such techniques generate test data constraints which are
first-order logic (FOL) formulas. These constraints are constructed from path
conditions, specifications, and program annotation and describe program paths
that are hard to be tested randomly.

Satisfiability modulo theory (SMT) solvers are state-of-the-art techniques for
generating models of FOL formulas. A model is a FOL interpretation in which
a formula evaluates to true. A major bottleneck is, however, the handling of
quantifiers (see, e.g., [21,22]). SMT solvers can often create models for quantified
formulas if one theory is involved. Quantifiers and multiple theories, however,
often lead to problems that are not in the decidable fragments of the solvers. In
such cases an SMT solver cannot generate a model for the formula.

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 158–173, 2010.
c© IFIP International Federation for Information Processing 2010



Test Data Generation for Programs with Quantified FOL Specifications 159

JAVA + JML

public class C{

private String[] s;

/*@ invariant

s.length>=10;*/

...

}

JAVA + JML

⎛
⎝ ∀o : C.o �= null →

∀i : int.0 � i � length(s(o)) →
acc[](s(o), i) �= null

⎞
⎠ (1)

∀o : C.o �= null → length(s(o)) � 10 (2)

Fig. 1. (left) A field declaration and a class invariant; (right) Quantified formulas

occurring in test data constraints generated by KeY

For example, Figure 1 shows a JAVA class with a field declaration and a Jml
[18] specification of a class invariant. From the field declaration and the class
invariant the tool KeY[2,16] generates the formulas (1) and (2), respectively.
These formulas are part of test data constraints. In this approach JAVA-fields and
arrays are modelled as uninterpreted functions in first-order logic, hence, FOL
interpretations and program states are the same concept. Formula (1) follows
Jml’s semantics and expresses that the elements of the array field s are not
null. Formula (2) expresses the class invariant, that for all objects of class C the
array s has 10 or more elements.

When generating a test for some method of class C, the test data constraints
have to be satisfied by the test data. The problem is, however, that state-of-the-
art SMT solvers, concretely we have tested Z3 [5], CVC3 [1], Yices [9], are not
capable to solve (1) or (2). Although SMT solvers can solve quantified formulas
in certain cases, (1) and (2) are not in the decidable logic fragment of the solvers.
Note, that a different translation of the code in Figure 1 could create formulas
that are solvable by an SMT solver, but the general problem of solving quantified
formulas remains.

The contribution of this paper is not a technique to derive test cases or test
data constraints. Those techniques are cited in Section 1.1. Instead, our con-
tribution is the handling of quantified formulas for solving provided test data
constraints. We propose a model generation algorithm that is not explicitly re-
stricted to a specific class of formulas and which can therefore solve more general
formulas than SMT solvers can solve.

The basic idea of our approach is to generate a partial FOL model in which a
quantified formula that we want to eliminate evaluates to true. SMT solvers can
then solve the remaining ground formulas. The representation of a model in our
approach is a program. Our technique generates candidate programs and checks
if a candidate program satisfies the test data constraint. For instance, in order
to satisfy formula (2) we could generate the following JAVA statement

for (C o : Cs){o.s = new String [10] ;} (3)

where Cs is a collection of objects of class C, and verify it against formula (2).
A programming language such as JAVA is, however, not directly suitable for this



160 C.D. Gladisch

task because (a) function and predicate symbols are usually not part of such
languages and (b) loop invariants would have to be generated for the verification
proof. A language and a calculus that are suitable for our purpose exist, however,
in the verification system KeY. The language consists of so-called updates .

Structure of the paper. In the following we describe the background of our
work as well as related work. In Section 2 the underlying formalism of our ap-
proach is introduced. The main section is Section 3 where we describe our al-
gorithm. In Section 4 we report on experiments with our approach and provide
conclusions and further research plans in Section 5.

1.1 Background and Related Work

The work presented in the paper has been developed in the KeY project [16]. The
KeY system [2,16] is a verification and test generation tool for JAVA. The tool can
automatically generate JUnit tests from proof structures [10]. The test data is
generated from FOL constraints which combine execution path conditions with
annotations such as method specification, class invariants, and loop invariants
[13,14]. Hence, the approach is a grey-box testing technique. So far we have
used the theorem prover Simplify [7] to generate test data but the so-generated
test data is not always guaranteed to satisfy the constraints as will be shown
below. On the other hand, we found that more recent SMT solvers such as Z3
[5], CVC3 [1], Yices [9] are not capable to solve the constrains either, which was
the motivation for this work.

There exist several other tools that follow similar ideas as the KeY tool to
generate test data constraints and have therefore similar requirements on test
data generation. KUnit [6] is an extension of Bogor/Kiasan which combines
symbolic execution, model checking, theorem proving, and constraint solving.
Check’n’Crash generates JUnit tests for assertions that could not be proved
using ESC/Java2 [4]. Java PathFinder is an explicit-state model checker and
features the generation of test inputs [24]. Non-trivial FOL formulas may also
occur in functional testing or model-based testing. A survey of search-based test
data generation techniques is given in [19]. These techniques are powerful for
traditional testing approaches but they do not handle test data generation for
constraints with quantified FOL formulas.

The main contribution of our work is the handling of quantifiers. One has to
distinguish between different quantifiers in different contexts, namely between
those that can be skolemized and those that cannot be skolemized. The tricky
cases are the handling of (a) existential quantification when showing validity
and (b) universal quantification when generating models. In order to handle
case (a) some instantiation(s) of the quantified formulas can be created hoping
to complete the proof. Soundness is preserved by any instantiation. The situation
in case (b) which occurs when generating test data is, however, worse when using
instantiation-based methods, because these methods are sound only if a complete
instantiation of the quantified formula is guaranteed.

A popular instantiation heuristic is E-matching [21] which was first used in
the theorem prover Simplify. E-matching is, however, not complete in general.
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In general a quantified formula ∀x.ϕ(x) cannot be substituted by a satisfiability
preserving conjunction ϕ(t0)∧ . . .∧ϕ(tn) where t0 . . . tn are terms computed via
E-matching. For this reason Simplify may produce unsound answers (see also
[17]) as shown in the following example.

∀h.∀i.∀v.select(store(h, i, v), i) = v (4)

∀h.∀j.0 � select(h, j) ∧ select(h, j) � 232 − 1 (5)
Formula (4) is an axiom of the theory of arrays and (5) specifies that all array
elements of all arrays have values between 0 and 232− 1. The first axiom is used
to specify heap memory in [20]. Formula (5) seems like a useful axiom to specify
that all values in the heap memory have lower and upper bounds, as it is the
case in computer systems. However, the conjunction (4) ∧ (5) is inconsistent,
i.e. it is false, which can be seen when considering the following instantiation
[h := store(h0, k, 232), j := k], (see [20]). Simplify, however, produces a counter
example for ¬((4) ∧ (5)), which means that it satisfies the false formula (4) ∧
(5). E-matching may be used for sound satisfiability solving when a complete
instantiation of quantifiers is ensured. For instance, completeness of instantiation
via E-matching has been shown for the Bernays-Schönfinkel class in [11]. An
important fragment of FOL for program specification which allows a complete
instantiation is the Array Property Fragment [3].

Quantifier elimination techniques, in the traditional sense, replace quantified
formulas by equivalent ground formulas, i.e. without quantifiers. Popular meth-
ods are, e.g., the Fourier-Motzkin quantifier elimination procedure for linear ra-
tional arithmetic and Cooper’s quantifier elimination procedure for Presburger
arithmetic (see, e.g., [12] for more examples). These techniques are, in contrast
to the proposed technique, not capable of eliminating the quantifier in, e.g., (1)
or (2). Since first-order logic is only semi-decidable, equivalence preserving quan-
tifier elimination is possible only in special cases. The transformation of formulas
by our technique is not equivalence preserving. The advantage of our technique
is, however, that it is not restricted to a certain class of formulas.

Finally, Finite Model Finding methods such as [25] regard the finite domain
version of the satisfiability problem in first-order logic. Our approach handles,
however, also infinite domains.

2 KeY’s Dynamic Logic with Updates

The KeY system is based on the logic JAVA CARD DL, which is an instance
of Dynamic Logic (DL) [15]. Dynamic Logic is an extension of first-order logic
with modal operators. The ingredients of the KeY system that are needed in this
paper are first-order logic (FOL) extended by the modal operators updates [23].

Notation. We use the following abbreviations for syntactic entities: V is the
set of (logic) variables; Σf is the set of function symbols; Σf

r ⊂ Σf is the
set of rigid function symbols, i.e. functions with a fixed interpretation such as,
e.g., ’0’, ’succ’, ’+’; Σf

nr ⊂ Σf is the set of non-rigid function symbols, i.e.
uninterpreted functions; Σp is the set of predicate symbols; Σ is the signature
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consisting of Σf ∪ Σp; TrmF OL is the set of FOL terms; Trm ⊃ TrmFOL

is the set of DL terms; FmlF OL is the set of FOL formulas; Fml ⊃ FmlFOL

is the set of DL formulas; U is the set of updates; .= is the equality predicate;
and = is syntactic equivalence. The following abbreviations describe semantic
sets: D is the FOL domain or universe; S is the set of states or equivalently the
set of FOL interpretations. To describe semantic properties we use the following
abbreviations: vals(t) ∈ D is the valuation of t ∈ Trm and vals(u) ∈ S is the
valuation of u ∈ U in s ∈ S; s � ϕ means that ϕ is true in state s ∈ S; � ϕ
means that ϕ is valid, i.e. for all s ∈ S, s � ϕ; and ≡ is semantic equivalence.

Updates capture the essence of programs, namely the state change computed
by a program execution. States and FOL interpretations are the same concept.
An update changes the interpretation of symbols Σf

nr (such as uninterpreted
functions). Hence, updates represent partial states and can be used to repre-
sent (partial) models of formulas. The set Σf

r represents rigid functions whose
interpretation is fixed and cannot be changed by an update.

For instance, the formula ({a := b}a = c) ∈ Fml , where a ∈ Σf
nr and b, c ∈ Σf

consists of the (function) update a := b and the application of the update modal
operator {a := b} on the formula a = c. The meaning of this update application is
the same as that of the weakest precondition wp(a := b, a = c), i.e. it represents
all states such that after the assignment a := b the formula a = c is true which
is equivalent to b = c.

Definition 1. Syntax. The sets U, T rm and Fml are inductively defined as the
smallest sets satisfying the following conditions. Let x ∈ V ; u, u1, u2 ∈ U ; f ∈
Σf

nr; t, t1, t2 ∈ Trm; ϕ ∈ Fml.

• Updates. The set U of updates consists of: function updates (f(t1, . . . , tn) :=
t), where f(t1, . . . , tn) is called the location term and t is the value term; par-
allel updates (u1 ||u2); conditional updates (if ϕ; u); and quantified updates
(for x; ϕ; u).

• Terms. The set of Dynamic Logic terms includes all FOL terms, i.e. Trm ⊃
TrmFOL; and {u}t ∈ Trm for all u ∈ U and t ∈ Trm.

• Formulas. The set of Dynamic Logic formulas includes all FOL formulas, i.e.
Fml ⊃ FmlFOL; {u}ϕ ∈ Fml for all u ∈ U , ϕ ∈ Fml; and sequents Γ =⇒ Δ,
where Γ ⊂ Fml is called antecedent and Δ ⊂ Fml is called succedent.

A sequent Γ =⇒ Δ is equivalent to the formula (γ1 ∧ . . .∧ γn)→ (δ1 ∨ . . .∨ δm),
where γ1, . . . , γn ∈ Γ and δ1, . . . , δm ∈ Δ. Sequents are normally, e.g. in [2], not
included in the set of formulas. However, in this work it is convenient to include
them to the set of formulas as syntactic sugar .
Definition 2. Semantics. We use the notation from Def. 1, further let s, s′ ∈ S;
v, v1, v2 ∈ D; x, xi, xj ∈ V ; and ϕ(x) and u(x) denote a formula resp. an update
with an occurrence of x.

Terms and Formulas:

• vals({u}t) = vals′(t), where s′ = vals(u)
• vals({u}ϕ) = vals′(ϕ), where s′ = vals(u)
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Updates:

• vals(f(t1, . . . , tn) := t) = s′, where s′ = s except the interpretation of f is
changed such that vals′(f(t1, . . . , tn)) = vals(t)

• vals(u1; u2) = s′, there is s′′ with s′′ = vals(u1) and s′ = vals′′ (u2)
• vals(u1 ||u2) = s′. We define s′ by the interpretation of terms t.

Let v0 = vals(t), v1 = vals({u1}t), and v2 = vals({u2}t).
If v0 �= v2 then vals′(t) = v2 else vals′(t) = v1.

• vals(if ϕ; u) = s′, if vals(ϕ) = true then s′ = vals(u), otherwise s′ = s.
• Intuitively, a quantified update (for x; ϕ(x); u(x)) is equivalent to the infi-

nite composition of parallel updates (parallel updates are associative):

. . . || (if ϕ(xi); u(xi)) || (if ϕ(xj); u(xj)) || . . .
satisfying some global order # such that β(xi) # β(xj), where β : V → D.

A complete and formal definition of quantified updates cannot be given in the
scope of this paper; we refer the reader to [23,2] for a complete definition of
the language and the simplification calculus. In the following some examples are
shown of how updates, terms, and formulas are evaluated in KeY respecting the
given semantics in Def 2.

• {f(1) := a}f(2) = f(1) simplifies to f(2) = a.
• {f(b) := a}P (f(c)) simplifies to (b .= c→ P (a)) ∧ (¬b

.= c→ P (f(c))).
• {f(a) := a}f(f(f(a))) simplifies to a.
• {u1; f(t1, . . . , tn) := t} is equivalent to {u1 || f({u}t1, . . . , {u}tn) := {u}t}.
• {f(1) := a || f(2) := b}f(2) = f(1) simplifies to b = a.
• {f(1) := a || f(1) := b}f(2) = f(1) simplifies to f(2) = b, i.e. the last update

wins in case of a conflict.
• {if ϕ; f(b) := a}P (f(c)) simplifies to ϕ→ {f(b) := a}P (f(c)).
• {for x; 0 � x ∧ x � 1; f(x) := x} is equivalent to {f(1) := 1 || f(0) := 0}.

3 Test Data Generation for Quantified Formulas

The basic idea of our approach is to generate a partial FOL model in which a
quantified formula that we want to eliminate evaluates to true. A set of quantified
formulas can be eliminated, i.e. evaluated to true, by successive extensions of
the partial model. This approach can be continued also on ground formulas
to generate complete models. While this basic idea is simple, the interesting
questions are: how to represent the interpretations, how to generate (partial)
models, and what calculus is suitable in order to evaluate formulas under those
(partial) interpretations.

A suitable language for this purpose with a simplification calculus are updates.
In order to generate test data that satisfies a test data constraint ϕ ∈ FmlFOL,
our approach is to generate an update u, such that {u}ϕ evaluates to true. If
such an update exists, then ϕ is satisfiable and the update represents a test
preamble initializing a state in which ϕ evaluates to true (see Section 3.3).
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Example 1. Referring to Figure 1, models for satisfying formulas (2) and (1) can
be represented by the following update applications, respectively.

{for o : C; ¬o
.= null; l(s(o)) := 10}(2) (6)

{for o : C; ¬o
.= null; (for i : int; 0 � i � l(s(o)); acc[](s(o), i) := objC(i))}(1)

where l is an abbreviations of length, acc[](s(o), i) encodes the array access
o.s[i], and objC : int→ C is an injective function from numbers to objects.

Our technique uses heuristics for construction of candidate updates u and then
verifies {u}ϕ. The advantage of using updates is the availability of the powerful
update simplification calculus to automatically verify {u}ϕ. In particular it is
not required to generate loop invariants in order to handle quantified updates.
In this way different heuristics can be used in a search procedure for u while
guaranteeing correctness of the test preamble in the end. The technique requires
a theorem prover for FOL and an implementation of updates.

Definition 3. Procedure Th. The procedure Th represents a theorem prover.

• Given a formula ϑ ∈ Fml as input, Th(ϑ) returns a set Θ ⊂ FmlFOL.
• If Θ = ∅, then � ϑ.
• Each ϑ′ ∈ Θ is either a literal or a quantified formula.
• The prover may use only local equivalence rules. Global rules ensure that sat-

isfiability of ¬ϑ′ for any ϑ′ ∈ Θ ensures satisfiability of ¬ϑ. Local equivalence
rules ensure additionally that � (¬ϑ′)→ (¬ϑ).

The KeY system uses a sequent calculus. Therefore, in the following sections
we assume that the set Θ returned by Th consists of sequents (see Def. 1). In
the following two algorithms are described. Algorithm 1 in Section 3.1 extracts
information from (quantified) formulas for update construction and invokes a
theorem prover to verify {u}ϕ. Algorithm 1 queries Algorithm 2 to construct
candidate updates based on information obtained from Algorithm 1. Algorithm
2 is described in Section 3.2. In order to keep the pseudo-code small we use
indeterministic choice points, marked by the keyword choose, and assume a
backtracking control-flow wrt. to these choice points. In this way we also separate
the basic algorithm from concrete search heuristics. If a choice at a choice point
cannot be made, e.g. when trying to select an element of an empty set, then the
algorithms backtracks or stops with the result “unknown” resp. “∅”.

3.1 The Model Search Algorithm

Assume we want to generate test data resp. a model satisfying the input formula
φin. The Algorithm 1 reformulates this problem as counter example generation for
ϕ′ (Line 1). In Line 4 the algorithm attempts to show � ϕ′ (Line 4). If ϕ′ is valid,
then Φ = ∅ and the algorithm stops (Line 5) because ϕ′ has no counter example
and φin is unsatisfiable. The other case is that the proof attempt of ϕ′ results in a
set of open, i.e. unproved, proof obligations Φ (Line 5). In this case it is unknown if
a model of φin exists or not. The proof obligations Φ result from case distinctions
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Algorithm 1. modelSearch(φin)
1: ϕ′ := ¬φin

2: solution := ⊥
3: loop
4: Φ := Th(ϕ′)
5: choose ϕ ∈ Φ
6: if ϕ is ground then
7: if GROUNDPROC(¬ϕ) = (“sat”, groundmodel) then
8: return (“sat”, groundmodel, solution)

9: else
10: backtrack or return (“unknown”, ⊥, ⊥)

11: end if
12: end if
13: normalize ϕ such that quantified formulas appear only in the antecedent of ϕ
14: choose a quantified formula ∀x.φ(x) in ϕ, i.e. let ϕ = (Γ,∀x.φ(x) =⇒ Δ)

15: ϕ′ := (Γ, true =⇒ Δ)

16: ψ := (Γ =⇒ ∀x.φ(x), Δ)

17: Ψ := Th(ψ)

18: while Ψ �= ∅ do
19: choose ψ′ ∈ Ψ
20: Υ := formulaToUpdate(ψ′)
21: choose (u, α) ∈ Υ
22: solution := append (u, α) to solution

23: ϕ′ := (α → {u}ϕ′)
24: ψ := (α → {u}ψ)

25: Ψ := Th(ψ)

26: end while
27: end loop

in the proof structure created by Th and contain valuable information, because
they describe situations in which ϕ′ potentially has counter examples.

In Line 5 the algorithm selects a formula ϕ ∈ Φ. The goal is to create a counter
example for ϕ, i.e. satisfy ¬ϕ, in order to satisfy φin. Ground formulas should
be preferred at this choice point because they can be efficiently checked by a
ground procedure such as an SMT solver. Otherwise, we assume ϕ is not ground.
After normalization at Line 13 the antecedent of ϕ contains at least one uni-
versally quantified formula and all formulas of the succedent are ground. This
normalization can be easily achieved by the equivalence (Γ =⇒ ∃x.φ(x), Δ) ≡
(Γ, ∀x¬φ(x) =⇒ Δ). A counter example for ϕ must satisfy the formulas in the an-
tecedent, i.e. Γ and ∀x.φ(x). The algorithm selects a quantified formula ∀x.φ(x)
from the antecedent of ϕ (Line 14) for which a model is generated in the following.

The core idea of this algorithm is to create an update u, such that {u}∀x.φ(x)
evaluates to true, and in this way to eliminate the quantified formula. The weak-
est condition under which ∀x.φ(x) evaluates to true in ϕ can be expressed as

(Γ, ∀x.φ(x) =⇒ Δ︸ ︷︷ ︸
ϕ

)↔ (Γ, true =⇒ Δ︸ ︷︷ ︸
ϕ′

) (7)
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which simplifies by equivalence transformations to

Γ =⇒ ∀x.φ(x), Δ︸ ︷︷ ︸
ψ

(8)

Any model of (8) is also a model of (7), which means that in such states ∀x.φ(x)
evaluates to true. Hence, in Line 15 the formula ϕ′ is constructed where the
quantified formula is replaced by true. Substituting ϕ by ϕ′ in subsequent com-
putation is sound only if (7) or equivalently (8) is valid. Therefore formula (8)
is assigned to ψ in Line 16 and is checked by Th in Line 17. If ψ can be proved,
then Ψ = ∅ and the algorithm continues in Line 4 where ϕ′ (now without the
quantified formula) is used instead of ϕ. Otherwise, if the proof of (8) of does
not close (Line 17), then the result is a set of proof obligations Ψ .

The formulas Ψ (Line 19) describe potential states in which ∀x.φ(x) does not
evaluate to true. The goal is therefore to construct an update u (Line 20) such
that for each formula ψ′ ∈ Ψ , � {u}ψ′. If this is the case, then also � {u}ψ which
allows us to eliminate the quantified formula by the equivalence (7). Instead of
satisfying this condition in one step, our heuristic is rather to extend u iteratively.
In each iteration of the inner loop one formula ψ′ ∈ Ψ is selected in Line 19 and
Ψ is updated in Line 25 until Ψ eventually decreases to ∅.

Remark. For the construction of the updates it is sometimes necessary to in-
troduce and axiomatize fresh function symbols. For instance, it may be required
to introduce a fresh function notZero ∈ Σf with the axiom ¬(notZero

.= 0). An
update is therefore associated with an axiom α (see Line 21).

The goal of the inner loop is to generate an update u and a formula α (Line
20) and to check if

α→ {u}ψ (9)

evaluates to true. Formula 9 (see Line 24) is a weakening of (8). The procedure
formulaToUpdate which is described in Section 3.2 generates candidate pairs
(u, a) that are likely to satisfy (9).1 In (8), respectively (9), the quantified formula
occurs negated wrt. (7). An important consequence of this negation is that in
Lines 17 and 25 the theorem prover can skolemize the quantified formula (8)
resulting in

Γ =⇒ φ(sk), Δ (10)

where sk ∈ Σf
r is a fresh symbol. In this way the formula φ(sk) can be simplified

by the calculus and information contained in the structure of φ(sk) is extracted
to the sequent level, i.e. the boolean structure of φ(sk) is flattened (see Def. 3).
This information occurs in the formulas ψ′ ∈ Ψ (Line 19). The task of generating
a pair (u, α) from ψ′ for satisfying (9) by the procedure formulaToUpdate is
considerably simpler than generation of the pair from the whole unsimplified
quantified formula ∀x.φ(x).
1 Note that since the procedure formulaToUpdate uses only one formula ψ′ ∈ Ψ to

construct the pair (u, α), formula 9 may not evaluate true. In this case the inner

loop continues iteration and unsolved formulas ψ′ ∈ Ψ reapear in the next iteration

to be solved.
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Example 2. Let ϕ = (A, ∀x.φ(x) =⇒ B), where A, B ∈ FmlFOL and φ(x) =
(f(x) > x ∧ g(x) < f(x)). Generating a model for ϕ in one step is complicated
because the quantified formula cannot be skolemized. In contrast, in ψ = (A =⇒
∀x.φ(x), B) the quantified formula is negated (because (F =⇒) ≡ (=⇒ ¬F ) ) and
can therefore be skolemized. Th(ψ) yields Ψ = {(A =⇒ f(sk) > sk, B), (A =⇒
g(sk) < f(sk), B)}. The structure of each ψ′ ∈ Ψ is simpler than of ψ. The
procedure formulaToUpdate can then generate, e.g., the following updates with
axioms to satisfy the formulas in Ψ respectively:

{((for x; true; f(x) := x− 1), true), ((for x; true; g(x) := f(x) + 1), true)}.
Checking formula (9) as described above is imporant because it is equivalent to

(α→ {u}ϕ)↔ (α→ {u}ϕ′) (11)

which in turn is a weakening of (7). Accordingly, in Line 23 the formula ϕ′

is updated. If (9) is valid, which is checked in Line 25, then the inner loop
terminates and the outer loop continues execution. Hence, the original counter
example generation problem for ϕ is replaced by the counter example generation
problem for α→ {u}ϕ′ where the quantified formula is eliminated, i.e. replaced
by true. This is sound because if (9) is valid, then (11) is valid and therefore a
counter example for α → {u}ϕ′ is a counter example for α → {u}ϕ. The latter
implies that ϕ has a counter example as well which is formalized by the following
proposition.

Proposition 1. Let u ∈ U , α, ϕ′ ∈ Fml. If there is an s ∈ S such that s �
¬(α→ {u}ϕ), then there is s′ ∈ S such that s′ � ¬ϕ.

Proof. Assume there is s ∈ S such that s � ¬(α → {u}ϕ), which implies that
s � α and s � ¬{u}ϕ. The following is an equivalence in Dynamic Logic: ¬{u}φ ≡
{u}¬φ (see [2]). Using this equivalence we obtain the statement: there is s ∈ S
such that s � {u}(¬ϕ). According to Def. 2, there is s′ ∈ S such that s′ = vals(u),
and s′ � ¬ϕ. �

3.2 Update Generation For Satisfying Quantified Formulas

In this section we describe Algorithm 2 which is used by Algorithm 1 to con-
struct updates for satisfying quantified formulas. According to Section 3.1 this
algorithm receives as input a sequent ψ′ that is an open proof obligation of
Th (ψ). Algorithm 2 is queried for each open proof obligation and is expected to
generate an update and axiom pair (u, α) that is likely to satisfy

α→ {u}ψ′

Considering Example 2, if ψ′ = (A =⇒ f(sk) > sk, B), then a suitable (u, α)
pair is, e.g., ((for x; true; f(x) := x− 1), true).

