

Lecture Notes in Computer Science 6416
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tiziana Margaria Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification, and Validation

4th International Symposium
on Leveraging Applications, ISoLA 2010
Heraklion, Crete, Greece, October 18-21, 2010
Proceedings, Part II

13

Volume Editors

Tiziana Margaria
University of Potsdam
August-Bebel-Str. 89
14482 Potsdam
Germany
E-mail: margaria@cs.uni-potsdam.de

Bernhard Steffen
TU Dortmund University
Otto-Hahn-Str. 14
44227 Dortmund
Germany
E-mail: steffen@cs.tu-dortmund.de

Library of Congress Control Number: 2010936699

CR Subject Classification (1998): F.3, D.2.4, D.3, C.2-3, D.2, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16560-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16560-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the conference proceedings of the 4th International Sym-
posium on Leveraging Applications of Formal Methods, Verification and Valida-
tion, ISoLA 2010, which was held in Greece (Heraklion, Crete) October 18–21,
2010, and sponsored by EASST.

Following the tradition of its forerunners in 2004, 2006, and 2008 in Cyprus
and Chalchidiki, and the ISoLA Workshops in Greenbelt (USA) in 2005, in
Poitiers (France) in 2007, and in Potsdam (Germany) in 2009, ISoLA 2010 pro-
vided a forum for developers, users, and researchers to discuss issues related to
the adoption and use of rigorous tools and methods for the specification, analy-
sis, verification, certification, construction, testing, and maintenance of systems
from the point of view of their different application domains. Thus, the ISoLA
series of events serves the purpose of bridging the gap between designers and
developers of rigorous tools, and users in engineering and in other disciplines,
and to foster and exploit synergetic relationships among scientists, engineers,
software developers, decision makers, and other critical thinkers in companies
and organizations. In particular, by providing a venue for the discussion of com-
mon problems, requirements, algorithms, methodologies, and practices, ISoLA
aims at supporting researchers in their quest to improve the utility, reliability,
flexibility, and efficiency of tools for building systems, and users in their search
for adequate solutions to their problems.

The program of the symposium consisted of special tracks devoted to the
following hot and emerging topics:

• Emerging services and technologies for a converging telecommunications/Web
world in smart environments of the Internet of Things

• Learning techniques for software verification and validation
• Modeling and formalizing industrial software for verification, validation and

certification
• Formal methods in model-driven development for service-oriented and cloud

computing
• Tools in scientific workflow composition
• New challenges in the development of critical embedded systems—an “aero-

motive” perspective
• Web science
• Leveraging formal methods through collaboration
• Resource and timing analysis
• Quantitative verification in practice
• Worst case traversal time (WCTT)
• Model transformation and analysis for industrial scale validation
• Certification of software-driven medical devices
• Formal languages and methods for designing and verifying complex engi-

neering systems

VI Preface

• CONNECT: status and plan
• EternalS: mission and roadmap

and five co-located events

• Graduate/postgraduate course on “Soft Skills for IT Professionals in Science
and Engineering”

• RERS—challenge on practical automata learning
• IT Simply Works—editorial meeting (ITSy)
• CONNECT internal meeting
• EternalS Task Force meetings

We thank the Track organizers, the members of the Program Committee and
their subreferees for their effort in selecting the papers to be presented.

Special thanks are due to the following organization for their endorsement:
EASST (European Association of Software Science and Technology), and our
own institutions—the TU Dortmund, and the University of Potsdam.

August 2010 Tiziana Margaria
Bernhard Steffen

Organization

Committees

Symposium Chair

Tiziana Margaria University of Potsdam, Germany

Program Chair

Bernhard Steffen TU Dortmund, Germany

Program Committee

Yamine Ait Ameur LISI/ENSMA, France
Frédéric Boniol IRIT/ENSEEIHT, France
Anne Bouillard ENS Cachan, France
Marc Boyer ONERA, France
Karin Breitman PUC-Rio, Brazil
Marco Antonio Casanova PUC-Rio, Brazil
Samarjit Chakraborty TU München, Germany
Noel Crespi Institut Telecom, France
Rémi Delmas ONERA, France
Howard Foster City University London, UK
Pierre-Löıc Garoche ONERA, France
Dimitra Giannakopoulou CMU/NASA Ames, USA
Stefania Gnesi ISTI-CNR, Pisa, Italy
Kevin Hammond University of St Andrews, UK
Boudewijn Haverkort ESI, The Netherlands
Michael Hinchey LERO, Ireland
Valérie Issarny INRIA, France
Visar Januzaj TU Darmstadt, Germany
He Jifeng East China Normal University, China
Joost-Pieter Katoen RWTH Aachen University, Germany
Joost Kok Leiden University, The Netherlands
Jens Knoop Vienna University of Technology, Austria
Stefan Kugele TU München, Germany
Anna-Lena Lamprecht TU Dortmund, Germany
Kim G. Larsen Aalborg University, Denmark
Boris Langer Diehl Aerospace, Germany

VIII Organization

Mark Lawford McMaster University, Canada
Gyu Myoung Lee Institut Télécom, France
Björn Lisper Mälardalen University, Sweden
Zhiming Liu UNU-IIST, Macao
Tom Maibaum McMaster University, Canada
Steven Martin LRI, France
Dominique Mery University Nancy, France
Pascal Montag Daimler AG, Germany
Alessandro Moschitti University of Trento, Italy
Corina Pasareanu CMU/NASA Ames, USA
Alexander K. Petrenko ISPRAS, Moscow, Russia
Abhik Roychoudhury NUS, Singapore
Christian Schallhart Oxford University, UK
Jean-Luc Scharbarg IRIT, France
Amal Seghrouchni University Pierre and Marie Curie, France
Laura Semini Pisa University, Italy
Giovanni Stea Pisa University, Italy
Eric Thierry ENS Lyon, France
Helmut Veith Vienna University of Technology, Austria
Alan Wassyng McMaster University, Canada
Virginie Wiels ONERA, France
Mark D. Wilkinson Heart and Lung Institute, and Canada
Rostislav Yavorskiy Microsoft UK/Moscow, Russia
Lenore Zuck University of Illinois at Chicago, USA

Table of Contents – Part II

EternalS: Mission and Roadmap

Introduction to the EternalS Track: Trustworthy Eternal Systems via
Evolving Software, Data and Knowledge . 1

Alessandro Moschitti

HATS: Highly Adaptable and Trustworthy Software Using Formal
Methods . 3

Reiner Hähnle

SecureChange: Security Engineering for Lifelong Evolvable Systems 9
Riccardo Scandariato and Fabio Massacci

3DLife: Bringing the Media Internet to Life . 13
Ebroul Izquierdo, Tomas Piatrik, and Qianni Zhang

LivingKnowledge: Kernel Methods for Relational Learning and
Semantic Modeling . 15

Alessandro Moschitti

Task Forces in the Eternals Coordination Action . 20
Reiner Hähnle

Modeling and Analyzing Diversity: Description of EternalS Task
Force 1 . 23

Ina Schaefer

Modeling and Managing System Evolution: Description of EternalS
Task Force 2 . 26

Michael Hafner

Self-adaptation and Evolution by Learning: Description of EternalS
Task Force 3 . 30

Richard Johansson

Overview of Roadmapping by EternalS . 32
Jim Clarke and Keith Howker

Formal Methods in Model-Driven Development for
Service-Oriented and Cloud Computing

Adaptive Composition of Conversational Services through Graph
Planning Encoding . 35

Pascal Poizat and Yuhong Yan

X Table of Contents – Part II

Performance Prediction of Service-Oriented Systems with Layered
Queueing Networks . 51

Mirco Tribastone, Philip Mayer, and Martin Wirsing

Error Handling: From Theory to Practice . 66
Ivan Lanese and Fabrizio Montesi

Modeling and Reasoning about Service Behaviors and Their
Compositions . 82

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Design and Verification of Systems with Exogenous Coordination Using
Vereofy . 97

Christel Baier, Tobias Blechmann, Joachim Klein,
Sascha Klüppelholz, and Wolfgang Leister

A Case Study in Model-Based Adaptation of Web Services 112
Javier Cámara, José Antonio Mart́ın, Gwen Salaün,
Carlos Canal, and Ernesto Pimentel

Quantitative Verification in Practice

Quantitative Verification in Practice (Extended Abstract) 127
Boudewijn R. Haverkort, Joost-Pieter Katoen, and
Kim G. Larsen

Ten Years of Performance Evaluation for Concurrent Systems Using
CADP . 128

Nicolas Coste, Hubert Garavel, Holger Hermanns, Frédéric Lang,
Radu Mateescu, and Wendelin Serwe

Towards Dynamic Adaptation of Probabilistic Systems 143
S. Andova, L.P.J. Groenewegen, and E.P. de Vink

UPPAAL in Practice: Quantitative Verification of a RapidIO
Network . 160

Jiansheng Xing, Bart D. Theelen, Rom Langerak, Jaco van de Pol,
Jan Tretmans, and J.P.M. Voeten

Schedulability Analysis Using Uppaal: Herschel-Planck Case Study 175
Marius Mikučionis, Kim Guldstrand Larsen,
Jacob Illum Rasmussen, Brian Nielsen, Arne Skou, Steen Ulrik Palm,
Jan Storbank Pedersen, and Poul Hougaard

Model-Checking Temporal Properties of Real-Time HTL Programs 191
André Carvalho, Joel Carvalho, Jorge Sousa Pinto, and
Simão Melo de Sousa

Table of Contents – Part II XI

CONNECT: Status and Plans

Towards an Architecture for Runtime Interoperability 206
Amel Bennaceur, Gordon Blair, Franck Chauvel,
Huang Gang, Nikolaos Georgantas, Paul Grace, Falk Howar,
Paola Inverardi, Valérie Issarny, Massimo Paolucci,
Animesh Pathak, Romina Spalazzese, Bernhard Steffen, and
Bertrand Souville

On Handling Data in Automata Learning: Considerations from the
CONNECT Perspective . 221

Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and
Sofia Cassel

A Theory of Mediators for Eternal Connectors . 236
Paola Inverardi, Valérie Issarny, and Romina Spalazzese

On-The-Fly Interoperability through Automated Mediator Synthesis
and Monitoring . 251

Antonia Bertolino, Paola Inverardi, Valérie Issarny,
Antonino Sabetta, and Romina Spalazzese

Dependability Analysis and Verification for Connected Systems 263
Felicita Di Giandomenico, Marta Kwiatkowska, Marco Martinucci,
Paolo Masci, and Hongyang Qu

Towards a Connector Algebra . 278
Marco Autili, Chris Chilton, Paola Inverardi,
Marta Kwiatkowska, and Massimo Tivoli

Certification of Software-Driven Medical Devices

Certification of Software-Driven Medical Devices . 293
Mark Lawford, Tom Maibaum, and Alan Wassyng

Arguing for Software Quality in an IEC 62304 Compliant Development
Process . 296

Michaela Huhn and Axel Zechner

Trustable Formal Specification for Software Certification 312
Dominique Méry and Neeraj Kumar Singh

Design Choices for High-Confidence Distributed Real-Time Software 327
Sebastian Fischmeister and Akramul Azim

Assurance Cases in Model-Driven Development of the Pacemaker
Software . 343

Eunkyoung Jee, Insup Lee, and Oleg Sokolsky

XII Table of Contents – Part II

Modeling and Formalizing Industrial Software for
Verification, Validation and Certification

Improving Portability of Linux Applications by Early Detection of
Interoperability Issues . 357

Denis Silakov and Andrey Smachev

Specification Based Conformance Testing for Email Protocols 371
Nikolay Pakulin and Anastasia Tugaenko

Covering Arrays Generation Methods Survey . 382
Victor Kuliamin and Alexander Petukhov

Resource and Timing Analysis

A Scalable Approach for the Description of Dependencies in Hard
Real-Time Systems . 397

Steffen Kollmann, Victor Pollex, Kilian Kempf, and Frank Slomka

Verification of Printer Datapaths Using Timed Automata 412
Georgeta Igna and Frits Vaandrager

Resource Analysis of Automotive/Infotainment Systems Based on
Domain-Specific Models – A Real-World Example . 424

Klaus Birken, Daniel Hünig, Thomas Rustemeyer, and
Ralph Wittmann

Source-Level Support for Timing Analysis . 434
Gergö Barany and Adrian Prantl

Practical Experiences of Applying Source-Level WCET Flow Analysis
on Industrial Code . 449

Björn Lisper, Andreas Ermedahl, Dietmar Schreiner,
Jens Knoop, and Peter Gliwa

Worst-Case Analysis of Heap Allocations . 464
Wolfgang Puffitsch, Benedikt Huber, and Martin Schoeberl

Partial Flow Analysis with oRange . 479
Marianne de Michiel, Armelle Bonenfant, Clément Ballabriga, and
Hugues Cassé

Towards an Evaluation Infrastructure for Automotive Multicore
Real-Time Operating Systems . 483

Jörn Schneider and Christian Eltges

Table of Contents – Part II XIII

Context-Sensitivity in IPET for Measurement-Based Timing
Analysis . 487

Michael Zolda, Sven Bünte, and Raimund Kirner

On the Role of Non-functional Properties in Compiler Verification 491
Jens Knoop and Wolf Zimmermann

Author Index . 497

Table of Contents – Part I

New Challenges in the Development of Critical
Embedded Systems – An “aeromotive” Perspective

New Challenges in the Development of Critical Embedded Systems—An
“aeromotive” Perspective . 1

Visar Januzaj, Stefan Kugele, Boris Langer,
Christian Schallhart, and Helmut Veith

Certification of Embedded Software – Impact of ISO DIS 26262 in the
Automotive Domain . 3

Bernhard Schätz

Enforcing Applicability of Real-Time Scheduling Theory Feasibility
Tests with the Use of Design-Patterns . 4

Alain Plantec, Frank Singhoff, Pierre Dissaux, and Jérôme Legrand

Seamless Model-Driven Development Put into Practice 18
Wolfgang Haberl, Markus Herrmannsdoerfer, Stefan Kugele,
Michael Tautschnig, and Martin Wechs

Timely Time Estimates . 33
Andreas Holzer, Visar Januzaj, Stefan Kugele, and
Michael Tautschnig

Compiler-Support for Robust Multi-core Computing 47
Raimund Kirner, Stephan Herhut, and Sven-Bodo Scholz

Formal Languages and Methods for Designing and
Verifying Complex Embedded Systems

Thematic Track: Formal Languages and Methods for Designing and
Verifying Complex Embedded Systems . 58

Yamine Ait Ameur, Frédéric Boniol, Dominique Mery, and
Virginie Wiels

Analyzing the Security in the GSM Radio Network Using Attack
Jungles . 60

Parosh Aziz Abdulla, Jonathan Cederberg, and Lisa Kaati

Formal Modeling and Verification of Sensor Network Encryption
Protocol in the OTS/CafeOBJ Method . 75

Iakovos Ouranos, Petros Stefaneas, and Kazuhiro Ogata

XVI Table of Contents – Part I

Model-Driven Design-Space Exploration for Embedded Systems:
The Octopus Toolset . 90

Twan Basten, Emiel van Benthum, Marc Geilen, Martijn Hendriks,
Fred Houben, Georgeta Igna, Frans Reckers, Sebastian de Smet,
Lou Somers, Egbert Teeselink, Nikola Trčka, Frits Vaandrager,
Jacques Verriet, Marc Voorhoeve, and Yang Yang

Contract-Based Slicing . 106
Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Worst-Case Traversal Time (WCTT)

Special Track on Worst Case Traversal Time (WCTT) 121
Anne Bouillard, Marc Boyer, Samarjit Chakraborty, Steven Martin,
Jean-Luc Scharbarg, Giovanni Stea, and Eric Thierry

The PEGASE Project: Precise and Scalable Temporal Analysis for
Aerospace Communication Systems with Network Calculus 122

Marc Boyer, Nicolas Navet, Xavier Olive, and Eric Thierry

NC-Maude: A Rewriting Tool to Play with Network Calculus 137
Marc Boyer

DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 152
Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea

A Self-adversarial Approach to Delay Analysis under Arbitrary
Scheduling . 169

Jens B. Schmitt, Hao Wang, and Ivan Martinovic

Flow Control with (Min,+) Algebra . 184
Euriell Le Corronc, Bertrand Cottenceau, and Laurent Hardouin

An Interface Algebra for Estimating Worst-Case Traversal Times in
Component Networks . 198

Nikolay Stoimenov, Samarjit Chakraborty, and Lothar Thiele

Towards Resource-Optimal Routing Plans for Real-Time Traffic 214
Alessandro Lori, Giovanni Stea, and Gigliola Vaglini

Partially Synchronizing Periodic Flows with Offsets Improves
Worst-Case End-to-End Delay Analysis of Switched Ethernet 228

Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul

Analyzing End-to-End Functional Delays on an IMA Platform 243
Michaël Lauer, Jérôme Ermont, Claire Pagetti, and Frédéric Boniol

Table of Contents – Part I XVII

Tools in Scientific Workflow Composition

Tools in Scientific Workflow Composition . 258
Joost N. Kok, Anna-Lena Lamprecht, and Mark D. Wilkinson

Workflows for Metabolic Flux Analysis: Data Integration and Human
Interaction . 261

Tolga Dalman, Peter Droste, Michael Weitzel,
Wolfgang Wiechert, and Katharina Nöh

Intelligent Document Routing as a First Step towards Workflow
Automation: A Case Study Implemented in SQL . 276

Carlos Soares and Miguel Calejo

Combining Subgroup Discovery and Permutation Testing to Reduce
Reduncancy . 285

Jeroen S. de Bruin and Joost N. Kok

Semantically-Guided Workflow Construction in Taverna: The SADI
and BioMoby Plug-Ins . 301

David Withers, Edward Kawas, Luke McCarthy,
Benjamin Vandervalk, and Mark D. Wilkinson

Workflow Construction for Service-Oriented Knowledge Discovery 313
Vid Podpečan, Monika Žakova, and Nada Lavrač

Workflow Composition and Enactment Using jORCA 328
Johan Karlsson, Victoria Mart́ın-Requena, Javier Rı́os, and
Oswaldo Trelles

A Linked Data Approach to Sharing Workflows and Workflow
Results . 340

Marco Roos, Sean Bechhofer, Jun Zhao, Paolo Missier,
David R. Newman, David De Roure, and M. Scott Marshall

Emerging Services and Technologies for a
Converging Telecommunications / Web World in
Smart Environments of the Internet of Things

Towards More Adaptive Voice Applications . 355
Jörg Ott

Telco Service Delivery Platforms in the Last Decade - A R&D
Perspective . 367

Sandford Bessler

Ontology-Driven Pervasive Service Composition for Everyday Life 375
Jiehan Zhou, Ekaterina Gilman, Jukka Riekki,
Mika Rautiainen, and Mika Ylianttila

XVIII Table of Contents – Part I

Navigating the Web of Things: Visualizing and Interacting with
Web-Enabled Objects . 390

Mathieu Boussard and Pierrick Thébault

Shaping Future Service Environments with the Cloud and Internet of
Things: Networking Challenges and Service Evolution 399

Gyu Myoung Lee and Noel Crespi

Relay Placement Problem in Smart Grid Deployment 411
Wei-Lun Wang and Quincy Wu

Web Science

Towards a Research Agenda for Enterprise Crowdsourcing 425
Maja Vukovic and Claudio Bartolini

Analyzing Collaboration in Software Development Processes through
Social Networks . 435

Andréa Magalhães Magdaleno, Cláudia Maria Lima Werner, and
Renata Mendes de Araujo

A Web-Based Framework for Collaborative Innovation 447
Donald Cowan, Paulo Alencar, Fred McGarry, Carlos Lucena, and
Ingrid Nunes

A Distributed Dynamics for WebGraph Decontamination 462
Vanessa C.F. Gonçalves, Priscila M.V. Lima, Nelson Maculan, and
Felipe M.G. França

Increasing Users’ Trust on Personal Assistance Software Using a
Domain-Neutral High-Level User Model . 473

Ingrid Nunes, Simone Diniz Junqueira Barbosa, and
Carlos J.P. de Lucena

Understanding IT Organizations . 488
Claudio Bartolini, Karin Breitman,
Simone Diniz Junqueira Barbosa, Mathias Salle,
Rita Berardi, Glaucia Melissa Campos, and Erik Eidt

On the 2-Categorical View of Proofs . 502
Cecilia Englander and Edward Hermann Haeusler

Model Transformation and Analysis for Industrial
Scale Validation

WOMM: A Weak Operational Memory Model . 519
Arnab De, Abhik Roychoudhury, and Deepak D’Souza

Table of Contents – Part I XIX

A Memory Model for Static Analysis of C Programs 535
Zhongxing Xu, Ted Kremenek, and Jian Zhang

Analysing Message Sequence Graph Specifications . 549
Joy Chakraborty, Deepak D’Souza, and K. Narayan Kumar

Optimize Context-Sensitive Andersen-Style Points-To Analysis by
Method Summarization and Cycle-Elimination . 564

Li Qian, Zhao Jianhua, and Li Xuandong

A Formal Analysis of the Web Services Atomic Transaction Protocol
with UPPAAL . 579

Anders P. Ravn, Jǐŕı Srba, and Saleem Vighio

SPARDL: A Requirement Modeling Language for Periodic Control
System . 594

Zheng Wang, Jianwen Li, Yongxin Zhao, Yanxia Qi, Geguang Pu,
Jifeng He, and Bin Gu

AutoPA: Automatic Prototyping from Requirements 609
Xiaoshan Li, Zhiming Liu, Martin Schäf, and Ling Yin

Systematic Model-Based Safety Assessment Via Probabilistic Model
Checking . 625

Adriano Gomes, Alexandre Mota, Augusto Sampaio,
Felipe Ferri, and Julio Buzzi

Learning Techniques for Software Verification and
Validation

Learning Techniques for Software Verification and Validation – Special
Track at ISoLA 2010 . 640

Dimitra Giannakopoulou and Corina S. Păsăreanu

Comparing Learning Algorithms in Automated Assume-Guarantee
Reasoning . 643

Yu-Fang Chen, Edmund M. Clarke, Azadeh Farzan, Fei He,
Ming-Hsien Tsai, Yih-Kuen Tsay, Bow-Yaw Wang, and Lei Zhu

Inferring Compact Models of Communication Protocol Entities 658
Therese Bohlin, Bengt Jonsson, and Siavash Soleimanifard

Inference and Abstraction of the Biometric Passport 673
Fides Aarts, Julien Schmaltz, and Frits Vaandrager

From ZULU to RERS Lessons Learned in the ZULU Challenge 687
Falk Howar, Bernhard Steffen, and Maik Merten

Author Index . 705

Introduction to the EternalS Track:
Trustworthy Eternal Systems via Evolving

Software, Data and Knowledge

Alessandro Moschitti

Department of Computer Science and Information Engineering

University of Trento

Via Sommarive 14, 38100 POVO (TN) - Italy

moschitti@disi.unitn.it

Latest research work within ICT has outlined that future systems must possess
the ability of adapting to changes in user requirements and application domains.
Adaptation and evolution depend on several dimensions, e.g., time, location,
and security conditions, expressing the diversity of the context in which systems
operate.

The Coordination Action (CA): Trustworthy Eternal Systems via Evolving
Software, Data and Knowledge (EternalS) aims at coordinating research in the
above-mentioned areas by means of a researcher Task Force and community
building activities, where the organization of workshops and conferences is one
of the important tools used for such purpose. EternalS aims at creating the con-
ditions for mutual awareness and cross-fertilization among the four ICT-Forever
Yours - FET projects (FP7-ICT-Call 3): LivingKnowledge, HATS, Connect and
SecureChange. These projects are currently conducting research in key ICT ar-
eas: (i) automatic learning of systems capable of analyzing knowledge and di-
versity with respect to their complex semantic interactions and evolution over
time, (ii) exploitation of formal methods for the design and networking of adap-
tive and evolving software systems; and (iii) design of security policies and fully
connected environment. The above-mentioned projects will help EternalS to ac-
tively involve many researchers from both academic and industrial world in its
action.

The EternalS track at ISOLA 2010 represents a first milestone on establishing
task forces and in recruiting stakeholders of its research topics. For this issue, the
track presents aims and results of three FET projects, HATS and SecureChange
and LivingKnowledge, outlined in three different talks. Moreover, the 3D-Life
project, which aims at fostering the creation of sustainable and long-term rela-
tionships between existing research groups in Media Internet, will be introduced
in the fourth talk.

The work above represents the initial material on which the CA is working
by means of three different task forces. These will be illustrated along with their
current results and future plans in the following talks: (i) Modeling and Analyzing
Diversity, (ii) Modeling and Managing System Evolution and (iii) Self-adaptation
and Evolution by Learning. Moreover, since one of the most valuable contribution

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Moschitti

of EternalS will be the indications for future promising and needed research, the
last talk will be devoted to an Overview of Roadmapping by EternalS.

Finally, although there is no talk about the Connect project in this track, it
will be presented in many contributions of the other ISOLA tracks, e.g. in the
afternoon meeting (following EternalS sessions), a series of six talks will detail
the current research and results of Connect.

The exciting program of the EternalS track will be concluded with a gen-
eral discussion on the presented ideas and topics, which aims at creating future
research collaborations.

EternalS track chair
Alessandro Moschitti

HATS: Highly Adaptable and Trustworthy
Software Using Formal Methods

Reiner Hähnle

Department of Computer Science and Engineering

Chalmers University of Technology, 41296 Gothenburg, Sweden

http://www.cse.chalmers.se/~reiner, http://www.hats-project.eu

Abstract. The HATS project develops a formal method for the design,

analysis, and implementation of highly adaptable software systems that

are characterized by high demand on trustworthiness. Existing modeling

formalisms leave gap between highly abstract, largely structural mod-

els and executable code on the implementation level. HATS aims to

close this gap with an object-oriented, executable modeling language

for adaptable, concurrent software components. It comes with tool suite

based on analysis methods developed hand in hand with the language.

1 Introduction

The HATS project develops a formal method for the design, analysis, and im-
plementation of highly adaptable software systems that are at the same time
characterized by a high demand on trustworthiness.

Adaptability includes two aspects: anticipated variability as well as evolvabil-
ity, i.e., unanticipated change. The first is, to a certain extent, addressed in
modern software architectures such as software product families (SWPF). How-
ever, increasing product complexity (features, deployment) is starting to impose
serious limitations. Evolvability over time is an even more difficult problem.

Current development practices do not make it possible to produce highly
adaptable and trustworthy software in a large-scale and cost-efficient manner.
The crucial limitation is the missing rigour of models and property specifica-
tions: informal or semi-formal notations lack the means to describe precisely
the behavioural aspects of software systems: concurrency, modularity, integrity,
security, resource consumption, etc.

2 Mind the Gap

Existing formal notations for specification of systems at the modeling level such
as UML or FDL are mainly structural and lack adequate means to specify de-
tailed behavior including datatypes, compositionality, concurrency. But without
a formal notation for the behavior of distributed, component-based systems it is
impossible to achieve automation of consistency checking, enforcement of secu-
rity, trusted code generation, test case generation, specification mining, etc.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 3–8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cse.chalmers.se/~reiner
http://www.hats-project.eu

4 R. Hähnle

Implementation-oriented Spec#, Java+JML

Structural UML, FDL

Abstract behavioral HATS ABS language

Specification level Languages

Fig. 1. Positioning of the HATS ABS language

At the same time, formal specification and reasoning about executable pro-
grams on the implementation level is by now well understood even for commercial
languages such as Java or C and it is reasonably well supported by tools1 The
size and complexity of implementation languages, however, makes specification
and verification extremely expensive. In addition, re-use is very hard to realize.

In conclusion, there is a gap between highly abstract modeling formalisms and
implementation-level tools, visualized in Fig. 1. The HATS project addresses this
specification gap by providing the following three ingredients:

1. An object-oriented, executable modeling language for adaptable, concurrent
software components: the Abstract Behavioral Specification (ABS) language.
Its design goal is to permit formal specification of concurrent, component-
based systems on a level that abstracts away from implementation details
but retains essential behavioral properties: concurrency model, component
structure, execution histories, datatypes. The ABS language has a formal
operational semantics which is the basis for unambiguous usage and rigorous
analysis methods. The ABS language closes the mentioned gap, see Fig. 1.

2. A tool suite for analysis and development of ABS models as well as for
analysis of executable code derived from these models:
“Hard methods” typically strive for completeness or full coverage and

require expert knowledge in the form of user interaction or detailed
specifications. These include feature consistency, data integrity, security,
property verification, and code generation.

“Soft methods” typically are incomplete or non-exhaustive, but do not
presuppose expert knowledge and are fully automatic. These include vi-
sualization, test case generation, specification mining, and type checking.

One decisive aspect of the HATS project is to develop the analysis methods
hand in hand with the ABS language to ensure feasibility of the resulting
analyses.

3. A methodological and technological framework that integrates the HATS
tool architecture and the ABS language.

1 For example, KeY (www.key-project.org), Krakatoa (krakatoa.lri.fr), or VCC

(research.microsoft.com/en-us/projects/vcc).

www.key-project.org
krakatoa.lri.fr
research.microsoft.com/en-us/projects/vcc

HATS: Highly Adaptable and Trustworthy Software Using Formal Methods 5

Domain
Feature model

Existing Formal Methods
SPEC#, JML, UML,

OCL, State Diagrams, ...

models

models

Software Family

describes
variability

parameter
space

temporal
evolution

spatial
variability

System
Product

System
Product

system derivation and
customization

ABS Modeling Language

x

Fig. 2. Lifting formal methods to Family Engineering

As a main challenge in the development of the ABS language and HATS tool
suite we identified (in addition to the technical difficulties) the need to make it
relevant for industrial practice. Therefore, to keep the project firmly grounded,
we orient the design of the ABS language and the HATS methodology along an
empirically highly successful informal software development paradigm. In soft-
ware product family-based development one separates Family Engineering which
includes feature modeling and library development from Application Engineering
where code is derived via selection, instantiation and composition.

In HATS we turn SWPF-based development into a rigorous approach based
on formal specification. As visualized in Fig. 2, constructing a software family
requires architecting both the commonality, that is, features, properties, and re-
sources that are common to all products in the family, as well as the adaptability,
that is, the varying aspects across the software family, in order to exploit them
during the customization and system derivation process. Adaptability encom-
passes both anticipated differences among products in the family (variability),
as well as the different products which appear over time due to evolving require-
ments (evolvability). Handling evolution is crucial as software undergoes changes
during its lifetime; indeed, most future usages of a piece of software are not an-
ticipated during its development. Therefore, variability and evolvability are the
technological challenges that have to be addressed, when lifting formal modeling
and analysis methods from the implementational level to the ABS level:

Variability. With this we mean functional variability and the invasive compo-
sition techniques used to instantiate feature models. A major challenge is

6 R. Hähnle

to understand which linguistic primitives are suited to formalize the desired
concurrency-related aspects (including feature interactions but also failures,
distribution, and parametrization on scheduling policies).

Evolvability. The key challenge here is to develop the theory, algorithms, and
core mechanisms needed to build software systems that can be dynami-
cally reconfigured—possibly even without service interruption—to adapt to
changes that were not anticipated at the time the components which make
up the running system were initially constructed.

Both aspects are strongly present in SWPF-based development where variability
inherent to the feature space and deployment scenarios are an essential part
of family engineering. Evolvability comes into play when new products with
unanticipated features are to be created.

3 Main Results Achieved

During the first phase, the HATS project established a number of crucial results
of which we highlight the most important ones:

Behavioral Interface Language

Assertion Language

Compositionality

Concurrency model

Object model

CoreCreol

Side-effect free expressions
ADTs

Fig. 3. ABS language layers

Core ABS Language. The central achieve-
ment of HATS so far is the definition of the
core of the ABS language. It consists of a
(Java-like) syntax with a parser, a decid-
able type system with a compile-time type
checker, and a formal operational semantics
that permits simulation of ABS programs
within the term rewriting engine Maude. To
achieve maximal modularity and extensibil-
ity of the ABS language we decided a lay-
ered architecture with clearly defined tiers
as depicted in Fig. 3. The core ABS is de-
scribed in Deliverable D1.1A of the HATS
project Report on the Core ABS Language
and Methodology: Part A.2

Delta Modeling. For the integration of fea-
tures in the ABS language, we studied vari-
ous formalisms and mechanisms; e.g., traits,
context-oriented programming techniques, and delta modeling. We identified
delta modeling as a promising approach to bridge the gap between features and
ABS code. In delta modeling one distinguishes between a core implementation,
containing the code common to each product, and deltas, containing code spe-
cific to some feature configuration(s). Deltas make changes to the core in order
to integrate one or multiple features. Details are available in Deliverable D2.2.a
First Report on Feature Selection and Integration.
2 All HATS deliverables are public and are available from www.hats-project.eu

www.hats-project.eu

HATS: Highly Adaptable and Trustworthy Software Using Formal Methods 7

Incremental Verification. We started work on formal verification of ABS mod-
els: we developed a symbolic execution engine for the language Creol whose
concurrency model is the basis for the one in ABS. This will allow us to develop
rapidly a formal verification framework for core ABS in the second project phase.
We have studied three incremental verification techniques that are particularly
suited to formal SWPF-based development with ABS: (i) combining symbolic
execution and partial evaluation; (ii) proof reuse techniques in combination with
the core/delta modeling methodology; (iii) lazy behavioral subtyping, based on
combining syntax-driven inference systems such as type and effect systems with
Hoare logics in order to track behavioral dependencies between classes.

Assertion Language. We investigated the foundation of an assertion language
for the ABS which supports the specification and verification of properties of
message sequences between objects, components, features. A major challenge is
finding a proper formalization that is user-friendly, corresponds to the level of
the ABS (clear object-oriented flavour) and lends itself easily to automated ver-
ification (both runtime testing and static checking). A promising framework for
this formalization is provided by Attribute Grammars. We started to integrate
histories of method calls and returns in JML and perform run-time testing of
these assertions.

Behavior of Evolving Systems. In the evolution of systems, a central question
is how to prove that the modification of a module does not affect the overall
system behavior. We investigated this question with respect to object-oriented
program modules as the modeling language was not fixed when we started. The
first result is a compatibility criterion that allows to check whether a refactored
module can be integrated into all possible contexts of the old module. We also
worked on security monitor inlining for Java bytecode and started one of the first
systematic investigations of monitor correctness for multi-threaded JVM. This
work is reported in HATS Deliverable 3.1.a First Report On Evolvable Systems.

Resource Guarantees. Regarding trustworthiness we concentrated on resource
guarantees. We took as a starting point an existing framework for the analysis
of the resource consumption of Java and Java bytecode and its correspond-
ing analyzer COSTA.3 We obtained several extensions of this towards a cost
analysis framework for HATS, including numeric fields, specifying and inferring
asymptotic upper bounds, comparing cost expressions, and estimating the mem-
ory usage in the presence of garbage collection.

Requirements Analysis and Case Studies. In close collaboration with the HATS
End-User Panel, we elicited high-level requirements of the HATS methodology.
In addition, we described three representative case studies that will be refined
and employed for evaluation purposes later on. The case studies should also be
valuable for related projects. The case studies are reported in Deliverable 5.1
Requirement Elicitation.
3 https://costa.ls.fi.upm.es/

https://costa.ls.fi.upm.es/

8 R. Hähnle

In conclusion, a number of scalable and incremental approaches to analyze
ABS models have been presented and are currently implemented/evaluated.
Some of these generalize existing technology while others are completely new
ideas that arose in the HATS context.

In order to keep this paper short, we decided not to supply references.
A complete list of publications related to HATS is available from the
www.hats-project.eu.

www.hats-project.eu

SecureChange: Security Engineering for Lifelong
Evolvable Systems

Riccardo Scandariato1 and Fabio Massacci2

1 IBBT-DistriNet

Katholieke Universiteit Leuven

3001 Leuven, Belgium
2 Dipartimento di Ingegneria e Scienza dell’Informazione

Università di Trento

38050 Trento, Italy

Abstract. The challenge of SecureChange is to re-invent security

engineering for “eternal” systems. The project focuses on methods, tech-

niques and tools to make change a first-class citizen in the software devel-

opment process so that security is built into software-based systems in a

resilient and certifiable way. Solving this challenge requires a significant

re-thinking of all development phases, from requirements engineering to

design and testing.

Keywords: Security, evolvability, software life-cycle.

1 Introduction

A reality-check on complex critical systems reveals that their life-cycle is charac-
terized by a short design time (months) compared to the much longer operational
time (many years or even decades). Due to these considerations, it is unlikely
that such systems will remain unchanged during their life time. Hence, a primary
need for those software-based systems is to be highly flexible and evolvable. At
the same time, those systems expose strong security and dependability require-
ments as they handle sensitive data, impact our daily life, or put people’s lives
at stake. Current software engineering techniques are not equipped to deal with
this conflicting situation. On one side, state-of-the-art research has unearthed
methods and techniques to support adaptability. In this respect, autonomic sys-
tems represent, for instance, one of the most promising directions. However, the
high flexibility of adaptable systems comes with the cost of little or no guar-
antees that the security properties are preserved with change. On the opposite
side, very precise verification techniques work under the assumption that the
properties to-be-verified and the system under verification are fixed over time.
That is, they are conceived for rigid, inflexible systems.

The challenge of SecureChange is to re-invent security engineering for
“eternal” systems. The project focusses on methods, techniques and tools to
make change a first-class citizen in the software development process so that se-
curity is built and certified in software-based systems in a way that is resilient to

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 9–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

10 R. Scandariato and F. Massacci

change. Solving the above-mentioned challenge requires a significant re-thinking
of all development phases, from requirements engineering to design and testing.

2 The Project at a Glance

All the activities carried out by the project consortium revolve around a common
theme: understanding the effect of change on a given development artifact, con-
ceive a way to trace such change, and develop techniques to incrementally deal
with its impact. Evolution is categorized as being driven by (i) a change in the
context (environment), (ii) a change in the behavioral or security requirements,
and (iii) a change in the specification (design and implementation) of the system.

In order to achieve the ambitious objective stated in the previous section
and in light of the above-mentioned flavors of change, the project has defined
the following array of integrated activities, as summarized in Figure 1, which
visualizes how these activities fit together in the life-cycle of an adaptive security-
critical system.

Industrial Scenarios Validation (WP1). The techniques and tools developed
within the project are validated in the context of three case studies: (i) evolv-
ability of software running on portable devices like smart cards, (ii) evolvability
of software running on a residential gateway providing digital home services,
and (iii) evolvability of software running on the workstation of air traffic control
operators.

Architecture and Process (WP2). As configuration management can no longer
be separated from the development of the application, one objective is a configu-
ration management process that is tightly intertwined with the development and
life-cycle processes defined in the project. This process is supported by model-
based tools that allow for automated reconfiguration as a reaction to change as
well as verification of security properties in a changing context. To successfully
validate this process in the proposed case-studies, it needs to be instantiated
on the basis of a common architecture, which is rich enough to address the
challenges of incompatible versions, hardware reconfiguration, scalability, and
heterogeneity.

Fig. 1. Structure of the SecureChange project

SecureChange: Security Engineering for Lifelong Evolvable Systems 11

Security Requirements Engineering (WP3). The project defines a new method
that addresses the two possible interpretations of the concept of “evolving re-
quirements”. The first are the inventions that are necessary to consider in the
current design, which are unknown but potentially vital future requirements.
The second is how to redefine the flow from requirements to system, so that we
can reconstruct how the system can evolve when requirements evolve.

Model-Based Design (WP4). The project develops a model-based design ap-
proach that is tailored to the needs of the secure development of adaptable
systems. The approach glues requirement techniques to the final code and pro-
vides tools that allow the user to automatically analyze the models against its
a-priori requirements, also taking into account the change scenarios that the
risk analysis has defined likely. In particular, the approach takes into account
various system views, including infrastructure elements, stakeholders, and hard-
ware configurations—all of which may be subject to change during the system
evolution.

Risk Assessment (WP5). The project also has the goal of generalizing existing
methods and techniques for security assessment to cope with longevity. This
addresses the issue of system documentation to facilitate assessment of security
modulo changes as well as techniques, methods and tools for automatic or semi-
automatic revalidation of existing assessment results modulo changes.

Design-Time and On-Device Verification (WP6). The project attempts to
identify software programming models that can provably resist future errors,
and how we can change the V&V process in order to cope with changes. Fur-
thermore, the project provides embedded verification techniques targeting two
goals. First, new code on an autonomous system must be verified in order to
be safely loaded, and second, when new security requirements are provided, the
verification process itself must be adapted.

Testing (WP7). The project also provides solutions for evaluating the im-
pacts of changes, by means of model-based testing. By analyzing the differences
between each model and their evolutions, testing strategies are defined that
highlight the evolution or non-regression of the system.

3 Key Results

During the first project year, the SecureChange project obtained key re-
sults within all work packages. In the rest of this Section, a few highlights are
presented:

1. Industrial Scenarios Validation. Based on change scenarios observed in the
context of the industrial case studies, a taxonomy of change has been de-
fined as a consortium-wide effort. The taxonomy provides the “scope” of
the project activities. The classification has two sides: (i) how things change
(problems) and (ii) how we deal with changes (solutions).

2. Architecture and Process. A methodology based on so-called Change Pat-
terns has been defined to support adaptability to changing requirements at

12 R. Scandariato and F. Massacci

the architectural level (i.e., co-evolution of security at the requirements and
architectural level). Further, the framework for an artefact-centric change
management process has been defined. The process keeps track of, and or-
chestrates the ripple effects among artifacts when a change is injected at
any level.

3. Security Requirements Engineering. An approach to manage the evolution
process of the requirements specification has been defined. The approach
leverages so-called Change Rules. Evolution rules are specified as event-
condition-action tuples. Events are changes in the requirements artifact (e.g.,
something is added and consequently a security inconsistency is detected)
that trigger corrective actions, (e.g., the artefact is transformed to preserve
the key security requirements).

4. Model-Based Design. Based on UMLsec, the UMLseCh extension has been
defined. The extended notation allows to insert expected changes as pre-
defined markers in the design models. These markers are leveraged for the
formal security analysis carried out by a companion tool. The markers pro-
vide an indication of model elements that are added, deleted, or replaced.
The tool performs an incremental analysis starting from both the original
model (assumed correct) and the model of change.

5. Risk Assessment. A systematic approach has been defined (among others,
as an extension of the CORAS method for security risk analysis) to identify
the updates made to the target of evaluation, identify which security risks
and parts of the security risk model are affected by the updates, and update
the security risk model without having to change the unaffected parts.

6. Design-Time and On-Device Verification. At design-time, a programming
model (failboxes) for verifying absence of dependency safety violations has
been defined. At run-time, a programming model for writing safe programs
that dynamically (un)load modules has been defined. Note that dynamically
(un)loading modules is a key feature of adaptable systems.

7. Testing. An algorithm has been defined that, given the old test suite and
the new design model, is able to compute: security tests that are outdated in
light of the modeled change (obsolete), tests that are unchanged (reusable),
tests that must be adapted or added (evolution).

The above results have led to several scientific publications that are available
through the project portal1.

1 http://www.securechange.eu

http://www.securechange.eu

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 13–14, 2010.
© Springer-Verlag Berlin Heidelberg 2010

3DLife: Bringing the Media Internet to Life

Ebroul Izquierdo, Tomas Piatrik, and Qianni Zhang

Queen Mary University of London, School of Electronic Engineering and Computer Science,
Mile End Road, London

Abstract. "Bringing the Media Internet to Life" - or simply, 3DLife - is a Euro-
pean Union funded project that aims to integrate research conducted within
Europe in the field of Media Internet. In this contribution, we give an overview
of the project’s main objectives and activities.

1 Introduction

It is widely argued that the next generation of Media Computing services will become
the cornerstone of Information Society in our century. Its impact on the entertainment
industry is already clear. However, its impact is expected to be much broader in
changing the way that society delivers key services such as health care, learning and
commerce.

3DLife is a Network of Excellence (NoE), funded under the “Cooperation” seg-
ment of the Seventh Framework Programme (FP7). It fosters the creation of sustain-
able and long-term relationships between existing national research groups and lays
the foundations for a Virtual Centre of Excellence (VCE) in Media Internet. The key
factors making the 3DLife consortium capable of reaching the posed objectives are
reflected in the scientific quality of the partners and the diverse yet complementary
research background they bring to the project. Those partners are Queen Mary, Uni-
versity of London (United Kingdom, Coordinator), Dublin City University (Ireland),
Heinrich Hertz Institute, Fraunhofer (Germany), Informatics & Telematics Institute
(Greece), Korea University (Korea), MIRALab, University of Geneva (Switzerland)
and Telecom ParisTech (France). Since the 3DLife project comprehensively
addresses several challenges of Media Internet, its impact is expected to be vast in
several aspects of modern life including industry, academic and societal.

2 Highlights of 3DLife Activities

An important objective of the 3DLife NoE is to create sufficient momentum by inte-
grating an existing large number of researchers and resources to enable realistic,
efficient and to some extent autonomic media communication and interaction over the
Internet. Three important integrative activities revolve around the project concept.
A more detailed description of these activities is given in this section.

2.1 Integration and Sustainability

The 3DLife NoE promotes a series of collaborative activities of various types includ-
ing Phd Student Exchanges, Researcher and Senior Researcher Visits, Industrial
Placements, and Joint Postgraduate Courses. Furthermore, the ambition of 3DLife is

14 E. Izquierdo, T. Piatrik, and Q. Zhang

to launch a VCE, namely the European Centre of Excellence in Media Computing and
Communication (EMC2), during the lifetime of the project. EMC2 aims at nurturing
Media Computing R&D in Europe and beyond by fostering integration and promoting
cooperation between Academia and Industry. EMC2 will promote additional collabo-
rative activities such as Fellowships, Grand Challenges, Distinguished Lecture Series,
Journal Special Issues, Workshop/Conference Series, and Short Term Collaborative
Projects. It will bring together members’ capabilities, knowledge and expertise to
facilitate R&D funding through cooperative projects, joint research publications and
technology transfer, while advancing the state of the art in Media Computing. Regard-
ing scientific impact, EMC2 will endeavour to secure a dominant role in other well
established scientific bodies, as IEEE Technical Committees, IET professional net-
works and EURASIP special interest groups. Several dissemination forums, stan-
dardization bodies, international conferences and exhibitions will be targeted and used
to cement the ties between EMC2 and the broad research community.

2.2 Cooperative Research

The 3DLife NoE is about media networking with enhanced interactivity and “auton-
omy”. The project promotes cooperative research between its core partners on the
following research areas: 3D Computer Graphics Methods, Media Analysis for 3D
Data Generation, Virtual Humans Rendering and Animation, Distributed Immersive
Virtual Worlds, Media Networking, Secure Networked Data Representations, etc. In
the heart of this cooperative research lies the 3DLife software Framework for Integra-
tion, an internal section of 3DLife’s web and network presence. It aims to enhance the
collaboration between the project partners and to help compile and transfer their
expert knowledge and technologies.

2.3 Spreading Excellence

3DLife plans to spread excellence in training, dissemination, and technology transfer.
Spreading excellence of the scientific results and integrative efforts of this NoE tar-
gets three main groups: academics, industry/business and the non-specialist citizen.
An important tool of dissemination is constituted by the 3DLife web site
(www.3dlife-noe.eu). The website is part of the project’s Collaboration Space aimed
to be not only a mere repository of R&D results, but also a facilitator of the interac-
tion between researchers, companies and experts, improving knowledge sharing, and
supporting a culture of innovation among them. In addition, 3DLife has active social
groups on popular social network platforms such as FaceBook, Twitter and LinkedIn.
Latest activities and news in the project are constantly broadcasted through these
channels to interested audience. Another important aspect of this activity is joint pub-
lications and coordination of special sessions at important international and well
established conferences. These will help to spread excellence outside the network and
to enlarge the network audience.

3 Conclusion

The 3DLife NoE aims at heavily impacting and influencing main constituents of the
Media Internet by integrating, disseminating and sharing the different technologies.
We believe that by helping you to understand the project activities, we are paving the
way towards cooperation between your institution and the 3DLife project.

LivingKnowledge: Kernel Methods for
Relational Learning and Semantic Modeling

Alessandro Moschitti

Department of Computer Science and Information Engineering

University of Trento

Via Sommarive 14, 38100 POVO (TN) - Italy

moschitti@disi.unitn.it

Abstract. Latest results of statistical learning theory have provided
techniques such us pattern analysis and relational learning, which help

in modeling system behavior, e.g. the semantics expressed in text, im-

ages, speech for information search applications (e.g. as carried out by

Google, Yahoo,..) or the semantics encoded in DNA sequences studied in

Bioinformatics. These represent distinguished cases of successful use of

statistical machine learning. The reason of this success relies on the abil-

ity of the latter to overcome the critical limitations of logic/rule-based

approaches to semantic modeling: although, from a knowledge engineer

perspective, hand-crafted rules are natural methods to encode system se-

mantics, noise, ambiguity and errors, affecting dynamic systems, prevent

them from being effective.

One drawback of statistical approaches relates to the complexity of

modeling world objects in terms of simple parameters. In this paper, we

describe kernel methods (KM), which are one of the most interesting

results of statistical learning theory capable to abstract system design

and make it simpler. We provide an example of effective use of KM for

the design of a natural language application required in the European

Project LivingKnowledge1.

Keywords: Kernel Methods; Structural Kernels; Support Vector Ma-
chines; Natural Language Processing.

1 The Data Representation Problem

In recent years, a considerable part of Information Technology research has been
addressed to the use of machine learning for the automatic design of critical sys-
tem components, e.g. automatic recognition/classification of critical data pat-
terns. One of the most important advantages with respect to manually coded
system modules is the ability of learning algorithms to automatically extract the
salient properties of the target system from training examples. This approach
can produce semantic models of system behavior based on a large number of
attributes, where the values of the latter can be automatically learned. The
1 http://livingknowledge-project.eu/

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 15–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://livingknowledge-project.eu/

16 A. Moschitti

statistically acquired parameters make the overall model robust and flexible to
unexpected system condition changes. Unfortunately, while attribute values and
their relations with other attributes can be learned, the design of attributes suit-
able for representing the target system properties (e.g. a system state) has to be
manually carry out. This requires expertise, intuition and deep knowledge about
the expected system behavior. For example, how can system module structures
be converted into attribute-value representations?

Previous work on applied machine learning research (see the proceedings of
ICML, ECML, ACL, SIGIR and ICDM conferences)2 has shown that, although
the choice of the learning algorithm affects system accuracy, feature (attribute)
engineering more critically impacts the latter. Feature design is also considered
the most difficult step as it requires expertise, intuition and deep knowledge
about the target problem. Kernel methods is a research line towards alleviating
the problem above.

2 Data Representation via Kernel Methods

Kernel Methods (KM) are powerful techniques developed within the framework
of statistical learning theory [18]. They can replace attributes in learning algo-
rithms simplifying data encoding. More specifically, kernel functions can define
structural and/or semantic similarities between data objects at abstract level by
replacing the similarity defined in terms of attribute matching.

The theory of KM in pattern analysis is widely discussed in [17] whereas an
easier introduction can be grasped from the slides available at http://disi.
unitn.eu/~moschitt/teaching.html. The main idea of KM is expressed by
the following two points:

(a) directly using a similarity function between instances in learning algorithms,
thus avoiding explicit feature design; and

(b) such function implicitly corresponds to attribute matching (more precisely
scalar product) defined in huge feature spaces (possibly infinite), e.g. sim-
ilarity between structures can be defined as substructure matching in the
substructure space.

The first point states that instead of describing our data, e.g. a data stream,
in terms of features (which aim at capturing the most interesting properties or
behavior), it is enough to define a function capable to measure the similarity
between any pair of different data objects, e.g. pairs of streams.

The second bullet emphasizes the great power of KM as the representations
that can be modeled with them are extremely rich and are not computationally
limited by the size of feature spaces.

2 ICML and ECML are the International and European Conferences of Machine Learn-

ing, respectively. ACL is the Conference for Association of Computational Linguis-

tics; IR is the most important conference for Information Retrieval and ICDM is the

International Conference on Data Mining.

http://disi.unitn.eu/~moschitt/teaching.html
http://disi.unitn.eu/~moschitt/teaching.html

LivingKnowledge: Kernel Methods for Relational Learning 17

KM effectiveness has been shown in many ICT fields, e.g. in Bioinformatics
[16], Speech Processing [1], Image Processing [5], Computational Linguistics [9],
Data Mining [4] and so on. In particular, KM have been used to encode syn-
tactic and/or semantic structures in the form of trees and sequences in learning
algorithms, e.g. [2,3,7,19,10,20,14,11,13,12].

Given the wide and successful use of KM, they have been applied in the Living-
Knowledge project to model several aspects of automatic knowledge acquisition
and management, which are basic building blocks required by the project.

3 Using Kernels for Semantic Inference in
LivingKnowledge

Judgements, assessments and opinions play a crucial role in many areas of our
societies, including politics and economics. They reflect knowledge diversity in
perspective and goals. The vision inspiring LivingKnowledge (LK) is to consider
diversity as an asset and to make it traceable, understandable and exploitable,
with the goal to improve navigation and search in very large multimodal datasets
(e.g., the Web itself).

To design systems that are capable of automatically analyzing opinions in free
text, it is necessary to consider syntactic/semantic structures of natural language
expressed in the target documents. Although several sources of information and
knowledge are considered in LK, we here illustrate an example focused on text.
Given a natural language sentence like for example:

They called him a liar.

the opinion analysis requires to determine: (i) the opinion holder, i.e. They, (ii)
the direct subjective expressions (DSEs), which are explicit mentions of opinion,
i.e. called, and (iii) the expressive subjective elements (ESEs), which signal the
attitude of the speakers by means of the words they choose, i.e. liar.

In order to automatically extract such data, the overall sentence semantics
must be considered. In turn, this can be derived by representing the syntac-
tic and shallow semantic dependencies between sentence words. Figure 1 shows
a graph representation, which can be automatically generated by off-the-shelf
syntactic/semantic parsers, e.g. [6], [8]. The oriented arcs, above the sentences,
represent syntactic dependencies whereas the arcs below are shallow semantic

]
ESE

They called

call.01

SBJ
OPRD

liarhim[[a

A1A0 A2

]
DSE

NMODOBJ

Fig. 1. Syntactic and shallow semantic structure

18 A. Moschitti

(or semantic role) annotations. For example, the predicate called, which is an
instance of the PropBank [15] frame call.01, has three semantic arguments: the
Agent (A0), the Theme (A1), and a second predicate (A2), which are realized on
the surface-syntactic level as a subject, a direct object, and an object predicative
complement, respectively.

Once the richer representation above is available, we need to encode it in the
learning algorithm, which will be applied to learn the functionality (subjective
expression segmentation and recognition) of the target system module, i.e. the
opinion recognizer. Since such graphs are essentially trees, we exploit the ability
of tree kernels [10] to represent them in terms of subtrees, i.e. each subtree will
be generated as an individual feature of the huge space of substructures.

Regarding practical design, kernels for structures such us trees, sequences
and sets of them are available in the SVM-Light-TK toolkit (http://disi.
unitn.it/moschitti/Tree-Kernel.htm). This encodes several structural ker-
nels in Support Vector Machines, which is one of the most accurate learning
algorithm [18].

Our initial test on the LivingKnowledge tasks suggests that kernel methods
and machine learning are an effective approach to model the complex semantic
phenomena of natural language.

4 Conclusion

Recently, Information Technology research has been addressed to the use of ma-
chine learning for automatic design of critical system components, e.g. automatic
recognition of critical data patterns. The major advantage is that the system be-
havior can be automatically learned from training examples. The most critical
disadvantage is the complexity to model effective system parameters (attributes),
especially when they are structured.

Kernel Methods (KM) are powerful techniques that can replace attribute-
value representations by defining structural and/or semantic similarities between
data objects (e.g. system states) at abstract level. For example, to encode the
information in a data stream, we just define a function measuring the similarity
between pairs of different streams: such function can be modeled in extremely
rich and large feature spaces.

A considerable amount of previous work shows the benefit of employing KM
and our initial study in LivingKnowledge, whose application domain requires
to model complex textual and image information, further demonstrate their
benefits.

Acknowledgements

This research has been supported by the EC project, EternalS: Trustworthy
Eternal Systems via Evolving Software, Data and Knowledge, project number
FP7 247758.

http://disi.unitn.it/moschitti/Tree-Kernel.htm
http://disi.unitn.it/moschitti/Tree-Kernel.htm

LivingKnowledge: Kernel Methods for Relational Learning 19

References

1. Campbell, W.M.: Generalized linear discriminant sequence kernels for speaker

recognition. In: International Conference on Acoustics, Speech, and Signal Pro-

cessing (2002)

2. Collins, M., Duffy, N.: New Ranking Algorithms for Parsing and Tagging: Kernels

over Discrete Structures, and the Voted Perceptron. In: Proceedings of ACL 2002

(2002)

3. Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In:

Proceedings of ACL 2004 (2004)

4. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl. 5(1),

49–58 (2003)

5. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification

with sets of image features. In: International Conference on Computer Vision (2005)

6. Johansson, R., Nugues, P.: Dependency-based syntactic–semantic analysis with

PropBank and NomBank. In: Proceedings of the Shared Task Session of CoNLL

2008 (2008)

7. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Pro-

ceedings of ACL 2003 (2003)

8. Moschitti, A., Coppola, B., Giuglea, A., Basili, R.: Hierarchical semantic role la-

beling. In: CoNLL 2005 shared task (2005)

9. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In:

Proceedings of ACL 2004 (2004)

10. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-

tactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.

LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

11. Moschitti, A.: Making tree kernels practical for natural language learning. In: Proc-

cedings of EACL 2006 (2006)

12. Moschitti, A.: Kernel methods, syntax and semantics for relational text categoriza-

tion. In: Proceeding of CIKM 2008 (2008)

13. Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S.: Exploiting syntactic and

shallow semantic kernels for question/answer classification. In: Proceedings of ACL

2007 (2007)

14. Moschitti, A., Zanzotto, F.M.: Fast and effective kernels for relational learning

from texts. In: ICML 2007 (2007)

15. Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: An annotated corpus

of semantic roles. Comput. Linguist. 31(1), 71–106 (2005)

16. Schšlkopf, B., Guyon, I., Weston, J.: Statistical learning and kernel methods in

bioinformatics. In: Artificial Intelligence and Heuristic Methods in Bioinformatics

(2003)

17. Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Uni-

versity Press, Cambridge (2004)

18. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Hoboken (1998)

19. Zhang, D., Lee, W.S.: Question classification using support vector machines. In:

Proceedings of the 26th annual international ACM SIGIR conference on Research

and development in informaion retrieval, pp. 26–32. ACM Press, New York (2003)

20. Zhang, M., Zhang, J., Su, J.: Exploring Syntactic Features for Relation Extraction

using a Convolution tree kernel. In: Proceedings of NAACL (2006),

http://www.aclweb.org/anthology/N/N06/N06-1037

http://www.aclweb.org/anthology/N/N06/N06-1037

Task Forces in the EternalS Coordination Action

Reiner Hähnle

Task Forces Coordinator of the EternalS Coordination Action

Department of Computer Science and Engineering

Chalmers University of Technology, 41296 Gothenburg, Sweden

http://www.cse.chalmers.se/~reiner, https://www.eternals.eu/

Abstract. We describe the scope, organization, and expected outcomes
of the Task Forces of the EternalS Coordination Action. The goal of

the Task Forces is to provide structure and focus to the activities pursued

in EternalS while retaining essential openness to bottom-up initiatives.

1 Introduction

The EternalS Coordination Action (CA) is about the need to make software
and knowledge-based systems capable of adapting to changes in user require-
ments and application domains. It aims to coordinate research in this key area
comprising several dimensions including time, location, and security conditions
all of which reflect the diversity of the context where systems operate.

The main instrument in EternalS to structure this rather wide field of in-
terest into focused and manageable units is through the establishment of Task
Forces (TFs). In this brief note we motivate and explain the adopted Task Force
structure (Sect. 2), describe their organization (Sect. 3), and list expected out-
comes (Sect. 4).

2 The EternalS Task Forces

The EternalS Task Forces are meant to give a coarse-grained structure to the
EternalS theme of adaptability. As the aim of the CA is to encourage collabo-
ration among the Integrated Projects (IPs) represented in EternalS we sought
a structure that runs cross-cutting to the interests of the IPs. This excluded,
for example, software-based vs. knowledge-based, software vs. middleware, or
formal vs. informal as structuring criteria. Instead, we chose the dimensions of
spatial vs. temporal adaptability as well as of planned vs. autonomous evolv-
ability. We believe that this classification makes the Task Forces attractive for
external stakeholders to join while providing the necessary focus and encouraging
collaboration:

TF1. Diversity awareness and management: this can be seen as the “spatial”
dimension of adaptability where we intend to gather expertise in mechanisms
that model/handle diversity in IT-systems.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 20–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cse.chalmers.se/~reiner
https://www.eternals.eu/

Task Forces in the EternalS Coordination Action 21

TF2. Time awareness and management: this is one aspect of the “temporal”
dimension of adaptability: that of planned evolvability of dynamic systems.
We also put a special emphasis on security.

TF3. Self-adaptation and evolution by learning: here we collect expertise in
learning/control techniques for autonomous evolution of systems.

A detailed description of the scope of each TF is found in Task Force Descriptions
within the EternalS session of ISOLA.

3 Organization of EternalS Task Forces

The objective of a task force is to provide a concrete platform where stakehold-
ers with a common interest in the development of “eternal” systems can meet,
discuss, exchange ideas, take stock, suggest new initiatives, etc. With stakehold-
ers we mean physical persons with a research or application interest in the area
of each task force. The members of each task force are recruited from the four
Integrated Projects of the “Forever Yours” cluster, from the institutions present
in the EternalS CA, from the international research community at large, and
from companies with an interest in the theme of EternalS. Typically, a TF
could comprise a core of 6–10 members who actively drive its agenda, plus 10–
15 members-at-large who contribute to discussions and the various outcomes
(Sect. 4).

Membership is informal, free, and does not lead to any obligation for the TF
member or his/her employer. Each TF has a leader who coordinates the work
within a TF. The TF leader also maintains a list of TF members which is visible
at the EternalS web portal https://www.eternals.eu/.

Specifically, each TF provides: (i) a fertile environment for facilitating the
emergence of bottom-up research initiatives from the TF members themselves
or from any group of stakeholders; (ii) a coarse-grained classification, where the
above initiatives can be conceptually located; (iii) a pool of experts for discussing,
developing and judging the emerging initiatives; and (iv) a platform to bootstrap
communities and ideas that will constitute the initial seed for promoting bottom-
up initiatives.

The classification of the work of the CA into task forces does not constrain
in any way the type of the emerging initiatives as any new topic can be located
according to the nearest neighbor principle. When an external (to the TFs)
group of stakeholders proposes ideas (e.g., for collaboration or for discussing
new topics), these will be considered by the most relevant TF.

To make the description of the TFs reasonably concrete, we defined a num-
ber of interesting initial topics along with possible collaborations between the
already known stakeholders. These topics as well as the internal structure and a
list of initial stakeholders are described separately in each Task Force Description
within the EternalS session of ISOLA 2010.

https://www.eternals.eu/

22 R. Hähnle

4 Envisaged Outcomes of EternalS Task Forces

We list possible concrete outcomes of each TF. Except where explicitly noted,
this list is neither inclusive nor mandatory. It is up to the initiative of the TF
leader and the TF members to decide what they think is important. The concrete
work of the TFs is driven bottom-up. Obviously, multiple activities and initiatives
can be pursued simultaneously.

1. A survey of the state-of-art of research in the area of the TF. The aim
is publication in a suitable journal. Such a survey is mandatory and is an
EternalS Deliverable with due date January 2011.

2. Identification of research topics where the different IPs represented in Eter-

nalS can collaborate. Ideally, this would result in a decision of the Steering
Committees of the involved IPs to collaborate on certain tasks.

3. TFs can be forums in which new project proposals are developed. Impor-
tantly, such initiatives are not limited to members of the IPs represented in
EternalS or to the European area.

4. Organization of annual TF meetings as part of the plenary EternalS meet-
ings in Spring 2011 and Spring 2012. The format, purpose, and composition
of these meetings are completely open and can be adapted to the agenda of
each TF.

5. Written summaries of the results of the Task Force after each annual Eter-

nalS workshop. The content of these is determined by what each TF decides
to work on. It can be anything including (but not limited to) research papers,
road maps, white papers, survey papers, inputs to standardizing committees,
etc.

5 Conclusion

EternalS Task Forces provide an open and very flexible organizational frame-
work for bottom-up initiatives within trustworthy, highly adaptable, and long-
lived IT-systems. They structure the research within the EternalS theme along
the dimensions of spatial/temporal adaptability and of planned/autonomous
evolvability.

Modeling and Analyzing Diversity
Description of EternalS Task Force 1

Ina Schaefer

Department of Computer Science and Engineering

Chalmers University of Technology

41296 Gothenburg, Sweden

http://www.cse.chalmers.se/~schaefer

Abstract. We describe the objectives and vision of the EternalS Task

Force 1 ”Diversity Awareness and Management”. We present its organi-

zation and workplan. The goal of the task force is to provide a platform

for collaboration towards a unifying framework for modeling and analyz-

ing diversity of system data and behavior in all development phases.

1 Introduction

Many, if not most, large digital systems are developed for a plethora of differing
applications contexts and deployment scenarios. Hence, systems should embed
into the context of their operation. This requires that the anticipated diversity in
the application and deployment scenarios is taken into account during all phases
of system development.

EternalS Task Force 1 ”Diversity Awareness and Management” focuses on
modeling and analyzing anticipated diversity in software systems. It considers
specification and implementation techniques for diverse systems. Furthermore,
efficient development processes for diverse systems and associated quality assur-
ance techniques are in the scope of the task force. In this brief note, we present
the objectives and vision of the task force (Section 2) and describe its organiza-
tion and work plan (Section 3).

2 Objectives and Vision

In order to deal with system diversity during system design, appropriate mod-
elling and specification techniques, for diversity in data and knowledge that is
processed by the system as well as for diverse system behavior, are required.
Diversity in terms of data and knowledge is in particular interesting, as this
may provide insights into the causes for diversity also in the system’s behavior.
One objective of the task force is to find suitable abstractions from the plethora
of application scenarios in which a system is deployed and from the different
binding times of variability to capture relevant aspects of diverse systems.

One emphasis of the task force is the efficient development of diverse systems
where a particular focus lies on model-centric development processes. Promising

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 23–25, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cse.chalmers.se/~schaefer

24 I. Schaefer

approaches for diverse system development are software product line engineering
aiming at managed reuse of development artifacts, and model-driven engineering
concentrating on platform-independent aspects during system development.

Another objective of the task force is the management of diversity in the sys-
tem architecture, as well as the controlled integration of different components in
a concurrent setting. Modularization techniques used in modern programming
languages, such as traits, aspects, or mixins are considered regarding their po-
tential to implement diverse systems. Additionally, context-oriented programing,
domain-specific languages, and generative programming approaches are in the
realm of the task force.

Along with the different modeling and implementation techniques at each
design stage, the task force focuses on validation and verification methods to
guarantee essential system qualities, such as security, consistency, correctness,
and efficiency. These quality assurance techniques have to be devised to deal with
the special requirements of diversity. Runtime monitoring as well as diversity
model mining can ensure the quality of diverse systems at runtime.

The vision of the task force is to devise a unifying framework for modeling and
analyzing diversity of system data and behavior in all development phases. This
goal can be achieved by a model-centric development process for diverse systems
relying on suitable modelling and implementation techniques for diversity in data
and behavior at each design stage. Validation and verification techniques that
can be integrated with the development process allow assuring essential system
qualities, including security, correctness, consistency, and efficiency.

3 Organization and Work Plan

The EternalS Task Force 1 consists of 14 members that are from the FET-FY
projects HATS and Connect and external experts from the software prod-
uct line community. The HATS project is involved with Ralf Carbon (Fraun-
hofer IESE, Germany), Dave Clarke (KU Leuven, Belgium), Reiner Hähnle
(Chalmers U, Sweden) and Ina Schaefer (TF Leader, Chalmers U, Sweden).
Animesh Pathak (INRIA Paris-Rocquencourt, France) and Antonino Sabetta
(ISTI-CNR Pisa, Italy) joined the task force from the Connect project.

The external experts of Task Force 1 with their affiliation and main research
area are the following: Sven Apel (U Passau, Germany - Feature-oriented soft-
ware development), David Benavides (U Seville, Spain - Feature model analysis),
Lorenzo Bettini (U Torino, Italy - Programming languages for fine-grained code
reuse), Götz Botterweck (Lero, Ireland - Software product line engineering), Pas-
cal Costanza (VU Brussel, Belgium - Context-oriented programming), Christian
Kästner (U Marburg, Germany - Preprocessor-based software product line de-
velopment), Rick Rabiser (JKU Linz, Austria - Automated product line engi-
neering), and Salvador Trujillo (IKERLAN, Spain - Model-driven development
of software product lines).

The first activity of the task force is to compile a state-of-the-art survey on
modelling and implementation approaches for diverse systems and accompaning

Modeling and Analyzing Diversity 25

quality assurance techniques. Furthermore, the task force will organize an annual
workshop to foster collaboration and discussions between the task force mem-
bers. Each workshop will result in a document summarizing the state-of-the-art,
identifying research challenges and outline future research directions that can be
taken up by task force members in joint initiatives. These initiatives can result
in new project proposals, in particular in the European context.

The task force will further initiate a scientific workshop on diverse system
engineering, co-located with a major software engineering conference, to bring to-
gether the scientific communities working on diverse systems and to raise aware-
ness on the particular challenges system diversity poses for system engineering.

4 Conclusion

EternalS Task Force 1 “Diversity Awareness and Management” focusses on
anticipated diversity in software systems. It provides a platform to foster discus-
sion and collaboration towards a unifying framework for modeling and analyzing
system diversity in all software development phases.

Modeling and Managing System Evolution
Description of EternalS Task Force 2

Michael Hafner

Department of Computer Science and Engineering

University of Insbruck

6020 Innsbruck, Austria

http://www.qe-informatik.uibk.ac.at

Abstract. In this contribution we describe the scope, obectives, and
outcomes of the EternalS Task Force 2 (TF2) - Time Awareness and
Management. Task Force 2 will foster the discussion and the collection
of novel ideas around the problem of maintaining the quality of software-

based systems that evolve over time. Security is a topic of special interest.

1 Introduction

TF2 focuses on the monitored and managed evolution of security-critical systems
from the three perspectives: development, deployment, and operation.

The question on how to cope with imposed or induced change is particularly
challenging in the context of trends driving the so-called Future Internet. At
the infrastructure level, the Future Internet will leverage new technologies and
protocols to promote the convergence of traditional and small/portable devices
on a much larger scale than present. At the service level, systems will no longer
be able to address a closed universe of stakeholders. Additionally, market forces,
technological innovation and new business models will push system fragmenta-
tion even further.

On the other hand, those complex, fragmented systems of the Future Internet
(or at least parts of them) are expected to be operational for a very long time.
Design and implementation decisions must be made in a broad context, consid-
ering long-term goals under the constraint of currently available resources and
technologies.

To cope with these challenges, long-living Future Internet Systems need to be
exceptionally flexible. They have to constantly evolve to adjust to the changing
requirements. Evidently, evolution represents a constant threat to the system’s
quality. Since large-scale software-based systems increasingly pervade our daily
life and put an ever rising number of digital assets at risk, security is a topic of
special interest.

Task Force 2 will foster the discussion and the collection of novel ideas around
the problem of maintaining the quality of security-critical software-based systems
that evolve over time. In this short paper we sketch the vision driving TF2’s ac-
tivities (Sect. 2), define a set of objectives (Sect. 3) and operationalize them into a
a workplan (Sect. 4). We close with a description of TF2’s organization (Sect. 5).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 26–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.qe-informatik.uibk.ac.at

Modeling and Managing System Evolution 27

2 Vision

The vision of TF 2 is to contribute to the elaboration of an extended or revised
software engineering process addressing the challenge of how to ensure the long-
term compliance of long-living evolving software systems to quality requirements
– especially security, privacy and dependability. The requirements themselves
may also evolve over time.

TF2 is conceived as a forum to discuss and elaborate visions, scenarios, use
cases, concepts and, where appropriate, to contribute to the development of
methods, tools, and processes that support design and analysis techniques for
the evolution, testing, verification, and configuration of evolving security-critical
software.

3 Objectives

The emphasis of TF2 is on how to build and manage long-lived security-critical
systems. This leads to a broad array of challenges. In the following two of them
are mentioned exemplarily. The final set of objectives will be worked out during
meetings and discussions of the task force members.

The first one refers to the engineering process: how should stakeholders (e.g.,
end users, business analysts, requirements analysts, system architects etc.) cope
with the various aspects of change that may come with the evolution of long-lived
systems. Current process models have considerable shortcommings: security is
only integrated superficially, runtime adaptability is not addressed at all, model
artefacts and runtime are hardly kept consistent. Artifact-centric software de-
velopment processes represent a promising alternative.

The second challenge refers to the architecture and implementation of Future
Internet Systems: how could such systems be designed and realized so that they
are flexible enough to evolve over time accommodating the various changes.
Promising approaches can be found in the area of pattern-driven and model-based
engineering with a broad set of formal, semi-formal and informal techniques for
the transformation of models, the deployment and configuration of components,
functional and non-functional testing, and the verification of properties.

4 Work Plan

Obviously, many concerns affect the quality of software systems. Maintainability
and security are key concerns in heterogeneous, diverse, and open environments.
However, the interest for other qualities may emerge in a bottom-up way, ac-
cording to the interests of the task force members. Thus, as a first activity the
task force will identify areas of common interest and instigate discussions on
selected key topics at the Isola 2010 Meeting.

Based thereupon, the second activity of the task force will be to compile a
state-of-the-art survey on engineering approaches and quality assurance tech-
niques for evolving, security-critical systems. The goal could be a publication in
a suitable journal.

28 M. Hafner

As a third activity, the task force will promote awareness on topics of interest
through a set of complementary activities, such as e.g.,:

1. the organization of annual workshops. The aim is to foster collaboration
between task force members, faciliate discussion about research challenges
and outline potential directions of future research. Results are published in
a document.

2. the active investigation of opportunities that may lead to project proposals
(e.g., for the European ICT flagship initiative).

3. the publication of results of the Task Force after each annual EternalS work-
shop (e.g., research papers, position papers, road maps, white papers, survey
papers, inputs to standardizing committees, etc.).

4. to promote awareness of the challenges linked to the topics of interest and en-
gage in discussions with an international scientific community (e.g., through
the organization of a workshop co-located with a major software engineering
conference).

Activities operationalizing TF2’s set of objectives will be discussed, planned and
operationalized based ongoing discussions and during future meetings of the task
force members.

Table 1. Task Force 2 Members

Name Affiliation Project Research Interest
Michael Hafner Univ. of Innsbruck SECURECHANGE security usability, software

engineering, SOA
Richard Bubel Chalmers University HATS software engineering,

formal methods
Jim Clarke Tssg.org External software engineering,

security, trust, dependability
Qi Ju Univ. of Trento LIVINGKNOWLEDGE natural language processing

Fabio Martinelli Univ. of Pisa CONNECT security, distributed systems

Riccardo Scandariato Cath. Univ. Leuven SECURECHANGE software architectures,
security

Prof. Martin Steffen Univ. of Oslo HATS software engineering,
formal methods

Massimo Tivoli University of
L'Aquila

CONNECT software engineering,
formal methods

Prof. Ruth Breu Univ. of Innsbruck SECURECHANGE software engineering,
modeling

Margareth Stoll Univ. of Innsbruck External security management

Prof. Patrick Hung Univ. of Ontario External software engineering, SOA,
security

Prof. Jon Whittle Lancaster University External software engineering,
modeling

N.N. -- External security, formal methods

Modeling and Managing System Evolution 29

5 Organization

The members of each task force are recruited from the four Integrated Projects of
the “Forever Yours” cluster, as well as from the international research community
with an interest in the themes of EternalS. Table 1 gives an overview of Task
Force 2 members.

The process of recruiting more members is ongoing. One more candidate with
an academic background may be interested in joining Task Force 2.

6 Conclusion

Task Force 2 is primarily conceived as a forum to discuss and elaborate visions,
scenarios, use cases, and concepts around the problem of maintaining the quality
of software-based systems that evolve over time. Security is a topic of special
interest.

The final set of objectives as well as matching activities will depend on areas
of common interest identified and key topics selected at the Isola 2010 Meeting.

Self-adaptation and Evolution by Learning
Description of EternalS Task Force 3

Richard Johansson

DISI, University of Trento, Italy

johansson@disi.unitn.it

http://disi.unitn.it/~johansson

Abstract. The EternalS Task Force 3 focuses on self-adaptation and
evolution of software systems and knowledge resources; this includes evo-
lution over time and adaptation to new domains. The primary method

for achieving this will be the application of modern machine learning
methods.

1 Overview

Task Force 3 will be a collector of ideas and research initiatives about self-
adaptation and evolution of systems from a knowledge, software, and application
viewpoint. TF3 will be generally related to dynamic system research and will deal
with semantics of evolution and adaptation, knowledge management, software
adaptation and security policies with respect to different dimensions, e.g., time
and domain diversity.

To make the TF3 areas more concrete, we also characterize it by collecting ex-
pertise in automatic learning, which is a promising researchdirection. Accordingly,
TF3 will include experts from the machine learning (ML) community and will be
able to support, develop and advice initiatives, which aim at exploiting tools, tech-
niques and know-how of that community. Regarding the latter, TF3 has already
identified the most general purpose and flexible ML techniques that will facili-
tate the emerging of bottom-up collaborations in the area of self-adaptation and
evolution, namely statistical learning theory and kernel methods. These allow for
accurate learning and flexible and easy/automatic feature design which are essen-
tial characteristics when the application domain is novel and unknown.

2 Objectives and Vision

The cross-fertilization of the participating projects in Eternals brings the op-
portunity to open up unexplored research areas. For instance, TF3 proposes to
apply automatic learning techniques to model virtues and techniques of control
systems such as stability analysis and self-stabilization to maintain system in-
tegrity. Another research opportunity will be to investigate the feasibility and
consequences in terms of research impact when combining logic-based formalisms
as, e.g., often used in security, with statistical ones such as learning theory.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 30–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://disi.unitn.it/~johansson

Self-adaptation and Evolution by Learning 31

A concrete example is the detection of obsolete software components (e.g., in
SecureChange) by means of automatic classifiers (as for example defined in
LivingKnowledge). It will also be interesting to compare the ML approaches
with those typical of continuous systems from control theory.

Finally, a rather interesting topic that will be managed by TF3 is the defini-
tion, automatic generation and use of semantics in software systems and applica-
tions. In particular, several research communities with whom LivingKnowledge
is connected have developed expertise and techniques for the representation and
management of natural language semantics. This expertise will be compared
with expertise and problems in different CA areas, e.g. the semantics of com-
munication process in Connect or the semantics of security, consistency and
correctness in SecureChange, Connect and HATS.

3 Organization and Work Plan

As the first dissemination activity of TF3, the TextGraphs-5 workshop on graph-
based methods for natural language processing has been successfully organized.
This event was held as a satellite event of the widely attended 2010 conference
of the Association for Computational Linguistics, which took place on July 16,
2010, in Uppsala, Sweden. The workshop included a special session on opinion
mining, and the LivingKnowledge project was represented in this special
sessions by two submissions.

As a next step, the task force will compile a survey of the state of the art
in machine learning and its application in fields related to the areas of interest
in the projects that constitute EternalS. A special focus of this survey will
be to demonstrate how modern machine learning techniques handle structured
objects in input and output spaces, and how these techniques are relevant to the
projects participating in EternalS. Other topics of interest include learning
methods that make use of logic-based representations, which may be used as a
bridge to connect the various viewpoints represented in EternalS, as well as
methods for domain adaptation of statistical models, which may be helpful in
the evolutionary aspect.

4 Conclusion

The activities of Task Force 3 of EternalS focus on evolution: software com-
ponents, knowledge bases, or statistical models may need to evolve over time
as the world and the vocabulary to describe it are constantly evolving, or they
may need to be adapted to new domains and application scenarios for which
they were not originally intended. To handle the complexities of evolutionary
systems, we will make use of machine learning methods that are adapted to this
scenario. We envision a number of synergies between the EternalS projects
in this area. The dissemination activities in this task force are already under
way: an EternalS-sponsored workshop was held that included a special Liv-

ingKnowledge-related session on opinion mining.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 32–34, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Overview of Roadmapping by EternalS

Jim Clarke and Keith Howker

TSSG, Waterford Institute of Technology, Ireland

Abstract. The roadmapping activity in EternalS project focuses on developing
and contributing a vision and direction for future Framework Programme
research, arising from the work of a cluster of current projects1 towards
Trustworthy Eternal Systems.

Keywords: research roadmap, trust, dependability.

1 Introduction

EternalS has set up Task forces that will develop and focus on three characteristics of
the dynamics of the Eternal system: TF1 - Diversity awareness and management;
TF2 - Time awareness and management; TF3 -Self-adaptation and evolution by learn-
ing. The expertise – and the actual work – of the task forces will derive principally
from the cluster of projects [1][2][3][4] of which EternalS partners are strongly asso-
ciated. A specific activity of the project is to take the findings of the taskforces to
build a roadmap that will recommend and influence future action and research in this
particular field of the long-lived system, but will also contribute to the more general
requirements for Framework Programme (FP) research that will support the Future
Internet and Information Society.

2 Goals for the Roadmap

The goal of the roadmap is two-fold: it will develop a vision of the future research
requirements in this field with respect to aspects of trust, security, and dependability,
that will provide guidance to the planning and Strategic Research Agenda (SRA) for
the future EFFECTS+; it will also inform the more local direction and agenda of the
four ICT-Forever Yours projects and their possible follow-on.

The roadmap will seek to identify the principal challenges, and to establish a time-
line for future work and results, with recommendations for technical action, and
requirements for any supporting or consequent policy measures.

3 Approach

Earlier work by EternalS participants in Support and Coordination actions has already
contributed to the SRA, and forms a foundation for the roadmapping here. The work

1 The “ICT-Forever Yours” FET projects: LivingKnowledge [1], HATS [2], Connect [3], and

SecureChange [4].

 Overview of Roadmapping by EternalS 33

of SecurIST [5] road mapping activities has informed the thinking towards the later
calls of FP7 regarding Trust and Security programmes. The report of the Think-Trust
RISEPTIS group [6] focused on the need to convey the fundamental needs for
trust and security to the, often non-technical, policy maker, and set out high-level
recommendations for action by the European Commission. The Think-Trust (T-T)
recommendations [7] will provide further, mainly technical, elaboration of RISEPTIS.
These are based on the findings of the T-T Working Groups, so there are strong paral-
lels with the envisaged approach in EternalS, with the information that will be
generated by its Task Forces.

3.1 Initial Roadmap Mindmap

The current ideas for structuring the roadworks are to take three vectors or perspec-
tives: initial conditions – the ‘givens’; considerations – the context; and the outputs –
findings and recommendations. These are shown in Figure 1 below.

Fig. 1. Initial proposals for structuring the roadmapping work

The initial conditions will seek to take in a wide range of input views, from infor-
mal stakeholder expectations to formal objectives of the FP and the FIA. The consid-
erations will take into account various aspects of the current and envisaged context.
Output will be wide-ranging, but will provide specific appropriate results for targeted
recipients, including the SRA and the local project cluster.

3.2 Relationship to Other Roadmapping Activity

The principal sources and inputs to the EternalS roadmap will be derived from the
EternalS Task Forces that will internally gain their contributions and sights from the
four clustered projects. However, it is anticipated that there will also be close liaison
between the roadmapping work and parallel activities that will shortly start on the
compilation of a roadmap for future FP research to support the Future Internet activi-
ties. This will be supported by a group of coordination and support actions that make
up the Future Internet Support Activity (FISA). Current thinking is that this will also
rely heavily on clustering mechanisms amongst the RTD projects to gather together
their intelligence and insights and feed into road mapping activities.

34 J. Clarke and K. Howker

4 Outlook

The Future Internet roadmap activity is planned to begin in September 2010. EternalS
will have representation into the early considerations of this, and will be generating
input to a first iteration of its own roadmap during the first half of 2011 according to
the time schedule of the project. EternalS will both benefit from the structural and
methodological development of the FI roadmap, and will be able to contribute to its
further development.

References

1. LivingKnowledge, http://livingknowledge.europarchive.org/index.php
2. HATS – Highly adaptable and trustworthy software using formal models,

http://www.cse.chalmers.se/research/hats/
3. Connect – Emergent Connectors for Eternal Software Intensive Networked Systems,

http://connect-forever.eu/
4. SecureChange – Security engineering for lifelong evolvable systems,

http://www.securechange.eu
5. SecurIST project, Deliverable D3.3 – ICT Security & Dependability Research beyond 2010:

Final strategy (2010),
http://www.securitytaskforce.eu/dmdocuments/d3_3_final_strate
gy_report_v1_0.pdf

6. Trust in the Information Society, A Report of the Advisory Board RISEPTIS,
http://www.think-trust.eu/riseptis.html

7. Towards a Trustworthy Information Society: The Research Challenges, Think-Trust Deliv-
erable D3.1C, http://www.think-trust.eu/RecommendationsReport.html

Adaptive Composition of Conversational
Services through Graph Planning Encoding

Pascal Poizat1,2 and Yuhong Yan3

1 University of Evry Val d’Essonne, Evry, France
2 LRI UMR 8623 CNRS, Orsay, France

pascal.poizat@lri.fr
3 Concordia University, Montreal, Canada

yuhong@encs.concordia.ca

Abstract. Service-Oriented Computing supports description, publica-
tion, discovery and composition of services to fulfil end-user needs. Yet,

service composition processes commonly assume that service descrip-

tions and user needs share the same abstraction level, and that services

have been pre-designed to integrate. To release these strong assumptions

and to augment the possibilities of composition, we add adaptation fea-

tures into the service composition process using semantic structures for

exchanged data, for service functionalities, and for user needs. Graph

planning encodings enable us to retrieve service compositions efficiently.

Our composition technique supports conversations for both services and

user needs, and it is fully automated thanks to a tool, pycompose, which
can interact with state-of-the-art graph planning tools.

1 Introduction

Task-Oriented Computing envisions a user-friendly pervasive world where user
tasks corresponding to a (potentially mobile) user would be achieved by the auto-
matic assembly of resources available in her/his environment. Service-Oriented
Computing [1] (SOC) is a cornerstone towards the realization of this vision,
through the abstraction of heterogeneous resources as services and automated
composition techniques [2,3,4]. However, services being elements of composition
developed by different third-parties, their reuse and assembly naturally raises
composition mismatch issues [5,6]. Moreover, Task-Oriented Computing yields a
higher description level for the composition requirements, i.e., the user task(s),
as the user only has an abstract vision of her/his needs which are usually not
described at the service level. These two dimensions of interoperability, namely
horizontal (communication protocol and data flow between services) and verti-
cal matching (correspondence between an abstract user task and concrete service
capabilities) should be supported in the composition process.

Software adaptation is a promising technique to augment component re-
usability and composition possibilities, thanks to the automatic generation of
software pieces, called adaptors, solving mismatch out in a non-intrusive way [7].
More recently, adaptation has been applied in SOC to solve mismatch between

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 35–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 P. Poizat and Y. Yan

services and clients (e.g., orchestrators) [8,9,10]. In this article we propose to
add adaptation features in the service composition process itself. More precisely,
we propose an automatic composition technique based on planning, a technique
which is increasingly applied in SOC [11,12] as it supports automatic service
composition from underspecified requirements, e.g., the data one requires and
the data one agrees to give for this, or a set of capabilities one is searching for.
Such requirements do not refer to service operations or to the order in which
they should be called, which would be ill-suited to end-user composition.

Outline. Preliminaries on planning are given in Section 2. After introducing
our formal models in Section 3, Section 4 presents our encoding of service com-
position into a planning problem, and Section 5 addresses tool support. Related
work is discussed in Section 6 and we end with conclusions and perspectives.

2 Preliminaries

In this section we give a short introduction to AI planning [13].

Definition 1. Given a finite set L = {p1, . . . , pn} of proposition symbols, a
planning problem [13] is a triple P = ((S, A, γ), s0, g), where:

– S ⊆ 2L is a set of states.
– A is a set of actions, an action a being a triple (pre, effect−, effect+)

where pre(a) denotes the preconditions of a, and effect−(a) and effect+(a),
with effect−(a) ∩ effect+(a) = ∅, denote respectively the negative and the
positive effects of a.

– γ is a state transition function such that, for any state s where pre(a) ⊆ s,
γ(s, a) = (s − effect−(a)) ∪ effect+(a).

– s0 ∈ S and g ⊆ L are respectively the initial state and the goal.

Two actions a and b are independent iff they satisfy effect−(a) ∩ [pre(b) ∪
effect+(b)] = ∅ and effect−(b) ∩ [pre(a) ∪ effect+(a)] = ∅. An action set is
independent when its actions are pairwise independent. A plan is a sequence of
actions π = a1; . . . ; ak such that ∃s1, . . . , sk ∈ S, s1 = s0, ∀i ∈ [1, k], pre(ai) ∈
si−1 ∧ γ(si−1, ai) = si. The definition in [13] takes into account predicates and
constant symbols which are then used to define states (ground atoms made with
predicates and constants). We directly use propositions here.

Graph Planning [14] is a technique that yields a compact representation of
relations between actions and represent the whole problem world. A planning
graph G is a directed acyclic leveled graph. The levels alternate proposition
levels Pi and action levels Ai. The initial proposition level P0 contains the initial
propositions (s0). The planning graph is constructed from P0 using a polynomial
algorithm. An action a is put in layer Ai iff pre(a) ⊆ Pi−1 and then effect+(a) ⊆
Pi. Specific actions (no-ops) are used to keep data from one layer to the next
one, and arcs to relate actions with used data and produced effects. Graph
planning also introduces the concept of mutual exclusion (mutex) between non
independent actions. Mutual exclusion is reported from a layer to the next one

Adaptive Composition of Conversational Services 37

a U

Z

S

c

d

b

a

a

b Y

e

c

d

Z

U

action

precondition

positive effect

negative effect

invalid action

P1 A2 P2P0 A1 layers

backtrack
to solution

U

U c

U

U

c

c

X

propositiona

U

X
U c

U: pre={a},

 effect-={a},

 effect+={b,c}

Z: pre={a},

 effect-={a},

 effect+={b,d}

Y: pre={b},

 effect-={},

 effect+={e}

S: pre={c,d},

 effect-={},

 effect+={e}

Fig. 1. Graphplan example

while building the graph. The planning graph actually explores multiple search
paths at the same time when expanding the graph, which stops at a layer Ak iff
the goal is reached (g ⊆ Ak) or in case of a fixpoint (Ak = Ak−1). In the former
case there exists at least a solution, while in the later there is not. Solution(s)
can be obtained using backward search from the goal. Planning graphs whose
computation has stopped at level k enable to retrieve all solutions up to this
level. Additionally, planning graphs enable to retrieve solutions in a concise
form, taking benefit of actions that can be done in parallel (denoted ||).

An example is given in Figure 1 where we suppose the initial state is {a} and
the objective is {e}. Applying U in the first action layer, for example, is possible
because a is present; and this produces b and c. The extraction of plans from the
graph is performed using a backward chaining technique over action layers, from
the final state (objective) back to the initial one. In the example, plans U;Y, Z;Y,
(U||Z);Y and (U||Z);S can be obtained (see bold arcs in Fig. 1 for U;Y). However,
U and Z are in mutual exclusion. Accordingly, since there is no other way to
obtain c and d than with exclusive actions, these two facts are in exclusion in
the next (fact) layer, making S impossible. Note that other nodes are indeed in
mutual exclusion (such as the no-op and U in A1, or two no-ops in A2 but we
have not represented this for clarity).

3 Modeling

In this section, we present our formal models, grounding service composition.
Both services and composition requirements support conversations. Therefore,
we begin with their definition. We then present the structures supporting the def-
inition of semantic data and capabilities. Finally, we present models for services
and service composition requirement.

38 P. Poizat and Y. Yan

initial activity final activity
parallel

(split/join AND)
choice

(split/join XOR)

workflow notation

activity diagram
notation

Name

activity

Name

Fig. 2. Workflow notation and relation to the UML activity diagrams

3.1 Conversation Modelling

Different models have been proposed to support service discovery, verification,
testing, composition or adaptation in presence of service conversations [15,16,9].
They mainly differ in their formal grounding (Petri nets, transition systems,
or process algebra), and the subset of service languages being supported. Since
we target centralized composition (orchestration) with possible parallel service
invocation, we choose the workflow model from [17]. An important benefit of
workflow models is that they can be related via model transformation to graph-
ical notations that are well-known by the software engineers, e.g., UML activity
diagrams (Fig. 2) or BPMN. Additionally, workflows are more easily mastered
by a non-specialist through pre-defined patterns (sequence, alternative choice,
parallel tasks). Transition systems models could yield a simpler encoding as a
planning problem but raise issues when it comes to implement the composition
models, requiring model filtering to remove parts in the composition models
which are not implementable in the target language [9].

Definition 2. Given a set of activity names N , a Workflow (WF) [17] is a
tuple WFN = (P, →, Name). P is a set of process elements (or workflow nodes)
which can be further divided into disjoint sets P = PA ∪ Pso ∪ Psa ∪ Pjo ∪ Pja,
where PA are activities, Pso are XOR-Splits, Psa are AND-splits, Pjo are OR-
Joins, and Pja are AND-Joins. →⊆ P × P denotes the control flow between
nodes. Name : PA → N is a function assigning activity names to activity nodes.

We note •x = {y ∈ P |y → x} and x• = {y ∈ P |x → y}. We require that WF are
well-structured [17] and without loop. A significant feature of well-structured
workflows is that the XOR-splits and the OR-Joins, and the AND-splits and the
AND-splits appear in pairs (Fig. 2). Moreover, we require | • x| ≤ 1 for each x
in PA ∪ Psa ∪ Pso and |x • | ≤ 1 for each x in PA ∪ Pja ∪ Pjo.

3.2 Semantic Structures

In our work we use semantic information to enrich the service composition pro-
cess and its automation. We have two kinds of semantic information. Capabil-
ities represent the functionalities that are either requested by the end-users or
provided by services. They are modelled using a Capability Semantic Structure

Adaptive Composition of Conversational Services 39

Table 1. eTablet buying – DSS relations: d1 � d2 (left), d1 �x d2 (right)

d1 d2
etablet pear product
etelephone pear product
pear product product
product price order amount
user address shipping addr
user address billing addr
user address address

d1 x d2
pear product info price product price
pear product info details product technical information
user info name user name
user info address user address
user info cc credit card info
user info pim pim wallet
pim wallet paypal paypal info
pim wallet amazon amazon info
paypal info login paypal login
paypal info pwd paypal pwd
amazon info login amazon login
amazon info pwd amazon pwd
credit card info number credit card number
credit card info name credit card holder name

(CSS). Further, service inputs and outputs are annotated using a Data Semantic
Structure (DSS).

We define a Data Semantic Structure (DSS) as a tuple (D,�,�) where D is
a set of concepts (or semantic data type1) that represent the semantics of some
data, � is a composition relation ((d1, x, d2) ∈ �, also noted d1 �x d2 or simply
d1 � d2 when x in not relevant for the context, means a d1 is composed of an x
of type d2), and � is a subtyping relation (d1 � d2 means d1 can be used as a
d2). We require there is no circular composition. DSSs are the support for the
automatic decomposition (of d into D if D = {di | d � di}), composition (of
D into d if D = {di | d � di}) and casting (of d1 into d2 if d1 � d2) of data
types exchanged between services and orchestrator. We also define a Capability
Semantic Structure (CSS) as a set K of concepts that correspond to capabilities.

Application. We will illustrate our composition technique on a simple, yet
realistic, case study: the online buying of an eTablet. A DSS describes concepts
and relations for this case study. For place matters, we only give the relations
here (Tab. 1) since concepts can be inferred from these and from the service
operation signatures, below.

3.3 Services

A service is a set of operations described in terms of capabilities, inputs, and
outputs. Additionally, services have a conversation. We define services as follows.

Definition 3. Given a CSS K and a DSS D = (D,�,�), a service is a tuple
w = (O, WFO), where O is a set of operations, an operation being a tuple
(in, out, k) with in ⊆ D, out ⊆ D, k ∈ K, and WFO is a workflow built over O.

For a simple service (without a conversation) w, a trivial conversation can be
obtained with a workflow where PA = O(w) (one activity for each operation),

1 In this paper, the concepts of semantics and type of data are unified.

40 P. Poizat and Y. Yan

Table 2. eTablet buying – services’ operations

service operation profile
w 1 order pear product → pear product info, as sessionid :: product selection
w 1 cancel as sessionid → ∅ :: nil
w 1 ship shipping addr, as sessionid → ∅ :: shipping setup
w 1 bill billing addr, as sessionid → ∅ :: billing setup
w 1 charge credit card info, as sessionid → ∅ :: payment
w 1 gift wrapper giftcode, as sessionid → ∅ :: payment
w 1 ack as sessionid → tracking num :: order finalization
w 2 order product → e sessionid :: product selection
w 2 ship shipping addr, e sessionid → order amount :: shipping setup
w 2 charge pp paypal trans id, e sessionid → ∅ :: nil
w 2 charge cc credit card info, e sessionid → ∅ :: payment
w 2 bill billing addr, e sessionid → ∅ :: billing setup
w 2 finalize e sessionid → tracking num :: order finalization
w 3 login paypal login, paypal pwd → p sessionid :: nil
w 3 get credit order amount, p sessionid → paypal trans id :: payment
w 3 ask bill address, p sessionid → ∅ :: billing setup
w 3 logout p sessionid → ∅ :: nil

order ship bill

cancel

charge ack

gift_wrapper

order ship

charge_pp

finalizecharge_cc bill

paypal

ebay

pear_store

login get_credit

logout

logoutask_bill

Fig. 3. eTablet buying – services’ workflows

Pso = {⊗}, Pjo = {⊗}, Psa = Pja = ∅, and ∀o ∈ PA, {(⊗, o), (o, ⊗)} ⊆→. This
corresponds to a generalized choice between all possible operations. An operation
may not have a capability (we then let k = nil). o = (in, out, k) is also noted
o : in → out :: k.

Application. To fulfil the user need, we have three services: pear store (w1,
online store for pear products), ebay (w2, general online shop) and paypal (w3,
online payment facilities). Their operations are given in Table 2 and their work-
flows are given in Figure 3.

Adaptive Composition of Conversational Services 41

product_selection

shipping_setup

billing_setup

payment

order_finalization

product_selection

shipping_setup

billing_setup

payment

order_finalization

Fig. 4. eTablet buying – requirement workflows

3.4 Composition Requirements

A service composition requirement is given in terms of the inputs the user is ready
to provide and the outputs this user is expecting. Additionally, the capabilities
that are expected from the composition are specified, and their expected ordering
given under the form of a workflow.

Definition 4. Given a CSS K and a DSS D = (D,�,�), a composition re-
quirement is a tuple (Din, Dout, WFK) where Din ⊆ D, Dout ⊆ D, and WFK is
a workflow build over K.

Application. The user requirement in our case study is ({etablet, user info},
{tracking num}, wfc). As far as the wfc requirement workflow is concerned, we
have two alternatives for it. The first one (Fig. 4, left) requires that payment is
done after shipping and billing have been set up (which can be done in parallel).
The second one (Fig. 4, right) is less strict and enables the payment to be done
in parallel to shipping and billing setup.

4 Encoding Composition as a Planning Problem

In this section we present how service composition can be encoded as a graph
planning problem. We will first explain how DSS can be encoded (to solve out
horizontal adaptation). Then we will present how a generic workflow can be en-
coded. Based on this, we will then explain how services and composition require-
ments are encoded (the workflow of the later solving out vertical adaptation).

4.1 DSS Encoding

For each d � {xi : di} in the DSS we have an action compd(
⋃

i{di}, ∅, {d}) and
an action decd({d}, ∅,

⋃
i{di}) to model possible (de)composition. Moreover, for

each d � d′ in the DSS we have an action castd,d′({d}, ∅, {d′}) to model possible
casting from d to d′.

42 P. Poizat and Y. Yan

A
x

x x

x y c x,y x,y r y,x

x

 x 1
 x i
 x n

...

...
x

x

x 1
x i
x n

...

...
x

c x,xr x, x x
[Name(A)]

x

 x 1
 x i
 x n

...

...
x

x

x 1
x i
x n

...

...
xr x, x

x

c x,x 1
...

...
c x,x i

c x,x n

c x,xr x, xi x

r x, x1

r x, xn

...

...

r x, x

c x,x 1

...

...
c x,x i

c x,x n

 x,x 1

 x,x i

 x,x n

c x,xr x, xi

r x, x1

r x, xn

...

...
 x, xi

 x, x1

 x, xn

Fig. 5. Workflow encoding

4.2 Workflow Encoding

We reuse here a transformation from workflows to Petri net defined in [17].
Instead of mapping a workflow (P, →, Name) to a Petri net, we map it to a
planning problem. Let us first define the set of propositions that are used. The
behavioural constraints underlying the workflow semantics (e.g., an action being
before/after another one) are supported through two kinds to propositions: rx,y

and cx,y. We also have a proposition I for initial states, and a proposition F
for correct termination states. F will be used both for final states and for initial
states (in this case to denote that a service can be unused). We may then define
the actions that are used (Fig. 5):

– for each x ∈ Psa, we have an action a = ⊕x, for each x ∈ Pja, we have an ac-
tion a = ⊕̄x, and for each x ∈ PA, we have an action a = [Name(x)]x. In all
three cases, we set pre(a) = effect−(a) =

⋃
y∈•x{rx,y}, and effect+(a) =⋃

y∈x•{cx,y}.
– for each x ∈ Pso, for each y ∈ x•, we have an action a = ⊗x, y and we set

pre(a) = effect−(a) =
⋃

z∈•x{rx,z}, and effect+(a) = {cx,y}.
– for each x ∈ Pjo, for each y ∈ •x, we have an action a = ⊗̄x, y, and we set

pre(a) = effect−(a) = rx,y, and effect+(a) =
⋃

z∈•x{cx,z}.
– for each x → y, we have an action a = � x, y and we set pre(a) =

effect−(a) = {cx,y}, and effect+(a) = {ry,x}.
– additionally, for any initial action a we add {I, F} in pre(a) and effect−(a).
– additionally, for any final action a we add {F} in effect+(a).

4.3 Composition Requirements Encoding

A composition requirement (Din, Dout, WFK) is encoded as follows. First we
compute the set of actions resulting from the encoding of WFK (see 4.2). Then

Adaptive Composition of Conversational Services 43

x
o

in out

dkek

y,x x,z

u
k

linku

dk

u
k linku

ek

c y,x r x,y c x,z

predecessors in WFO(w) successors in WFO(w)

r z,xy z

behaviorally enable behaviorally enable

predecessors
in WFK

successors
in WFK

capability k

behaviorally enable

se
rv

ice
s i

n
W

 /
 D

SS
W

FO(
w

)
W

FK

call to service w
operation o

Fig. 6. Principle of interaction between service and requirement encodings

we have to encode the fact that capabilities in the composition requirement
encoding should interoperate with operations in service encodings. The idea is
the following. Taking a service w, when a capability k is enabled at the current
state of execution by WFK then we should invoke an operation of capability k
that is enabled at the current state by WFO(w) before any one of the capability
possibly following k could be enabled. Moreover, an operation o with capability
k of w can be invoked only iff this is enabled by the current state of execution
in WFO(w) and k is enabled in WFK. To achieve this, we replace any action
a = [k]x in the encoding of WFK by two actions, a′ = [k]x and a′ = [k]x, and
we set:

– pre(a′) = pre(a), effect−(a′) = effect−(a), effect+(a) = {ek, linkx}.
– pre(a′) = effect−(a′) = {linkx, dk}, effect+(a′) = effect+(a).

ek and dk enforce the synchronizing rules between capability workflow (defining
when a capability k can be done) and service workflows (defining when an oper-
ation with capability k can be done) as presented in Figure 6. linkk ensure that
two actions a1 = [k]x1 and a2 = [k]x2 with the same capability will not interact
incorrectly when x1 and x2 are in parallel in a workflow.

4.4 Service Encoding

Each service w = (O, WFO) is encoded as follows. First we encode the workflow
WFO as presented in 4.2. Then, for each action a = [o]x in this encoding we
add:

44 P. Poizat and Y. Yan

– in(o) in pre(a) to model the inputs required by operation o and out(o) in
effect+(a) to model the outputs provided by operation o.

– ek(o) in pre(a) and in effect−(a) and dk(o) in effect+(a) to implement the
interaction with capabilities presented in 4.3 and in Figure 6.

4.5 Overall Encoding

Given a DSS D, a set of services W , and a composition requirement (Din, Dout,
WFK), we obtain the planning problem ((S, A, γ), s0, g) as follows:

– s0 = Din ∪ {wfc : I, wfc : F} ⋃
w∈W {w : I, w : F}.

– g = Dout ∪ {wfc : F} ⋃
w∈W {w : F}.

– A = dss : ||D|| ∪ wfc : ||WFK||. ⋃w∈W w : ||WFO(w)||.
– S and γ are built with the rules in Definition 1.

where ||x|| means the set of actions resulting from the encoding of x. Prefixing
(denoted with prefix :) operates on actions and on workflow propositions (I, F ,
rx,y, and cx,y) coming from encodings. It is used to avoid name clashes between
different subproblems. We suppose that, up to renaming, there is no service
identified as dss or wfc.

4.6 Plan Implementation

Solving the planning problem, we may get a failure when there is no solution
satisfying both that (i) a service composition exists to get Dout from Din, (ii)
using operations/capabilities in an ordering satisfying both used service conver-
sations and capability conversation, (iii) leaving used services in their final state.
In other cases, we obtain (see Sect. 2) a plan π = L1; . . . ; Li; . . . ; Ln where ; is the
sequence operator and each Li is of the form (Pi,1|| . . . ||Pi,j || . . . ||Pi,mi) where ||
is the parallel operator and each Pi,j is a workflow process element. First of all,
we begin by filtering out π by removing from it all Pi,j that is not of the form
dss : . . . or w : [o]x, i.e., that is a purely structuring item, not corresponding to
data transformation or service invocation. Given the filtered plan, we can gen-
erate a WS-BPEL implementation for it as done for transitions systems in [9].
Still, we may benefit here from the fact that actions that can be done in parallel
are explicited in a graph planning plan (using operation ||), while in transition
systems we only have interleaving semantics (finding out which actions can be
done in parallel is much more complex). Therefore, for the main structure of the
<process> . . . < /process> element we replace the [9] state machine encoding by
a more efficient version using sequence and flows. For π we get:

〈sequence〉modeltrans(L1) . . . modeltrans(Li) . . . modeltrans(L − n)〈/sequence〉
and for each Li = (Pi,1|| . . . ||Pi,j || . . . ||Pi,mi) we have:

〈flow〉modeltrans(Pi,1) . . . modeltrans(Pi,j) . . . modeltrans(Pi,mi))〈/flow〉
where modeltrans is the transformation of basic assignment / communication
activities defined in [9].

Adaptive Composition of Conversational Services 45

Semantic Service
Registry

Services
(operations + operation workflow)

Parser

Encoder

Problem
Fusion

Parser

Parser

Planning
Problem

Planning
Solution

Planner
Interface

Planner
(external)

DSS

Composition Requirement
(capability workflow)

DSS model

capability
workflow model

operations
workflow model

problem model

Encoder

problem model

Encoder

problem model problem model

composition
workflow modelComposition Implementation

(WS-BPEL)

Model
Trans.

WF
Generator

plan model

Fig. 7. Architecture of the pycompose tool

5 Tool Support

Our composition approach is supported with a tool, pycompose (Fig. 7), written
in the Python language. This tool takes as input a DSS file, several service de-
scription files (list of operations and workflow), and the composition requirement
(input list, output list, and a workflow file). It then generates the encoding of this
composition problem. pycompose supports through a command-line option the
use of several planners: the original C implementation of graph planning, graph-
plan2, a Java implementation of it, PDDLGraphPlan3, and Blackbox4, a planner
combining graphplan building and the use of SAT solvers to retrieve plans. The
pycompose architecture enables to support other planners through the imple-
mentation of a class with two methods: problemToString and run, respectively to
output a problem in planner format and to run and parse planner results.

Application. If we run pycompose on our composition problem with the first
requirement workflow (Fig. 4, left), we get one solution (computed in 0.11s on a
2.53 GHz Mac Book Pro, including 0.03s for the planner to retrieve the plan):

(pear product:=cast(etablet) || {user name,user address,credit card info,pim wallet}
:=dec(user info)) ;

(shipping addr:=cast(user address) || billing addr:=cast(user address) || w1:order) ;

w1:ship ; w1:bill ; w1:charge ; w1:ack

The workflow representation of this solution is presented in Figure 8.

2 http://www.cs.cmu.edu/˜avrim/graphplan.html
3 http://www.cs.bham.ac.uk/˜zas/software/graphplanner.html
4 http://www.cs.rochester.edu/˜kautz/satplan/blackbox/

46 P. Poizat and Y. Yan

cast

dec

cast

cast

w1.order

w1.ship w1.bill w1.charge w1.ack

product_selection shipping_setup billing_setup payment order_finalization

Fig. 8. eTablet buying – composition solution

product_selection shipping_setup

billing_setup

payment

order_finalization

dec

cast cast

cast

dec

w2.order

dec

w3.login w2.ship

w3.get_credit

w2.charge_ppw3.ask_billw3.logoutw2.finalize

Fig. 9. eTablet buying – alternative composition solution

However, let us now suppose that the user does not want to give his credit
card (user info �cc credit card info is removed from DSS, or the user input is
replaced with {etablet,user name,user address,pim wallet}). There is no longer
any possible composition: w1 cannot proceed with payment (no credit card in-
formation), moreover, w2 and w3 cannot interact since this would yield that
capability payment is done before capability billing setup (see w3 workflow in
Fig. 3 and its operations in Tab. 2) while the requirement workflow forbids it.
However, if we let a more permissive requirement workflow (Fig. 4, right) then
we get a composition (computed in 0.11s on a 2.53 GHz Mac Book Pro, including
0.04s for the planner to retrieve the plan) where w2 and w3 interact:

(pear product := cast(etablet) || {user name,user address,credit card info,pim wallet}
:= dec(user info)) ;

(product := cast(pear product) || shipping addr := cast(user address)
|| {paypal info,amazon info} := dec(pim wallet)) ;

(w2:order || {paypal login,paypal pwd} := dec(paypal info)) ;
w3:login ; w2:ship ; w3:get credit ; w2:charge pp ; w3:ask bill ; w3:logout ; w2:finalize

The workflow representation of this second solution is given in Figure 9.

6 Related Work

Our work is at the intersection of two domains: service composition and software
adaptation. Automatic composition is an important issue in Service-Oriented
Computing and numerous works have addressed this over the last years [2,3,4].

Adaptive Composition of Conversational Services 47

Planning-based approaches have particularly been studied due to their support
for underspecified requirements [11,12]. Automatic composition has also been
achieved using matching and graph/automata-based algorithms [18,19,20] or
logic reasoning [21]. Various criteria could be used to differentiate these ap-
proaches, yet, due to our Task-Oriented Computing motivation, we will focus on
issues related to service and composition requirement models, and to adaptation.

While both data input/output and capability requirements should be sup-
ported, as in our approach, to ensure composition is correct wrt. the user needs,
only [22,19] do, while [23,24,25,18,20,26] support data only and [21] supports ca-
pabilities only. As far as adaptation is concerned, [24,25,19,20] support a form of
horizontal (data) adaptation, using semantics associated to data; and [23] a form
of vertical (capability abstraction) adaptation, due to its hierarchical planning
inheritance. We combined both techniques to achieve both adaptation kinds.
Few approaches support expressive models in which protocols can be described
over capabilities – either for the composition requirement [21] or for both com-
position and services [22,19] like us. [23,24,25,18,20] only support conversations
over operations (for a given capability).

As opposed to the aforementioned works dealing with orchestration, in [27],
the authors present a technique with adaptation features for automatic service
choreography. It supports a simple form of horizontal adaptation, however their
objective is to maximize data exchange between services but they are not able
to compose services depending on an abstract user task.

Most software adaptation works, e.g., [28,29,30] are pure model-based approa-
ches whose objective is to solve protocol mismatch between a fixed set of com-
ponents, and that do not tackle service discovery, composition requirements, or
service composition implementation. Few works explicitly add adaptation fea-
tures to Service-Oriented Computing [8,9,10]. They adopt a different and com-
plementary view wrt. ours since their objective is not to integrate adaptation
within composition in order to increase the orchestration possibilities, but to
tackle protocol adaptation between clients and services, e.g., to react to service
replacement.

In an earlier work [31] we already used graph planning to perform service
composition with both vertical and horizontal adaptation. With reference to this
work, we add support for conversations in both service descriptions and compo-
sition requirements. Moreover, adaptation was supported in an ad-hoc fashion,
yielding complexity issues when backtracking to get composition solutions. Us-
ing encodings, we are able in our work to support adaptation with regular graph
planning which enables us to use state-of-the-art graph planning tools.

7 Conclusion

Software adaptation is a promising approach to augment service interoperability
and composition possibilities. In this paper we have proposed a technique to
integrate adaptation features in the service composition process. With reference
to related work, we support both horizontal (data exchange between services

48 P. Poizat and Y. Yan

and orchestrator) and vertical adaptation (abstraction level mismatch between
user need and service capabilities). This has been achieved combining semantic
descriptions (for data and capabilities) and graph planning. We also support
conversations in both service descriptions and composition requirements.

The approach at hand is dedicated to deployment time, where services are
discovered and then composed out of a set of services that may change. Yet, in
a pervasive environment, services may appear and disappear also during compo-
sition execution, e.g., due to the user mobility, yielding broken service composi-
tions. We made a first step towards repairing them in [32], still with a simpler
service and composition requirement model (no conversations). A first perspec-
tive concerns extending this approach to our new model. Further, we plan to
study the integration of our composition and repair algorithms as an optional
module in existing runtime monitoring and adaptation frameworks for services
composition such as [33].

Acknowledgement. This work is supported by project “Building Self-Mana-
geable Web Service Process” (RGPIN/298362-2007) of Canada NSERC Discovery
Grant, and by project “PERvasive Service cOmposition” (ANR-07-JCJC-0155-01,
PERSO) of the French National Agency for Research.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Special Issue on Service-Oriented Comput-

ing. Communications of the ACM 46(10) (2003)

2. Rao, J., Su, X.: A survey of automated web service composition methods. In: Car-

doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,

Heidelberg (2005)

3. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and

Grid Services 1(1), 1–30 (2005)

4. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Proc.

of the 9th International School on Formal Methods for the Design of Computer,

Communications and Software Systems: Web Services (SFM)

5. Canal, C., Murillo, J.M., Poizat, P.: Software Adaptation. L’Objet 12, 9–31 (2006)

6. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: To-

wards an Engineering Approach to Component Adaptation. In: Reussner, R.,

Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with Trustworthy Com-

ponents. LNCS, vol. 3938, pp. 193–215. Springer, Heidelberg (2006)

7. Seguel, R., Eshuis, R., Grefen, P.: An Overview on Protocol Adaptors for Ser-

vice Component Integration. Technical report, Eindhoven University of Technology

(2008) BETA Working Paper Series WP 265

8. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,

Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-

berg (2006)

9. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using pro-

cess algebra and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I.,

Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg

(2008)

Adaptive Composition of Conversational Services 49

10. Nezhad, H.R.M., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web service

interfaces for adapter development. In: Proc. of WWW, pp. 731–740 (2010)

11. Peer, J.: Web Service Composition as AI Planning – a Survey. Technical report,

University of St.Gallen (2005)

12. Chan, K.S.M., Bishop, J., Baresi, L.: Survey and comparison of planning techniques

for web service composition. Technical report, Dept Computer Science, University

of Pretoria (2007)

13. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.

Morgan Kaufmann Publishers, San Francisco (2004)

14. Blum, A.L., Furst, M.L.: Fast Planning through Planning Graph Analysis. Artificial

Intelligence Journal 90(1-2), 225–279 (1997)

15. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composi-

tion. Annals of Mathematics, Computing & Teleinformatics 1(5), 1–10 (2007)

16. Bozkurt, M., Harman, M., Hassoun, Y.: Testing Web Services: A Survey. Technical

Report TR-10-01, Centre for Research on Evolution, Search & Testing, King’s

College London (2010)

17. Kiepuszewski, B.: Expressiveness and Suitability of Languages for Control Flow

Modelling in Workflow. PhD thesis, Queensland University of Technology, Bris-

bane, Australia (2003)

18. Brogi, A., Popescu, R.: Towards Semi-automated Workflow-based Aggregation of

Web Services. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005.

LNCS, vol. 3826, pp. 214–227. Springer, Heidelberg (2005)

19. Ben Mokhtar, S., Georgantas, N., Issarny, V.: COCOA: COnversation-based Ser-

vice Composition in PervAsive Computing Environments with QoS Support. Jour-

nal of Systems and Software 80(12), 1941–1955 (2007)

20. Benigni, F., Brogi, A., Corfini, S.: Discovering Service Compositions that Feature

a Desired Behaviour. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC

2007. LNCS, vol. 4749, pp. 56–68. Springer, Heidelberg (2007)

21. Berardi, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis

of Underspecified Composite e-Services based on Automated Reasoning. In: Proc.

of ICSOC (2004)

22. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via

planning in asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

23. Klush, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning

with OWLS-Xplan. In: Proc. of the AAAI Fall Symposium on Agents and the

Semantic Web (2005)

24. Constantinescu, I., Binder, W., Faltings, B.: Service Composition with Directories.

In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 163–177. Springer,

Heidelberg (2006)

25. Liu, Z., Ranganathan, A., Riabov, A.: Modeling Web Services using Semantic

Graph Transformation to Aid Automatic Composition. In: Proc. of ICWS. (2007)

26. Zheng, X., Yan, Y.: An Efficient Web Service Composition Algorithm Based on

Planning Graph. In: Proc. of ICWS, pp. 691–699 (2008)

27. Melliti, T., Poizat, P., Ben Mokhtar, S.: Distributed Behavioural Adaptation for

the Automatic Composition of Semantic Services. In: Fiadeiro, J.L., Inverardi, P.

(eds.) FASE 2008. LNCS, vol. 4961, pp. 146–162. Springer, Heidelberg (2008)

28. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.

Journal of Systems and Software 74(1), 45–54 (2005)

50 P. Poizat and Y. Yan

29. Canal, C., Poizat, P., Salaün, G.: Model-based Adaptation of Behavioural Mis-

matching Components. IEEE Transactions on Software Engineering 34(4), 546–563

(2008)

30. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based

architectures. Science of Computer Programming 71(3), 181–212 (2008)

31. Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning.

In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,

pp. 530–537. Springer, Heidelberg (2008)

32. Yan, Y., Poizat, P., Zhao, L.: Repairing service compositions in a changing world.

In: Proc. of SERA (2010)

33. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-

tation for ws-bpel. In: Proc. of WWW, pp. 815–824 (2008)

Performance Prediction of Service-Oriented
Systems with Layered Queueing Networks

Mirco Tribastone, Philip Mayer, and Martin Wirsing

Institut für Informatik

Ludwig-Maximilians-Universität München, Germany

{tribastone,mayer,wirsing}@pst.ifi.lmu.de

Abstract. We present a method for the prediction of the performance
of a service-oriented architecture during its early stage of development.

The system under scrutiny is modelled with the UML and two pro-

files: UML4SOA for specifying the functional behaviour, and MARTE

for the non-functional performance-related characterisation. By means

of a case study, we show how such a model can be interpreted as a

layered queueing network. This target technique has the advantage to

employ as constituent blocks entities, such as threads and processors,

which arise very frequently in real deployment scenarios. Furthermore,

the analytical methods for the solution of the performance model scale

very well with increasing problem sizes, making it possible to efficiently

evaluate the behaviour of large-scale systems.

1 Introduction

Service-oriented architectures (SOAs) pose challenging problems regarding the
evaluation of their performance. Approaches based on field measurements are
problematic when systems distributed on a large scale are to be assessed. In
many cases, parts of the system are not directly accessible to the engineer, per-
haps because they employ third-party services. Even if the whole system was
accessible, profiling may turn out to be an unduly costly exercise. However, dur-
ing early stages of the development process, the engineer may content herself
with some, perhaps approximate and less expensive, prediction of the perfor-
mance of the system. A predictive model is often expressed as a mathematical
problem. This has the advantage that one can easily tune its parameters so as
to carry out analyses such as capacity planning, i.e., optimising the amount of
processing capacity to satisfy some assigned quality-of-service guarantees.

This is the topic addressed in this paper. Specifically, we are concerned with
situations which employ model-driven development techniques for the specifica-
tion of the functional behaviour of SOAs. We consider a system modelled with
UML4SOA [14], a UML profile which allows behavioural specifications of services
and service orchestrations by using activities and composite structure descrip-
tions, modelling the interconnections between services. The model is augmented
with elements that specify the (intended or predicted) performance character-
istics of the system. To this end, we adopt MARTE [16], another UML profile

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 51–65, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 M. Tribastone, P. Mayer, and M. Wirsing

which extends behavioural UML specifications by adding timing properties. Fur-
thermore, the model is accompanied by a deployment specification which em-
phasises the processing capacity of the computing platform on which the SOA is
run. In this manner, a UML4SOA model becomes amenable to translation into
a performance model as a layered queueing network (LQN) [7].

The motivation for the choice of LQNs is twofold. First, the LQN model
features basic elements which have semantics close to corresponding elements
of UML activities and behaviours in general. Indeed, research pursued in this
direction has led to an abstract model of UML behaviours which can be used to
automate the process of extracting an underlying LQN performance model [18].
Second, the analytical methods available for LQNs are very scalable with respect
to increasing problem sizes. This makes this approach particularly convenient
when the modeller wishes to predict the performance of large-scale SOAs, whose
analysis would be otherwise computationally difficult when using approaches
such as simulation or discrete-state models with explicit state-space enumeration.

The approach taken for the extraction of the LQN model is discussed by means
of a case study and a numerical evaluation gives examples of the kinds of indices
of performance that can obtained and how those can be interpreted in terms of
the elements of the UML4SOA model.