As each pair (u, α) satisfies one of the open proof obligations ψ′ ∈ Th(ψ), a
series of such pairs eventually satisfies formula (9). The algorithm returns a set of
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Algorithm 2. formulaToUpdate(ψ′)
1: let sk = the skolem function of ψ′

2: let (Γ =⇒ Δ) = ψ′

3: let (Γsk =⇒ Δsk) ⊂ (Γ =⇒ Δ) (according to the description)

4: choose ϑsk ∈ (¬Γsk ∪ Δsk) (negation is applied to each element in Γ )

5: choose ϑ′
sk ∈ solve(ϑsk)

6: choose (u, α) ∈ concretize(ϑ′
sk)

7: choose (u′, α) ∈ toQuanUpd(sk, (u, α), (Γsk =⇒ Δsk), ϑsk)

8: return (u′, α)

alternative solutions for each sequent ψ′. Important to note is that soundness of
the approach is guaranteed by any pair (u, α) because the inner loop of Algorithm
1 does not terminate until a model is generated for ψ.

According to Def. 3 the sequent ψ′ has been simplified such that all formulas
on the sequent level are either quantified formulas or atoms. We are interested
in atoms that were derived from ∀x.φ(x). Therefore our heuristic is to categorize
those atoms in ψ′ as highly relevant for the construction of the update u that
have an occurrence of the skolem symbol sk, that was introduced in (10). Let
ψ′

sk be defined as
Γsk =⇒ Δsk

such that it coincides with ψ′, except that all quantified formulas and formulas
that do not contain an occurrence of sk are removed in ψ′

sk (Line 3 of Algorithm
2). Hence, all formulas in Γsk and Δsk are ground formulas with an occurrence
of sk. Following the Example 2, (Γsk =⇒ Δsk) is either (=⇒ f(sk) > sk) or
(=⇒ g(sk) < f(sk)).

The goal is to create an update u such that � ({u}ψ′
sk). Note that ({u}ψ′

sk)→
({u}ψ′). In order to evaluate {u}ψ′

sk to true the update u must either evaluate
an atom in Γsk to false, or an atom in Δsk to true. We refer to the chosen atom,
whose interpretation we want to manipulate, as the core atom. Let ϑsk denote
the chosen core atom (Line 4). The task is to construct a function update u such
that {u}ϑsk evaluates true. This task is divided into two steps realized by the
algorithms solve (Line 5) and concretize (Line 6).

Definition 4. Procedure Solve. Given an atom ϑsk, whose top-level symbol
is a relation R ∈ Σp, the procedure solve constructs a set of atoms such that
for each atom ϑ′

sk ∈ Θ holds

• ϑ′
sk = R′(f(t1, . . . , tn), v), i.e. syntactic equivalence

• ϑ′
sk

.= ϑsk, i.e. semantic equivalence

where R′ ∈ Σp
r , f ∈ Σf

nr, f �= sk, and t1, . . . , tn, v ∈ Trm.

The procedure solve creates normal forms for core atoms. For example, for
the formula ϑsk = (f(sk) + 3 < g(sk) − sk), with “<”∈ Σp, f, g ∈ Σf

nr, the
procedure solve should generate, e.g., the following set:

{f(sk) < (g(sk)− sk − 3), g(sk) > (f(sk) + 3 + sk)} (12)
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Note that the procedure solve is part of our heuristic and the resulting set is
not strictly defined, it may also be empty. Some core atoms may be not solvable
by the procedure but the more results the procedure solve produces the better
is the chance of generating a suitable update.

Definition 5. Procedure Concretize. Let R ∈ Σp
r , f ∈ Σf

nr, and t1, .., tn, v ∈
Trm. Given an atom of the form R(f(t1, . . . , tn), v) the procedure concretize
creates a set of pairs (u, α), with u ∈ U , α ∈ Fml, such that:

• u = (f(t1, . . . , tn) := value), where value ∈ Trm

• α→ {u}R(f(t1, . . . , tn), v) evaluates to true

The procedure concretize creates for a given normalized core atom ϑ′
sk an up-

date u that evaluates {u}ϑ′
sk to true. E.g., if the normalized core atom is of the

form t1 = t2, using infix notation, then the result of the procedure concretize
is simply ((t1 := t2), true). In some cases it is desired to introduce fresh symbols
and to axiomatize them for the construction of the term value. Such axiomati-
zations are collected in the formula α.

For example, using the normalized core atom ϑ′
sk = (f(sk) < (g(sk)−sk−3))

from the solution set of the previous example, the procudure concretize may
produce, e.g., the following solution:

{(f(sk) := (g(sk)− sk − 3) + sk2︸ ︷︷ ︸
u

), sk2 < 0︸ ︷︷ ︸
α

} (13)

where sk2 ∈ Σf
r is a fresh constant. Using this solution, we can evaluate α →

{u}ϑ′
sk as follows

sk2 < 0→ {f(sk) := (g(sk)− sk − 3) + sk2}(f(sk) + 3 < g(sk)− sk)
sk2 < 0→ (g(sk)− sk − 3) + sk2 + 3 < g(sk)− sk

sk2 < 0→ sk2 < 0

The next step uses the result computed by the procedures solve and concretize
in order to create a quantified update (Line 7).

Definition 6. Procedure toQuanUpd. Given a tuple (u, α), with u ∈ U and
α ∈ Fml, a sequent Γsk =⇒ Δsk, a core atom ϑ′

sk, and a (skolem) function sk.
The procedure creates the pair (u′, α) where u′ ∈ U has the form (let z ∈ V )

for z; ¬((Γsk\{ϑsk}) =⇒ (Δsk\{ϑsk}))[z\sk]; u[z\sk]

The substitution [x\sk] deskolemizes all formulas and terms in order to quantify
functions and predicates at those argument positions as they were quantified in
the original quantified formula (see (8) vs. (10)). The guard ¬((Γsk\{ψsk}) =⇒
(Δsk\{ψsk})) restricts the application of the update in order create small models
as explained in the following.
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For example, assume we want to construct an update that evaluates the for-
mula ∀x.(x > 4→ (f(x)+3 < g(x)−x)) to true. Algorithm 1 invokes Algorithm
2 with the following sequent ψ′:

sk > 4 =⇒ f(sk) + 3 < g(sk)− sk

Let f(sk)+3 < g(sk)−sk be the core atom ϑsk chosen in Line 4, then according
to the previous examples procedures solve and concretize produce the inter-
mediate result (13) that serves as input to the procedure toQuanUpd. We obtain
the guard

¬(({sk > 4}\{ϑsk}) =⇒ ({ψsk}\{ψsk}))[z\sk]

which simplifies to ¬(z > 4 =⇒) and then to z > 4. The final result of the
procedure toQuanUpd for this example is the (u, α)-pair:

((for z; z > 4; f(z) := (g(z)− z − 3) + sk2), sk2 < 0)

3.3 From Updates to a Test Preamble

A test preamble is part of a test harness and its goal is to initialize the program
under test with a desired program state. Here we assume that the test preamble
can directly write values to all relevant memory locations. For this purpose, e.g.,
the KeY tool uses JAVA’s reflection API.

Assume the input formula for Algorithm 1 is a test data constraint φin. If the
algorithm terminates with the answer “sat”, then it also provides a ground model
M , i.e. assignment of values to non-quantified terms, and a sequence S of update
and axiom pairs (um, am), . . . , (u0, a0). By the construction of the algorithm the
axioms are already satisfied by M . The conversion of M into a test preamble is
a well-known technique and is not discussed here.

The choice of using updates to represent models of quantified formulas is also
very convenient for test preamble generation. The reason is that updates can
be viewed as a small imperative programming language with some special con-
structs. An algorithm that converts updates to a test preamble simply has to
follow the semantics of updates (Def. 2). Conversion of function updates to as-
signments and conditional updates to if-statements is trivial. Parallel updates
were not created by our algorithm, they were used only to define the semantics
of quantified updates. Quantified updates are converted into loops, e.g. (6) is
converted to (3). If a quantified update quantifies over integers, then the integer
bounds have to be determined. If the update quantifies over objects, then our
solution is iterate over all objects that were created by the preamble. This solu-
tion is, however, only an approximation as it does not initialize objects that are
created later on during the execution of the program under test.

4 Evaluation

We have implemented our algorithm, i.e. the combination of Algorithms 1 and
2, as well as a converter from updates to a test preamble, in an experimental
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Classes with invariants T A B

Account 4 4 4

AccountMan src 5 5 2

Currency src 2 2 2

SavingRule 4 2 2

SpendingRule 4 2 2

Transfers src 3 3 2

Total 22 18 14

Methods with Specifications T A B

AccountMan src::IsValid() 6 5 2

AccountMan src::B0delete() 6 5 2

AccountMan src::isValidBank() 5 4 2

AccountMan src::isValAcc() 5 5 2

AccountMan src::getRef() 5 3 2

Total 27 22 10

Fig. 2. Evaluation of the model generation algorithm applied to a banking software

with Jml specifications; T: total number of quantified formulas in one conjunction that

occurred as test data constraints; A, B: maximum number of quantified formulas solved

in a conjunction; A: our model generation algorithm; B: SMT solvers

version of the KeY tool. The technique is currently realized as an interactive
model generator. The implementation proposes candidate updates to be selected
by the user. The reason for this is two-fold. On the one hand, the interaction with
the algorithm enables us to study heuristics for the model generation as well as
to identify and understand limitations of the algorithm. On the other hand, it is
the paradigm of the KeY tool to combine automation and interaction. In more
general test generation contexts a full automation of the model generator is of
course expected, and possible.

In order to test the algorithm we have used several examples from different
sources. In the beginning, we have used hand-crafted formulas in order to test and
develop the algorithm. A crucial improvement was achieved by the generation
of formula (8) that allows skolemization of the quantified formulas as described
in Section 3.1. Earlier approaches to generate models without formula (8) were
not successful.

To test our algorithm on more realistic tests, we used a small banking software
that was the subject in a case study on Jml-based software validation [8]. The
banking software contains Jml specifications with quantified formulas. When
applying KeY’s test generation techniques [10,13,14], the quantified formulas are
encountered as test data constraints. Our goal was to test for how many of these
formulas our algorithm can generate models. Figure 2 shows the results.

The left table of Figure 2 shows numbers of quantified formulas that stem
from class invariants of the respective classes and the right table shows numbers
of quantified formulas that stem from method preconditions and loop invariants.
Note that additional quantified formulas are generated by the KeY tool as shown
in the motivating example in Figure 1. The column T shows the total number
of quantified formulas that occurred in test data constraints in a conjunction,
i.e. a complete model must satisfy the whole conjunction. Columns A and B
show the maximum number of quantified formulas that we found solvable in one
conjunction which required us to test different combinations of the quantified
formulas. Column A shows the results of our algorithm and column B shows
respectively the best result achieved by any of the SMT solvers Z3, CVC3, and
Yices. The evaluation shows that our algorithm can solve quantified formulas
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that state-of-the-art SMT solvers cannot solve. Furthermore, our algorithm was
able to generate models for almost all of the quantified formulas when it was
applied to the quantified formulas in separation, i.e. not in a conjunction. This
simplification did not make an improvement on the SMT side.

5 Conclusions and Future Work

In formal test generation techniques quantified formulas occur in test data con-
straints. We have therefore developed a model generation algorithm for quan-
tified formulas. The algorithm is not guaranteed to find a solution but on the
other hand it is not restricted to a particular class of formulas. In this way,
the algorithm can solve formulas that are otherwise not solvable by satisfiability
modulo theories (SMT) solvers alone which is confirmed by our experiments. The
algorithms can be used as a precomputation step for SMT solvers. In this case
the algorithm generates only a partial model that satisfies only the quantified
formulas and returns a residue of ground formulas to be solved.

Models generated by the algorithm are represented as updates. Quantified
updates are suitable to represent models of quantified formulas. Our algorithm
systematically analyses quantified formulas and uses heuristics to generate can-
didate updates. The KeY system implements a powerful update simplification
calculus that allows us to check if a quantified formulas evaluates to true in a
model represented by an update. Furthermore, updates are a convenient model
representation language for test generation, because they have program seman-
tics and can be converted into a test preamble.

The current implementation of the algorithm queries the user to select can-
didate updates from a list. We are developing heuristics in order to automate
the search. The kind of formulas that is solvable by our general approach de-
pends on the model representation language. Quantified updates are, e.g., not
expressive enough to represent models of recursive functions. Our future research
plans are therefore to extend the expressiveness of updates and to extend the
simplification calculus.
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2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-

ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-

son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.

Springer, Heidelberg (2005)

4. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: combining static checking and

testing. In: ICSE, pp. 422–431. ACM, New York (2005)

5. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg

(2008)



Test Data Generation for Programs with Quantified FOL Specifications 173

6. Deng, X., Robby, Hatcliff, J.: Kiasan/KUnit: Automatic test case generation and

analysis feedback for open object-oriented systems. In: TAICPART-MUTATION

2007: Proceedings of the Testing: Academic and Industrial Conference Practice

and Research Techniques - MUTATION, Washington, DC, USA, pp. 3–12. IEEE

Computer Society, Los Alamitos (2007)

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.

J. ACM 52(3), 365–473 (2005)

8. du Bousquet, L., Ledru, Y., Maury, O., Oriat, C., Lanet, J.-L.: Case study in JML-

based software validation. In: Proceedings Automated Software Engineering, pp.

294–297. IEEE Computer Society, Los Alamitos (2004)

9. Dutertre, B., de Moura, L.: The YICES SMT solver. Technical report, Computer

Science Laboratory, SRI International (2006),

http://yices.csl.sri.com/tool-paper.pdf (visited July 2010)

10. Engel, C., Gladisch, C., Klebanov, V., Rümmer, P.: Integrating verification and
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Abstract. Typical testing architectures for distributed software rely on

a centralized test controller, which decomposes test cases in steps and

deploy them across distributed testers. The controller also guarantees the

correct execution of test steps through synchronization messages. These

architectures are not scalable while testing large-scale distributed sys-

tems due to the cost of synchronization management, which may increase

the cost of a test and even prevent its execution. This paper presents a

distributed architecture to synchronize the test execution sequence. This

approach organizes the testers in a tree, where messages are exchanged

among parents and children. The experimental evaluation shows that the

synchronization management overhead can be reduced by several orders

of magnitude. We conclude that testing architectures should scale up

along with the distributed system under test.

1 Introduction

There are increasing needs of dynamic virtual organizations such as professional
communities where members contribute with their own data sources and com-
putation resources, perhaps small ones but in high numbers, and may join and
leave the organization at will. In particular, current solutions require heavy or-
ganization, administration and tuning which are not appropriate for large num-
bers of small devices. While current Grid solutions focus on data sharing and
collaboration for statically defined virtual organizations with powerful servers,
Peer-to-Peer (P2P) techniques focus on scalability, dynamism, autonomy and
decentralized control. Both approaches can be combined and the synergy be-
tween P2P computing and Grid computing has been advocated to help resolve
their respective deficiencies [1]. Grid and P2P systems are thus becoming key

� Work partially funded by the Datluge CNPq-INRIA project.

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 174–187, 2010.
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technologies for software development, but still lack an integrated solution to
validate the final software.

Although Grid and P2P systems usually have a simple public interface, the
interaction between nodes is rather complex and difficult to test. For instance,
distributed hash tables (DHTs) [2,3], provide only three public operations (in-
sert, retrieve and lookup), but need very complex interactions to ensure the
persistence of data while nodes leave or join the system. Testing these three
operations is rather simple. However, testing that a node correctly transfers its
data to another node before leaving requires the system to be in a particular
state. Setting a system into a given state requires the execution of a sequence
of steps, corresponding to the public operation calls as well as the requests to
join or leave the system, in a precise order. The same rationale can be applied
to data grid management systems (DGMS) [4].

Testing a large scale distributed application implies dealing with distributed
test scenarios: this means synchronizing all the tasks required to execute the test
scenarios and collect/aggregate test verdicts.

Typical testing architectures for distributed software rely on a centralized test
controller,whichdecomposes test cases in steps anddeploy themacross distributed
testers. The controller also guarantees the correct execution of test steps through
synchronizationmessages. These architectures are not scalable while testing large-
scale distributed systems due to the cost of synchronization management, which
may increase the cost of a test and even prevent its execution.

From the point of view of performance, this distribution of testing tasks across
the distributed architecture is intrusive and may impact the behavior of the sys-
tem under test itself. This phenomenon is already known in the testing com-
munity and corresponds to the case when the observer perturbs the experience,
i.e., the test environments modifies the system’s behavior. A second issue occurs
with error handling and diagnosis: if the same error occurs on several nodes,
only one log is required while the centralized testing architecture will generate
redundant logs.

The issue addressed in this paper is the optimization of the test architecture
for large-scale distributed dynamic systems: the goal is to improve the perfor-
mance and reduce the impact of test tasks.

This paper studies three alternatives to build a testing architecture and syn-
chronize the test execution sequences: a centralized solution, and two distributed
architectures. The distributed approach organizes the testers in a tree, where
messages are exchanged among parents and children. Two strategies for building
the tree are compared, depending on whether we consider the physical nodes for
aggregating testers or not. The experimental evaluation shows that the synchro-
nization management overhead can be reduced by several orders of magnitude.
For the tree-based approaches, empirical results reveal the tradeoff between load
balancing (deploying too many logical nodes on the same physical node degrades
its performance) and thus synchronization tasks simplification. We conclude that
the distributed testing architectures scale up along with the distributed system
under test, but that tuning the ideal load balancing is critical.
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This paper is organized as follows. Section 2 discusses related work. In Section
3, we introduce some basic concepts in software testing and the requirements for
a large-scale testing architecture. In Section 4, we discuss the centralized ap-
proach in detail, and present two distributed approaches and their trade-offs. In
Section 5, we present initial results through implementation and experimenta-
tion. Section 6 concludes.

2 Related Work

A basic challenge for testing distributed systems is to synchronize the correct
execution sequence of test case steps. To guarantee the correct execution at
large-scale, a great deal of message exchange should be managed by some syn-
chronization component.

The Joshua system [5] uses a centralized test controller which is responsible
to prepare the test cases to be executed in a distributed manner. The Blast-
Server [6] system is similar to Joshua. It uses the client/server approach. A
server component is responsible to synchronize events, while a client compo-
nent provides the communication conduit between the server component and
the client application. The execution of tests is based on a queue controlled by
the server component. Clients requests are queued, then consumed when needed.
This approach ensures that concurrent test sequences run to completion.

At large-scale, this approach will require a large effort from the controller to
synchronize messages. For instance, one willing to stress test a DHT decides to
insert a large amount of data (in the form of {key,value}) by several peers.
This requires to send synchronization messages to all of these peers. Unlike
our approach, the number of peers will directly impact the performance of the
controller. Due to this impact, the test synchronization time will be greater than
the test execution time.

A more scalable approach [7] uses a complete distributed tester architecture,
which is closer to our approach. It divides test cases in small parts called par-
tial test cases (PTC). Each PTC is assigned to a distributed tester and can be
executed in parallel to another PTC with respect to a function that controls
mutual exclusivity. The behavior of the distributed testers is controlled by a
Test Coordination Procedure (TCP) which coordinates the PTCs execution by
synchronization events. Through this approach, different nodes can execute dif-
ferent test steps, however, the same test step cannot be executed in parallel by
different nodes.

The MRUnit system1 is designed to unit testing of MapReduce systems
(MR)2 [8]. MR has two components: map and reduce. The map component
reads a set of records (using several map instances), does a computation and
outputs a set of records. The reduce component consumes this output (also us-
ing several reduce instances) to group all the results together, and presents the
1 MRUnit Project, http://archive.cloudera.com/docs/mrunit
2 MR are widely used by Google and Yahoo to compute very large amounts of data,

such as crawled documents, web request log, data warehousing, etc.
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answer to a MR computation. The MRUnit hooks a test driver to each compo-
nent (the driver is analogous to the JUnit’s). However, the driver only verifies
the computation of the same job at maps/reduces. It does not verify complex
computation where different maps compute different jobs.

The P2PTester [9] and the Pigeon [10] systems avoid the central controller
to address the scalability issue. They rely on a communication layer to monitor
the network and log the exchanged messages. Assuming that these platforms
aim to verify correctness, they must check the log files after the test execution
using an oracle approach. However, all of them require the inclusion of additional
code in the SUT source code. This inclusion can be either manual, for instance
using specific interfaces, like in P2PTester, or automatic, using reflection and
aspect-oriented programming, like in Pigeon. The inclusion of additional code is
error-prone since the added code may produce errors and contaminate the test
results. Furthermore, it is hard to verify whether the error came from the system
under test or the testing architecture.

3 Testing Large Scale Distributed Systems

Grid and P2P systems are distributed applications, and should be first tested
using appropriate tools dedicated to distributed system testing. Distributed sys-
tems are commonly tested using conformance testing [11]. The purpose of con-
formance testing is to determine to what extent the implementation of a system
conforms to its specification. The tester specifies the system using Finite State
Machines [12,13,14], Labeled Transition Systems [15,16,17] and uses this specifi-
cation to generate a test suite that is able to verify (totally or partially) whether
each specified transition is correctly implemented. The tester then observes the
events sent among the different nodes of the system and verifies that the sequence
of events corresponds to the state machine (or to the transition system).

The classical architecture for testing a distributed system, illustrated by the
UML deployment diagram presented in Figure 3, consists of a test controller
which sends the test inputs, controls the synchronization of the distributed sys-
tem and receives the outputs (or local verdicts) of each node of the system under
test (SUT). Note that the tester controller and the testers execute on different
logical nodes (i.e. independent process) that may be deployed on the same phys-
ical node (i.e. computer device). This architecture is similar to the ISO 9646
conformance testing architecture [18]. In many cases, the distributed system un-
der test is perceived as a single application and it is tested using its external
functionalities, without considering its components (i.e. black-box testing). The
tester in that case must interpret results which include non-determinism since
several input/outputs orderings can be considered as correct.

The observation of the outputs for a distributed system can also be achieved
using the traces (i.e. logs) produced by each node. The integration of the traces
of all nodes is used to generate an event timeline for the entire system. Most
of these techniques do not deal with large scale systems, in the sense that they
target a small number of communicating nodes. In the case of Grid and P2P
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Fig. 1. Typical Centralized Tester Architecture

systems, the tester must observe the remote interface of peers to observe their
behavior and must deal with a potentially large number of nodes. Writing test
cases is then particularly difficult, because non-trivial test cases must execute
test steps on different nodes. Consequently, synchronization among test steps is
necessary to control the execution sequence of the whole test case.

Analyzing the specific features of Grid and P2P system, we remark that they
are distributed systems, but the existing testing techniques for distributed sys-
tems do not address the issue of synchronization when a large number of nodes
are involved. Moreover, the typical centralized tester architecture can be a bot-
tleneck when building a testing framework for these systems.

3.1 Test Case Sample

A test case noted τ is a tuple τ = (Sτ , V τ ) where V τ is a set of local verdicts
and Sτ is a set of test steps. A test step is also a tuple S = (ΨS , θS , T S) where
Ψ is a set of instructions, θ is the interval of time in which the tests step should
be executed and T is a set of testers that should execute this test step.

The Ψ set may contain three different kinds of instructions: (i) calls to the
IUT public interface; (ii) calls to the tester interface and (iii) any statement
in the test case programming language. The time interval θ sets the expected
running time for Ψ and is necessary to avoid locks.

Let us illustrate these definitions with a simple distributed test case (see
table 1). The aim of this test case is to detect errors on a Distributed Hash Table
(DHT) implementation. More precisely, it verifies if a node correctly resolves a
given query that retrieves data 3 seconds after its insertion, in less than 100
milliseconds and continues to do so in the future.

This test case involves three testers T τ = {t0, t1, t2} managing nine steps
Sτ = {s1, ..., s9} on three nodes N = {n0, n1, n2}. The goal of the first three
steps is to populate the DHT. The only local verdict is given by t0. If the data
retrieved by t0 is the same as the one inserted by t2, then the verdict is pass.
If the data is not the same, the verdict is fail. If p0 is not able to retrieve any
data, then the verdict is inconclusive.
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Table 1. Simple test case

Test Step Testers Ψ (Instructions) θ

(1) 0,1,2 Join the system;

(2) * Pause;

(3) 2 Insert the string ”One” at key 1;

Insert the string ”Two” at key 2;

(4) * Wait 3 sec.

(5) 0 Retrieve data at key 1; 100 msec.

Retrieve data at key 2;

(6) 1 Leave the system;

(7) 0 Retrieve data at key 1; 100 msec.

Retrieve data at key 2;

(8) 0,2 Leave the system;

(9) 0 Calculate a verdict;

3.2 Requirements for Testing Architecture

In this section, we enumerate the requirements for large-scale, distributed testing
architectures.

Scalability. The performance of the testing environment and specially of test
step sequencing may impact the behavior of the system under test. Thus, in
order to reduce the impact on the SUT, the architecture should scale at least as
well as the SUT.

Test step sequencing/synchronization. This requirement ensures that test
steps are executed in the correct sequence and that each test step has finished
in all testers before the execution of the subsequent test step. Complex test step
sequencing leads to an overhead of the synchronization management.

Volatility management. In some distributed systems, such as P2P, node
volatility is a common behavior. The architecture must be able to simulate the
entry and the departure of nodes in a fine way, without interferences to the
sequencing process.

Shared variables. During a test, some variables are only known dynamically
and by few nodes, e.g., node ids, number of nodes, etc. The architecture should
provide a mechanism that allows testers to share variables.

Error/Log handling. Typical large scale systems often use the same software
in several nodes, which generate similar logs. The architecture should be able to
do both, reconstruct the global log timeline and detect and ignore duplicate logs.

Except for the test step sequencing, the centralized architecture does not fulfill
the requirements enumerated above. The next section presents a distributed
architecture that supersedes the classical centralized architecture and is able to
meet these requirements.
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4 Distributed Architecture

In this section, we present an alternative to the centralized testing architecture.
Our proposal consists of organizing testers in a tree structure, similarly to the
overlay network used by GFS-Btree [19]. The main idea is to drop the test
controller and introduce the notion of hybrid testers, i.e., a node that is both,
tester and controller.