Related Work. The general line of research followed by the present work is that on
early-stage prediction of performance characteristics of software systems (see [1]
for an excellent survey), with focus on designs of SOAs within the context of
the EU Sensoria project [12]. In particular, it is most closely related to [8],
where UML4SOA was translated into the stochastic process algebra PEPA [10].
In that paper, the profile for MARTE was also used for performance annotation
although the translation did not take into account deployment information. In
effect, the resulting model was based on an infinite-server assumption, i.e., it
was assumed that the system had as much processing capacity as it required. In
this context, delays were only due to the clients contenting for a limited number
of software threads. Conversely, the translation proposed here does model pro-
cessing capacity explicitly — in fact its crucial role in the overall performance
of the system will be exemplified in the numerical evaluation of the case study.
LQNs were also considered in [11] as the target performance description of the
Palladio Component Model [4].

Paper Organisation. Section 2 gives a brief overview of UML4SOA and Section 3
discusses the case study. The main concepts of the LQN model are overviewed
in Section 4. Section 5 illustrates the translation of UML4SOA into LQN and
Section 6 provides an example of a numerical evaluation of the case study. Finally,
Secion 7 concludes the paper with pointers for future research.

2 Modelling Services in UML4SOA

The Unified Modelling Language (UML) [15] is a well-known and mature lan-
guage for modelling software systems with support ranging from requirement

Performance Prediction of Service-Oriented Systems 53

modelling to structural overviews of a system down to behavioural specifica-
tions of individual components. However, the UML has been designed with
object-oriented systems in mind, thus native support and top-level constructs
for service-oriented computing such as participants in a SOA, modelling service
communication, and compensation support are missing. As a consequence, mod-
elling SOA systems with plain UML requires the introduction of technical helper
constructs, which degrade usability and readability of the models.

Adding service functionality to UML is currently under investigation in both
academia and industry. Static aspects of service architectures are addressed
in SoaML [17], an upcoming standard of the OMG for the specification of
service-oriented architectures. For describing the behaviour of services, we have
introduced the UML4SOA profile [14] which allows the description of service
behaviour in the form of specialised UML activities.

UML4SOA is built on top of the Meta Object Facility (MOF) metamodel
and is defined as a conservative extension of the UML2 metamodel. For the
new elements of this metamodel, a UML profile is created using the extension
mechanisms provided by the UML. The principle followed is that of minimal
extension, i.e. to use UML constructs wherever possible and only define new
model elements for specific service-oriented features and patterns, thus increasing
readability and conciseness of the resulting models and diagrams.

The core of the UML4SOA profile considered in this paper is based on the
the following two concepts:

Communication Primitives. UML4SOA extends the classic UML communica-
tion actions with four specialised actions for service communication: «send»,
«receive», «send&receive», and «reply». As the names suggest, these actions are
used to model sending a call to a remote service, receiving a call from a remote
service, performing both in one step, and replying to a previous call from a re-
mote service, respectively. Specialised pins may be added to each action. Most
importantly, the link (lnk) pin indicates the remote service (or more specifically,
the port where the service is attached) the current action is targeted at. The send
(snd) and receive (rcv) pins indicate from which variables or variable contents to
retrieve, or in which variable to place data sent or received.

Compensation. Services are often used to implemented long-running transac-
tions, such as (parts of) business processes. Compensation is a mechanism for
undoing successfully completed work of a service if, in the course of later transac-
tions, an error occurs and the complete process must be rolled back. UML4SOA
lifts the specification and invocation of compensation handlers up to a first-level
entity of UML activities. Instead of using standard activities and structured ac-
tivity nodes, UML4SOA introduces the concept of a «serviceActivity» to which
handlers can be attached using edges; in the case of compensation, of a «com-
pensationEdge». A compensation handler can be invoked with the new actions
«compensate» and «compensateAll».

In this paper, the UML4SOA extensions to the UML are used to model the
mobile payment case study in the next section. In order to keep the example

54 M. Tribastone, P. Mayer, and M. Wirsing

small and simple, only the first of the above-mentioned three core features is used
(communication primitives). For more information on UML4SOA, the interested
reader is referred to the UML4SOA specification [13].

3 Mobile Payment Case Study

The case study in this paper is taken from the domain of financial transactions.
It models a mobile payment gateway which allows customers to pay with their
mobile communication device, such as a phone. The system is implemented using
a collection of services which interact with one another to complete a payment
request from a customer. The architecture of the system is shown in Figure 1.

The main service is the MobilePaymentGateway shown in black. A client
(MobileDevice) can use this service to perform a payment operation. The gateway
first authenticates the customer using the AuthenticationService and, if the au-
thentication is successful, performs the payment using the PaymentService. The
last two services use additional services to fulfill their tasks.

Three of the services present in the system are actually orchestrations of ser-
vices. These services have been modelled using UML4SOA as shown in Figure 2;
from left to right, the modelled services are the MobilePaymentGateway, the Au-
thenticationService, and the PaymentService.

Mobile Payment Gateway. As the name suggests, the gateway is the main en-
trance point for the customer to the payment service. An instance of this service
is started when a paymentRequest call from the customer is received; the link pin
indicates that the call must come through the the device port. In the receive pin,
the call payload target is specified. In this case, the data attached to the call is
to be placed in the variable payment.

The gateway proceeds to authenticating the customer by using the Authen-
ticationService which is attached to the authService port. If authentication fails,
an error is returned to the customer. Otherwise, the payment is delegated to

Fig. 1. Architecture of the Case Study

Performance Prediction of Service-Oriented Systems 55

Fig. 2. Behaviour of the three orchestrations in the Payment Case Study

56 M. Tribastone, P. Mayer, and M. Wirsing

the PaymentService attached to the payService port: This service requires both
the customer and the payment information. Finally, the result of the payment
operation is returned to the client.

Authentication Service. The authentication service attempts to authenticate the
customer with the system to ensure that the customer is allowed to use the
service. For maximum security, both an in-house and an external authentication
service are contacted in parallel: The result is only positive if both services agree.
Note that the client port used in the link pins of the first and last method refers
to the mobile gateway service on the left.

Payment Service. The payment service is invoked last, and tries to withdraw
the appropriate amount of money from the customer’s account. Depending on
the amount, two different services are used. If the amount is less than 10, a
micro-payment service is used, which aggregates several small payments until
the customer is billed. If the amount is larger than 10, the amount is directly
drawn from the customer’s account via the bank. The micro-payment service
has the advantage of performing faster, but cannot be used for large payments.

Summarising, the mobile payment gateway enables customers to perform a
payment operation. The gateway and its invoked services have to consider a
series of constraints to carry out this task. Overall, seven services and one client
take part in this SOA.

4 The Layered Queueing Model

The Layered Queueing Network (LQN) model is an extension of classical queue-
ing networks (e.g., [9,3]). Its primitives are entities that re commonly present in
distributed computing systems, such as multi-threaded servers, multi-processor
hardware, and inter-process communication via synchronous and asynchronous
messages. The model can be solved via stochastic simulation, or more efficiently
through approximate techniques which are known to be accurate (i.e., usually
within 5%) and scalable with increasing problem sizes (e.g., [5,2]). The analytical
methods will be preferred over stochastic simulation in the numerical evaluation
conducted in Section 6. In general, they seem more appropriate when evaluating
large-scale models such as SOAs. The remainder of this section gives an informal
and brief overview of the LQN model, with particular emphasis on the notions
that will be employed to analyse the case study presented in this paper. This
description makes references to the graphical notation for LQNs. The reader
may wish to consult Figure 5 for an example of such a representation. For more
details on the LQN model, in addition to [7], the interested reader is referred
to [6] which provides a tutorial and documents the functionality implemented in
the Layered Queueing Network Solver tool.

The LQN model comprises the following elements.

Performance Prediction of Service-Oriented Systems 57

Task. A task usually represents a software component that is capable of serving
different kinds of requests. It is represented graphically as a stacked parallelo-
gram and is associated with a multiplicity which models the number of concur-
rent instances of the task available at runtime. For instance, if the task models
a multi-threaded application, then its multiplicity is the size of the thread pool.

Processor. A task is deployed onto a processor element, which is denoted graph-
ically by a circle connected to the task. Its multiplicity represents the number
of parallel processors available. Different tasks may be deployed on the same
processor.

Entry. An entry is a kind of service exposed by a task. It is depicted as a small
parallelogram in the top area inside the task. In the remainder of this paper we
shall be concerned with single-entry tasks only.

Activity. An activity may be regarded as the basic unit of computation of the
LQN model. A directed graph whose nodes are activities (drawn as rectangles)
expresses the dynamic behaviour of an entry. This graph — called the execution
graph — is shown inside the task’s parallelogram where the entry resides. An
activity denotes some computation time required on the processor on which
its task is deployed. This time is assumed to be exponentially distributed with
expectation specified within square brackets in the activity’s rectangle. Activities
may be connected through nodes to model the following behaviour:

– Sequential behaviour is specified by two activities being connected through
an edge.

– Probabilistic choice (denoted by a small + circle) performs one of the ac-
tivities connected by the outgoing edges according to some probability mass
function, specified through labels on the outgoing edges.

– Fork/Join (denoted by a small & circle): a fork executes in parallel all the
activities reached by its outgoing edges whereas a join waits until all activities
connected through its incoming edges terminate.

Inter-process Communication. Activities within one task may invoke entries of
another task. Service invocation is represented graphically by an solid arrow
which connects the activity with the invoked entry. The arrow is labelled with a
number within parentheses which denotes the number of invocations performed
per execution of one activity. The semantics for synchronous invocation is that
the calling activity suspends until the execution graph of the callee terminates.
Termination of an execution graph is denoted by a dotted arrow pointing back
to the graph’s entry. For an asynchronous invocation, the invoked activity is exe-
cuted concurrently with the execution graph of the calling activity. Synchronous
invocations are depicted with a solid arrowhead whereas asynchronous ones are
depicted with an open arrowhead.

Reference Task. A task with no incoming service invocation is called a reference
task and models the system’s workload.

58 M. Tribastone, P. Mayer, and M. Wirsing

Fig. 3. Annotated deployment diagram for the case study

5 LQN Models for UML4SOA

5.1 Performance Annotations with MARTE

As discussed in Section 1, the LQN model requires further quantitative informa-
tion on the required execution times of the activities, which is not available in
the UML nor in the UML4SOA profile. To this end, we adopt the same approach
taken in [8] where the profile for MARTE (cfr. [16]) is employed to augment the
model the timing specifications.

Deployment Information. In the following, we assume that the UML4SOA model
contains a deployment specification in which each of the services is associated
with a node. Each node must be stereotyped with «GaExecHost», which in-
dicates a host that is capable of carrying out computation. In particular, the
property resMult will be used to extract the processor multiplicity in the LQN
performance model. The artifacts deployed on these nodes are stereotyped with
«SchedulableResource». The name of the artifact is referenced by the service
activity which implements its behaviour. An example of a suitable deployment
diagram is shown in Figure 3. In this scenario each service is run on a sepa-
rate single-processor machine. Therefore, if the services are executed as multi-
threaded applications, all threads will contend for the CPU time of the same
processor. This is one potential source of delays (i.e., queueing effects), as will
be discussed in more detail in Section 6.

Stereotyping of Service Activities. We now discuss how each service activity is to
be annotated with MARTE stereotypes. Figure 4 shows an excerpt of the com-
plete model regarding the annotations on the MobilePaymentGateway service.
The other two services are annotated similarly and are not shown due to space
constraints. Each UML4SOA service activity is stereotyped with «PaRunTIn-
stance», indicating that the activity is an instance of a runtime object. The

Performance Prediction of Service-Oriented Systems 59

Fig. 4. The service activity for the mobile payment gateway annotated with the profile
for MARTE

crucial property of this stereotype is poolSize which holds an integer that in-
dicates the number of available threads at runtime. The property instance is
set to the corresponding name in the deployment specification. In the example,
MobilePaymentGateway is executed as a ten-thread application which runs on
MobileGatewayHost. Each node of a UML4SOA service activity is stereotyped
with MARTE’s «PaStep» with the property hostDemand set to (exp(<time>),
s), indicating the exponential distribution associated with that action. Because
of its probabilistic interpretation, as discussed later in this section, the outgoing
edges of a decision node must be stereotyped with «PaStep» with the property
prob set such that the sum across all edges equals one.

Workload specification. The «receive» action node which triggers the whole
system must be stereotyped with «GaWorkloadEvent», which describes the
dynamics of the arrival of the requests by clients. Thus, paymentRequest of
MobilePaymentGateway is stereotyped with «GaWorkloadEvent», whereas au-
thenticateCustomer and pay are not because these activities are not triggered

60 M. Tribastone, P. Mayer, and M. Wirsing

directly by users. The property pattern of this «GaWorkloadEvent» is set to
closed(population=<N>, extDelay=(exp(1/<think>),s)) to model a popu-
lation of N users of the service-oriented architecture which make payment re-
quests cyclically, interposing a think time of think seconds between successive
requests.

The uses of the profile for MARTE specified above are sufficient to derive the
LQN performance model from the UML4SOA specification, as discussed next.

5.2 Extracting the LQN Model

We will focus on the extraction of the LQN model from the specific case study
presented in the paper. In doing so, we will describe some patterns of translation
that can find a wider applicability. A more formal and general specification of
the meta-model transformation of UML4SOA (and the MARTE profile) to LQN
is the subject of ongoing work. For the sake of clarity, we find it more convenient
to present first the overall LQN model of the case study (in Figure 5) and then
guide the reader through the steps taken to obtain it.

Each «serviceActivity» is modelled as an LQN task, conveniently denoted
by the same name. The task multiplicity is inferred from the application of the
stereotype of «PaRunTInstance», as discussed above. The task is associated with
an LQN processor which is named after the node in the deployment specification
on which the «serviceActivity» is deployed. Each task has a single entry, named
after the «receive» action node that triggers the service. The execution graph
of an entry resembles closely the service activity in the UML model. Any action
node — except for the triggering «receive» node — is translated into an LQN
activity with execution demand taken from the «PaStep» stereotype application.
For instance, the «send&reply» node authenticateCustomer is modelled as a basic
LQN activity with execution demand equal to 0.100. (For ease of reference, basic
activities are named after their corresponding action nodes as well.) Decision
nodes are interpreted as probabilistic choices, with probabilities taken from the
«PaStep» application to their outgoing edges. UML’s forks and join are simply
translated into their LQN analogues.

The exchange of messages between services is modelled as an invocation of
external entries in the LQN model. In this paper we focus our attention on syn-
chronous messages which return a reply to the caller. In the UML4SOA model,
this corresponds to having action nodes stereotyped with «send&receive» in the
invoking service and a «reply» node which (in this case study) terminates the ser-
vice that is invoked. Therefore, the LQN activities corresponding to the «reply»
nodes present dotted arrows directed to the parent entry (e.g., see paymentCom-
pleted and authenticateCustomer).

The necessary information to translate the pattern of synchronous communi-
cation is gathered from the names of the lnk pins in the service activities and
from the architectural specification. Given a «send&receive» node, the name
of the lnk pin is used to find the corresponding edge which connects the two
communicating services in the composite structure specification. For example,
the lnk pin of the authenticateCustomer node is authService, which connects

Performance Prediction of Service-Oriented Systems 61

workloadClient
<N>

(1)

paymentRequest

authFailed
[0.010]

0.05 0.95

PClient
<N>

Mobile
GatewayHost

<1>

performPay

PaymentService <5>

microPayment
[0.050]

+ 0.80

Payment
ServiceHost

<1>

bankPayment
[0.500]

completed
[0.200]

pay
[0.300]

authenticateCustomer
[0.100] (1)

+

invoice
[0.200]

0.20

perform
Authenticate

Customer

AuthenticationService <5>

localCheck
[0.020]

&

Authentication
ServiceHost

<1>

externalCheck
[0.200]

&

finalise
[0.100]

+

MobilePaymentGateway <10>

(1)

think
[120.00]

Fig. 5. Layered Queueing Network model of the Payment case study

MobilePaymentGateway to AuthenticationService. If the connected component has
an explicit behavioural specification in terms of «serviceActivity» — as is the
case for AuthenticationService — then the LQN model will feature a synchronous
call (with multiplicity one) from the activity that models the «send&receive»
node to the entry of the invoked activity. Using the same example, the LQN
model has a synchronous invocation of the entry performAuthenticateCustomer
from the activity node authenticateCustomer.

62 M. Tribastone, P. Mayer, and M. Wirsing

There may be in the UML4SOA model invocations of external services which
are not given a behavioural specification — e.g., the externalCheck «send&receive»
node in AuthenticationService invokes some ExternalAuthenticationService of un-
specified behaviour. Such nodes will be translated as basic LQN activities which
do not make calls to other entries. In effect, this external invocation is abstracted
away in the LQN model and its impact on the performance of the system in en-
compassed in the execution demand, as specified in the «send&receive» node.

The specification of the system workload through the «GaWorkloadEvent»
is translated into an LQN reference task as follows. A task named Client is
created with one entry called workload. Its execution graph consists of a single
activity named think with execution demand equal to <think>. The task has
multiplicity N and is deployed on a processor with multiplicity N named PClient.
A synchronous message (with multiplicity one) connects think with the entry
corresponding to the action node with «GaWorkloadEvent», i.e., paymentRequest
in the case study.

5.3 Indices of Performance

The analysis techniques available for LQNs provide the modeller with a wide
range of quantitative estimates on the long-run (or steady-state) behaviour of
the system, i.e., the performance attained after a sufficiently long period of time
that the system was started. This appears to be an appropriate characterisation
of the performance of real-life service-oriented architectures, which are usually
on-line continuously. In this paper we put emphasis on two such indices:

– The response time for a client, measured as the average time it takes for the
system to process a payment request. The response time does not include the
think time by the client, but it does include all the execution times of the
basic activities that are involved during the processing of a request and the
time (if any) spent while waiting for the system resources (e.g., threads and
processors) to be available.

– The processor utilisation, which measures the average number of processors
in a multi-processor component that are busy. Alternatively, this value, if
normalised with respect to the total multiplicity of the processor, can be
interpreted as the percentage of time that a processor is busy. Analogously,
the task utilisation measures the average number of threads that are busy.

In the following section, these two indices will be used in a numerical evaluation
of the performance of our case study. Another notable performance metric —
not discussed further in this paper due to space constraints — is throughput, i.e.,
the rate at which an entry (or an activity) is executed.

6 Numerical Example

The performance study addressed in this section is a typical dimensioning prob-
lem, in which the modeller wishes to find a suitable configuration of the system

Performance Prediction of Service-Oriented Systems 63

0

1

2

3

4

5

6

7

8

9

10

1 10 20 50 100 200

(a) Response times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 20 50 100 200

(b) Task utilisations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 20 50 100 200

(c) Processor utilisations

0

1

2

3

4

5

6

7

8

9

10

200 250 300 310 320

(d) Response times of the tuned model

Fig. 6. Numerical results. x-axis: population sizes. The y-axis for response times are
in time units, whereas utilisation is a dimensionless metric between 0 and 1. The

markers in (b) and (c) are related with the UML4SOA components as follows. Triangle:

MobileGatewayHost; Square: AuthenticationServiceHost; Circle: PaymentServiceHost.

in order to satisfy some quality-of-service criteria. In the following, we assume for
the sake of simplicity that the execution demands are given and fixed, as shown
in Figure 5. Thus, the parameters that may be changed are the multiplicities of
the tasks and of the processors in the model. Perhaps the most intuitive index of
performance is the average response time experienced by a client; this index is
shown in Figure 6a for increasing system workload, represented by the property
of population = N in the UML model.

The baseline N = 1 is of interest because it gives the minimum response time
attainable, since there is no contention for resources in the system. The curve
shows a typical profile, characterised by increasing response times as function
of N , with sharp deterioration after some critical point. In this example, the
response time at N = 200 is about six times as much as the baseline value.

64 M. Tribastone, P. Mayer, and M. Wirsing

The normalised utilisation profiles for the tasks and the processors, shown in
Figures 6b and 6c, respectively, offer more insight into where the degradation of
performance arises from. Clearly, the utilisations increase with increasing work-
load, however those related with AuthenticationServiceHost and PaymentService-
Host do not appear to be problematic since they are at most about 50% in the
worst case N = 200. Instead, the processor utilisation of MobileGatewayHost is
about 91%, indicating a heavy utilisation of this resource.

Taken together, these results suggest that an effective route toward perfor-
mance improvement is to add more processing capacity to MobileGatewayHost.
Figure 6d shows the response times when the node is deployed on a two-processor
machine (instead of the original single-processor one). The response time at
N = 200 is now about one third of the original model, and the system can sus-
tain up to 310 clients with an average response time that would be delivered
with only 200 clients in the original configuration.

7 Conclusion

We discussed a methodology for extracting a layered queueing network perfor-
mance model from a service-oriented architecture description in UML4SOA. The
level of abstraction of LQNs appears convenient for the prediction of the quanti-
tative behaviour of a system under scrutiny. The services are modelled as multi-
threaded applications communicating with each other. The explicit modelling of
the deployment scenario puts constraints on the level of threading and on the
processing power of the hardware on which the application is run. A numerical
evaluation of the case study has shown how marginal changes to the deployment
can have a significant impact on the predicted performance. It is our opinion
that the possibility of effortless experimentation with different configurations
and a generally deeper insight into the system’s dynamics outweigh the addi-
tional modelling effort required to augment the model with performance-related
annotations.

In order to widen the applicability of this methodology and make it available
to practitioners in SOAs, further research needs to be carried out. It is our plan
to provide a precise, formal characterisation of the meta-model transformation
presented in this paper, which would also support other UML4SOA constructs,
such as compensations and event handling which were not considered here. On
a more practical level, we would like this transformation to be implemented as
a module in leading UML modelling tools to be able to experiment with larger,
real-world service-oriented applications.

Acknowledgement. This work was supported by the EU-funded project Senso-

ria, IST-2005-016004.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance

Prediction in Software Development: A Survey. IEEE Trans. Software Eng. 30(5),

295–310 (2004)

Performance Prediction of Service-Oriented Systems 65

2. Bard, Y.: Some extensions to multiclass queueing network analysis. In: Third In-

ternational Symposium on Modelling and Performance Evaluation of Computer

Systems, pp. 51–62. North-Holland, Amsterdam (1979)

3. Baskett, F., Mani Chandy, K., Muntz, R.R., Palacios, F.G.: Open, closed, and

mixed networks of queues with different classes of customers. J. ACM 22(2),

248–260 (1975)

4. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with

the palladio component model. In: Proceedings of the 6th international workshop

on Software and performance, vol. 65. ACM, New York (2007)

5. Mani Chandy, K., Neuse, D.: Linearizer: A heuristic algorithm for queueing network

models of computing systems. Commun. ACM 25(2), 126–134 (1982)

6. Franks, G., Maly, P., Woodside, M., Petriu, D., Hubbard, A.: Layered Queueing

Network Solver and Simulator User Manual (2005),

http://www.sce.carleton.ca/rads/lqns

7. Franks, G., Omari, T., Murray Woodside, C., Das, O., Derisavi, S.: Enhanced mod-

eling and solution of layered queueing networks. IEEE Trans. Software Eng. 35(2),

148–161 (2009)

8. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-

functional properties in the model-driven development of service-oriented systems.

Software and System Modeling (2010)

9. Gordon, W.J., Newell, G.F.: Closed queuing systems with exponential servers. Op-

erations Research 15(2), 254–265 (1967)

10. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Uni-

versity Press, Cambridge (1996)

11. Koziolek, H., Reussner, R.: A model transformation from the palladio component

model to layered queueing networks. In: Kounev, S., Gorton, I., Sachs, K. (eds.)

SIPEW 2008. LNCS, vol. 5119, pp. 58–78. Springer, Heidelberg (2008)

12. Wirsing, M., et al.: Sensoria: Engineering for Service-Oriented Overlay Computers.

MIT Press, Cambridge (2009)

13. Mayer, P., Koch, N., Schroeder, A., Knapp, A.: The UML4SOA Specification. Spec-

ification, LMU Munich (2009),

http://www.uml4soa.eu/wp-content/uploads/uml4soa_spec.pdf.

14. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-Driven Service Orchestra-

tion. In: EDOC, pp. 203–212. IEEE Computer Society, Los Alamitos (2008)

15. Object Management Group (OMG): UML Superstructure Specification 2.1.2. Tech-

nical report, OMG (2007),

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/ (last accessed on

May 5, 2009)

16. Object Management Group (OMG). A UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded systems, Beta 2. Technical report, Object Man-

agement Group (2008)

17. Object Management Group (OMG). Service oriented architecture Modeling Lan-

guage(SoaML), Beta 1. Technical report, Object Management Group (2009)

18. Murray Woodside, C., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Meseguer, J.:

Performance by unified model analysis (PUMA). In: WOSP, pp. 1–12 (2005)

http://www.sce.carleton.ca/rads/lqns
http://www.uml4soa.eu/wp-content/uploads/uml4soa_spec.pdf
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Error Handling: From Theory to Practice�

Ivan Lanese1 and Fabrizio Montesi2

1 Focus Team, Università di Bologna/INRIA, Bologna, Italy

lanese@cs.unibo.it
2 Focus Team, Università di Bologna/INRIA,

Bologna and italianaSoftware s.r.l., Italy

fmontesi@italianasoftware.com

Abstract. We describe the different issues that a language designer has
to tackle when defining error handling mechanisms for service-oriented

computing. We first discuss the issues that have to be considered when

developing error handling mechanisms inside a process calculus, i.e. an

abstract model. We then analyze how these issues change when moving

from a process calculus to a full-fledged language based on it. We consider

as an example the language Jolie, and the calculus SOCK it is based upon.

1 Introduction

Nowadays computing systems are made of different interacting components, fre-
quently heterogeneous and distributed. Components exploit each other function-
alities to reach their goals, communicating through some network middleware.
Components may belong to different companies, and they are not always reli-
able. Also, the underlying network infrastructure may be unreliable too, thus
connections may break and components may disconnect. Nevertheless, applica-
tions should provide reliable services to their users. For these reasons, it becomes
more and more important to deal with unexpected events, so to be able to man-
age them and get correct results anyway. That is, error (or fault) handling is
today a major concern.

Service-oriented computing is a programming paradigm for developing com-
plex distributed applications by composing simpler, loosely coupled services.
This is implemented as a set of standards allowing to describe service interface
and behavior, to look for services to perform the task at hand, to invoke them
and to compose them so to produce the desired result. What said above about
unexpected events holds, in particular, in the case of services. Thus different
techniques and primitives for fault handling have been proposed in this field.
For instance, WS-BPEL [21], the de-facto standard for web service composition,
provides scopes, fault handlers, compensation handlers and termination handlers
to deal with unexpected events.

However, the problem of finding good programming abstractions and primi-
tives for programming reliable applications out of unreliable services is far from
being solved. Take WS-BPEL for instance. Its specification is informal and un-
clear, and the interactions between the different primitives not clarified. This is
� Research supported by Project FP7-231620 HATS.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 66–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Error Handling: From Theory to Practice 67

witnessed by the fact that different implementations of WS-BPEL behave in dif-
ferent ways on many programs [14]. To avoid ambiguities, to clarify the expected
behavior of programs, and to prove properties of the available mechanisms, for-
mal methods are needed. Thus, there have been many proposals trying to specify
WS-BPEL semantics in a formal way [16,15,22], and more in general proposing
primitives for modeling web services and their fault handling mechanisms (see
the related work paragraph below).

However, most of these proposals are at a very abstract level, and quite far
from real programming languages. Thus the problem of exporting primitives
and techniques from high-level theoretical models to full-fledged programming
languages usable to program service-oriented applications in an industrial con-
text has rarely been tackled, even less solved. This paper aims at describing
Jolie [20,9], a language for programming service-oriented applications built on
top of the calculus SOCK [4], which has been developed and exploited in practice
by company italianaSoftware s.r.l. In particular, we will concentrate on its mech-
anisms for error handling, detailing the reasoning that drove their development,
from the theoretical calculus SOCK to the full language Jolie.

SOCK and Jolie are a good choice to exemplify our ideas. First, they pro-
pose a novel approach to error handling with original features such as dynamic
handler update and automatic fault notification. Also, Jolie has been developed
closely following the semantics of SOCK, in particular as far as its error handling
mechanisms are concerned.

Related works. There are many works in the literature on error handling for
concurrent systems, such as service-oriented computing ones. Many of them
are based on process calculi. The mechanisms they propose range from basic
constructs such as the interrupt of CSP [8] and the try-catch found in most
programming languages, to complex proposals such as the ones of Webπ [13],
StAC [5], SAGAs calculi [3], dcπ [24], SOCK [6], Those models differ on
many respects, ranging from flow composition models, where basic activities are
composed and compensated (e.g., StAC or SAGAs calculi), to calculi taking into
account communication and distribution, aiming at modeling distributed error
handling (e.g., Webπ or SOCK). Another thread of research [2,11,12] tries to
compare the expressive power of different models.

Our work has however a different perspective: we are not proposing new mech-
anisms nor comparing existing ones, but analyzing the requirements that all those
mechanisms have to satisfy. We are not aware of other papers on this topic.

Structure of the paper. Section 2 introduces the basics of SOCK, without consid-
ering error handling. Section 3 discusses the main aims that should be reached
when developing error handling mechanisms, considering both the cases of a
calculus and of a full-fledged language. Section 4 presents the main features of
SOCK for error handling and illustrates how it has tried to fulfill the require-
ments in Section 3. Section 5 does the same analysis for the peculiar mechanisms
of Jolie. Finally, Section 6 concludes the paper.

68 I. Lanese and F. Montesi

Table 1. Service behavior syntax

ε : : = o@z(y) | or@z(y, x) ε : : = o(x) | or(x, y, P)

P, Q, . . . : : = 0 null process

ε output ε input

x := e assignment if χ then P else Q conditional

P ;Q sequential comp. P |Q parallel comp.∑
i∈W εi;Pi non-det. choice while χ do (P) iteration

2 SOCK

In this section we introduce SOCK [4], the calculus underlying Jolie [20,9]. We
leave to next sections the description of its approach to fault handling, concen-
trating here on its standard behavior.

SOCK is a three-layers calculus. The behavior layer describes how single ser-
vices act and communicate. The engine layer describes how the state of services
is stored and how their sessions are instantiated and managed. The network layer
allows to compose different engines in a network.

Error handling is mostly dealt with at the behavior layer, thus we will con-
centrate on it. We refer to [4] for a description of the other layers.

The language for defining behaviors in SOCK is inspired both from concur-
rent calculi, featuring for instance a built-in parallel composition operator, and
imperative languages, providing for instance assignment (SOCK is stateful) and
sequential composition.

A main point in SOCK behaviors concerns communication. SOCK behaviors
communicate with each other using two modalities (inspired by WSDL [25]):
one-way, where one message is sent, and request-response, where a message is
sent and a response is computed and sent back.

To define the syntax of SOCK behaviors we consider the following (disjoint)
sets: V ar, ranged over by x, y, for variables, V al, ranged over by v, for values,
O, ranged over by o, for one-way operations, and OR, ranged over by or for
request-response operations. Also, we use z to range over locations. The syntax
for processes is defined in Table 1. There, 0 is the null process. Outputs can
be notifications (for one-way communication) o@z(y) or solicit-responses (for
request-response communication) or@z(y, x) where o ∈ O, or ∈ OR and z is
a location. Notification o@z(y) sends a one-way communication to operation o
located at location z (locations of behaviors are defined at the network layer),
and variables y contain the data to be sent. Similarly, solicit-response or@z(y, x)
sends a request-response communication to operation or located at location z,
communicating values in variables y, and then waits for an answer. When the
answer is received, received values are assigned to variables in x. Dually, inputs
can be one-ways o(x) or request-responses or(x, y, P) where the notations are
as above. Additionally, P is the process to be executed upon request to pro-
duce the response. Assignment x := e assigns the result of the expression e to

Error Handling: From Theory to Practice 69

the variable x. We do not present the syntax of expressions: we just assume
that they include the arithmetic and boolean operators, values, variables and
arrays. Conditional is written as if χ then P else Q. P ; Q and P |Q are sequen-
tial and parallel composition respectively, whereas

∑
i∈W εi; Pi is input-guarded

non-deterministic choice. Finally, while χ do (P) models iteration.

Example 1. Let us consider a (very simplified) service for performing money
transfers between two accounts. Such a service can be invoked by:

payr@bank(〈src, dest, amount〉, 〈transId〉)
where src is the source account, dest the destination account, amount the
amount of money to be moved and transId a transaction Id to be used for
later referring to the transaction.

A possible implementation for the service (again, very simplified) could be:

payr(〈src, dest, amount〉, 〈transId〉,
acc[src] := acc[src] − amount;
acc[dest] := acc[dest] + amount;
gen − idr@bank(〈src, dest, amount〉, 〈transId〉))

We assume that this behavior is located at location bank and that there is
another service at the same location, gen − id, which takes care of generating
the transaction Id. Also, acc is an array containing accounts’ credit.

3 The Quest for Error Handling Primitives

As described in the Introduction, the problem of finding good programming
primitives for error handling is hard, as witnessed by the huge number and vari-
ety of proposals that have been put forward in the literature. Even considering
a unique kind of model, many variants exist. SAGAs calculi [3,2,10] for instance
may differ on whether parallel flows of computation are interrupted when an
error occurs, on whether the compensation is centralized or distributed, and on
whether the order of compensations depends on the static structure of the term
or on the dynamic execution.

The difficulty in finding the best model for error handling in service-oriented
computing is due to the many concerns such a model has to answer:

full specification: the model should define the behavior of error handling prim-
itives in all the possible cases, including when the management of different
errors interfere;

expressiveness: the available primitives should allow to specify all the error
handling policies that may be necessary to program complex applications;

intuitiveness: the behavior of the provided primitives should match the intuition
of programmers, allowing to understand the behavior of the applications;

70 I. Lanese and F. Montesi

minimality: we look for the simplest possible set of primitives able to model
the required behavior, and, in particular, the different proposed mechanisms
should be as much orthogonal as possible.

We describe in the next section how the error handling mechanisms proposed
for SOCK have tried to satisfy the requirements above.

However, when moving from theoretical models to full-fledged languages,
while most of the concerns above remain (actually, intuitiveness becomes even
more important, while minimality is less critical), new ones emerge. The main
ones are the following:

usability: the proposed primitives should be easy to use for the programmers
when developing complex applications: while this is connected to intuitive-
ness and expressiveness, this goes beyond. For instance, this includes the de-
velopment of suitable macros or additional primitives to simplify the writing
of common patterns. Note that this is in contrast with the concern for mini-
mality, which is more important in theoretical models than in real languages;

robustness: most theoretical models assume perfect communications, and do
not consider low level failures, however these failures may happen in practice,
and should be taken into account;

compatibility: in practice applications do not live alone, but they are immersed
in a world including the network middleware and other applications, possibly
developed using different languages and technologies: thus, in real languages,
mechanisms should be provided to interact with other entities, which may
follow different policies for error handling.

These additional concerns force the error handling approaches used in practice
to be different, and in general more complex, w.r.t. the ones considered in the-
oretical models. This makes difficult to export the results obtained working on
theoretical models (expressiveness results, property guarantees) to full-fledged
languages. We will describe in Section 5 how those practical concerns have in-
fluenced the development of Jolie, discussing whether properties of SOCK are
preserved in Jolie.

4 Error Handling in SOCK

Error handling in SOCK has been inspired by error handling in WS-BPEL, but
explored some new directions, in particular concerning dynamic handler update
and automatic fault notification.

As in WS-BPEL, error handling in SOCK is based on the concepts of fault,
scope, fault handler, termination handler and compensation handler. A fault is
an unexpected event that causes the interruption of the normal flow of compu-
tation. A scope defines the boundaries for error handling activities. In particu-
lar, each scope defines handlers specifying how to manage internal and external
faults. A handler is a piece of code specifying how to react to particular faults.
We consider three kinds of handlers: fault handlers specify how to deal with

Error Handling: From Theory to Practice 71

Table 2. Service behavior syntax

P, Q, . . . : : = . . . standard processes

{P}q scope inst(H) install handler

throw(f) throw comp(q) compensate

cH current handler or@z(y, x,H) solicit-response

internal faults, termination handlers specify how to smoothly terminate a scope
when an external fault reaches it, compensation handlers specify how to undo
the activities performed by a scope that already terminated with success, if this
is needed for error recovery. All these concepts are realized by extending the
syntax of SOCK with the primitives in Table 2. There f denotes a fault name
and q a scope name. Furthermore, H denotes a function from fault and scope
names to processes. We refer to [7] for a detailed description of the behavior of
the primitives, including the formal semantics.

As already said, a scope {P}q is the main mechanism for structuring error
handling. It has name q, and executes process P taking care of its faults. At
the beginning, it defines no policy for error handling: policies are specified dy-
namically by installing handlers using operation inst(H). The intended semantics
is that assigning a process P to a fault name f defines P as fault handler for
f , while assigning P to the name q of the scope defines P as its termination
handler. Handlers may replace or update previously defined handlers with the
same name. This is done using the placeholder cH (for current handler), that
during installation is replaced by the code of the old handler. Thus for instance
inst([f �→ cH |Q]) adds Q in parallel to the old handler for fault f .

Primitive throw(f) throws fault f : the fault propagates by killing the ongoing
activities around itself until it reaches a scope. Then the handler for the fault is
looked for: if it is available then it is executed, and fault propagation is stopped.
Otherwise the scope is killed, and the fault propagates to the outside. During
propagation, the fault may kill sibling scopes: in this case their termination
handler is executed to ensure smooth termination. All error handling activities
are executed in a protected way, thus ensuring that they are completed before
taking care of successive errors. During error handling, it may be necessary to
undo previously completed activities. To this end, compensation handlers are
used. Compensation handlers are defined when a scope successfully terminates,
and they correspond to the last defined termination handler. Thus, they are
available and they can be executed using primitive comp(q).

The last main point concerning error handling is related to the request-
response communication pattern. This communication pattern enforces a strong
relationship between the caller and the callee: for instance, if the callee gives
back no answer then the caller remains stuck. For this reason we want that er-
rors on the callee are notified to the caller. In particular, if there is a local fault
f in the callee, the same fault is sent back to the caller, where it is re-raised
as a local fault, triggering management of the remote fault. In particular, the
caller is guaranteed to receive either a successful answer or a fault notification
and thus do not get stuck (unless the callee diverges).

72 I. Lanese and F. Montesi

Example 2. Consider a slightly more refined version of the bank service in Ex-
ample 1, which checks first whether there is enough money in the source account,
and throws fault f otherwise.

payr(〈src, dest, amount〉, 〈transId〉,
if acc[src] ≥ amount then 0 else throw(f);
acc[src] := acc[src] − amount;
acc[dest] := acc[dest] + amount;
gen − idr@bank(〈src, dest, amount〉, 〈transId〉))

Thus, in case there is not enough money in the source account, the operation
will fail and fault f is thrown both at the callee and at the caller sides.

Faults in the caller may influence the communication pattern too: if there is a
failure which is concurrent to the solicit-response, different cases may occur. If
the fault happens before the solicit-response is started, the solicit-response is not
executed at all, and the remote partner is unaffected. If it is after instead, the
answer for the partner is waited for. If this is successful, meaning that the remote
partner has performed its task, then the local handler is updated according to
the handler update defined in the solicit-response primitive. Thus, this handler
update can take care of undoing the remote computation. If instead the remote
computation has failed, an error notification is received, and the local handler
update is not performed, since the remote computation had no effect. Also, the
remote fault is not propagated locally, since the local computation has already
failed.

Example 3. Consider again the service in Example 2. The client for such a service
has to manage fault f . It can be written for instance as:

{inst([f �→ ErrorMsg := ”Not enough money for the transfer”;
print@user(〈ErrorMsg〉)]);

payr@bank(〈src, dest, amount〉, 〈transId〉, [q �→ undo@bank(〈transId〉)])}q

Now, if everything goes fine, upon receipt of the answer, the handler for q is
installed, thus if later this scope has to be compensated, the undo of the payment
operation is requested. If instead a fault occurs on the remote side, the handler
is not updated and the undo will never be required. Instead, an error message
is sent to the user. Even if there is a local fault, the answer will be waited for,
and the handler update will be performed only if the answer is successful, thus
the termination handler for q will undo the payment iff it has actually been
performed.

4.1 Full Specification

The definition of the semantics of error handling (as well as of normal process-
ing), should cover all the possible cases. Questions such as:

Error Handling: From Theory to Practice 73

1. What happens if, while a fault is being managed, an external fault occurs?
2. What happens if both the caller and the callee of a request-response fail?
3. What happens if a fault handler causes a fault?

should not be left unanswered. Notice however that for informal specifications
such as WS-BPEL one [21], it is very difficult to check whether all the cases have
been specified. Instead, this is not normally a problem for formal specifications:
the only possible transitions are the ones defined by the model, and the model
fully describes what happens in each case (at worst, it specifies that no transition
is possible). This is for instance the case for SOCK semantics [6]. Considering
the questions above, it is easy to deduce the following answers:

1. The internal fault handler is executed in a protected way, thus the manage-
ment of the external fault has to wait for the completion of local recovery.

2. A fault notification is sent back from the callee to the caller, the handler
update specified by the solicit-response is not applied, but the remote fault
is not propagated to the caller.

3. The fault is propagated as usual, and dealt with by existing handlers. Note
that when the handler for fault f is executed, its definition is removed, thus
further faults with the same name should be dealt with by external scopes.

4.2 Expressiveness

The available primitives should be able to express all the policies that may be
necessary for programming applications. As stated, this is a very vague goal,
since it is quite difficult to guess which kinds of policies may be necessary. For
formal models, such a constraint is usually checked by relying on case studies
and on encodings. As for SOCK, it has been applied to the specification of the
Automotive [26] and Financial [1] case studies of the European project Senso-
ria [23], and the derived language Jolie is applied every day for programming
service-oriented applications such as, for instance, a web portal for managing
employer time sheets, VOIP service monitoring, and others. The results of these
tests may trigger refinements of the language for improving its expressive power.

Another way of assessing the expressive power of SOCK is via encodings. By
showing that another calculus can be encoded into SOCK, one shows that SOCK
is at least as expressive as the other calculus. This has been done [12] for instance
in the case of SAGAs. The results therein show that both static SAGAs with
interruption and centralized compensations [2] and dynamic SAGAs [12] can be
modeled into SOCK preserving some notion of behavior. This guarantees that
each policy that can be expressed in these flavors of SAGAs can also be expressed
in SOCK.

Another result concerning expressiveness is related to dynamic handler up-
date: it is easy to show that SOCK dynamic handler update can easily model
WS-BPEL static scopes. In WS-BPEL, each scope has statically associated a
fault handler Fi for each fault fi, a termination handler T and a compensation
handler C. Using dynamic handler installation, this can be simulated as follows:

74 I. Lanese and F. Montesi

{inst([f1 �→ F1, . . . , fn �→ Fn, q �→ T]); P ; inst([q �→ C])}q

In [11] it is shown that dynamic handler update is strictly more expressive than
both static recovery (as in WS-BPEL), and parallel recovery (where additional
pieces of handlers can be added only in parallel). Albeit this result can not
directly be applied to SOCK, since it is proved on a stateless calculus, this is
another hint of the expressive power of dynamic handler update.

4.3 Intuitiveness

This is one of the most important, yet difficult to reach, goals for a programming
language, and, in particular, for error handling mechanisms. Intuitiveness means
that the behavior of the primitives follows the intuition of the programmer (or,
better, of a programmer that has understood the basics of the approach). While
the formal specification of the calculus is normally quite complex to understand
for a programmer without specific background on formal methods, it is required
that such a programmer can learn how to program in the language by reading
some informal description (one has to resort anyway to the formal specification
to work out the behavior in the most complex cases). This becomes much easier
if the specification of the language is built on top of a few clear and orthogonal
concepts. Having a formal specification, one may guarantee that those intuitive
properties are actually valid in all the cases.

Let us consider as an example the case of SOCK scopes. Their behaviors can
be characterized by Property 1 below.

Property 1. A scope may either succeed and thus install its compensation han-
dler, or fail by raising a (unique) fault. Furthermore, if it succeeds, it will never
throw faults, and if it raises a fault it will never install its compensation.

Such a property clearly describes the intuition about scope outcomes, and in [6]
it is proved to hold for each SOCK process.

Other sample interesting properties of this kind valid for SOCK follows.

Property 2. A request-response that terminates its execution always sends back
an answer, either a successful one or an error notification.

Property 3. When a fault is triggered, there is no handler update that is ready
to be installed but has not been installed yet.

4.4 Minimality

When developing a calculus, one has to look for simplicity and minimality, avoid-
ing for instance redundant or overlapping primitives. This makes the calculus
more understandable and simplifies and shortens the proofs. In fact, some of the
most successful calculi in the literature such as CCS [17] and π-calculus [18], are
the most simple and compact way for modeling the desired features, interaction
for CCS and mobility for π-calculus.

Error Handling: From Theory to Practice 75

SOCK is different w.r.t. those calculi, since it is nearer to current technologies
(e.g., it is the only calculus featuring request-response), and thus more com-
plex than other calculi. However, each of its error handling primitives has a
well-defined and non-overlapping role. Take for instance the three kinds of han-
dlers. They take care of orthogonal features: internal faults for fault handlers,
external faults for termination handlers and undoing of complete activities for
compensation handlers.

Also, SOCK provides a unified way to deal with installation of fault and ter-
mination handlers (and, indirectly, of compensation handlers), and this dynamic
installation is (probably, since this has not been proved for SOCK yet) needed
to ensure the expressive power of the language. If SOCK would only allow to
add pieces of code in parallel to existing handlers, as happens in dcπ [24], then
it would not be minimal, since it has been shown in [11] that such a mechanism
can be defined as a macro by exploiting the other constructs.

5 From SOCK to Jolie

As said before, when moving from a theoretical calculus like SOCK to a full-
fledged language such as Jolie, new concerns have to be taken into account.
Before analyzing those new concerns in detail, we give a general description of
Jolie.

Jolie, Java Orchestration Language Interpreter Engine, is an open-source
project released under the LGPL license. Its reference implementation is an
interpreter written in Java. We refer to [9] for a detailed description of its fea-
tures, concentrating here on the ones more useful for our discussion (some of
them are also outlined in [19]). Jolie refines and extends SOCK so to offer to
the programmer a powerful and intuitive environment, suitable to build both
complex applications and single services.

One of the most prominent advantages of Jolie is the elegant separation be-
tween the program behavior and the underlying communication technologies.
The same behavior can be used with different communication mediums (such
as bluetooth, local memory, sockets, etc.) and protocols (such as HTTP, REST,
SOAP, etc.) without being changed. This can be obtained since Jolie basic data
structures are XML-like trees, which are automatically translated from and to
XML files (or other suitable formats) for communication. Thus a Jolie variable is
a tree, with java-style field access used to denote subtrees, and the array notation
used to distinguish different subtrees with the same name. Thus, for instance,
var.subtree[1] denotes the first subtree of variable var named subtree.

Jolie may also perform type checking on communicated data: each operation
may specify types constraining the kind of data that may be sent or received,
and checks are made at runtime to verify that those constraints are satisfied.
Constraints are published in the service interface, so that remote partners may
know the typing constraints to be satisfied for interacting with a service. We
refer to [9] for more details on the type system.

We can now move to the description of how Jolie tries to satisfy the require-
ments in Section 3.

76 I. Lanese and F. Montesi

5.1 Usability

While features such as intuitiveness and expressiveness are fundamental for us-
ability, other needs emerge. In particular, SOCK and its error handling mecha-
nisms have been developed concentrating on issues such as synchronization of
different entities and interaction between different error handling activities, but
there has been scarce emphasis on data management. However, this aspect be-
comes fundamental in a real language, where applications managing possibly
complex data structures are common. The major importance of data handling
in Jolie w.r.t. SOCK has influenced also its mechanisms for error handling, as
detailed below.

First, faults in Jolie include also a datum, which is normally used to carry
information about the error itself (for instance, an error message, or a stack
trace). Thus the throw primitive in Jolie has the syntax throw(f,v) where f is
the fault and v a value. The handler can access the data with the special syntax
scopename.faultname. The prefix scopename is needed to avoid interferences
in case different scopes manage the same kind of fault concurrently (the scope
of variables is the whole behavior). Note that such a modification in the throw
primitive does not change the possible error handling policies (e.g., the proper-
ties described in Section 4.3 are unaffected), but makes the generation of error
messages much easier.

Example 4. Consider the client in Example 3. In Jolie, one can exploit data
attached to fault to simplify error handling. Now the server can specify the
desired error message together with the fault, including for instance how much
money is missing to perform the transfer1:

pay(varIn)(transId){
if (acc[varIn.src] >= amount) {nullProcess} else

{msg = "Missing "+string(amount-acc[varIn.src])+" euros";
throw(f,msg)}

...

The client may use this information to present a more detailed error message to
the user.

scope(q) {
install(f => print@user(q.f));
...

Another important point concerns data management inside handlers. Han-
dlers in SOCK contain variables whose value is looked for when the handler is
executed. However, sometimes one wants to use the values that variables had
when the handler has been installed, to keep track of information concerning the
computation that caused handler installation. This concern has been tackled in
Jolie by adding a freeze prefix ^ to variables: if a variable x in a handler occurs
1 The Jolie syntax should be rather intuitive, but we refer to [9] for details.

Error Handling: From Theory to Practice 77

freezed, i.e. as ^x, then its value is looked for and fetched at handler update time.
Consider for instance Example 3. Assume that many invocations are performed
inside a while loop. In case of later error one wants all the transactions to be
canceled. Thus the correct handler update would be:

this => cH;undo@bank(^transId)

Without the freeze operator for transId, the value of transId in all the calls
would be the last one.

As before, this is a mechanism that does not change the error handling prop-
erties, but that comes in handy when writing actual programs.

5.2 Robustness

Many calculi, and SOCK in particular, do not model network or node failures,
while, in practice, these events may occur. Jolie has faced this problem by adding
system faults. A system fault is a fault that is not generated by the throw prim-
itive, but it is generated by the Jolie runtime system to notify the behavior of
some problem. In particular, Jolie defines the system fault IOException, which
is generated when an error occurs during communication. Such a fault can be
managed in the same way of other faults, by defining and installing suitable
handlers. For instance the Jolie code:

scope(q) {install(IOException => ...);
pay@bank(...)(...)

allows to manage network failures in our payment example.

5.3 Compatibility

SOCK mechanisms have been devised to work in a close world, i.e. a world
composed only by SOCK processes. However, Jolie applications are aimed at
being executed over the net, interacting with other applications developed using
different technologies and adhering to different standards.

In Jolie, this is mainly taken care by the communication module, that allows
for specifying the protocol to be associated with each communication, and au-
tomatically translates messages to and from the desired format. However, a few
aspects influence also error handling.

First, while Jolie guarantees remote error notifications inside the request-
response pattern, most of the other technologies do not. However, even when
interacting with other technologies, communication in Jolie is implemented by
connection-oriented technologies such as tcp/ip, unix sockets or bluetooth con-
nections. Thus the Jolie engine is notified when the connection is broken, and
can react by generating system fault IOException. This is less informative w.r.t.
the usual Jolie error notification, which describes exactly the kind of fault that
happened on the remote client, but it is however enough to preserve Property 2
(or better its dual).

78 I. Lanese and F. Montesi

Another compatibility issue concerns typing. Assuming that each service cor-
rectly exposes its typing information, it would be enough to check types when
messages are sent. However, when interacting with non Jolie applications there
is no guarantee that they check types of communicated messages, thus Jolie
services may receive ill-typed messages. For this reason, type checking is also
performed on incoming messages. Type errors are managed in different ways
according to where they happen. In one-way operations, a type mismatch of an
outgoing message generates locally a system fault TypeMismatch. Instead, in-
coming messages that do not respect typing are discarded. The management is
similar for request-responses, but, in case of type mismatch in receptions, the
sender is also notified with a TypeMismatch fault, thus ensuring the preservation
of the properties of the request-response pattern.

5.4 Property Preservation

As we have seen in the previous sections, Jolie is an extension and a refinement
of SOCK. Also, some of the assumptions that are used to prove SOCK properties
do not always hold for Jolie programs in a real environment. Thus, proving that
a property of SOCK programs, such as one of those in Section 4.3, holds also for
Jolie applications is non trivial.

We discuss now a few of the reasons that make this happen, analyzing their
effect on a few sample properties.

Low level errors: SOCK, and theoretical models in general, rely on some basic
assumptions ensuring the correct behavior of the system itself. Thus global
failures due for instance to end of memory, to system crashes or to program-
ming errors in the Jolie implementation are not considered. It is clear that
these kinds of errors break most of the interesting properties, thus one has
to assume that these events do not occur. One can exploit formal methods
to ensure that these assumptions are satisfied, but this requires dedicated
techniques whose description goes far beyond the aim of this paper. For in-
stance, end of memory can be checked and avoided by a suitable resource
analysis, system crashes superseded via techniques for reliability such as the
use of redundant engines, and errors in the Jolie implementation avoided by
using certified compilers and correctness proofs.

Jolie added features: as discussed above, Jolie includes features that are not
available in SOCK, such as data in faults. Other additional features not
related to error handling are described in [9]. Those features are normally
related to aspects which are abstracted away in models, thus they do not
affect global properties such as the ones in Section 4.3 (this has however to be
checked for each property and each extension). However, because of this, not
all Jolie programs are correct SOCK processes, thus it becomes much more
difficult to prove properties of specific programs. To this end one has to find
a SOCK process which is equivalent to the Jolie one, trying to implement
Jolie additional features as macros. When this is not possible, one has to
extend the theory to match the practice. For instance, a typed theory of

Error Handling: From Theory to Practice 79

SOCK is not yet available, but it is on our research agenda. This will allow
to prove properties of Jolie type system.

Assumptions on the environment: we refer here to the fact that network
failures are not modeled in SOCK, and that interaction with non Jolie pro-
grams may raise new issues, as described in Section 5.3. In these cases, one
may think to extended models taking care of this, but, mainly for interac-
tion with non Jolie programs, it becomes quite difficult because of the huge
variety in their behaviors. Thus, the simplest approach is to analyze their
impact on each property, as outlined in Section 5.3, and introduce in Jolie
mechanisms to deal with these problems in a uniform way w.r.t. similar is-
sues in SOCK programs. An example of this is the introduction of system
faults, which can be managed similarly to normal faults, and can enjoy (most
of) their properties. Clearly, local properties such as Property 1 are largely
unaffected by these issues, while properties concerning communication such
as Property 2 are less robust.

6 Conclusion and Future Works

In this paper we have discussed the main concerns that should be kept into
account when designing error handling mechanisms for service-oriented com-
puting. We have considered both the design of a theoretical calculus and of a
full-fledged language. We have considered the language Jolie and the underlying
calculus SOCK as an example.

Concerning future work, the relations between formal models and practically
relevant languages for service-oriented computing are still largely unexplored.
Even in the case of SOCK/Jolie, which have been developed in a strongly con-
nected way, many mismatches exist. Theory should be developed so to match
interesting aspects of Jolie applications such as the type system, or network
failures. For other differences instead, analysis should be carried out so to bet-
ter understand the effect that they have on formal properties. However, Jolie
is continuously evolving to face new programming challenges, thus making it a
moving target. For instance, timeouts are an important aspect in practice, to
break deadlocks, and work for introducing them in Jolie is ongoing.

Acknowledgments. We thank Gianluigi Zavattaro for his useful comments.

References

1. Banti, F., Lapadula, A., Pugliese, R., Tiezzi, F.: Specification and analysis of SOC

systems using COWS: A finance case study. In: Proc. of WWV 2008. ENTCS,

vol. 235, pp. 71–105. Elsevier, Amsterdam (2009)

2. Bruni, R., et al.: Comparing two approaches to compensable flow composition. In:

Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397.

Springer, Heidelberg (2005)

80 I. Lanese and F. Montesi

3. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations

in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM Press,

New York (2005)

4. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: SOCK: a calculus

for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.

LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

5. Butler, M.J., Ferreira, C.: An operational semantics for StAC, a language for mod-

elling long-running business transactions. In: De Nicola, R., Ferrari, G.-L., Mered-

ith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer,

Heidelberg (2004)

6. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault

handling and request-response service invocations. In: Proc. of ACSD 2008, pp.

190–199. IEEE Computer Society Press, Los Alamitos (2008)

7. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service

oriented applications. Fundamenta Informaticae 95(1), 73–102 (2009)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)

9. Jolie website, http://www.jolie-lang.org/

10. Lanese, I.: Static vs dynamic sagas. In: Proc. of ICE 2010 (to appear, 2010)

11. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-

sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.

Springer, Heidelberg (2010)

12. Lanese, I., Zavattaro, G.: Programming Sagas in SOCK. In: Proc. of SEFM 2009,

pp. 189–198. IEEE Computer Society Press, Los Alamitos (2009)

13. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)

FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

14. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea,

D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215.

Springer, Heidelberg (2008)

15. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In: Du-

mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,

Heidelberg (2008)

16. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. J. Log.

Algebr. Program. 70(1), 96–118 (2007)

17. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-

delberg (1980)

18. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Infor-

mation and Computation 100(1), 1–40, 41–77 (1992)

19. Montesi, F., Guidi, C., Lanese, I., Zavattaro, G.: Dynamic fault handling mech-

anisms for service-oriented applications. In: Proc. of ECOWS 2008, pp. 225–234.

IEEE Computer Society Press, Los Alamitos (2008)

20. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc.

of ECOWS 2007, pp. 13–22. IEEE Computer Society Press, Los Alamitos (2007)

21. Oasis: Web Services Business Process Execution Language Version 2.0 (2007),

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

22. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter

Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.

Sci. Comput. Program. 67(2-3), 162–198 (2007)

http://www.jolie-lang.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Error Handling: From Theory to Practice 81

23. Sensoria Project. Public web site, http://sensoria.fast.de/

24. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.

In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.

Springer, Heidelberg (2009)

25. W3C: Web services description language (wsdl) version 2.0 part 0: Primer (2007),

http://www.w3.org/TR/wsdl20-primer/

26. Wirsing, M., et al.: Semantic-based development of service-oriented systems. In:

Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,

vol. 4229, pp. 24–45. Springer, Heidelberg (2006)

http://sensoria.fast.de/
http://www.w3.org/TR/wsdl20-primer/

Modeling and Reasoning about Service Behaviors and
Their Compositions

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden
{aida.delic,cristina.seceleanu,paul.pettersson}@mdh.se

Abstract. Service-oriented systems have recently emerged as context-indepen-
dent component-based systems. Unlike components, services can be created, in-
voked, composed, and destroyed at run-time. Consequently, all services need a
way of advertising their capabilities to the entities that will use them, and service-
oriented modeling should cater for various kinds of service composition. In this
paper, we show how services can be formally described by the resource-aware
timed behavioral language REMES, which we extend with service-specific infor-
mation, such as type, capacity, time-to-serve, etc., as well as boolean constraints
on inputs, and output guarantees. Assuming a Hoare-triple model of service cor-
rectness, we show how to check it by using the strongest postcondition seman-
tics. To provide means for connecting REMES services, we propose a hierarchical
language for service composition, which allows for verifying the latter’s correct-
ness. The approach is applied on an abstracted version of an intelligent shuttle
system.

1 Introduction

Service-oriented systems (SOS) assume services as their basic functional units, with
capabilities of being published, invoked, composed and destroyed at runtime. Services
are loosely coupled and enjoy a higher level of independence from implementation
specific attributes than components do.

An important problem is to ensure the quality-of-service (QoS) that can be expected
when deciding which service to select out of a number of available services delivering
similar functionality. Some of the existing SOS standards support formal analysis [3,
12, 14, 15] to ensure QoS, but usually it is not straightforward to work out the exact
formal analysis model.

In order to fully understand the ways in which services evolve and impact on QoS at-
tributes, a service behavioral description is required [6]. Such behavior is assumed to be
internal to the service, and hidden from the user. It should include the representation of
a service functionality, enabled actions, resource annotations, and possible interactions
with other services.

To meet the above demands, in this paper, concretely in Section 3, we extend the ex-
isting resource-aware, timed hierarchical language REMES [19], recalled in Section 2,
to become fit for service behavioral modeling. In REMES, a service is modeled by an
atomic or composite mode, which we enrich with attributes such as service type, ca-
pacity, time-to-serve etc., pre- and postconditions, which are exposed at the mode’s

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 82–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Modeling and Reasoning about Service Behaviors and Their Compositions 83

interface. Still in Section 3, we introduce a synchronization mechanism for REMES

modes, which enables modeling and verification of synchronized services.
By exploiting the pre-, postcondition annotations, we show how to describe the

service behavior in Dijkstra’s guarded command language [8], and how to check the ser-
vice correctness by employing Dijkstra’s and Scholten’s strongest postcondition
semantics [9].

Since services can be composed at run-time, analyzing the correctness of a service
in isolation does not suffice. To exemplify, let us consider a service that is composed of
several navigation services, out of which some return the route length in miles, whereas
others in kilometers. If the developer has omitted to introduce a service that converts
length from one metric to the other, it is desirable to uncover such an error right away,
by formally checking the correctness of the actual service composition, at run-time.

To address the dynamic aspects of services, in Section 4, we propose a hierarchi-
cal language for dynamic service composition (HDCL) that allows creating new ser-
vices, via binary operators, as well as adding and/or deleting services from lists. In
the same section, we also give the semantics of sequential, parallel, and parallel with
synchronization service composition, respectively. Next, we apply the approach on an
abstracted version of an intelligent shuttle system, for which we show the use of REMES

language to model the system and apply HDCL language to check the correctness of
service compositions. In Section 6, we compare to some of the relevant related work,
before concluding the paper in Section 7.

2 Preliminaries

2.1 REMES Modeling Language

The REsource Model for Embedded Systems REMES [19] is intended as a meaningful
basis for modeling and analysis of resource-constrained behavior of embedded systems.
REMES provides means for modeling of both continuous (i.e., power) and discrete re-
sources (i.e., memory access to external devices). REMES is a state-machine behavioral
language that supports hierarchical modeling, continuous time, and a notion of explicit
entry and exit points, making it fit for component-based system modeling.

To enable formal analysis, REMES models can be transformed into timed automata
(TA) [1], or priced timed automata (PTA) [2], depending on the analysis type.

The internal component behavior in REMES is given in terms of modes that can
be either atomic (do not contain submode(s)), or composite (contain submode(s)). The
data transfer between modes is done through the data interface, while the control is
passed via the control interface (i.e., entry and exit points). REMES assumes local or
global variables that can be of types boolean, natural, integer, array, or clock (continu-
ous variable evolving at rate 1). Each (sub)mode can be annotated with the correspond-
ing continuous resource usage, if any, modeled by the first derivative of the real-valued
variables that denote resources, and which evolve at positive integer rates.

The control flow is given by the set of directed lines (i.e., edges) that connect the con-
trol points of (sub)modes. Modes may also be annotated with invariants, which bound

84 A. Čaušević, C. Seceleanu, and P. Pettersson

from above the current mode’s delay/execution time. For a more thorough description
of the REMES model, we refer the reader to [19].

The REMES language benefits from a set of tools1 for modeling, simulation and
transformation into PTA, which could assist the designer during system development.

2.2 Guarded Command Language

The Guarded Command Language (GCL) was introduced and defined by Dijkstra for
predicate transformers semantics [8]. The basic element of the language is the guarded
command, a statement list prefixed by a boolean expression, which can be executed
only when the boolean expression is initially true.

The syntax of the GCL is given in Backus-Naur Form (BNF) extended with braces
“{..}”, where the braces mean: ”followed by zero or more instances of the enclosed”.

< guarded command > ::= < guard > − > < guarded list >
< guard > ::= < boolean expression >
< guarded list > ::= < statement > {;< statement >}
< guarded command set > ::= < guarded command > { [] < guarded command >}
< alternative construct > ::= if < guarded command set > fi
< statement > ::= < alternative construct > | “other statements′′

< repetitive construct > ::= do < guarded command set > od

The semicolons in the guarded list denote that whenever the guarded list is selected
for execution, its statements will be executed successively in the order from the left
to the right. A guarded command is not a statement but a component of a guarded
command set from which statements can be constructed. The separator “ []” is used for
mutual separation of guarded commands in guarded command set.

The alternative construct is written using special bracket pair: “if ... fi”. The program
aborts if none of the guards is true, otherwise an arbitrary guarded list with a true guard
will be executed. Similarly, the repetitive construct ”do ... od” means that the program
runs as long as one of the guards is true, and terminates if none of the guards is true.

Semantics and Correctness of Guarded Commands. Let us assume the Hoare triple,
{p} S {q}, where p, q are predicates, denoting the partial correctness of guarded com-
mand S with respect to precondition p and postcondition q. Introduced by Dijkstra and
Sholten [9], the strongest postcondition predicate transformer (a function that maps
predicates to predicates), denoted by sp.S.p, holds in those final states for which there
exists a computation controlled by S, which belongs to class “initially p”. Proving the
Hoare triple, that is, the correctness of a guarded command, reduces to showing that
(sp.S.p ⇒ q) holds. The strongest postcondition rules for the assignment statement, for
sequential composition, and for the non-deterministic conditional are as follows:

sp.(x := e).p(x) ≡ x = e ∧ (∃x · p(x)) (1)

sp.(S1; S2).p ≡ sp.S2.(sp.S1.p), ∀p (2)

sp.(if g1 → S1 [] . . . [] gn → Sn fi).p ≡ sp.S1.(g1 ∧ p) ∨ . . . ∨ sp.Sn.(gn ∧ p), ∀p (3)

1 The REMES tool-chain is available at http://www.fer.hr/dices/remes-ide

http://www.fer.hr/dices/remes-ide

Modeling and Reasoning about Service Behaviors and Their Compositions 85

3 Behavioral Modeling of Services in REMES

In REMES, a service is represented by a mode (be it atomic or composite). The service
may have a special Init entry point, visited when the service first executes, and where all
variables are initialized. In order for a service to be published and later discovered, a list
of attributes should be exposed at the interface of a REMES mode/service (see Fig.1).

Fig. 1. A service modeled in REMES

The attributes depicted in Fig.1 have the following meaning:

– service type - specifies whether the given service is a web service (i.e., weather
report), a database service (i.e., ATM services), a network service, etc.;

– service capacity - specifies the service’s maximum ability to handle a given number
of messages per time unit (i.e., the maximum service frequency)(∈ N);

– time-to-serve - specifies the worst-case time needed for a service to respond and
serve a given request (∈ N);

– service status - describes the current service status (that is, passive (not invoked),
idle, active);

– service precondition - is a predicate (Pre :
∑ → Bool, Pre ≡ (PreInit∨PreEntry))

that conditions the start of service execution, and must be true at the time a REMES

service is invoked. In this expression
∑

is the polymorphic type of the state that
includes both local and global variables, and predicates PreInit, PreEntry are the
initial, and the entry precondition of the service, respectively;

– service postcondition - is a predicate (Post) that must hold at the end of a REMES

service execution.

The attributes are used to discover Service; they are specified by an interested party
and, based on the specification, the service is either retrieved or not.

The formal specification of a service, modeled as the composite mode of Fig. 1, is
the Hoare triple {p }Service {q}, where Service is described in terms of the guarded
command language, and the mode’s precondition p, and postcondition (requirement) q
are as follows:

86 A. Čaušević, C. Seceleanu, and P. Pettersson

p
≡

y ≤ c ∧ c > b ∧ (d = 0 ∨ v ≤ d ≤ e) ∧ r1 = r2 = r3 = 0 ∧ (h = 0 ∨ h = 1)

q
≡

y ≤ c ∧ d ≤ e ∧ (∀i, 1 ≤ i ≤ 3 · ri ≤ vali)

where vali are the given upper bounds on each resource usage, respectively.
Below, we give the GCL description of the REMES composite mode Service:

Service ::=
IF
¬u1 ∧ h = 0 ∧ y ≤ b Init → Atomic mode 1
→ r3 := r3 + q;

sm := Atomic mode 1;u1 := true;
Update(now)

[] ¬u2 ∧ h = 1 ∧ (x ≤ a ∧ d = v) ∧ y ≤ b Entry → Atomic mode 1
→ sm := Atomic mode 2;u2 := true;

Update(now)
[] (¬u3 ∧ (h = 1 ∧ d ≥ v) ∨ d = u) ∧ y ≤ c (Entry or Atomic mode 1)→ Atomic mode 2
→ sm := Atomic mode 2;u3 := true;

Update(now)
[] ¬u4 ∧ sm = Atomic mode 1 ∧ y ≤ b Delay in Atomic mode 1
→ r1(t) := r1(now) + n ∗ (t − now);

r2(t) := r2(now) +m ∗ (t − now);
{y ≤ b}; u4 := true;
Update(now)

[] ¬u5 ∧ sm = Atomic mode 1 ∧ y = b
→ d := u;u5 := true;

Update(now)
[] ¬u6 ∧ sm = Atomic mode 2 ∧ y ≤ c Delay in Atomic mode 2
→ r2(t) := r2(now) + p ∗ (t − now);

{y ≤ c}; u6 := true;
Update(now)

[] ¬u7 ∧ sm = Atomic mode 2 ∧ y = c Atomic mode 2 → Exit
→ d := e;

h := 1;u7 := true;
Update(now);u1, . . . , u7 := false

FI
(4)

In the GCL description (4), the variables x, y are clocks, h is the history variable
that is used to decide where to enter the composite mode, sm is the variable ranging
over submodes, and r1 : Real+ → T1, r2 : Real+ → T2 are the continuous resources
of the model, defined as functions over the non-negative reals that are used as the time
domain. In addition, ui are local variables used for preventing executing the same action
more than once, at the same time point. These variables are reset each time the mode
Service exits. Similar to the approach taken for action system models [18], the variable
now shows the current time, and it is explicitly updated by statement Update(now).

Modeling and Reasoning about Service Behaviors and Their Compositions 87

The assertions {y ≤ b}, {y ≤ c} model the invariants (Inv) of Atomic mode 1, and
Atomic mode 2, respectively.

We define Update(now) as follows:

Update(now) � now := next.now

The submodes can be urgent (no delays are allowed), or non-urgent (where delays can
happen, until an invariant Inv is violated); also, guarded actions can annotate edges
connecting the entry points of the composite mode with submodes, via some condi-
tional connector (denoted by encircled C in Figure 1). Given these, and assuming that
gg is the disjunction of the action guards of the edges leaving a mode (or a conditional
connector), and that Inv is the invariant of the respective mode, next is defined by:

next.t �
{

min{t′ ≥ t | ¬Inv ∨ gg}, if exists t′ ≥ t such that ¬Inv ∨ gg

+∞, otherwise.

If a mode is urgent, or the guards correspond to a conditional connector, then I ≡
false, so the next moment of time is identical to the current one, no delay being possible.

The mode Service, modeled by (4), can be iterated for as long as needed, so the com-
plete specification is: statusService := active; (DO g → Service [] ¬g → statusService :=
idleOD). According to rule (3), the strongest postcondition of the conditional statement
is:

sp.Service.p
≡

sp.(r3 := r3 + q; sm := Atomic mode 1;Update(now)).(h = 0 ∧ y ≤ b ∧ p)
∨
. . .
∨
sp.(d := e;h := 1;Update(now)).(sm = Atomic mode 2 ∧ y = c ∧ p)

Assuming that sp.{y ≤ c}.p ≡ y ≤ c∧(∃x · p(x)), the above sp can be mechanically
computed by successively applying rules (1) - (2). The correctness proofs reduce to
checking whether each of the strongest postconditions of the above disjunction implies
the requirement q, given earlier.

In service-oriented systems, there is often the case that services need to synchronize
their behaviors. In order to model synchronized behavior, we introduce a special kind
of REMES mode, given in Figure 2, which can act either as an AND mode, or as an OR
mode, depending on whether the services need to be entered simultaneously, or not.

The composite mode of Figure 2 contains as sub-modes the services that need to
be synchronized. For AND modes, both Service a, and Service b are entered at the
same time (through their entry point). This means that the edges marked with (*) do
not have guards. In case of OR modes, one or all constituent services are entered, so
the edges marked with (*) are annotated with guards. If some of the edges need to be
taken at the same time in both services, the communication between Service a and b is
realized via synchronization variables, chan (in x), (out x), which are used similarly to
the PTA channels x?, x!, respectively. Depending on the required synchronization type

88 A. Čaušević, C. Seceleanu, and P. Pettersson

Service a

Service b
*

*

A1

B1

in x

out x

...

...

A2

B2

Fig. 2. AND/OR REMES mode

and starting time of the constituent services’ execution, AND modes, but also OR can
be employed when either “and” synchronization (both services should finish execution
at the same time), or “max” synchronization (the composite mode finishes when the
slowest service finishes) is required.

In Figure 2, Service a, Service b need to synchronize actions A2, B2. This can be
done by decorating the respective edges with channel variables out x for A2, and in x
for B2, meaning that the respective edges are taken simultaneously in both services,
A2 writing variables that B2 is reading. The same applies if the services need to “and”-
synchronize at the end of their execution. The exit edge of each service, respectively,
needs to be annotated with chan variables.

The GCL representation of such synchronization requires strengthening the guards
of the respective synchronized commands of the conditional statement, as follows:
(in x) ∧ gA2 → SA2, (out x) ∧ gB2 → SB2, where SA2, SB2 are the action bod-
ies of A2, B2, respectively. The actions can then be executed in a sequence, with the
one writing variables, first. The “max” synchronization can be represented in GCL
by using a virtual selector (variable sel) [18], which selects for execution the modes
SM1, . . . , SMn, according to the control flow, marks them as executed after they fin-
ish their execution, and keeps the time values of now in a copy variable nowc, which is
updated only after the slowest service finishes executing; the latter translates in exiting
the composite AND, or OR mode.

4 Hierarchical Language for Dynamic Service Composition:
Syntax and Semantics

Service compositions may lead to complex systems of concurrently executing services.
An important aspect of such systems is the correctness of their temporal and resource-
wise behavior. In the following, we propose an extension to the REMES language,
which provides means to define and support creation, deletion, and composition of
fine-grained or coarser-grained services, applicable to different domains. We also in-
vestigate a formal way of ensuring the correctness of the composition, based on the
strongest postcondition semantics of services.

Modeling and Reasoning about Service Behaviors and Their Compositions 89

Let us assume that a service, whose behavior is described by a REMES mode, is
denoted by service namei, i ∈ [1..n]; then, a service list, denoted by s list, is defined
as follows:

s list ::= [service name1, ..., service namen]

In order to support run-time service manipulation, we define a set of REMES interface
operations, by a pre- postcondition specification. We denote by Σ the set of service
states, respectively, that is, the current collection of variable values.

– Create service: create service name
[pre] : service name = NULL
create : Type × N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) →
service name
{post} : service name �= NULL

– Delete service: del service name
[pre] : service name �= NULL
del : service name → NULL
{post} : service name = NULL

– Create service list: create s list
[pre] : s list = NULL
create list : s list → s list, s list = List()
{post} : s list �= NULL

– Delete service list: del s list
[pre] : s list �= NULL
del list : s list → NULL
{post} : s list = NULL

– Add service to a list: add service name, s list
[pre] : service name �∈ s list
add : s list → s list
{post} : service name ∈ s list

– Remove service from the list: del service name, s list
[pre] : service name ∈ s list
del : s list → s list
{post} : service name �∈ s list

– Replace service in the list: replace service name1, service name2

[pre] : s list(p) = service name1

replace : s list → s list
{post} : s list(p) = service name2

90 A. Čaušević, C. Seceleanu, and P. Pettersson

– Insert service at a specific position: insert service namei, s list
[pre] : s list(p) �= service namei

add : s list → s list
{post} : s list(p) = service namei

Note that a new service list can be created by using the constructor List(), which holds
list values of any type. Such a constructor enables the creation of both empty list and
also list with some initial value (s list = List : String([“Shuttle1′′, “Shuttle2′′])). Also,
adding a service to a list means, in this context, appending that service, that is, adding it
at the end of the list. Replacing a service with another one, and inserting a service at a
specific position requires the use of parameter p, which specifies the position at which
the service is replaced or inserted.

Most often, services can be perceived as independent and distributed functional units,
which can be composed to form new services. The systems that result out of service
composition have to be designed to fulfill requirements that often evolve continuously
and therefore require adaptation of the existing solutions.

Alongside the above operations, we also define a hierarchical language that supports
dynamic REMES service composition (HDCL), that is, facilitates modeling of nested
sequential, parallel or synchronized services:

DCL ::= (s list, PROTOCOL, REQ)

HDCL ::= (((DCL+, PROTOCOL, REQ)+, PROTOCOL, REQ)+, . . .)

The formula above allows a theoretically infinite degree of nesting. The positive
closure operator is used to express that one or more DCLs (Dynamic Composition Lan-
guages) are needed to form an HDCL. The PROTOCOL defines the way services are
composed, that is, the type of binding between services, as follows:

PROTOCOL ::= unary operator service name | servicem binary operator servicen

The requirement REQ is a predicate (Σ → Bool) that can include both functional
and extra-functional properties/constraints of the composition. It identifies the required
attribute constraints, capability, characteristics, or quality of a system, such that it ex-
hibits the value and utility requested by the user. The above unary and binary operators
are defined as follows:

Unary operator ::= exec − first
Binary operator ::= ; | ‖ | ‖SY NC−and | ‖SY NC−or

Let us assume that two services s1, s2 are invoked at some point in time, and their in-
stances are placed in the service list s list. Also, we assume that si.P rei is the strongest
postcondition of si, i ∈ 1, 2, w.r.t. precondition Prei. Then, the semantics of the unary
and binary protocol operators, as well as the correctness conditions for such composi-
tions are given as follows.

– Exec-first (specifies which service should be initially executed in a composition) -
below we formalize the fact that s1 should execute first, and only when it finishes
and establishes its postcondition, service s2 can become active:

Modeling and Reasoning about Service Behaviors and Their Compositions 91

statuss1 = active ∧ statuss2 = idle ∧ Posts1 ⇒ (statuss2 = active)

If we assume n services s1, . . . , sn of a list, executing s1 first is defined as:

Exec − first s1 � s1 [] ¬gs1 → (s2 Binary operator . . .Binary operator sn)

This means that, even if any other service (or service composition) could be exe-
cuted, it will be executed only after s1 has finished execution.

– Sequential composition - two services are executed in a sequence, uninterrupted,
e.g., s1; s2. The correctness condition of s1; s2 is:

(sp.s2.(sp.s1.P res1)⇒ Posts2) ∧ (Posts2 ⇒ REQ)

– Parallel composition’s (s1 ‖ s2) correctness condition is:

(sp.s1.P res1 ∨ sp.s2.P res2) ⇒ REQ

– Parallel composition with synchronization - we denote by S-AND the set of ser-
vices belonging to an AND mode, which need to synchronize their executions in the
end. Then, the “and” synchronization of such services is defined as:

(s1 ‖SY NC−and s2) � (s1, s2 ∈ S−AND⇒ ((∀now · statuss1 = statuss2 = active)
∧(starts1 + T imetoServes1 = starts2 + T imetoServes2)))

The correctness condition of the “and-AND” synchronization is given below:

(sp.(s1 ‖SY NC−and s2).P reAND ⇒ (Posts1 ∧ Posts2)) ∧ (Posts1 ∧ Posts2 ⇒ REQ)

A service user, but also a developer of services, might need to replace a service with
one with possibly better QoS. It follows that one needs to be able to check whether
the new service still delivers the original functions, while having better time-to-serve
or resource-usage qualities. Verifying such a property reduces to proving refinement of
services. Either weakening the service precondition or strengthening its postcondition
qualifies as service refinement.

5 Example: An Autonomous Shuttle System

In this section, we consider an example, previously modeled and analyzed in the PTA
framework, in our recent work [5].

We consider a simplified version of a three train system that provides transportation
service to three different locations. The system has been developed at University of
Paderborn within the Railcab project [11]. While in our previous work [5], we have
focused on resource effective design, in the current example, we extract parts of the
behavior described by Giese and Klein [11], to show how services are created, invoked,
composed, and idled, by using the REMES extended interface and behavioral language.

Each of the trains has a well-defined path to follow, as shown in Fig. 3. During the
transport, the shuttles might meet at point B, in which they are forced to create a convoy.
In order to enter the convoy, they have to respect given speed and acceleration limits,

92 A. Čaušević, C. Seceleanu, and P. Pettersson

Fig. 3. An example overview

measured in points A1, A2, and A3, respectively, otherwise they may stop to let others
that fulfil the given requirements join the convoy. After a convoy is formed and has left,
those that were stopped are allowed to continue their journey to previously assigned
destination, if the sensor at point C, in Fig. 3, has sent the “safe to continue” signal.

After the destination point is being reached, a shuttle is free to turn to the idle state,
and wait for new orders. The system described above is equipped with one central
controller, as shown in Fig. 3, which decides when and which shuttle to invoke, based
on the service descriptions for each shuttle, respectively.

5.1 Modeling the Shuttle System in REMES

We model the behavior of the Autonomous shuttle system services as modes in the
extended REMES. The composite mode of Shuttle1 is depicted in Fig. 4, yet, due to
lack of space, we do not show here the constituent submodes, but we briefly explain
them instead (for more details we refer reader to [5]).

Fig. 4. The model of Shuttle1 given as a REMES service

The mode consists of the atomic modes (i.e., Acceleration1, STOP, and Destination).
They communicate data between each other using the global variables: speedi, statusi,
ti, and StatusConvoy. The control interfaces are used to expose mode attributes relevant
for mode discovery. Shuttle1 and Shuttle3 have the same behavior, while Shuttle2 is an

A3

A2

A1

B C D

train1

train2

train3

controller
E

F

G

Modeling and Reasoning about Service Behaviors and Their Compositions 93

older shuttle than the other two, and therefore it requires more time to start, accelerate,
slow down.

5.2 Applying the Hierarchical Language

Below, we illustrate the use of our proposed hierarchical language for modeling service
composition, as depicted in Table 1, on the example described in Section 5.

Table 1. An illustration of the REMES language

00 declare Shuttle1 ::=< network service, 18 create Shuttle1
01 5, 19 create Shuttle2
02 290, 20 create Shuttle3
03 passive, 21 create list Convoy
04 (t1 = 0 ∧ speed = 0), 22 add Shuttle1 list Convoy
05 (t1 ≤ 290) > 23 add Shuttle2 list Convoy
06 declare Shuttle2 ::=< network service, 24 DCL Convoy ::= (list Convoy, ; , t ≤ 300)
07 7, 25 HDCL Convoy ::= ((DCL Convoy, Shuttle3), || , t ≤ 300)
08 300, 26 check(sp.(Shuttle1; Shuttle2).(t1 = 0 ∧ speed = 0) ∧ (t = t1 ∨ t = t2)) ⇒ (t ≤ 300)
09 passive, 27 check(sp.Shuttle3.(t3 = 0 ∧ speed = 0) ∧ (t = t3)) ⇒(t ≤ 300)
10 (t2 = 0 ∧ speed = 0), 28 del HDCL Convoy
11 (t2 ≤ 300) >
12 declare Shuttle3 ::=< network service,
13 5,
14 290,
15 passive,
16 (t3 = 0 ∧ speed = 0),
17 (t3 ≤ 290) >

The needed services are introduced through the declarative part (lines 00-17 in Ta-
ble 1). A service declaration contains the service name, type, status, TimeToServe, pre-
condition and postcondition. The corresponding requirement is matched against such
attribute information, when choosing a service. After the selection, the instances of the
selected services are created (lines 18-20 in Table 1), and added to the service list using
the add command (lines 22-23 in Table 1). Finally, the chosen services are composed
by DCL. The list of services, employed protocol (type of service binding), and DCL
requirements are given as parameters. Moreover, the language provides means to com-
pose the existing DCLs with other services, through HDCL, as shown in line 25 of
Table 1. If not anymore needed, the composition can be deleted.

The advantage of this language is that, after each composition, one can check whether
the given requirement is satisfied, by forward analysis, e.g., by calculating the strongest
postcondition of a given composition w.r.t. a given precondition. Due to space limitation,
we show only the final computed result. Below, p1 ≡ (t1 = 0 ∧ speed = 0).

By applying the sp rules (1) - (3), we get the following:

sp.(Shuttle1;Shuttle2).p1 ≡ sp.Shuttle2.(sp.Shuttle1.p1)
sp.Shuttle1.p1 ≡ (t1 = 0 ∧ 245 ≤ t ≤ 266 ∧ speed1 = 0 ∧

∧ mode = Destination ∧ r1 = 0 ∧
∧ status1 = end1 = idle)

sp.Shuttle2.(sp.Shuttle1.p1) ≡ (t1 = t2 = 0 ∧ 264 ≤ t ≤ 285 ∧
∧ speed1 = speed2 = 0 ∧ r1 = r2 = 0 ∧
∧ status1 = end1 = idle ∧ status2 = end2 = idle)

94 A. Čaušević, C. Seceleanu, and P. Pettersson

One can notice that the requirement REQ ≡ (t ≤ 300) is implied by the calculated
strongest postcondition to which the condition (t = t1 ∨ t = t2) is added. This is actu-
ally what the command check should return as a main proof obligation, provided that
the method is implemented in the REMES tool-chain.

For the second check, we have Shuttle3 composed in parallel with the sequential
composition of the other two shuttles, with p3 ≡ (t3 = 0 ∧ speed = 0). Then, accord-
ing to the composition semantics of section 4, proving the correctness of the (Shuttle3
||(Shuttle1; Shuttle2)) composition reduces to showing that:

(sp.Shuttle3.p3 ∨ sp.Shuttle2.(sp.Shuttle1.p1))⇒ REQ

As already shown, the sequential composition of the first two shuttles implies the re-
quirement. What is left to be proven is that the strongest postcondition of Shuttle3, w.r.t
p3, also implies the requirement. The calculated strongest postcondition of the latter is
as follows:

sp.Shuttle3.p3 ≡ (t3 = 0 ∧ 245 ≤ t ≤ 266 ∧ speed3 = 0∧
∧ mode = Destination ∧ r3 = 0 ∧ status3 = end3 = idle)

It is easy to check that the requirement REQ is actually implied by sp.Shuttle3.p ∧
t = t3. This concludes our service composition correctness verification.

6 Discussion and Related Work

Based on the level of details that are provided through the behavioral description, all
approaches related to services and SOS can be in principle divided into three groups.

Code-level behavioral description approaches are mostly based on XML language
(e.g., BPEL, WS-CDL). BPEL [3] is an orchestration language whose behavioral de-
scription includes a sequence of project activities, correlation of messages and process
instances, and recovery behavior in case of failures and exceptional conditions. Ap-
proaches like BPEL are useful when services are intended to serve a particular model
or when the access to the service implementation exists. The drawback of such ap-
proaches is the lack of formal analysis support, which forces the designer/developer to
master not only the specification and modeling processes, but also the techniques for
translating models into a suitable analysis environment.

When compared to the above group, BPMN [14] can be seen as a higher-level lan-
guage. It relies on a process-oriented approach, and supports a graphical representation
to be used by both designers and analysts. The lack of a formal behavioral description
does not provide means for detailed analysis, as the one supported by REMES.

The third group includes approaches with formal background. Rychlý describes the
service behavior as a component-based system for dynamic architectures [16]. The
specification of services, their behavior, and hierarchical composition are formalized
within the π-calculus. Similar to our approach, this work emphasizes the behavior
in terms of interfaces, (sub)service communication, and bindings, while we can also
cater for service descriptions including timing and resource annotations [5]. Foster et
al. present an approach for modeling and analysis of web service compositions [10].

Modeling and Reasoning about Service Behaviors and Their Compositions 95

The approach takes BPEL4WS service specification and translates it into Finite State
Processes (FSP), and Labeled Transition Systems (LTS), for analysis purposes.

A comprehensive survey on several approaches that are accommodating service com-
position, and are checking the correctness of compositions [3, 12, 15, 14] is given by
Beek et al. [20]. Regarding service modeling, all these approaches are solid; however,
w.r.t. service compositions and their correctness checking [7, 13, 17] (usually by em-
ploying formal methods), such approaches show limited capabilities to automatically
support these processes. In comparison, as shown in this paper, compositions of REMES

models can be mechanically reasoned about (although, as for now, we still miss the in-
terface correctness tool support), or can be automatically translated to timed- [1] or
priced timed automata [2], and analyzed with UPPAAL , or UPPAAL CORA tools1, for
functional but also extra-functional behaviors (timing and resource-wise behaviors).

7 Conclusions

In this paper, we have presented an approach for formal service description by extending
the resource-aware timed behavioral language REMES. Attributes such as type, time-to-
serve, capacity, etc., together with precondition and postcondition are added to REMES

to enable service discovery, as well as service interaction. Even if the original seman-
tics of REMES [19] is given in terms of Priced Timed Automata (PTA), here, we have
chosen to use Hoare triples and the strongest postcondition semantics to prove service
correctness, motivated by the lack of decidability results for computing simulations re-
lations on PTA. We have also proposed a hierarchical language for service composition,
which allows for the verification of, e.g., service composition correctness. The approach
is demonstrated on a simplified version of an intelligent shuttle system.

As future work, we plan to look into the algorithmic computation of strongest post-
conditions of priced timed automata, by building on preliminary results of Badban et
al. [4]. We also intend to extend the REMES tool-chain with a postcondition calculator.

References

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2),
183–235 (1994), citeseer.nj.nec.com/alur94theory.html

[2] Alur, R.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg
(2001)

[3] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS, Business Process
Execution Language for Web Services Version 1.1. IBM (2003)

[4] Badban, B., Leue, S., Smaus, J.-G.: Automated predicate abstraction for real-time models.
EPTCS 10, 36 (2009), doi:10.4204/EPTCS.10.3

[5] Causevic, A., Seceleanu, C., Pettersson, P.: Formal reasoning of resource-aware services.
Technical Report ISSN 1404-3041 ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Uni-
versity (June 2010)

1 For more information about the UPPAAL and UPPAAL CORA tool, visit the web page
www.uppaal.org

citeseer.nj.nec.com/alur94theory.html

96 A. Čaušević, C. Seceleanu, and P. Pettersson

[6] Causevic, A., Vulgarakis, A.: Towards a unified behavioral model for component-based
and service-oriented systems. In: 2nd IEEE International Workshop on Component-Based
Design of Resource-Constrained Systems (CORCS 2009). IEEE Computer Society Press,
Los Alamitos (July 2009)

[7] Dı́az, G., Pardo, J.J., Cambronero, M.E., Valero, V., Cuartero, F.: Automatic translation of
ws-cdl choreographies to timed automata. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.)
EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 230–242. Springer, Heidelberg (2005)

[8] Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
ACM Commun. 18(8), 453–457 (1975)

[9] Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics. Springer, New
York (1990)

[10] Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosenblum, D., Uchitel, S.: Model check-
ing service compositions under resource constraints. In: ESEC-FSE 2007: Proceedings of
the the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pp. 225–234. ACM,
New York (2007)

[11] Giese, H., Klein, F.: Autonomous shuttle system case study. In: Leue, S., Systä, T.J. (eds.)
Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 90–94. Springer, Hei-
delberg (2003)

[12] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web services
choreography description language version 1.0. World Wide Web Consortium, Candidate
Recommendation CR-ws-cdl-10-20051109 (November 2005)

[13] Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web
services. In: WWW 2002: Proceedings of the 11th international conference on World Wide
Web, pp. 77–88. ACM, New York (2002)

[14] Object Management Group (OMG): Business Process Modeling Notation (BPMN) version
1.1 (January 2008), http://www.omg.org/spec/BPMN/1.1/

[15] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,
C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied Ontology 1(1), 77–106
(2005)

[16] Rychlý, M.: Behavioural modeling of services: from service-oriented architecture to
component-based system. In: Software Engineering Techniques in Progress, pp. 13–27.
Wroclaw University of Technology (2008)

[17] Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services using
process algebra. In: ICWS 2004: Proceedings of the IEEE International Conference on
Web Services, p. 43. IEEE Computer Society Press, Washington (2004)

[18] Seceleanu, C.: A Methodology for Constructing Correct Reactive Systems. Ph.D. thesis,
Turku Centre for Computer Science (TUCS) (December 2005)

[19] Seceleanu, C., Vulgarakis, A., Pettersson, P.: Remes: A resource model for embedded sys-
tems. In: Proc. of the 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2009). IEEE Computer Society, Los Alamitos (June 2009)

[20] Ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal methods for service com-
position. Annals of Mathematics, Computing & Teleinformatics 1(5), 1–10 (2007),
http://journals.teilar.gr/amct/

http://www.omg.org/spec/BPMN/1.1/
http://journals.teilar.gr/amct/

Design and Verification of Systems with
Exogenous Coordination Using Vereofy

Christel Baier1, Tobias Blechmann1, Joachim Klein1,
Sascha Klüppelholz1, and Wolfgang Leister2,�

1 Faculty of Computer Science, Technische Universität Dresden, Germany
2 Norsk Regnesentral (Norwegian Computing Center), Norway

Abstract. The feasibility of formal methods for the analysis of complex
systems crucially depends on a modeling framework that supports com-

positional design, stepwise refinement and abstractions. An important

feature is the clear separation of coordination and computation which

permits to apply various verification techniques for the computation per-

formed by components and interactions as well as dependencies between

the components. We report here on a model-checking approach using the

tool Vereofy that is based on an exogenous coordination model, where

the components are represented by their behavioral interfaces. Vereofy

supports the verification of the components and their communication

structure. Our approach is illustrated by means of a case study with a

sensor network where Vereofy has been used to establish several proper-

ties of the sensor nodes and their routing procedures.

1 Introduction

Component-based software engineering strives to divide complex systems into
smaller logical components with well-defined interfaces. A variety of coordina-
tion models and languages have been introduced which support the separation
between computations inside the components and the interactions between com-
ponents, e.g., an aspect-oriented approach [6], a variant of the π-calculus with
anonymous peer-to-peer communication [13], and formalisms that rely on the
construction of component connectors, such as interaction systems [12,18] or the
declarative channel-based language Reo [2]. Tool support for the verification of
such systems relies on operational models that are powerful enough to describe
both the coordination imposed by the connectors and the behavioral interfaces
of the connected components and can serve as the structures for temporal logics
and model-checking algorithms.

For this purpose, constraint automata, a special variant of labeled transition
systems using constraints on the active I/O ports and transmitted data values,
have been introduced [5]. Constraint automata are adequate to represent any
kind of synchronous and asynchronous peer-to-peer communication, modeling
exogenous and endogenous coordination mechanisms and have been used as a
� The authors are supported by the EU-project Credo and the DFG-project Syanco.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 97–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 C. Baier et al.

compositional semantics for the exogenous coordination language Reo. In the
exogenous setting the components are not aware of the context in which they are
used. The interactions are handled by a network from outside the components.

Our toolkit Vereofy (http://www.vereofy.de/) allows hierarchical, composi-
tional modeling of complex systems based on the constraint automata semantics
and provides symbolic model-checking algorithms for linear-time and branching-
time properties. It supports two modeling languages, CARML (Constraint
Automata Reactive Module Language) as a guarded-command language for spec-
ifying component interfaces and behavior and RSL (Reo Scripting Language) for
hierarchicallybuilding systems from components, connectors and channels. It sup-
ports complex, structured data types both as messages and state variables of the
components, which facilitates the modeling of complex, data-dependent behavior.
Features like template instantiation, scripting and conditional compilation ease
the generation of variants and abstractions of models.

Vereofy supports the model checking of individual components and the com-
posite system against properties specified in Linear Time Logic (LTL [22,4]), the
branching-time logic BTSL [15] and the alternating-time logic ASL [16], tailored
to the constraint automata setting. Vereofy also supports checking bisimulation
equivalence. Vereofy varies from other model checkers such as [14,8,1] as the
main focus is the verification of coordination aspects and the communication
and interactions between components on the level of the behavioral interfaces.
Vereofy uses a symbolic representation of the components and the composite
system and offers verification algorithms that are applied on this symbolic rep-
resentation which is based on binary decision diagrams (BDDs). For more details
about the modeling languages and verification techniques of Vereofy, see [3,4].

network components requirements

CARML specification
library

model checker

for components
RSL specification

constraint automaton

temporal formula
of the network

In this paper we will use CARML and RSL for modeling and LTL and BTSL for
analyzing a sensor network. The routing protocol implemented by each node of
the network is an AODV-like protocol [21]. In contrast to [7,20,19] the goal of
this paper is to illustrate the usefulness of Vereofy rather than to find errors in
the protocol itself. As the behavior of the network nodes is highly data depen-
dent, the analysis is a challenging task even when restricted to simple network
structures with fixed topology [17].

Organization. Section 2 presents the definition of constraint automata and
related notations. The syntax and semantics of the temporal logics LTL and
BTSL are presented in Section 3. Section 4 illustrates the modeling and analysis
of the case study before Section 5 concludes the paper.

Design and Verification of Systems with Exogenous Coordination 99

2 Constraint Automata

Constraint automata (CA) provide a generic operational model to formalize the
behavioral interfaces of the components, the network that coordinates the com-
ponents (i.e., the glue code or connector), and the composite system consisting of
the components and the glue code. Constraint automata are variants of labeled
transition systems (LTS) where the labels of the transitions represent the (pos-
sibly data-dependent) I/O-operations of the components and the network. They
support any kind of synchronous and asynchronous peer-to-peer communication.

The port names of a CA play the role of the I/O-ports of the components or
the network. The states represent the local states of components and/or config-
urations of a connector. The transitions in a CA describe the potential one-step
behavior. Fig. 1 shows a component with I/O-ports send, receive and failure
together with its CA implementing an abstract communication protocol. The
transition labels are constraints encoding which ports are active and what data
is observed at the active ports when the transition fires. In the sequel, let Data
be a finite nonempty data domain and N a finite, nonempty set of port names.

sendreceive

failure

IDLE
HANDLE
MESSAGE

SEND
MESSAGE{receive}∧

{send} ∧ dsend = ack

{send, failure}
∧ dsend = ack

dreceive �= ack∧
dreceive ≤ 42{receive}∧

∅

∅

dreceive = ack

Fig. 1. Interface and CA for a component implementing a simple protocol

Concurrent I/O-operations (CIO). A concurrent I/O-operation consists of
a (possibly empty) set of port names N ⊆ N together with data items for each
A ∈ N that are written or received at port A. When c is executed there is no
data flow (i.e., no read or write operation) at the ports A ∈ N \ N . Formally,
a concurrent I/O-operation is a partial function assigning data values to the
ports, i.e., a function c : N → Data. We write Ports(c) for the set of ports A ∈ N
such that c(A) ∈ Data. CION , or briefly CIO, denotes the set of all concurrent
I/O-operations. CIO is finite, as N and Data are finite.

I/O-constraints (IOC). The transitions of a constraint automata are labeled
with I/O-constraints. These are propositional formulas that stand for sets of
concurrent I/O-operations. The I/O-constraints may impose conditions on the
ports that may or may not be involved and on the data items written on or
read from them. Formally, I/O-constraints (IOC) are Boolean combinations
of atomic formulas A and (dA1 , . . . , dAk

) ∈ D where A, A1, . . . , Ak ∈ N and
D ⊆ Datak. Each IOC g stands for a set CIO(g) of concurrent I/O-operations.
For the atoms, we define CIO(A) def=

{
c ∈ CIO : A ∈ Ports(c)

}
The I/O-

constraints (dA1 , . . . , dAk
) ∈ D impose conditions for the written and read data

items. That is, CIO((dA1 , . . . , dAk
) ∈ D) agrees with the set

100 C. Baier et al.

full

{in} ∧ din = 1

full1empty

{in} ∧ din = 3

{out} ∧ dout = 1{out} ∧ dout = 3

{in, error} ∧ din = derror ∧ din �= 1 ∧ din �= 3

fullfull3

Fig. 2. Constraint automaton: filtering buffer

{
c ∈ CIO : {A1, . . . , Ak} ⊆ Ports(c), (c(A1), . . . , c(Ak)) ∈ D

}
.

The semantics of the Boolean operators is the standard one, e.g., CIO(g1 ∧g2) =
CIO(g1) ∩ CIO(g2). We often use simplified notations for the I/O-constraints
of the form (dA1 , . . . , dAk

) ∈ D. E.g., the notation dA = dB is a shorthand
for (dA, dB) ∈ {(d1, d2) ∈ Data2 : d1 = d2}. The notation {A, B} is used as
a shorthand for any I/O-constraint g with CIO(g) = {c ∈ CIO : Ports(c) =
{A, B}}. We use the symbol tt for any valid I/O-constraint, i.e., CIO(tt) def= CIO.

Our logical framework refers to two kinds of labels, the I/O-constraints refer-
ring to the I/O-operations in the network and atomic propositions referring to
the states of constraint automata, which can be regarded as unary state predi-
cates. For example, if the network (i.e., connector) contains a FIFO channel then
there might be atomic propositions stating, e.g., that all buffer cells are empty
or that the first buffer cell contains a value d in some set D ⊆ Data.

Constraint automata [5]. A constraint automaton (CA) is a tuple A =
〈Q, N , −→, Q0, AP, L〉 where Q is a finite and nonempty set of states, N a finite
set of ports, −→ is a subset of Q × IOC × Q, called the transition relation of A,
Q0 ⊆ Q a nonempty set of initial states, AP a finite set of atomic propositions,
and L : Q → 2AP a labeling function. The meaning of a transition q

g−→ p is that
in configuration q, all concurrent I/O-operations c satisfying I/O-constraint g
are enabled and state p is a possible successor state of q executing the CIO c.

Example 1 (CA for a filtering buffer). Fig. 2 depicts a constraint automaton A
with three ports in, out and error and a finite integer data domain. The incoming
messages are filtered, in the case of 1 and 3 stored in a buffer (represented by
the “fullv” states for buffer value v) and can be subsequently read at the out
port. In case the incoming message does not match the filter criterion, an error
is signaled via the error port. �

To simplify the presentation of the paper, we describe here our logical approach
under the assumption that there are no terminating behaviors, i.e., every state
has at least one outgoing transition.

Executions, paths, I/O-streams. As in standard LTSs an execution in A is a
finite or infinite sequence η = q0

c1−→ q1
c2−→ . . . built by consecutive transitions

where qi ∈ Q, ci ∈ CIO, and qi
gi+1−−−→ qi+1 for all i ≥ 0 and some gi+1 such that

ci+1 ∈ CIO(gi+1). As we focus on infinite behaviors we define a path of A to be
an infinite execution and write Paths(q) to denote the set of all paths starting

Design and Verification of Systems with Exogenous Coordination 101

in q. Let π = q0
c1−→ q1

c2−→ . . . be a path and 0 ≤ n. Then, π↓n denotes the
prefix of path π with length n and π↑n the suffix starting at the n-th state.
π↓n

def= q0
c1−−→ . . .

cn−−−→ qn and π↑n
def= qn

cn+1−−−→ qn+1
cn+2−−−→ qn+2

cn+3−−−→
The notion of an I/O-stream for CA corresponds to action sequences in LTSs.

The I/O-stream ios(η) of a finite execution η is the finite word over CIO that is
obtained by taking the projection to the labels of the transitions. Formally, if
η = q0

c1−→ . . .
cn−→ qn is a finite execution then ios(η) def= c1 . . . cn ∈ CIO∗.

3 Specifying and Verifying Components and Connectors

CA yield a general framework for the behavior of a component, a connector or
a composite system and serve as starting point for model checking. The model-
checking problem asks whether a given property holds for the automaton. In our
framework and the tool Vereofy, the properties can be specified by temporal for-
mulas with classical modalities to formalize safety or liveness conditions, but also
constraints on the observable data flow (I/O-streams). Vereofy supports model
checking against linear-time, branching-time or alternating-time properties. In
this section, we will provide a brief overview of the syntax and semantics of the
logics for linear and branching-time properties used in the case study. As noted
above, we will only consider infinite behavior. For a more detailed description,
we refer to [4,15,16]. Throughout this section, we fix a finite set AP of atomic
propositions for the states and a finite set of port names N .

3.1 Linear-Time Properties

Vereofy supports model checking of linear-time properties specified using the
logic LTL [22], augmented with an operator that allows to refer to the concur-
rent I/O-operations using I/O-constraints. It is appropriate to specify complex
temporal conditions on paths and their I/O streams, such as Boolean combina-
tions of reachability, repeated reachability or persistence conditions.

Syntax of LTL. The abstract syntax of LTL formulas over AP and N is defined
by the following grammar.

ϕ ::= true
∣∣ a

∣∣ ¬ϕ
∣∣ ϕ1 ∧ ϕ2

∣∣ 〈〈g〉〉ϕ ∣∣ ϕ1 U ϕ2

where a ∈ AP is an atomic proposition and g ∈ IOC is an I/O-constraint over N .

Semantics of LTL. Let π = q0
c1−→ q1

c2−→ . . . be a path in a CA, with qi ∈ Q
and ci ∈ CIO. Let ϕ be LTL formula over AP and N . The satisfaction relation
π |= ϕ is defined as follows:

π |= true
π |= a iff a ∈ L(q0)
π |= ¬ϕ iff π �|= ϕ
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= 〈〈g〉〉ϕ iff c1 ∈ CIO(g) and π↑1 |= ϕ
π |= ϕ1 Uϕ2 iff there exists n ≥ 0 such that π↑n |= ϕ2 and

π↑ i |= ϕ1 for all 0 ≤ i < n

102 C. Baier et al.

Recall that π↑ i is the suffix of π starting at the i-th state. As usual, we can
derive the standard propositional operators (∨, →, ↔, etc.). The 〈〈g〉〉ϕ operator
is satisfied if the next I/O-operation satisfies the I/O-constraint g and the path
suffix starting in the next state satisfies ϕ. For the common use of this operator
with ϕ = true, we use the shorthand 〈〈g〉〉 def= 〈〈g〉〉 true. The standard next step
operator can then be derived by Xϕ

def= 〈〈tt〉〉ϕ. We can derive the standard LTL

operators “eventually ♦” with ♦ϕ def= true Uϕ and “always�”, with �ϕ
def= ¬♦¬ϕ.

As example formulas for the CA of Fig. 2, consider

ϕ1 = � (〈〈in ∧ din = 1〉〉 → X“full1”) ϕ2 = �♦“empty”

Formula ϕ1 asserts that after a 1 has been received, the buffer is full and contains
data value 1, while ϕ2 asserts that the “empty” state is always reached again.
Given a CA A, the model-checking problem asks whether all paths in A starting
in an initial state satisfy the formula ϕ:

A |= ϕ
def⇐⇒ π |= ϕ for all π ∈ Paths(q0) and all q0 ∈ Q0

To model check an LTL formula against a CA, Vereofy uses the standard automata-
theoretic approach to LTL model checking [23], i.e., the negated property is trans-
lated to a non-deterministic Büchi automaton. The product of the CA and the
Büchi automaton is then analyzed using cycle-check algorithms to determine the
absence of paths in the CA that violate the formula. As Vereofy uses a symbolic
representation of the CA, the cycle-check algorithms are also performed on the
symbolic representation [11].

3.2 Branching-Time Properties

Branching-time stream logic BTSL [15] allows reasoning about the branching
structure of the states by means of branching-time temporal formulas stating,
e.g., the existence of a path where a certain path property holds (as in CTL [9]).
The special path modality 〈〈α〉〉 and its dual [[α]] allow to reason about the data
streams observable at the I/O-ports of components and the network by means
of a regular stream expression. The atoms for an regular stream expression α
will be the I/O-constraint as they were used by our linear-time logic introduced
in the previous section.

Stream expressions. To impose conditions on the data flow at the ports of
an automaton, we will use a symbolic representation for sets of I/O-streams by
means of regular I/O-stream expressions, briefly called stream expressions. The
abstract syntax of stream expressions over N is given by the following grammar:

α ::= g
∣∣ α∗ ∣∣ α1; α2

∣∣ α1 ∪ α2

where g ranges over all I/O-constraints over N . The formal definition of the
regular languages IOS(α) ⊆ CIO∗ is defined by structural induction. IOS(g) is
the set consisting of the I/O-streams of length 1 given by g, i.e., IOS(g) = CIO(g).
Union (∪), Kleene star (∗) and concatenation (;) have their standard meaning.

Syntax of BTSL. The node-set N and set AP of atomic propositions will serve
as signature for BTSL-formulas. State-formulas (denoted by capital Greek letters

Design and Verification of Systems with Exogenous Coordination 103

Φ, Ψ) and path-formulas (denoted by small Greek letters ϕ, ψ) of BTSL are built
by the following grammar:

Φ ::= true
∣∣ a

∣∣ Φ1 ∧ Φ2

∣∣ ¬Φ
∣∣ ∃ϕ

∣∣ ∀ϕ

ϕ ::= 〈〈α〉〉Φ ∣∣ Φ1 UΦ2

where a ∈ AP and α is a stream expression. The operator ∃ corresponds to an
existential quantification while the ∀ corresponds to a universal quantification
over all paths. The dual path modality [[α]] can be derived by

∃[[α]]Φ def= ¬∀〈〈α〉〉¬Φ and ∀[[α]]Φ def= ¬∃〈〈α〉〉¬Φ.

The standard CTL operators for “next step” and “eventually” are obtained by
XΦ

def= 〈〈tt〉〉Φ and ♦Φ def= (true UΦ). The definition of the always operator in BTSL

is as follows: ∃�Φ
def= ¬∀(true U¬Φ) and ∀�Φ

def= ¬∃(true U¬Φ). Other Boolean
connectives, like disjunction or implication are obtained in the obvious way.

Semantics of BTSL. Let A be a CA and π = q0
c1−→ q1

c2−→ . . . be a path in
A. The satisfaction relation |= for BTSL state formulas is defined by structural
induction as shown below:

q |= true
q |= a iff a ∈ L(q)
q |= Φ1 ∧ Φ2 iff q |= Φ1 and q |= Φ2

q |= ¬Φ iff q �|= Φ
q |= ∃ϕ iff there is a path π ∈ Paths(q) such that π |= ϕ
q |= ∀ϕ iff π |= ϕ for all paths π ∈ Paths(q)

The satisfaction relation |= for BTSL path-formulas and the path π in A is
defined as follows:

π |= 〈〈α〉〉Φ iff there exists n ∈ N such that qn |= Φ
and ios(π↓n) ∈ IOS(α)

π |= Φ1 U Φ2 iff there exists n ∈ N such that qn |= Φ2

and qi |= Φ1 for all 0 ≤ i < n

A BTSL state formula Φ is said to hold for a CA A, written A |= Φ, if q0 |= φ for
all initial states q0 of A. To illustrate some BTSL example formulas we reconsider
the CA from Fig. 2.

Φ1 = ∃〈〈tt∗; {in}〉〉 “buffer is full”
Φ2 = ∀[[(tt∗; {in})+]] “buffer is full”
Φ3 = ∃[[(tt∗; {in})+]] “buffer is empty”

The first formula asserts the existence of an execution where the last action is
a successful receipt of a data value, i.e., the error port is not active, and where
the resulting state corresponds to a full buffer. Clearly, A |= Φ1. All paths in
A enjoy the property that whenever there is a successful receipt the buffer will
be full in the subsequent state, and thus A |= Φ2. The third formula asserts
the existence of a path where the buffer is empty whenever the last step was a
successful receipt. As this property holds for the path where no successful receipt
occurs, i.e., always {in, error}, we have A |= Φ3.

104 C. Baier et al.

The model-checking problem for BTSL asks whether, for a given CA A and
BTSL state formula Φ0, all initial states q0 of A satisfy Φ0. The main procedure
for BTSL model checking follows the standard approach for CTL-like branching-
time logics [9,10] and recursively calculates the satisfaction sets Sat(Ψ) def= {q ∈
Q : q |= Ψ} for all subformulas Ψ of Φ0. The treatment of the propositional
operators is obvious and the satisfaction sets Sat(∃(Φ1 UΦ2)) and Sat(∀(Φ1 UΦ2))
can be computed by means of the standard procedures for least fixed points of
monotonic operators. To compute the satisfaction sets of ∃〈〈α〉〉Φ and ∀〈〈α〉〉Φ, we
follow an automata-theoretic approach which resembles the standard automata-
based LTL model-checking procedure and relies on a representation of α by means
of a finite automaton Z and model checking BTSL state formulas of the form ∃♦Φ
and ∀♦Φ, respectively, in the product of A and Z.

4 Case Study: A Biomedical Sensor Network

We illustrate the Vereofy approach of modeling and model checking by means
of a biomedical sensor network consisting of multiple, autonomous sensors. Each
sensor is equipped with a radio unit, which is used to form a mobile ad-hoc net-
work. Using this network, the acquired sensor data is transmitted to a designated
node, where the data is evaluated and monitored. Such a sensor network provides
a very complex scenario with a vast amount of aspects, e.g., quality of service
concerns, energy consumption due to the battery powered nature of the sensor
nodes, resilience to failures, etc. Our focus in this case study lies on the level of
the routing protocol used to establish routes in a distributed way and react to
changes in the network topology. As such, we abstract away higher-level aspects
like the actual data generated by the sensors, as well as lower-level aspects like
details of the physical medium used for communication. E.g., we assume that
there is a mechanism on the lower communication layer that guarantees that a
message is either correctly received by a neighboring node or an error notifica-
tion is presented to the sensor node. We also abstract from the real-time aspects
of the routing protocol. In the sequel, we provide an overview of our model and
present some results of our analysis.

The routing protocol relies on a recative AODV-like (Ad-hoc On-demand
Distance Vector [21]) routing policy where routes are determined when needed.
We give a short introduction to the aspects of the routing protocol relevant at
the level of abstraction used in the model.

The routing protocol relies on three types of messages, which neighboring
nodes in the network can send each other: Routing requests (RREQ) to deter-
mine whether one of the neighbors has a route to a specific destination node,
routing replies (RREP) to provide answers to requests and routing error mes-
sages (RERR) to signal that a route has become invalid, e.g., due to movement
out of range of a neighbor that is considered the next hop of a route. Each node
maintains a local routing table, including information about the next hop for
each destination, as well as the number of hops to the destination. In addition,
each node maintains an (always increasing) sequence number that is used in the

Design and Verification of Systems with Exogenous Coordination 105

routing protocol to determine freshness of information. When a node in the net-
work needs to discover a route to some destination, it broadcasts a route request
to its neighbors. Upon receipt, each node checks whether it has a route to that
destination or is the destination itself. In both cases, it responds with a unicast
route reply message, which is subsequently forwarded to the originator of the
request. When it does not have a route to the destination, it broadcasts a route
request to its neighbors. Upon receipt of a route reply, the sensor nodes check
whether they need to update their routing tables, by taking into account the
length of the proposed route as well as the freshness as determined by the se-
quence number of the destination included in the message. When a node detects
a link failure to a neighbor along a route, it invalidates the route in the routing
table and notifies its neighbors via an error message that it should no longer be
considered as a hop along a route to that destination. The other nodes can then
determine whether they need to notify their neighbors in turn.

4.1 The Model

In our model of a biomedical sensor network, which is inspired by the a real
world application in a hospital, multiple sensor nodes attached to patients are
connected by a wireless ad-hoc network. There is one designated node that acts
as the sink node. It is the destination of all the data packets and never produces
data of its own.

Data domain. The nodes communicate by sending messages to their neighbors.
Vereofy supports various data types for the messages sent through the network,
including finite integer ranges, enumerations and structured data types. In the
model, the messages are encoded as a struct (see Fig. 3), yielding the data
domain Data for the CA. The first field determines the type of the message,
either one of the routing messages or a message carrying a data payload. Each
message has two fields for the identifier of the current sender and the identifier
of the neighbor node for whom the message is intended, with a special value
signifying broadcast to all available neighbor nodes. In addition, the message
carries the ID of the target destination node and of the original originator of the
message. A hop counter provides the value of hops the message has traveled from
the originator. If this number exceeds an upper limit the message is dropped
to prevent forwarding loops. The routing messages additionally use sequence
numbers to infer knowledge about the freshness of the routing information. We
use a parameter constant to specify the number of bits used for the representation
of sequence numbers. Incrementing and comparing sequence numbers is carried
out using the sequence number arithmetic as specified in the AODV standard.

Sensor nodes. The sensor nodes are modeled as CARML modules, with each
node being assigned a globally unique identifier. Each sensor node has three
ports (“receive”, “send” and “failure”) for receiving and sending messages. The
“failure” port is used by the medium connecting the nodes to signal failure dur-
ing sending, i.e., if the “failure” port is simultaneously active with the “send”
port, the neighbor the message was directed to cannot receive, either due to
a network topology change, power loss or other error conditions. Each sensor

106 C. Baier et al.

TYPE message_type_t = enum {RREQ,RREP,RERR,DATA};
TYPE address_t = int(0,nodes);
TYPE id_t = int(0,nodes-1);

TYPE Data = struct {
message_type_t msg_type;

// the address of the next hop and current sender
// to = nodes signifies broadcast to all neighbors
address_t to;
id_t from;

// the ultimate destination and the original sender
id_t dest_id;
id_t orig_id;

hop_counter_t hop_count;

// sequence number information
seq_no_t orig_seq_no;
seq_no_t dest_seq_no;
Bool dest_seq_no_unknown;

// the payload for DATA messages
data_type_t the_data;
};

Fig. 3. Data domain of the sensor network model

node maintains a local routing table, with entries for the other nodes, storing
the last known sequence number, hop distance, next neighbor on the route, etc.
The sensor nodes maintain their routing table by update procedures which are
triggered whenever a message is received. The update procedures are modeled
by sub-modules of the CARML module for the sensor node. The model contains
three different types of updates. The neighbor update updates the routing in-
formation for the sender of a message, while the originator update updates the
routing information of the originator of the message. The third update is the
update on error which is executed on link failures.

Additionally to the routing table, the sensor node has buffers for temporarily
storing routing and data messages. The sensor part of the sensor node generates
new data to be forwarded to the sink, while the radio part of the sensor node
receives, sends, processes and forwards messages, both routing and data mes-
sages. The main behavioral complexity arises out of the correct processing of
the routing messages and correct updating of the routing table. Fig. 4 provides
a scheme of the major control locations used for message handling.

The support of structured data types (struct, arrays) for the local state vari-
ables provided by CARML, as well as the possibility to specify complex guard
conditions on the states and messages allows the convenient modeling of the
behavior of a sensor node. The support of parametrized templates for modules
allows the flexible instantiation of the different sensor node instances with unique
IDs and adaption for network scenarios of different sizes. In addition, support for

Design and Verification of Systems with Exogenous Coordination 107

RREQ RERRRERR

RREP

RREQ

RREP

RERR

RERR

IDLE
HANDLE
MESSAGE

HANDLE
DATA

SEND
DATA

SEND
AODV

HANDLE
RREQ

HANDLE
RREP

HANDLE
RERR

Fig. 4. Schema of the main control locations for a sensor nodes

conditional compilation in Vereofy facilitates the generation of model variants,
e.g., to generate a variant of the sensor node abstracting from error handling.
Omnicast medium. The medium represents the topology in which the sensor
nodes are arranged. It is responsible for transferring messages to the correct
neighbor node in the unicast case and to all neighbors in the broadcast case.
Each sensor node is connected to the medium via its send, receive and failure
port. The correct routing and failure detection is achieved by a combination of
filter channels, i.e., channels that use a filter condition on the message data,
synchronously passing a message if the value satisfies the condition and blocking
the message when the condition is not satisfied. Fig. 5 shows a medium for five
sensor nodes, detailing the arrangement of the filter channels attached to the
send port of the sensor node with ID 1 with nodes 2 and 4 as neighbors. Unicast
messages to one of these nodes are passed and broadcast messages are replicated
to the receive ports of both neighbors. Messages sent by sensor node 1 to the
other, unreachable nodes are sent back to the failure port of sensor node 1 to
signal an unsuccessful transmission.

The connections for the other nodes are realized in a similar way. As the
medium is realized as a component connector generated from an RSL script, it
is very easy to modify and generate variants, e.g., by introducing FIFO buffers
in front of the receive ports to provide buffered communication or by introducing
lossy channels to model lossy communication, all without changing the modules
realizing the sensor nodes.

4.2 Analysis of the Model

In this section we show selected LTL and BTSL formulas to illustrate the expres-
siveness of our logics. The main focus in the validation of our model will be
to analyze the maintenance procedure for the routing information held by an
individual sensor node. Additionally we present formulas addressing properties

108 C. Baier et al.

receive0

receive1

receive2

receive3

receive4

send0

send1

send2

send3

send4

failure
0

failure
1

failure
2

failure
3

failure
4

to ∈ {2, b}

to ∈ {4, b}

to ∈ {0, 1, 3}

Fig. 5. Omnicast medium for five sensor nodes

of the composite system and summarize the experimental results of the model
checking for the selected properties.

Verification of a single sensor node. The first part of the verification in-
spects the behavior of a single sensor node in isolation, i.e., a complete non-
deterministic environment. In the sequel, let ownID be the ID of the inspected
sensor node and 0 be the ID of the sink node. The heartbeat of our routing
protocol are the three update procedures as they were described briefly in the
previous section. We use different LTL formulas of the form �(Φ1 → ♦Φ2) and
verified that all updates (1) are called when expected, (2) do terminate, and
(3) lead to a route entry if they contain fresher information. We present here
formulas for the neighbor update. E.g., the formula below holds if each RREQ
and RREP message from sensor node with ID i will eventually lead to a route
entry for the node with ID i.

� (〈〈dreceive ∈ Di〉〉 → ♦ “have route to node i”) for all i ∈ ID, i �= ownID

Here, Di is the set of RREQ or RREP messages from neighbor node with ID i.
The second focus of our verification is the interaction of a sensor node when

certain messages arrive. For this we address the different cases of the protocol
and provide BTSL and LTL formulas to verify the responsiveness of a sensor
node. E.g., we are interested in the fact that RREQs are being either ignored,
forwarded or answered with an appropriate RREP message. Analogous checks
can be done for RREP and RERR messages. This kind of properties are specified
in terms of LTL formulas of the form

� (〈〈dreceive ∈ D〉〉 → ♦〈〈dsend ∈ D′〉〉)
where D and D′ are the sets of messages encoding the received message and the
response of the sensor node to be sent. The sets D and D′ may impose conditions
on the current configuration of the inspected sensor node. E.g., D could be the
the set of RREQ messages for a node with known routing information, then
D′ could be the set of appropriate RREP messages. Similar properties can be
specified using BTSL formulas of the form

Design and Verification of Systems with Exogenous Coordination 109

¬∃〈〈tt∗; (dreceive ∈ D); (¬send ∨ dsend �∈ D′)∗〉〉“nothing to be done”

where “nothing to be done” is an atomic proposition for the states where the
message buffers are empty and the CA is in the IDLE configuration. Such
a formula states that there is no path where a message in D has been re-
ceived but not answered with a message in D′ attaining in a state labeled with
“nothing to be done”.