When executing a test case, the root tester dispatches test steps to its child
testers, which in turn, dispatch test steps to their children. Once a step is ex-
ecuted, the leaves (which are only testers), send their results to their parents,
and so forth, until the root receives all results. Then, the root dispatch the next
test steps in the same way.

The performance of the synchronization is highly related to the tree topology
and to the distance between nodes. For instance, a high tree, i.e., with a small
order, would increase the communication delay between the root and the leaves,
while a wide tree, i.e., with a high order, would overload the hybrid testers.

If the distance between nodes is not taken into consideration, the communica-
tion delay between the root and the leaves may vary substantially. For instance,
a path between the root and a given leaf could be composed of nodes belonging
to the same physical node, while another path could be composed of intercalated
nodes from two distant physical nodes.

Besides the expected impact in the synchronization performance, the dis-
tributed architecture also impacts on log handling, since hybrid testers are able
to treat logs and errors before pulling them up to their parents.

In the next sections, we present two different approaches to build the tester
tree. The first one builds a balanced tree, where testers are placed accordingly to
their arriving time: the first nodes to connect are placed at the top of the tree.
The second one introduces a more optimized structure, which avoids placing two
hybrid testers at the same physical node.

4.1 Balanced Tree

In this approach, testers are organized in a tree of order m, where all nodes have
at most m children and all children of a node containing less dans m children
are leaves. Figure 2 presents an example of tester organization using a balanced
Tree of order 2, containing 12 testers: 1 root, 6 hybrid and 5 leaf testers.

While in theory this organization should not give good performance results
since the hybrid testers are concentrated in the nearest physical nodes, in practice
it does, as we will see in Section 5. This because the leaf testers, which receive
the test steps in last, are placed in low-charged physical nodes, i.e., without the
controller overhead. Thus, they can execute test steps quicker than other testers
and reduce the global execution time.

4.2 Optimized Tree

In order to better balance the testers through the physical nodes, we added an
extra constraint to the above presented tree: physical nodes contains at most one
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hybrid tester. Our goal was to take advantage of the context of our experiments,
a grid computer with an excellent network latency. Figure 3 presents an example
of tester organization using a optimized Tree of order 2, containing 9 testers: 1
root, 2 hybrid and 6 leaf testers.

Similar to the precedent tree, hybrid testers controls up to m children. How-
ever, they also control all testers belonging to the same physical node, their
dependents. Contrary to the number of children, the number of dependents is
not fixed, it depends on the number of testers running in the same physical node.
Dependents are always leaf testers.
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5 Experimentation

In this section, we present the performance evaluation of the distributed with
the centralized testing architecture. Our goal is to evaluate to which extent
the distributed architecture reduces the overhead of test step synchronization
management. We also evaluate the performance of the architecture in different
configurations, varying the tree order, the number of testers and the number of
test case steps.

All of our experiments were run on the Grid5000 platform3 using several
clusters running GNU/Linux (up to 256 nodes) connected by a 10Gbps network.
We implemented our approaches in Java (version 1.5) using Remote Method
Invocation (RMI) for the communication among testers. In all experiments, each
tester is configured to run in a single Java virtual machine. The testers were
allocated equally through the nodes up to 32 testers per physical node to obtain a
large-scale testing environment. Since we can have full control over these clusters
during experimentation, our experiments are reproducible. The implementation
produced for this paper is open-source and can be found in our web page4. It
was used to test two popular open-source P2P systems [20]: FreePastry and
OpenChord.

5.1 Test Step Synchronization for Up to 8,192 Testers

To measure the response time of test step synchronization, we submitted a fake
test case, composed of empty test steps, across a different range of testers. Then,
for each step, we measured the whole execution time, which comprises remote
invocations, execution of empty test steps and confirmations. First, we verify the
performance at the centralized test architecture. Then, we compare the result of
the centralized with the distributed architecture.

The evaluation works as follows. We deploy the fake test case through several
testers. The testers register their test steps with the coordinator. Once the regis-
tration is finished, the coordinator executes all the test case steps and measures
their execution time. The evaluation finishes when all steps are executed.

The fake test case contains 8 empty test steps (we choose this number arbi-
trarily) and is executed until a limit of 8192 testers running in parallel. Figure 4
presents the response time for synchronization for a varying number of testers.
The centralized test controller showed a linear performance in terms of response
time as the number of testers increases. Although this result was expected, its
implementation is straightforward and can be even used while testing in small-
scale environments. Our target, however, is testing in large-scale environments.

Figure 5 compares the response time of the centralized architecture solution
with the distributed one, using both, the balanced and the optimized tree. We
observe that the centralized architecture leads to an exponential increase of the
overhead, which makes it unscalable. For small-scale (i.e. less than 1,024 nodes),

3 The Grid5000 platform, http://www.grid5000.fr
4 Peerunit project, http://peerunit.gforge.inria.fr



Efficient Distributed Test Architectures for Large-Scale Systems 183

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

 1000  2000  3000  4000  5000  6000  7000  8000

tim
e 

(m
se

c)

network size (testers)

Centralized Controller
(32 testers per node)

centralized

Fig. 4. Centralized Test Architecture

1e+02

1e+03

1e+04

1e+05

1e+06

 32  64  128  256  512  1024  2048  4096  8192

tim
e 

(m
se

c)

network size (testers)

Centralized X Distributed
(32 testers per node)

centralized
balanced tree
optimized tree

Fig. 5. Centralized X Distributed Architectures



184 E.C. de Almeida et al.

the centralized architecture is more efficient than the distributed one. The dis-
tributed architecture, in both configurations, leads to a satisfying overhead when
the number of testers increases. A disappointing phenomenon occurs, which is
the very similar slopes we obtain with the two different trees. To understand
the phenomenon, we study the parameters that impact the performance of these
architectures, in particular the number of logical nodes deployed per physical
node and the number of test steps.

5.2 Varying the Tree Order

To quantify the impact of the optimization gains on the optimized tree, we vary
its order (m). The order is a parameter configured before the execution of the
test case (the same test case used above, with 8 empty test steps). As expected,
independently from the tree order, the time increases logarithmically.

However, as showed in Figure 6, the impact of varying the tree order is not
evident. Beyond 128 testers and from m = 2 to m = 8 response time is inversely
proportional to m and directly proportional to the tree height. Response time
increases since the messages exchanged between the root and the leaves have a
longer path among physical nodes. For instance, for 4,096 testers (256 physical
nodes), the height of the tree5 is 8 for m = 2 and 3 for m=8.
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Still beyond 128 testers, but from m = 8 to m = 64, response time is directly
proportional to m. In these cases, the overhead of controlling more testers is more
important than the communication overhead of heaving a higher tree, since the
hight varies little. For instance, from 2 (m = 64, m = 32 and m = 16) to 3
(m = 8) for 4,096 testers.

5.3 Varying the Number of Test Steps

We also investigate the impact of the number of test steps. A larger number
of test steps requires a larger effort from the controller to keep the execution
sequence and dispatch more steps. We limit the results to 2048 testers to easy
the reading (the overhead on the central controller increases exponentially as
the testing scale grows larger).

Figure 7 shows that both architectures scale up linearly, as we expected. The
distributed architecture using the optimized tree yields better results in several
orders of magnitude.

6 Conclusion

In this paper, we presented a distributed architecture for testing large-scale
distributed systems. The architecture organizes testers in a balanced tree and
supersedes the traditional centralized test controller by several hybrid testers,
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which are controllers and testers at the same time. After implementing the ar-
chitecture, we conducted several experiments with up to 8.192 logical nodes as
means to evaluate the overall performance of the architecture.

The experiments showed that our architecture scales up logarithmically, which
is an important requirement for testing large-scale systems. The experiments also
showed that several factors may impact the synchronization performance of the
architecture: number of nodes, number of testers per node, the order of the tree,
among others.

The tree order emerged as an important yet complex factor for fine-tuning
the performance. The best value seems to come from an equilibrium between
the height of the tree and number of testers controlled by each hybrid tester.
We believe that the best tree order for a given test can be calculated before
deploying the testbed.

In order to improve our architecture, we intend to implement a logging facility
which is able to build a common timeline when merging logs from different nodes,
and discard similar log entries.

Finally, we intend to demonstrate that false verdicts may be assigned (i.e.,
false-positives or false-negatives) due to low efficient testing architectures. For
instance, a DHT routing mechanism, which is used to exchange messages, re-
quires a very low time to update its entries. In large-scale testing environments,
the DHT would perform this update faster than the test steps synchronization
of the centralized testing architecture. This could lead to false-positive verdict.
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Abstract. In order to facilitate model-based verification and valida-

tion, effort is underway to develop techniques for generating models of

communication system components from observations of their external

behavior. Most previous such work has employed regular inference tech-

niques which generate modest-size finite-state models. They typically

suppress parameters of messages, although these have a significant im-

pact on control flow in many communication protocols. We present a

framework, which adapts regular inference to include data parameters

in messages and states for generating components with large or infinite

message alphabets. A main idea is to adapt the framework of predicate

abstraction, successfully used in formal verification. Since we are in a

black-box setting, the abstraction must be supplied externally, using in-

formation about how the component manages data parameters. We have

implemented our techniques by connecting the LearnLib tool for regular

inference with the protocol simulator ns-2, and generated a model of the

SIP component as implemented in ns-2.

1 Introduction

Model-based techniques for verification and validation of communication proto-
cols and reactive systems, including model checking and model-based testing [7]
have witnessed drastic advances in the last decades, and are being applied in in-
dustrial settings (e.g., [20]). They require formal models that specify the intended
behavior of system components, which ideally should be developed during spec-
ification and design. However, the construction of models typically requires sig-
nificant manual effort, implying that in practice often models are not available,
or become outdated as the system evolves. Automated support for construct-
ing models of the behavior of implemented components would therefore be ex-
tremely useful, e.g., for regression testing, for replacing manual testing by model
based testing, for producing models of standardized protocols, for analyzing
whether an existing system is vulnerable to attacks, etc. Techniques, developed
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for program analysis, that construct models from source code (e.g., [4,19]) are
often of limited use, due to the presence of library modules, third-party com-
ponents, etc., that make analysis of source code difficult. We therefore consider
techniques for constructing models from observations of their external behavior.

The construction of models from observations of component behavior can be
performed using regular inference (aka automata learning) techniques [3,11,22,31].
This class of techniques is now receiving increasing attention in the testing and
verification community, e.g., for regression testing of telecommunication sys-
tems [18,21], for integration testing [17,23], security protocol testing [33], and for
combining conformance testing and model checking [28,16]. One of the most used
algorithms for regular inference, L∗, poses a sequence of membership queries,
each of which observes the component’s output in response to a certain input
string, and produces a minimal deterministic finite-state machine which con-
forms to the observations. If the sequence of membership queries is sufficiently
large, the produced machine will be a model of the observed component.

Since regular inference techniques are designed for finite-state models, previ-
ous applications to model generation have been limited to generating a moderate-
size finite-state view of the system behavior, implying that the alphabet must
be made finite, e.g., by suppressing parameters of messages. However, param-
eters have a significant impact on control flow in typical protocols: they can be
sequence numbers, configuration parameters, agent and session identifiers, etc.
The influence of data on control flow is taken into account by model-based test
generation tools, such as ConformiQ Qtronic [20]. It is therefore important to
extend inference techniques to handle message alphabets and state-spaces with
structures containing data parameters with large domains.

In this paper, we present a general framework for generating models of pro-
tocol components with large or infinite structured message alphabets and state
spaces. The framework is inspired by predicate abstraction [24,9], which has
been successful for extending finite-state model checking to large and infinite
state spaces. In contrast to that work, however, we are now in a black-box set-
ting, where an abstraction cannot be defined based on the source code or model
of a component, since it is not accessible. Instead, we must construct an exter-
nally supplied abstraction, which translates between a large message alphabet of
the component to be modeled and a small finite alphabet of the regular inference
algorithm. Via regular inference, a finite-state model of the abstracted interface
is inferred. The abstraction can then be reversed to generate a faithful model of
the component.

We describe how to construct a suitable abstraction, utilizing pre-existing
knowledge about which operators are sufficient to express guards and opera-
tions on data in a faithful model of the component. We have implemented our
techniques by connecting the LearnLib tool for regular inference with the pro-
tocol simulator ns-2, which provides implementations of standard protocols. We
have used it to generate models of ns-2 protocol implementations.

Related Work. Regular inference techniques have been used for several tasks in
verification and test generation, e.g., to create models of environment constraints
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with respect to which a component should be verified [10], for regression testing
to create a specification and test suite [18,21], to perform model checking with-
out access to source code or formal models [16,28], for program analysis [2], and
for formal specification and verification [10]. Groz, Li, and Shahbaz [23,32,17]
extend regular inference to Mealy machines with data values, for use in integra-
tion testing. They use only a finite set of the data values in the obtained model,
and do not infer internal state variables. Shu and Lee [33] learns the behavior
of security protocol implementations for a finite subset of input symbols, which
can be extended in response to new information obtained in counterexamples.
Lorenzoli, Mariani, and Pezzé infer models of software components that con-
sider both sequence of method invocations and their associated data parameters
[25,26]. They use a passive learning approach where the model is inferred from
a given sample of traces. They infer a finite control structure capturing possible
sequences of method invocations, by an extension of the k-tails algorithm, and
using Daikon [8] to infer guards and relations on method parameters. In con-
trast to their passive learning, we use an active learning approach where new
queries may be supplied to the system; this is an added requirement but allows
to generate a more informative sample.

In previous work, we have considered extensions of regular inference to handle
data parameters. In [5], we show how guards on boolean parameters can be
refined lazily. This technique for maintaining guards have inspired the more
general notion of abstractions on input symbols presented in the current paper.
We have also proposed techniques to handle infinite-state systems, in which
parameters of messages and state variables are from an unbounded domain, e.g.,
for identifiers [6], and timers [13,12]. These extensions are specialized towards
a particular data domain, and their worst-case complexities do not immediate
suggest an efficient implementation. This paper proposes a general framework for
incorporating a range of such data domains, into which techniques specialized for
different data domains can be incorporated, and which we have also evaluated
on realistic protocol models.

Organization. In the next section, we give basic definitions of Mealy machines.
We present our inference and abstraction techniques in Section 3. The application
to SIP is reported in Section 4. Section 5 contains conclusions and directions for
future work.

2 Mealy Machines

Basic Definitions. We will use Mealy machines to model communication protocol
entities. A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where ΣI is a
nonempty set of input symbols, ΣO is a nonempty set of output symbols, Q is
a nonempty set of states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is the
transition function, and λ : Q × ΣI → ΣO is the output function. The sets of
states and symbols can be finite or infinite: if they are all finite we say that the
Mealy machine is finite. Elements of Σ∗

I are called input strings, and elements
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of Σ∗
O are called output strings. We extend the transition and output functions

to input strings in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

where u ∈ Σ∗
I . We define λM(u) = λ(q0, u) for u ∈ Σ∗

I . Two Mealy machines M
and M′ with the same set of input symbols are equivalent if λM(u) = λM′(u)
for all input strings u.

Intuitively, a Mealy machine behaves as follows. At any point in time, the
machine is in some state q ∈ Q. When supplied with an input symbol a ∈ ΣI ,
it responds by producing an output symbol λ(q, a) and transforms itself to a

new state δ(q, a). We use the notation q
a/b−→ q′ to denote that δ(q, a) = q′ and

λ(q, a) = b; in this case q
a/b−→ q′ is called a transition of M.

The Mealy machines that we consider are deterministic, meaning that for
each state q and input symbol a exactly one next state δ(q, a) and output string
λ(q, a) is possible.

Symbolic Representation. In order to conveniently model entities of communica-
tion protocols, we should be able to describe messages as consisting of a message
type with a number of parameters, and states as consisting of a control location
and values of a set of state variables. We therefore introduce a symbolic repre-
sentation of Mealy machines, similar to Extended Finite State Machines [29].

So, assume a set of action types. Each action type α has a certain arity, which
is a tuple of domains (a domain is a set of allowed data values) Dα,1, . . . ,Dα,n

(where n depends on α). For a set I of action types, let ΣI be the set of terms
of form α(d1, . . . , dn), where di ∈ Dα,i is a data value in the appropriate domain
for each i with 1 ≤ i ≤ n. Assume a set of formal parameters, ranged over by
p1, p2, . . ., to be used as placeholders for parameters of symbols.

Also, assume a set of state variables. Each state variable v has a domain of
possible values, and a unique initial value. For a set V of state variables, let a
V -valuation σ be a partial mapping from V to data values in their respective
domains, and let σV

0 be the V -valuation which maps each variable in V to its
initial value. We extend V -valuations to expressions over state variables in the
natural way; for instance, if σ(v3) = 8, then σ(2 ∗ v3 + 4) = 20.

Definition 1. A Symbolic Mealy machine is a tuple SM = 〈I, O, L, l0, V,−→〉,
where I and O are disjoint finite sets of actions (input actions and output actions),
where L is a finite set of locations, where l0 ∈ L is the initial location, where V is
a finite set of state variables, and where −→ is a finite set of symbolic transitions,
each of form

�l �l′�α(p1, . . . , pn) when g / v1, . . . , vk := e1, . . . , ek ; β(eout
1, . . . , e

out
m)

in which l and l′ are locations, α ∈ I and β ∈ O are actions, p1, . . . , pn are dis-
tinct formal parameters, v1, . . . , vk are distinct state variables in V , in which g (the
guard) is a boolean expression over p1, . . . , pn and V , and in which e1, . . . , ek and
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eout
1, . . . , e

out
m are expressions over p1, . . . , pn and V . We assume that the arities

of α and β and the domains of v1, . . . , vk are respected. For each input action α ∈ I,
each location l ∈ L, and each V -valuation σ, the set −→ must contain exactly
one symbolic transition of the above form for which σ(g[d1, . . . , dn/p1, . . . , pn]) is
true. &'
In the following, we will use p for p1, . . . , pn and d for d1, . . . , dn.

Intuitively, a symbolic transition of the above form denotes that whenever a
Symbolic Mealy machine (SMM for short) SM is in location l and some input
symbol of form α(d) is received, such that the guard g is satisfied when the formal
parameters p are bound to the data values d, then the state variables among
v1, . . . , vk are simultaneously assigned new values, an output symbol obtained
by evaluating β(eout

1, . . . , e
out

m), is generated, and SM moves to location l′.
The meaning of a SMM SM = 〈I, O, L, l0, V,−→〉 is defined by its denotation,

which is the Mealy machineMSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, where ΣI is obtained
from I as described earlier, and similarly for ΣO, where Q is the set of pairs 〈l, σ〉
consisting of a location l ∈ L and a V -valuation σ, where q0 is the pair 〈l0, σV

0 〉,
and where δ and λ are such that for any symbolic transition in −→ of form

�l �l′�α(p1, . . . , pn) when g / v1, . . . , vk := e1, . . . , ek ; β(eout
1, . . . , e

out
m)

for any V -valuation σ and data values d with σ(g[d/p]) being true, it holds that

– δ(〈l, σ〉, α(d)) = 〈l′, σ′〉, where σ′ is the V -valuation such that σ′(vi) =
σ(ei[d/p]) for 1 ≤ i ≤ k, and σ′(v) = σ(v) if v is not among v1, . . . , vk,

– λ(〈l, σ〉, α(d)) = β(σ′(eout
1 [d/p]), . . . , σ′(eout

m [d/p])).

We use λSM to denote λMSM , and say that SM and SM′ are equivalent if
λSM(u) = λSM′(u) for all input strings u. We can similarly say that an SMM
is equivalent to a Mealy machine.

Example. We consider a simplistic SMM, which models a component that ser-
vices requests to set up a connection. Its sets of input and output actions are
I = {REQ,CONF} and O = {REPL,ACK,REJ}. The arity of REJ is the empty
tuple (i.e., it has no parameters), and the arity of the other actions is the pair
IN, IN i.e., input symbols are of form REQ(id, sn) and CONF(id, sn) where id

�
�l0

�

REQ(id, sn) when cur id = cur sn = ⊥ /
cur id, cur sn := id, sn; REPL(cur id, cur sn);

�l1

�
CONF(id, sn) when (id = cur id + 1 ∧

sn = cur sn + 1) /
ACK(cur id, cur sn + 1) ;�l2

�

�

�

�

REQ(id, sn) when (id = cur id ∧ sn = cur sn) /
REPL(cur id, cur sn) ;

Fig. 1. Symbolic transitions of SMM in Example
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and sn are natural numbers, and analogously for output symbols. There are
two state variables, cur id and cur id, both ranging over IN ∪ ⊥, with ⊥ (a dis-
tinguished symbol denoting “undefined”) as initial values. The set of locations
({l0, l1, l2}) and symbolic transitions are shown in Figure 1. We have suppressed
symbolic transitions where the machine replies with the output symbol REJ and
lead to a terminal error state (also not shown). For each location and input ac-
tion, there is one such symbolic transition, guarded by the negation of the guard
on the transition from the same location with the same input action. &'

3 Inference of Symbolic Mealy Machines

3.1 The Setting of Inference

The problem considered in this paper is the following: Given an SMM SM,
how can a component, called the Learner, which communicates with SM, infer
an SMM equivalent to SM by observing how SM responds to a set of input
strings. We use the same setting as Angluin’s L∗ algorithm [3]. There the Learner
initially knows the static interface of SM, i.e., the sets I and O of input and
output actions together with their arities. It may then ask a sequence of member-
ship queries; each one supplying a chosen input string u ∈ (ΣI)∗ and observing
the response λSM(u). After a “sufficient” number of membership membership
queries the Learner can build a “stable” hypothesis H from the obtained infor-
mation. The hypothesis H should of course agree with SM on the performed
membership queries (i.e., λSM(u) = λH(u) whenever u was supplied in a mem-
bership query), but must make suitable generalizations for other input strings.
In order to increase confidence in the hypothesis H, one can subject SM to
thorough conformance testing or longer-term monitoring in order to search for
input strings on which SM disagrees with H. In the setting of L∗, this is ide-
alized as an equivalence query, which asks whether H is equivalent to SM, and
which is replied with either yes, meaning that H is indeed equivalent to SM,
or with no and a counterexample, which is an input string u ∈ Σ∗

I such that
λSM(u) �= λH(u).

For finite Mealy machines the above problem is well understood. The L∗ al-
gorithm, which has been adapted to Mealy machines by Niese [27], generates hy-
potheses H that are the minimal Mealy machines that agree with the performed
membership queries. It is implemented in the LearnLib tool [30], which also real-
izes approximate equivalence queries by test suites of user-controllable size.

3.2 Inference Using Abstraction

The L∗ algorithm works only for finite Mealy machines. In order to use it for
inferring models of large or infinite-state SMMs, we adapt ideas from predicate
abstraction [24,9], which has been successful for extending finite-state model
checking to large and infinite state spaces.

In the following, consider an SMM SM = 〈I, O, L, l0, V,−→〉 with
MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, in which ΣI , ΣO, and Q may be large or infinite.
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To apply regular inference to SM, we should define an abstraction from ΣI and
ΣO to (small) finite sets of abstract input and output symbols. For instance,
in the SMM in Figure 1, symbols of form REQ(id, sn) can be abstracted to
symbols of form REQ(ID, SN), where ID and SN are from a small domain.
Let us abstract a parameter value id by CUR if id is the “current” session
identifier, and by OTHER otherwise. By the “current” session identifier,
we mean the value of id received in the first symbol of form REQ(id, sn).
We abstract the parameter sn in a similar way. In this way, the input string
REQ(25, 4) REQ(25, 7) is abstracted to REQ(CUR,CUR) REQ(CUR,OTHER),
whereas the input string REQ(42, 4) REQ(25, 7) is abstracted to
REQ(CUR,CUR) REQ(OTHER,OTHER). Thus, the abstraction of a symbol,
such as REQ(25, 7), in general depends on the previous history of symbols. In
model checking using abstraction [24,9], this dependency is taken into account
by letting the abstraction depend on internal state variables, such as cur id
and cur sn in the SMM of Figure 1. However, we are now in a black-box
setting where the state variables of the SMM are not accessible. Therefore,
the abstraction must maintain a set of additional state variables that record
relevant history information. In our example, they can be abs id and abs sn,
where abs id is assigned the value of the id parameter in the first input symbol
of form REQ(id, sn), and is thereafter used to decide whether id-parameters
should be mapped to CUR or OTHER. Let us formalize.

Definition 2. Let I and O be disjoint finite sets of (input and output) actions.
An 〈I, O〉-abstraction is a tuple A = 〈ΣA

I , ΣA
O , R, r0, abstrI , abstrO, δR〉, where

– ΣA
I and ΣA

O are finite sets of abstract input and output symbols,
– R is a (possibly infinite) set of local states,
– r0 ∈ R is an initial local state,
– abstrI : R ×ΣI �→ ΣA

I maps input symbols to abstract ones,
– abstrO : R×ΣO �→ ΣA

O maps output symbols to abstract ones, and
– δR : R× (ΣI ∪ΣO) �→ R updates the local state when a new input or output

symbol occurs. &'
Intuitively, an abstraction A maps input and output symbols to abstract ones,
and updates its local state immediately after the occurrence of each symbol.
We let A be implemented by a Mapper module, as shown in Figure 2. The
Mapper maintains the local state r of the abstraction. Each abstract input symbol
aA supplied by the Learner (such as REQ(CUR,CUR)), is translated by the

Learner Mapper SUT

�REQ(CUR,CUR) �REQ(25, 4)

� REPL(25, 4)� REPL(CUR,CUR)

Fig. 2. Introduction of Mapper module
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Mapper to a concrete input symbol a such that aA = abstrI(r, a), and sent to
SUT. The corresponding reply b by SUT is translated to the abstract symbol
abstrO(δR(r, a), b) and sent back to the Learner. Finally the local state r is
updated to δR(δR(r, a), b). To keep the notation simpler, we will in the following
assume that the local state is updated only in response to input symbols (i.e.,
that δR(r, b) = r for any output symbol b); the extension to the general case
is straight-forward. We extend the transition and input abstraction function to
input strings by:

δR(r, ε) = q abstrI(r, ε) = ε
δR(r, ua) = δR(δR(r, u), a) abstrI(r, ua) = abstrI(r, u)abstrI(δR(r, u), a)

In particular, abstrI(r0, u) is the abstraction of an arbitrary input string u.
The Learner interacts with the combination of the Mapper and the SUT, using

the finite sets ΣA
I and ΣA

O . In general, this combination is not a (determinis-
tic) Mealy machine, but rather some nondeterministic state machine, since each
(abstract) input symbol aA can be translated by the Mapper (in state r) to any
input symbol a with aA = abstrI(r, a): different choices of a can, in general,
cause the SUT to move to different states and subsequently cause different (ab-
stract) output symbols to be generated. The states of this combination, denoted
Q〈SM,A〉, is the set of pairs in Q×R of form 〈δ(q0, u), δR(r0, u)〉 for some input
string u ∈ ΣI

∗.
Although the combination of the Mapper and the SUT is in general nonde-

terministic, a well-designed Mapper will mask this nondeterminism so that the
Learner perceives a deterministic Mealy machine, in the sense that a produced
abstract output symbol is uniquely determined by the preceding sequence of ab-
stract input symbols. We formalize this by defining A to be adequate for SM
if abstrI(r0, ua) = abstrI(r0, u

′a′) implies abstrO(δR(r0, ua), λ(δ(q0, u), a)) =
abstrO(δR(r0, u

′a′), λ(δ(q0, u
′), a′)) for all input strings u, u′ and symbols a, a′.