Other interesting properties were specified with the help of our logics. E.g., we
were able to show that sequence numbers are non-decreasing and the protocol
contains no deadlock, i.e., there is always a chance to recover from any situation
and return back to the IDLE state with empty message buffers.

∀� (∃〈〈α〉〉“nothing to be done”)

The regular stream expression α may impose further conditions on how to return
to the IDLE state, e.g., a simple condition can be α = (¬receive)∗ stating that
along the path back to IDLE no further input from the environment is required.

Verification of the composite system. For the verification of the composite
system we whether sensors can establish existing routes. For this purpose we
specified BTSL and LTL formulas stating the existence of a path where messages
from the connected nodes can eventually reach the sink.

∃〈〈tt∗; dreceive[0] ∈ Di〉〉true for all i ∈ ID

Here, Di is the set of payload messages from the node with ID i. To verify such
properties for all paths, additional fairness assumptions have to be made, which
are also expressible in our logic framework. For static topologies one can look at
additional properties, e.g., that from some moment in time only payload mes-
sages will be sent or that the handling of RERR messages becomes superfluous.

Due to the high data dependency of the behavior of the sensor nodes the
analysis of the inspected routing protocol is a challenging task. With an increas-
ing number of sensor nodes, more BDD-variables are needed for encoding of the
addresses inside of messages, the message buffers, and the routing table of each
node. The table below exposes the complexity of the model by presenting the
number of BDD-variables (bits) that are needed in the context of a network of
k sensor nodes for the encoding of a) a single message, b) the state variables of
a single sensor node, and c) the state variables of the composite system.

Bits for the encoding k = 2 k = 3 k = 4 k = 5
Message 15 18 20 23
Sensor node states 58 74 91 111
System states 116 222 364 555

The performance of our model checker crucially depends on a compact BDD
representation of the system. For such data dependent protocols it is not obvious
how to obtain good variable orderings. Nevertheless, we were able to compose
and verify network structures with up to three sensor nodes with a state space of
about 1023 reachable states when applying abstraction techniques for the model

110 C. Baier et al.

specification as well as techniques and heuristics for good variable ordering.
With the help of Vereofy we verified (and falsified) various properties and found
different kinds of modeling errors, like wrongly addressed messages, deadlocks,
missing robustness features, incorrectness of assumptions for simplifications, etc.
The counterexamples and witnesses created by Vereofy can then be analyzed
to fix the model. The ability to examine witnesses satisfying specific stream
expressions further aid in exploration and debugging.

The model checking has been performed on an AMD Athlon 64 X2 Dual Core
Processor 5000+ (2.6 GHz) with 8GB of RAM, running Linux. For the analysis
of a single sensor node we were able to build the symbolic representation of the
CA for sensor nodes with up to seven routing table entries without applying
any abstraction or simplification to the specification of a sensor node. For the
verification we used the modules of sensor nodes with up to three or four routing
table entries. The model checking took less than three minutes for most of the
properties above. The most complex ones can be checked within ten minutes.

For the composite system, network structures with only a few nodes can be
built without applying abstractions of the model. For the verification we created
simpler variants of the model, with a fixed linear topology, and less data de-
pendencies. E.g., we removed the handling of error messages as we were able to
show that they never appear in the static model case with a fixed topology. Ad-
ditionally, we pre-computed variable orderings to benefit from preferably com-
pact BDD representation of the system behavior. The pre-computation itself
consumed a few hours, with the system composition afterwards taking a few
minutes. Using the pre-computed variable orderings the composition and veri-
fication of the composite system can be performed in less than 40 minutes for
each of the above properties.

5 Conclusion

We presented a framework for specifying and analyzing components and connec-
tors in an exogenous framework. The tool-kit Vereofy with its input languages
CARML and RSL has successfully been used to model a non-trivial case study
of a sensor network. In future work, advanced abstraction techniques, composi-
tional methods and better heuristics for BDD variable orderings will be studied.

References

1. Alur, R., de Alfaro, L., Grosu, R., Henzinger, T.A., Kang, M., Kirsch, C.M., Majum-

dar, R., Mang, F.Y.C., Wang, B.-Y.: Jmocha: A model checking tool that exploits

design structure. In: Proceedings of the 23rd International Conference on Software

Engineering (ICSE), pp. 835–836. IEEE Computer Society, Los Alamitos (2001)

2. Arbab, F.: Reo: A Channel-Based Coordination Model for Component Composi-

tion. Mathematical Structures in Computer Science 14(3), 329–366 (2004)

3. Baier,C.,Blechmann,T.,Klein, J.,Klüppelholz, S.:AUniformFramework forModel-

ing andVerifyingComponents andConnectors. In: Field, J., Vasconcelos, V.T. (eds.)

COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg (2009)

Design and Verification of Systems with Exogenous Coordination 111

4. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal Verification for Com-

ponents and Connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)

FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling Component Connectors in

Reo by Constraint Automata. Science of Computer Programming 61, 75–113 (2006)

6. Capizzi, S., Solmi, R., Zavattaro, G.: From endogenous to exogenous coordination

using aspect-oriented programming. In: De Nicola, R., Ferrari, G.-L., Meredith, G.

(eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 105–118. Springer, Heidelberg

(2004)

7. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M.,

Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–322. Springer, Hei-

delberg (2005)

8. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic

model checker. International Journal on Software Tools for Technology Trans-

fer 2(4), 410–425 (2000)

9. Clarke, E., Emerson, E., Sistla, A.: Automatic Verification of Finite-State Con-

current Systems Using Temporal Logic Specifications. ACM Transactions on Pro-

gramm. Languages and Systems 8(2), 244–263 (1986)

10. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

11. Emerson, E., Lei, C.: Efficient Model Checking in Fragments of the Propositional μ–
Calculus. In:Proc. ofLICS,pp. 267–278. IEEEComputerSocietyPress, LosAlamitos

(1986)

12. Gößler, G., Sifakis, J.: Component-based construction of deadlock-free systems:

Extended abstract. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003.

LNCS, vol. 2914, pp. 420–433. Springer, Heidelberg (2003)

13. Guillen-Scholten, J., Arbab, F., deBoer, F., Bonsangue,M.:MoCha-pi: an exogenous

coordination calculus based on mobile channels. In: Proceedings of the 2005 ACM

Symposium on Applied Computing (SAC), pp. 436–442. ACM, New York (2005)

14. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-

neering 23, 279–295 (1997)

15. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component

connectors. Science of Computer Programming 74(9), 688–701 (2009)

16. Klüppelholz, S., Baier, C.: Alternating-time stream logic for multi-agent systems.

Science of Computer Programming 75(6), 398–425 (2010)

17. Liu, X., Wang, J.: Formal Verification of Ad hoc On-demand Distance Vector

(AODV) Protocol using Cadence SMV, Report, Univ. of British Columbia (2004)

18. Majster-Cederbaum, M., Minnameier, C.: Everything is PSPACE-complete in in-

teraction systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) IC-

TAC 2008. LNCS, vol. 5160, pp. 216–227. Springer, Heidelberg (2008)

19. Musuvathi, M., Park, D., Chou, A., Engler, D., Dill, D.: CMC: A Pragmatic Ap-

proach to Model Checking Real Code. In: OSDI 2002 (2002)

20. Obradovic, D.: Formal Analysis of Routing Protocols. PhD thesis, University of

Pennsylvania (2001)

21. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector

(AODV) Routing. RFC 3561, IETF (July 2003)

22. Pnueli, A.: The Temporal Logic of Programs. In: Proc. of 18th FOCS, pp. 46–57.

IEEE Computer Society Press, Los Alamitos (1977)

23. Vardi,M.,Wolper,P.:AnAutomata-TheoreticApproach toAutomaticProgramVer-

ification. In: LICS, pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)

A Case Study in
Model-Based Adaptation of Web Services

Javier Cámara1, José Antonio Martı́n2, Gwen Salaün3,
Carlos Canal2, and Ernesto Pimentel2

1 INRIA Rhône-Alpes, France
Javier.Camara-Moreno@inria.fr

2 Department of Computer Science, University of Málaga, Spain
{jamartin,canal,ernesto}@lcc.uma.es

3 Grenoble INP-INRIA-LIG, France
Gwen.Salaun@inria.fr

Abstract. Developing systems through the composition of reusable software ser-
vices is not straightforward in most situations since different kinds of mismatch
may occur among their public interfaces. Service adaptation plays a key role
in the development of such systems by solving, as automatically as possible,
mismatch cases at the different interoperability levels among interfaces by syn-
thesizing a mediating adaptor between services. In this paper, we show the appli-
cation of model-based adaptation techniques for the construction of service-based
systems on a case study. We describe each step of the adaptation process, start-
ing with the automatic extraction of behavioural models from existing interface
descriptions, until the final adaptor implementation is generated for the target
platform.

1 Introduction

The widespread adoption of Service-Oriented Architectures in the last few years has
fostered the need to develop complex systems in a timely and cost-effective manner
by assembling reusable software services. These can be considered as blocks of func-
tionality which are often developed using different technologies and platforms. On the
one hand, SOA enables developers to build applications almost entirely from existing
services which have already been tested, resulting in a speed-up of the development
process without compromising quality. On the other hand, the potential heterogeneity
of the different services often results in interoperability issues at different levels which
have to be solved by system architects on an ad-hoc basis.

In order to ensure interoperability, service interfaces must provide a comprehensive
description of the way in which they have to be accessed by service consumers. Com-
position of services is seldom achieved seamlessly because mismatch may occur at the
different interoperability levels (i.e., signature, interaction protocol/behaviour, quality
of service, and functional). Software adaptation [6,17] is a recent discipline which aims
at generating, as automatically as possible, mediating services called adaptors, used to
solve mismatches among services in a non-intrusive way.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 112–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Case Study in Model-Based Adaptation of Web Services 113

Adaptation
Contract

Architect

Service
Interface

Descriptions

Adaptor
Implementation

Adaptor Protocol Model

Signature + Behavioural
Models

Specification

Interface Model
ExtractionWSDL+

Abstract
BPEL

WSDL+
Windows
Workflow

(WF)

.

.

.

Adaptor

.

.

.

Adaptor Protocol
 Generation

WSDL
+BPEL

WSDL+
Windows
Workflow

(WF)Verification +
Validation

Fig. 1. Generative adaptation process

So far, most adaptation approaches have assumed interface descriptions that include
signatures (operation names and types) and behaviours (interaction protocols). Describ-
ing protocols in service interfaces is essential because erroneous executions or deadlock
situations may occur if the designer does not consider them while composing services.

In this paper, we show the application of model-based adaptation techniques [5,12]
(see Figure 1) for Web services, focusing on a case study that we use to illustrate the
different steps in the approach. The process starts with the automatic extraction of be-
havioural service models from existing interface descriptions. These descriptions in-
clude a WSDL specification of the different operations made available at the service
interface, as well as a specification of the behaviour of the service which can be given
in languages such as Abstract BPEL, or Windows Workflows. Next, the designer can
build an adaptation contract, which is an abstract specification of how mismatch cases
among the different service interfaces can be solved. This is not a trivial task, there-
fore we propose a graphical representation and an interactive environment to guide the
designer through the process. Once the adaptation contract is built, its design can be
validated and verified using techniques which enable the visual simulation of the exe-
cution of the system step-by-step, finding out as well which parts of the system lead to
erroneous behaviour (deadlocks, infinite loops, violation of safety properties, etc.). In
such a way, the designer can check if the behaviour of the system complies with his/her
intentions. Once the designer is satisfied with the design, an adaptor protocol model
can be generated and implemented into an actual adaptor which can be deployed in the
target platform.

The rest of this paper is structured as follows: first, we present in Section 2 a descrip-
tion of the case study that we use to illustrate the different steps of the development
process in the remaining sections. Section 3 presents an overview of the adaptation
process for our case study, starting with the extraction of behavioural models from
existing interface descriptions of the services that we intend to reuse in the system
given in WSDL and Abstract BPEL (Section 3.1). Section 3.2 illustrates the contract

114 J. Cámara et al.

specification process for our case study. Sections 3.3 and 3.4 describe the adaptor pro-
tocol generation and its implementation into an actual adaptor using BPEL as target
language, respectively. Section 4 concludes the paper.

2 Case Study: Online Medical Management System

We present a case study in the context of a health care organization, which describes
the development of a management system which is required to handle online patient
appointments with general practitioners, as well as with specialist doctors in the orga-
nization. In particular, the system must be able to create appointments for valid system
users who are provided with a username and an access password. After logging in to
the system, the user must be able to request an appointment for a given date either with
a general practitioner, or with a specialist doctor. After checking doctor availability, the
system will return a ticket identifier to the user that corresponds to the provided ap-
pointment. If the system does not find a time slot for the user request, the user should
be allowed to perform additional requests for further appointments.

In order to build this new system, we aim at reusing two existing sub-systems whose
functionality is exposed through different services:

– Service ServerDoc handles appointments with general practitioners.
– Service ServerEsp handles appointments with specialist doctors.

Furthermore, we also reuse a client that implements an example of user requirements.
It is worth observing that this client enables the user to perform requests both to general
practitioners and specialist doctors in any arbitrary order, whereas a new policy within
the organization establishes that users should not be allowed to schedule appointments
with specialist doctors without a prior appointment with a general practitioner. Hence,
this is an important requirement that the system resulting from our service composition
must meet.

3 Overview of the Adaptation Process

3.1 Interface Model Extraction

We assume that service interfaces are specified using both a signature and a protocol.
Signatures correspond to operation names associated with arguments and return types
relative to the messages and data being exchanged when the operation is called. Proto-
cols are represented by means of Symbolic Transition Systems (STSs), which are La-
belled Transition Systems (LTSs) extended with value passing [15]. This formal model
has been chosen because it is simple, graphical, and provides a good level of abstraction
to tackle verification, composition, or adaptation issues [9,10,16].

At the user level, developers can specify service interfaces (signatures and protocols)
using respectively WSDL, and Abstract BPEL (ABPEL) or WF workflows (AWF) [7].

A Case Study in Model-Based Adaptation of Web Services 115

WSDL

Abstract BPEL

Abstract Workflow
...

Signature

STS

Interface ModelService Interface

Fig. 2. Interface model extraction

In order to build the interface models
of the services and the client to be reused
in the system, we parse their WSDL
descriptions and generate the corre-
sponding signatures. Moreover, we can
generate the behavioural part of the
model (STSs) from service interfaces
specified using ABPEL or AWF. To ease
the addition of other possible notations to
describe service interfaces, we use as an
intermediate step in this parsing process
an abstract Web services class (AWS). Thus, one can add as a front-end another de-
scription language with its parser to AWS, and take advantage of the existing parser
from AWS to our model (see Figure 2).

Client
user! usr:string

password! pwd:string

reqDoc! d:string reqSpec ! d:string
reqSpec? tkt:intreqDoc? tkt:int

c0

c1

c3

c2

c6

c5

c4

id?
usr:string
pwd:string

reqDoc? d:string

replyDoc! tkt:int

s0

s1

s3

ServerDocServerSpec

Final state Initial state

id? usr:string,
 pwd:string

replySpec! tkt:int

reqSpec?d:string

validate?
 decision:bool

s0

s1

s2

s3
s2

validate? decision:bool

validateDoc! decision1:bool validateSpec ! decision2:bool

Fig. 3. Behavioural models for the different services and the client

Example. The STSs depicted in Figure 3 are obtained after the application of the pars-
ing process to each of the elements of the (running) example.

– The Client can first log on to a server by sending respectively his/her user name
(user!) and password (password!). Then, depending on his/her preferences, the
client can stop at this point, or ask for an appointment either with a general prac-
titioner (reqDoc!) or a specialist doctor (reqSpec!), and then receive an appoint-
ment identifier. Finally, the client can accept or reject the appointment obtained if
it is not convenient for him/her (validateDoc/validateSpec!).

– Service ServerDoc first receives the client user name and password (id?). Next,
this service receives a request for an appointment with a general practitioner

116 J. Cámara et al.

(reqDoc?) and replies (replyDoc!). Finally, the service waits for an acknowl-
edgement from the user either accepting or rejecting the provided appointment
(validate?).

– Service ServerSpec first receives a request for an appointment with a specialist
doctor (reqSpec?), followed by the client user name and password (id?). After
checking doctor availability for the given date, an appointment identifier is returned
(replySpec!) to the client. As it happened in the case of the ServerDoc service,
ServerSpec finishes its interaction waiting for an acknowledgement from the user
either accepting or rejecting the provided appointment (validate?).

The composition of the different services in our example is subject to different mis-
match situations among their interfaces:

– Name mismatch occurs if a service expects a particular message, while its coun-
terpart sends one with a different name (e.g., service ServerDoc sends replyDoc!,
whereas the client is expecting reqDoc?).

– N to M correspondence appears if a message on a particular interface corresponds
to several ones in its counterpart’s interface (or similarly, a message has no cor-
respondence at all). In Figure 3 it can be observed that while the client intends to
log in to a service sending user! and password! subsequently, service ServerDoc
expects only message id? for authentication.

– Incompatible order of messages. The relative order of operation invocations
among the different protocols involved is not compatible. We may observe this
in our example when the client first sends its authentication information and then
requests an appointment with a specialist doctor, whereas the ServerSpec service
expects these messages in the inverse order.

– Argument mismatch may occur when the number and/or type of arguments ei-
ther being sent or received do not match between the operations on the different
interfaces. This can be observed in ServerDoc, when id? expects both a username
(usr) and a password (pwd). The first data term corresponds to user! on the client
interface, whereas the second belongs to password!.

3.2 Adaptation Contract Specification

Once the interface models have been extracted from the WSDL and ABPEL descrip-
tions, we can use them to produce the adaptation contract for our system. In particular,
we use vectors and a vector LTS (VLTS) as adaptation contract specification
language [14,6,12]. A vector contains a set of events (message, direction, list of pa-
rameters). Each event is executed by one service, and the overall result corresponds to
one or several interactions between the involved services and the adaptor. Vectors ex-
press correspondences between messages, like bindings between ports, or connectors
in architectural descriptions. In particular, we consider a binary communication model,
therefore our vectors are always reduced to one event (when a service evolves inde-
pendently) or two (when services communicate indirectly through the adaptor). Fur-
thermore, variables are used as placeholders in message parameters. The same vari-
able names appearing in different labels (possibly in different vectors) relate sent and
received arguments in the messages.

A Case Study in Model-Based Adaptation of Web Services 117

In addition to vectors, the contract notation includes a Labelled Transition System
(LTS) with vectors on transitions (that we call vector LTS or VLTS). This element is
used as a guide in the application order of interactions specified by vectors. VLTSs go
beyond port and parameter bindings, and express more advanced adaptation properties
(such as imposing a sequence of vectors or a choice between some of them). If the
application order of vectors does not matter, the VLTS contains a single state and all
transitions looping on it.

{vuser = 〈c :user!U〉,
vpwd = 〈c :password!P〉,
vvidsp = 〈ss : id?U,P〉,
vviddoc = 〈sd : id?U,P〉,
vreqsp1 = 〈c : reqSpec!DATE;ss : reqSpec?DATE〉,
vreqsp2 = 〈c : reqSpec?RES1;ss : replySpec!RES1〉,
vreqdoc1 = 〈c : reqDoc!DATE;sd : reqDoc?DATE〉,
vreqdoc2 = 〈c : reqDoc?RES2;sd : replyDoc!RES2〉,
vvalid1 = 〈sd :validate?B1;c :validateDoc!B1〉,
vvalid2 = 〈ss :validate?B2;c :validateSpec!B2〉 }

0 2
vreqdoc1

vuser vpwd

1
vreqsp1

vidsp vreqsp1

vreqsp2 vvalid2

viddoc vreqdoc2

vvalid1

Fig. 4. Adaptation contract for our example: vectors (left) and VLTS (right)

Example. Going back to our on-line medical management system described in Sec-
tion 2, let us recall that we intend to compose our services into a working system where
the client can request an appointment with a general practitioner, or also request an ap-
pointment with a specialist doctor, provided that there is a previous appointment with
a general practitioner (i.e., the client cannot directly schedule an appointment with a
specialist).

Figure 4 displays the set of vectors used to solve mismatch among our interfaces.
In order to understand how vectors relate messages on the different interfaces, let us
focus on vreqsp2, for instance. Here we may observe that the message reqSpec? on the
client interface is related with the replySpec! message on the ServerSpec interface
the appointment ticket identifier argument on both messages is related by placeholder
RES1 (please refer to Figure 7 for more details about how placeholders relate message
arguments). However, expressing correspondences between messages is not always as
straightforward as in the previous example. We may now focus on the initial part of the
composition, where we want to connect the general practitioner server (ServerDoc)
with the client, and make authentication work correctly. For this, we need three vectors,
respectively vuser , vpwd and vviddoc, in which we solve existing mismatches by relating
different message names (id, user and password). Here, we first specify the indepen-
dent evolution of the client through user! and password! (this is expressed by vectors
vuser and vpwd, which only contain one message). Next, we also specify the indepen-
dent evolution of ServerDoc through vviddoc. Exchanged data parameters among the
three involved messages in the vectors are connected using placeholders U and P.

Regarding the specification of additional constraints on the composition, we can ob-
serve on the right-hand side of Figure 4 that the VLTS for the contract constrains the

118 J. Cámara et al.

interaction of the Client, ServerDoc, and ServerSpec interfaces by imposing the
request for an appointment with a general practitioner (vreqdoc1) always before the
request of an appointment with a specialist doctor (vreqsp1). This is achieved by ex-
cluding vreqsp1 from the possible transitions in state 0, and including the transition
(0, vreqdoc1, 1). ��
In order to make the specification as simple and user-friendly as possible, we employ
interactive specification techniques to support the architect through this process. To this
purpose, we use a notation to graphically make explicit bindings between ports using
an interactive environment that enables graphical contract construction and verification
called ACIDE. The graphical notation for a service interface includes a representation
of its behavioural model (STS) and a collection of ports. Each label on the STS corre-
sponds to a port in the graphical description of the interface. Ports include a data port
for each parameter contained in the parameter list of the label. Figure 5 summarizes
ports and bindings used in our notation.

OUT Port

IN Port

Data Port

Port Cap

Data Binding

Port Binding

Fig. 5. Graphical notation: ports and bindings

Correspondences between
the different service inter-
faces are represented as
port bindings and data port
bindings (solid and dashed
connector lines, respectively).
Starting from the graphical
representation of the interfaces, the architect can build a contract between them by suc-
cessively connecting ports and data ports. This results in the creation of bindings which
specify how the interactions should be carried out between the services. It is also pos-
sible to add a T-shaped port cap on a port in order to indicate that it does not have to be
connected anywhere.

The VLTS imposing an order on the application of the bindings is built implicitly
in ACIDE as new bindings are created by the designer. Initially, the VLTS has a single
state and no transitions. Each time a new connection is made, the VLTS is extended in
a different way, depending on the current VLTS extension mode selected by the user:

– Abstract mode. No order on the application of the bindings is imposed. Creating
a binding in this mode results in the creation of a transition looping on the current
state in the VLTS.

– Sequential mode. Bindings created in this mode must be executed one after the
other. This results in the extension of the VLTS with a fresh state and a transition
from the current state to the new one. Once this transition is added, the newly
created state becomes the current VLTS state.

– Branching mode. Bindings created in this mode are mutually exclusive. The VLTS
is extended in this case with a fresh state and a transition to it from the current state.
Unlike in sequential mode, the current state is not updated.

Using this implicit method it is possible to build a VLTS for most contracts.
However, the user is also able to directly manipulate the VLTS from within the
graphical environment in order to adjust it to particular situations such as a binding

A Case Study in Model-Based Adaptation of Web Services 119

Fig. 6. Contract specification for the Online Medical System in ACIDE

representing an interaction which has to be carried out more than once in different parts
of the specification.

During the specification of the contract, we can also make use of a set of valida-
tion and verification techniques to check that an adaptation contract makes the involved
services work correctly. These techniques are intended to help the designer in under-
standing potential problematic behaviours of the system which are not obvious (even to
the trained eye) just by observing service interaction protocols and adaptation contracts.
These problems may include potential deadlocks, as well as unintended interactions that
are not explicitly addressed at the contract level, which is only an abstract specification
of the adaptation and does not take into account every interaction scenario among ser-
vices. These techniques are completely automated, and include four kinds of checks:
(i) static checks on the contract wrt. STS service interfaces involved, (ii) simulation of
the system execution, (iii) trace-checking to find potential deadlocking executions and
infinite loops, and (iv) verification of temporal logic formulas.

Example. Figure 6 shows a screenshot of the graphical representation of our final adap-
tation contract specification for the medical management system in ACIDE. If we focus
on the graphical representation of the ServerDoc, it can be observed that it contains
a port for the reception of the reqDoc? request with a data port attached representing
the date, and another port for the emission of the replyDoc response with a data port
attached representing the ticket identifier issued for the given date. Moreover, it can be
observed that the interactions expressed by vectors in our contract are represented by
port bindings in the graphical environment.

120 J. Cámara et al.

3.3 Generation of the Adaptor Protocol

Being given a set of service interfaces and an adaptation contract, an adaptor protocol
can be generated using automatic techniques as those presented in [12]. An adaptor is
a third-party component that is in charge of coordinating the services involved in the
system with respect to the set of constraints defined in the contract. Consequently, all
the services communicate through the adaptor, which is able to compensate mismatches
by making required connections as specified in the contract.

From adaptor protocols, either a central adaptor can be implemented, or several ser-
vice wrappers can be generated to distribute the adaptation and preserve parallelism in
the system’s execution. In the former case, the implementation of executable adaptors
from adaptor protocols can be achieved for instance using Pi4SOA technologies [1],
or techniques presented in [12] and [7] for BPEL and Windows Workflow Foundation,
respectively. In the latter case, each wrapper constrains the functionality of its service
to make it respect the adaptation contract specification [15].

Adaptor and wrapper protocols are automatically generated in two steps: (i) sys-
tem’s constraints are encoded into the LOTOS [11] process algebra, and (ii) adaptor
and wrapper protocols are computed from this encoding using on-the-fly exploration
and reduction techniques. These techniques are platform-independent, therefore while
exploring the state space, all the behaviours (interleaving) respecting the adaptation
constraints are kept in the adaptor model. The reader interested in more details may
refer to [12,15].

id?usr,pwd

ServerDoc

user!usr

Client

password!pwd

user?U

Adaptor

password?P

id!U,P

id?usr,pwd

id!U,P

user!usr

password!pwd

user?U

password?P

related by placeholder U

related by placeholder P

Fig. 7. Example of adaptation for authentication mismatches

Example. Figure 7 shows a small portion of the adaptor protocol generated from the
three vectors vuser = 〈c :user!U〉, vpwd = 〈c :password!P〉 and vviddoc = 〈sd : id?U, P〉
given in Figure 4. This makes service ServerDoc and the Client interact correctly. We
emphasize that the adaptor synchronizes with the services using the same name of mes-
sages but the reversed directions, e.g., communication between id? in ServerDoc and
id! in the adaptor. Furthermore, when a vector includes more than one communication
action, the adaptor always starts the set of interactions formalized in the vector with the
receptions (which correspond to emissions on service interfaces), and next handles the
emissions.

A Case Study in Model-Based Adaptation of Web Services 121

Figure 8 displays the adaptor protocol generated using the adaptation contract shown
in Figure 4. This adaptor contains 51 states and 73 transitions, and therefore has rea-
sonable size and complexity. Interaction starts by receiving the user?, password?
and reqDoc? messages sent by the Client. Next, the adaptor starts interacting with
ServerDoc by first sending authentication information (id!) and then the request posted
previously by the client (reqDoc!). Once the client and the doctor have ended their in-
teraction, the adaptor can send a request to interact with the specialist (reqSpec?), this
is the case in state 25 for example. Note that in the bottom part of the adaptor proto-
col, corresponding to the interaction with the specialist, the adaptor can treat several
specialist requests (e.g., reqSpec? in state 31). Notice also that the adaptor can termi-
nate at different points of its execution (transitions labelled with FINAL). The adaptor
protocol corrects all the mismatch cases presented in Section 3.1, for instance we can
see in state 33 that the adaptor can submit first the request to the specialist (reqSpec!)
and then the authentication information in state 38 (id!) solving the reordering problem
existing between the client and the specialist service.

If we consider the adaptation contract with vectors only (the corresponding VLTS
consists of a single state with all vector transitions looping on it), the adaptor protocol
consists of 243 states and 438 transitions. This quite high number of states and transi-
tions is due to the release of constraints specified in the original VLTS which imposes
sequentiality on the system (interactions first with the doctor and in a second step with
the specialist), thus reducing interleaving.

3.4 Implementation

Our internal model (STS) can express some additional behaviours (interleaving) that
cannot be implemented into executable languages (e.g., BPEL). To make platform-
independent adaptor protocols implementable wrt. a specific platform we proceed in
two steps: (i) filtering the interleaving cases that cannot be implemented, and (ii) en-
coding the filtered model into the corresponding implementation language.

Filtering. Techniques presented in this paper to generate adaptor protocols are
platform-independent, therefore the adaptor model may contain parts which cannot be
implemented in a given language (e.g., BPEL). This filtering step aims at removing in
the adaptor protocol these non-implementable parts. These parts represent the interleav-
ing of parallel operations and they are not necessary for the functionality of the system.
As an example, if there are several emission transitions going out from the same state,
this leads to non-determinism which cannot be implemented in BPEL. One of the fil-
tering rules states that in such a case, only one emission is kept. In this paper, we reuse
filtering rules presented in [12]. We show in Figure 9 the filtered adaptor protocol. One
can see that the protocol contains first a sequence corresponding to the interaction with
ServerDoc, and next a loop corresponding to the interaction with ServerSpec. The
client must start interacting with ServerDoc, and in state 11, (s)he can choose either to
interact again with ServerSpec, or to stop. This protocol can be implemented in BPEL
as we will see in the remainder of this section.

BPEL implementation. The adaptor protocol is implemented using a state machine
pattern. The main body of the BPEL process corresponds to a global while activity

122 J. Cámara et al.

0

1

CLIENT :USER ?U

2

CLIENT :PASSWO RD ?P

3

CLIENT :REQ DO C ?DATE

4

FINAL

5

SERVERDO C :ID !U,P

6

SERVERDO C :REQ DO C !DATE

7

SERVERDO C :REPLYDO C ?RES 2

8

CLIENT :REQ DO C !RES 2

9

CLIENT :VALIDATEDO C ?B1

10

CLIENT :REQ SPEC ?DATE

11

SERVERDO C :VALIDATE !B 1

12

SERVERDO C :VALIDATE !B1

13

SERVERESP :REQ SPEC !DATE

14

CLIENT :REQ SPEC ?DATE

15

FINAL

16

SERVERESP :REQ SPEC !DATESERVERDO C :VALIDATE !B1

17

SERVERESP :ID !U ,P SERVERESP :REQ SPEC !DATE

18

SERVERESP :ID !U,P

19

SERVERDO C :VALIDATE !B1

20

SERVERESP :REPLYSPEC ?RES 1

21

SERVERESP :REPLYSPEC ?RES 1SERVERESP :REPLYSPEC ?RES 1

22

CLIENT :REQ SPEC !RES 1

23

SERVERDO C :VALIDATE !B 1

24

CLIENT :REQ SPEC !RES 1SERVERDO C :VALIDATE !B1

25

CLIENT :VALIDATESPEC ?B2

CLIENT :REQ SPEC !RES 1

26

CLIENT :VALIDATESPEC ?B2

27

CLIENT :REQ SPEC ?DATE

28

SERVERDO C :VALIDATE !B1

29

SERVERESP :VALIDATE !B2

30

CLIENT :REQ SPEC ?DATE

31

SERVERESP :VALIDATE !B2

32

SERVERDO C :VALIDATE !B1

33

SERVERESP :VALIDATE !B2

CLIENT :REQ SPEC ?DATE

SERVERESP :VALIDATE !B2SERVERDO C :VALIDATE !B 1

34

CLIENT :REQ SPEC ?DATE

35

SERVERESP :VALIDATE !B2

36

CLIENT :REQ SPEC ?DATE

37

FINAL

SERVERESP :VALIDATE !B2 SERVERDO C :VALIDATE !B1

38

SERVERESP :REQ SPEC !DATE

SERVERDO C :VALIDATE !B1

SERVERESP :REQ SPEC !DATE

39

SERVERESP :REQ SPEC !DATE

SERVERESP :REQ SPEC !DATE

SERVERDO C :VALIDATE !B1

40

SERVERESP :ID !U,P

41

SERVERESP :ID !U ,P

42

SERVERDO C :VALIDATE !B1

43

SERVERESP :REPLYSPEC ?RES 1

44

SERVERESP :REPLYSPEC ?RES 1

SERVERESP :REPLYSPEC ?RES 1

45

CLIENT :REQ SPEC !RES 1

46

SERVERDO C :VALIDATE !B1

47

CLIENT :REQ SPEC !RES 1

SERVERDO C :VALIDATE !B1

48

CLIENT :VALIDATESPEC ?B2

CLIENT :REQ SPEC !RES 1

49

CLIENT :VALIDATESPEC ?B2

CLIENT :REQ SPEC ?DATE

SERVERESP :VALIDATE !B 2

50

SERVERDO C :VALIDATE !B 1

CLIENT :REQ SPEC ?DATE

SERVERESP :VALIDATE !B2

CLIENT :REQ SPEC ?DATE

SERVERESP :VALIDATE !B 2

Fig. 8. Adaptor protocol generated for the Online Medical System example

A Case Study in Model-Based Adaptation of Web Services 123

0 11

1

CLIENT:USER ?U

14

CLIENT:REQSPEC ?DATE

15

FINAL

2

CLIENT:PASSWORD ?P

3

CLIENT:REQDOC ?DATE

4

FINAL

5

SERVERDOC:ID !U,P

6

SERVERDOC:REQDOC !DATE

7

SERVERDOC:REPLYDOC ?RES2

8

CLIENT:REQDOC !RES2

9

CLIENT:VALIDATEDOC ?B1

SERVERDOC:VALIDATE !B1

16

SERVERESP:REQSPEC !DATE

18

SERVERESP:ID !U,P

21

SERVERESP:REPLYSPEC ?RES1

24

CLIENT:REQSPEC !RES1

26

CLIENT:VALIDATESPEC ?B2

SERVERESP:VALIDATE !B2

Fig. 9. Filtered adaptor protocol obtained for the Online Medical System example

with if statements used inside it to encode adaptor states and pick statements to choose
which branch to follow depending on the received messages. Variables are used to store
data passing through the adaptor and the current state of the protocol. Timeouts (on-
Alarm activities) are used in these pick activities to model FINAL transitions. Every
state in the adaptor behaviour with several incoming or outgoing transitions is encoded
as a new branch of the if activity in the implementation. That branch might contain an
internal pick activity with sequences of communication activities alternated with assign-
ments to update the variables and change the current state of the execution. Adaptors
whose protocol is a global loop beginning with a final state (such as services ServerDoc
and ServerSpec) are modelled as a sequence, therefore every iteration of the global
loop will be a new instantiation of the adaptor. Let us note that the implementation of
the adaptor is constrained by the specifics of the implementation of the services and
the actual BPEL engine. These might avoid the proper implementation and execution

124 J. Cámara et al.

Fig. 10. Implementation of the adaptor in BPEL

of the adaptor. For instance, BPEL allows bi-directional and blocking invoke activi-
ties and their corresponding receive activities, in some scenarios, these could block the
adaptor and avoid its proper execution. In addition, current BPEL engines do not fully
support BPEL 2.0, for instance, Glassfish 2.1.x does not execute properly BPEL pro-
cesses with two different receive activities of the same operation and partner link. This
restricts even further the implementation of the adaptor.
Example. Figure 9 shows the behaviour of the filtered adaptor corresponding to the run-
ning example, whereas Figure 10 displays a graphical model of part of its implemen-
tation in BPEL. The client interface and the intarfaces of the two servers are located
on the left-hand side and right-hand side of the BPEL implementation, respectively.
This adaptor presents an initial log-in sequence followed by the while activity with a
nested if activity, as previously mentioned. In the first iteration of the loop, the current
state of the adaptor is 2 (see Figure 9), therefore the execution continues through the if
and pick activities on the left-hand side of the loop. We have an onAlarm which finishes

A Case Study in Model-Based Adaptation of Web Services 125

the session because the client might not perform any request at all. Otherwise, once a
request for a general practitioner is processed, the current state of the adaptor is set to
be 11 and we iterate once more. In the second iteration, we have an analogous structure
for specialists requests in the right-hand side of the loop. In this case, however, the
adaptor can process several of such requests (or none) and, when there are not anymore
requests, the onAlarm activity triggers the end of the session.

4 Concluding Remarks

Building systems by adapting a set of reusable software services whose functional-
ity is accessed through their behavioural interfaces is an error-prone task which can
be supported by assisting developers with the automatic procedures and tools supplied
by model-based software adaptation. In particular, existing works dedicated to model-
based behavioural adaptation are often classified in two families. A first class of existing
works can be referred to as restrictive approaches [3,4,13], and favour the full automa-
tion of the process, trying to solve interoperability issues by pruning the behaviours
that may lead to mismatch, thus restricting the functionality of the services involved.
These techniques are limited since they are not able to fix subtle incompatibilities be-
tween service protocols by remembering and reordering messages and their parameters
when necessary. A second class of solution which can be referred to as generative ap-
proaches [2,6,8] avoid the arbitrary restriction of service behaviour, and supports the
specification of advanced adaptation scenarios. Generative approaches build adaptors
automatically from an abstract specification of how the different mismatch situations
can be solved, often referred to as adaptation contract.

In this paper, we have shown the application of model-based adaptation techniques
for Web services, using a case study on the development of an online medical manage-
ment system to illustrate all the steps of the process. The approach used gathers desir-
able features from existing model-based behavioural adaptation approaches in a single
process. All the steps of the process presented in this paper are fully tool-supported by
a toolbox called ITACA [5], which enables the specification and verification of adapta-
tion contracts, automates the generation of adaptor protocols, and relates our abstract
models with implementation languages.

With respect to the results that we obtained from the application of the approach to
this and other case studies, we were able to assess that there is a remarkable reduction
both in the amount of effort that the developer has to put into building the adaptor,
as well as in the number of errors present in the final result. Since the test cases used
so far for our experiments were of a small-medium size and complexity, we think that
the difficulty of specifying contracts for bigger systems involving dozens of services
would be not manageable by the developers without tool-supported, model-based adap-
tation techniques. This puts forward the importance of providing such support for the
development of service-based systems.

Acknowledgements. This work has been partially supported by the project TIN2008-
05932 funded by the Spanish Ministry of Innovation and Science (MICINN), and project
P06-TIC-02250 funded by the Junta de Andalucı́a.

126 J. Cámara et al.

References

1. Pi4SOA Project, http://www.pi4soa.org
2. Brogi, A., Bracciali, A., Canal, C.: A formal approach to component adaptation. The Journal

of Systems and Software 74, 45–54 (2005)
3. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: A Tool for Automatically

Assembling Correct and Distributed Component-based Systems. In: Proc. of ICSE 2007, pp.
784–787. IEEE Computer Society, Los Alamitos (2007)

4. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidelberg (2006)

5. Cámara, J., Martı́n, J.A., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel, E.: ITACA:
An Integrated Toolbox for the Automatic Composition and Adaptation of Web Services. In:
Proc. of ICSE 2009, pp. 627–630. IEEE Computer Society, Los Alamitos (2009)

6. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioural mismatching com-
ponents. IEEE Transactions on Software Engineering 4(34), 546–563 (2008)

7. Cubo, J., Salaün, G., Canal, C., Pimentel, E., Poizat, P.: A Model-Based Approach to the
Verification and Adaptation of WF/.NET Components. In: Proc. of FACS 2007. ENTCS,
vol. 215, pp. 39–55. Elsevier, Amsterdam (2007)

8. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation for Service
Interface Adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

9. Foster, H., Uchitel, S., Kramer, J.: LTSA-WS: A Tool for Model-based Verification of Web
Service Compositions and Choreography. In: Proc. of ICSE 2006, pp. 771–774. ACM Press,
New York (2006)

10. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proc. of WWW
2004, pp. 621–630. ACM Press, New York (2004)

11. ISO/IEC: LOTOS — A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. International Standard 8807, ISO (1989)

12. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols using Process Algebra
and On-the-Fly Reduction Techniques. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg (2008)

13. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-automated adap-
tation of service interactions. In: Proc. of WWW 2007, pp. 993–1002. ACM, New York
(2007)

14. Poizat, P., Salaün, G.: Adaptation of Open Component-based Systems. In: Bonsangue, M.M.,
Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 141–156. Springer, Heidelberg
(2007)

15. Salaün, G.: Generation of Service Wrapper Protocols from Choreography Specifications. In:
Proc. of SEFM 2008, pp. 313–322. IEEE Computer Society, Los Alamitos (2008)

16. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services using Pro-
cess Algebra. International Journal of Business Process Integration and Management 1(2),
116–128 (2006)

17. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transac-
tions on Programming Languages and Systems 2(19), 292–333 (1997)

http://www.pi4soa.org

Quantitative Verification in Practice

Boudewijn R. Haverkort1,2, Joost-Pieter Katoen2,3, and Kim G. Larsen4

1 Embedded Systems Institute, Eindhoven, The Netherlands
2 University of Twente, Formal Methods and Tools, The Netherlands

3 RWTH Aachen University, Software Modeling and Verification Group, Germany
4 Center for Embedded Software Systems, Aalborg, Denmark

Abstract. Soon after the birth of model checking, the first theoretical
achievements have been reported on the automated verification of quanti-

tative system aspects such as discrete probabilities and continuous time.

These theories have been extended in various dimensions, such as con-

tinuous probabilities, cost constraints, discounting, hybrid phenomena,

and combinations thereof. Due to unremitting improvements of under-

lying algorithms and data structures, together with the availability of

more advanced computing engines, these techniques are nowadays appli-

cable to realistic designs. Powerful software tools allow these techniques

to be applied by non-specialists, and efforts have been made to embed

these techniques into industrial system design processes. Quantitative

verification has a broad application potential — successful applications

in embedded system design, hardware, security, safety-critical software,

schedulability analysis, and systems biology exemplify this. It is fair to

say, that over the years this application area grows rapidly and there

is no sign that this will not continue. This session reports on applying

state-of-the-art quantitative verification techniques and tools to a variety

of industrial case studies.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, p. 127, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ten Years of Performance Evaluation for
Concurrent Systems Using CADP

Nicolas Coste1, Hubert Garavel2, Holger Hermanns2,3,
Frédéric Lang2, Radu Mateescu2, and Wendelin Serwe2

1 STMicroelectronics, 12, rue Jules Horowitz, BP 217, 38019 Grenoble, France
2

Inria Grenoble – Rhône-Alpes, Inovallée, 655, av. de l’Europe,

Montbonnot, 38334 Saint Ismier, France

{Hubert.Garavel,Frederic.Lang,Radu.Mateescu,Wendelin.Serwe}@inria.fr
3 Saarland University, Dept. of Computer Science, 66123 Saarbrücken, Germany

hermanns@cs.uni-saarland.de

Abstract. This article comprehensively surveys the work accomplished
during the past decade on an approach to analyze concurrent systems

qualitatively and quantitatively, by combining functional verification and

performance evaluation. This approach lays its foundations on seman-

tic models, such as Imc (Interactive Markov Chain) and Ipc (Interac-
tive Probabilistic Chain), at the crossroads of concurrency theory and
mathematical statistics. To support the approach, a number of software

tools have been devised and integrated within the Cadp (Construction
and Analysis of Distributed Processes) toolbox. These tools provide var-
ious functionalities, ranging from state space generation (Cæsar and

Exp.Open), state space minimization (Bcg Min and Determinator),

numerical analysis (Bcg Steady and Bcg Transient), to simulation

(Cunctator). Several applications of increasing complexity have been

successfully handled using these tools, namely the Hubble telescope life-

time prediction, performance comparison of mutual exclusion protocols,

the Scsi-2 bus arbitration protocol, the Send/Receive and Barrier prim-

itives of Mpi (Message Passing Interface) implemented on a cache-cohe-
rent multiprocessor architecture, and the xSTream multiprocessor

data-flow architecture for embedded multimedia streaming applications.

1 Introduction

The design of models suited for performance and reliability analysis is challenging
due to complexity and size of the modeled systems, in particular for those with
a high degree of irregularity. Traditional performance models like Markov chains
and queueing networks are not easy to apply for large-sized systems, mainly
because they lack hierarchical composition and abstraction means.

Therefore, various specification formalisms have been proposed, which enable
systems to be modeled in a compositional, hierarchical manner. A prominent
example of such specification formalisms is the class of process algebras, which
provide abstraction mechanisms to treat system components as black boxes,
making their internal implementation details invisible. Among the many process

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 128–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 129

algebras proposed in the literature, Lotos [1] has received much attention, due
to its technical merits and its status of Iso/Iec International Standard. Cadp

(Construction and Analysis of Distributed Processes) is a widespread tool set for
the design and verification of complex systems. Cadp supports, among others,
the process algebra Lotos for specification, and offers various tools for simula-
tion and formal verification, including equivalence checkers (bisimulations) and
model checkers (temporal logics and modal μ-calculus). About a decade ago,
Cadp has been extended with performance evaluation capabilities, based on
the Imc (Interactive Markov Chain) theory [2,3]. More recently, the Imc theory
has been transposed into a discrete-time setting, leading to the Ipc (Interactive
Probabilistic Chain) theory [4]. These theories combine well with the approach
behind Cadp by integrating both, on the one hand, Markov chains and, on the
other hand, classical process algebra and the underlying standard notion of Lts

(Labeled Transition System). Over the years, the performance evaluation branch
of Cadp has gained maturity, new tools have been added, and many applica-
tions have been carried out with the toolbox. This paper provides a survey of
the principal modeling and analysis ingredients, and applications of performance
evaluation with Cadp.

2 The Interactive Markov Chain Model

An Imc (Interactive Markov Chain) [3] is a state-transition graph with a denu-
merable state space, action-labeled transitions, as well as stochastic transitions
(also called Markovian transitions). The latter are labeled with rates of expo-
nential distributions. Actions are ranged over by a and b; the particular action
τ models internal, i.e., unobservable activity, whereas all other actions model
observable activities.

Definition 1 (Interactive Markov Chain). An Imc is a tuple
I = (S,A, −→ , ⇒ , s0) where:

– S is a nonempty set of states with initial state s0 ∈ S,
– A is a set of actions,
– −→ ⊆ S × A × S is a set of interactive transitions, and
– ⇒ ⊆ S × R>0 × S is a set of stochastic transitions.

An Imc is a natural extension of a standard Lts (Labeled Transition System),
as well as of a Ctmc (Continuous-Time Markov Chain): a standard Lts is an
Imc with ⇒ = ∅, while a Ctmc is an Imc with −→ = ∅.
Behavioral interpretation. Roughly speaking, the interpretation of a stochastic

transition s
λ⇒ s′ is that the Imc can switch from state s to s′ within d time

units with probability 1−e−λ·d. The positive real value λ thus uniquely identifies

a negative exponential distribution. For state s, let R(s, s′) =
∑{λ | s

λ⇒ s′}
be the rate to move from s to state s′. If R(s, s′) > 0 for more than one state s′,
a competition between the transitions of s exists, known as the race condition.

130 N. Coste et al.

The probability to move from such state s to a particular state s′ within d time
units, i.e., the stochastic transition s ⇒ s′ wins the race, is given by:

R(s, s′)
E(s)

·
(
1 − e−E(s)·d

)
,

where E(s) =
∑

s′∈S R(s, s′) denotes the exit rate of state s. Intuitively, it
states that after a delay of at most d time units (second term), the Imc moves
probabilistically to a direct successor state s′ with discrete branching probability
P(s, s′) = R(s, s′)/E(s).

An internal interactive transition is a τ -labeled interactive transition, also
called τ -transition for short in the sequel, which plays a special role in an Imc.
As a τ -transition is not subject to any interaction, it cannot be delayed. Thus,
τ -transitions can be assumed to take place immediately. Now consider a state
s with both a τ -transition and a stochastic transition. At the precise instant,
when the Imc moves to s, the τ -transition can be taken immediately, but the
probability that the stochastic transition executes immediately is zero. This
justifies that τ -transitions take precedence over stochastic transitions, a property
called the maximal progress assumption.

Definition 2 (IMC parallel composition). Let I1 =(S1,A1, −→1, ⇒1, s0,1)
and I2 = (S2,A2, −→2, ⇒2, s0,2) be Imcs. For a set of actions A such that
τ �∈ A, the parallel composition of I1 and I2 wrt. A is defined by:

I1 ||A I2 = (S1 × S2,A1 ∪ A2, −→ , ⇒ , (s0,1, s0,2))

where −→ and ⇒ are defined as the smallest relations satisfying:

1. s1
a−→1 s′1 and s2

a−→2 s′2 and a ∈ A implies (s1, s2) a−→ (s′1, s
′
2)

2. s1
a−→1 s′1 and a �∈ A implies (s1, s2) a−→ (s′1, s2) for any s2 ∈ S2

3. s2
a−→2 s′2 and a �∈ A implies (s1, s2) a−→ (s1, s

′
2) for any s1 ∈ S1

4. s1
λ⇒1 s′1 implies (s1, s2)

λ⇒ (s′1, s2) for any s2 ∈ S2

5. s2
λ⇒2 s′2 implies (s1, s2)

λ⇒ (s1, s
′
2) for any s1 ∈ S1.

The first three constraints define a Lotos-like parallel composition [1]: actions in
A need to be performed by both Imcs simultaneously (first constraint), whereas
actions not in A are performed autonomously (second and third constraint).
According to the last two constraints, an Imc can delay independently. This
differs from timed models such as timed automata, in which individual processes
typically need to synchronize on the advance of time. Independent delaying is
justified, because whenever two stochastic transitions with rates λ and μ are
competing to be executed, then the remaining delay of the μ-transition after the
λ-transition has been taken is exponentially distributed with rate μ, due to the
memoryless property of exponential distributions.

To compare Imcs, notions of strong and branching bisimulation are used,
which extend the notions defined on standard Lts in a conservative fashion, and
also extend Markov chain lumpability [3]. Both relations are congruences for

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 131

parallel composition and other process algebraic operators. Therefore an Imc in
a parallel composition can be replaced by an equivalent, but possibly smaller
one, while preserving semantics.

Constraint-oriented specification of performance aspects. To evaluate the per-
formance of a system using the Imc approach, one can insert delays — i.e., a
probability distribution approximated arbitrarily closely by a terminating Ctmc

— into the standard Lts of the system. This insertion can be achieved following
the constraint-oriented specification style [5], originally developed to support the
early phases of system design. Put in a nutshell, constraints are viewed as sepa-
rate processes (in our case, Imcs), and parallel composition is used to combine
these constraints much in the same vein as logical conjunction.

To illustrate the constraint-oriented specification style applied to an Imc,
consider an Imc I and let a and b be two successive actions in I. To insert a
delay approximated by a terminating Ctmc Δ with a single final state, construct
an Imc IΔ whose initial state contains a single outgoing transition labeled a to
the initial state of Δ, and whose final state can only be reached from the final
state of Δ by a transition labeled b. The resulting system is then obtained as
I ||{a,b} IΔ.

3 The Interactive Probabilistic Chain Model

An Ipc (Interactive Probabilistic Chain) [4] can be seen as a transposition of the
Imc approach to a discrete time setting. Thus, in this section, we focus on the
differences between the two models. An Ipc is essentially a state-transition graph
with a denumerable state space, action labeled transitions, and probabilistic
transitions. As for an Imc, actions are ranged over by a and b, and the internal
action is denoted τ .

Definition 3 (Interactive Probabilistic Chain). An Ipc is a tuple D =
(S,A, −→ ,�, s0) where:

– S is a nonempty set of states with initial state s0 ∈ S,
– A is a set of actions,
– −→ ⊆ S ×A× S is a set of interactive transitions, and
– � ⊆ S ×]0..1] × S is a set of probabilistic transitions, satisfying for each

state s ∈ S that the sum of probabilities of outgoing probabilistic transitions
is equal to one, i.e., (∀s ∈ S)

∑
s′∈S

∑{p | s p� s′} = 1

Notice that the constraint on probabilistic transitions implies that each state
has at least one outgoing probabilistic transition, which may be a self-loop with
probability one, i.e., a transition of the form s

1� s.
An Ipc is a natural extension of a standard Lts as well as of a Dtmc (Discrete-

Time Markov Chain): a standard Lts is an Ipc with � = ∅, while a Dtmc is
an Ipc with −→ = ∅.
Behavioral interpretation. Executing a probabilistic transition takes exactly
one time step. Any choice between probabilistic transitions is solved according

132 N. Coste et al.

to the probability distribution. Self-loops with probability one express the arbi-
trary waiting property [6]: an Ipc may be blocked waiting for a synchronization
that is arbitrarily long (even infinitely) while still letting time advance. As for
an Imc, internal interactive transitions take precedence over probabilistic tran-
sitions following the maximal progress assumption.

The parallel composition of the Ipc model differs from the composition of the
Imc model, because the memoryless property of exponential distributions does
not apply to the Ipc model.

Definition 4 (IPC parallel composition). Let D1 = (S1,A1, −→1,�1, s0,1)
and D2 = (S2,A2, −→2,�2, s0,2) be Ipcs. For a set of actions A such that τ �∈ A,
the parallel composition of D1 and D2 wrt. A is defined by:

D1 ||A D2 = (S1 × S2,A1 ∪A2, −→ ,�, (s0,1, s0,2))

where −→ and � are defined as the smallest relations satisfying:

1. s1
a−→1 s′1 and s2

a−→2 s′2 and a ∈ A implies (s1, s2) a−→ (s′1, s
′
2)

2. s1
a−→1 s′1 and a �∈ A implies (s1, s2) a−→ (s′1, s2) for any s2 ∈ S2

3. s2
a−→2 s′2 and a �∈ A implies (s1, s2) a−→ (s1, s

′
2) for any s1 ∈ S1

4. s1
p1�1 s′1 and s2

p2�2 s′2 implies (s1, s2)
p1p2� (s′1, s′2).

Again, the first three constraints define a Lotos-like parallel composition [1]:
actions in A need to be performed by both Ipcs simultaneously (first constraint),
whereas actions not in A are performed autonomously (second and third con-
straint). Contrary to the Imc model, the last constraint forces Ipcs to synchro-
nize on the advance of time, similar to discrete-timed models. Notice that the
probability of the synchronized transition is precisely the product of the proba-
bilities to take each transition separately.

Strong and branching bisimulations for the Ipc model are defined similar
to the corresponding bisimulations for the Imc model. As for the Imc model,
strong and branching probabilistic bisimulations are congruences wrt. parallel
composition and other operators.

4 CADP Tools for Extended Markovian Models

A key benefit of the Imc/Ipc approach is its compatibility with most existing
process calculi, without requiring syntactic and semantic extensions to handle
stochastic/probabilistic features. Consequently, it is possible to reuse or extend
tools already available in the Cadp toolbox, rather than developing a whole set
of new tools.

In this section, we present the various Cadp tools handling extended Marko-
vian models, i.e., state-transition models that combine features from standard
Lts and discrete-time and continuous-time Markov chains. A number of these
tools (namely Bcg Steady, Bcg Transient, and Determinator [7]) have
been developed specifically to support performance evaluation. Other tools al-
ready existed but were already compatible or have been extended to be com-
patible with the proposed approach. Contrary to most Cadp tools that operate

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 133

on standard Ltss, these tools operate on extended Markovian models, encoded
as probabilistic/stochastic extensions of Ltss. Precisely, an extended Markovian
model is an Lts, where all transition labels must be one of the following, a
representing either an observable action or the internal action τ :

– a rate “λ”, called a stochastic transition, or
– a pair “a; λ” of an action and a rate, called a labeled stochastic transition, or
– a probability “p” with p ∈ [0, 1], called a probabilistic transition, or
– a pair “a; p” of an action and a probability, called a labeled probabilistic

transition, or
– an action “a”, called an interactive transition (also called ordinary transition

in the Cadp documentation).

Note that extended Markovian models are sufficiently general to include Imc,
Ipc, and various other probabilistic1 and stochastic models2. In Cadp, extended
Markovian models are represented explicitly in the Bcg format, or implicitly
using the Open/Cæsar environment [8].

4.1 State Space Generation Using CÆSAR.ADT and CÆSAR

Cæsar.Adt [9] and Cæsar [10,11] are two complementary Lotos to C com-
pilers, the former for the data part, the latter for the behavior part of Lotos.
The C code generated by these compilers is then used by other Cadp tools
for various purposes: simulation, random execution, on-the-fly verification, test
generation, etc. Additionally, Cæsar can generate the Lts corresponding to a
Lotos specification, if of finite size. This Lts is encoded in the Bcg format
and can be verified using bisimulations and/or model checking of μ-calculus or
temporal logic formulas.

A Lotos specification, whose functional correctness has been already verified,
can be enriched with stochastic information as follows: the user must insert in
the Lotos specification, at each place where a Markov delay or a probabilistic
transition should occur, a new Lotos gate λi.

After all gates λi have been inserted in the Lotos specification, Cæsar and
Cæsar.Adt are invoked as usual to generate the corresponding Lts. This Lts is
then turned into an extended Markovian model (still encoded in the Bcg format)
by replacing each transition labeled with λi by a stochastic or probabilistic tran-
sition of known numerical value. This can be achieved using the Bcg Labels

tool of Cadp, which performs hiding and/or renaming on the labels attached
to the transitions of a Bcg file, according to a set of regular expression and
substitution patterns specified by the user.
1 Discrete Time Markov Chains, Discrete Time Markov Reward Models, Alternating

Probabilistic Lts, Discrete Time Markov Decision Processes, Generative Probabilis-

tic Lts, Reactive Probabilistic Lts, Stratified probabilistic Lts.
2 Continuous Time Markov Chains, Continuous Time Markov Reward Models, Con-

tinuous Time Markov Decision Processes, Timed Processes for Performance Models,

Performance Evaluation Process Algebra Models, Extended Markovian Process Al-

gebra Models.

134 N. Coste et al.

4.2 Compositional Verification Using EXP.OPEN

Exp.Open [12] is a compositional verification tool for on-the-fly exploration of a
graph corresponding to a network of communicating automata (represented as a
set of Bcg files). These automata are composed together in parallel using either
algebraic operators (as in the Ccs, Csp, Lotos, and μCrl process algebras),
“graphical” operators (as in E-Lotos and Lotos NT), or synchronization vec-
tors (as in the Mec and Fc2 tools). Additional operators are available to hide
and/or rename labels (using regular expressions), to cut certain transitions, and
to give priority of certain transitions over others.

To address state explosion, Exp.Open is equipped with partial order re-
duction techniques that preserve either deadlocks, weak traces, or branching
bisimulation. For an extended Markovian model, Exp.Open uses the maximal
progress property to cut all stochastic transitions in choice with τ -transitions (see
Section 2).

Branching bisimulation (and both its stochastic and probabilistic variants) as
well as trace equivalence, weak trace equivalence, safety equivalence, observa-
tional equivalence, and strong bisimulation are congruences for all Exp.Open

operators except priorities. This is a key property for compositional verifica-
tion, which extends the congruence property mentioned in Section 2 to the more
general network of communicating automata model.

4.3 Bisimulation Reduction Using BCG MIN

The Bcg Min tool enables graph minimization modulo strong bisimulation or
branching bisimulation, extended to the probabilistic and stochastic cases. Thus,
it can be used for functional verification and performance evaluation. Bcg Min

accepts as input three kinds of extended Markovian models, all encoded in the
Bcg graph format:

– either a standard Lts, containing only interactive transitions,
– or a probabilistic model, containing only interactive, probabilistic, or labeled

probabilistic transitions (e.g., an Ipc),
– or a stochastic model, containing only interactive, stochastic, or labeled

stochastic transitions (e.g., an Imc).

A new version 2.0 of Bcg Min implementing a signature-based partition refine-
ment algorithm [13] generalized to stochastic and probabilistic bisimulations has
been released in 2010. This new version brings spectacular performance improve-
ments with respect to the previous version. In particular, the reduction modulo
stochastic and probabilistic bisimulations of a test base consisting of 1335 prob-
abilistic and stochastic models was 540 times faster, and up to 8500 times faster
for one particular model.

4.4 Nondeterminism Elimination Using DETERMINATOR

The Determinator tool [7] eliminates stochastic nondeterminism in extended
Markovian models on the fly. It takes as input an extended Markovian model M

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 135

(encoded in the Bcg graph format) containing probabilistic and/or stochastic
transitions and attempts at translating M to a Ctmc (Continuous Time Markov
Chain), i.e., an Lts (encoded in the Bcg graph format) that contains (labeled)
stochastic transitions only. The aim is therefore to eliminate the interactive and
probabilistic transitions, while keeping the stochastic information present in M.

Because the translation is impossible in the general case, Determinator only
handles models verifying a sufficient condition (well-specified check) [14], which
guarantees that the resulting Ctmc is unique, independently of the way nonde-
terministic choices are resolved. This enables to eliminate the nondeterminism
without modifying the stochastic behavior of the system.

The translation algorithm implemented in Determinator is a variant of
the one presented in [14]. It works on the fly using the functionalities of the
Open/Cæsar environment [8].

Although the Bcg Min tool also enables, in some way, to eliminate nondeter-
minism (by doing more general reductions based on the concept of lumpability),
it differs from Determinator: Bcg Min does not handle the case of Lts con-
taining both probabilistic and stochastic transitions and it does not eliminate
interactive transitions.

4.5 Numerical Analysis Using BCG STEADY and
BCG TRANSIENT

The Bcg Steady and Bcg Transient tools take as input a Ctmc (Continu-
ous Time Markov Chain), a Dtmc (Discrete Time Markov Chain), or even any
extended Markovian model without interactive transitions meeting the restric-
tions detailed on the respective manual pages3. The input model is represented
internally as a (sparse) matrix indexed by states that is used by numerical algo-
rithms for performance evaluation:

– Bcg Steady computes, for each state s, the probability to be in s on the
long run, i.e., in the equilibrium or “steady state”. These probabilities are
computed iteratively using a Gauss-Seidel algorithm [15].

– Bcg Transient computes, for each state s and for each time instant t in
a discrete set provided by the user, the probability to be in s at instant t.
This computation uses the uniformization algorithm [16,15] and the Fox-
Glynn [17] method to approximate Poisson probabilities.

Based on the computed probabilities, Bcg Steady and Bcg Transient can
also compute the corresponding transition throughputs, i.e., the average number
of transition executions per time unit. These measures can provide important
high-level information to assess the system performance, reliability or produc-
tivity, such as operation latencies (see Section 6).

Bcg Steady and Bcg Transient generate output in the standard Csv

(Comma Separated Values) format used by mainstream data processing tools,
including Excel and Gnuplot.
3 Available at http://vasy.inria.fr/cadp/man/bcg_steady.html and

http://vasy.inria.fr/cadp/man/bcg_transient.html

http://vasy.inria.fr/cadp/man/bcg_steady.html
http://vasy.inria.fr/cadp/man/bcg_transient.html

136 N. Coste et al.

The Bcg Min (see Section 4.3) and Determinator (see Section 4.4) tools
might be required to determinize an extended Markovian model to be given as
input to Bcg Steady or Bcg Transient.

4.6 On-the-Fly Steady-State Simulation Using CUNCTATOR

Cunctator is an on-the-fly steady-state simulator for stochastic models. It
takes an extended Markovian model (represented using the Open/Cæsar en-
vironment) as input, applies any user-defined hiding and renaming operations,
and explores a random execution sequence on the fly. Exploration is aborted
whenever an observable interactive transition or a probabilistic transition is en-
countered. During the exploration, the tool sums up the virtual time elapsed in
the states, determined according to the rates of their outgoing stochastic tran-
sitions. The simulation terminates when either the virtual time, or the length of
the simulation sequence (number of transitions) reaches a maximum value spec-
ified by the user. Upon termination, the throughputs of the labeled stochastic
transitions of interest are displayed, together with additional information (num-
ber of τ -transitions encountered, presence of nondeterminism, etc.). The context
reached at the end of a simulation can be saved in order to restart subsequent
simulations from this context. This mechanism is useful for implementing con-
vergence criteria (e.g., based on confidence intervals) by allowing to perform in
linear time a series of increasingly long simulations, each one being the prefix of
the subsequent ones.

When a nondeterministic state (with at least two outgoing τ -transitions) is
reached, Cunctator explores one of the outgoing τ -transitions. The choice of
this transition can be made currently according to three scheduling policies: the
first τ -transition encountered, the last one, or a randomly chosen one. When a
simulation has encountered nondeterministic states, the user has the possibility
of launching other simulations using different scheduling policies in order to
obtain more insight about the stochastic behavior of the model.

Cunctator stores in memory only the last state of the simulation se-
quence, thus consuming only a small amount of memory, independent from the
length of the simulation sequence and from the size of the Ctmc. Compared to
Bcg Steady, which computes exact throughputs in a Ctmc represented as a
Bcg file, Cunctator consumes less memory but may require a longer execution
time in order to achieve the same accuracy.

5 Additional Tools for Interactive Probabilistic Chains

To support the Ipc model, we took advantage of the open architecture of Cadp

and prototyped additional tools (4, 900 lines of C code) that are not yet inte-
grated into Cadp. Together with Cadp, these tools support the compositional
construction of an Ipc (following a constraint oriented style) and the computa-
tion of latency distributions.

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 137

Parallel composition of IPCs. Because the parallel composition of Lotos and
those supported by Exp.Open are incompatible with the parallel composition
of the Ipc model, a different parallel composition is required.

The Ipc Compose tool takes as input a network of communicating Ipcs
(represented as a set of Bcg files, composed in parallel using Lotos parallel
compositions) and produces the corresponding Ipc.

Constraint oriented delay insertion. Ideally, one would like to use Ipc Compose

to insert delays into an Lts, following an approach similar to the constraint-
oriented style supported by Cadp for the Imc model. Unfortunately, this ap-
proach may lead to non-determinism in the case a choice between two actions
depends whether a delay has elapsed or not, because in the Ipc model, delays
in two concurrent processes may expire at exactly the same time instant. No-
tice that this cannot happen in an Imc model, because the probability for two
exponential distributions to expire at the same time is zero.

Thus, we developed the Ipc Insert tool, which takes as input an Lts (rep-
resented as a Bcg file) and a probabilistic distribution for a single delay (also
represented as a Bcg file) and produces the corresponding Ipc.

In practice, the Ipc of a complete system is obtained by first generating the
Lts of each sequential interacting subcomponent, then inserting delays into these
components (using Ipc Insert), and finally computing their parallel composi-
tion (using Ipc Compose).

Computation of latency distributions. The Ipc Distribution tool takes as in-
put a deterministic Ipc and two actions a and b and computes the long-run
average probability distribution of the latency between a and b [4].

6 Applications

In this Section, we report about five case studies that have been tackled using
the proposed methodology and its associated tools.

6.1 The Hubble Telescope Lifetime

The first case study with the performance evaluation tools provided by Cadp

was the Hubble space telescope example described in [18].
A 50-line Lotos specification was developed for this example; it consists of

seven concurrent processes: one controller process and one process for each of
the six Hubble stabilizing units (i.e., gyroscopes that may fail as time elapses).
This Lotos specification is parameterized by three constants λ, μ, and ν repre-
senting the average lifetime of a gyroscope, the time needed to stop all Hubble
equipments and the time needed to replace all gyroscopes.

Using the Cæsar and Cæsar.Adt compilers, an Lts (877 states, 3341 transi-
tions) was generated; this Lts was then turned into an Imc by replacing by their
actual values the λ, μ, and ν parameters present in the transition labels. Then,
the Bcg Min tool was used to minimize this Imc modulo stochastic branching

138 N. Coste et al.

minimization, leading to a Ctmc (9 states, 12 transitions) that is small enough
to be verified visually. Finally, the Bcg Transient tool was used to compute
failure probabilities at various time instants, thus giving an estimation of the
Hubble telescope lifetime.

6.2 Mutual Exclusion Protocols

Recently, several mutual exclusion protocols for shared memory computers have
been analyzed using Cadp [19]. These protocols are an essential building block
of concurrent systems, required whenever a shared resource has to be protected
against concurrent non-atomic accesses.

For a system with two processes communicating through up to seven shared
variables, 24 mutual exclusion protocols have been described in Lotos NT and
translated automatically into Lotos. The Lts of each protocol was transformed
into an Imc (from 89 states and 130 transitions up to 31, 222 states and 43, 196
transitions), which was then reduced using Bcg Min. Finally, the throughput
of the accesses to the shared resource was computed using Bcg Steady.

Besides comparing the performance of the various protocols, this study gave
insight about the performance impact of changing the rates for accessing the
shared resource. The results corroborate functional properties, in particular
asymmetric behavior, i.e., overtaking of one process by the other.

6.3 The SCSI-2 Bus Arbitration Protocol

Another case study [20] with the performance evaluation tools of Cadp was a
storage system developed by Bull in the early 90’s. This system consisted of a
disk controller and (at most) seven disks connected by a Scsi-2 (Small Com-
puter System Interface) bus. During the testing phase, Bull engineers discovered
potential starvation problems for disks having a smaller Scsi number than the
disk controller.

The storage system was formally described in Lotos, and it was found that
the multiway rendezvous of Lotos was most appropriate to model the Scsi-2
bus arbitration protocol concisely. This Lotos description was submitted to
model checking verification using Cadp enabling to reproduce the starvation
problem automatically.

Then, the Lotos description was turned into a performance model by insert-
ing at various places two stochastic delays λ (load stress imposed on the disk
controller) and μ (average time for a disk to service a transfer request) and by
adding an auxiliary Lotos process modeling a phase-type distribution (Erlang
law with parameter ν) between two Scsi-2 bus arbitration periods.

The corresponding Lts was generated using Cæsar.Adt and Cæsar, and
then minimized using Bcg Min modulo branching bisimulation after hiding
and/or renaming actions unrelated to performance. Due to the use of compo-
sitional state space generation techniques, state space explosion does not occur
(the largest automaton produced has 56,169 states and 154,752 transitions only).

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 139

Then, the λ, μ, and ν parameters were replaced with a series of numerical con-
stants; for each instantiation, the Imc obtained was minimized using Bcg Min

modulo stochastic branching bisimulation, yielding a Ctmc in which nondeter-
minism had vanished; finally, the Bcg Steady tool was applied to each such
Ctmc to compute the equilibrium (steady-state) probabilities for each state, as
well as throughputs for relevant actions, enabling a precise study of unfairness
in the Scsi-2 system under heavy load.

6.4 The MPI Send/Receive and Barrier Primitives

In the context of the Multival project together with Bull, we studied an im-
plementation of Mpi (Message Passing Interface) to be run on Fame2 (Flexible
Architecture for Multiple Environments), a Cc-Numa multiprocessor architec-
ture developed at Bull for teraflop mainframes and petaflop computing.

In a first study [21] we focused on the ping-pong Mpi benchmark, with the goal
of estimating the latency of send/receive primitives on Fame2 machines. Several
configurations of the benchmark were specified in Lotos, by considering three
interconnection topologies, two implementations of the send/receive primitives
SR1 and SR2 (based on linked lists with locks and on lock-free buffers) and two
cache coherency protocols A and B (in which a variable written by a process
becomes either owned by that process, or shared between that process and the
previous owner). The performance analysis was carried out by extending the
Lotos specification with exponential distributions and applying the Bcg Min,
Determinator, and Bcg Steady tools of Cadp to compute the send/receive
latency. The computed latencies were close (down to 9% of difference) to the
experimental measures, even for the relatively simple model considered. This
analysis also enabled to estimate the number of cache misses corresponding to
each instruction, showing that the most efficient configuration is given by the
SR2 send/receive implementation and the cache coherency protocol A.

We applied the same approach to study five protocols implementing the bar-
rier primitive of Mpi (centralized, combining, tournament, dissemination, and
tree-based). Using Exp.Open, the final Markov chain was generated composi-
tionally for the centralized barrier with six processes and the tree-based bar-
rier with four processes, and computed the latencies of barrier traversals using
Bcg Steady. The remaining protocols, which have prohibitively large state
spaces, were analyzed by simulation using Cunctator with the confidence in-
terval criterion for convergence (automated using the save/restore mechanism),
for configurations containing up to four processes. The throughputs obtained by
simulation were close (less than 5%) to those computed by Bcg Steady.

6.5 The xSTream Data-Flow Architecture

In the context of the Multival project together with StMicroelectronics, we
studied xSTream, a multiprocessor data-flow architecture for high performance
embedded multimedia streaming applications. In this architecture, computation
nodes (e.g., filters) communicate using xSTream queues connected by a Noc

140 N. Coste et al.

(Network on Chip). An xSTream queue generalizes a bounded Fifo queue in
two ways: it provides additional primitives (such as peek to consult items in the
middle of the queue, which is not possible with the standard push/pop primitives
of Fifo queues), and a backlog (extra memory) to allow the increase of the queue
size when the queue overflows.

Our performance evaluation study [4] aimed at predicting throughput and
latency of communication between xSTream queues. For us, a key challenge is to
combine probabilistic/stochastic information (e.g., the rates at which xSTream

applications push and pop elements in and out of the queues) with precise timing
information (e.g., memory access time). We studied the performance impact of
the flow-control protocol, which ensures that every message emitted into the
Noc can be received, i.e., leave the Noc. By enriching a functional Lotos

model with probabilistic delays, we compositionally constructed an Ipc of a
system of two data streams sharing the Noc (3205 states and 4630 transitions;
before hiding and minimization, the Ipc contained 539,302 states and 1,412,168
transitions, and the largest intermediate Ipc contained 46,940,161 states and
198,490,980 transitions). The performance measures obtained with the prototype
tools presented in Section 5 justified the relevance of the flow-control protocol.
On the one hand, without the flow-control protocol, increasing the latency of
one stream also increases the latency of the other stream, because the slow
stream might fill the buffers in the Noc (functional verification even showed the
possibility of a deadlock for particular kinds of applications). On the other hand,
with the flow-control protocol, increasing the latency of one stream even reduces
the latency of the other stream.

7 Conclusion and Future Work

This paper has given a survey of foundations, methodology, tool components,
and applications of the Cadp approach to compositional performance evaluation.
The Ipc and the Imc models have very close conceptual roots, and one can view
an Ipc as a clock-ticked version of an Imc and, vice versa, one can view an Imc

as the continuous time limit of an Ipc, with clock intervals tending to zero. A
recent proposal [22] introduces a model that integrates both worlds in one, and
develops the basic compositional theory, along the lines of Imc for this model.
It is interesting to see how the available tool support can be extended to this
setting.

Recent applications of Cadp in large industrial projects are very promising,
but are also fostering the development of new and improved analysis support.
This opens two challenging directions. First of all, the Cunctator tool opens
an analysis avenue, based on discrete-event simulation, that does not suffer from
the state space explosion, is straightforward to parallelize, and can support dis-
tributions that are not restricted by the Markov property. We are exploring this
avenue in relation to discrete-event simulation activities revolving around the
Modest language and tool [23].

Ten Years of Performance Evaluation for Concurrent Systems Using CADP 141

The analysis performed with Cadp is an instance of the general theme of
combining performance evaluation and model checking [24]. An interesting re-
search direction concerns recent advances in model checking a general Imc. So
far, Imc analysis with Cadp is limited to cases where the branching bisimula-
tion quotient — obtained with Bcg Min — is free of nondeterminism. With the
advances reported in [25] this restriction is — at least in principle — obsolete,
but an implementation of this technique inside Cadp is still to be done.

References

1. ISO/IEC: LOTOS — a formal description technique based on the temporal order-

ing of observational behaviour. International Standard 8807, International Orga-

nization for Standardization — Information Processing Systems — Open Systems

Interconnection, Genève (September 1989)

2. Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation

for a plain-old telephone system. Science of Computer Programming 36(1), 97–127

(2000)

3. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg

(2002)

4. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance pre-

diction of compositional models in industrial gals designs. In: Bouajjani, A., Maler,

O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 204–218. Springer,

Heidelberg (2009)

5. Vissers, C.A., Scollo, G., van Sinderen, M., Brinksma, E.: Specification styles in

distributed systems design and verification. Theoretical Computer Science 89(1),

179–206 (1991)

6. Hansson, H.A.: Time and Probability in Formal Design of Distributed Systems.

Elsevier Science Inc., Amsterdam (1994)

7. Hermanns, H., Joubert, C.: A set of performance and dependability analysis compo-

nents for CADP. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,

pp. 425–430. Springer, Heidelberg (2003)

8. Garavel, H.: Open/Cæsar: An open software architecture for verification, simula-

tion, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.

Springer, Heidelberg (1998)

9. Garavel, H.: Compilation of LOTOS abstract data types. In: Vuong, S.T. (ed.)

Proceedings of the 2nd International Conference on Formal Description Techniques

FORTE 1989, Vancouver B.C., Canada, pp. 147–162. North Holland, Amsterdam

(December 1989)

10. Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications. In:

Logrippo, L., Probert, R.L., Ural, H. (eds.) Proceedings of the 10th International

Symposium on Protocol Specification, Testing and Verification, Ottawa, Canada.

IFIP, pp. 379–394. North Holland, Amsterdam (June 1990)

11. Garavel, H., Serwe, W.: State space reduction for process algebra specifications.

Theoretical Computer Science 351(2), 131–145 (2006)

12. Lang, F.: Exp.open 2.0: A flexible tool integrating partial order, compositional,

and on-the-fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,

J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

13. Blom, S., Orzan, S.: Distributed state space minimization. Springer International

Journal on Software Tools for Technology Transfer (STTT) 7(3), 280–291 (2005)

142 N. Coste et al.

14. Deavours, D.D., Sanders, W.H.: An efficient well-specified check. In: Proceedings

of the 8th International Workshop on Petri Nets and Performance Models PNPM

1999, Zaragoza, Spain, pp. 124–133. IEEE Press, Los Alamitos (1999)

15. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, Princeton (1994)

16. Jensen, A.: Markov chains as an aid in the study of markov processes. Skand.

Aktuarietidskrift 3, 87–91 (1953)

17. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Communications of the

ACM 31(4), 440–445 (1987)

18. Hermanns, H.: Construction and verification of performance and reliability models.

Bulletin of the EATCS 74, 135–154 (2001)

19. Mateescu, R., Serwe, W.: A study of shared-memory mutual exclusion protocols

using CADP. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371,

pp. 180–197. Springer, Heidelberg (2010)

20. Garavel, H., Hermanns, H.: On combining functional verification and performance

evaluation using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,

vol. 2391, pp. 410–429. Springer, Heidelberg (2002)

21. Chehaibar, G., Zidouni, M., Mateescu, R.: Modeling multiprocessor cache protocol

impact on mpi performance. In: Proceedings of the 2009 IEEE International Work-

shop on Quantitative Evaluation of Large-Scale Systems and Technologies QuEST

2009, Bradford, UK. IEEE Computer Society Press, Los Alamitos (2009)

22. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous

time. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer

Science, LICS 2010. IEEE Computer Society, Los Alamitos (2010)

23. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A

compositional modeling formalism for hard and softly timed systems. IEEE Trans-

actions on Software Engineering 32(10), 812–830 (2006)

24. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Performance evaluation and

model checking join forces. Communications of the ACM 53(9), 76–85 (2010)

25. Zhang, L., Neuhäußer, M.R.: Model checking interactive markov chains. In: Es-

parza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer,

Heidelberg (2010)

Towards Dynamic Adaptation
of Probabilistic Systems

S. Andova1, L.P.J. Groenewegen2, and E.P. de Vink1

1 Formal Methods, TU Eindhoven, The Netherlands
2 FaST Group, LIACS, Leiden University, The Netherlands

Abstract. Dynamic system adaptation is modeled in the coordination

language Paradigm as coordination of collaborating components. A spe-

cial component McPal allows for addition of new behavior, of new con-

straints and of new control in view of a new collaboration. McPal gradually

adapts the system dynamics. It is shown that the approach also applies to

the probabilistic setting. For a client-server example, where McPal adds,

step-by-step, probabilistic behavior to deterministic components, precise

modeling of changing system dynamics is achieved. This modeling of the

transient behavior, spanning the complete migration range from as-is col-

laboration to to-be collaboration, serves as a stepping stone to quantita-

tive analysis of the system during adaptation.

1 Introduction

Many systems today are affected while running by changes in their operational
environment, while they cannot be shutdown to be updated and restarted again.
Instead, dynamic adaptive systems must be able to manage adaptation steps on-
the-fly to accommodate a new plan. Dynamic adaptive systems usually consist of
interactive components, architecturally organized. However, system adaptation
requires proper coordination. A carefully chosen coordination should guarantee
that, during the adaptation, the system functionality is neither interrupted nor
disturbed, and non-functional quantities, though possibly changing, should not
exceed allowed bounds.

The coordination language Paradigm has been shown suitable to model dy-
namic adaptation [11,2] without the need of quiescence, i.e. no component has
to be isolated from the system before being changed. In Paradigm, a system ar-
chitecture is organized along specific collaboration dimensions, called partitions.
A partition of a component specifies various phases the component goes through
when a protocol is executed. Phases are temporarily valid constraints on ongoing
component behaviour. In the protocol, at a higher layer in the architecture, the
component participates via its role, an abstract representation of the phases. A
protocol coordinates the phase transfers for the components involved. Progress
within a phase is completely local to the component. In fact, the use of phase
transfer instead of state transfer, where phases allow components to pursue their
local dynamics, is the key concept of Paradigm. This makes it possible to model
architectural changes and, at the same time, to model behavioural changes per

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 143–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

component and per collaboration. In [4] an encoding of Paradigm models for the
mCRL2 model checker is presented. The connection is exploited in [2]: (i) to
verify that the system under adaptation indeed migrates from original to new
behaviour; (ii) to perform a qualitative analysis of the adaptation itself. Such a
formal analysis is relevant for detecting conflicts and revealing inconsistencies,
in particular in case of multiple, simultaneous adaptation, guided by different
change managers.

In this paper we extend the approach of modeling system adaptation with
Paradigm and subsequent model checking of transitional properties and invari-
ants by considering Markov decision processes (MDPs) instead of state-transition
diagrams (STDs). We revisit our example of a critical section problem with four
clients and one server. Thus, following Paradigm’s methodology, the source and
target behaviours are modeled as collaborative MDPs, which are STDs in the
degenerate case. An adaptation strategy is given as well. Starting from determin-
istic round-robin servicing we aim to evolve to a client-to-serve selection based on
a probability distribution. By guiding components phase by phase, probabilis-
tic behavior is added gradually to deterministic components. They smoothly
migrate from the source model to the target model. As mCRL2 does not al-
low probabilities, we now encode the whole adaptation trajectory in Prism [12].
The Prism specification consists of several modules, one for each client compo-
nent and one for the server component. Within each module, both the detailed
behaviour of the component is captured as well as the more global phase con-
straints and transfers. In fact, dynamic constraints, essential in Paradigm for
the coordination of collaboration, can straightforwardly be specified with Prism
via guards. So-called consistency rules that enforce multi-party synchronization
in Paradigm at the level of phases, are distributively encoded by reactive com-
mands sharing a label. Here, the specification language of the model checker
fits hand in glove with the component interaction mechanism of Paradigm. We
were able to generate a complete model of the dynamic adaptation, on which
further qualitative and quantitative analysis on the transitional behaviour of the
system is conducted. For instance, it is possible to guarantee mutual exclusion
during adaptation. As for the quantitative properties it is, for instance, possible
to compute the expected time needed for the system to migrate and to calculate
the maximal waiting time for service during migration.

Related work. Most of the existing approaches, [8,6,9,16] to mention a few
of them, focus on adaptive software architectures, where functionalities, consid-
ered as black boxes, are connected via ports. Following [13], new behavior is
introduced by replacing an existing component by a new version. However, a
component can only be removed if it is quiet and all affected components are
passive. Thus, the actual adaptation is mainly achieved by reorganizing the ar-
chitecture. [1] and [15] are the first efforts to analyze system adaptation with
model checking.

Though recognized as an important issue and challenge [14], formal analysis
of transitional behaviour of dynamic adaptive systems has triggered attention
only recently. The approach of [18,19] is closest to ours: Cheng et al. manage to

Towards Dynamic Adaptation of Probabilistic Systems 145

model and formally analyse behavioural adaptation through weakening the need
for quiescence. Their formal modeling uses Petri Nets and automata. In this way,
functional properties expressed in an LTL-based logic, can be formally verified.
A drawback is that different adaptation trajectories cannot be combined in a
single model; also, adaptation is not being coordinated. In none of the approaches
mentioned quantitative analysis is addressed.

To the best of our knowledge, none of the existing approaches supports mod-
eling and property analysis of dynamic graceful adaptation without quiescence,
neither qualitative nor quantitative. However, for simple value adaptation, as
for instance in [17], service reconfiguration is addressed using quality descrip-
tion parameters to determine potential target configurations. The supporting
verification framework includes a model checker, e.g., to verify reachability of
configurations. The AADL modeling language of [7] supports dynamic reconfig-
uration of component connections. The language is rather expressive, allowing to
specify timed, stochastic as well as hybrid systems. It is supported by a verifica-
tion environment, including MRMC for model checking quantitative properties.

Organization of the paper. Section 2 introduces Paradigm by example, dis-
cussing the central notions for the deterministic version of the client-server sys-
tem. A probabilistic service policy is modeled in Section 3, the migration from
round-robin to probabilistic service is covered in Section 4. The encoding in
Prism and further analysis of the adaptation are discussed in Section 5. The last
section wraps up with conclusions and future work.

2 As-Is Situation: Deterministic Round Robin Service

This section presents a first variant of a Client-Server system: one Server compo-
nent and four Client components, with merely deterministic behaviour. The five
components collaborate on the basis of a round robin scheme. We shall refer to
this variant as as-is.

Coordination language Paradigm can specify coordination solutions for fore-
seen as-is collaborations [3,5,4], for originally unforeseen to-be collaborations as
well as for migration, i.e. ongoing but smoothly changing collaboration during
adaptation from as-is to to-be [2,11]. To explain how, we first look briefly at
Paradigm’s coordination specification through the example of the Client-Server
system. Second and briefly too, we introduce Paradigm’s special component
McPal, not influencing the system at all (as yet), but present in view of later
system migration. The references give more technical background.

Paradigm has five basic notions: STD, phase, (connecting) trap, role and
consistency rule. (Definitions are in [5,3], semantics in [5].) Figure 1 visualizes
four of the notions for the Clients of the as-is system. Component behaviour is
specified by STDs, state-transition diagrams. Figure 1a gives the STD for each
Client component, in UML style. It says, Clienti starts in state Out and has
cyclic behaviour, forever visiting its five states by subsequently taking actions
enter, choose, explain, thank, leave. The idea is, by being in state Busy, a Client
should exclusively occupy the one Server. In a nut-shell, this requirement lies

146 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

(b)(a) (c)

Out

WaitingAtDoor

Nosing

Clienti

Clienti(CS)

enter

choose

explain
Busy

leave

thank

Without

With

Checked

request

notYet

triv

done

done

notYet request

triv

Without

Checked

With

Fig. 1. (a) Clienti STDs, (b) their CS role dynamics by (c) phase/trap constraints

at the basis of the critical section collaboration (CS) of the as-is system. The
CS collaboration should provide suitable, simultaneous constraints on the Client
behaviours, such that (i) never two or more Clients are in Busy at the same time;
(ii) after arrival in Waiting, permission to visit Busy will be given sooner or later,
as by being in Waiting a Client is asking for the permission.

Within Paradigm, a component participating in a collaboration does not con-
tribute to the collaboration via its STD behaviour directly. Instead, the compo-
nent contributes via a so-called role, being a different STD for the component,
exhibited at a more global level. Figure 1b specifies role Clienti(CS) that Clienti
contributes to the CS collaboration. States of role Clienti(CS) are so-called phases
of the Clienti STD (Figure 1c): temporarily valid behavioural constraints imposed
on the STD Clienti. Any current role state (phase) has as semantics: it keeps the
behaviour of the STD it is a role of, constrained to that phase. Figure 1b and,
correspondingly, Figure 1c mention three phases: Without, Checked, With. Here,
Without prohibits a Client to be in Busy; With permits a Client to enter and to
leave Busy once; Checked is an interrupted form of Without, to see whether a
Client asks permission for entering Busy. In Figure 1c each phase is addition-
ally decorated with one or more polygons, each polygon grouping states of that
phase into a set. Polygons visualize so-called traps : a trap, as set of states, once
entered, cannot be left as long as the phase remains the current role state. A
trap serves as a guard for a phase transfer. Therefore, traps label transitions in
a role STD, cf. Figure 1b. If all states in a trap serve as starting states of the
next phase, the trap is called connecting from the one phase to the next.

Thus, role Clienti(CS) behaviour, Figure 1b, expresses possible sequences of
phase transfers: the phase transfer from Without to Checked is generally possi-
ble, as trap triv is always connecting from Without to Checked; the step from
Checked to With is only possible if connecting trap request has been entered,
which means, if Clienti asks the permission in state Waiting; otherwise, via con-
necting trap notYet, the phase transfer is from Checked back to Without; the
phase transfer from With to Without is only possible after connecting trap done
has been entered.

The STD of the Server is visualized in Figure 2a. The idea of Server is, (i) being
in state Checkingi means, Clienti behaviour is kept within phase Checked while
the other Clients are being kept within phase Without; (ii) being in state Helpingi

means, Clienti behaviour is kept within phase With while the other Clients are

Towards Dynamic Adaptation of Probabilistic Systems 147

(a) (b)

Server

Helping2

Helping4 Helping3

Checking2

Checking3

Checking4

Checking1

JITting

ContentObserving

McPal

StartMigr

wantChange

giveOut

cleanUp

Helping1

grant proceed
pass

passpass

pass

grantproceed

grantproceed

grant proceed

Fig. 2. STDs (a) Server and (b) McPal; the latter in Hibernating form only

being kept within phase Without. Note Server’s round robin strategy in address-
ing the next Clienti+1, after having checked and possibly even helped Clienti.

In view of possible adaptation, the additional STD McPal, acting as an adap-
tation change conductor, is in place in its so-called hibernating form, visual-
ized in Figure 2b. The idea is, as long as adaptation is not triggered, McPal is
as yet interfering neither with Clients and Server nor with their collaboration.
In particular, from Figure 2b we see McPal, starting in Observing, can go as
far as StartMigr. But without interfering with itself, it can neither reach state
Content nor return to state Observing. So the next idea is, once McPal has reached
StartMigr it still has not started whatever adaptation of the as-is system, but
by then it just-in-time has prepared such later migration through taking its last
step giveOut, thus updating the specification of the original Paradigm model; to
that aim the model specification is stored in McPal’s local variable Crs. This is
reflectivity of Paradigm models: a model contains its own specification and it
can update it.

(a)

(b)

(c)

(d)

(e)

(f)

Clienti(Evol)

AsIs AsIs

AsIs

McPal(Evol)Server(Evol)

AsIs Hibernating

Hibernating

prepared

triv
triv

Fig. 3. Evol phases and roles: Clienti, Server, McPal

Moreover, in view of whatever possible change McPal might wish to exert on the
STDs Server, Clients and McPal itself, each such STD has an Evol role that does
not restrict their dynamics at all, as yet, see Figure 3. Note that each Evol role
comprises exactly one state (and no steps).

To formulate a coordination solution for a collaboration in terms of constraints
specified earlier, single steps from different roles, are synchronized into one pro-
tocol step. A protocol step can be coupled with one detailed step of a so-called
conductor component. Also, variables local to the conductor can be updated.
It is through a consistency rule, Paradigm specifies a protocol step: (i) at the

148 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

left-hand side of an asterisk ∗ the one conductor step is given, if relevant; (ii) the
right-hand side lists the role steps being synchronized; (iii) optionally, a change
clause can be given for updating variables, in particular the variable Crs con-
taining the full model specification including the consistency rules, cf. [11]. A
consistency rule with a conductor step is called an orchestration step, a consis-
tency rule without it is called a choreography step.

The consistency rules for the orchestration of the Clienti(CS) roles, conducted
by Server, are given by the first three rules below. Rule (1) says, if STD Server
is in Checkingi and if role Clienti(CS) is in Checked and trap request of Checked
has been entered, then Server can take step grant, thereby enforcing Clienti(CS)
to take step request synchronously. Similarly, rule (2) synchronously couples
Server’s step proceed from Checkingi to Checkingi+1 with Clienti(CS)’s role step
notYet from Checked to Without as well as with Clienti+1(CS)’s role step triv from
Without to Checked. Etc.

Server : Checkingi
grant−−−→ Helpingi ∗ Clienti(CS) : Checked

request−−−−→ With (1)

Server : Checkingi
pass−−→ Checkingi+1 ∗ (2)

Clienti(CS) : Checked
notYet−−−−→ Without, Clienti+1(CS) : Without

triv−−→ Checked

Server : Helpingi
proceed−−−−−→ Checkingi+1 ∗ (3)

Clienti(CS) : With
done−−−→ Without, Clienti+1(CS) : Without

triv−−→ Checked

McPal : JITting
giveOut−−−−−→ StartMigr ∗ McPal : [Crs : = Crs + Crsmigr + CrstoBe] (4)

McPal : Content
cleanUp−−−−−→ Observing ∗ McPal : [Crs : = CrstoBe] (5)

Please note, McPal is not involved in any coordination at all, rules (4) and (5), as
no role steps are coupled with its non-role steps. But it prepares such migration
coordination when going to state StartMigr (4): by extending the specification
of the as-is coordination with the coordination for the adaptation as well as for
the to-be situation. The specification’s extension is being compensated (later)
by McPal’s step cleanUp when returning to Observing (5): by reducing the coor-
dination specification to the to-be situation only.

3 To-Be Situation: Stationary Probabilistic Service

In this section we indicate, by example only, how Paradigm models can be en-
dowed with probabilistic transitions. Thus, our STDs become Markov decision
processes. For the probabilistic example we again consider a collaboration be-
tween four Client STDs and a Server STD. Moreover, in view of the adaption we
want to discuss later, these probabilistic STDs will figure as to-be versions of
the original non-probabilistic STD versions discussed in Section 2.

The STD of the Clienti in its new to-be form, see Figure 4a, has a new action
goOn, replacing action leave. As one can see, the probabilistic transition labeled
with action goOn points to two target states, to state Out, with probability q1

and to state Nosing with probability q2. Note q1, q2 ≥ 0. As there are no other

Towards Dynamic Adaptation of Probabilistic Systems 149

(a) (b)

Helping1 Helping2

Helping4 Helping3

Idle

Server

grant

Out

Waiting

Busy

AtDoor

Nosing

q1 goOn

thank

enter

q2

choose

explain

p1

p2

proceed

proceed

proceed

p3

p4
proceed

Clienti

Fig. 4. STDs (a) Clienti to-be, (b) Server to-be

target states, we have q1 +q2 = 1. Graphically, the two arrows, leaving the same
state and referred to by the same action, are shackled by a (blue) dashed line.

The to-be form of process Server has changed rather more drastically, see
Figure 4b. In the new state Idle there is one action grant available with four
probabilistic outcomes: the four arrows are from Idle to the four states Helpingi

and have probabilities p1, p2, p3, p4 ≥ 0, respectively, p1 + p2 + p3 + p4 = 1. The
idea of Server is, in Idle it serves no Client at all, and in Helpingi it serves Clienti
exclusively. As the probability to go to Helpingi is always the same, although
possible different fo each i, this kind of service strategy is called a stationary
probabilistic service.

(a) (b)
Disallowed Allowed

triv

done

Clienti(CS)

AllowedDisallowed

donetriv

Fig. 5. Clienti to-be: (a) phases and traps, for (b) role Clienti(CS)

The to-be role Clienti(CS) as given in Figure 5 differs from the as-is role in
Figure 1 in two points. (i) The new versions of phases Without and With are
called Disallowed and Allowed respectively, as in the to-be situation they have to
contain action goOn instead of leave. (ii) For phase Checked there is no to-be
version, as granting service to any Clienti is done independently from Clienti
asking for it. As a consequence, the service turn should terminate immediately
if Clienti doesn’t need it right then. And indeed it does, as trap done of phase
Allowed is entered exactly when phase Allowed gets imposed: process Clienti is in
one of the states of trap done already because it did not yet request for the service
turn. Please note, this is mimicked in the Server behaviour by the probabilistic
transition grant leading from Idle immediately to state Helpingi.

The consistency rules for the orchestration of the to-be Clienti(CS) roles, con-
ducted by the to-be Server, are as follows.

150 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

p1 · [Server : Idle
grant−−−→ Helping1 ∗ Client1(CS) : Disallowed

triv−−→ Allowed] ⊕ (6)

p2 · [Server : Idle
grant−−−→ Helping2 ∗ Client2(CS) : Disallowed

triv−−→ Allowed] ⊕
p3 · [Server : Idle

grant−−−→ Helping3 ∗ Client3(CS) : Disallowed
triv−−→ Allowed] ⊕

p4 · [Server : Idle
grant−−−→ Helping4 ∗ Client4(CS) : Disallowed

triv−−→ Allowed]

Server : Helpingi
proceed−−−−−→ Idle ∗ Clienti(CS) : Allowed

done−−−→ Disallowed (7)

McPal : JITting
giveOut−−−−−→ StartMigr ∗ McPal : [Crs : = Crs + Crsmigr + CrstoBe] (8)

McPal : Content
cleanUp−−−−−→ Observing ∗ McPal : [Crs : = CrstoBe] (9)

Please note, for the coordination, we have coupled Server action grant in state
Idle, via its probabilistic outcomes in terms of four possible detailed steps, to steps
in four different roles (6). But each of these role steps is deterministically coupled
to one specific detailed Server step. In this manner, the conductor throws the dice
and the four participants, each one at the level of its CS role, deterministically
obey to the probabilistic outcome. Moreover note, here too McPal is not involved
in any coordination at all, as it only gets involved when the ongoing orchestration
is to be adapted (8), (9).

4 From Deterministic to Probabilistic Service

Based on the as-is and to-be versions of process Clienti in Sections 2 and 3
we observe the following: (i) Phase ToBe from Figure 6a exactly specifies the
constraint on Clienti needed for its Evol role during the to-be situation, as it does
not prohibit any detailed step that should be able to occur; (ii) Figure 6b then
specifies a feasible migration in terms of role Clienti(Evol), in one go from AsIs
to ToBe. Here we do not need any migration phase in between.

In preparation of role Server(Evol), Figure 7 gives the detailed steps of Server
during as-is, during to-be as well as during adaptation from as-is to to-be. Based
on the foregoing Sections 2 and 3, it is easy to recognize in Figure 7, the steps
from both the as-is and the to-be situations. But the other steps, apparently
present in view of the intermediate migration trajectories, are not so clear.

In particular, the four probabilities p1, p2, p3, p4 are those from Section 3. But
probability pr, labeling the transition from Idle to Checking3, serves two purposes
and, accordingly, has two values: (i) pr = p134 = p1+p3+p4, if linked to only the
transition from Idle to Helping2 (2-legs-shackle); (ii) pr = p34 = p3 +p4, if linked
to only the two transitions from Idle to Helping2 and to Helping1 (3-legs-shackle).
Thus there are three shackles, linking either two transitions leaving state Idle, or

(a) (b)
triv

AsIs
triv

ToBe Clienti(Evol)

ToBeAsIs triv

Fig. 6. Clienti during migration: (a) phases and traps, for (b) role Clienti(Evol)

Towards Dynamic Adaptation of Probabilistic Systems 151

Helping2

Helping4 Helping3

Checking2

Checking3

Checking4

Checking1

Helping1

Idle

proceed grant

pass
pr

grant

Server

grant

passpass grant

proceed pass

proceed

grant

grant

pass

proceedgrant

proceedproceed

proceed

pass proceed

p1

p4

p2

p3

pass

Fig. 7. STD Server during migration

(a) (b)

triv

triv

triv Server(Evol)

Choice2

AsIs

ToBe

Choice21

Choice214

Choice2143

ready

ready

ready

ready

Choice21 Choice214

triv
AsIs Choice2

ready

ready

ready

ready

Choice2143 ToBe

Fig. 8. Server during migration: (a) phases and traps, for (b) role Server(Evol)

three or four such transitions –the last one is the 4-legs-shackle from Section 3.
To enlarge the entanglement even more, each shackle has the same label grant,
thus referring to three different actions of that name, available in state Idle for
making a transition from it; two of these must be there in view of the adaptation,
as they neither belong to the as-is nor to the to-be situation.

Figure 8 repairs the unclarity, by giving the historical overview of the detailed
dynamics of the Server through the six phases of partition Evol: phase AsIs visu-
alizing the original, deterministic service provision, phase ToBe visualizing the
target, probabilistic service provision and the actual migration phases Choice2,
Choice21, Choice214 and Choice2143 visualizing in that order, how to get rather
gradually from as-is to to-be service provision.

152 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

In more detail one can see the following: (i) In Choice2 the deterministic round
robin approach can only go as far as addressing Client2. (ii) Upon addressing
Client2, it is decided for the last time in round robin fashion, whether it gets
the turn. From then on, once Server within phase Choice21 returns to state Idle,
process Client2 has probability p2 to get the service turn right then. But the
other three Clients, with probability p134, will be served instead in the usual
round robin fashion. So within phase Choice21 we have action grant labeling the
2-legs-shackle. (iii) Next, as soon as Client1 is addressed, it is decided for the last
time in round robin fashion whether it gets the turn. From then on, once Server
within phase Choice214 returns to state Idle, process Client1 has probability p1 to
get the service turn right then. But the other two Clients, with probability p34,
will be served instead in the usual round robin fashion. So within phase Choice214

we have action grant labeling the 3-legs-shackle. (iv) Then, as soon as Client4 is
addressed, it is decided for the last time in round robin fashion whether it gets
the turn. From then on, once Server within phase Choice2143 returns to state Idle,
process Client4 has probability p4 to get the service turn right then. And from
then on too, the last Client3 will be served with probability p3. So within phase
Choice2143 we have action grant labeling the 4-legs-shackle, as needed in the to-be
situation. (v) Finally, as soon as Client3 is addressed, the to-be situation is indeed
considered as reached and the migration coordination will stop accordingly.

(a) (b)

q2 triv

notYet

request

triv

Without

With

Checked
notYet

request

triv

Disallowed Allowed
triv

done

trivtriv

done

done

Clienti(CS)

q2

q1

Disallowed

triv notYet request done

Without Checked With

triv

Allowed

done

q1

Fig. 9. Clienti(CS) during migration: (a) phases and traps, for (b) role Clienti(CS)

The adaptation of CS role of the Clients from the as-is dynamics in Figure 1b
to the to-be dynamics in Figure 5 is visualized in Figure 9.

(b)(a) (c)

Migrating

ContentObserving

JITting StartMigr

ToToBe

Hibernating

wantChange

McPal

phaseOut

kickOff

giveOut

cleanUp

prepared

done McPal(Evol)

Hibernating

ToToBe

done

prepared

Fig. 10. Full McPal: (a) STD, (b) phases and traps, (c) role McPal(Evol)

Towards Dynamic Adaptation of Probabilistic Systems 153

The full McPal STD during adaptation from as-is to to-be situation is drawn
in Figure 10, together with its Evol role and phases and traps for it. Please note,
McPal in its phase ToToBe has only one state Migrating in between its states
StartMigr and Content. The step to Migrating is meant to start the migration by
conducting synchronous phase transfers in the Evol roles of Server as well as of all
Clients. By doing so, McPal delegates the coordination of the remaining steps of
the Server(Evol) role to either the role itself (choreography) or to Server (orches-
tration). Hence McPal has to wait in Migrating until Server actually achieves the
coordination task just delegated to it. Finally, the step from Migrating coincides
with McPal observing that Server has finished the task delegated.

The consistency rules specifying how to coordinate the adaptation along the
lines visually clarified above, are given below. They appear in four groups. Please
note, rules (10)-(31), together with the corresponding STDs constitute the value
of McPal’s local variable Crsmigr. Likewise, the value of McPal’s local variable
CrstoBe contains the rules (6)-(9) from Section 3, while Crs contains the rules
(1)-(5) and corresponding specifications from Section 2 as its initial value.

The first group of rules given here are for McPal. In particular they cover
the two choreography steps from phase Hibernating to ToToBe and from ToToBe
back to Hibernating. Moreover, they cover the coordination conducted by McPal
when within phase ToToBe. Please note, the delegation of adaptation tasks from
McPal to Server is captured in the rule (11).

∗ McPal(Evol) : Hibernating
prepared−−−−−→ ToToBe (10)

McPal : StartMigr
kickOff−−−−→ Migrating ∗ Server(Evol) : AsIs

triv−−→ Choice2, (11)

Client1(Evol) : AsIs
triv−−→ ToBe, Client2(Evol) : AsIs

triv−−→ ToBe,

Client3(Evol) : AsIs
triv−−→ ToBe, Client4(Evol) : AsIs

triv−−→ ToBe

McPal : Migrating
phaseOut−−−−−−→ Content ∗ Server(Evol) : ToBe

triv−−→ ToBe (12)

∗ McPal(Evol) : ToToBe
migrDone−−−−−−→ Hibernating (13)

All further rules are for Server, which guides the adaptation changes. As there
are quite many of them, we split them into similar groups, corresponding to
the remaining role steps of Server(Evol). First those guiding the transfer from
Choice2 to Choice21.

∗ Server(Evol) : Choice2
ready−−−→ Choice21, Client2(CS) : Checked

notYet−−−−→ Disallowed (14)

∗ Server(Evol) : Choice2
ready−−−→ Choice21, Client2(CS) : With

triv−−→ Allowed (15)

∗ Server(Evol) : Choice2
ready−−−→ Choice21, Client2(CS) : Checked

request−−−−→ Allowed (16)

Server : Checking2
pass−−→ Idle ∗ Client2(CS) : Disallowed

triv−−→ Disallowed (17)

Server : Checking2
grant−−−→ Helping2 ∗ Client2(CS) : Allowed

triv−−→ Allowed (18)

p2 · [Server : Idle
grant−−−→ Helping2 ∗ Client2(CS) : Disallowed

triv−−→ Allowed] ⊕ (19)

p134 · [Server : Idle
grant−−−→ Checking3 ∗ Client3(CS) : Without

triv−−→ Checked]

The first three choreography steps address the actual phase transfer from Choice2

to Choice21 once trap ready of Choice2 has been entered. The choreography
is moreover coupled to relevant CS role steps of Client2: phase transfers from

154 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

Checked or With to Disallowed or Allowed, thus only now enabling the to-be prob-
abilistic behaviour to Client2 exclusively. The last three orchestration steps cover
the deviating part of the CS protocol under migration during phase Choice21 only.

∗ Server(Evol) : Choice21
ready−−−→ Choice214, Client1(CS) : Checked

notYet−−−−→ Disallowed (20)

∗ Server(Evol) : Choice21
ready−−−→ Choice214, Client1(CS) : With

triv−−→ Allowed (21)

∗ Server(Evol) : Choice21
ready−−−→ Choice214, Client1(CS) : Checked

request−−−−→ Allowed (22)

Server : Checking1
pass−−→ Idle ∗ Client1(CS) : Disallowed

triv−−→ Disallowed (23)

Server : Checking1
grant−−−→ Helping1 ∗ Client1(CS) : Allowed

triv−−→ Allowed (24)

p1 · [Server : Idle
grant−−−→ Helping1 ∗ Client1(CS) : Disallowed

triv−−→ Allowed] ⊕ (25)

p2 · [Server : Idle
grant−−−→ Helping2 ∗ Client2(CS) : Disallowed

triv−−→ Allowed] ⊕
p34 · [Server : Idle

grant−−−→ Checking3 ∗ Client3(CS) : Without
triv−−→ Checked]

Finally, the consistency rules for transfer from Choice214 to Choice2143.

∗ Server(Evol) : Choice214
ready−−−→ Choice2143, Client4(CS) : Checked

notYet−−−−→ Disallowed (26)

∗ Server(Evol) : Choice214
ready−−−→ Choice2143, Client4(CS) : With

triv−−→ Allowed (27)

∗ Server(Evol) : Choice214
ready−−−→ Choice2143, Client4(CS) : Checked

request−−−−→ Allowed (28)

Server : Checking4
pass−−→ Idle ∗ Client4(CS) : Disallowed

triv−−→ Disallowed (29)

Server : Checking4
grant−−−→ Helping4 ∗ Client4(CS) : Allowed

triv−−→ Allowed (30)

p1 · [Server : Idle
grant−−−→ Helping1 ∗ Client1(CS) : Disallowed

triv−−→ Allowed] ⊕ (31)

p2 · [Server : Idle
grant−−−→ Helping2 ∗ Client2(CS) : Disallowed

triv−−→ Allowed] ⊕
p4 · [Server : Idle

grant−−−→ Helping4 ∗ Client4(CS) : Disallowed
triv−−→ Allowed] ⊕

p3 · [Server : Idle
grant−−−→ Helping3 ∗ Client3(CS) : Without

triv−−→ Allowed,

Server(Evol) : Choice2143
ready−−−→ ToBe]

Again, highly similar to the previous two groups of rules, we have three chore-
ography steps addressing the actual phase transfer from Choice214 to Choice2143

as well as three orchestration steps covering the deviating part of the CS proto-
col under migration. But here, by taking the last orchestration step, addressing
Client3 for the first time during phase Choice2143, the migration coordination is
finished by additionally conduction the phase transfer from Choice2143 to ToBe.
This then enables McPal to take over the migration coordination, actually by
instigating the phase transfer back to Hibernating and the later removal of con-
sistency rules and other model fragments obsolete by then.

5 Adaptation Analysis with Prism

We analyze the Paradigm models and their dynamic adaptation with the proba-
bilistic model checker Prism [12]. As it turns out, the Paradigm models involved
can conveniently be translated into the Prism modeling language. In particular,
each component of the system, Clients, Server and McPal, are interpreted as a

Towards Dynamic Adaptation of Probabilistic Systems 155

separate module. Thus, the detailed behaviour of a component together with its
two roles, for the CS collaboration and for the Evol adaptation collaboration,
are brought together in one module. This way, the temporary behavioural con-
straints on the detailed STD imposed by a current phase of the global STDs,
can be imposed using a guard on detailed transitions.

A fragment of the Prism specification of Client1 is shown below. The current
state of the detailed STD is stored in local variable s1. Variables S1 and E1

hold, respectively, the current phase of the CS partition and the Evol partition.
The Prism fragment specifies the detailed transition of Client1 as constrained by
phase Without of Client(CS), combined with the constraints imposed by phases
AsIs and ToBe of the Client(Evol) partition.

[enter1] S1=Without&(E1=AsIs |E1=ToBe)&s1=Out → s′1=Nosing;

[choose1] S1=Without&(E1=AsIs |E1=ToBe)&s1=Nosing → s′1=Waiting;

[leave1] S1=Without&E1=AsIs&s1=AtDoor → s′1=Out;

[leave1] S1=Without&E1=ToBe&s1=AtDoor → q1 : (s′1=Out) + q2 : s′1=Nosing;

For the protocol steps within a collaboration, e.g. between the server and its
clients, a unique action label identifies a protocol step. The same action label
is shared among all components involved. Synchronization on the shared label,
hence fulfillment of all relevant guards, leads to execution of the corresponding
consistency rule: a detailed transition of the conductor, phase changes for the
participants involved. In this case, the guard indicates that the corresponding
trap within a current phase has been entered (at the level of detailed dynamics
of the component). In Paradigm, for a phase transfer to be enabled, information
about their current states from both the detailed as well as the global STDs,
needs to be provided. The information is extracted from the local variables in
the Prism module, conjunctively combined as a guard for the global transition.
For instance, the unique name of the consistency rule 2 for i = 1 is cr2 12. The
consistency rule in Prism is specified by three separate commands, all having
the same action label:
In module Client1: [cr212] S1=With & (s1=AtDoor |s1=Out |s1=Nosing) → S′

1=Without;

In module Client2: [cr212] S2=Without &

(s2=AtDoor |s2=Out |s2=Nosing |s2 = Waiting) → S′
2=Checked;

In module Server: [cr212] (ES=AsIs |ES=Choice2) & r=Helping1 → r′=Checking2;

The condition (s2=AtDoor |s2=Out |s2=Nosing |s2=Waiting), for instance, spec-
ifies that the current local state of the detailed STD of Client2 belongs to trap
triv of the CS phase Without.

Probabilistic consistency rules are translated into Prism in a slightly different
manner. A probabilistic rule is applied in two consecutive stages. During the
first stage, the conductor of the rule, in this case the Server, selects the next
step to be executed according to the underlying probability distribution. This
step is not synchronized with any other participant, in particular the Clients.
Once the next step is selected, i.e. a Client to serve is chosen, the Server executes
the second part of the rule: it accomplishes the step by conducting, this time
synchronized, changing its local state and assigning the phase changes to the
participants involved.

156 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

We have verified a number of qualitative and quantitative properties of the
adapting system.1

At any moment during system migration, in any phase, including the source
phase AsIs and the target phase ToBe, at most one client will be given service. Let
clients in cs count the number of clients being currently served, i.e. having
With or Allowed as global state. Then mutual exclusion can easily be expressed
as clients in cs <= 1.

During any phase, if a client is requesting service, eventually a client will
get service. With one trying denoting that a client is in state Waiting, and
one has service denoting that a client is served, this liveness property is ex-
pressed as "one trying" => P>=1 [F "one has service"].

At any time, in any phase, if a client is requesting a service, then eventually
this client will get served. More concretely for Client1, similar for other clients,
this is expressed as: s1=Waiting => P>=1 [F (S1=With|S1=Allowed)]. Note
that implicitly this property also expresses that the functionality to provide
service is never interrupted during adaptation, no matter what dynamics of the
server or what trajectory towards target behaviour is taken.

Assuming that the adaptation is triggered, the system will adapt to the target
ToBe dynamics: P>=1 [F ES=6 & E1=2 & E2=2 & E3=2 & E4=2]. Here, ES=6
and Ei=2, i = 1, .., 4, refer to the completely adapted phases of the server and
clients. Moreover, every system component, once adapted to the final stage,
does not execute old AsIs behaviour anymore. E.g., for Client1 we have that
"ToBeOfClient1" => P>=1 [G !"AsIsOfClient1"].

Various quantitative properties can be checked against the model as well.
The results discussed below use a reward structure appropriately defined on the
model, assigning a reward of 1 each time the server addresses a client, either for
checking or for helping.

Fig. 11. Maximum expected number of clients addressed by the server during adapta-

tion: fixed p2 and p4 (left) and fixed p3 and p4 (right)

The expected number of clients addressed by the server during system
adaptation is expressed as: Rmax=? [F (ES=6) {ES=2}]. We compute that for
1 Complete Prism specifications of the collaborative processes in adaptation, as de-

scribed in Section 4, can be found at http://www.win.tue.nl/~andova

http://www.win.tue.nl/~andova

Towards Dynamic Adaptation of Probabilistic Systems 157

probabilities p1=p2=p3=p4=0.25 this expectation equals 15.3. The experiments
show that this actually depends on values of probabilities p1, . . . , p4. The left graph
in Figure 11 shows that the system adapts in less steps as the probability p3, of
selecting Client3 increases. The right graph in Figure 11 shows that value of p2, the
probability to select Client2, hardly influences the speed of the system adaptation,
but again it is influenced by the value of p3. From the moment on Client1 requests
service, at any time during the adaptation, the expected number of clients the
server addresses before it addresses Client1 equals 2. We find that the worst case
expected number, computed as Rmax=? [F (S1=With|S1=Allowed){s1=Waiting
& ES=evol phase & r=server state}], gives better insight into the system be-
haviour during adaptation. The evol phase to be analyzed can be selected, as well
as the current local server state of the server, at the moment Client1 is request-
ing service. Experiments show that the (worst) expected waiting time for Client1
decreases as probability p1 increases, but not for all Evol phases. As expected, for
the first two phases, in which Client1 is not yet selected probabilistically but in
round-robin fashion, this measure has a constant value. Figure 12 shows the re-
sults of the experiments for probabilities p2 and p3 set to 0.25. As observed, wait-
ing time depends on the current state of the Server at the moment Client1 requests
service. In the graph, r shows the worst case for all particular Evol phases.

Fig. 12. Worst case waiting time for service for Client1, for p2 = 0.25 and p3 = 0.25

6 Conclusions

We have addressed the issue of formal modeling and analysis, both qualitative
and quantitative, of dynamic system adaptation without quiescence. We have
shown that Paradigm is well suited to model dynamic adaptation of systems
that exhibits probabilistic behaviour. The approach is illustrated for a client-
server example. In the source situation, the clients have strictly deterministic
dynamics and are served in round-robin fashion. In the target system, clients
have probabilistic behaviour, and the server probabilistically selects which client
to serve. In the Paradigm model of the adaptation, components smoothly change
their behaviour, gradually replacing old deterministic by probabilistic behaviour.

158 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

The system components migrate from one phase to another, without having their
activity disrupted at all.

In addition, a translation to Prism is presented. Each component is repre-
sented as a separate module in Prism, synchronizing with other components
via shared labels, just as specified by Paradigm’s consistency rules. Dynamic
constraints typical for Paradigm, whether a phase transfer can take place and
whether a local step is allowed, in Prism are specified as command guards,
rather straightforwardly. The translation enables the verification of the adap-
tation model. Transitional properties, both qualitative and quantitative, of the
system during the adaptation, are established using the Prism model checker.

As future work we consider the general translation of probabilistic Paradigm
into Prism, taking the example presented in this paper as a starting point. Fur-
thermore, we will conduct more case studies of dynamic adaptation of larger
systems, involving more intricate probabilities that are expected to mix well
with our architectural approach. In particular, we will compare and connect with
the Cactus protocol framework [10], which seems the only other work providing
smooth adaptation of distributed systems.

References

1. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software

architectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382,

pp. 21–37. Springer, Heidelberg (1998)

2. Andova, S., Groenewegen, L.P.J., Stafleu, J., de Vink, E.P.: Formalizing adaptation

on-the-fly. In: Proc. FOCLASA 2009. ENTCS, vol. 255, pp. 23–44 (2009)

3. Andova, S., Groenewegen, L.P.J., Verschuren, J.H.S., de Vink, E.P.: Architecting

security with Paradigm. In: de Lemos, R. (ed.) Architecting Dependable Systems

VI. LNCS, vol. 5835, pp. 255–283. Springer, Heidelberg (2009)

4. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Dynamic consistency in process

algebra: From Paradigm to ACP. In: Proc. FOCLASA 2008. ENTCS, vol. 229, pp.

3–20 (2009)

5. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Dynamic consistency in process

algebra: From Paradigm to ACP. Science of Computer Programming, 45 (2010),

doi:10.1016/j.scico.2010.04.011

6. Bencomo, N., Sawyer, P., Blair, G.S., Grace, P.: Dynamically adaptive systems are

product lines too. In: Proc. DSPL 2008, Limerick, pp. 23–32 (2008)

7. Bozzano, M., et al.: Safety, dependability, and performance analysis of extended

AADL models. The Computer Journal (2010), doi:10.1093/com

8. Bradbury, J.S., et al.: A survey of self-management in dynamic software architec-

ture specifications. In: Proc. WOSS 2004, pp. 28–33. ACM, New York (2004)

9. Cetina, C., Fons, J., Pelechano, V.: Applying software product lines to build auto-

nomic pervasive systems. In: Proc. SPLC 2008, pp. 117–126. IEEE, Los Alamitos

(2008)

10. Chen, W., Hiltunen, M.A., Schlichting, R.D.: Constructing adaptive software in dis-

tributed systems. In: Proc. ICDCS 2001, pp. 635–643. IEEE, Los Alamitos (2001)

11. Groenewegen, L.P.J., de Vink, E.P.: Evolution on-the-fly with Paradigm. In: Cian-

carini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 97–112.

Springer, Heidelberg (2006)

Towards Dynamic Adaptation of Probabilistic Systems 159

12. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for au-

tomatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)

TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

13. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-

agement. IEEE Transactions on Software Engineering 16, 1293–1306 (1990)

14. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Proc.

FOSE 2007, pp. 259–268. IEEE, Los Alamitos (2007)

15. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT

Software Engineering Notes 21, 3–14 (1996)

16. Morin, B., et al.: An aspect-oriented and model-driven approach for managing

dynamic variability. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.

(eds.) MODELS 2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)

17. Schneider, K., Schuele, T., Trapp, M.: Verifying the adaptation behavior of

embedded systems. In: Proc. SEAMS 2006, pp. 16–22. ACM, New York (2006)

18. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-

ware. In: Proc. ICSE 2006, pp. 371–380. ACM, New York (2006)

19. Zhang, J., Goldsby, H.J., Cheng, B.H.C.: Modular verification of dynamically adap-

tive systems. In: Proc. AOSD 2009, pp. 161–172. ACM, New York (2009)

UPPAAL in Practice: Quantitative Verification
of a RapidIO Network�

Jiansheng Xing1,2, Bart D. Theelen2, Rom Langerak1, Jaco van de Pol1,
Jan Tretmans2, and J.P.M. Voeten2,3

1 University of Twente, Faculty of EEMCS

P.O. Box 217, Formal Methods and Tools

7500 AE Enschede, The Netherlands

{xingj,r.langerak,j.c.vandepol}@cs.utwente.nl
2 Embedded Systems Institute

P.O. Box 513

5600 MB Eindhoven, The Netherlands

{bart.theelen,jan.tretmans}@esi.nl
3 Eindhoven University of Technology, Faculty of Electrical Engineering

Information and Communication Systems group

5600 MB Eindhoven, The Netherlands

j.p.m.voeten@tue.nl

Abstract. Packet switched networks are widely used for interconnect-
ing distributed computing platforms. RapidIO (Rapid Input/Output)

is an industry standard for packet switched networks to interconnect

multiple processor boards. Key performance metrics for these platforms

include average-case and worst-case packet transfer latencies. We focus

on verifying such quantitative properties for a RapidIO based multi-

processor platform that executes a motion control application. A perfor-

mance model is available in the Parallel Object-Oriented Specification

Language (POOSL) that allows for simulation based estimation results.