If A is adequate for SM, then the Learner will perceive that the combination
of the Mapper and the SUT is equivalent to a (deterministic) Mealy machine
(which may or may not be finite-state). This deterministic Mealy machine can
be defined by a (Nerode-like) quotient construction, as follows. Define the equiv-
alence ( on Q〈SM,A〉 by 〈q, r〉 ( 〈q′, r′〉 if for any input strings u, u′ ∈ ΣI

∗

and input symbols a, a′ ∈ ΣI we have that abstrI(r, ua) = abstrI(r′, u′a′) im-
plies abstrO(δR(r, ua), λ(δ(q, u), a)) = abstrO(δR(r′, u′a′), λ(δ(q′, u′), a′)). Intu-
itively, two elements of Q〈SM,A〉 are equivalent if they cannot be distinguished
by the Learner, i.e., any two subsequent input strings that are identified by
abstrI trigger two subsequent output strings that are identified by abstrO. If
A is adequate for SM, define A〈〈SM〉〉 to be the MM 〈ΣA

I , ΣA
O , Q〈SM,A〉/ (

, [〈q0, r0〉]�, δA, λA〉, where for any a ∈ ΣI with abstrI(r, a) = aA we have

– δA([〈q, r〉]�, aA) = [〈δ(q, a), δR(r, a)〉]�, and
– λA([〈q, r〉]�, aA) = abstrO(δR(r, a), λ(q, a)).

For any aA ∈ ΣA
I for which there is no a ∈ ΣI with abstrI(r, a) = aA, we

let λA([〈q, r〉]�, aA) be a designated error symbol, and let δA([〈q, r〉]�, aA) be
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a designated error state with a self-loop from which only the error symbol is
output. The definition of ( can be used to show that A〈〈SM〉〉 is well-defined.

If a finite Mealy machineMA = 〈ΣA
I , ΣA

O , QA, qA0 , δA, λA〉 is produced by the
Learner, then we must finally “reverse” the effect of the abstraction A to obtain
an SMM SM such that A〈〈SM〉〉 is equivalent to MA. In general, we then
run into the problem that an abstract output symbol may correspond to several
concrete output symbols, implying that there is not a unique deterministic SMM
that causes the Learner to produceMA. Therefore, define A to be unambiguous
for MA if for all input symbols a and all 〈qA, r〉 ∈ Q〈SM,A〉, there is at most
one output symbol b which satisfies

abstrO(δR(r, a), b) = λA(qA, abstrI(r, a))

Intuitively, this means that we can deduce which output symbol is produced by
SM by seeing only its abstraction.

IfA is unambiguous forMA, then defineA−1〈〈MA〉〉 to be the Mealy machine
〈ΣI , ΣO, QA ×R, 〈qA0 , r0〉, δ, λ〉, where

– δ(〈qA, r〉, a) = 〈δA(qA, abstrI(r, a)), δR(r, a)〉, and
– λ(〈qA, r〉, a) = b, where b is such that abstrO(δR(r, a), b) =

λA(qA, abstrI(r, a)).

Proposition 1. If A is adequate for SM and unambiguous for MA, and if
A〈〈SM〉〉 is equivalent to MA, then SM is equivalent to A−1〈〈MA〉〉. &'
The equivalence can be proven by observing that a state 〈qA, r〉 of A−1〈〈SM〉〉
is equivalent to a state q of SM if there is a common input string u ∈ ΣI which
drives the state of A−1〈〈MA〉〉 to 〈qA, r〉, and the state of SM to q.

Example. Let us define an abstraction for the SMM in Figure 1. Since the
infiniteness typically stems from the infinite domains of the parameters in sym-
bols, the abstraction maps parameter values to small domains. We map each
symbol form REQ(id, sn) to an abstract symbol of form REQ(ID, SN), where
ID ∈ {CUR,OTHER} and SN ∈ {CUR,CUR + 1,OTHER}. The state of the
abstraction is defined by two local variables that range over IN: abs id, which is
initially “undefined” (denoted ⊥), and thereafter assigned to the id parameter
of the first received REQ message, and abs sn, which is also initially “undefined”
and thereafter assigned to the sn parameter of the first received REQ message.

Table 1. Abstraction mappings for parameters

par CUR CUR + 1 OTHER

id
cur id = ⊥ ∧ mtype = REQ

∨
id = cur id ∧ cur id �= ⊥

id �= cur id
∧ cur id �= ⊥

sn
cur sn = ⊥ ∧ mtype = REQ

∨
sn = cur sn ∧ cur sn �= ⊥

sn = cur sn + 1
∧ cur sn �= ⊥

sn �= cur sn ∧ sn �= cur sn + 1
∧ cur sn �= ⊥
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The input and output abstraction mappings abstrI and abstrO can be defined
by supplying, for each parameter (being either id or sn) and each abstract pa-
rameter value D, a predicate which defines the set of parameter values that are
mapped to D. We can organize these predicates into a table, as in Table 1. We
use mtype to denote the action type of the symbol considered (being either REQ,
CONF, RESP, or ACK). Thus, in total there are 12 abstract input symbols and
13 abstract output symbols (the symbol REJ is mapped to itself).

A possible result by the Learner is the Mealy machineMA in the figure below.

�
�l0

�
REQ(CUR,CUR) / REPL(CUR,CUR)

�l1

�CONF(CUR,CUR + 1) / ACK(CUR,CUR + 1)
�l2

�

	

�

�
REQ(CUR,CUR) / REPL(CUR,CUR)

Each arc is labeled by an abstract input symbol followed by the abstract output
symbol that the Learner observes in response. From the picture, we have ex-
cluded all arcs that contain the output symbol REJ: these all go to the terminal
state l2.

We can construct A−1〈〈MA〉〉 from MA, as an SMM, whose set of locations
is {l0, l1, l2}, whose state variables are the local variables of A, and such that for

each each transition qA
aA/bA−→ rA of MA there is a symbolic transition


qA 
rA�
α(p) when gaA

α / v := e ; β(eout
1 , . . . , eout

m )

where gaA
α is the conjunction of constraints on parameter values p under which

an input symbol α(p) is abstracted to aA, where v := e is the update of local
variables in the abstraction A, and where β(eout

1 , . . . , eout
m ) is composed from the

expressions that cause an output symbol of form β(d1, . . . , dm) to be abstracted
to bA.

When carrying this out on the finite Mealy machine MA obtained by the
Learner, we obtain the SMM of Figure 1, but with location l2 merged with the
terminal error location.

3.3 Systematic Construction of Abstractions

The construction of a suitable abstraction is crucial for successful inference of
an SMM SM. In this subsection, we discuss techniques by which an abstraction
can be constructed more systematically. We assume, as before, that the sets I
and O of input and output actions of SM, together with their arities, are known
a priori. In the running example in the previous subsection, we see that typically
the abstraction mapping for input symbols uses expressions that become guards
in the resulting SMM, and that the abstraction mapping for output symbol uses
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expressions that occur in output expressions of the SMM. We therefore assume
that a set of guards and expressions, which is sufficient to construct a model
of SM, is also known a priori. This set can be seen as describing how state
variables of SM can influence control flow through guards, and how they can be
used in expressions that produce output symbols. We assume that the updates
of state variables in SM do not need operators, i.e., they simply save some of
the data values received in input parameters; operators that occur in updates to
state variables can often be moved (“inlined”) to the expressions in guards and
output symbols where these state variables are used.

Under the above assumptions, we can construct an abstraction which maps
combinations of parameterized input actions and guards in a possible SMM to
abstract input symbols, and maps combinations of expressions in output symbols
of a possible SMM to abstract output symbols, as in the running example. The
updates to state variables will simply consist in assigning some input parameters
to state variables: the problem here is to decide which input parameters will
influence the future behavior of SM, and must be remembered in state variables.
In our experiments, we have made this decision based on observing the response
of SM to selected input strings, i.e., by posing membership queries, and saving
those parameter values that are used to produce future output. For parameter
values on which the only performed operation is a test for equality, such as the
id parameter of the running example, we have made these ideas more precise in
our earlier work [6], as follows:

Consider an input string u, which contains a parameter value d. We observe
the output of M in response to u and to selected continuations of u, and decide
to store d in a state variable if there is some continuation v of u such that d
is used to produce the response to v. More precisely, this happens if there is a
fresh (i.e., previously unused) data value d′ such that the response λ(δ(q0, u), v)
to v and the response λ(δ(q0, u), v[d′/d]) to v[d′/d] (i.e., v where all occurrences
of d have been replaced by d′) satisfy λ(δ(q0, u), v)[d′/d] �= λ(δ(q0, u), v[d′/d]),
i.e., SM does not treat d in the same way as a fresh (previously unused) value
d′. This happens, e.g., if λ(δ(q0, u), v[d′/d]) contains the data value d implying
that d must have been remembered before seeing the subsequent input v[d′/d],
and that d should be stored in a state variable.

4 Experiments

We have implemented and applied our approach to infer models of two imple-
mented standard protocols: the Session Initiation Protocol (SIP) and the Trans-
mission Control Protocol (TCP). Due to space restrictions we were not able to
include the TCP case study in this paper, but the methodology for inferring
TCP is similar to SIP. In this section, we first describe our experimental setup,
thereafter its application to the protocol. In order to have access to a large num-
ber of standard communication protocols, for evaluation of inference techniques,
we use the protocol simulator ns-21, which provides implementations of many
1 http:/www.isi.edu/nsnam/ns/

http:/www.isi.edu/nsnam/ns/
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protocols, to serve as SMM Under Test (SUT). Messages are represented as C++
structures, saving us the trouble of parsing messages represented as bitstrings.
As Learner, we use the LearnLib tool [30], developed at the Technical Univer-
sity Dortmund, which has an efficient implementation of the L∗ algorithm that
can construct both finite automata and Mealy machines. LearnLib provides sev-
eral different realizations of equivalence queries, including random test suites of
user-controlled size.

SIP. SIP is an application layer protocol for creating and managing multimedia
communication sessions. Although a lot of documentation is available, such as
the RFC 3261, no proper reference model, as a state machine, is available. We
aimed to infer the behavior of the SIP Server entity when setting up connections
with a SIP Client. We represent input messages from the SIP Client to the SIP
Server as Method(From, To, Contact, CallId, CSeq, Via), where

– Method defines the type of request, either INVITE, PRACK, or ACK,
– From and To are addresses of the originator and receiver of the request,
– CallId is a unique session identifier,
– CSeq is a sequence number that orders transactions in a session,
– Contact is the address where the Client wants to receive input messages, and
– Via indicates the transport path that is used for the transaction.

We represent output messages from the SIP Server to the SIP Client as
StatusCode(From, To, CallId, CSeq, Contact, Via), where StatusCode is a three
digit status code that indicates the outcome of a previous request from the
Client, and the other parameters are as for a input message.

Abstraction Mapping. We have constructed an abstraction mapping for the SIP
server, which maps each parameter to an abstract value. The parameters From,
To, and Contact must be pre-configured in a session with ns-2, so they are set to
constant values throughout the experiment. The Via parameter is a pair, con-
sisting of a default address and a variable branch. The parameters Via, CallId,
and CSeq are potentially interesting parameters. A priori, they can be handled
as parameters from a large domain, on which test for equality and potentially
incrementation can be performed. Monitoring of membership queries, as de-
scribed in Section 3.3 reveals that for each of these parameters, the ns-2 SIP
implementation remembers the value which is received in the first Invite mes-
sage (presumably, it is interpreted as parameters of the connection that is being
established). The implementation also remembers the value received in the most
recent input message when producing the corresponding reply, but thereafter
forgets it. We therefore equip the abstraction with six state variables. The state
variable firstId stores the CallId parameter of the first Invite message, and lastId
stores the CallId parameter value of the most recently received message. The
state variables firstCSeq and lastCSeq store the analogous values for the CSeq
parameter, and the state variables firstVia and lastVia for the Via parameter.

The abstraction mapping for input symbols is shown in Table 2. Intuitively,
the input parameter CallId is compared with the variable firstId (assigned at the
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Table 2. Mapping table for input messages of SIP Server

par FIRST LAST ANY
CSeq isInteger(CSeq)
V ia V ia.Address = Default

∧isInteger(V ia.Branch)
CallId firstId = ⊥ ∧ mtype = Invite otherwise

∨firstId �= ⊥ ∧ CallId = firstId

Table 3. Mapping table for output messages of SIP Server

par FIRST LAST OTHER
CSeq CSeq = firstCSeq CSeq = lastCSeq Other
V ia V ia = firstVia V ia = lastVia Other
CallId CallId = firstId CallId = lastId Other

occurrence of the first Invite message) to check if it should be mapped to FIRST
or LAST. For the input parameters Via and Cseq, we merged the abstract values
FIRST and LAST into the single value ANY, since we found that these input
parameters are not tested by ns-2: we could also have followed the methodology
of Section 3.3 and kept these two values separate. In output messages, for which
the mapping is shown in Table 3, these three parameters can take the value
received in the first Invite message, or the value in the just received message,
corresponding to the two abstract values FIRST and LAST.

The SIP Server does not always respond to each input message, and sometimes
responds with more than one message. To stay within the Mealy machine formal-
ism, we introduce the nil input symbol which denotes the absense of input, in order
to allow sequences of outputs, and the timeout output symbol, denoting the absence
of output. This could be made more systematic by using techniques in [1].

Results. The inference performed by LearnLib needed about one thousand mem-
bership queries and one equivalence query, and resulted in an abstract model
with 10 locations and 70 transitions. For presentation purposes, we have pruned
the model as follows: (1) removing transitions triggered by abstract symbols
that have no corresponding concrete symbol: the Mapper will immediately re-
ject these, and react with a distinguished error symbol, (2) removing transi-
tions with empty input and output symbol, i.e., with labels nil/timeout, (3)
removing locations which have become unreachable after the previous steps.
In Figure 3, we show the resulting abstract model with 9 locations and 48
transitions. For readability, some transitions with same source location, out-
put symbol and next location (but with different input symbols) are merged:
the original input method types are listed, separated by a bar (|). Due to space
limitations, we have suppressed the (abstract) parameter values. However, the
CallId parameter of the input messages with abstract value FIRST, is depicted
in the model with solid transition lines, the remaining transitions have a dashed
line pattern. We suppressed all other parameters in the figure. A full abstract
model, showing the abstract values of other output parameters can be found
at http://www.it.uu.se/research/group/testing/sip, together with a de-
scription of the corresponding concrete model.

http://www.it.uu.se/research/group/testing/sip
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5 Conclusions and Future Work

We have presented an approach to infer models of entities in communication
protocols, which also handles message parameters. The approach adapts ab-
straction, as used in formal verification, to the black-box inference setting. This
necessitates to define an abstraction together with the local state needed to de-
fine it. This makes finding suitable abstractions more challenging, but we have
presented techniques for systematically deriving abstractions under restrictions
on what operations the component may perform on data. We have shown the fea-
sibility of the approach towards inference of realistic communication protocols,
by a feasibility studies on the SIP, as implemented in the protocol simulator ns-2.
Our work shows how regular inference can infer the influence of data parameters
on control flow, and how data parameters are produced. Thus, models generated
using our extension are more useful for thorough model-based test generation,
than are finite-state models where data aspects are suppressed. In future work,
we plan to supply a library of different inference techniques specialized towards
different data domains that are commonly used in communication protocols.

Acknowledgement. We are grateful to Falk Howar from TU Dortmund for his
generous LearnLib support, to Falk Howar and Bernhard Steffen for fruitful
discussions, and to Frits Vaandrager for many indispensable comments.
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Abstract. High speed IP communication is a killer application for 3rd

generation (3G) mobile systems. Thus 3G network operators should per-

form extensive tests to check whether expected end-to-end performances

are provided to customers under various environments. An important

objective of such tests is to check whether network nodes fulfill require-

ments to durations of processing packets because a long duration of such

processing causes performance degradation. This requires testers (per-

sons who do tests) to precisely know how long a packet is hold by vari-

ous network nodes. Without any tool’s help, this task is time-consuming

and error prone. Thus we propose a multi-point packet header anal-

ysis tool which extracts and records packet headers with synchronized

timestamps at multiple observation points. Such recorded packet headers

enable testers to calculate such holding durations. The notable feature

of this tool is that it is implemented on off-the shelf hardware platforms,

i.e., lap-top personal computers. The key challenges of the implementa-

tion are precise clock synchronization without any special hardware and

a sophisticated header extraction algorithm without any drop.

Keywords: End-to-end Performance Tests, Clock Synchronization

Protocol, Packet Header Analysis.

1 Introduction

Providing high performances in the 3rd generation (3G) mobile systems which
have begun being deployed is important for 3G mobile system operators. The
1xEV-DO (1x Evolution Data Only) system based on the specification of
cdma2000 High Rate Packet Data [1] is an example of 3G mobile system and
it uses a special data link protocol [1,2]. The 3G mobile system operators (in
the rest of paper, we call them just 3G operators) extensively perform inter-
operability tests [3], where end-to-end performances between a mobile terminal
and a server are measured with various environments. In order to detect latent
causes of performance degradations before a commercial service begins, testers

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 205–220, 2010.
c© IFIP International Federation for Information Processing 2010
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(persons who do tests) of the 3G operators usually do the two tasks. First, if
performance degradation is observed at the tests, they identify which software at
which network node is the cause of degradation. Second, testers check whether
network nodes process a packet within the predefined duration or not. This
testing is especially important for network nodes on the backbone because they
should process it in a small duration, e.g., hundreds of micro-seconds, to provide
high end-to-end performances.

Since network nodes’ implementations are black-boxes to the 3G operators,
the testers should capture packets at incoming/outgoing links of each network
node with timestamps and then calculate how long each packet is hold at the
network node by comparing the timestamps. However, this style of tests is very
time-consuming because such calculations should be manually performed for all
packets at all network nodes.

In order to automate such testers’ tasks, we propose a multi-point packet
header analysis tool which consists of IP packet header capture devices and
the manager. An IP packet header capture device captures IP packets from a
tapped link, extracts only IP packet headers and records them to its disk with
timestamps. The manager does calculations which the testers manually do by
controlling all the IP packet header capture devices.

The main goal is that it is implemented on an off-the-shelf hardware platform.
Actually we use a lap-top PC (Personal Computer) with a crystal oscillator,
network interface cards and a RAM (Random Access Memory) disk instead of
using expensive commercial packet tester such as IXIA [4]. This style of imple-
mentation contributes not only to reducing costs of testing, but also to increasing
chances of using such tools in various environments.

However, implementing it as user-space software on (lap-top) PCs is not triv-
ial. There are two key challenges for the implementation. The first and the most
difficult challenge is clock synchronization with scores of micro-second level pre-
cision. Clocks, of which values are used as timestamps, of all PCs should be
synchronized to calculate how long an IP packet is hold by a network node.
Since a maximum holding duration of some network node is less than several
hundred milliseconds, i.e., about 400 micro-seconds, the maximum error among
the clocks should be less than scores of micro-seconds. This precision is not easy
to achieve without special hardware.

The second challenge is recording all IP packet headers to a RAM disk without
any drop. Since an IP packet sent by either a server or a mobile terminal is
encapsulated by PPP (Point-to-Point Protocol) and segmented by RLP (Radio
Link Protocol) [1], the boundaries of captured packets do not always correspond
to IP packet boundaries. Although the straight-forward way is to capture all
packets in order to bridge the gap, it is difficult for PCs to record a number
of 30 or 50 byte long packets segmented by RLP to its RAM disk without any
drop.

In this paper, we have developed a multi-point packet header analysis tool
which is useful for end-to-end performance tests over 3G mobile systems. The
contributions of are twofold: a simple and precise clock synchronization protocol
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and a real-time IP packet header extraction algorithm. First, taking advantage
of the fact that clock synchronization need to be maintained only for a test du-
ration which would be less than scores of minutes, we adopt a post-processing
approach where timestamps are synchronized after all IP packet headers are
records. This achieves simple, but precise clock synchronization with the maxi-
mum error of scores of micro-seconds. Second, we design a real-time IP header
packet extraction algorithm specialized for 3G mobile systems by reading as
small number of bytes from captured packets as possible. This algorithm en-
ables to record all IP packet headers to a RAM disk without any drop. These
sophisticated features make this tool so useful that it was used for commercial 3G
packet services, such as 1xEV-DO and BCMCS (Broadcast-Multicast Service)
system [5,6]. In the tests with this tool, we detected more than 10 software bugs
of network nodes, which were not detected by their vendors.

The rest of this paper is organized as follows: Section 2 describes the overview
of 1xEV-DO system. Section 3 describes the overview of the multi-point packet
header analysis tool. Section 4 and 5 describe the clock synchronization protocol
and the IP packet header extraction algorithm, respectively. Section 6 describes
how the tool is used at the actual tests. Section 7 describes related work.

2 Overview of 1xEV-DO System

Fig.1 shows network nodes and protocols of the 1xEV-DO system. The 1xEV-DO
system provides a high speed IP communication between a mobile access
terminal (called AT in Fig.1) and a server. We define that Forward-link is the
direction from a server to an AT, and Reverse-link is the direction from an AT
to a server. Each network node takes the following role:

– A server is located at the Internet.
– An HA (Home Agent) provides handovers between PDSNs according to the

Mobile IP (MIP).
– A PDSN (Packet Data Serving Node) is used for authenticating/accounting

ATs. It provides an endpoint of a PPP session between a PDSN and an AT.
– A PCF (Packet Control Function) / ANC (Access Network Controller) seg-

ments PPP frames to RLP (Radio Link Protocol) packets and reassembles
RLP packets. RLP provides a reliable packet transfer using packet retrans-
missions.

– An ANTS (Access Network Transceiver System) transmits radio wave.
– An AT (Access Terminal) is a mobile access terminal.

In the 1xEV-DO system, PPP is used to encapsulate IP packets sent by either an
AT or a server. We call these IP packets as end-to-end IP packets. PPP frames
are segmented to 30 or 50 byte RLP packets between an AT and a PCF/ANC.

Fig.2 shows how end-to-end IP packets are segmented and reassembled by
network nodes and how capsule-headers are used on the Reverse-link of the
1xEV-DO system. The packets are done so on the Forward-link. Encapsulation,
segmentation and reassembly are performed as follows:
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1. An application on an AT makes an end-to-end IP packet. The AT adds a
PPP header to it and segments it to RLP packets.

2. The AT adds the RLP header to each segmented packet (S1 to S3), and
transmits them to an ANTS at a radio link.

3. After each segmented packet is received, the ANTS adds a UDP/IP header
and transmits it to a PCF/ANC.

4. The PCF/ANC removes the UDP/IP header and the RLP header. Then,
the GRE/IP header is added to the segmented packets, and transmits the
packets to the PDSN.

5. The segmented packets are reassembled at a PDSN. The PDSN also checks
whether the IP packet is correctly reassembled or not by a CRC of the PPP
header.

6. The PDSN adds a MIP header to the IP Packet and transmits it to a HA.
7. The HA removes the MIP Header and transmits the IP packet to a server.
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3 Multi-point Packet Header Analysis Tool

3.1 Overview

The structure of multi-point packet header analysis tool is illustrated in Fig.3.
It consists of IP packet header capture devices and the manager. In the rest
of paper, we call the multi-point packet header analysis tool as the analysis
tool, and an IP packet header capture device as a capture device. We implement
them as the user-space software running a PC with a crystal oscillator, network
interface cards and RAM disk.

NotePC with AT

Capture
Device

Capture
Device

Capture
Device

Observation
Point

Manager

Control Network

Multi-point Packet Header Analysis Tool

Capture
Device

Observation
Point

Observation
Point

PCF/ANCANTS PDSN HA

Server

Observation

Point

Fig. 3. Multi-point Packet Header Analysis Tool

Each capture device is a lap-top PC with two network interface cards. One
network interface card is used to tap a link and the other is used to communicate
with the manager. Capture devices are set to tap links between all pairs of
network nodes including a server and an AT. We call tapped links as observation
points. A capture device extracts an end-to-end IP packet header from a captured
packet and records it into its RAM disk with a timestamp when the packet is
captured. On the contrary, the manager controls capture devices and analyzes
all captured IP packet headers collected from them.

3.2 How Analysis Tool Is Used?

How this tool is used to analyze a communication flow between the AT and the
server is as follows:

Preparation for Clock Synchronization
Before the AT and the server start communicating, the manager broadcasts a
packet for synchronizing the capture devices’ clocks to that of one the capture
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devices. All capture devices are connected via a broadcast medium such as
Ethernet.

Packet Header Extraction
A tester makes all capture devices start capturing packets from tapped links.
When a packet is captured, each capture device extracts an end-to-end IP packet
header and then records it to its local RAM disk with its timestamp. The time-
stamp is read from the clock of PC which is a crystal oscillator. How the real-
time IP packet header extraction algorithm handles protocol headers of captured
packets will be described in Section 5.