It is however required to determine the exact worst-case latency as the

application is time-critical. A model checking approach has been pro-

posed in our previous work which transforms the POOSL model into an

UPPAAL model. However, such an approach only works for a fairly small

system. We extend the transformation approach with various heuristics

to reduce the underlying state space, thereby providing an effective ap-

proximation approach that scales to industrial problems of a reasonable

complexity.

Keywords: UPPAAL; POOSL; transformation; quantitative verifica-
tion; heuristic.

1 Introduction

A packet switched network is a digital communication network that groups all
transmitted data into suitably-sized blocks, called packets. The network over
� This work has been supported by the EU FP7 under grant number ICT-214755:

Quasimodo.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 160–174, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 161

which packets are transmitted is a shared network which routes each packet
independently from others and allocates transmission resources as needed. The
principal goals of packet switching are to optimize utilization of available link
capacity, minimize response times and increase the robustness of communication.
When traversing network adapters, switches and other network nodes, packets
are buffered, resulting in variable delay and throughput, depending on the traffic
load in the network.

RapidIO is an industry standard [9] for packet-switched networks to connect
chips on a circuit board, and also circuit boards to each other using a backplane.
It has found widespread adoption in the following applications: wireless base sta-
tion, video, medical imaging, etc. Key performance metrics for these applications
include average-case and worst-case packet transfer latencies.

In this paper, we consider a motion control system that includes a packet
switched network conforming to the RapidIO standard. The motion control sys-
tem is characterized by feedback/feedforward control strategies and periodic
execution. It is constrained by strict timing requirements that all packets must
arrive at their destinations before the period ends. The considered motion control
algorithms are distributed over a multi-processor platform. Various processors
in this platform are inter-connected by a RapidIO network. The main challenge
for system designers is how to map the motion control algorithms on the multi-
processor platform such that the timing constraints are met. Packet transfer
latencies as worst-case latencies and average-case latencies are essential criteria
for finding a feasible mapping.

A simulation based approach is available that relies on the Parallel Object-
Oriented Specification Language (POOSL) for investigating the performance
of the motion control system. First, a POOSL model is constructed for a given
mapping and then end-to-end packet transfer latencies are analyzed. These steps
are repeated for alternative mappings, until a feasible mapping has been found,
whose end-to-end latencies satisfy the timing constraints. POOSL analysis gives
both average-case and worst-case latencies. The obtained latencies are estima-
tion results since the POOSL analysis is based on simulation. However, as the
motion control application is time-critical, worst-case latencies are strict timing
constraints. Exact worst-case latencies are therefore demanded.

In this paper, we focus on verifying worst-case packet transfer latencies for
a realistic motion control system. In earlier work [11], we have shown that
transforming a POOSL model into an UPPAAL model is feasible. Based on
the obtained UPPAAL model, we also showed that quantitative verification for
worst-case latencies is only feasible for a fairly small system. We extend such
an approach to enable analyzing an industrial-sized problem in this paper. First
the POOSL model of a realistic motion control system is illustrated and trans-
formed into an UPPAAL model according to the transformation patterns in [11].
Second scalability experiments show that the UPPAAL model is not capable for
handling realistic (high volume) traffics. Then we propose some heuristics for
the UPPAAL approach. Experiments show that the UPPAAL approach with
heuristics can find worse scenarios (worse latencies) than the POOSL approach

162 J. Xing et al.

and thus is an effective approximation method which complements the POOSL
approach for performance analysis.

The rest of the paper is organized as follows. Section 2 presents the POOSL
model for a realistic motion control system. The transformation from the POOSL
model into an UPPAAL model is discussed in Section 3. We present the scal-
ability of the UPPAAL model and then propose some heuristics for worst-case
latency analysis in Section 4. Finally, conclusions are drawn in Section 5.

2 POOSL Model of a Realistic Motion Control System

POOSL was originally defined in [7] as an object-oriented extension of CCS
[6]. Meanwhile, POOSL has been extended with time in [4] and probabilities
in [3] to become a very expressive formal modeling language accompanied with
simulation, analysis and synthesis techniques that scale to large industrial design
problems [10].

Three types of objects are supported in POOSL: data, process, and cluster.
Data models the passive components of a system representing information that is
generated, communicated, processed and consumed by active components. The
elementary active components are modeled by processes while groups of active
components are modeled by clusters in a hierarchical fashion.

Figure 1 depicts the top-level POOSL model for a realistic motion control
system. The left part is for channel (refers to a specific type of packet with
specified size, source, and destination) generation. The right part represents the
underlying RapidIO network of the motion control system. These two parts
are connected by message si. The left part is implemented as a process class
RIOChannelTrafficGenerator. More details of this process class are shown in
figure 2.

The right part of figure 1 is implemented as a cluster class RIOResource. We
note that message si is multiplexed into 5 messages slot1,...,slot5 which connect
RIOChannelTrafficGenerator with different subparts of cluster RIOResource.
More details of RIOResource are shown in figure 3. RIOResource is mainly
constituted by 5 subparts CB1,CB2,CB3,CB4, and CB5. Each subpart is an
instance of the cluster class RIOCarrierBlade.

RIOCarrierBlade represents a pair of packet switches and their connected
endpoints. Each switch connects with 4 endpoints directly. The details of RIO-
CarrierBlade are shown in figure 4. B1 EP1,B2 EP1,..., etc., each represents an
endpoint which is implemented as a process class RIOEndPoint. More details of
this process class are shown in figure 5.

In figure 4, SW1 and SW2 represent two packet switches. A packet switch is
implemented as a process class RIOSwitch. More details of this process class are
shown in figure 6.

The system works as follows: first the channel (each channel refers to a specific
kind of packet, which will be divided into several equal-sized packets during
generation, see next section for details) generation part (left part of figure 1)
generates channels (actually packets); the generated packets are actually put into

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 163

Fig. 1. POOSL model for a realistic motion control system

Fig. 2. Process Class RIOChannelTrafficGenerator

corresponding endpoints. Each endpoint represents a processor that is actually
sending and/or receiving packets. The generated packets then are sent from the
endpoints and routed among the whole RapidIO network until they are received
by their corresponding target endpoints. We notice that the whole underlying
RapidIO network includes 5 subparts; each subpart contains 2 packet switches
and 8 endpoints.

164 J. Xing et al.

Fig. 3. Cluster Class RIOResource

Fig. 4. Cluster Class RIOCarrierBlade

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 165

Fig. 5. Process Class RIOEndPoint

Fig. 6. Process Class RIOSwitch

166 J. Xing et al.

3 Transformation from POOSL to UPPAAL

UPPAAL is a tool for modeling, validation and verification of real-time systems.
It is based on the theory of timed automata (TA) [1] and its modeling language
offers additional features such as bounded integer variables and urgency [2]. The
query language of UPPAAL, used to specify properties to be checked, is a subset
of CTL (computation tree logic) [8,5].

A timed automaton is a finite-state machine extended with clock variables. It
uses a dense-time model where a clock variable evaluates to a real number. All
the clocks progress synchronously. A system is modeled as a network of several
such timed automata in parallel. The state of a system is defined by the locations
of all automata, the clock constraints, and the values of the discrete variables.
Every automaton may fire an edge (sometimes called a transition) separately or
synchronize with another automaton, leading to a new state. We refer the reader
to [2] for a more thorough description of the timed automata used in UPPAAL.

Several general transformation patterns from POOSL to UPPAAL have been
characterized in [11]. In this section, we will mainly follow such patterns for the
transformation. However, we note that more abstractions and techniques (such
as timed automation template) have been used to simplify the transformation
as well as the model.

3.1 Data Part Transformation

The POOSL model in figure 1 includes various data classes. RIOPacket, RI-
OChannel, RIOQueue, RoutingCache and RIOScheduler are the most important
ones. We only explain the transformation for RIOChannel as it is a newly intro-
duced data class. The transformation for other data classes has been introduced
in [11] and is omitted here.

RIOChannel. RIOChannel is a data structure that refers to a specific kind
of packet which has a specified size, source, and destination. Realistic traffic
scenarios can be easily expressed by grouping different kinds of channels. This
data class is transformed into an UPPAAL struct channel. Data methods for
accessing its member variables come for free in the UPPAAL model. Other data
methods such as nrOfPacketsPerBurst (a channel is divided into several pre-
defined equal-sized packets, nrOfPacketsPerBurst refers to the number of such
packets) are also easily transformed into the UPPAAL model.

3.2 Process Part Transformation

Three main improvements have been made for the process part transformation.
First, timed automaton templates are used to abstract typical activities such that
similar activities can be modeled by instantiating a timed automaton template
with different parameters. Second, transfer activity is abstracted into a non-
time-consuming activity, which greatly simplifies the model. Third, the endings
of concurrent timed automata are synchronized as they consume the same time
(all packets have the same size), which also simplifies the model.

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 167

Fig. 7. Channel Traffic Generation

From the POOSL model point of view, each switch contains at most 24 con-
current activities: 8 input activities (one for each input port that is actually
used), 8 transfer and 8 output activities (one for each output port that is actu-
ally used). Each endpoint includes a sending and a receiving activity, depending
on whether the endpoint is actually used to send/receive packets into/from the
network. Besides, a traffic generation activity, a traffic sending activity and a
traffic monitor activity exist in the process class RIOChannelTrafficGenerator.
As there are 10 switches and 40 endpoints in the POOSL model, the maximum
number of concurrent activities is 323 (24*10+40*2+3) for the POOSL model.

However, we will follow a new point of view to characterize such activities in the
UPPAAL model. Three types of concurrent activities have been characterized:

1. Packet transfer from endpoint to switch which combines the sending activity
of an endpoint and the input activity of a switch; 2. Packet transfer from switch
to switch which combines the output activity of a switch and the input activity
of a switch; 3. Packet transfer from switch to endpoint which combines the out-
put activity of a switch and the receiving activity of an endpoint. Each endpoint
has its own traffic sending activity. Traffic generation activity and transfer ac-
tivity within a switch are abstracted into non-time-consuming activities. Traffic
monitor activity is abstracted into the worst-case latency verification problem
of the obtained UPPAAL model.

Channel Traffic Generation Activity. The POOSL model splits generation of
channel traffic from actually sending them. Method generateBurst (POOSL code
is shown at the bottom part of figure 2) includes most of the details for such ac-
tivity. First, the POOSL model reads channel traffic information from a file chan-
nels.txt and creates sending queues for each involved endpoint. Then channel traf-
fic will be generated in a uniformly random order according to the channel traf-
fic information and stored in corresponding sending queues. Later, the sending
queues will be used by corresponding endpoints for actually sending packets.

Such activity is transformed into an UPPAAL function handleRIOChannel
where only a specific ordering (refers to the sequence of channels in sending
queues) is considered (the ordering is embedded in the UPPAAL code). Sending
queues are implemented as arrays, additional functions are also provided such
that a FIFO accessing policy is enforced. The timed automaton which includes
this activity is shown in figure 7.

If more orderings for channel traffic generation are considered, traffic genera-
tion for each channel is implemented as a timed automaton template shown in
figure 8. When the UPPAAL model starts, all such timed automata will fire the
edge from the initial location and execute the update channelGen(i) to generate

168 J. Xing et al.

Fig. 8. Channel Generation

Fig. 9. Packet Transfer from Endpoint to Switch

the traffic for the channel indexed by i. The nondeterminism among these timed
automata models the uniformly random generation of channel traffic in POOSL
model.

Packet Transfer from Endpoint to Switch. We illustrate transforming the
sending of packets by an endpoint and the input handling of packets received
by a switch, which connects the output of an endpoint to an input port of a
switch with a message. For example, message P2 connects the output of endpoint
B1 EP1 to the input port p2 of switch SW2 as in figure 4. The sending of packets
for a RIOEndPoint is specified by method handleServiceRequest shown in figure
5. The input handler for a RIOSwitch is specified by method HandleInputPort()
shown in figure 6.

Such activity is transformed into a timed automaton template shown in figure
9. Three parameters are provided to specify the endpoint, the switch and its
input port. When broadcast synchronization signal parSync arrives, and the
condition sendQueueNotEmpty(n1) == true && acceptSend(n1,s1,i1) == true
is satisfied, the timed automaton will move to the second location. The condition
checks if endpoint n1 is not empty and the input queue i1 of switch s1 can
accept the current packet of endpoint n1. The timed automaton will stay in the
second location for the time it takes to transmit the packet over the link. In our
approach, the time consumed here is abstracted into the synchronization timed
automaton (see figure 10) as all concurrent activities consume the same time
(all packets actually transferred are equal-sized as mentioned earlier). The timed
automaton will move the current packet of endpoint n1 to the input queue i1 of
switch s1 by function node2switch(n1,s1,i1) when it receives the signal reqSync
and then return to its initial location.

The other two kinds of concurrent activities can be transformed in a similar
way. We omit the details due to space limitation.

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 169

Transfer activity. The transfer activity refers to the actual scheduling of pack-
ets from input queues to a specific output port (namely output arbitration). This
behavior is executed for each output port of a RIOSwitch and is specified by
method scheduleForOutput in the POOSL model.

According to the configuration of the POOSL model, the transfer activity
starts when the head of a packet has arrived in the input queue. Then the head
is immediately forwarded to the output queue before the packet has completely
arrived in the output queue. The reason is: the switch fabric rate is always larger
than the link rate and therefore the packet is forwarded in “cut-through ”mode.
As transfer activity seamlessly connects an input queue to an output queue as if
time is not consumed for this activity, we abstract it into a non-time-consuming
activity which is implemented as an update as shown in figure 10.

Fig. 10. Synchronization

Synchronization. To enforce that only selected timed automata are fired con-
currently and are synchronized with other timed automata, we use the following
timed automaton shown in figure 10. When the condition x < nextPacketNumber
&& start == true is satisfied, a broadcast synchronization signal parSync will be
raised. Then the timed automaton will move to the second location. x denotes
the number of received packets and nextPacketNumber denotes the number of
generated packets. The condition checks if there still exist packets that have not
been received and all channel traffic generations have finished. The timed au-
tomaton stays at the second location for a constant length of time (as discussed
above). Then it raises a reqSync signal to end all concurrent activities and then
return to its initial location. It will handle the transfer activity packetTransfer
if the condition packetTransferPossible() == true is satisfied during the return.
Or else, it will return to the initial location directly.

Worst-case Latency Verification. The traffic monitor activity is transformed
into the worst-case latency verification problem in the UPPAAL model. As we
only consider the scenarios that all channels are generated in a burst, the worst-
case latency is defined as the time when the whole burst has been handled (all
packets have been received). We constructed the timed automaton in figure 11
to verify the worst-case latency. When condition x == nextPacketNumber &&
x >0 is satisfied, the timed automaton will move to location S1. A self-loop is

170 J. Xing et al.

added here to distinguish the deadlock from end of operation. The condition
checks if all packets have been received. The endSync signal is defined as an
urgent channel to enforce that the transition will be taken immediately when
the condition is satisfied. The global clock globalT perfectly describes the worst-
case latency for the burst. Assume W is the worst-case latency, we just need to
check if the property A[] globalT ≤ W is satisfied. If this property is not satisfied,
we can increase W step by step until this property is satisfied. In other words,
the smallest upper bound for the worst-case latency can be found iteratively.

Fig. 11. Worst-case Latency Monitor

System Declaration. Based on the building blocks obtained above, we can
instantiate timed automata templates into concrete timed automata according
to the system configuration. In the UPPAAL model, a concrete timed automa-
ton will be instantiated for each concurrent activity. Each endpoint is assigned
an id according to the file RIOIds.txt, whereas the id for a switch is actually
implemented as an index of an array (the total 10 switches are grouped into an
array). For example, n14s1i5 = Node2Switch(14,1,5) denotes the instantiation
of a concurrent activity referring to the packet transfer from endpoint 14 to
switch 1 at input port 5. In total about 80 concurrent activities are instantiated
in the UPPAAL model. Compared with more than 300 concurrent activities in
the POOSL model, the UPPAAL approach is considerably simplified.

4 Heuristics

In this section, we first present the scalability of the UPPAAL model. Then we
propose some heuristics to reduce the underlying state space such that realistic
application scenarios can be analyzed.

4.1 Scalability of the UPPAAL Model

Different orderings for channel traffic generation result in different sending orders
for the packets in endpoints which are also referred to as traffic scenarios. The
difficulty of the state space exploration for the RapidIO network worst-case
latency analysis comes from this combinatorial problem. Experiments have been
run to show the scalability of the UPPAAL model and the results are listed in
table 1. The second row refers to number of packets included in the corresponding
channels. The channel information is selected from the file channels.txt. If n
channel generation timed automata are declared in the model and the worst-case

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 171

Table 1. Scalability of the UPPAAL model

Number of Channels 10 20 30 40

Number of Packets (129) (300) (372) (459)

Supported orderings 6! 4! 4! 3!

Whole orderings 10! 20! 30! 40!

latency can be verified, we say that the UPPAAL model support n! orderings
(verification time is not constrained here, JVM memory is set to the maximum
value (1500M) supported in our windows vista system).

From table 1, the following conclusions can be drawn: 1. With the increase
of the number of channels (as well as packets), state space explosion occurs. 2.
The UPPAAL model can only support investigating a small part of the state
space for high volume traffics. Further, the heavier the traffic, the smaller part
of the state space it investigates. Table 1 actually shows why the verification for
worst-case latency is so difficult.

4.2 Heuristics

From the above analysis for the scalability of the UPPAAL model, we see that ex-
act verification is not possible for high volume traffics. We then turn to heuristic
methods and anticipate that worse packet transfer latencies can be found (than
the POOSL approach). In this section, we will introduce some heuristics for state
space reduction of the UPPAAL model such that high volume traffic scenarios
can be analyzed.

Before we go into the details of the heuristics, we assume that: 1. The routing
information and the output arbitration are fair. 2. Channel traffic is uniformly
distributed in the endpoints and switches involved. 3. Traffic is never overloaded
such that only a few collisions occur.

Heuristics H1. Each endpoint has its own sending queue. The sending of an
endpoint is independent from others unless collisions occur. As collisions are few
compared with the whole traffic load according to the assumption, the sending
of each endpoint can be seen as independent most of the time. The orderings
among different endpoints are not relevant for the worst-case latency and will
not be considered. We can thus focus on the orderings within each endpoint.
Besides, when two or more channels within an endpoint have the same type, the
orderings among these channels are also irrelevant and will not be considered (as
they are symmetric). We combine these two heuristics and refer it as H1. Table
2 shows the result obtained by applying heuristic H1. Compared with table 1,
we can see that: the state space obtained by using the heuristic H1 is still too
large to be analyzed.

Heuristic H2. Among all the activities operated in the RapidIO network,
collisions only occur when two or more input queues compete for one output

172 J. Xing et al.

Table 2. Heuristic H1

Number of Channels 10 20 30 40

Number of Packets (129) (300) (372) (459)

Reduced orderings with H1 5! 5!5!4!2! 8!6!5!5!2!2! 9!6!6!5!5!3!2!

port (queue) within a switch. Based on the above assumptions, the following
observations hold. 1. The longest sending queue (endpoint) is most probably
to be the last one finished. 2. The more collisions within a sending queue, the
worse scenario it is. A heuristic easily follows: generating more collisions for the
longest sending queue. However, it would be too complicated to implement as
the detailed routing information must be investigated.

We then come up with another idea: generating more collisions for all endpoints
(the whole system). It is obvious that: the more switches a packet goes through,
the more likely collisions occur for this packet. We can thus put such packets in
the front end of all endpoints to generate more collisions. The number of switches
a channel goes through is reflected in the latency listed in table 3 (packet size is as-
sumed to be 100 bytes). These latencies are obtained by simulation (both POOSL
and UPPAAL simulator can do) for each channel (packet) type. It is obvious that:
the larger the latency, the more switches it goes through. In table 3, the first row
and first column both denote the id of endpoints. For example, the element 5 in
the second row and fifth column means the latency from source endpoint 2 to des-
tination endpoint is 5. Due to the space limitation, only part of the possible packet
types is listed (there are 40 endpoints in the system).

We have developed a java application program to sort all channels in each
endpoint such that channels are put in sending queues in descending order (the
larger latency of the channel type is, the more forward this channel is in the
sending queue of the endpoint) according to the table. As we have mentioned
earlier, only a few orderings can be considered. We thus only investigate several
different orderings for front channels in the largest sending queue.

Experiment Results. Experiments have been run with the use of the above
heuristics H1 and H2 in the UPPAAL model. POOSL results are also provided

Table 3. Latency for Channel (Packet) Types)

2 3 4 5 6 7 8 9

2 0 2 2 5 5 5 4 4

3 2 0 2 5 5 5 4 4

4 2 3 0 5 5 5 4 4

5 5 5 5 0 2 2 3 3

6 5 5 5 2 0 2 3 3

7 5 5 5 2 2 0 3 3

8 4 4 4 3 3 3 0 2

9 4 4 4 3 3 3 3 0

UPPAAL in Practice: Quantitative Verification of a RapidIO Network 173

Table 4. Experiment Results: UPPAAL Heuristic vs. POOSL

Number of Channels 20 40 60 80 100 120 140 160

POOSL Result 128 227 298 350 504 501 504 515

UPPAAL Heuristic Result 129 220 322 371 538 539 539 522

for comparison. The first row in table 4 refers to the number of channels. The
results are the worst-case packet transfer latency obtained by two approaches.

Both heuristics H1 and H2 are applied in the experiment. From table 4, we can
see that: for low volume traffic scenarios, the UPPAAL approach using heuristics
cannot guarantee to find worse latencies. This phenomenon comes from the fact
that: POOSL’s simulation engine is very effective and can explore a large part
of the state space for low volume traffic scenarios. Whereas, even for low volume
traffic scenarios UPPAAL can only explore a small part of the state space (see
table 1). However, for high volume traffic scenarios, with the progress of state
space explosion, the superiority of the high-speed engine for POOSL disappears.
The UPPAAL approach using heuristics can always find worse scenarios than
with the POOSL approach. The UPPAAL approach using heuristics is an ef-
ficient approach to complement the POOSL approach for finding approximate
worst-case latencies.

5 Conclusions and Future Work

The exact worst-case packet transfer latency is an important metric for motion
control applications that run on multiple processors interconnected by a Ra-
pidIO network. We have proposed a model checking approach using UPPAAL
for this problem [11]. However, such an approach only applies to small scale
models. In this paper, we extend such an approach and apply it to a realistic
application scenario. First, we transform the POOSL model of a realistic motion
control system into an UPPAAL model. Then we show that the application of
the UPPAAL approach for exact worst-case packet transfer latency verification
is limited to low volume traffics. We propose to use heuristics for high volume
traffics. Although only approximate results can be obtained, the heuristics is still
valuable as worse scenarios can be found than POOSL approach. Experiments
show that the UPPAAL approach with heuristics is effective to complement the
POOSL approach for finding approximate worst-case latencies.

In this paper, we only apply the heuristics to the UPPAAL approach. It
is somewhat unfair for the comparison of the two approaches. We will apply
the heuristics to POOSL approach and compare their performance in a fairly
fashion. Besides, the RapidIO network (includes 323 concurrent activities) dis-
cussed in our paper is only a small part of the POOSL model of the total system,
which includes an estimated 2500 processes that all include between 1 and about
10 concurrent activities. Further abstraction techniques are still needed to scale

174 J. Xing et al.

up to such real industrial sized problems. Future work also includes transform-
ing POOSL into UPPAAL at a more semantical level by means of additional
transformation patterns[11].

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M. (ed.)

ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Behrmann, G., David, R., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,

Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-

delberg (2004)

3. van Bokhoven, L.: Constructive Tool Design for Formal Languages: From Semantics

to Executing Models. Ph.D. thesis, Eindhoven University of Technology (2002)

4. Geilen, M.: Formal Techniques for Verification of Complex Real-Time Systems.

Ph.D. thesis, Eindhoven University of Technology (2002)

5. Logothetis, G., Schneider, K.: Symbolic model checking of real-time systems. In:

International Syposium on Temporal Representation and Reasoning, p. 214 (2001)

6. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs

(1989)

7. van der Putten, P., Voeten, J.: Specification of Reactive Hardware/Software

Systems. Ph.D. thesis, Eindhoven University of Technology (1997)

8. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in

Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,

vol. 137, pp. 337–351. Springer, Heidelberg (1982)

9. Shippen, G.: A technical overview of RapidIO. (November 2007),

http://www.eetasia.com/ART_8800487921_499491_NP_7644b706.HTM

10. Theelen, B.D., Florescu, O., Geilen, M., Huang, J., van der Putten, P., Voeten,

J.: Software/hardware engineering with the Parallel Object-Oriented Specification

Language. In: MEMOCODE 2007: Proceedings of the 5th IEEE/ACM Interna-

tional Conference on Formal Methods and Models for Codesign, pp. 139–148. IEEE

Computer Society, Washington (2007)

11. Xing, J., Theelen, B.D., Langerak, R., van de Pol, J., Tretmans, J., Voeten, J.: From

POOSL to UPPAAL: Transformation and quantitative analysis. In: Proceedings

of the International Conference on Application of Concurrency to System Design,

pp. 47–56. IEEE Computer Society, Los Alamitos (2010)

http://www.eetasia.com/ART_8800487921_499491_NP_7644b706.HTM

Schedulability Analysis Using Uppaal:
Herschel-Planck Case Study

Marius Mikučionis1, Kim Guldstrand Larsen1,
Jacob Illum Rasmussen1, Brian Nielsen1, Arne Skou1, Steen Ulrik Palm2,

Jan Storbank Pedersen2, and Poul Hougaard2

1 Aalborg University, 9220 Aalborg Øst, Denmark

{marius,kgl,illum,bnielsen,ask}@cs.aau.dk
2 Terma A/S, 2730 Herlev, Denmark

{sup,jnp,poh}@terma.com

Abstract. We propose a modeling framework for performing schedula-
bility analysis by using Uppaal real-time model-checker [2]. The frame-

work is inspired by a case study where schedulability analysis of a

satellite system is performed. The framework assumes a single CPU

hardware where a fixed priority preemptive scheduler is used in a com-

bination with two resource sharing protocols and in addition voluntary

task suspension is considered. The contributions include the modeling

framework, its application on an industrial case study and a comparison

of results with classical response time analysis.

Keywords: schedulability analysis, timed automata, stop-watch au-

tomata, model-checking, verification.

1 Introduction

The goal of schedulability analysis is to check whether all tasks finish before
their deadline. Traditional approaches like [5] provide generic frameworks which
assume worst case scenario where worst case execution time and blocking times
are estimated and then worst case response times are calculated and compared
w.r.t. deadlines. Often, such conservative scenarios are never realized and thus
negative results from such analysis are often too pessimistic. The idea of our
method is to base the schedulability analysis on a system model with more de-
tails, taking into account specifics of individual tasks. In particular this will allow
a safe but far less pessimistic schedulability analysis to be settled using real-time
model checking. Moreover, the model-based approach provides a self-contained
visual representation of the system with formal, non-ambiguous interpretation,
simulation and other possibilities for verification and validation.

Our model-based approach is motivated by and carried out on example ap-
plications in a case study of Herschel-Planck satellite system. Compared with
classical response time analysis our model-based approach is found to uniformly
provide less pessimistic response time estimates and allow to conclude schedu-
lability of all tasks, in contrast to negative results obtained from the classical
approach.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 175–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

176 M. Mikučionis et al.

Related Work. During the last years, timed automata modelling and analy-
sis of multitasking applications running under real-time operating systems has
received substantial research effort. Here the goals are multiple: to obtain less
pessimistic worst-case response time analysis compared with classical methods
for single-processor systems or to relax the constraints be of period task arrival
times of classical scheduling theory to task arrival patterns that can be described
using timed automata.

In [13] it is shown how a multitasking application running under a real-time
operating system compliant with an OSEK/VDX standard can be modelled by
timed automata. Use of this methodology is demonstrated on an automated
gearbox case study and the worst-case response times obtained obtained from
model-checking is compared with those provided by classical schedulability anal-
ysis showing that the model-checking approach provides less pessimistic results
due to a more detailed model and exhaustive state-space exploration.

Times tool [1] can be used to analyse single processor systems, however it sup-
ports only highest locker protocol (simplified priority ceiling protocol) [8]. An ap-
proach of [4] provides Java code transformation into Uppaal [2] timed-automata
for schedulability analysis. Similarly, we use the model-checking framework pro-
vided by Uppaal, where the modelling language is extended with stop-watches
and C-like code structures allows to express preemption, suspension and mixed
resource sharing using two different protocols, in a more intuitive way without
a need for more complex model transformations or workarounds.

A framework from [7] provides a generic set of tasks and resources that can be
instantiated with concrete parameters (specific offsets, release times, deadlines,
dependencies, periods) and processor resources together with their scheduling
policies (i.e., preemption vs. non-preemption, earliest deadline first, fixed prior-
ity, first-in-first-out). The instantiated system can then be analysed for schedu-
lability in a precise manner as all the concrete information is taken into account.
This means that the framework will be able to verify schedulability of some
systems that would otherwise be declared “non-schedulable” by other methods.
Although the framework is general to cover multi-processor systems it does not
tackle passive resource sharing protocols like priority ceiling or inheritance.

The remainder of the paper is organised as follows: in the next Section 2 we
provide a brief overview of the Herschel-Planck satellite mission, its software
setup and the response time analysis already carried out by Terma. Section 3
describes our model-based methodology for solving the schedulability problem,
Section 4 presents the results of our method and compares it to traditional
response time analysis. Finally, Section 5 discusses conclusions and future work.

2 The Herschel-Planck Mission

The Herschel-Planck mission consists of two satellites: Herschel and Planck. The
satellites have different scientific objectives and thus the sensor and actuator con-
figurations differ, but both satellites share the same computational architecture.

Schedulability Analysis Using Uppaal 177

The architecture consists of a single processor, real-time operating system
(RTEMS), basic software layer (BSW) and application software (ASW).

Terma A/S has performed an extended worst case response time analysis
described in [5] by analysing [11] and [12] resulting in [10] (we provide the nec-
essary details of those documents in this paper). The goal of the study is to
show that ASW tasks and BSW tasks are schedulable on a single processor with
no deadline violations. The framework uses preemptive fixed priority scheduler
and a mixture of priority ceiling and priority inheritance protocols for resource
sharing and extended deadlines (beyond period). In addition, some tasks need
to interact with external hardware and effectively suspend their execution for
a specified time. Due to suspension, this single-processor system has some ele-
ments of multi-processor systems since parts of activities are executed elsewhere
and the classical worst case response analysis (applicable to single-processor sys-
tems) is pushed into extreme. One of the results of [10] is that one task may
miss its deadline on Herschel (and thus the system is not schedulable) but this
violation has never been observed in neither stress testing nor deployment.

The system is required to be schedulable in four instances: Herschel in nom-
inal and event modes and Planck in nominal and event modes. The processor
consumption should be less than 45% for Herschel and less than 50% for Planck.

In response time analysis, in order to prove schedulability it is enough to
calculate worst case response times (WCRT) for every task and compare it with
its deadline: if for every task the WCRT does not exceed the correspond deadline
the system is schedulable.

Figure 1 shows the work-flow performed by Terma A/S: the deadline require-
ments are obtained from ASW and BSW documentation, worst case execution
times (WCET) of BSW are obtained from BSW documentation [12] and ASW
timings are obtained from time measurements. The tasks are carefully picked
and timings aggregated (documented in [10]) and processed by the proprietary
Terma tool Schedule which performs worst case response time analysis as de-
scribed in [5] and the outcome is processor utilisation and worst case response
times (WCRT) for each task. The system is schedulable when for every task i
WCRT i is less than its Deadline i, i.e. the task always finishes before its deadline.
We use the index i as a global task identifier.

We provide only the formulas used in response time analysis and refer to [5]
for details on how this analysis works. The important property of the analysis
is that it always takes conservative estimates of blocking times even though the
actual blocking may not appear, thus resulting in too pessimistic response times.
WCRT i is calculated by recursive formula for task computation windows w(q)
which may overlap with another task release (due to deadline extending past
period), where q is the number of window starting with 0, hp(i) is a set of tasks
with higher priority than i. Then the longest window is taken as WCRT:

wn+1
i (q) = Blockingi + (q + 1)WCET i +

∑
j∈hp(i)

⌈ wn
i (q)

Period j

⌉
WCET j

Responsei(q) = wn
i (q) − qPeriod i

178 M. Mikučionis et al.

Blocking_i

Deadline_i

WCET_i

Offset_i

Period_i

ASW:

Blocking_i

Deadline_i

WCET_i

Offset_i

Period_i

BSW:

Response
Time

Analysis

WCRT_i

Utilization_i

Worst Case

Simulation

measurements

& calculations

Documentation

BSW STSB [12]

Fig. 1. Work-flow of schedulability analysis [10]

WCRTi = max
q

Responsei(q)

Blockingi denotes the blocking time when task i is waiting for a shared re-
source being occupied by a lower priority task. Blocking times calculation is
specific to the resource sharing protocol used. BSW tasks use priority inheri-
tance protocol and thus their blocking times are calculated using the following
equation:

Blockingi =
R∑

r=1

usage(r, i)WCETCriticalSection(r)

ASW tasks use priority ceiling protocol and therefore their blocking times are:

Blockingi =
R

max
r=1

usage(r, i)WCETCriticalSection(r)

The matrix usage(r, i) captures how resource r is used by the tasks: usage(r, i) =
1 if r is used by at least one task with a priority less than task i and at least one
task with a priority greater than or equal to task i, otherwise usage(r, i) = 0.

Some BSW tasks are periodic and some sporadic, but we simplify the model
by considering all BSW tasks as periodic. ASW tasks are started by periodic task
MainCycle. In order to obtain more precise results, [10] splits the analysis into
0-20ms and 20-250ms windows, distinguishes two operating modes and analyse
six cases in total separately. However, one case shows up as not schedulable
anyway and application of our framework improves this result by showing that
all tasks finish within their deadlines.
Resource Usage by Tasks. Some tasks require shared resources and those are
protected by semaphore locking to ensure exclusive usage. Sometimes tasks use
resources repeatedly (locking and unlocking several times). When the resource
semaphore is locked, a task may suspend its execution by calling hardware
services and waiting for the hardware to finish thus temporarily releasing the

Schedulability Analysis Using Uppaal 179

processor for other tasks. The processor may be released multiple times during
one semaphore lock. In response time analysis, the processor utilisation is com-
puted by dividing a sum of worst case execution times by duration of analysed
time window.

3 Model-Based Schedulability Methodology

This section explains the principles and concepts used throughout the modelling
framework and then describes the modelling templates in detail.

The main idea is to translate schedulability analysis problem into a reach-
ability problem for timed automata and use the real-time model-checker Up-

paal to find worst case blocking and response times, processor utilisation and
to check whether all the deadlines are met. In our modelling framework clocks
and stopwatches control task release patterns, track task execution progress,
check response time against deadline bound and thus all the computations are
performed by model-checker according to the model, in contrast to carefully
customised specific formula.

The framework consists of the following process models: fixed priority pre-
emptive CPU scheduler, a number of task models and one process for ensuring
global invariants. We provide several templates for task models: for periodic tasks
and for tasks with dependencies, all of which are parameterised with concrete
program control flow and may be customised to a particular resource sharing
protocol. Our approach takes the same task descriptions as [10] and produces
results which are more optimistic and provides the proof that all the tasks will
actually finish before the deadline.

We use stopwatches to track task progress and stop the task progress dur-
ing preemption. In Uppaal, the stopwatch support is implemented through a
concept of derivative over clock, where the derivative can be either 1 (valuation
progresses with a rate of 1 as regular clocks) or 0 (valuation is not allowed to
progress – the clock is stopped). Syntactically stop-watch expressions appear in
invariant expressions in a form of x′ == c, where x is declared of type clock
and c is an integer expression which evaluates to either 0 or 1. The reachabil-
ity analysis of stopwatch automata is implemented as an over-approximation in
Uppaal, but the approximation still suffices for safety properties like checking
if a deadline can ever be violated.
The following outlines the main modelling ingredients:

– One template for the CPU scheduler.
– One template for “idle” task to keep track of CPU usage times.
– One template for all BSW tasks, where resources are locked based on priority

inheritance protocol.
– One template for MainCycle ASW task, which is released periodically, starts

other ASW tasks and locks resources based on priority ceiling protocol.
– One template for all other ASW tasks, which is released by synchronisations,

and locks resources based on priority ceiling protocol.

180 M. Mikučionis et al.

– Task specialisation is performed during process instantiation by providing
individual list of operations encoded into flow array of structures.

– Each task (either ASW or BSW) uses the following clocks and data variables:
• Task and its clocks are parameterised by identifier id.
• Execution time is modelled by a stopwatch job[id] which is reset when

the task is started and stopped by a global invariant when the task is
not being run on the processor. A worst case execution time (WCET)
guard ensures that task cannot finish before WCET elapses. To ensure
progress, the clock job[id] is constrained by an invariant of WCET so
that the task releases the processor as soon as it has finished computing.

• A local clock x controls when the task is released and is reset upon task
is released. The task then moves to an error state if x is greater than its
deadline.

• A local clock sub controls progress and execution of individual opera-
tions.

• A local integer ic is an operation counter.
• Worst case response time for task id is modelled by a stopwatch WCRT [id]

which is reset when the task is started and is allowed to progress only
when the task is ready (global invariant WCRT [id]′ == ready [id] en-
sures that). In addition WCRT [id] is reset when the task is finished in
order to allow model checker to apply active clock reduction to speed
up analysis as the value of this clock is no longer used. The worst case
response time is estimated as maximum value of WCRT [id].

• An error location is reachable and error variable is set to true if there
is a possibility to finish after deadline.

Further we explain the most important model templates, while the complete
model is available for download at http://www.cs.aau.dk/~marius/Terma/ .

3.1 Processor Scheduler

Figure 2a shows the model of CPU scheduler. In the beginning Scheduler ini-
tialises the system (computes the current task priorities by computing default
priority based on id and starts the tasks with zero offset) and in location Running
waits for tasks to become ready or current task to release the CPU resource.
When some task becomes ready, it adds itself to the taskqueue and signals on
enqueue channel, thus moving Scheduler to location Schedule. From location
Schedule, the Scheduler compares the priority of a current task cprio[ctask]
with highest priority in the queue cprio[taskqueue[0]] and either returns to
Running (nothing to reschedule) or preempts the current task ctask, puts it into
taskqueue and schedules the highest priority task from taskqueue.

The processor is released by a signal release[CPU R], in which case the Sched-
uler pulls the highest priority task from taskqueue and optionally notifies it with
broadcast synchronisation on channel schedule (the sending is performed always
in non-blocking way as receivers may ignore broadcast synchronisations).

The taskqueue always contains at least one ready task: IdleTask. Figure 2b
shows how IdleTask reacts to Scheduler events and computes the CPU usage time
with stopwatch usedTime, the total CPU load is then calculated as usedTime

globalTime .

http://www.cs.aau.dk/~marius/Terma/

Schedulability Analysis Using Uppaal 181

add(taskqueue,ctask),
runs[ctask]=0,
ctask=poll(taskqueue)

main()

runs[ctask]=1

runs[ctask]=0,
ctask=poll(taskqueue)

enqueue?
release[CPU_R]?

preempt[ctask]!

schedule[ctask]!

initialize!

Running

Schedule

cprio[ctask]>=
cprio[taskqueue[0]]

Preempt

taskqueue[0]>0 &&
cprio[ctask]<
cprio[taskqueue[0]]

(a) Template for CPU scheduler.

preempt[0]?

schedule[0]?

idleTime’==0
CPUIdleCPUUsed

usedTime’==0

(b) Idle task model.

Fig. 2. Models for CPU scheduler and the simplest task

3.2 Tasks Templates

Figure 3 shows the parameters which describe each periodic task: period duration
showing how often the task is started, offset showing how far into the cycle the
task is started (released), deadline is measured from the instance when task is
started and worst case execution time within deadline.

Task times:

Period

WCET

Deadline

Offset

release

time
WCRT

Fig. 3. Periodic task execution parameters

Figure 4 shows a template used by MainCycle which is started periodically. At
first MainCycle waits for Offset time to elapse and moves to location Idle by
setting the clock x to Period. Then the process is forced to leave Idle location
immediately, to signal other ASW tasks, add itself to the ready task queue
and arrive to location WaitForCPU. When MainCycle receives notification from
scheduler it moves to location GotCPU and starts processing commands from the
flow array. There are four types of commands:

1. LOCK is executed from location tryLock where the process attempts to
acquire the resource. It blocks if the resource is not available and retries
by adding itself to the processor queue again when resource is released. It
continues to location Next by locking the resource if the resource is available.

182 M. Mikučionis et al.

UNLOCK==flow[ic].cmd

avail(flow[ic].res)runs[id] &&
END!=flow[ic].cmd &&
x<=Deadline

x>Deadline

COMPUTE==
flow[ic].cmd

starting

!avail(flow[ic].res)

runs[id] &&
job[id]>=WCET &&
x<=Deadline

LOCK==
flow[ic].cmd

Finishing

x==Periodx==Offset

x>Deadline

x>Deadline

runs[id] &&
sub==flow[ic].delay

SUSPEND==
flow[ic].cmd

x>Deadline

sub==flow[ic].delay

runs[id] &&
END==flow[ic].cmd &&
x<=Deadline

x>Deadline

schedule[id]?

enqueue!

schedule[id]?

release[CPU_R]!

enqueue!

release[CPU_R]!

release[flow[ic].res]! release[CPU_R]!

release[flow[ic].res]?

Suspended

Computing

Error

WaitForCPU2WaitForCPU

StartASW!

GotCPU

Idle

Next
tryLock Blocked

enqueue!

blocked[id]=1

ic=0, job[id]=0,
WCRT[id]=0, ready[id]=0

lockCeil(flow[ic].res, id),
ic++, sub=0

blocked[id]=0

add(taskqueue, id),
x=0, job[id]=0,
WCRT[id]=0, ready[id]=1

error=1

error=1

add(taskqueue, id),
susp[id]=false,
ic++, sub=0

susp[id]=true,
sub=0

error=1

x=Period

unlockCeil(flow[ic].res, id),
ic++, sub=0

error=1

ic++, sub=0

sub=0

add(taskqueue, id)

error=0

x<=Period

sub’==runs[id]
&& sub<=0

x<=Offset

sub’==runs[id] &&
sub<=flow[ic].delay

job[id]<=WCET

sub<=
flow[ic].delay

Fig. 4. MainCycle task: periodically starts ASW functions

2. UNLOCK simply releases the resource and moves on to location Next. The
implementation of locking and unlocking is shown in Listing 1.2.

3. SUSPEND releases the processor for specified amount of time, adds itself to
the queue and moves to location Next. The task progress clock job[id] is not
increasing but the response measurement clock WCRT [id] is.

4. COMPUTE makes the task stay in location Computing for at least the spec-
ified duration of pure running time, i.e. the clock sub is stopped whenever
the task is preempted and runs[id] is set to 0. Once the required amount of
CPU time is consumed, the process moves on to location Next.

From location Next, the process is forced by runs[id] invariant to continue with
the next operation: if it is not the END and it is running, then it moves back to
GotCPU to process next operation, and it moves to Finishing if it’s the END. In
Finishing location the process consumed CPU for the remaining time so that
complete WCET is exhausted and then it moves back to Idle. From locations
Next and Finishing the outgoing edges are constrained to check whether the
deadline has been reached since the last task release (when x was set to 0), and
edges force the process into Error location if x > Deadline .

The flow for MainCycle is very simple: it computes for its WCET while keeping
a lock on Sgm R. A more sophisticated example of flow is in Listing 1.1. We do
not know the exact times the resources are locked and the points in time are
chosen arbitrarily, thus it may not necessarily lead to worst-case blocking timed
for higher priority tasks.

Schedulability Analysis Using Uppaal 183

Table 1. The description of PrimaryF task from [10] inputs

Primary Functions

- Data processing 20577/2521

Icb_R(LNS: 2, LCS: 1200, LC: 1600, MaxLC: 800)

- Guidance 3440/0

- Attitude determination 3751/1777

Sgm_R(LNS: 5, LCS: 121, LC: 1218, MaxLC: 236)

- PerformExtraChecks 42/0

- SCM controller 3479/2096

PmReq_R(LNS: 4, LCS: 1650, LC: 3300, MaxLC: 3300)

- Command RWL 2752/85

The template for BSW tasks is almost the same as MainCycle, except that
1) BSW tasks do not have to start other ASW tasks and thus from Idle they
go directly to WaitForCPU with enqueueing edge, 2) instead of ceiling protocol
(lockCeil and unlockCeil) it uses inheritance (lockInh and unlockInh) and 3) it
boosts the owners priority by calling boostPrio(flow [ic].res, id) on the edge from
tryLock to Blocked. BSW tasks have their own local clock x, while MainCycle
shares its x with other ASW tasks.

Other ASW tasks are started by MainCycle, thus instead of broadcast shout
synchronisation on StartASW channel they have receive synchronisation on
StartASW. Also, they share the same clock x with MainCycle, because response
time is measured from the same 20ms offset (as in [10], so that the results are
comparable).

Table 1 shows the description of PrimaryF from [10] as an example that we
used to create flow structure. This particular description consists of six activities.

Each activity is described by two numbers (CPU time / BSW service time,
BSW service time is included in CPU time, thus is not used in our model),
followed by resource usage pattern if any. The resource usage is described by the
following parameters:

LNS – total number of times the CPU has been released while the resource was
locked (task suspension count).

LCS – total time the CPU has been released while the resource was locked
(task suspension duration).

LC – total time the resource has been locked.
MaxLC – the longest time the resource has been locked.

From this description we use only LCS and LC, where we assume that LC-LCS
is the CPU busy time while the resource is locked. Listing 1.1 shows an example
of detailed control flow structure for PrimaryF task, where the numbers mean the
time duration and comments relate each step to an item in Table 1. Listing 1.2
shows functions for priority inheritance and priority ceiling protocols, which use
owner and cprio to track current resource owner and task priority.

184 M. Mikučionis et al.

Listing 1.1. Operation flow for PrimaryF task
�

1 const ASWFlow t PF f = { // Primary Functions:
2 { LOCK, Icb R, 0 }, // 0) −−−−− Data processing
3 { COMPUTE, CPU R, 1600−1200 }, // 1) computing with Icb R
4 { SUSPEND, CPU R, 1200 }, // 2) suspended with Icb R
5 { UNLOCK, Icb R, 0 }, // 3)
6 { COMPUTE, CPU R, 20577−(1600−1200) }, // 4) computing without Icb R
7 { COMPUTE, CPU R, 3440 }, // 5) −−−−− Guidance
8 { LOCK, Sgm R, 0 }, // 6) −−−−− Attitude determination
9 { COMPUTE, CPU R, 1218−121 }, // 7) computing with Sgm R

10 { SUSPEND, CPU R, 121 }, // 8) suspended with Sgm R
11 { UNLOCK, Sgm R, 0 }, // 9)
12 { COMPUTE, CPU R, 3751−(1218−121) }, //10) computing without Sgm R
13 { COMPUTE, CPU R, 42 }, //11) −−−−− Perform extra checks
14 { LOCK, PmReq R,0 }, //12) −−−−− SCM controller
15 { COMPUTE, CPU R, 3300−1650 }, //13) computing with PmReq R
16 { SUSPEND, CPU R, 1650 }, //14) suspended with PmReq R
17 { UNLOCK, PmReq R, 0 }, //15)
18 { COMPUTE, CPU R, 3479−(3300−1650) }, //16) computing without PmReq R
19 { COMPUTE, CPU R, 2752 }, //17) −−−−− Command RWL
20 FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN, FIN // fill the array
21 };

� �

Listing 1.2. Resource locking based on two different protocols
�

1 /∗∗ Check if the resource is available : ∗/
2 bool avail (resid t res) { return (owner[res]==0); }
3 /∗∗ Lock the resource based on priority ceiling protocol : ∗/
4 void lockCeil(resid t res , taskid t task) {
5 owner[res] = task; // mark resource occupied by task
6 cprio[task] = ceiling [res]; // assume the priority of resource
7 }
8 /∗∗ Unlock the resource based on priority ceiling protocol : ∗/
9 void unlockCeil(resid t res , taskid t task){

10 owner[res] = 0; // mark resource as released
11 cprio[task] = def prio(task); // return to default priority
12 }
13 /∗∗ Boost the priority of resource owner based on priority inheritance protocol : ∗/
14 void boostPrio(resid t res , taskid t task) {
15 if (cprio[owner[res]] <= def prio(task)) {
16 cprio[owner[res]] = def prio(task)+1;
17 sort(taskqueue);
18 }
19 }
20 /∗∗ Lock the resource based on priority inheritance protocol : ∗/
21 void lockInh(resid t res , taskid t task) {
22 owner[res] = task; // mark resource occupied by task
23 }
24 /∗∗ Unlock the resource based on priority inheritance protocol : ∗/
25 void unlockInh(resid t res , taskid t task) {
26 owner[res] = 0; // mark resource as released
27 cprio[task] = def prio(task); // return to default priority
28 }

� �

3.3 System Model Instantiation

Listing 1.3 shows how tasks are instantiated. Listing 1.4 shows system declaration
using priorities which help enforce the specified priorities in verification. The
resulting model is deterministic, thus the expected state space shape is narrow
(single sequence of steps) but potentially very deep.

Initial experiments showed that in fact the state space is so deep that Uppaal

exhausts the memory in a few minutes by storing most of the state space just
to check for loops and ensure the verification termination. To address this issue

Schedulability Analysis Using Uppaal 185

a sweep-line method [6] is used. The basic idea behind sweep-line method is to
store only those passed states which have the greatest progress measure and
purge the rest, thus effectively releasing and reusing most of the memory.

Listing 1.3. Task instantiation
�

1 // taskid,Offset,Period, flow, WCET, Deadline
2 RTEMS RTC = BSW(1, 0, 10000, WCET f, 13, 1000);
3 AswSync SyncPulselsr=BSW(2, 0,250000, WCET f, 70, 1000);
4 Hk SamplerIsr = BSW(3,62500,125000, WCET f, 70, 1000);
5 SwCyc CycStartIsr= BSW(4, 0,250000, WCET f, 20, 1000);
6 SwCyc CycEndIsr= BSW(5,200000,250000, WCET f, 100, 1000);
7 Rt1553 Isr = BSW(6, 0, 15625, WCET f, 70, 1000);
8 Bc1553 Isr = BSW(7, 0, 20000, WCET f, 70, 1000);
9 Spw Isr = BSW(8, 0, 39000, WCET f, 70, 2000);

10 Obdh Isr = BSW(9, 0,250000, WCET f, 70, 2000);
11 RtSdb P 1 = BSW(10, 0, 15625, WCET f, 150, 15625);
12 RtSdb P 2 = BSW(11, 0,125000, WCET f, 400, 15625);
13 RtSdb P 3 = BSW(12, 0,250000, WCET f, 170, 15625);
14 // #13 is reserved for ASW resource priority ceiling
15 FdirEvents =ASWspor(14,20000,250000, WCET f, 5000, 230220);
16 NominalEvents 1=ASWspor(15,20000,250000, WCET f, 720, 230220);
17 mainCycle = MainCycle(16,20000,250000, 400, 230220, ASWclock);
18 HkSampler P 2 = BSW(17,62500,125000, WCET f, 500, 62500);
19 HkSampler P 1 = BSW(18,62500,250000, WCET f, 6000, 62500);
20 Acb P = BSW(19,200000,250000,WCET f, 6000, 50540);
21 IoCyc P = BSW(20,200000,250000,WCET f, 3000, 50540);
22 //ASW: id, start, finish , flow, WCET, Deadline
23 primaryF = ASW(21,StartASW,Done, PF f, 34050, 59600, ASWclock);
24 rCSControlF= ASW(22,StartASW,Done, RCS f, 4070, 239600, ASWclock);
25 Obt P = BSW(23, 0,1000000,Obt f, 1100, 100000);
26 Hk P = BSW(24, 0,250000, WCET f, 2750, 250000);
27 StsMon P = BSW(25,62500,250000,StsMon f,3300, 125000);
28 TmGen P = BSW(26, 0,250000, WCET f, 4860, 250000);
29 Sgm P = BSW(27, 0,250000, Sgm f, 4020, 250000);
30 TcRouter P = BSW(28, 0,250000, WCET f, 500, 250000);
31 Cmd P = BSW(29, 0,250000, Cmd f, 14000, 250000);
32 NominalEvents 2= BSW(30,20000,250000, WCET f, 1780, 230220);
33 secondF 1 = ASW(31,StartASW, Done, SF1 f, 20960, 189600, ASWclock);
34 secondF 2 = ASW(32,StartASW, Done, SF2 f, 39690, 230220, ASWclock);
35 Bkgnd P = BSW(33, 0,250000, WCET f, 200, 250000);

� �

Periodic models—like the ones for schedulability—do not have inherent progress
measure, so we propose to create an artificial one based on how many cycles the
system has executed so far, and then reset it to zero once it reaches a pre-specified
limit. In fact, such drops in progress measure are tolerated by generalised sweep-
line method [9], which is also implemented in Uppaal. The progress measure is
based on the variable cycle defined on line 8 in Listing 1.4, incremented by guarded
loops in Global process (Fig. 5) after each 250ms and is reset together with all the
global clocks to zero once the CYCLELIMIT is reached. The process Global also
takes care of global invariants on job[i] and WCRT [i] stopwatches of each task i.

Listing 1.4. System declaration using Uppaal priorities
�

1 system Scheduler, Bkgnd P < secondF 2 < secondF 1 < NominalEvents 2 < Cmd P <
2 TcRouter P < Sgm P < TmGen P < StsMon P < Hk P < Obt P < rCSControlF <
3 primaryF < IoCyc P < Acb P < HkSampler P 1 < HkSampler P 2 <
4 mainCycle < NominalEvents 1 < FdirEvents < RtSdb P 3 < RtSdb P 2 < RtSdb P 1

< Obdh Isr <
5 Spw Isr < Bc1553 Isr < Rt1553 Isr < SwCyc CycEndIsr < SwCyc CycStartIsr <
6 Hk SamplerIsr < AswSync SyncPulselsr <
7 RTEMS RTC, IdleTask, Global;
8 progress { cycle; }

� �

186 M. Mikučionis et al.

cycle=0, globalTime=0,
usedTime=0, idleTime=0,
WCRT[0]=0

cycle++

Done?
globalTime==cycle*CYCLE
&& cycle<CYCLELIMIT

globalTime==cycle*CYCLE
&& cycle==CYCLELIMIT

globalTime<=cycle*CYCLE &&
forall(i: taskid_t) job[i]’==runs[i] &&
forall(i: taskid_t) WCRT[i]’==ready[i]

Fig. 5. Global process enforce invariants on stopwatches and cyclic progress

Further, we explore some values of CYCLELIMIT in order to minimise the
verification resources. We postulate that a good heuristics is to explore at least to
a hyper-period (least common multiple of periods) of all the periodic processes
before reseting the cycle counter. There are the following different periods in
the system: 125000, 15625, 20000, 39000, 250000 and 1000000μs, therefore a
potential hyper-period is 39000000μs, or 156 cycles of 250ms each, but it can be
much larger due to non-trivial resource sharing and task interaction.

3.4 Verification Queries

The following is a list of queries used to check schedulability properties:

– Check if the system is schedulable (the error state is not reachable):
E<> error

– Check if any task can be blocked at all: E<> exists(i:taskid t) blocked[i]
– Find the total worst CPU usage: sup: usedTime, idleTime
– Find the worst case response times: sup: WCRT[0], WCRT[1], ... WCRT[33]
– Find worst case blocking times, where B[i] is a stopwatch growing when

task i is blocked: sup: B[0], B[1], B[2], ... B[33]

A sup-query explores the entire reachable state space and computes the maxi-
mum (supremum) value of an argument expression, which is useful for computing
several bounds at once. However, in such queries, Uppaal treats the specified
clocks as active, therefore the exploration can be significantly slower when the
clock list is large. Therefore, we create a separate model to estimate blocking
times instead WCRT by purging expressions with WCRT [id] and adding B[id]
reset statements on edges from tryLock to Blocked in order to save half of
expensive stopwatches.

4 Results

The results of our model-based framework consist of three parts: visualisation
of a schedule in Gantt chart, worst case response times estimates and CPU
utilisation estimation with verification benchmarking based on cycle limit.

Visualisation. A Gantt chart can be used to visualise a trace of the system, thus
providing a rich picture for inspection. For example, in the generated chart, it can
be seen that Cmd P is blocked more than 5 times during the first cycle, while
blocking times for PrimaryF and StsMon P are significantly long only starting

Schedulability Analysis Using Uppaal 187

from the second cycle. Listing 1.5 shows a chart declaration accepted by Uppaal

TIGA [3] which assigns colours for each line (T for task lines, R for resource
lines) based on the state (ready, running, blocked or suspended; locked and used,
locked and preempted or locked and suspended respectively).

Listing 1.5. Specification for Gantt chart
�

1 gantt {
2 T(i: taskid t) :
3 (ready[i] && !runs[i]) −> 1,// green: ready
4 (ready[i] && runs[i]) −> 2, // blue: running
5 (blocked[i]) −> 0, // red: blocked
6 susp[i] −> 9; // cyan: suspended
7 R(i: resid t) :
8 (owner[i]>0 && runs[owner[i]]) −> 2, // blue: locked and actively used
9 (owner[i]>0 && !runs[owner[i]] && !susp[owner[i]]) −> 1, // green: locked, preempted

10 (owner[i]>0 && susp[owner[i]]) −> 9; // cyan: locked and suspended
11 }

� �

Verification and CPU Load Estimates. Uppaal takes about 2min (112s) to
verify that the system is schedulable and about 3 times as much to find WCRT
on a Linux laptop PC with Intel Core 2 Duo 2.2GHz processor.

In [10] CPU utilisation for 20-250ms window is estimated as 62.4%, and our
estimate for entire worst case cycle is 63.65% which is slightly larger, possibly
due to the fact that it also includes the consumption during 0-20ms window.

Table 2 shows Uppaal verification resources used for estimating WCRT and
CPU utilisation for various cycle limits. The instances where cycle limit is a
divisor or a multiple of a hyper-period (156) are in bold. Notice that for such
cycle limits the verification resources are orders of magnitude lower, and there is
nearly perfect linear correlation between cycle limit and resource usage in both
sub-sequences when evaluated separately (both coefficients are ≥ 0.993).

Table 2. Verification resources and CPU utilisation estimates

cycle Uppaal resources Herschel CPU utilization
limit CPU, s Mem, KB States, # Idle, μs Used, μs Global, μs Sum, μs Used, %

1 465.2 60288 173456 91225 160015 250000 251240 0.640060
2 470.1 59536 174234 182380 318790 500000 501170 0.637580
3 461.0 58656 175228 273535 477705 750000 751240 0.636940
4 474.5 58792 176266 363590 636480 1000000 1000070 0.636480
6 474.6 58796 178432 545900 955270 1500000 1501170 0.636847
8 912.3 58856 352365 727110 1272960 2000000 2000070 0.636480

13 507.7 58796 186091 1181855 2069385 3250000 3251240 0.636734
16 1759.0 58728 704551 1454220 2545850 4000000 4000070 0.636463
26 541.9 58112 200364 2363640 4137530 6500000 6501170 0.636543
32 3484.0 75520 1408943 2908370 5091700 8000000 8000070 0.636463
39 583.5 74568 214657 3545425 6205745 9750000 9751170 0.636487
64 7030.0 91776 2817704 5816740 10183330 16000000 16000070 0.636458
78 652.2 74768 257582 7089680 12411420 19500000 19501100 0.636483

128 14149.4 141448 5635227 11633480 20366590 32000000 32000070 0.636456
156 789.4 91204 343402 14178260 24821740 39000000 39000000 0.636455
256 23219.4 224440 11270279 23266890 40733180 64000000 64000070 0.636456
312 1824.6 124892 686788 28356520 49643480 78000000 78000000 0.636455
512 49202.2 390428 22540388 46533780 81466290 128000000 128000070 0.636455
624 3734.7 207728 1373560 56713040 99286960 156000000 156000000 0.636455

188 M. Mikučionis et al.

Table 3. Specification, blocking and worst case response times of individual tasks

Specification Blocking times WCRT
ID Task Period WCET Deadline Terma Uppaal Diff Terma Uppaal Diff
1 RTEMS RTC 10.000 0.013 1.000 0.035 0 0.035 0.050 0.013 0.037
2 AswSync SyncPulseIsr 250.000 0.070 1.000 0.035 0 0.035 0.120 0.083 0.037
3 Hk SamplerIsr 125.000 0.070 1.000 0.035 0 0.035 0.120 0.070 0.050
4 SwCyc CycStartIsr 250.000 0.200 1.000 0.035 0 0.035 0.320 0.103 0.217
5 SwCyc CycEndIsr 250.000 0.100 1.000 0.035 0 0.035 0.220 0.113 0.107
6 Rt1553 Isr 15.625 0.070 1.000 0.035 0 0.035 0.290 0.173 0.117
7 Bc1553 Isr 20.000 0.070 1.000 0.035 0 0.035 0.360 0.243 0.117
8 Spw Isr 39.000 0.070 2.000 0.035 0 0.035 0.430 0.313 0.117
9 Obdh Isr 250.000 0.070 2.000 0.035 0 0.035 0.500 0.383 0.117

10 RtSdb P 1 15.625 0.150 15.625 3.650 0 3.650 4.330 0.533 3.797
11 RtSdb P 2 125.000 0.400 15.625 3.650 0 3.650 4.870 0.933 3.937
12 RtSdb P 3 250.000 0.170 15.625 3.650 0 3.650 5.110 1.103 4.007
14 FdirEvents 250.000 5.000 230.220 0.720 0 0.720 7.180 5.153 2.027
15 NominalEvents 1 250.000 0.720 230.220 0.720 0 0.720 7.900 5.873 2.027
16 MainCycle 250.000 0.400 230.220 0.720 0 0.720 8.370 6.273 2.097
17 HkSampler P 2 125.000 0.500 62.500 3.650 0 3.650 11.960 5.380 6.580
18 HkSampler P 1 250.000 6.000 62.500 3.650 0 3.650 18.460 11.615 6.845
19 Acb P 250.000 6.000 50.000 3.650 0 3.650 24.680 6.473 18.207
20 IoCyc P 250.000 3.000 50.000 3.650 0 3.650 27.820 9.473 18.347
21 PrimaryF 250.000 34.050 59.600 5.770 0.966 4.804 65.470 54.115 11.355
22 RCSControlF 250.000 4.070 239.600 12.120 0 12.120 76.040 53.994 22.046
23 Obt P 1000.000 1.100 100.000 9.630 0 9.630 74.720 2.503 72.217
24 Hk P 250.000 2.750 250.000 1.035 0 1.035 6.800 4.953 1.847
25 StsMon P 250.000 3.300 125.000 16.070 0.822 15.248 85.050 17.863 67.187
26 TmGen P 250.000 4.860 250.000 4.260 0 4.260 77.650 9.813 67.837
27 Sgm P 250.000 4.020 250.000 1.040 0 1.040 18.680 14.796 3.884
28 TcRouter P 250.000 0.500 250.000 1.035 0 1.035 19.310 11.896 7.414
29 Cmd P 250.000 14.000 250.000 26.110 1.262 24.848 114.920 94.346 20.574
30 NominalEvents 2 250.000 1.780 230.220 12.480 0 12.480 102.760 65.177 37.583
31 SecondaryF 1 250.000 20.960 189.600 27.650 0 27.650 141.550 110.666 30.884
32 SecondaryF 2 250.000 39.690 230.220 48.450 0 48.450 204.050 154.556 49.494
33 Bkgnd P 250.000 0.200 250.000 0.000 0 0.000 154.090 15.046 139.044

Herschel CPU utilisation estimate does not improve much, therefore we con-
clude that individual cycles are very similar. The sum of idle and used times is
slightly larger than global supremum meaning that some cycles are only slightly
more stressed than others.