Packet Holding Duration Analysis
After the test communication finishes, the manger collects all headers from all
the capture devices. The timestamps set by individual capture devices are syn-
chronized to the clock of one of the capture device. In other words, all timestamps
are re-written so as to be synchronized to such device’s clock. How clocks are syn-
chronized will be described in Section 4. Then by analyzing timestamps for the
same end-to-end IP packet at difference observation points, a tester calculates
how long each end-to-end packet is hold by each network node.

4 Clock Synchronization Protocol

4.1 Problem Statement

The required precision should be around scores of micro-seconds. This is be-
cause the PDSN and the HA, i.e., backbone network nodes, handle a number
of communication flows between ATs and servers. Usually, these network nodes
should process each end-to-end IP packet within less than hundreds of micro-
seconds. In some system, the average duration of processing a packet is about
400 micro-seconds as described in Section 6. Thus the goal of the maximum error
is within scores of micro-seconds.

In order to precisely explain our clock synchronization protocol, we define
several terms. A clock is a hardware register of a PC and its value is created
from its crystal oscillator. A clock value is how many the crystal oscillator ticks
and corresponds to the elapsed time. We use a time value and a timestamp
interchangeably as a clock value. When a clock value is set to a captured packet,
we call it is a timestamp. A clock frequency is how many it ticks in one second.
Clock synchronization or synchronizing clocks means that difference between
clock values of different capture devices are less than some threshold. For exam-
ple, if the difference is always less than 100 micro-seconds, clocks are said to be
100 micro-seconds precise or the maximum error is within 100 micro-seconds.

4.2 Hurdles to Prevent Clock Synchronization

The goal of clock synchronization protocol is to synchronize all clocks of capture
devices to a selected capture device, which we call it the master capture device,
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within scores of micro-second error. The protocol consists of the two procedures.
First, the manager broadcast a packet informing all capture devices of clock
values being set to 0 (initialization). During the test, each capture device reads
its clock value and sets it as a timestamp to a captured IP packet header. Second,
after the test, timestamps at different capture devices are compensated so that
the clocks are synchronized.

There are two factors which prevent the clocks from being synchronized.

Long-term and Short-term Errors of Crystal Oscillators
A crystal oscillator is not either accurate or stable. Each oscillator’s frequency is
different from the ideal frequency. The difference is called the frequency error and
that in most PCs is accurate to one part in 104 to 106. Besides, its frequency
changes due to environmental factors such as variations in temperature and
supply voltage. Due to frequency errors between two devices, the clock values
are gradually drifting as shown in Fig.4. The x-axis and y-axis show the ideal
time and the time observed at the ideal clock or the actual clock. The ideal
clock means a clock without any frequency error. The dotted line shows how
the ideal clock advances, and the angle is 45 degree. The observed time values
of the actual clock are plotted and they are interpolated to the line using the
least squares method. The angle difference between the two lines corresponds to
the average frequency error. Since this angle or the difference is stable for a long
duration, we call it a long-term error. On the contrary, the plots are not always
on the interpolated line. A short term error is a difference between the observed
time value of the actual clock and the dotted line.

Non-deterministic Delay of Initialization Packet Transfer
At the initialization, the manger broadcast a packet for setting all clock values
to 0. However, the packet does not always reach capture devices at precisely
the same time. In other words, delay of sending the packet from the manager
to each capture is not deterministic due to several non-deterministic delays: the
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time spent by the manager, the delay incurred waiting for access to a physical
interface card, the time needed for a packet from the manager to a capture
device, and the time required for the capture device’s network interface card
to receive and notify the user space software of its arrival. Due to such non-
deterministic delays, the ideal time of capture device is different from that of
the master capture device.

4.3 Design Principles

We set out the two design principles to compensate for the two factors.

Compensating for Clock’s Long-term Error
We assume that the duration of each test is less than 20 minutes. We choose 20
minutes because it is recommended that TCP performance tests should continue
more than 15 minutes. Due to such a short duration, we can assume that a hard-
ware clock is stable for the duration and that we can ignore the short term error.
By assuming that all clocks are stable, we can easily synchronize the clocks by
compensating for the angle difference from the capture device to the master one.

Compensating for Non-deterministic Delay with Broadcast
Communication
We compensate for non-deterministic delays using the broadcast media. Capture
devices, which are usually located at an in-house test-bed, are directly connected
each other via a broadcast medium so that a packet sent for synchronizing
clocks are received by all the capture devices at almost the same time.

4.4 Preliminary Measurements of Long-term and Short-term Errors

How the design principles work well depends on how long-term and short-term
errors of actual crystal oscillators are, how stable they are and how the packet
delays of the actual broadcast medium are. Thus we have measured them in the
following experimental conditions:

– A packet tester, e.g., IXIA 400 [4], is used to broadcast a 40 byte long test
packet every second for 20 minutes. The clock’s precision of the packet tester
is 1 PPM (Part Par Million).

– A shared Ethernet hub is used as a broadcast medium.
– Two PCs, which run Linux (kernel 2.4.18), are set at the broadcast medium

and capture the test packets using tcpdump software [7]. Tcpdump runs in
the user space and sets a timestamp to every captured packet.

– This 20 minutes experiment was performed 10 times and thus 20 measure-
ment results for a clock were totally obtained.

Clock’s Long-term and Short-term Errors
Two typical measurement results are shown in Fig.5. The x-axis is the clock value
(the time value) at the packet tester and the y-axis is the error from the clock
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value at the PC (PC1 or PC2) from that of the packet tester. We interpolate
all the errors from the clock values to the lines with the least squares method.
Among the 20 measurement results, 19 measurements show that the clock was
stable for the 20 minutes. This result is shown by the line with caption PC1
in Fig.5. All the errors are almost on the interpolated line. On the contrary,
at one measurement, the clock was not stable, i.e., the clock frequency changes
during the 20 minutes. This result is shown by the line with caption PC2 in
Fig.5. The angle of interpolated line of PC2 changes when 445 seconds elapses
at the packet tester. Since the error of PC2 increases to about 300 micro-seconds
after 20 minutes elapse, it is difficult to make the error at any time less than 100
micro-seconds only by compensating for the angles of the interpolated lines.

Due to this, we adopt an approach that results of a test during when such
clock unstableness is detected are thrown away and the test is retried.

Besides, we calculate all the short-time errors, i.e., the distances from all the
measured clock values to the interpolated lines. The maximum short-time error
is about 20 micro-seconds. Since the long-duration error would become almost
0 by compensating for the angle differences, this 20 micro-seconds level error
is not a problem to synchronize clocks within the maximum error of scores of
micro-seconds.

Non-deterministic Delay
We cannot correctly measure how long the difference between the delays from
the packet tester to each PC is. However, the above maximum 20 micro-seconds
error includes both the short-term clock error and the above difference. Thus
it is estimated that the maximum difference is less than 20 micro-seconds. It
means that the differences between start times at different PCs are less than 20
micro-seconds. As the result, the error of clocks would be less than twice as 20
micro-seconds, i.e., 40 micro-seconds during 20 minutes.

4.5 Protocol Details and Performance

This subsection describes the details of the clock synchronization protocol. It is
assumed that there are n capture devices numbered from 0 to n − 1 and the
master capture device is 0.
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1. The manager broadcasts m broadcast packets Ps = {Ps1, Ps2, . . . , Psm}
to all capture devices at equal intervals via the broadcast medium.
Each capture device k records the clock values when it received Ps as
ts(k) = {ts1(k), ts2(k), . . . , tsm(k)}.

2. When the test starts, the capture device k reads its clock value and records
it as a timestamp of captured IP packet header. The timestamp of the i th
IP packet header is denoted as tk(i).

3. After the test finished, the manager broadcasts m broadcast packet
Pe = {Pe1, Pe2, . . . , Pem} to all capture devices at equal intervals via the
broadcast medium. Each capture device k records the clock values when it
received Pe as te(k) = {te1(k), te2(k), . . . , tem(k)}.

4. The manager calculates angles of the clock values before and after the test,
i.e., ts(k) and te(k), using the least squares method. If the difference between
the calculated angles is larger than the predefined threshold th such that
Angle(ts(k))−Angle(te(k)) ≥ th , the frequency error of capture device i is
larger than the predefined threshold. The clock of capture device k cannot
be synchronized to the master capture device 0. The clock synchronization
protocol stops. (As the result, the test result would be thrown away and this
test would be re-tried again.)

5. The manager rewrites timestamp tk(i) to tk(i) according to Equation(1),
and ts1(0), tem(0) are the clock values of the first and the last packets re-
ceived by the master capture device. (All timestamps of capture device k
are synchronized to those of the master capture device 0.) This rewrite is
performed for all the capture devices except for the master capture device 0.

tk(i) = ak · tk(i) + bk (1)

where

ak =
ts1(0)− ten(0)
ts1(k)− ten(k)

, bk =
ts1(k) · (ten(0)− ts1(0))

ts1(k)− ten(k)

We applied the clock synchronization protocol to the 10 experiments described
in Section 4.4. PC1 and PC2 are regarded as a capture device and the master
capture device, respectively. For the 10 experiments, the maximum error after
clock synchronization is about 16.8 micro-seconds for 9 experiments. At one ex-
periment, the clock synchronization protocol stops. (This corresponds to the case
that the clock frequency changes after 445 seconds elapse in Fig.5.) This result
shows that our clock synchronization protocol can synchronize clocks within an
error of scores of micro-seconds. This definitely fulfills the tool’s requirement,
i.e., the maximum effort within scores of micro-seconds.

5 End-to-End IP Packet Header Extracting Algorithm

5.1 Design Principles

It is not trivial to capture and record all packets in the 1xEV-DO system without
any drop. We should be careful to handle packets at a link between a PCF/ANC
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and a PDSN. The PDSN receives packets with GRE/IP headers (we call these
packets as GRE/IP packets) to which an end-to-end IP packet encapsulated
according to PPP by an AT is segmented. Each size of segmented packet is
either 30 or 50 bytes long as shown in Fig.2 of Section 2. It is difficult for an
off-the-shelf PC with tcpdump software to record a number of small GRE/IP
packets into its RAM disk at the link rate of 100Mbps without any drop. Since
many flows between ATs and servers are aggregated at this link, the total traffic
is about 100Mbps. Thus we decide to record only end-to-end IP packet headers
instead of all packets at the link between a PCF/ANC and a PDSN. Please note
that a timestamp at the link between a PCF/ANC and a PDSN is the time
when the last GRE/IP packet is captured.

5.2 End-to-End IP Packet Header Extraction Algorithm

In order to record only end-to-end IP packet headers, we design a real-time
header extraction algorithm. The algorithm is not trivial because boundaries
between PPP frames which encapsulate end-to-end IP packets do not always
correspond to the beginning/end of GRE/IP packets. Besides a PPP header
does not have a PPP payload length and a size of a PPP frame is not the same
as that of an encapsulated end-to-end IP packet due to PPP escape sequences.

The algorithm finds boundaries of PPP frames as small number of accesses to
captured GRE/IP packets as possible. It makes use of the fact that an end-to-end
IP packet header follows just after a PPP header and that the PPP payload is
longer than the end-to-end IP packet by the size of the PPP escaped sequences.
For example, PPP escapes 0x7E to two bytes 0x7D-5E because 0x7E is used as
the Flag Sequence. Thus the algorithm skips reading bytes from the captured
GRE/IP packets while the sum of skipped GRE/IP packet sizes is less than the
end-to-end IP packet size, and then reads bytes from the next GRE/IP packet
on byte-to-byte basis to find a flag sequence of the next PPP frame.

The details of the algorithm are as follows, as illustrated in Fig.6. The algo-
rithm uses variable REMAINING BYTES to skip reading the bytes described
above.

1. The algorithm captures a GRE/IP packet.
2. Bytes of the captured GRE/IP packet are read on byte-to-byte basis until

finding Flag Sequence (0x7E) of a PPP frame. After finding Flag Sequence,
it goes to 3. Otherwise, it goes to 1.

3. “Protocol” field in the PPP header is checked. If “Protocol” field is IP packet,
it goes to 4. Otherwise, since this PPP frame is not IP packet, it goes to 2
for finding the next PPP frame.

4. It obtains an end-to-end IP packet length by reading an IP packet length
field of an end-to-end IP packet header just after the PPP header. If the
current GRE/IP packet does not include the IP packet length field, the
next GRE/IP packet is read on byte-to-byte basis until finding the IP
packet length field. Then, the end-to-end IP packet length is set to vari-
able REMAINING BYTES.



216 H. Shinbo et al.

5. When the next GRE/IP packet is captured, it checks the payload size of
the GRE/IP packet. If the payload size is less than REMAINING BYTES,
the end of current PPP frame does not exist in this GRE/IP packet. In this
case, REMAINING BYTES is decreased by the payload size of this GRE/IP
packet, and it repeats this procedure. Otherwise, since there is the end of
the current PPP frame in this GRE/IP packet, it goes to 6.

6. Bytes of the captured GRE/IP packet are read on byte-to-byte basis un-
til finding Flag Sequence as the end of the current PPP frame. Then, it
puts the end-to-end IP packet header information with this GRE/IP packet
timestamp to a RAM disk, and it goes to 2.
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Fig. 6. End-to-end IP Packet Header Extraction Algorithm

We have measured performances of our algorithm recording only IP packet head-
ers and the tcpdump software recording packets. The traffic is collected from
the real 1xEV-DO system. Tcpreplay [8] is used to replay the collected traffic
with various rates. The performance tests are performed using PCs with GbE
(Giga bit Ethernet) network interface cards. The number of transmitted packets
is 7,119,000 (1,228Mbytes), which includes 1,547,000 end-to-end IP packets. Ta-
ble1 shows the numbers of end-to-end IP packets correctly recorded by tcpdump,

Table 1. How many Packets/Headers are recorded?

Traffic 80Mbps 100Mbps 120Mbps

Packet per sec 63kpps 79kpps 96kpps

tcpdump 1546963 1539242 1541213

(99.9%) (99.50%) (99.62%)

Our algorithm 1547000 1547000 1547000

(100%) (100%) (100%)

Note: The percentage means the ratio of how many packets (tcpdump) or headers (our

algorithm) are recorded.
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and the numbers of end-to-end IP packet headers recorded by our algorithm. The
performance of our algorithm is better than that of tcpdump. Our algorithm did
not drop any end-to-end IP header even for 120 Mbps traffic. On the contrary,
the tcpdump software dropped some end-to-end IP packets.

6 Actual Tests with the Developed Tool

We applied the analysis tool to tests of the BCMCS system which provides
multicast packet delivery to ATs using forward-links of the 1xEV-DO system.
The network nodes and protocol stacks are those of Fig. 1 except for that MIP
and HAs are not used. Important requirements to the BCMCS system are that
the number of lost packets should be as small as possible and that every packet
should be processed by the PDSN within hundreds of micro-seconds. The main
objections of these tests are to check whether the PCF/ANC and the PDSN
satisfies the above requirements under the condition that radio-link’s quality is
good and that no congestion occurs at the backbone network.

We conducted about 50 test scenarios in this environment. At each scenario, a
server sends multicast packets to ATs at various sending rates. In order to check
how long each packet is process at network nodes, we set capture devices at the
link between the server and the PDSN (observation point 1), the link between the
PDSN and the PCF/ANC (observation point 2) and the AT (observation point 3).

During the tests, we found more than 10 software bugs of the PDSN and the
PCF/ANC. The bugs are classified into two bugs. Fig.7 (a) and (b) show typical
examples of these two. Please note that several packets are received by the AT
at the same time in Fig.7 (a) and (b) because such packets are encoded using
some FEC (Forward Error Collection) method and these packets are decoded at
the same time by the AT.
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Lost packets at the PCF/ANC
At some scenario, we observed packet losses at the AT even if there is no con-
gestion in the network. Fig.7 (a) shows the outputs of the analysis tool, i.e., the
timestamps of the multicast packets (these are end-to-end IP multicast packets)
at three observation points. We easily knew that the multicast packets were lost
between the observation points 2 and 3. It means that they were lost either
at the PCF/ANC or the ANTS. Then we identified that they were lost at the
PCF/ANC by analyzing the communication logs of the PCF/ANC. Finally, after
talking with its vendor, we found that the PCF/ANC had a software bug such
that multicast packets are lost with a specific condition.

Longer Duration of Processing Packets at PDSN
At another scenario, the test seemed to be successful because all the multicast
packets were correctly received by the AT. However, we observed two multicast
packets (Packet #5 and #140 in Fig.7 (b)) went through longer delay than one
millisecond between the observation points 1 and 2 although most packets did
about 400 micro-second delays. We identified that the longer delay occurred
at the PDSN and asked its vendor to identify the reason and fix the problem.
Finally, we knew that this was caused by the software bug of how the PDSN
handles packets at its memory.

Although the vendors intensively tested the software for the PCF/ANC and
the PDSN, they missed these bugs. It means that the analysis tool was useful to
detect such bugs. Especially, in the case of Fig.7 (b), we would miss the software
bug unless we used the analysis tool.

7 Related Work

As far as we know, there is no testing tool which captures packets or packet head-
ers with synchronized timestamps at multiple observation points. Besides, there
would be no study for extracting IP headers from packets which are transferred
on 3G mobile systems.

On the contrary, clock synchronization is studied for distributed systems. The
most straight-forward way is to use the Global Positioning System [9]. Many
products are commercialized using the pps (plus per second) signal of GPS and
synchronize their clocks with an absolute precision of better than 10us to the
absolute time, i.e. UTC (Universal Time, Coordinated). However, the GPS re-
quires a clear sky view, which is usually unavailable in our test-bed environments.
There is another product, which synchronizes clocks with a precision of better
than 1 nano-second using common timing signal [10] among nodes only which
are located within a few meters. This requirement is not fulfilled in our test-bed
environment and this product requires a special and expensive hardware.

Over the years, many clock synchronization protocols, which would be im-
plemented based on the software, have been designed for distributed sys-
tem [11,12,13,14,15,16]. NTP [11] and SNTP [12] are most prominent clock
synchronization protocols used in Internet; however, their several millisecond
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level precision is not enough for our testing tool. IEEE1588 [13] is a clock
synchronization protocol over local area networks. Although this precision is
one micro-second level on some types of local area networks, it is vulnerable to
random delay on local area network switches which would be used as the broad-
cast medium of our testing tool. Some clock synchronization protocol implemen-
tations [14,15] achieve several micro-second precision. However, these optimize
firmware of MAC (Media Access Control) protocol and require some hardware
support.

Our clock synchronization scheme is similar to the clock synchronization
protocol of [16] in that the both use the broadcast medium for compensat-
ing non-deterministic packet delays. However, taking advantage of the fact that
clock synchronization needs to be maintained only for a testing duration, which
would be just less than scores of minutes, we adopt a post-processing approach
where the timestamps are synchronized after all IP packet headers are captured
with timestamps. This makes our scheme far simple and efficient from the clock
synchronization protocol of [16].

8 Conclusion

This paper has proposed a multi-point packet header analysis tool for end-to-
end performance tests for 3rd generation (3G) mobile systems. This tool extracts
end-to-end IP packet headers with synchronized timestamps at multiple observa-
tion points. The synchronized timestamps at multiple observation points enable
testers to identify a reason of performance degradation and to check whether each
network node processes a packet within a predefined threshold. We implemented
this tool on off-the-shelf hardware platforms, i.e., lap-top personal computers,
which enable this tool to be used widely for various purposes. The notable fea-
tures of this tool are scores of micro-second precision in clock synchronization
without using any special hardware and a sophisticated end-to-end IP packet
header extraction algorithm without any drop. Due to these features, this tool
is so practical and useful that it was used for testing a few commercial 3G mo-
bile systems. Especially, scores of micro-second precision in synchronized clocks
was useful to detect more than 10 bugs of some network nodes which were not
detected by their vendors. This was helpful to launch the commercial 3G ser-
vices on time. Besides, although this tool is developed for testing 3G mobile
systems, the main functions of multi-point packet capture and scores of micro-
second level clock synchronization are so general that this tool is used for testing
various IP-based communication systems.
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Abstract. We present an application of learning-based testing to the

problem of automated test case generation (ATCG) for numerical soft-

ware. Our approach uses n-dimensional polynomial models as an algo-

rithmically learned abstraction of the SUT which supports n-wise testing.

Test cases are iteratively generated by applying a satisfiability algorithm

to first-order program specifications over real closed fields and iteratively

refined piecewise polynomial models.

We benchmark the performance of our iterative ATCG algorithm

against iterative random testing, and empirically analyse its performance

in finding injected errors in numerical codes. Our results show that for

software with small errors, or long mean time to failure, learning-based

testing is increasingly more efficient than iterative random testing.

1 Introduction

For black-box specification-based testing, (see e.g. [11]) an important scientific
goal is automated test case generation (ATCG) from a formal requirements spec-
ification, by means of an efficient and practical algorithm. A general approach
common to several tools is to apply a satisfiability algorithm to a formal specifi-
cation and/or a code model in order to generate counterexamples (test cases) to
correctness. For an SUT that involves floating point computations one impor-
tant problem is therefore to find an an expressive formal requirements language
suitable for modeling floating point requirements together with an efficient satis-
fiability algorithm for generating floating point counterexamples. One possibility
is to consider the first-order language and theory of real closed fields for which
satisfiability algorithms have been known since [14].

To achieve high coverage levels it is important to go beyond individual test case
generation towards iterative testing techniques that can iteratively generate a large
number of high quality test cases in a reasonable time. In [10] we identified one
such iterative heuristic for ATCG that we term learning-based testing (LBT). Our
earlier work concerned black-box unit testing of numerical programs based on:

(i) simple learning algorithms for 1-dimensional problems,
(ii) simple requirements specifications which are quantifier free first-order for-

mulas, and
(iii) an elementary satisfiability algorithm based on algebraic root solving for

cubic 1-dimensional polynomials.
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In this paper we present a systematic and more powerful extension of LBT that
is suitable for black-box testing of complex numerical software units, including
high-dimensional problems by means of n-wise (e.g. pairwise) testing. We apply
n-dimensional polynomial learned models that can support n-wise testing and
thus tackle the dimensionality problem associated with software units. We gen-
eralise our previous learning algorithm to support n-dimensional piecewise poly-
nomial models using non-gridded data. This step also tackles the dimensionality
problem on the SUT level. Finally, we use the Hoon-Collins cylindric algebraic
decomposition (CAD) algorithm for satisfiability testing (see e.g. [1]). This is
a powerful satisfiability algorithm for first order formulas over the language of
real closed fields. Thus we greatly expand the complexity of the requirements
specifications that our tool can deal with.

It is natural to question the achieved quality of the test cases generated by
any new TCG method. In the absence of a theoretical model of efficiency, we
have benchmarked the quality of our learning-based ATCG empirically, by com-
paring its performance with that of an iterative random test case generator. This
was the only other iterative ATCG method for floating point computations to
which we had any access. Since iterative random testing (IRT) is closely related
to measures of mean time to failure (MTF), our benchmarking results have a
natural and intuitive interpretation.

To carry out this performance comparison systematically, it was necessary
to avoid the experimental bias of focussing on just a small number of specific
SUTs and specific requirements specifications. To generate the largest possible
amount of comparative data we automated the synthesis of a large number of
numerical SUTs, their black-box specifications and their mutations. In this way
we compared the performance of learning-based and iterative random testing
over tens of thousands of case studies. Our average case results over this data set
demonstrate that when mutated errors have small effects (or equivalently when
the MTF of the mutated SUT is long) then learning based testing is increasingly
superior to random testing.

The structure of this paper is as follows. In Section 1.1 we review some re-
lated approaches to unit testing of numerical software and ATCG, found in the
literature. In Section 2, we discuss the general principles of learning-based test-
ing. In Section 3, we present our learning-based testing algorithm for numerical
programs. In Section 4, we describe our evaluation technique, and present the
results of evaluation. In Section 5 we draw some conclusions from our work.

1.1 Related Work

There are two fields of scientific research that are closely related to our own.
On the one hand there is a small and older body of research on TCG for sci-
entific computations. On the other hand, there is a more recent growing body
of research on ATCG methods obtained by combining satisfiability algorithms
with computational learning. Finally, there is an extensive mathematical theory
of polynomial approximation, see for example [12].
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Unit Testing for Scientific Software. It is widely recognised that the prob-
lem of testing scientific software has received relatively little attention in the
literature on testing. The existing literature seems focussed either on manual
techniques for TCG, or ATCG for individual test cases. Besides iterative ran-
dom testing, we are not aware of any other approach to iterative ATCG for
numerical programs.

The intrinsic unreliability of many existing libraries of scientific code for the
earth sciences has been empirically studied at length in [6] and [7], which cite
static error rates in commercial code of between 0.6% and 20% depending upon
the type of program error.

The correctness of scientific library codes for metrology is considered in [4].
Here the authors consider black-box unit testing of well specified computations
such as arithmetic mean and deviation, straight-line and polynomial regression.
They apply 1-wise testing where all fixed parameter values and one variable pa-
rameter value are chosen from sets of reference data points that are manually
constructed to span a given input profile. Reference values are then algorith-
mically computed using numerical codes which the authors posit as providing
reliable benchmarks. The actual outputs produced by the SUT are compared
with these reference values using a composite performance measure. This mea-
sure is more sophisticated than an individual error bound as it can account for
the degree of difficulty of the chosen reference data set. The approach seems
more oriented towards measuring overall code quality while our own approach
focusses on finding individual coding errors quickly. Nevertheless, [4] successfully
highlights problems of numerical stability occurring in a variety of well known
scientific libraries and packages including NAG, IMSL, Microsoft Excel, Lab-
VIEW and Matlab, thus confirming the real problem of correctness even among
simple and widely used scientific codes.

The method of manufactured solutions (MMS) presented in [13] provides a
theoretically well-founded and rigorous approach for generating a finite set of
test cases with which to test a numerical solver for a PDE (usually non-linear).
The test cases are constructed by analysis of the underlying mathematical model
as a non-linear system operator L[u(x, y, z, t)] to produce a finite set of an-
alytical solutions for different input parameter values. Like our own approach
(but unlike [4]) MMS does not make use of any benchmark or reference codes
for producing test cases. This method is shown to be effective at discovering
order-of-accuracy errors in fault injected codes in [8]. The main weakness of
MMS is its restriction to a specific class of numerical programs (PDE solvers).
By contrast, the generality of our requirements language (first-order logic) and
our modeling technique (piecewise polynomials) means that by general results
such as the Weierstrass Approximation Theorem, we can perform ATCG for a
much larger class of programs and requirements.

ATCG using Computational Learning. Within the field of verification and
testing for reactive systems, the existence of efficient satisfiability algorithms for
automata and temporal logic (known as model checkers) has made it feasible to
apply computational learning to ATCG using similar principles to our own. This
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approach is known as counterexample guided abstraction refinement (CEGAR).
Some important contributions include [3], [2] and [5]. The basic principles of
CEGAR are similar to those we outline in Section 2, though our own research
emphasizes incremental learning algorithms and related convergence measures
on models both to guide model construction and to yield abstract black-box
coverage measures. While existing research on CEGAR emphasizes reactive sys-
tems, temporal logic and discrete data types, our work presented here considers
procedural systems, first order logic and continuous (floating point) data types.
However, the success of CEGAR research strongly suggests to generalize this
approach to other models of computation, and our work can be seen as such a
generalization.

2 Learning-Based Testing

The paradigm for ATCG that we term learning-based testing is based on three
components:

(1) a (black-box) system under test (SUT) S,

(2) a formal requirements specification Req for S, and

(3) a learned model M of S.

Now (1) and (2) are common to all specification-based testing, and it is really
(3) that is distinctive. Learning-based approaches are heuristic iterative methods
to search for and automatically generate a sequence of test cases until either
an SUT error is found or a decision is made to terminate testing. The heuristic
approach is based on learning a black-box system using tests as queries.

A learning-based testing algorithm should iterate the following five steps:

(Step 1) Suppose that n test case inputs i1, . . . , in have been executed on S
yielding the system outputs o1, . . . , on. The n input/output pairs (i1, o1), . . . ,
(in, on) can be synthesized into a learned model Mn of S using an incremental
learning algorithm. Importantly, this synthesis step involves a process of gener-
alization from the data, which usually represents an incomplete description of
S. Generalization gives the possibility to predict as yet unseen errors within S
during Step 2.

(Step 2) The system requirements Req are satisfiability checked against the
learned model Mn derived in Step 1. This process searches for counterexam-
ples to the requirements.

(Step 3) If several counterexamples are found in Step 2 then the most suitable
candidate is chosen as the next test case input in+1. One can for example attempt
to identify the most credible candidate using theories of model convergence (see
Section 3.3) or approximate learning.

(Step 4) The test case in+1 is executed on S, and if S terminates then the output
on+1 is obtained. If S fails this test case (i.e. the pair (in+1, on+1) does not
satisfy Req) then in+1 was a true negative and we proceed to Step 5. Otherwise
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S passes the test case in+1 so the model Mn was inaccurate, and in+1 was a
false negative. In this latter case, the effort of executing S on in+1 is not wasted.
We return to Step 1 and apply the learning algorithm once again to n + 1 pairs
(i1, o1), . . . , (in+1, on+1) to synthesize a refined model Mn+1 of S.

(Step 5) We terminate with a true negative test case (in+1, on+1) for S.

Thus an LBT algorithm iterates Steps 1 . . . 4 until an SUT error is found (Step
5) or execution is terminated. Possible criteria for termination include a bound on
the maximum testing time, or a bound on the maximum number of test cases to
be executed. From the point of view of abstract black-box coverage, an interesting
termination criterion is to choose a minimum value for the convergence degree dn

of the model Mn as measured by the difference |Mn|−|Mn−1|, according to some
norm |.| on models. We can then terminate when Mn achieves this convergence
degree.

This iterative approach to TCG yields a sequence of increasingly accurate
models M0, M1, M2, . . ., of S. (We can take M0 to be a minimal or even empty
model.) So, with increasing values of n, it becomes more and more likely that
satisfiability checking in Step 2 will produce a true negative if one exists. Notice
if Step 2 does not produce any counterexamples at all then to proceed with the
iteration, we must construct the next test case in+1 by some other method, e.g.
randomly.

3 Algorithm Description

In this section we show how the general framework of learning-based testing,
described in Section 2, can be instantiated by: (i) piecewise polynomial mod-
els Mi, (ii) incremental learning algorithms, and (iii) an implementation of the
CAD algorithm in MathematicaTM, used as a satisfiability checker. The resulting
learning-based ATCG can be used to automatically unit test numerical programs
against their requirements specifications expressed as first order formulas over
the language of real closed fields.

3.1 Piecewise Polynomial Models

The learned models Mi that we use consist of a set of overlapping local models,
where each local model is an n-dimensional and d-degree polynomial defined over
an n-dimensional sphere of radius r over the input/output space. Since (d + 1)n

points suffice to uniquely determine an n-dimensional degree d polynomial, each
local model has (d + 1)n such points. One such point c ∈ Rn is distinguished as
the centre point. The radius r of a local model is the maximum of the Euclidean
distances from the centre point to each other point in that model. Figure 1
illustrates this for the simple case n = 1 and two overlapping 1-dimensional
cubic polynomial models of degree 3. With n-dimensional polynomials we can
automate n-wise testing, e.g. for n = 2 we obtain pairwise testing. Concretely, a
model Mi is represented as an array of LocalModel objects.
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Fig. 1. Two cubic local models fi(x) = aix
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We use a non-gridded approach to selecting the centre point for each local
model. This means that the centre point c can take any value x ∈ Rn and is not
constrained to lie on a vertex of an n-dimensional grid of any specific mesh size.
Non-gridded modeling helps avoid an exponential blowup in the number of grid
vertex points as the model dimension n increases. It also allows us to choose test
case values with complete freedom. So test cases can cluster densely within areas
of suspected errors, and sparsely within areas of likely correct behavior. This is
one reason why LBT exceeds the performance of iterative random testing since
the latter uniformly samples the search space of test cases.

3.2 A Learning-Based Testing Algorithm

We now give a concrete instantiation of the abstract learning-based ATCG, out-
lined in Section 2, for numerical programs. This combines incremental learning
methods for the piecewise polynomial models described in Section 3.1 together
with an implementation of the CAD algorithm for satisfiability checking such
polynomial models against requirements specifications. As is usual for procedu-
ral programs, a requirements specification for a numerical program S under test
is expressed as a Hoare triple (see e.g. [9])

{pre}S{post},
where the precondition pre and postcondition post are first order formulas over
the language of real closed fields. Thus pre and post describe constraints on the
input and output floating point variables of S at the start and end of compu-
tation. A true negative (or failed) test case is any test case which satisfies the
triple {pre}S{¬post} under the usual partial correctness interpretation of Hoare
triples. Our algorithm automatically searches for at least one true negative test
case where S terminates. (We handle non-termination, should it arise, with a
simple time-out.) This approach is easily extended to multiple negatives if these
are required.

Before satisfiability checking can be applied, it is necessary to have at least one
local polynomial model. Therefore the ATCG procedure given in Algorithm 1
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Algorithm 1. Learning-BasedTesting
Input:

1. S(t : TestCase) - the SUT expressed as a function

2. pre, post - pre and postcondition for the SUT

3. d : int - the maximum approximation degree of poly
4. max : int - the maximum number of tests

5. C : int - the maximum number of model checks for each test

Output: ErrorFound or TimeOut if no error was found

// Initialisation phase

T, M ← ∅ // Initialise set T of test cases and array M of models1

n ← input dimension of S2

support size ← pow(d + 1, n)3

T ← set of support size randomly generated test cases4

foreach t in T do5

t.output ← S(t) // run S on t6

if t violates post then7

return ErrorFound + t.toString()8

foreach TestCase t in T do9

M.add(LearnModel(T, t, support size))10

// Learning-based phase

count ← 011

while count < max do12

t ← null13

for i ← 0 to min(C, length(M)) do14

m ← M [i]15

t ← FindInstance (m, pre ∧ ¬post)16

if m.converg < ε then17

// Delete converged local model

M.delete(m)18

if t is NOT null then19

break20

if t is null then21

t ← FindInstance (M [random()], pre)22

t.output ← S(t) // run S on t23

if t violates post then24

return ErrorFound + t.toString()25

M.add(LearnModel(T, t, support size)) // cf. Algorithm 226

T.add(t)27

M ← UpdateModels(M, t, support size,C) // cf. Algorithm 328

count ← count + 129

return TimeOut30
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below is divided into an initialisation phase and a learning-based phase. During
the initialisation phase (lines 1-10), the minimum number (d + 1)n of test cases
necessary to build one local model, is randomly generated (line 4). Each such
test case t is executed on the SUT S and the output is stored (line 6). During the
iterative learning-based phase (lines 11-30), on each iteration we try to generate a
new test case either through: (i) performing satisfiability checking on the learned
model (line 16) or, (ii) random test case generation (line 22). Whenever a new
test case is generated and executed, the result is added to the model (line 26).
Then the local models nearest the test case are updated and refined using this
test case (line 28).

Note that Algorithm 1 makes two API calls to the Mathematica kernel1.
Line 16 of Algorithm 1 makes a call to the Mathematica kernel in order to
satisfiability check the formula pre∧¬post against the local model m, for each of
the C best converged local models. The kernel function FindInstance(. . . ) is the
Mathematica implementation of the Hoon-Collins CAD algorithm. If a satisfying
variable assignment to pre ∧ ¬post over m exists then this kernel call returns
such a variable assignment. In the case that no counterexample is found among
the C best converged local models, then line 22 of Algorithm 1 makes a call
FindInstance(M[random()], pre) to the same kernel function to find a satisfying
variable assignment over a randomly chosen local model for precondition pre.

As shown in Algorithm 1, an array M of LocalModel objects is maintained.
We use M [i] for 0 ≤ i < length(M) to denote the i-th element of M and M [i : j]
for 0 ≤ i ≤ j < length(M) to refer to the subinterval of M between i and j − 1,
inclusive.

3.3 Learning Local Models

The two subprocedures LearnModel and UpdateModels called in Algorithm 1 are
detailed in Algorithms 2 and 3. These implement a simple incremental learning
method along the general lines described in Step 1 of Section 2. Algorithm Learn-
Model infers one new local model using the newly executed test case t on the
SUT. We use a simple linear parameter estimation method in line 6. The use
of more powerful non-linear estimation methods here is an important topic of
future research. Algorithm UpdateModels updates all the other existing local
models using t and sorts the C best converged models.

In Algorithm 2 (line 6), model learning is performed using a linear parameter
estimation method. The Mathematica kernel function LinearSolve(c, b) is used
to find a vector of (d + 1)n coefficients satisfying the matrix equation c · x =
b, for the approximating d degree polynomial function in n variables. Note, if
the call to LinearSolve fails, then temporarily we have no local model around
m.centrePoint, but this can be corrected later by calls to Algorithm 3. Also
note in Algorithm 2 that without any previous model history, we are not yet
able to compute the convergence value of a newly constructed local model (as
we do in Algorithm 3). Hence convergence is initialized to 0.0 (line 7). This forces
the new local model to have the minimum possible convergence value, so it has
1 We use MathematicaTM version 7.0 running on a Linux platform.
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Algorithm 2. LearnModel
Input:

1. T - the set of all executed test cases

2. t : TestCase - a newly executed test case

3. support size : int - the number of test cases needed to build one local

polynomial model

Output: a new local model with centre t

m ← new LocalModel()1

m.centrePoint ← t2

m.localPoints ← from T pick support size test cases nearest to t3

m.radius ← maximum Euclidean distance between t and each data point4

of m.localPoints
Form the matrix equation c · x = b from m.localPoints5

m.poly ← LinearSolve(c, b)6

m.converg ← 0.07

return m8

Algorithm 3. UpdateModels
Input:

1. M - array of all local models obtained so far

2. t : TestCase - a newly executed test case

3. support size : int - cf. Algorithm 2

4. C : int - cf. Algorithm 1

foreach LocalModel m in M do1

if t inside m then2

T ← m.localPoints.add(t)3

t̂ ← m.centrePoint4

m̂ ← LearnModel(T, t̂, support size)5

randomly pick N test cases t1, t2, . . . tN6

m̂.converg ←
∑

i=1,...,N |m.poly(ti)−m̂.poly(ti)|
N

7

m ← m̂8

if C < length(M) then9

Partially sort M to ensure M [0 : C] are linearly ordered by convergence10

Randomly permute M [0 : C]11

else12

Randomly permute M13

return M14

the possibility to be satisfiability checked during the learning-based phase even
though its convergence value is undefined.

In Algorithm 3, when updating a local model, a Monte-Carlo method (lines
6, 7) is used to efficiently approximate the convergence value obtained using the
integral norm L1 on bounded polynomials. Each time local models are updated,
the first C best converged local models are randomly swapped to the first C
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positions of the array M, provided C is greater than or equal to the length of
M (line 10, 11). This, together with line 14 in Algorithm 1, implements the
prioritisation Step 3 of the abstract LBT algorithm of Section 2. In practice,
the value of C is empirically determined. A higher value of C can probably take
better advantage of model checking while it slows down the speed of learning-
based testing if model checking is time consuming.

4 Experimental Evaluation

4.1 Construction of SUTs, Specifications and Mutations

We wished to benchmark the performance of LBT against another iterative
ATCG method for floating point computations. The simplest and most obvious
candidate for comparison was iterative random testing, which is fairly easy to
implement when requirements specifications are simple. This comparison has the
advantage that iterative random testing can be viewed as a Monte Carlo method
to estimate the mean time to failure (MTF) of an SUT over an equiprobable
distribution of input values. Our experiments confirmed that this estimated MTF
value was inversely proportional to the size of injected mutation errors, as one
would expect.

In order to obtain the largest possible data set of performance results, we
used random generators to construct the numerical SUTs, their first-order logic
specifications and their mutations. These also allowed us to perform experiments
in a controlled way, in order to more accurately assess factors that influence the
performance of our ATCG. The random numerical program generator (RPG)
and specification generator (SG) were used to generate hundreds of SUTs with
their specifications and introduce thousands of mutations. Iterative random test-
ing was also repeated hundreds or thousands of times on each SUT, until the
estimated MTF value appeared well converged.

Random Numerical Program Generation (RPG). To randomly gener-
ate a numerical program as an SUT, the RPG divides a global n-dimensional
input space into subspaces at random. Within each of these randomly chosen
subspaces, the RPG generates an n-dimensional polynomial surface of random
shape (i.e. coefficients) and degree. We allowed for much higher degrees in such
SUT models than in the learned models of Section 3.1 in order to ensure that the
learning problem would be non-trivial. When a random SUT was generated, we
then mutated it randomly to inject faults by changing the shapes or positions of
the polynomial surfaces in one or more subspaces. Figure 2 gives an example of
a randomly generated SUT for one dimensional input and six randomly chosen
subspaces. To mutate the SUT, we simply regenerate different curves over some
of the same subspaces, and this is also shown in Figure 2. The ratio of the total
size of the mutated subspaces to the total size of all subspaces represents the
percentage error size. Controlling this percentage error size experimentally, was
the key to understanding the relative performance of LBT and iterative random
testing. For example in Figure 2, the percentage error size is 50%.
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Fig. 2. A randomly generated SUT: 6 subspaces of which 2 are mutated

Random Specification Generation (SG). Since for evaluation purposes a
large number of SUTs were automatically randomly generated, it was necessary
to automatically generate their requirements specifications too. At the same
time it was necessary to ensure that the requirement generated for each SUT
was semantically correct in its unmutated state. It is well known (see [1]) that
the logical complexity of requirements formulas has an effect on the efficiency
of satisfiability checking, and hence on LBT as a whole. To explore the effects
of this complexity, we studied the relative performance of LBT and IRT against
two different logical types of requirements specifications.

Let S be a randomly generated SUT with k subspaces and 1-dimensional input
S = f1(x), f2(x), . . . , fk(x). Then for both types of requirements specifications,
the same precondition was used. We call this an interval bound precondition on
the input variable x of the form

pre(S) ≡ c1 ≤ x ≤ ck+1.

Here the input interval [c1, ck+1] for an SUT is divided into k subintervals
[ci, ci+1] for 1 ≤ i ≤ k by the boundary values c1, c2, . . . , ck, and fi(x) describes
the behaviour of S over the i-th subinterval [ci, ci+1].

On the other hand two different types of postconditions could be generated:
we call these equational and inequational postconditions.

For the same SUT S, its equational postcondition is a formula of the form:

eq post(S) ≡
∧

i=1,...,k

( ci ≤ x < ci+1 ⇒ ‖fi(x)−mi(x)‖ < ε )

where mi(x) describes the mutation of fi(x) (if any) over the i-th subinterval.
Intuitively, eq post(S) asserts that the function of the mutated SUT is equal to
the function of the original SUT S, to within an absolute tolerance ε.

The inequational postcondition for S is a formula of the form:

ineq post(S) ≡
∧

i=1,...,k

( lower bound < fi(x) )

Intuitively, ineq post(S) asserts that all values of each function fi(x) lie above a
constant lower bound. The value of lower bound is randomly chosen so that this
postcondition is semantically correct for the unmutated (correct) program S.
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These preconditions and two types of postcondition generalise in an obvious
way to n-dimensional input for n ≥ 2.

4.2 Results and Analysis

Having set up random generators for numerical programs and their specifica-
tions, we proceeded to generate a large number of SUT/specification pairs, and
mutate these SUTs to achieve different percentage error sizes within the range
10% to 0.01%. We then measured the minimum number of test cases using LBT
and IRT needed to find the first true negative in each mutated SUT. This mea-
surement was chosen since for IRT it provides an estimate of the mean time to
failure (MTF) of the mutated SUT under an equiprobable input distribution.
(We can view IRT as a Monte Carlo algorithm to estimate MTF.) To deal with
the stochastic behavior of IRT, this value was averaged out over many runs until
a well converged mean value had emerged. We then compared the ratio of these
two measurements, and averaged out this figure over many different SUTs and
many different mutations all of the same percentage error size. The results of
our experiments are given in Figure 3 which illustrates the relative performance
of LBT and IRT as the percentage error size is reduced. The x-axis expresses
the percentage error size (c.f. Section 4.1) on a logarithmic scale. The y-axis
gives the ratio IRT/LBT of the average number of IRT test cases divided by
the average number of LBT test cases. Note that Figure 3 shows two curves,
one for testing SUTs against equational specifications and one for testing SUTs
against inequational specifications. Also note that above an error size of 10%,
both curves converge rapidly to y = 1.0, which explains our chosen range of
error sizes.

The two distinct curves in Figure 3 clearly indicate that relative performance
of LBT is influenced by the logical complexity of specifications, as we expected.
However, the shapes of both curves are similar. Both curves show that as the
percentage error size decreases (or equivalently the MTF of the mutated SUT
increases) the efficiency of LBT over IRT increases. Since the x-axis is logarith-
mic, this improvement in relative performance seems approximately exponential
in the percentage size of errors.
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Fig. 3. Relative performance of IRT and LBT
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4.3 A Concrete Case Study: Bubblesort

The statistical results of Section 4.2 may appear somewhat abstract, since the
thousands of randomly generated case studies do not correspond to specific well
known algorithms. Therefore, we complement this statistical analysis with a
concrete case study.

class BubbleSort {
    public void sort(double[] a) {
        for (int i = a.length; --i >= 0; ) {
            boolean flipped = false;

       for (int j = 0; j < i; j++ ) {
                // Mutated from “if (a[j] > a[j+1]) {“
                if (a[j] - N > a[j+1]) {

          double T = a[j];
          a[j] = a[j+1];
          a[j+1] = T;
          flipped = true;
      }

       }
       if (!flipped) {
            return;
       }

        }
    }
}

Fig. 4. Bubblesort algorithm with mutation

Figure 4 presents the familiar Bubblesort algorithm for an array of floating
point numbers. This algorithm represents a typical high dimensional problem,
since the input (and hence output) array size is usually rather large. In line 7 we
introduce a mutation into the code via a parameter N . This particular mutation
was mainly chosen to evaluate the quality of test cases, since it allows us to
control the percentage error size of the mutation. Despite the high dimension of
this SUT computation, pairwise LBT testing can find the mutation error fairly
quickly. Figure 5 illustrates2 why this is so. Taking a 2-dimensional polynomial
model on any output array value, Figure 5(a) shows that the SUT itself can be
modeled quite easily. Furthermore Figure 5(b) shows that the mutated SUT can
also be modeled with just a little more effort, since large regions of this model
are again essentially simple. A suitable requirement specification for this code is
just to assert that the output array is linearly ordered:

{
a.length−1∧

i=0

MIN < a[i] < MAX} BubbleSort {
a.length−2∧

i=0

a[i] ≤ a[i + 1]}

where MIN and MAX are simply the lower and upper bounds of input values.
As in Section 4.2, we can measure the minimum number of test cases required

by LBT and IRT to find the first true negative in the mutated SUT, against the
2 Note that the grid structure in Figures 5(a) and 5(b) is an artifact of the Mathe-

matica graphics package, the models themselves are non-gridded.
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Fig. 5. Modeling the Bubblesort algorithm with and without mutation

above requirement specification. Our results show that on average (since IRT
has a stochastic performance) LBT is 10 times faster than IRT at uncovering
the mutation error.

5 Conclusion

We have presented a systematic and powerful extension of the learning-based
testing (LBT) approach to iterative ATCG introduced in [10]. We have com-
pared the performance of LBT against the results of iterative random testing
over a large number of case studies. Our results clearly demonstrate that LBT,
while never worse than iterative random testing, can be significantly faster at dis-
covering errors. Future research will also consider non-linear models and learning
algorithms for floating point data types. More generally, we also need to consider
the problem of learned models, learning algorithms and satisfiability checkers for
other data types besides floating point, in order to increase the range of appli-
cability of our testing methods.
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Abstract. We report on a tool for generating executable concurrent tests from 
scenarios specified as message sequence charts. The proposed approach features 
three steps: 1) Deriving a MSC test implementation from a MSC scenario, 2) 
Mapping the test implementation into a Promela model, 3) Generating executa-
ble test scripts in Java. The generation of an intermediate Promela model allows 
for model-checking to inspect the test implementation for properties like 
soundness, fault detection power as well as for consistency checking between 
different test scenarios. Moreover decoupling the executable test scripts from 
the scenario specification makes it possible to use different backend code gene-
rators to support other scripting languages when needed. 

Keywords: Scenario-based testing, distributed testing, test consistency, Prome-
la, Message Sequence Charts, UML2 sequence diagrams, tool implementation. 

1   Introduction 

A recent survey on model-based testing (MBT) approaches [1] analyzed about 400 
papers to find evidence about the use of MBT in industrial projects. It could identify 85 
papers describing UML-based and non-UML approaches of some degree of unique-
ness. However only 11 papers out of them report about an industrial application or 
experimental case studies that go beyond a proof of concept. It turns out that most 
MBT approaches of industrial strength target the domains of safety-critical or embed-
ded systems; wider use in general software engineering is still deficient. The paper 
concludes that “it’s […] risky to choose an MBT approach without having a clear view 
about its complexity, cost, effort, and skill required to create the necessary models”. 

The trend towards complex systems with an increasing degree of connectivity, con-
figurability, heterogeneity, and distributedness requires improved processes and me-
thods especially for the system integration phase. Testing is still the preferred 
validation method used in this context. Because of the nature of complex systems, an 
MBT approach seems to be a good candidate for its ability to abstract away certain 
system aspects that distract test engineers from the specification of proper tests. 

To support system integration testing, a scenario-based testing approach is devel-
oped and re-fined to the needs of the domain of embedded systems as they are of 
interest, for example, at Siemens. Scenario-based testing has been broadly applied in 
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the telecommunication domain already. It is based on the specification of interaction 
scenarios between components to be integrated and is typically described in terms of 
message sequence charts (MSCs) or UML2 sequence diagrams [2], [3]. Additional 
specification features however need to be added to a scenario specification such as the 
expression of real-time constraints to make it applicable to the considered class of 
systems. The UML2 profiles SysML and MARTE provide some useful language 
features that are an initial input to develop the new test specification approach. 

This paper presents an overview about the test tool ScenTest that currently supports 
the untimed specification of scenarios for testing distributed systems and the genera-
tion of concurrent testers in Java. As a boon the tool supports the verification of test 
implementations as well as the consistency check between different test scenarios via 
the intermediately generated Promela model. The possibility to verify test implemen-
tations turned out to be particularly helpful when developing and fine-tuning the test 
generation algorithms outlined in [4]. The consistency checks are of great help for 
tool users if they incrementally build up a test suite from a number of test cases that 
all together should not contradict each other. 

The paper is organized as follows. Section 2 introduces the scenario-based testing 
approach and puts it into the context of other MBT approaches. Section 3 describes 
the different steps of the test generation process in some detail. Afterwards, Section 4 
explains the verification feature of the tool before Section 5 concludes the paper. 

2   Scenario-Based Testing 

In software testing practice, MBT approaches evolved as the latest innovation step as 
depicted in Fig. 1 [5]. To apply these approaches successfully in today’s industrial 
software development projects, one has to put efforts to automate the execution of 
tests in the first place. Today, a full range of test automation solutions of varying ab-
straction levels exists depending on the actual application domain and the project 
history. However, with an improved applicability of model-driven approaches due to 
the provision of better tools and supporting development processes, a high impact of 
MBT approaches on software testing can be expected now and in the near future. 

There are various modeling technologies that can be used for MBT. The orientation 
towards an industrial context imposes however some extra requirements and con-
straints. First of all, it is not wise to assume that a formal (complete and consistent) 
model of the software system always exists. What is reasonable to assume instead is 
an informal model that describes the system (or parts of it) mostly in natural language. 
Therefore, domain understanding and modeling play the major role for a successful 
application of MBT in a typical industrial context. Semi-formal models, such as 
UML, are becoming increasingly common in industrial projects contributing to the 
reduction in MBT modeling efforts. However, the development of a domain-specific 
language that is adequate for modeling the requirements of a given application do-
main remains a crucial factor that decides about the success of MBT. 

Second, MBT can only be effective in industrial projects when the total efforts for 
applying an MBT approach are affordable. This means that the testing approach 
should produce readily executable tests, even if the software system is modeled only  
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Fig. 1. Testing approaches according to their level of abstraction they offer 

partially. The model should also have some level of resilience to modifications 
(changing requirements, product evolution). Another important aspect is that the level 
of abstraction in the model must be adequate for describing the intended test purposes 
concisely. This implies that the different abstraction levels must be bridged in order to 
obtain executable tests (cf. Fig. 1). 

Driven by these experiences, a scenario-based testing approach is developed that 
differs from other MBT approaches as follows. The basic assumption is that the (sub-) 
system that is the subject of the integration test only needs to be specified partially in 
terms of test scenarios that can be observed at the system’s boundary and possibly at 
internal interfaces if they are exposed to a tester. 

The test scenario (see next section) is a restricted MSC that represents the system 
under test (SUT) only as a single lifeline, but considers all of the SUT’s interfaces  
to be covered by concurrent tester components. It turned out in practice that this re-
presentation of a test scenario is flexible enough to cover a wide range of system 
integration tests where the SUT consists of one or many components. Since the scena-
rio-based testing approach is basically a black-box test, a single SUT lifeline is there-
fore sufficient to specify the interactions of the SUT with its environment (tester) as 
long as its interfaces are clearly distinguishable. 

Because of its capability to work with partial system specifications the entrance 
level to apply this method is lower than other MBT approaches that require more 
complete system specifications such as Conformiq Qtronic or Microsoft SpecExplorer 
to name just a few. Although the latter tools provide an even higher abstraction and 
are more powerful because test cases are automatically generated, the overall efforts 
to specify system specifications is still a limiting factor to apply MBT approaches in 
the industrial practice. Therefore we believe that scenario-based testing with appro-
priate tool support offers a valuable contribution to many real-world projects. 

A scenario-based testing approach is not new. The closest contender of our Scen-
Test tool is Motorola’s ptk tool [6]. Since it is an in-house tool we need to rely on 
published data to assess its capabilities. First of all, it clearly addresses the needs in 
the telecommunication domain and strictly sticks to the full MSC semantics. Outside 
of this domain however, a strict MSC notation is seldom used. Instead a general ubiq-
uity of UML can be observed. With the UML2 version it became also sufficiently 
strong enough to be of use also for the purpose of (test) code generation. Therefore we 
decided to embrace rather a UML2 approach because of its higher acceptance and 
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also easier tool support. Another distinguishing factor of both approaches might be the 
capability to check the consistency between test scenarios (see Section 4) that allows 
to incrementally build up a more and more complete system specification (in terms of 
test scenarios). 

3   Test Tool ScenTest 

3.1   Tool Overview 

In this section we describe an approach, employed by our prototype tool, to map test 
scenarios, created by the test designer from more general use case scenarios, into test 
scripts. In order to develop the test scenarios, the test designer uses a UML2 editor. 
Currently, the prototype tool works with Sparx Enterprise Architect, which is one of 
more affordable commercial UML editors with XMI export support. 

Each test scenario is a sequence diagram or MSC with one designated SUT lifeline 
(instance). All the other lifelines represent test components. The test scenario can 
depict communications between the SUT and test components, but not among test 
components. All the necessary communication between test components are automat-
ically implemented by the tool; the test designer is, therefore, relieved from doing this 
manually. At the moment the prototype tool supports parallel blocks with a limited 
support of alternative blocks and loops. 

Use
Case
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Scenario

Manual 
Operation

Test Scenario Construction
(UML2/MSC Editor)

Verif.
Results

Test
Model-Checking

Building 
Coordinated Test 
Implementation

MSC 
Test
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Generating
Promela Model

Promela
Model

Generating
Test Script

Java
Code

ScenTest

 

Fig. 2. ScenTest – Test implementation and verification framework 

The tool generates test scripts in the platform independent language Promela [7] 
developed for modeling and automated analysis of distributed systems. While current-
ly the test scripts are mapped further into Java, support of other languages is also 
foreseen. One of the benefits of using Promela is the possibility of simulation and 
formal verification of tests, which can be performed by the test tool developers to 
debug the tool itself and by the test designers who wish to simulate test scripts or 
check their properties. Model-checking of test script properties and test scenario con-
sistency [8] is discussed in Section 4. 
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The tool chain is illustrated in Fig 2. The main advantage of the underlying ap-
proach over ones that rely on state machines or labeled transition systems, is that the 
test designer is not required to provide a complete formal specification of the SUT; it 
suffices to have a partial model in the form of an MSC scenario. 

3.2   Mapping Test Scenario MSC to Test Implementation MSC 

Correct implementation of a test scenario requires coordinating messages and delays 
[4] to ensure test soundness and increase fault detection. While the need for coordinat-
ing messages was identified in early research in scenario-based testing already [9], it 
has been only demonstrated recently that in addition delays have to be introduced to 
assure soundness [4]. For instance, consider a vending machine example (Fig. 3). The 
vending machine has two interfaces, one for a service man only and another for con-
sumers. Thus, a tester for the vending machine consists of two test components emu-
lating the behaviors of the serviceman and a consumer. If the turn on message is 
followed by the coin message with no delay in a test implementation, the outcome 
would depend on the race between these two messages, and the tester may produce 
the fail verdict even though the SUT behavior is correct. Thus, sound testing requires 
delays. 

   

fail?

 

Fig. 3. Sound test implementation (left) and a possible execution of an unsound test  
implementation (right) 

As a consequence, following the approach in [4], coordinating messages and de-
lays are inserted. The duration of the delay is determined according to message laten-
cy. However, while approaches suggested in [4] and [9] address all the races [10] 
among coordinating messages by allowing them to occur concurrently, one can avoid 
additional concurrency by storing coordinating messages arriving from different test 
components in different buffers [11]. Thus, since the tool uses different buffers for 
different channels the degree of concurrency in the original test scenario is preserved 
in the test implementation. We also add additional coordinating messages, such as 
t_trigger in Fig. 3, which allow one to detect missing SUT messages using a local 
timeout. The duration of this timeout needs to suffice for a message to arrive at the 
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SUT, trigger a response message from it, and this latter message to arrive back at the 
test component that waits for this message.  

Simple alternative blocks, where each section starts with messages sent from the 
SUT to the same test component, are supported by a straightforward extension of the 
algorithm suggested in [8]. Meanwhile, test scenarios containing alternative blocks of 
a general nature are treated as ill-formed scenarios at the moment. They could be still 
processed in future by adding additional coordinating messages, which allow different 
test components to inform each other of the alternative taken by the SUT. 

3.3   Mapping Test Implementation MSC to Promela 

Next, we map an MSC representing a test implementation into an intermediate Pro-
mela model. Promela is a modeling language for the Spin model checker [7] that is 
not intended for execution but for simulation and analysis of concurrent systems. 
Model-checking in our context helps detect errors prior to producing executable test 
scripts in Java. The advantages of a model checker over usual simulation are obvious 
since we deal with concurrent processes: model-checking allows the verification of all 
the possible execution paths. Since test scenarios describe finite behavior, the poten-
tial state space explosion can be usually controlled and lies in the limits of Spin. 

The Promela model addresses several concerns omitted in the test implementation 
MSC, namely a mechanism producing the final verdict, the architecture of the test 
deployment, and the detection of unexpected SUT outputs. The Promela model does 
not address concerns related to non-deterministic channel delays and resolution of 
stalling test executions in case of an incorrect SUT since these issues require a notion 
of time. 

The main idea behind the suggested Promela model generation procedure is to 
represent each test component and in addition each section of a parallel block by 
separate concurrent Promela processes and to represent alternatives using Promela’s 
selection construct if..fi. In alternative blocks the coordinating messages are inserted 
similarly to the ones in parallel blocks as explained in [4].  

The resulting test architecture, represented in Promela, is defined as follows. Each 
test component communicates with the SUT through a pair of FIFO channels 
representing the interfaces of the SUT. Test components are also pair-wise intercon-
nected by a couple of unidirectional channels. Additionally, a master test component 
MTC is defined, which starts the test components and issues a final verdict: 

 

• Pass, when all the test components notify the MTC by sending pass messages, and 
• Fail, when at the least one test component sends a fail message to the MTC. 
 

A test component can have subcomponents introduced to handle parallel blocks, 
which execute concurrently within the test component and which share the same 
channels with the test component in the communications with the SUT and other test 
components. 

We conclude the section with a sample Promela model for a test component from 
the test implementation in Fig. 3 that fits to the test architecture shown in Fig. 4. In the 
presented code, the notation “ServiceConsumer ? coordMsg2” means the reception of 
message coordMsg2 by process Consumer from process Service over the channel 
ServiceConsumer. Similarly, the notation “ConsumerService ! coordMsg1” means  
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Fig. 4. Test architecture of the example system 

that coordMsg1 is sent by Consumer to Service over the channel ConsumerService. In 
order to allow quick detection of unexpected messages we use the case selection con-
struct of Promela if..fi along with the else clause. The use of the else clause to catch 
unexpected messages is only allowed in polling mode, i.e., checking the head of the 
input queue without actual consumption. Choice of the else clause due to the empti-
ness of the buffer is prevented by the nempty guard. The timeout statement after the 
reception of the first coordinating message is used to model delay. 

proctype Consumer () {  
  ConsumerMTC ! init_confirm; 
  ServiceConsumer ? coordMsg2; 
  timeout; 
  ConsumerSUT ! coin; 
  nempty(SUTConsumer); 
  if 
  :: SUTConsumer ?[snack] -> {SUTConsumer ? snack;} 
  :: else -> ConsumerMTC ! fail 
  fi; 
  ConsumerService ! coordMsg1; 
  ServiceConsumer ? timerTrigger1; 
  nempty(SUTConsumer); 
  if 
  :: SUTConsumer ?[offline] -> {SUTConsumer ? offline;} 
  :: else -> ConsumerMTC ! fail 
  fi; 
  ConsumerMTC ! pass; 
} 
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3.4   Mapping Promela to Java 

Apparently, no translator from Promela to Java is available, save few research proto-
types, such as HiSpin, a Promela simulator [12], and SpinJ [ 13], a reimplementation 
of Spin in Java. Thus, we develop a translator for a subset of Promela corresponding 
to the language elements that are currently used to represent test implementation 
MSCs. For each of these constructs, we define a corresponding Java code that pre-
serves the semantics of Promela test models. Table 1 summarizes the Promela lan-
guage subset and its corresponding Java counterparts. Based on this mapping, the 
translator generates a multi-threaded Java code, in which each Promela proctype is 
mapped into a Java thread.  

Table 1. Promela-to-Java mapping 

Promela Code Java Code 
Proctype Java thread 
Mtype a new class MTypeSymbols, in which the 

mtype’s elements are defined as static 
fields. 

buffered channels Java queue  
data types: byte, int and bool corresponding Java types 
local variable variable in the corresponding thread 
operators +, -, ! (not), && similar operators in Java 
assignment  similar construct in Java 
send, receive, polling and nempty invocation of corresponding methods 
run creation of a new thread 
if..fi, do..od, goto, skip corresponding Java patterns 

To map Promela channels, we implement a dedicated Java class PromelaChannel, 
which represents a blocked queue data structure that contains thread-safe methods 
corresponding to the Promela communication operations send, receive, polling, nemp-
ty. Therefore, for each channel present in the Promela model, a PromelaChannel Java 
object is created. The translation of a Promela communication operation is in fact the 
generation of its corresponding Java method invocation on the object corresponding 
to the channel involved in the communication operation.  

Along with that, we implement timed and non-timed Java methods to support Pro-
mela communication operations. The timed methods must be completed within a 
given duration, otherwise an exception is raised. Timed methods are used only in the 
communication of the test components with the SUT. Since the communication be-
tween test components is assumed to be reliable, the non-timed versions are employed 
in communications between test components. Handling the exception of a timed Java 
communication method consists of sending a fail message to the MTC indicating that 
an expected message from the SUT was not delivered. The Promela communication 
operations are translated to either timed or non-timed methods depending on whether 
the communication is between a test component and the SUT or between test  
components. 
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For most of the Promela constructs, the translation to the corresponding Java code 
is straightforward. However, in few cases specific Promela patterns, rather than indi-
vidual operations are matched and translated to the corresponding Java code. This 
approach simplifies the translation of some Promela constructs that have no direct 
counterparts in Java, e.g., goto, while preserving atomicity of Promela operations. 

The Promela’s construct mtype, which is used to declare symbolic message names 
and constants, is mapped into a Java class MtypeSymbols, in which a static field is 
defined for each element of mtype. 

For Promela’s selection construct if..fi, which allows one to describe several alter-
native execution sequences, called options, we define a Java pattern, which is based 
on Java’s switch construct that implements a similar behavior. The Java pattern for the 
selection construct of receive statements consists in finding an executable option (i.e., 
choosing an execution path) among the ones listed within the construct. In the case 
when no option is executable the thread either executes the else clause of the selection 
construct or, in absence of the else clause, re-attempts to select an executable option 
upon receiving a notification from the corresponding input buffer. Once an executable 
option is found, it is executed. To detect missing SUT output messages, the described 
process terminates after a certain timeout by sending a fail message to the MTC 
thread. The repetition construct do..od, which in Promela resembles the selection 
construct, is mapped in Java in the same manner. Unlike the selection construct how-
ever, options of the repetition construct can be executed several times until the break 
command is encountered.  

Fig. 5 depicts the Java code generation workflow. In this workflow, the input is the 
generated Promela model that gets parsed to obtain the abstract syntax tree of the 
model. We use the ANTLR [14] tool to implement the parser for the supported subset 
of Promela. From an internal representation the Java code generator module produces 
Java code according to the mapping rules presented above. 

 

Fig. 5. Java code generation workflow 

3.5   Interfacing Tester with the SUT 

In the automatic test execution setup, the generated Java tester is executed against the 
SUT. Therefore, test adaptors, which are system specific, need to be implemented to 
interface the SUT with the test components. Test scenarios and implementations use 
abstract names for messages, which typically convey the meaning or purpose of con-
crete messages without revealing full details. We implement a keyword driven ap-
proach that maps abstract message names to concrete messages ready to be sent out to 
the SUT. The adaptor implementation accepts an abstract message from the Java 

   Promela 
  Model 

Promela  
Parser 

Java Code 
Generator Java  

Classes 

Generated Java 
Code 



 From Scenarios to Test Implementations via Promela 245 

queue of a Promela channel implementation and calls the corresponding procedure to 
pass the input to the SUT using the appropriate technology, e.g. (remote) method 
invocation or network operations. Another adaptor attempts to identify a received 
SUT output message and maps it to an abstract message to be forwarded to the wait-
ing test component. 

4   Validation of Tests 

As a direct side effect of generating an intermediate test implementation in Promela, 
the model checker Spin can be used to evaluate the validity of tests. In particular, we 
discuss in this section two test validation methods. The first method aims at verifying 
soundness of a test implementation by checking its model in Spin against predefined 
properties, mainly reachability properties to check if, for example, a pass verdict is 
reachable on all possible paths in the model. The second method, a model based com-
parison technique, aims at detecting inconsistency between different test scenarios by 
comparing and analyzing the corresponding SUT models. 

4.1   Test Case Verification 

The Promela model of a test implementation can be simulated and formally verified in 
Spin. In particular, model checking a test implementation model together with an SUT 
model can help ensure soundness of the test implementation, while model checking 
with a mutant SUT helps check fault detection power. In the case when an indepen-
dent Promela model of the SUT is unavailable, the ScenTest tool is able to a build a 
partial model from the test scenario’s SUT lifeline. 

As discussed in Section 3, the tool implements the test generation approach elaborated 
in [4], which uses delays to guarantee the soundness of test implementations. To illustrate 
the latter point, we consider an example of the vending machine that deploys the  
Promela timeout construct to model delays. The Promela code is given in Section 3.3, 
while the test implementation MSC can be found in Fig. 3. We combine this test  
 

 

Fig. 6. Model checking demonstrates unsoundness of a test implementation without timer 
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scenario with a SUT model of the vending machine. Being turned on, the vending 
machine generates a snack when a coin is inserted. However, when the machine is not 
turned on, it simply returns back the coin. Model-checking with Spin against the 
property “eventually pass on all executions” confirms that the pass verdict is always 
produced. However, after removal of the delay, model-checking in Spin against the 
same property produces execution paths that do not result in the pass verdict. In one 
of such paths, shown in a Spin counterexample MSC in Fig. 6 where the two test 
components send turn on and coin messages without a delay between them, the latter 
message can overtake the former, resulting in the return of the coin and, since the 
return of the coin is not foreseen by the test scenario, the test subsequently fails. 

4.2   Test Scenario Inconsistency Check 

1. In this section, we discuss how the ScenTest tool implements the model-based 
approach to check a set of test scenarios for mutual inconsistencies. The approach is 
based on comparing the Promela SUT models using exhaustive simulation to detect 
differences between them. This approach follows from the fact that in our framework 
a test scenario is treated as a closed system that includes the test specification (the 
tester component lifelines) and the SUT (the SUT lifeline). Consequently, the inputs 
of the SUT are the outputs of the test components and the outputs of the SUT are the 
inputs of the test components. This duality allows us to state that two test scenarios 
are inconsistent if their SUT models are inconsistent [8], i.e., the two models contain 
at least one common trace that leads to states, which have different outputs enabled. 
In the tool, the comparison approach is implemented following the workflow outlined 
in Fig. 7. The SUT Model Extractor module builds and combines the models of the 
SUT lifelines of two test scenarios into a joint Promela model, where one model plays 
the role of a sender and the other one of a receiver. 

Test Scenario 1 Test Scenario 2

SUT Model Extractor

Joint Promela
Model

Spin
Consistency

Property

Verification
Result

Test Scenario 1 Test Scenario 2

SUT Model Extractor

Joint Promela
Model

Spin
Consistency

Property

Verification
Result

 

Fig. 7. Workflow for inconsistency checking 

The joint model reaches a deadlock whenever the two SUT models that correspond 
to different test scenarios diverge in their behavior in an improper state. Up to the 
state where the deadlock occurs, the two models share a common set of traces. The 
divergence could be either due to different SUT input messages, which does not  
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Fig. 8. Two inconsistent test scenarios 

 

Fig. 9. Detecting a scenario inconsistency in Spin 

constitute inconsistency, or due to different SUT output messages. The latter case 
indicates that some common trace of the two models can be continued with different 
outputs (Fig. 8), which constitutes an inconsistency. Thus, in order to detect inconsis-
tency we model-check the joint model against a property, which states that each dead-
lock in the simulation of the joint model is due to divergent receive messages. The 
violation of the property indicates the inconsistency. 

Let us consider the example in Fig. 8 with two different test scenarios; the set of 
outputs of the vending machine after receiving a coin is different in the scenarios. In 
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the first scenario, the machine either issues snack or returns coin-back while in the 
second one only snack can be issued. Fig. 9 shows the first step in building the joint 
Promela model from the two SUT lifelines extracted from the test scenarios, where 
one process is transformed into a receiver process and other into a sender process. The 
SUT outputs turn into inputs and vice versa in order to compose two processes into a 
joint model (underlined message names in Fig. 9). The verification in Spin reveals 
that the two test scenarios are inconsistent because of the additional SUT output 
coin_back. Our tool is not able to decide, which of the two scenarios is deficient; it is 
up to the user to decide whether he should remove a redundant SUT output from the 
first scenario or add an alternative to the second scenario. 

5   Conclusions and Outlook 

We have presented a scenario-based testing approach and associated tool support. It 
supports the specification of test scenarios for system integration tests, the generation 
of executable test scripts, and the test validation and consistency check of test scena-
rios. Because we rely on Promela as an intermediate representation of the test imple-
mentation, it is quite easy to change the generated output language of the test scripts, 
which is currently Java. Different backend code generators for, for example, TTCN-3 
or scripting languages such as Python are possible. The tool is currently completed to 
be used in first industrial case studies at Siemens.  

Although it supports already many MSC/UML2 features to specify test scenarios, 
the formal specification approach requires further improvements by providing better 
language facilities to specify data flows within the control flow structure of typical 
sequence diagrams, e.g. local variables and parameterization of messages and whole 
test scenarios, variable assignments and local operations on data. Textual extensions 
to describe such data flow features need to be worked out and integrated into the tool. 

Last but not least, support for real-time testing is needed to cover a wider applica-
bility of the tool. For this purpose, an extended test scenario specification approach 
based on an appropriate representation of timed behavior needs to be worked out. 
Notwithstanding, we plan to evaluate the efficiency of our MBT approach in the con-
text of industrial projects in the near future. 
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Abstract. The addition of a cross-cutting concern in a program, through

aspect weaving, has an impact on its existing behaviors. If test cases ex-

ist for the program, it is necessary to identify the subset of test cases that

trigger the behavior impacted by the aspect. This subset serve to check

that interactions between aspects and the base program do not introduce

some unexpected behavior. Vidock performs a static analysis when as-

pects are compiled with a program to select the test cases impacted by the

aspects. It leverages the pointcut descriptor to locate the set of methods

impacted by aspects and then selects the test cases that can reach an im-

pacted method. This static analysis has to perform over-approximations

when the actual point where the aspect is executed can be computed only

at runtime and when test cases call polymorphic objects. We measure the

occurrence of these assumptions in 4986 projects containing 498 aspects to

show they have a limited impact. Then, we run experiments with Vidock

on 5 cases studies and analyze the impacts that different types of aspects

can have on test cases.

1 Introduction

Aspect-oriented Programming (AOP) [1] encapsulates crosscutting behaviors
into single units called aspects. The intent of this programming paradigm is
to improve the readability, modularity and maintainability of the code. An as-
pect is composed of an advice, which realizes the cross-cutting behavior, and a
pointcut descriptor (PCD), which describes the points in the program where the
advice is woven (called joinpoints).

The cross-cutting concern either keeps the base program’s behavior untouched
by adding a new behavior, or might modify the existing behavior. An aspect can
replace a routine execution when needed, or access the value of a protected data
structure at runtime. Thus, the introduction of aspects can modify the control
or the data flow of the program in which it is inserted.

When an aspect is woven in a program it is necessary to ensure that it interacts
correctly with the program. If the program has already been tested, this implies
identifying the test cases that are impacted by the aspect weaving to run them
to check the integration of the aspect in the program. A test case is considered
impacted if it covers a joinpoint matched by the aspect.

A. Petrenko, A. Simão, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 250–265, 2010.
c© IFIP International Federation for Information Processing 2010
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We propose an analysis which does not require executing any test case. The
Vidock tool is based on a static analysis performed in two steps. First, the analysis
leverages the pointcut descriptor that identifies all the points in the program that
are impacted by the aspect weaving. Then, the test cases and the base program are
analyzed to determine the points reached by the test cases. If a test case reaches a
point that is impacted by an aspect, it is identified as an impacted test case. The
advantage of such a static analysis is that the analysis is less time consuming than
solutions relying on dynamic analysis.

Because our analysis is static, it has to perform over-approximations on im-
pacted points in two cases. First, a pointcut can declare a dynamic expression.
In that case, we statically over-approximate the set of joinpoints that can be
matched by the aspect. Second, we have to over-approximate the coverage of test
cases in case of a method call on a polymorphic object, since it is not possible to
statically know the type of the object. The benefit of these over-approximations
is that our impact analysis identifies all the test cases that are impacted. We
chose to build Vidock for AspectJ aspects and JUnit test cases.

In section 2 we recall the main constructs in AOP. Section 3, presents the
details of the analysis and section 4, discusses the hypotheses for this work: the
choice of an impact analysis for programs that compile without the aspects and
the over-approximation for dynamic pointcuts and in the presence of polymor-
phism in the base code. This discussion is based on empirical measurements on
46 open source Java projects that use aspects. Section 5 describes Vidock that
implements this automatic analysis as a plug-in for the Eclipse platform. Section
6 presents experiments that apply Vidock on various programs. In section 7 we
discuss related work.

2 Illustrating Example

Aspect-Oriented Programming (AOP) is a programming paradigm that sepa-
rates cross-cutting concerns. AOP encapsulates concerns that crosscut across
several modules into aspects. In our work, we used AspectJ, a popular and ma-
ture implementation of AOP for Java. In this section we present the core concepts
of AspectJ through a running example.

2.1 Auction System

We illustrate AOP through examples extracted from an online auction system
developed using Java and AspectJ. A user can sell an item by creating an auction
with an end date and a minimum price. Other users can place bids on this auction
until it closes. The user who placed the highest bid (if any) wins the auction.
The system insures that the seller will be paid: a bidder must credit his account
before he can bid, and the system checks that the total of all his bid is not greater
than the amount available on his account. When the auction closes, money is
immediately transferred from the buyer’s account to the seller’s account.

Two aspects have been added to the base program. The first aspect, Reserve,
gives a seller the option to set a secret reserve price. If the highest bid does not
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1 public privileged aspect Reserve {
2 private int Auction.reservePrice = 0;
3 pointcut closeOpen(Auction a):
4 execution(void Open.close(Auction));
5 void around(Auction auction): closeOpen(auction) {
6 if(auction.reservePrice>0) { ... }
7 else proceed(auction);
8 }
9 }

Listing 1.1. The Reserve aspect

1 public aspect AltBid {
2 pointcut getAmount(): call(int Bid.getAmount())
3 && cflow(execution(* *.close(Auction)))
4 int around(): getAmount() {
5 ...
6 int res = secondBid.getAmount()*11/10;
7 return res;
8 }
9 }

Listing 1.2. The AltBid aspect

match the reserve price then the item is not sold. The second aspect, AltBid,
changes the way the final price is computed. In the base program the price an
item is sold is the amount of the highest bid. With this aspect, the price is the
amount of the second highest bid plus 10%. Listings 1.1, 1.2 respectively show
an excerpt of the Reserve and AltBid aspects.

2.2 Aspect Oriented Programming: The Case of AspectJ

AOP encapsulates crosscutting behaviors into single units called aspects. An
aspect itself is composed of several units realizing the crosscutting behavior, these
units are called advices. Aspects also provide pointing elements that designate
well defined points in the program execution or structure where the crosscutting
behavior is executed. The pointers are called pointcut descriptors (PCD) and
the execution points joinpoints.

In AspectJ, a PCD is defined as a combination of names and keywords.
Names are used to match specific places in the base program. For instance,
the name void Open.close(Auction) in listing 1.1 (line 4) matches the
method close which returns type void, receives a parameter of type Auction
and is declared in the class Open. Names can contain wild-cards that enlarge
the number of matches. The wild-cards * in the name * *.close(Auction)
of listing 1.2 (line 3) are used to specify that the method can be declared in
any class (* *.close) and have any return type (* *.close). Keywords
define when the places matched by names will be intercepted. For instances, in
the PCD execution(* *.close(Auction)) the keyword execution indi-
cates that the execution of the matched places (method close(Auction)) will
be captured. The combination of names and keywords is referred as expression.
PCDs can be composed of multiple expression joint by the logic operators &&
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(conjunction) and || (disjunction). For instances the PCD in listing 1.2 (lines
2-3) is the conjunction of two expressions.

PCDs can also point joinpoints that occur dynamically during the execution
of the program. For instance, the PCD of listing 1.2 (lines 2-3) is composed of
two expressions. The first (line 2) intercepts the calls to getAmount(). The
second (line 3) constrains the interception to the calls occurring inside the con-
trol flow of the execution of close(Auction). To know whether a call to
getAmount() occurs during the execution of close(Auction), the program
must be running. Therefore, there is no mean to statically know the exact oc-
currence of these joinpoints. We refer to these joinpoint as dynamic joinpoints
and to a PCD pointing these points a dynamic-PCD.

AspectJ extends the Java syntax to allow developers to implement advices as
natural as possible. Therefore, advices can be seen as routines that are executed
at some point. Typically AspectJ advices are bounded to a PCD designating the
points where they will be executed. The advice in listing 1.1 (lines 5-8) is bounded
to the PCD closeOpen, therefore, it will be executed during the execution
of close(Auction). AspectJ provides three different kind of advices Before,
After and Around indicating the moment when they are executed. Before and
After advices are executed respectively just before / after reaching the joinpoints
designated by the PCD. Around advices are a special type of advice, they are
executed instead of the designated joinpoints. Besides, by invoking the special
operation proceed they can execute the captured joinpoint. For instance, the
advice in listing 1.1 (lines 5-8) executes the captured joinpoint only given a
special condition (line 7), otherwise it replaces its execution (line 6).

3 Selection of the Impacted Test Cases

To determine which test cases of the base program are impacted by the aspects,
we statically analyze the Java base program, the aspects and the test cases. We
analyze the PCD to select the set of methods impacted by an aspect. Then we
can statically analyze the test cases to determine if they are impacted.

Figure 1 presents an overview of the analysis process. Initially, Vidock gathers
information from the AJDT and the Spoon [2] tools. Then, driven by each test
case description, it constructs a static call graph (SCG) – one for each test case
(a,b). Besides Vidock selects all the methods having at least an aspect weaved,
namely impacted methods (c). Finally, Vidock calculates the impacted test cases
by intercepting the impacted methods with the SCG nodes (d).

3.1 Selecting Methods

The first part of our analysis deals with the selection of the methods impacted by
the aspect weaving. The method selection is divided in two stages, (1) we gather
a set of joinpoints pointed by a PCD (using AJDT) and then (2) we calculate the
set of methods related to those joinpoints (using Vidock). However, the selection
of the methods impacted by aspects is not straightforward. The first issue we
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Fig. 1. Process overview

must deal with is the presence of dynamic-PCDs. Because dynamic-PCDs cannot
be computed statically, it is not feasible to know the set of methods they point.

Expressions pointing dynamic joinpoints (with keyword such as if, cflow
and cflowbelow) are used to constrain the amount of joinpoints pointed by
static expressions. To deal with dynamic-PCDs statically, AJDT performs an
over-approximation of the selected joinpoints. Such over-approximation consists
in removing the dynamic expressions from the PCD. The resulting PCD points
a set of joinpoints that contains those pointed by its dynamic version.

Formally, this over-approximation can be described as follows. Let P be a
program, C be the set of all the PCDs declared in P and J be the set of all
the joinpoints in a program P . Let fpc : C → P(J) be a function that returns
the set of all the joinpoints pointed by a PCD. Let fover : C → P(J) be an
over-approximation function. Given a PCD, it removes its dynamic part (if any)
and gives the set of all the joinpoints it points.

∀c ∈ C, fpc(c) ⊆ fover(c)

In the best case scenario, C contains no dynamic-PCDs and then fover = fpc.
Figure 2 illustrates this over-approximation. In the figure, the dynamic-PCD

getAmount() (A) points the set of joinpoints fpc(A) = Jd. However, it is un-
feasible to compute Jd statically. The static version of getAmount() (B) points
a larger set of joinpoints fpc(B) = Js that contains those pointed by A. AJDT
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Fig. 3. Schematic view of the definition of an impacted method

performs this over-approximation directly on the dynamic-PCD. This results in
a set of joinpoints fover(A) = Js, which contains Jd and is also computable.

The second issue we must deal with is the actual selection of the impacted
methods. An impacted method is any method related to a joinpoint that is
pointed by a PCD. It can be specified as follows.

Let M be the set of all the methods in a program P . Let g : J → M be a
function that, for a given joinpoint, gives the method where it is located.

g(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

the caller if j is a call joinpoint
the executed method if j is an execution

joinpoint
the constructor if j is an initialization

joinpoint
the accessor method if j is a field access

joinpoint

Then, given g, the set MI ⊆M of impacted methods is defined by:

MI = {m ∈M |∃c ∈ C, ∃j ∈ fover(c), g(j) = m}
Figure 3 depicts how the set MI of impacted methods is obtained from the

combination of fover and g. First fover provides the set of joinpoints Js from
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1 public class TestAuction {
2 @org.junit.Test
3 public void testClose() {
4 Auction a = new Auction(..);
5 a.open();
6 a.bid(user1,30);
7 a.bid(user2,50);
8 a.close();
9 assertTrue(a.isClosed());

10 assertEquals(user2,a.getBuyer());
11 }
12 }

Listing 1.3. An example of JUnit test case for the Auction class

the PCD getAmount() (A), Js = fover(A). This part is performed by AJDT.
Then, the set MI = g(Js) is determined by Vidock, in which g is implemented. In
this case g(j1) = Open.open(), g(j2) = g(j3) = Bid.finalize and g(j4) =
Bid.bid(). These methods are impacted.

3.2 Impacted Test Cases

The second step of the impact analysis consists in detecting the test cases that
are impacted by the introduction of aspects. We want to know if a test case can
reach an impacted method or not, to know if its control or data flow can be
modified. First, we need to know which methods are reachable by each test case.
To do so we build a static call graph for each test case.

Static call graph. A static call graph is a triple (V, Ec, Ep) where:

– V is the set of vertices for methods, each method is represented by only one
vertex.

– Ec ⊆ V × V is a set of edges that represent method calls. If (m1, m2) ∈ Ec,
it means that the method represented by m1 explicitly calls the method
represented by m2.

– Ep ⊆ V × V is a set of edges that represents potential method calls. If
(m1, m2) ∈ Ep, then the method represented by m1 potentially calls the
method represented by m2.

– Ec ∩Ep = ∅.
Explicit and Potential Calls. A method m1 explicitly calls the method m2 if m2
is explicitly invoked in the source code of m1. The method m1 potentially calls
m2 if it calls a method overridden by m2. We call it a potential call because we
do not know statically which method is actually executed. The Auction class
uses the state pattern – as illustrated by Figure 5 –, so when Auction.close is
called, the method close of the current State object is called, but the method
that is actually executed could be any of the overriding methods of Pending,
Open, Closed and Cancelled (the four possible states for an auction).

Listing 1.3 shows an example of a JUnit test case. The test case tests the
close method of class Auction. First an auction is created and two users
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TestAuction
.testClose

Auction.open Auction.bid Auction.close

State.close

Pending.close Open.close Closed.close
Cancelled

.close

call

potential call

... ...

... ... ... ...

Fig. 4. The static call graph of the test case from Figure 1.3

+ open(): void
+ close(): void

Auction
+ open(): void
+ close(): void

Statestate

1

+ open(): void
+ close(): void

Pending
+ open(): void
+ close(): void

Open
+ open(): void
+ close(): void

Cancelled
+ open(): void
+ close(): void

Closed

Fig. 5. Class diagram illustrating the implementation of the state design pattern

place a bid. Then the auction is closed and the assertions check if the auction is
actually closed and if the buyer is the highest bidder. Figure 4 shows an excerpt
of the static call graph of this test case, with the calls and potential calls.

Vidock uses Spoon, a tool for static analysis of Java programs, to build the
static call graphs. It provides a visitor pattern to explore the abstract syntax
trees (AST) of the java source files. This allows the extraction of the static call
graph with only the call edges (no potential calls). To obtain the potential calls
we must explore the ASTs of the whole system looking for methods overriding
the method targeted by a call. Potential calls are also extracted using Spoon. An
inheritance tree is built to obtain the subclasses of a class. Then, for each call,
we check if any of the subclasses of the targeted method’s class overrides the
targeted method. For each overriding methods found, a potential call is created
with the source of the explicit call as source and the overriding method as target.

Impacted test case. An impacted test case is a test case that can potentially
execute an impacted method. Let t be a test case, S its static call graph, TI the
set of impacted test cases and MI the set of impacted methods:

t ∈ TI ⇔ ∃P = t, v1, . . . , vn a path in S, vn ∈MI
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1 boolean impacted(Vertex v) {
2 if onImpactedPath.contains(v) or impactedMethods.contains(v.method) then
3 return true
4 end
5 beingVisited.add(v)
6 for each v’ in v.next do
7 if not beingVisited.contains(v’) then
8 if impacted(v’) then
9 onImpactedPath.add(v’)

10 beingVisited.remove(v)
11 return true
12 end
13 end
14 end
15 visited.remove(v)
16 return false
17 }

Listing 1.4. The algorithm determining whether a test case is impacted or not

A test case is impacted if, from the root of its static call graph, it is possible
to reach an impacted method. Once the static call graph of a test case has been
built we can determine whether it is impacted or not by using the algorithm
on Listing 1.4. This algorithm returns true if the argument vertex represents an
impacted method or can reach such a vertex. If we call this algorithm with the
vertex representing a test case it returns true if it is impacted.

This algorithm implements a depth-first search on a graph and thus has a
time complexity in O(|V | + |Ec| + |Ep|), where V is the set of vertices of the
graph, and Ec ∪ Ep the set of edges, with Ec ∩ Ep = ∅.

The impactedMethods attribute contains all the impacted methods. On line
2, the algorithm checks if the current vertex represents an impacted methods,
and returns true if it is the case.

The v.next is the set {v′|(v, v′) ∈ Ec ∪ Ep}. On line 6, the loop calls the
algorithm on the vertices that can be reached with a call or potential call edge.

A vertex that can reach a vertex representing an impacted method is said to
be on an impacted path. The attribute onImpactedPath contains such vertices
and is used to optimize the algorithm. Several test cases will most likely execute
the same methods, so if we know from a previous execution of the algorithm
that a vertex is on an impacted path we can stop the algorithm and return true.

Computing the complete static call graphs of all test cases can be very time
consuming. This is why we build the static call graph on the fly. Actually the set
v.next is only built when needed, so if we quickly find an impacted method,
we do not have to find all the potential calls of the static call graph. If the test
case is not impacted we cannot avoid building the complete static call graph.

The notion of potential calls may lead to an over-approximation. When there
are potential calls, several of them are not executed at all at runtime, but we
cannot statically remove them. So if one of this false potential calls can reach an
impacted method, then the test case can be selected as impacted without being
actually impacted. Note that this over-approximation leads to false positive but
not to false negative (an impacted test case not detected as impacted).
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For instance, in the example of Figure 4, the method Open.close is impacted
by the Reserve aspect, and this method is actually executed so the test case
is actually impacted (and detected as such). But suppose that the aspect does
not impact Open.close but Pending.close, then the test case would not
be actually impacted but still would be detected.

4 Validation of Hypotheses

Our proposal is based on three hypotheses. First, we assume that the base pro-
gram can be tested in isolation, before the aspect weaving. Thus we assume that
the base program can compile without the aspects – which is only possible if the
base program is not aware of the aspects. Second, the impact analysis is based
on two over-approximations. (1) The set of impacted methods is over approxi-
mated in case of dynamic-PCDs, and (2) the static call graph for a test case is
over approximated in presence of overridden methods. To evaluate the impact
of these hypotheses on the proposed analysis, we have studied their occurrence
over a set of 46 open source aspect-oriented projects. This study is detailed in a
previously published paper [3].

We have selected the projects according to the following criteria: (1) Project
implemented in Java/AspectJ, (2) project source code publicly available, (3)
project compilable using the AspectJ compiler version 1.5, and (4) project size
of at least 10 classes and 1 aspect. The 46 projects fulfilling these criteria were
gathered from open source repositories. We started our search at sourceforge.net,
the most popular open source repository in Internet. Out of 74 aspect-oriented
projects, only 29 fulfilled our criteria. Then, we continued gathering projects by
inspecting other repositories by using the GoogleTM code search engine. Out of
2000 files, equivalent to 31 projects, only 17 were fulfilling our selection criteria.
Finally, we successfully gathered 46 open source aspect-oriented projects of size
ranging from 10 to 913 classes and 1 to 64 aspects.

4.1 Hypothesis 1: Project Compilation

The first hypothesis we have formulated is that aspect-oriented projects can com-
pile without aspects. To confirm whether this hypothesis occurs in real aspect-
oriented projects we have studied its occurrence over the 46 open source projects.

To know the amount of projects compiling without aspects, we have disable
the aspectJ capability of each project. After re-compiling each project without
aspect support, we have obtained the following results: Out of 46 aspect-oriented
projects, 30 are compilable in the absence of aspects. That is, the 65% of the
projects compile without the crosscutting functionality added by aspects.

The results obtained in this experience endorse our hypothesis. The percent-
age of projects effectively compiling without aspects is more than half of the
total amount of projects. Thus, most of the projects are analyzable using our
tool. Moreover, an important portion of the compilable projects range form large
and medium size (between 3000 and 80900 LOC).



260 R. Delamare et al.

4.2 Hypothesis 2: Low Method Overriding

The second hypothesis we formulated is that the method overriding in general
have a low frequency. To determine the frequency of overriding, we have studied
the method overriding practice on the 46 open source projects.

We have used the Metrics 1 eclipse-plugin to analyze the java sources in each
project project. The results obtained from this analysis are the following: Out
of 58184 methods scattered in 8052 classes (total of 46 projects), only 3295
are overridden by subclasses. On average there are 1265 methods per projects
and only 72 of them are overridden. That is, only a 6% of the total amount of
methods (an average of 5,6% per project, range from 0% to 14% per project)
were overridden, leaving 94% of them with no further change by subclasses.

These results widely support our hypothesis. The 6% of overridden methods
is negligibly small. The over-approximation we applied in the case of inheritance
overriding methods is reasonable, given the small amount of overridden meth-
ods. A common practice when building test cases is to call directly a method
in a subclass instead of the method in a superclass. This allows the tester to
predict the expected behavior and build a precise oracle. Thus, the impact of
over approximation in the test case static call graph should be small.

4.3 Hypothesis 3: Low Usage of Dynamic-PCDs

The third and final hypothesis we formulated for our analysis is that the dynamic-
PCDs are rarely used. To determine if dynamic-PCDs are used, we have studied
the taxonomy of the PCDs declared in the aspects of the 46 open source projects.

We have analyzed each project with a custom tool 2 inspecting the PCDs
definition and specifically their taxonomy. We have obtained the following re-
sults: Out of 1145 PCDs declared on 498 aspects (total of 46 projects), only
206 contained dynamic expressions (cflow, cflowbelow, if). That is, only a
17% of the total amount of PCDs contained dynamic expressions. Moreover, the
dynamic-PCDs were present only in 15 out of 46 projects.

These results confirm our hypothesis. The 17% of dynamic-PCDs reveals that
they are rarely used in real life open-source projects. Moreover their occurrence
only in the 33% of the projects advocates that an over-approximation for impact
analysis is reasonable. In section 6.2 we observe the effects of these hypotheses
on actual impact analyses.

5 Implementation

Vidock has been implemented as a plug-in for the Eclipse IDE and is available
on the internet3. As seen previously, the tool relies on AJDT4 to resolve the
1 http://metrics.sourceforge.net/
2 http://contract4aj.gforge.inria.fr/analysis
3 http://www.irisa.fr/triskell/Softwares/protos/vidock/
4 http://www.eclipse.org/ajdt/
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Table 1. Results of our experiments: added aspects and their impact on the test cases

(*: actually impacted test cases)

Example TC Aspect Impacted TC Precision Recall

Introduction 7

Cloneable 0 NA NA

Comparable 0 NA NA

Hashable 0 NA NA

Bean 7 BoundPoint 6 (85.7%) 100% 100%

Telecom 33
Timing 3 (9.1%) 100% 100%

Billing 3 (9.1%) 100% 100%

Tetris 45

TestAspect 8 (17.8%) 100% 100%

NewBlocks 7 (15.6%) 100% 100%

Counters 2 (4.4%) 100% 100%

Levels 2 (4.4%) 100% 100%

All aspects 17 (37.8%) 100% 100%

Auction 306

Reserve
11 (3.6%)

63.6% 100%
7* (2.3%)

AltBid
49 (16.0%)

79.6% 100%
39* (12.7%)

Log 306 (100%) 100% 100%

Reserve + 49 (16.0%)
79.6% 100%

AltBid 39* (12.7%)

PCDs and obtain the matched joinpoints and on Spoon [2] to obtain an abstract
syntax tree of the system that allows us to build the static call graphs.

After each compilation of an AspectJ project, the plug-in applies the process
described in section 3, and for each test cases that is detected as impacted a
warning is reported and appears as a regular Eclipse warning. At the compilation,
AJDT resolves the PCDs so we can obtain the matched joinpoints, as explained
on figure 1. Then we use spoon to detect the JUnit test cases within the classes
of the project. If a test case is detected as impacted we use Spoon to report a
warning.

6 Case Studies

To validate our approach we have experimented our analysis on several examples.
Some of them are distributed with AspectJ (the Introduction, Bean and Telecom
examples), one is a classic project freely available on the Internet (Tetris) and
the last one has been developed by our group (Auction).

6.1 Description of the Examples

The Introduction example has a unique class Point that encapsulate the two-
dimensions coordinates of a point (using either Cartesian or polar coordinate
system). Three aspects are written for that class, Cloneable, Comparable and
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Hashable. All these aspects declare that Point implements a new interface and
adds inter-type definitions to add the implementation of new methods.

The Bean example also implements a Point class. The only aspect declares
that Point implements Serializable and adds bound properties. Listeners
can be registered with an observer design pattern and an advice is woven around
each setter of Point to notify the listeners.

The Telecom example simulates telephonic communications and handles local
and long distance calls as communications with more than two interlocutors.
The timing aspect calculates the duration connection and the customer’s cu-
mulative connection time. The billing aspect relies on timing and calculates
the cost of a connection.

The Tetris example is an implementation of the classic video game that has
been developed by Gustav Evertsson5. The TestAspect aspect traces the im-
ages that are loaded and prints their name in the console. The NewBlocks
aspect adds new kind of blocks to the game. The Counters aspect counts the
deleted lines and prints them on the game layout. The Levels aspects adds a
level system to the game: each time a certain number of lines has been deleted
the level is increased and the blocks fall faster.

Finally the Auction example is an implementation of an online auction system
where users can buy or sell items. The implementation uses the command and the
state design pattern [4]. The command pattern is used by the server to process
the instruction received by the clients. The state pattern is used to represent
the state of an auction. There are 4 different states (pending, open, closed and
cancelled). The system (without the test cases) has 1382 lines of code, 41 classes.
The aspects that have been added are those presented in section 2.1.

6.2 Results

For each example, test cases have been written using statement coverage as a
minimum criterion. These test cases allowed us to detect and fix several errors.
For the auction system we validated the program. In the Introduction example
of AspectJ we detected several bugs with the handling of polar coordinates.

Then the aspects have been added to the base program, alone if possible,
with the depending aspects otherwise. After each weaving the impact analysis
has been performed on the test cases. The results are summarized in Table 1
and are discussed below. In the following, we first discuss the extreme results –
0% or 100% of impacted test cases –, then we discuss the results of most cases.

For the Introduction example none of the test cases are impacted by the
aspects. This result happens because the aspects do not add any advice so none
of the test cases are impacted. Also, the methods introduced by the aspects are
not executed by the test cases for the base class.

The log aspect of Auction impacts all the test cases but this is a particular
case: the aspect is woven everywhere in the code, before each method execution.

5 http://www.guzzzt.com/coding/aspecttetris.shtml
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When the system has few classes, the aspects are more likely to impact a large
part of the test cases. In the Bean example the BoundPoint impacts 6 out of 7
test cases. This aspect defines only one advice which is woven around methods
that are called by many other methods of Point. This particular case, where
a few impacted methods are called by almost every method in the system will
more likely happen in a small system.

Apart from these borderline cases, less than 20% of the test cases are impacted,
and in some cases less than 5%. These results show that, in our examples, our
analysis can save execution time and help the evolution of the test cases. Exe-
cution time is saved by avoiding the execution of the non-impacted test cases.
This analysis helps the evolution because the programmer can focus on the im-
pacted test cases to determine whether they should be modified or not as the
non-impacted test cases can be ignored.

To estimate the effects of the over-approximation, we have computed the
precision and recall for each aspect. Each test case was manually checked to
see if it was impacted. The recall is always 100%, which means that are no
false negative (i.e., impacted test cases not selected). In most cases the precision
is 100%, which means that there are no false positive (i.e., selected test cases
that are not impacted). With the Reserve aspect, the precision is only 63.6%,
but there are only four false positives. In the other two cases where there are
false positives, the precision is good (79.6%). These results show that the over-
approximation has little effect and no impacted test cases are missed.

When several aspects are added simultaneously, the number of impacted cases
is not always the sum of the test cases impacted independently by each aspect.
Table 1 shows the results when all the aspects of Tetris are added and when
Reserve and AltBid are added in Auction – note that in Telecom, Billing
relies on Timing, so when Billing is added both are added.

This shows that the number of impacted test cases does not necessarily grow
with the number of aspects in the system. In Tetris, the number of test cases
impacted by all the test cases (17) is a bit less than the sum of the test cases im-
pacted by each aspect (19). In Auction, all the test cases impacted by Reserve
are also impacted by AltBid, so the number of test cases impacted by the two
aspects is equal to the number of test cases impacted by AltBid.

7 Related Work

Several work have proposed static analysis to evaluate the impact of changes in
a program. Vokolos et al. [5] have introduced a tool for regression test selection
on C programs. It selects test cases based on a textual comparison of the source
files. Rothermel et al. [6] have presented an algorithm for regression testing
that compares control flow graphs (CFGs) and thus is less dependent on the
programming language. It requires a CFG for each version of the program and
coverage informations for each test case. If a test case covers a part of the initial
CFG that differs in the new CFG then the test case is selected. This algorithm
has been adapted to Java programs by Harrold et al. [7], and then to AspectJ by
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Xu et al. [8]. Zhang et al. [9] have developed a change impact analysis tool for
AspectJ, Celadon. It detects atomic changes in the source code of the program
by comparing the ASTs of the different versions. Then call graphs of the test
cases are produced to detect the test cases affected by the change.

These static analysis are close to the analysis of Vidock but they differ because
they evaluate the impact of a change whereas Vidock focuses the impact of the
introduction of aspects. Vidock relies on the PCD to locate the impacted meth-
ods, whereas other techniques compare two models of the program (e.g., ASTs,
CFGs) to detect which parts have changed. This results in complex graph com-
parison algorithms: according to Rothermel et al. [6], their algorithm is quadratic
in the worst case. Also, the algorithm of Rothermel et al. requires the coverage
information of the test cases on the previous version of the program. Vidock is
more focused, but in the specific case of aspect weaving, proposes an efficient
solution for change localization.

Ren et al. [10] have proposed a change impact analysis tool for Java programs.
This work is different because the goal is to compute the subset of changes that
affect a test cases, instead of computing the subset of test cases that are affected
by all the changes. This approach uses a dynamic analysis, to detect at runtime
the changes that are executed by a test case. The changes are detected statically.

8 Conclusion

In this paper we have presented Vidock, a tool for the impact analysis of aspect
weaving on test cases. It performs a static analysis that identifies the subset of
test cases that are impacted by the aspect weaving.

To ensure that we do not miss impacted test cases, the analysis over-approxi-
mates the set of impacted test cases in the case of dynamic poincut descriptors
and polymorphism. Thus we can have false positive (test cases detected as im-
pacted that are actually not impacted) but no false negative test cases (impacted
test cases that are not detected).

To validate the ability of Vidock to detect impacted test cases and the effect
of over approximation on the Vidock’s results, we have performed two types
of studies. First, we have experimented Vidock on 5 systems. The experiments
showed that in most cases only a few test cases are impacted by the aspects.
They also showed that the over-approximations have a minimal effect on the
results. Second, we have studied 46 open-source AspectJ projects to evaluate
the occurences of dynamic PCDs and method overriding. We observed that 65%
of the projects can compile without aspects, and thus the base program can be
tested in isolation; 6% of the methods are overridden and 17% of the PCDs are
dynamic, so the effect of over-approximations should be minimal in general.

Vidock has been developed as a plug-in for the Eclipse IDE. It performs the
impact analysis automatically after each compilation and reports a warning for
each impacted test cases. This tool is available for download.

In future work we want to investigate aspects classifications such as the one
proposed by Rinard et al. [11] or Munoz et al. [12], to assist the evolution of
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impacted test cases. Munoz et al. propose a classification based on the impact
of an aspect on the control flow or data flow. Using this information, we can
know, for example, that test cases impacted by an aspect that does not modify
the control and data flow must be executed and must pass. If these test cases
fail, we can locate the fault in the aspect that has been introduced. Also, better
understanding the impact of an aspect will probably help the evolution of the
test cases. If an aspect is independent of the base code – i.e. neither the aspect
nor the base program may write a field that the other may read or write – the
oracle of the impacted test cases most likely will need to be augmented but the
existing assertions should remain unchanged.
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Marynowski, João Eugenio 174

Meinke, Karl 221

Mounier, Laurent 30

Munoz, Freddy 250

Niu, Fei 221

Paris, Javier 126
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