Worst Case Response Times. Table 3 shows the response timed from Uppaal

analysis in comparison to response time analysis by Terma. For most of BSW
tasks (1-12,17-18) resource patterns are not available and thus Uppaal could
not determine their blocking times. Blocking times by Terma also include the
suspension times related to locking of resources. We note that in all cases the
WCRT estimates provided by Uppaal are smaller (hence less pessimistic) than
those originally obtained [10]. In particular, we note that the task PrimaryF (task
21) is found to be schedulable using model-checking in contrast to the original
negative result obtained by Terma.

5 Discussion

We have shown how the Uppaal model-checker can be applied for schedulability
analysis of a system with single CPU, fixed priorities preemptive scheduler, mix-
ture of periodic tasks and tasks with dependencies, and mixed resource sharing

Schedulability Analysis Using Uppaal 189

protocols. Worst case response times (WCRT), blocking times and CPU utilisa-
tion are estimated by model-checker according to the system model structure.
Modelling patterns use stopwatches in a simple and intuitive way. A break-
through in verification scalability for large systems (more than 30 tasks) is
achieved by employing sweep-line method. Even better control over verification
resources can be achieved by carefully designing progress measure.

The task templates are demonstrated to be generic through many instanti-
ations with arbitrary computation sequences and specialised for particular re-
source sharing. The framework is modular and extensible to accommodate a
different scheduler and control flow can be expanded with additional instruc-
tions if some task algorithm is even more complicated. In addition, Uppaal

toolkit allows easy visualisation of the schedule in Gantt chart and the system
behaviour can be examined in both symbolic and concrete simulators.

The case study results include a self-contained non-ambiguous model which
formalises many assumptions described in [10] in human language. The verifica-
tion results demonstrate that the timing estimates correlate with figures from
the response time analysis [10]. The worst case response time of PrimaryF is in-
deed very close to deadline, but overall all estimates by Uppaal are lower (more
optimistic) and they all (WCRT 21 in particular) are below deadlines, whereas
the response time analysis found that PrimaryF may not finish before deadline
and does not provide any more insight on how the deadline is violated or whether
such behaviour is realizable.

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES – a tool for

modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens, P.

(eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002)

2. Behrmann, G., David, A., Larsen, K.: A tutorial on Uppaal. In: Bernardo, M., Cor-

radini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg

(2004)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

Uppaal-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV

2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-

based schedulability analysis of safety critical hard real-time java programs. In:

Bollella, G., Locke, C.D. (eds.) JTRES. ACM International Conference Proceeding

Series, vol. 343, pp. 106–114. ACM, New York (2008)

5. Burns, A.: Preemptive priority based scheduling: An appropriate engineering ap-

proach. In: Principles of Real-Time Systems, pp. 225–248. Prentice-Hall, Engle-

wood Cliffs (1994)

6. Christensen, S., Kristensen, L., Mailund, T.: A Sweep-Line method for state space

exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.

450–464. Springer, Heidelberg (2001),

http://dx.doi.org/10.1007/3-540-45319-9_31

7. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-Based Framework for Schedu-

lability Analysis Using UPPAAL 4.1. In: Model-Based Design for Embedded Sys-

tems, pp. 93–119. CRC Press, Boca Raton (2010)

http://dx.doi.org/10.1007/3-540-45319-9_31

190 M. Mikučionis et al.

8. Fersman, E.: A generic approach to schedulability analysis of real-time systems.

Acta Universitatis Upsaliensis (2003)

9. Kristensen, L., Mailund, T.: A generalised Sweep-Line method for safety properties.

In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 215–229.

Springer, Heidelberg (2002), http://dx.doi.org/10.1007/3-540-45614-7_31

10. Palm, S.: Herschel-Planck ACC ASW: sizing, timing and schedulability analysis.

Tech. rep., Terma A/S (2006)

11. Terma A/S: Herschel-Planck ACMS ACC ASW requirements specification. Tech.

rep., Terma A/S (Issue 4/0)

12. Terma A/S: Software timing and sizing budgets. Tech. rep., Terma A/S (Issue 9)

13. Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking applications

based on timed automata model. Real-Time Systems 38(1), 39–65 (2008)

http://dx.doi.org/10.1007/3-540-45614-7_31

Model-Checking Temporal Properties of
Real-Time HTL Programs

André Carvalho2, Joel Carvalho1,
Jorge Sousa Pinto2, and Simão Melo de Sousa1

1 Departamento de Informática, Universidade da Beira Interior, Portugal,

and LIACC, Universidade do Porto, Portugal
2 Departamento de Informática / CCTC

Universidade do Minho, Braga, Portugal

Abstract. This paper describes a tool-supported method for the formal
verification of timed properties of HTL programs, supported by the auto-

mated translation tool HTL2XTA, which extracts from a HTL program

(i) an Uppaal model and (ii) a set of properties that state the compliance

of the model with certain automatically inferred temporal constraints.

These can be manually extended with other temporal properties provided

by the user. The paper introduces the details of the proposed mechanisms

as well as the results of our experimental validation.

1 Introduction

New requirements arise from the continuous evolution of computer systems.
Processing power alone is not sufficient to satisfy all the industrial requirements.
For instance in the context of critical systems, the safety and reliability aspects
are fundamental [14]: it is not sufficient to merely provide the technical means for
a set of tasks to be executed; it is also required that the system (as a whole) can
correctly execute all of the tasks in due time. The focus of this paper is precisely
on the reliability of safety-critical systems. Such systems are usually real-time
systems [11] that add to traditional reliability requirements the intrinsic need
to ensure that tasks are executed within a well-established time scope. For such
systems, missing these timing requirements corresponds to a system failure.

Our study considers the Hierarchical Timing Language (HTL) [5, 6, 10] as a
basis for real-time system development, and addresses the issue of the (auto-
mated) formal verification of timing requirements. Since HTL is a coordination
language [4] for which schedulability analysis is decidable, our focus here is on the
verification of complementary timing properties. The verification framework we
propose relies on model checking based on timed automata and timed temporal
logic. The contribution of this paper is a detailed description of the methodology
and its underlying tool-supported verification mechanism.

Our tool takes as input a HTL program and extracts from it an Uppaal model
and a set of proof obligations that correspond to certain expected timed tempo-
ral properties. The resulting model can be used to run a timed simulation of the

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 191–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 A. Carvalho et al.

program execution, and the properties can be checked using the proof facilities
provided by the Uppaal tool. With the help of these mechanisms, the develop-
ment team can audit the program against the expected temporal behaviour.

Motivation and Related Work. The HTL language is derived from Giotto [9].
Giotto-based languages share the important feature that they allow one to stat-
ically determine the schedulability of programs. Although academic, these lan-
guages have a number of interesting properties that cannot be found in languages
currently used in industry, including efficient reuse of code; theoretical ease of
adaptation of a program to several platforms; hierarquical construction of pro-
grams; and the use of functional features of languages without limitations.

HTL introduces several improvements with respect to Giotto, but the HTL
platform still lacks verification mechanisms to complement schedulability anal-
ysis, in order to allow the language to compete with other tools more widely
used in industry. Bearing in mind this aspect, we propose to complement the
verification of temporal HTL with model checking [3]. While the static analysis
performed by the HTL compiler enforces the schedulability (seen as a safety
property) of the set of tasks in a program, a model checker allows the system de-
signer to perform a temporal analysis of the tasks’ behaviour from the specified
timing requirements – an aspect that is ignored by the HTL tools.

The verification methodology proposed in this paper is inspired by [13], but
uses a different abstraction based on the logical execution time of each task.
Unlike [13], a key point of our tool chain is that the verification is fully auto-
matic. [12] proposes the use of Uppaal with a related goal: the verification of a
Ravenscar-compliant scheduler for Ada applications.

HTL. The Hierarchical Timing Language [6,5,10,7] is a coordination language [4]
for real-time critical systems with periodic tasks, which allows for the static ver-
ification of the schedulability of the implemented tasks. The aim of coordination
languages is the combination and manipulation of programs written in hetero-
geneous programming languages. A system may be implemented by providing a
set of tasks written in possibly different programming languages, together with
a HTL layer, and additionally specifying how the tasks interact. This favours a
clear separation, in the system design, between the functional layer and the con-
current and temporal aspects. The HTL toolchain provides code generators that
translate the HTL layer into executable code of the target execution platform.

A fundamental aspect of HTL is the Logical Execution Time (LET), that
provides an abstraction for the physical execution of tasks. The LET of a task
considers a time scope in which the task can be executed regardless of how the
operating system assigns resources to this task. The LET of a periodic task
implementing a read data; process; write data cycle begins in the instant when
the last variable is read and ends when the first variable is written.

For illustration purposes, we give in Listing 1.1 an excerpt of a HTL program
(based on the 3TS Simulink case study, see Section 5). A HTL program is com-
posed by a number of main commands which allow programmers to describe the
desired behaviour of almost any program. These commands are communicator,

Model-Checking Temporal Properties of Real-Time HTL Programs 193

1 module IO s t a r t readWrite{
2 task t r e ad
3 input () s t a t e ()
4 output (c doub le p h1 , c doub le p h2 , c boo l p V1 , c boo l p V2)
5 func t i on f r e ad ;
6 (. . .)
7
8 mode readWrite per iod 500{
9 invoke t r e ad

10 input ()
11 output ((h1 , 3) , (h2 , 3) , (v1 , 1) , (v2 , 1)) ;
12 (. . .)
13 }
14 }

Listing 1.1. 3TS Simulink code snippet

module, task, port, mode, invoke and switch. Briefly, a communicator is a typed
variable which can be accessed any time during the execution; modules have to
be declared after communicators and their bodies are composed by ports, tasks
and modes. At least one (initial) mode must be declared. The task command,
as the name indicates, is used to declare tasks, taking as arguments possible
input/output ports and a Worst Case Execution Time (WCET) estimation.
Similarly to a communicator, a port is a typed variable accessed during program
execution, but in this case declared inside a module. The set of modes declared
inside a module defines the module’s behaviour. Through the modes declaration
it is possible to know which tasks will be executed, and at which moment. The
invocations are responsible for dictating when the tasks should be executed, and
define the LET of each task. Finally, the switch command, which takes as input
a condition and a mode identifier, is used to change the current execution mode.

HTL favours a layered approach to the development of programs. Tasks can
be organized in refinements that allow programmers to provide details gradually,
and also allow for a more finely grained task structure. A concrete task refines
an abstract task if it has the same frequency as the abstract task and it is able to
provide a time behaviour that is at least as good as the behaviour of the abstract
task. The notion of refinement correctness is then expressed in terms of time
safety. The refined task must be time-indistinguishable from the abstract task;
a concrete HTL program is schedulable if it contains only time-safe refinements
of the tasks of a schedulable abstract HTL program.

Uppaal. The Uppaal tool is a modelling application developed at the universi-
ties of Uppsala and Aalborg, based on networks of timed automata [2]. The
tool offers simulation and verification functionality based on model checking of
formulas of a subset of the TCTL logic [1]. Uppaal is particularly suitable for
modeling and analysing the timed behaviour of a set of tasks; properties like two
given tasks t1, t2 do not reach the states A and B simultaneously are typical of
the kind of analyses that can be performed with Uppaal.

Since the model checking engine is independent from the GUI, both visual and
textual representations of timed automata can be used for the verification tasks.

194 A. Carvalho et al.

This is particularly interesting when Uppaal is used in cooperation with other
tools. Timing requirements (target properties to be checked) can be specified
using the editing facilities of the GUI, or separately in a file. This last approach
is used by the toolchain introduced in this paper.

2 The HTL2XTA Toolchain

The purpose of the verification methodology proposed in this paper is to extend
the verification capabilities provided by the HTL platform. Given a HTL pro-
gram and the schedulability analysis provided by the regular HTL toolchain [7],
the methodology consists in the following two steps:

1. From a HTL program, the HTL2XTA translator produces two files: one
(.xta) contains a model of the program (timed automata); the other (.q)
a set of automatically inferred properties (timed temporal logic formulas).
The translation algorithm has a recursive structure and requires only two
depth-first traversals of the AST: the first one produces the model and the
second one infers the properties.

2. Both these files are fed to the Uppaal model checker; the GUI or the model
checker engine (verifyta) can be used to check if the properties are satisfied.

We remark that the automatically generated properties correspond to relatively
simple timing requirements; formulas for more complex requirements, such as
“task X must not execute at the same time as task Y ”, or “if task X executes,
then after T time units task Y must also execute” are not automatically gen-
erated, but can of course be manually incorporated in the .q file after the first
step above. Writing the appropriate TCTL formulas must of course take into
consideration the requirements and the generated model. We now turn to an
exploration of the involved translation mechanisms, which will be detailed in
the next two sections.

Model Translation. With the classic state space explosion limitation of model
checking [3] in mind, and given the central role of the models in the verifica-
tion process, it was decided to avoid translation schemes that would result in
the construction of very complex models. Therefore, and given that the HTL
platform already performs a scheduling analysis, the translation abstracts away
from the physical execution of tasks, unlike, say, the approach described in [13].
As such, we consider that the notion of LET is sufficient to allow the remaining
interesting timing properties to be checked. A network of timed automata is then
obtained from a HTL program as follows:

– Each task is modeled as a single automaton with its own LET, calculated
from the concrete ports and the communicators given in the task’s declara-
tion. The lower bound of the LET corresponds to the instant in which the
last variable reading is performed, and the upper bound to the instant in
which the first variable writing is performed.

Model-Checking Temporal Properties of Real-Time HTL Programs 195

– For each module in the HTL program a timed automaton is created. Note
that each mode in a module represents the execution of a set of tasks, and
that, at any moment, each module can only be in one operation mode, thus
there is no need to have more than one automaton for each module. When-
ever the (module) automaton performs an execution cycle, it will synchronize
with the automata representing the tasks invoked in the specified mode. The
level of abstraction adopted completely ignores the type of communicator as
well as the initialization driver.

Since HTL is a hierarchical coordination language, a very relevant aspect is the
number of refinements in the program (directly related to program hierarchies),
which can naturally increase the complexity of the model substantially. By de-
fault, the translation process reflects faithfully the refinement present in the
HTL programs. However in some cases this could make the model exploration
impracticable, and for this reason the translator allows for the construction of
models to take the desired level of refinement as input.

Inference of Properties. Listing 1.2 shows examples of automatically produced
timing properties. The automatically inferred properties are all related with
some HTL feature, like the modes’ periods, the LET of each task, the tasks in-
voked in each mode, and the program refinement. To allow for traceability, each
property is annotated with a textual description of the feature to check, a refer-
ence to the position of the respective feature in the HTL file, and the expected
verification result. The inferred properties can and should be manually comple-
mented with information extracted from the established temporal requirements.
The automata corresponding to a given module and tasks, as well as the states
corresponding to task invocations and LETs, are identified by clearly defined
labels, which facilitates writing properties manually.

1 /∗ Deadlock Free −> true ∗/
2 A [] not deadlock
3
4 /∗ P1 mode readWrite period 500 @ Line 19 −> true ∗/
5 A [] sP 3TS IO . readWrite imply ((not sP 3TS IO . t>500) && (not sP 3TS IO . t

<0))
6
7 /∗ P2 mode readWrite period 500 @ Line 19 −> true ∗/
8 sP 3TS IO . readWrite −−> (sP 3TS IO . Ready && (sP 3TS IO . t==0 | |

sP 3TS IO . t==500))
9

10 /∗ P1 Let of t w r i t e = [400;500] @ Line 21 −> true ∗/
11 A [] (IO readWr i t e t wr i t e . Let imply (not IO readWr i t e t wr i t e . tt <400 &&

not IO readWr i t e t wr i t e . tt >500))

Listing 1.2. Example of annotated properties

3 Model Translation

Some aspects of HTL are purely ignored by the translation process, either be-
cause they do not bring any relevant information, or because the abstraction level

196 A. Carvalho et al.

of the model is not sufficient to cope with it. The translation process is syntax-
oriented and based on the abstract syntax tree (AST) of the HTL language,
which was built using a HTL grammar. It supports all of the HTL language,
however there is information that is not analysed or translated by the tool.

Let us consider the definition of the function T that takes as input a HTL
program and returns a network of timed automata (NTA). Naturally, this func-
tion is defined recursively over the structure of the AST. An auxiliary function
A is used for task invocation analysis, that takes as argument a HTL program
and returns relevant information to build the NTA.

Translation of Mode Switch. Consider the abstract representation of a switch
instruction as the tuple (n, s, p), where n is the name of the mode for which the
change of execution is pretended, s the name of the function (in the functional
code) that evaluates whether the change should take place, and p the decla-
ration position in the HTL file. Let Prog denote the set of all programs, then
we have ∀switch ∈ Prog, Tswitch (n, s, p) = ∅. Note that the non-determinism of
Uppaal will be important to guarantee that the modes are alternated during the
execution. The translation itself is not affected by any mode switches.

Translation of Types and Initialization Drivers. Let ct be a type and ci the
declaration of the initialization driver. We have ∀dt ∈ Prog , Tdt(ct , ci) = ∅.
Neither the type nor the initial value (initialization driver) of a declaration have
any impact on the application of the translation process. This information does
not contribute to the temporal analysis.

Translation of Task Declarations. Consider the abstract representation of a
task as the tuple (n, ip, s, op, f, w, p), where n is the name of the task, ip the
list of input ports, s the list of internal states, op the list of output ports, f
the name of the function which implements the task, w the task’s WCET,
and finally p the task declaration position in the HTL file. We have ∀task ∈
Prog , Ttask (n, ip, s, op, f, w, p) = ∅. Analogously to the previous situations, task
declarations do not have any impact on the translation.

Translation of Communicator Declarations. Consider the abstract representa-
tion of a communicator as the tuple (n, dt , pd , p), where n is the communicator’s
name, dt the communicator’s type with ct , ci as initialization driver, pd the
communicator’s period and p the communicator’s declaration position in the
HTL file, then ∀communicator ∈ Prog , Tcommunicator(n, dt , pd , p) = ∅.

Once more the translator ignores the declaration. In order to evaluate the
LET (see below) the following clause is defined for the auxiliary function A:
∀communicator ∈ Prog , Acommunicator(com , dt , pd , p) = pd , even if the commu-
nicator com does not have a direct representation in the model given the ab-
straction level adopted.

Translation of Ports Declaration. Let the abstract representation of a port be
the tuple (n, dt , p), where n is the ports’s name, dt the port’s type with ct ,
ci the initialization driver and p the port’s declaration position in the HTL
file, then ∀port ∈ Prog , Tport(n, dt , p) = ∅. The port’s declaration is ignored in

Model-Checking Temporal Properties of Real-Time HTL Programs 197

Fig. 1. taskTA automata on the left and instantiation on the right

the translation, and moreover no task invocation analysis is performed. In task
invocations ports are just names.

LET Transposition

This translation is based on an implementation of the concept of LET, based on
the timed automata taskTA, taskTA S, taskTA R and taskTA SR. These four
automata result from the use of concrete ports in the task invocations: taskTA
represents the task invocations where only communicators are used, taskTA S
(S for send) those where a single concrete port is used as output, taskTA R
(R for receive) those where a single concrete port is used as input, and finally
taskTA SR where two concrete ports are used, as input and as output.

In the following, a task invocation will be seen in abstract terms as the tu-
ple (n, ip, op, s, pos) where n is the invoked task’s name, ip is the input port’s
(variables) mapping, op the output port’s (variable) mapping, s the name of the
task’s parent, and finally pos is the task’s declaration position in the HTL file.

TaskTA. Let Port be the set of all concrete ports, cp be one concrete port, and
taskTA(r, t, p, li) be a timed automaton where r is a release urgent synchroniza-
tion, t is a termination urgent synchronization, p the task’s LET period and li
the exact moment where the last variable is read. Then we have

∀cp ∈ Port , ∀invoke ∈ Prog , cp /∈ ip, cp /∈ op,⇒
Tinvoke(n, ip, op, s, pos) = taskTA(r, t, p, li)

Each task invocation in which no concrete ports are used either in the input
or in the output variables, gives rise to an automaton taskTA (see Figure 1). The
urgent synchronization channels r and t are calculated in the system declaration.
For each task instantiation the channel r has an unique name, produced by an
enumeration r1, r2, r3, . . . Similarly, the channel t has an unique name for each
set of mode automata, produced by an enumeration t1, t2, t3, . . .

The instant at which the last input variable li is read is calculated as a product
of the maximum value of each instance of input communicator and the period
(in the case of non-existence of input variable, this instant is considered to be

198 A. Carvalho et al.

Fig. 2. taskTA S automaton on the left and taskTA R on the right

zero). The LET’s period p is the subtraction between the instant where the
first output port is written (in case of non-existence, the value is the respective
mode’s period) and li .

TaskTA S. Let taskTA S(r, t, dc, p, li) be a timed automaton where r is the
release urgent synchronization, t a termination urgent synchronization, dc the
urgent synchronization of a direct communication (directCom), p the task’s LET
period and li the instant where the last input variable is read, then

∀cp ∈ Port , ∀invoke ∈ Prog , cp /∈ ip, cp ∈ op,⇒
Tinvoke(n, ip, op, s, pos) = taskTA S(r, t, dc, p, li)

For each task invocation, the existence of a concrete port in the set of output
variables and non-existence in the set of input variables originates the instanti-
ation of a taskTA S automaton (Figure 2, left). This automaton is very similar
to taskTA – the difference is just the inclusion of direct communication.

TaskTA R. Let taskTA R(r, t, dc, p, li) be a timed automaton with r, t, dc, p,
and li the same as in the previous case, then

∀cp ∈ Port , ∀invoke ∈ Prog , cp ∈ ip, cp /∈ op,⇒
Tinvoke(n, ip, op, s, pos) = taskTA R(r, t, dc, p, li)

For each task invocation, the existence of a concrete port in the set of input
variables and non-existence in the set of output variables originates the instanti-
ation of taskTA R automaton (Figure 2, right). This automaton is slightly more
complex than taskTA S since it considers two alternative paths for the initial-
ization of the task’s LET. The first one encodes the direct communication done
before the reading of the last communicator (with no impact on the LET’s start)
and the later encodes awaiting of the port reading after all communicators have
been read (the LET’s start becomes dynamic). In this last case, the start of the
LET depends on a direct communication with another task in the same mode.

Model-Checking Temporal Properties of Real-Time HTL Programs 199

Modules and Modes. Consider a module abstracted as a tuple (n, h,mi , bm, pos),
where n is the module’s name, h a list of hosts, mi the initial mode, bmu the
module’s body and pos the module’s declaration position in the HTL file.

Let moduleTA(ref , rl , tl) be a timed automaton with ref the refinement’s ur-
gent synchronization channel (if it exists), rl the set of all release urgent syn-
chronization channels coming from the invocations of module tasks, and finally
tl the set of all termination urgent synchronization channels coming from the
invocations of module tasks, then

∀module ∈ Prog , Tmodule(n, h,mi , bm , pos) = moduleTA(ref , rl , tl)

For each module a timed automaton is dynamically created. Unlike tasks
automata, where the instantiation of the different default automata is done by
just matching the input parameters, here a single automaton is attributed to each
module, instantiated by passing as parameters the synchronization channels used
by the module’s task invocations.

Consider now a mode abstracted as the tuple (n, p, refP , bmo, pos), where n
is the mode’s name, p is the period, refP is the refinement program for that
mode (if it exists), bmo the mode’s body, and pos the mode’s declaration posi-
tion in the HTL file. Let subModule(e, t) be a subset of the timed automaton’s
moduleTA declaration where e is the set of states (with invariants) and t the set
of transitions (with guards, updates and synchronizations), then we have

∀mode ∈ module, ∃subModule(e, t) ∈ moduleTA,
Tmode(n, p, refP , bmo, pos) = subModule(e, t)

4 Inference of Properties

This section presents the definition of a function P which accepts a HTL program
and returns the specification of properties to verify. Naturally, this function is
again defined recursively over the AST structure of the HTL language.

Absence of Block. Let Prog be the set of all programs and df be the absence of
blocking property description, then we have PProg = df . The application of this
method to any program always produces the same absence of blocking property
(A � not deadlock).

Modes Period. Let the tuple (n, p, refP , bmo, pos) be the abstraction of a mode,
where n is the mode’s name, p the period, refP the refinement program for
that mode (if it exists), bmo the mode’s body and pos the mode’s declaration
position in the HTL file. In the following vm denotes the property specifications
of a mode’s period. We have

∀mode ∈ Prog , Pmode(n, p, refP , bmo, pos) = vm(p1, p2)

200 A. Carvalho et al.

We also have, with moduleTA a module automaton and NTA a set of timed
automata,

∀mode ∈ Prog , ∃moduleTA ∈ NTA,
p1 = A � moduleTA.n ⇒ ((¬ moduleTA.t > p) ∧ (¬ moduleTA.t < 0)),
p2 = moduleTA.n ⇒ (moduleTA.Ready

∧ (moduleTA.t == 0 ∨ moduleTA.t == p)

The first property p1 states that whenever the control state is the mode state,
the module’s (automaton) local clock is lower than the mode’s period, and not
negative. The second property p2 on the other hand states that whenever the
mode’s state is reached, the state Ready is also reached, which implies that the
local clock is either zero or exactly equal to the period’s value. The combination
of both properties allows the restriction of a mode’s period to the interval [0, p],
and guarantees that the period’s maximum value is reached.

Task Invocations. Let (n, ip, op, s, pos) be a task invocation, where n is the task’s
name, ip the input port’s (variables) mapping, op the output port’s (variable)
mapping, s the name of the parent task and finally pos the task’s declaration
position in the HTL file. In the following vi denotes the specification of properties
in a mode’s task invocation. We have

∀invoke ∈ Prog , Pinvoke(n, ip, op, s, pos) = vi(p1, p2)

Let taskTAi be the automaton of task i, taskTA the set of task automata,
taskStatei the task i invocation’s state, modeState the mode’s state where the
invocation is done, moduleTA a module automaton and NTA a set of timed
automata, then

∀i, ∃moduleTA ∈ NTA, ∃taskTAi ∈ TaskTA,
p1 = A � (moduleTA.taskStastei ⇒ (¬ taskTAi.Idle))

∧ (moduleTA.Ready ⇒ taskTAi.Idle),
p2 = A � (taskTAi.Let ∧ taskTA.tt ! = 0) ⇒ moduleTA.modeState

The property p1 states that for all executions, every time an invocation’s state
is equal to a control state, that task’s automaton cannot be in the Idle state.
Moreover, when the respective moduleTA’s control state is equal to Ready, the
task’s automaton must be in the Idle state. The second property specifies that
whenever a task’s automaton Let state is the control state and the local clock tt
is different from zero, the execution of the module’s automaton must be in the
state representing the mode in which the tasks are invoked.

Tasks LET. Considering a task invocation vlet in a correct mode, its properties
are specified as

∀invoke∈ Prog, Pinvoke(n, ip, op, s, pos)= vlet(p1, p2, p3), ∀i, ∃moduleTA∈ NTA,
p1 = A � (taskTAi.Let ⇒ (¬ taskTAi.tt < 0 ∧ ¬ taskTAi.tt > p)),
p2 = A � moduleTA.modeState ⇒ (taskTAi.Lst IN ∧ taskTAi.tt == 0),
p3 = A � moduleTA.modeState ⇒ (taskTAi.Let ∧ taskTAi.tt == p)

Model-Checking Temporal Properties of Real-Time HTL Programs 201

Fig. 3. P 3TS IO automaton (automatic instantiation of taskTA)

The LET’s validation is done via three distinct properties. Property p1 spec-
ifies that whenever a task’s Let is reached, the automaton’s local clock tt must
lie between 0 and the period. Property p2 specifies that every time the mode’s
state is reached, the Lst IN state is also reached, necessarily with the local clock
tt set to zero. Finally, property p3 specifies that every time the mode’s state is
reached, the Let state is inevitably reached, with the clock tt set to the maximum
value of the task’s period.

5 Case Studies

We consider here the main case study used for illustration purposes by the HTL
team: the three-tank system. A HTL program implements the controller of a
physical system that includes three interconnected tanks with two pumps (for
tanks 1 and 3), three taps (one for each tank) and two interconnection taps. The
controller supervises the taps in order to maintain the liquid at a specific level.

Description of the Problem. The controller is implemented as a program that
contains three modules; two of them (T1 and T2) specify the timing for the
controllers of tanks T1 and T2, and the third module specifies the timing for
the communications (IO) controller. Each controller module contains one mode
which invokes one task and which is refined by a program into a P or PI con-
troller. We assume that in addition to height measuring sensors there exist also
sensors that detect perturbation in a tank (this determines the switch between P
and PI). The IO module contains one mode named readWrite and invokes three
tasks: t read reads sensor values and updates communicators h1, h2, v1 and v2;
t write reads communicators u1 and u2 and sends commands to the pumps;
t ref reads target values and updates communicators h1 ref and h2 ref.

Generated Model (excerpt). The HTL program is translated into a network con-
sisting of nine timed automata, of which four are default automata that are in-
stantiated by each task invocation depending on the modules and ports declared;

202 A. Carvalho et al.

Table 1. Results

File Levels HTL Model Verifications States

3TS-simulink.htl
0 75 263 62/62 7’566
1 75 199 30/30 666

3TS.htl
0 90 271 72/72 18’731
1 90 207 40/40 1’123

3TS-FE2.htl
0 134 336 106/106 280’997
1 134 208 42/42 1’580

3TS-PhD.htl
0 111 329 98/98 172’531
1 111 201 34/34 1’096

steer-by-wire.htl
0 873 1043 617/0 N/A
1 873 690 394/0 N/A

flatten 3TS.htl 0 60 203 31/31 411

the remaining five represent the modules and respective execution modes. Tak-
ing as example the IO module, in which three tasks (t read, t write and t ref)
and no ports are used, it is translated as three timed automata, with the de-
fault taskTA automaton instantiated for each task. An example is shown below,
extracted from the (.xta) file produced by the tool. Task invocations are repre-
sented by signals RreadWrite t read, RreadWrite t write and RreadWrite t ref.

Properties. In abstract terms the automatically inferred properties can be seen
as divided in four classes: Absence of Block, Modes Period, Task Invocations
and Tasks’ LET. We give below an excerpt from the (.q) file generated for the
3TS Simulink program, that shows two classes of properties : Absence of Block
for the first property shown, and Modes Period for the second. The properties
are annotated with a descriptive string and the expected verification result.

//Deadlock Free −> t rue
A[] not deadlock

//P1 mode readWrite period 500 @ Line 19 −> t rue
A[] sP 3TS IO . readWrite imply ((not sP 3TS IO . t >500) && (not sP 3TS IO .

t <0))

In some situations, small modifications in the code can have serious effects in
the program and affect the verification of properties. In these cases the solution
is to analyse and manually specify properties appropriate to each scenario.

Verification. In this case study the HTL2XTA translator for all levels of refine-
ment (switch -L 0) has generated 62 properties automatically, which were all
successfully checked (using verifyta version 4.0.10). 291794 states were explored
and the maximum number of states consumed by a single property was 7566.
Some properties were trivially verified. These numbers contribute to an increased
confidence degree on the 3TS Simulink’s HTL specification. In spite of the large
number of properties and states, this goal is achieved in reasonable time.

Other Case Studies. Using the current version of the translator it was possible
to successfully generate models and properties for several HTL programs from [6,
10], and the HTL website. Table 1 summarizes relevant information about the
results, specifically the number of applied levels (0=all, 1=main program), the

Model-Checking Temporal Properties of Real-Time HTL Programs 203

Fig. 4. A misbehaved HTL program and the corresponding Uppaal automata

number of lines in the HTL file, the number of lines in the model’s specification
file, the number of specified properties versus the number of properties successfully
verified, and the number of states explored. The values in the table concern the
Uppaal verification, given several different models translated from HTL to XTA.

The proposed toolchain was able to cope with all except one program, the
more complex steer-by-wire example, for which the verification process does not
terminate in reasonable time. Clearly, this is due to the use of all the advanced
features of HTL (including a large and complex coordination layer).

6 Towards Correctness

The correctness of the proposed approach has not yet been established; we give
here some preliminary remarks. The desired correctness property can be formu-
lated as follows, where p is a HTL program, and MC corresponds to execution
of the Model Checker.

If MC(T (p)) = Error then there exists an execution that derives to a timed
error execution, following the operational semantics of HTL [5].

Although we have not proven such a correctness result, we give here an example
to give the reader an intuition of why the approach should in principle be correct.

The example is shown in Figure 4. The period of the last task’s (t1) output
is 25 and the first input is 0; the mode’s period is 50, so it is trivial to conclude
that this system is schedulable. As such, this program is validated by the HTL
toolchain. However, this is not satisfactory, since with these values the LET of
this task is specified as [0;25]. Due to the period of the communicator c0 this
task must not execute between instants 0 and 9, and the standard HTL toolchain
contains no mechanism to specify or prove situations like this.

It is obvious that in such a small example this problem could be easily detected
and corrected by simply changing the instant when the c0 communicator is used

204 A. Carvalho et al.

from 0 to 1. But in more complex systems it is hard to obtain any insight about
this kind of temporal behaviours.

Considering again the above example, it is straightforward to see that the
HTL2XTA translator preserves the bad temporal requirement in the timed au-
tomata model. Checking the property A[]M m t1.Let imply (not(M m t1.tt <
10)), which can be manually inserted in Uppaal and specifies that task t1 must
never occur in an instant inferior to 10, will produce a counter-example.

7 Conclusion and Future Work

The HTL language was created in an academic context, and its transfer to the
industrial context remains a challenge. This work is a contribution towards that
goal. The tool is available online1 and runs only on the Linux platform. The
HTL2XTA translator was developed in Ocaml, following the traditional compiler
design process (but we rely on the HTL compiler for type checking).

We envision two natural improvements of our current methodology. First, the
translation methodology has not yet been formally verified (i.e. it has not been
proved that the translation preserves the timed semantics of HTL programs).
The proof of the theorem sketched in Section 6 is a heavyweight task that must
be carefully carried out.

Secondly, the current version of the translator is unable to deal with large-scale
HTL programs, and moreover there are still some features of HTL syntax that
are not covered by the current version. The translation of the currently covered
HTL features can be improved in order to lower the size of the resulting NTA.
As future work we plan to analyse these possibilities, and also to extend HTL
with annotations to introduce supplementary behaviour rules. For instance this
may provide insight about the behaviour of programs in the presence of switch
cases. The impact of such annotations in the model and their influence on the
design of the translator will of course have to be carefully considered.

Moreover, in the short term, the toolchain could be improved with a script
that provides an automatic analysis of the logfile generated by Uppaal. Such a
script could establish conveniently which timing requirements have been checked
and which have not, and create a final report based on this information.

Finally, we are interested in transferring our work to the context of the
SPARK/Ada language, widely used in the development of safety-critical systems.
The Giotto in Ada [8] initiative should make this process quite straightforward.
We also believe that our translation mechanisms may in principle be applied to
other (more exploratory) concurrency models, but this remains an open issue.

Acknowledgment. This work was partially supported by the projects Rescue
(PTDC/EIA/65862/2006) and FAVAS (PTDC/EIA-CCO/105034/2008), and
by LIACC-UP through the Programa de Financiamento Plurianual, all funded
by Fundação para a Ciência e Tecnologia (FCT).

1 http://sourceforge.net/projects/htl2xta/

Model-Checking Temporal Properties of Real-Time HTL Programs 205

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,

Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-

delberg (2004)

2. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools (2004)

3. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-

bridge (1999)

4. Gelernter, D., Carriero, N.: Coordination languages and their significance. ACM

Commun. 35(2), 97–107 (1992)

5. Ghosal, A.: A Hierarchical Coordination Language for Reliable Real-Time Tasks.

PhD thesis, EECS Department, University of California, Berkeley (January 2008)

6. Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C., Sangiovanni-Vincentelli, A.L.:

Hierarchical timing language. Technical Report UCB/EECS-2006-79, EECS De-

partment, University of California, Berkeley (May 2006)

7. Ghosal, A., Sangiovanni-Vincentelli, A., Kirsch, C.M., Henzinger, T.A., Iercan, D.:

A hierarchical coordination language for interacting real-time tasks. In: EMSOFT

2006: Proceedings of the 6th ACM & IEEE International conference on Embedded

software, pp. 132–141. ACM, New York (2006)

8. Hagenauer, H., Martinek, N., Pohlmann, W.: Ada meets giotto. In: Llamośı, A.,

Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 237–248. Springer,

Heidelberg (2004)

9. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for

embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.

LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001)

10. Iercan, D.: Contribuitions to the Development of Real-Time Programming Tech-

niques and Technologies. PhD thesis, EECS Department, University of California,

Berkeley, Set (2008)

11. Levi, S.-T., Agrawala, A.K.: Real-time system design. McGraw-Hill, Inc., New York

(1990)

12. Lundqvist, K., Asplund, L.: A ravenscar-compliant run-time kernel for safety-

critical systems*. Real-Time Syst. 24(1), 29–54 (2003)

13. Poddar, R.K., Bhaduri, P.: Verification of giotto based embedded control systems.

Nordic J. of Computing 13(4), 266–293 (2006)

14. Rushby, J.: Formal methods and their role in the certification of critical systems.

Technical report, Safety and Reliability of Software Based Systems (Twelfth An-

nual CSR Workshop (1995)

Towards an Architecture for Runtime
Interoperability

Amel Bennaceur1, Gordon Blair2, Franck Chauvel3, Huang Gang3,
Nikolaos Georgantas1, Paul Grace2, Falk Howar4, Paola Inverardi5,

Valérie Issarny1, Massimo Paolucci6, Animesh Pathak1, Romina Spalazzese5,
Bernhard Steffen4, and Bertrand Souville6

1 INRIA, CRI Paris-Rocquencourt, France
2 Lancaster University, UK

3 School of Electronics Engineering and Computer Science, Peking University, China
4 Technische Universitat Dortmund, Germany

5 Universit degli Studi dell’Aquilà, Italy
6 DOCOMO Euro-Labs, Munich, Germany

Abstract. Interoperability remains a fundamental challenge when con-
necting heterogeneous systems which encounter and spontaneously com-

municate with one another in pervasive computing environments. This

challenge is exasperated by the highly heterogeneous technologies em-

ployed by each of the interacting parties, i.e., in terms of hardware, op-

erating system, middleware protocols, and application protocols. This

paper introduces Connect, a software framework which aims to resolve

this interoperability challenge in a fundamentally different way. Con-

nect dynamically discovers information about the running systems, uses

learning to build a richer view of a system’s behaviour and then uses

synthesis techniques to generate a connector to achieve interoperabil-

ity between heterogeneous systems. Here, we introduce the key elements

of Connect and describe its application to a distributed marketplace

application involving heterogeneous technologies.

1 Introduction

A fundamental requirement of distributed systems is to ensure interoperability
between the communicating elements; systems that have been implemented in-
dependently of one another must be able to connect, understand and exchange
data with one another. This is particularly true in highly dynamic application
domains (e.g. mobile and pervasive computing) where systems typically only
encounter one another at runtime. Middleware technologies have traditionally
resolved many of the interoperability problems arising in these situations, such
as operating system and programming language heterogeneity. Where two ap-
plications conform to a particular middleware standard, e.g. CORBA [12] and
Web Services [3] [5], they are guaranteed to interoperate. However, the next
generation of distributed computing applications are characterized by two im-
portant properties that force a rethink of how interoperability problems should
be tackled:

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 206–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards an Architecture for Runtime Interoperability 207

– Extreme heterogeneity. Complex pervasive systems are composed of technol-
ogy dependent islands, i.e. domain specific systems that employ heteroge-
neous communication and middleware protocols. For example, Grid applica-
tions, mobile ad-hoc networks, Enterprise systems, and sensor networks all
use their own protocols such that they cannot interoperate with one another.

– Spontaneous Communication. Connections between systems are not made
until runtime (and are made between systems that were not aware of one
another beforehand).

With such characteristics, requiring all applications to be developed upon a
common middleware technology, e.g. CORBA or Web Services, is unsuitable
in practice. Rather, new approaches are required that allow systems developed
upon heterogeneous technologies to interoperate with one another at runtime.
In this paper, we present the Connect

1 architectural framework that aims to
resolve this interoperability challenge in a fundamentally different way. Rather
than create a middleware solution that is destined to be yet another legacy plat-
form that adds to the interoperability problem, we propose the novel approach
of generating the required middleware at runtime i.e. we synthesize the neces-
sary software to connect two end-systems. For example, if a client application
developed using SOAP [13] encounters a CORBA server then the framework gen-
erates a Connector that resolves the heterogeneity of the i) data exchanged, ii)
application behaviour e.g. sequence of operations called, and iii) the lower level
middleware and network communication protocols. In this paper we identify the
requirements that need to be satisfied to guarantee interoperability, namely in-
teroperability at the discovery, behavioral and data level. We then outline the
key elements of the Connect framework that underpin a runtime solution to
achieving such interoperability, and that are further detailed in the companion
papers [14][19][2][1][10]:

– Discovering the functionality of networked systems and applications adver-
tised by legacy discovery protocols e.g. Service Location Protocol (SLP) and
Simple Service Discovery Protocol (SSDP). Then, transforming this to a
rich intermediary description used to syntactically and semantically match
heterogeneous services.

– Using learning algorithms to dynamically determine the interaction behaviour
of a networked system from its intermediary representation and producing
a model of this behaviour in the form of a labelled transition system (LTS)
[14].

– Dynamically synthesising a software mediator using code generation tech-
niques (from the independent LTS models of each system) that will con-
nect and coordinate the interoperability between heterogeneous end systems
[19][2].

We highlight the potential of this Connect framework to achieve interoper-
ability within a case study (a distributed marketplace application) that exhibits
1 http://connect-forever.eu/

208 A. Bennaceur et al.

high levels of heterogeneity. Further exploration of maintaining dependability
requirements when connecting systems is provided in [10]; while further infor-
mation regarding the underlying formal theory of the Connect framework is
found in [1].

The remainder of the paper is structured as follows. In Section 2 we highlight
the interoperability challenges and requirements within a distributed market-
place application. We then examine the state of the art in interoperability solu-
tions in Section 3 to highlight their deficiencies compared to the requirements.
In Section 4 we present an overview of the Connect architecture and its under-
lying principles. In section 5 we describe how Connect resolves interoperability
within the marketplace case study, and finally in section 6 we draw conclusions
and identify a roadmap for future research in this field.

2 Motivating Scenario: The Distributed Marketplace

Consider a stadium where fans from various countries have gathered together
to watch a game. The specific application we focus on in this section is that
of a distributed marketplace. Here, merchants publicise their wares, and con-
sumers can search the market, and order from a merchant. Both merchants
and consumers use mobile devices with wireless networks deployed in the sta-
dium. Merchants publish product info which the consumers can browse through.
When a consumer requests a product, the merchant gets a notification of the
amount ordered and the location of the consumer, to which he can respond with
a yes/no. If yes, then when he is close enough to the consumer, both of them get
a proximity notification by means of their mobile device (ring/buzz).

Table 1. Potential Implementations of Consumers and Merchants

Country Discovery Middleware Application Data Currency

Germany SLP Tuple Space GetInfo EUR

U.K. SLP SOAP GetInfo GBP

France SSDP SOAP GetInfo EUR

Italy SSDP SOAP GetLocation+ GetPrice+ GetQuantity EUR

Spain SLP SOAP GetInfo EUR

Table 1 highlights how stadiums from different countries implement the appli-
cation using heterogeneous technology. Importantly, if a client from one country
attempts to dynamically interoperate with a merchant in a different country it
will fail in each case. We now examine the dimensions of heterogeneity which
explain why such interoperation fails:

1. Heterogeneous discovery protocols are used by the consumer to locate
a merchant, and by the merchant to advertise his services. In Table 1, SLP
and SSDP are employed; in situations where the consumer and merchant
differ in this aspect, the two will be unable to discover one another and the
first step fails.

Towards an Architecture for Runtime Interoperability 209

Fig. 1. Representing price in a) XML, b) tuple data, and c) heterogeneous XML

2. Consumers and merchants use heterogeneous middleware protocols to
implement their functional interactions. In Table 1, a tuple space middleware
and the SOAP RPC protocol [13] are used; these are different communication
paradigms: the tuple space follows a shared space abstraction to write tuples
to and read from, whereas RPC is a synchronous invocation of a remote
operation. Hence, the two cannot interoperate directly.

3. Application level heterogeneity. Interoperability challenges at the appli-
cation level arise due to the different ways that application developers imple-
ment the functionality. As a specific example, we assume that the merchant
implements methods for the consumer to obtain information about his wares
in one of two ways this would lead to different sequences of messages between
the consumer and merchant: A single GetInfo() remote call, or three sepa-
rate remote calls: GetLocation(), GetPrice(), and GetQuantity().

4. Data-representation Heterogeneity. Implementations may represent data
differently. Data representation heterogeneity is typically manifested at two
levels. The simplest form of data interoperability is at the syntactic level where
two different systems may use very different formats to express the same infor-
mation. The French system may represent the price of the merchant’s product
using XML (Figure 1a), while the German tuple space may serialize a Java
Object (Figure 1b). Further, even if two systems share a common language
to express data, different dialects may still raise interoperability issues. Con-
sider Figure 1c (the Spanish system) against Figure 1a; they (intuitively) carry
the same meaning. Any system that recognizes the first structure will also be
able to parse the second one, but it will fail to recognize the similarity be-
tween them unless it realizes that price ≡ cost, that value ≡ amount, that
currency ≡ denomination (where ≡ denotes equivalence). The deeper prob-
lem of data heterogeneity is the semantic interoperability whereby all systems
should have the same interpretation of data.

Summary of requirements. This scenario illustrates four dimensions where
systems may be heterogeneous: i) the discovery protocol, ii) the interaction pro-
tocol, iii) application behaviour, and iv) data representation and meaning. A
universal interoperability solution must consider all four in order to achieve in-
teroperability.

210 A. Bennaceur et al.

3 Beyond State of the Art Interoperability Solutions

Achieving interoperability between independently developed systems has been
one of the fundamental goals of middleware researchers and developers; and
prior efforts have largely concentrated on solutions where conformance to one or
other standard is required e.g. as illustrated by the significant standards work
produced by the OMG for CORBA middleware [12], and by the W3C for Web
Services based middleware [3][5]. These attempt to make the world conform to
a common standard, and this approach has been effective in many areas e.g.
routing of network messages in the Internet. To some extent CORBA and Web
Services have been successful in connecting systems in Enterprise applications to
handle hardware platform, operating system and programming language hetero-
geneity. However, in the more general sense of achieving universal interoperabil-
ity and dynamic interoperability between spontaneous communicating systems
they have failed. Within the field of distributed software systems, any approach
that assumes a common middleware or standard is destined to fail due to the
following reasons:

– A one size fits all standard/middleware cannot cope with the extreme het-
erogeneity of distributed systems e.g. from small scale sensor applications
through to large scale Internet applications.

– New distributed systems and application emerge fast, while standards de-
velopment is a slow, incremental process. Hence, it is likely that new tech-
nologies will appear that will make a pre-existing interoperability standard
obsolete, c.f. CORBA versus Web Services (neither can talk to the other).

– Legacy platforms remain useful. Indeed, CORBA applications remain widely
in use today. However, new standards do not typically embrace this legacy
issue; this in turn leads to immediate interoperability problems.

One approach to resolving the heterogeneity of middleware solutions comes in
the form of interoperability platforms. ReMMoC [11], Universal Interoperable
Core [22] and WSIF [6] are client side middleware which employ similar patterns
to increase interoperability with heterogeneous service side protocols. First, the
interoperability platform presents an API for developing applications with. Sec-
ondly, it provides a substitution mechanism where the implementation of the
protocol to be translated to, is deployed locally by the middleware to allow com-
munication directly with the legacy peers (which are simply legacy applications
and their middleware). Thirdly, the API calls are translated to the substituted
middleware protocol. For the particular use case, where you want a client applica-
tion to interoperate with everyone else, interoperability platforms are a powerful
approach. However, these solutions rely upon a design time choice to develop
upon the interoperability platforms. Therefore, they are unsuited to other in-
teroperability cases e.g. when two applications developed upon different legacy
middleware want to interoperate spontaneously at runtime.

Software bridges offer another interoperability solution to enable communi-
cation between different middleware environments. Clients in one middleware

Towards an Architecture for Runtime Interoperability 211

domain can interoperate with servers in another middleware domain where the
bridge acts as a one-to-one mapping between domains; it will take messages from
a client in one format and then marshal this to the format of the server mid-
dleware; the response is then mapped to the original message format. While a
recognised solution to interoperability, bridging is infeasible in the long term as
the number of middleware systems grow i.e. due to the effort required to build
direct bridges between all of them. Enterprise Service Buses (ESB) can be seen
as a special type of software bridge; they specify a service-oriented middleware
with a message-oriented abstraction layer atop different messaging protocols
(e.g., SOAP, JMS, SMTP). Rather than provide a direct one-to-one mapping
between two messaging protocols, a service bus offers an intermediary message
bus. Each service (e.g. a legacy database, JMS queue, Web Service etc.) maps its
own message onto the bus using a piece of code, to connect and map, deployed
on the peer device. The bus then transmits the intermediary messages to the
corresponding endpoints that reverse the translation from the intermediary to
the local message type. Hence traditional bridges offer 1-1 mapping; ESBs offer
an N-1-M mapping. Example ESBs are Artix [23] and IBM Websphere Message
Broker [24]. ESBs offer a solution to the problem of middleware heterogeneity;
however, it focuses on the messaging abstraction only and the assumption is that
all messaging services can be mapped to the intermediary abstraction (which is
a general subset of messaging protocols). This decision is enacted at design or
deployment time, as the endpoint must deploy code to connect to a particular
message bus with an appropriate translator and hence is unsuitable for dynamic
interoperation between two legacy platforms.

INDISS [4], uMiddle [18], OSDA [15], PKUAS [9] and SeDiM [8] are exam-
ples of transparent interoperability solutions which attempt to ensure legacy
solutions unaware of the heterogeneous middleware are still able to interoperate.
Here, protocol specific messages, behaviour and data are captured by the inter-
operability framework and then translated to an intermediary representaion; a
subsequent mapper then translates from the intermediary representation to the
specific legacy middleware protocol to interoperate with. The use of an inter-
mediary means that one middleware can be mapped to any other by developing
these two elements only (i.e. a direct mapping to every other protocol is not
required). Another difference to bridging is that the peers are unaware of the
translators (and no software is required to connect to them, as opposed to con-
necting to bridges).

The interoperation solutions proposed above concentrate on the middleware
level. They support interoperation by abstract protocols and language specifica-
tions. But, by and large they ignore the data dimension. To this extent a number
of efforts, which are generically labelled as Semantic Web Services [16][21][7], at-
tempt to enrich the Web services description languages with a description of the
semantics of the data exchanged. The result of these efforts are a set of languages
that describe both the orchestration of the services’ operations, in the sense of
the possible sequences of messages that the services can exchange as well as the
meanings of these messages with respect to some reference ontology. However,

212 A. Bennaceur et al.

Fig. 2. Actors in the Connect architecture

such approaches assume a common middleware standard and do not address all
of the heterogeneity problems previously described.

The state of the art investigation shows two important things; first, there
is a clear disconnect between the main stream middleware work and the work
on application, data, and semantic interoperability; second, none of the current
solutions addresses all of the four requirements of dynamic pervasive systems as
highlighted in the scenario in refScenario. Hence, these results show that there
is significant potential for Connect to extend beyond the state of the art in
interoperability middleware.

4 The Connect Architectural Framework

The Connect architecture provides the underlying principles and software ar-
chitecture framework to enact the necessary mechanisms to achieve universal
interoperability between heterogeneous systems. Figure 2 presents a high-level
overview of the following actors involved within the Connect architecture and
how they interact with one another:

– Networked systems are systems that manifest the will to connect to other
systems for fulfilling some intent identified by their users and the applications
executing upon them.

– Enablers are networked entities that incorporate all the intelligence and
logic offered by Connect for enabling connection between heterogeneous
networked systems. In this paper, we focus on how the discovery, learning
and synthesis enablers co-ordinate to produce a Connector as shown in
Figure 2, while the companion papers discuss the enablers in more detail
[14][19][2][10].

– Connectors are the synthesized software connectors produced by the action
of enablers to connect networked systems.

4.1 Discovery and Learning of Networked Systems

Networked systems use discovery protocols to advertise their will to connect
(i.e. their intent); service advertisements are used to describe the services that

Towards an Architecture for Runtime Interoperability 213

Fig. 3. Networked System Model

a system provides, while service lookup requests document the services that are
required. It is the role of the discovery enabler to capture this information from
the legacy network protocols in use and to create an initial picture of the network
systems wishing to connect with one another.

The outputs of this enabler are models of networked system as shown in
Figure 3. It is important to note that only a subset of this description is made
available by the networked system; the learning enabler utilises an active learning
algorithm to learn the co-ordination and interaction patterns of the application
[14]. Much of the information about the middleware level is not explicit in the dis-
covery process, but pointers within the discovery descriptions (e.g. this is a SOAP
service) can be used to build the model from pre-defined, constant middleware
models (e.g. a model of the SOAP protocol). The model builds upon discovery
protocol descriptions that convey both syntactic information and semantic in-
formation about the externalized networked system. This semantic information
is necessary in open environments, where semantics cannot be assumed to be
inherently carried in a commonly agreed syntax. Typically, ontologies are used
in open environments for providing a common vocabulary on which semantic
descriptions of networked systems can be based.

The architecture of the discovery enabler is illustrated in Figure 4. This soft-
ware framework is deployed upon a third party node within the network and
consists of three core elements:

– Discovery protocol plug-ins. Discovery protocols e.g. SLP, UPnP, LDAP, Jini,
etc. are heterogeneous in terms of their behaviour and message format; fur-
ther they differ in the data representation used to describe services. To re-
solve this, individual plug-ins for each protocol receive and send messages
in the legacy format; the plug-in also translates the advertisements and re-
quests into a common description format used by the Connect networked
system model.

– The Model repository stores networked system models of all Connect ready
systems (this is a system which advertises its intent and whose behaviour is
learnable). These remains alive for the lifetime of the request-for a system
advertising its services this will normally match the length of its lease as
presented by the legacy protocol and, for a system’s request, this is the
length of time before the legacy protocol lookup request times out.

214 A. Bennaceur et al.

Fig. 4. The Discovery Enabler

– The Functional Matcher actively matches potential requests with advertise-
ments i.e. matching the required and provided interface types of a network
system. Simple semantic matchers can be plugged into to match descriptions
of the same type, or richer semantic matchers can be employed.

Learning of networked systems is performed just after discovery and is necessary
due to the fact that the retrieved descriptions of networked systems are incom-
plete. (as described above) Connect learning attempts to infer the complete
interaction behaviour and employs methods based on monitoring and model-
based testing of the networked systems to elicit their interaction behaviour [14].
Learning attempts to extrapolate from observed behaviour to generic behaviour.
The outcome of learning is a complete, as far as possible, instantiated networked
system model. The learning enabler is built upon the Learnlib tool[20]; this takes
as input the interface descriptions of the networked systems (e.g. in WSDL-S)
and then executes a learning algorithm which interacts directly with the service
to be learned in order to infer the correct behaviour. The enabler outputs a
complete LTS model to represent this behaviour of the network system.

4.2 Synthesis of Connectors

The Connector Synthesis is a two-step process that encompasses the construc-
tion of a mediation LTS and its interpretation at runtime. The needed media-
tion LTS defines the behaviour that will let the networked systems synchronize
and interact. It results from the analysis [19] of both the networked systems’
behaviours and the ontology, and specifies all the needed message translations
from one side to the other. In the following scenario in Section 5 for instance,
when receiving a getInfo request coming from the customer side, the mediation
LTS will properly request the merchant side (e.g. using getLocation, getPrice,
getQuantity) and then aggregate and return the data to the customer. The me-
diation LTS resolves the application-level and data-level interoperability.

The resulting mediation LTS (see Figure 9) remains an abstract specifica-
tion that does not include enough middleware-level information to be directly
executed. Instead, as shown on Figure 5, the mediation LTS is seen as an orches-
tration of middleware invocations and is dynamically interpreted by an engine,

Towards an Architecture for Runtime Interoperability 215

Fig. 5. A Software Connector

which receives, translates and forwards messages from the two sides. In our ex-
ample, when the mediation engine is notified of a getInfo tuple was released
by the client, it triggers the emission of three SOAP requests and triggers the
generation of one Lime tuple containing the requested information.

As shown in Figure 5, the missing middleware-level knowledge is hard-coded
into reusable plug-ins denoted as Listener and Actuator. According to a given
middleware protocol, a listener receives data packets and outputs application
messages whereas an actuator composes network messages. In our marketplace
example, the proper invocation of the Lime infrastructure and the emission and
reception of SOAP messages are handled by those ad-hoc listeners and actuators.
The use of such plug-ins finally ensures the middleware-level interoperability. In
addition, when a new middleware is released, such plug-ins can be separately
generated from the networked system models. By contrast with code-generation,
the choice of interpretation eases the monitoring and dependability verification
of runtime Connectors. Although the Connect framework also addresses these
two issues, they are not presented here for the sake of conciseness.

5 Connect in Action

To demonstrate the potential of the Connect architecture we consider a sin-
gle case within the distributed marketplace scenario where two heterogeneous
end-systems encounter one another. The client consumer employs SLP as the
discovery protocol and the Lime tuple space middleware [17] as the interaction
protocol (the German system from Table 1). The service merchant employs SSDP
as the discovery protocol and SOAP as the interaction protocol (the French sys-
tem from Table 1). We apply the Connect architecture to build a Connector
that allows the consumer to interact with the client. In this section we document
the outputs of the enablers to illustrate how the architecture co-ordinates to pro-
duce a Connector to overcome the interaction and application heterogeneity
between the two systems.

The discovery enabler first monitors the running systems, and receives SLP
lookup requests that describe the German application’s requirements. It also
receives the notification messages from the French application in SSDP that
advertise the provided interface. The discovery enabler plug-ins transform these
messages and produce a WSDL description for both networked systems. A partial

216 A. Bennaceur et al.

Fig. 6. WSDL of the SOAP merchant (left) and the Lime consumer (right)

Fig. 7. Behaviour Model of merchant produced by learning enabler

view of these is given in Figure 6, and show the abstract operations provided by
the application. In the client consumer application, these operations are bound
to the concrete Lime protocol (e.g. the SearchProducts operation is bound
to an out operation followed by a rd), and in the Merchant application the
operations are bound to SOAP (e.g. the getInfo operation is bound to a SOAP
RPC request). The WSDL also serves to highlight the heterogeneity of the two
interfaces; they offer the same functionality, but do so with different behaviour.
The next step in the Connect architecture is to learn the behaviours of the two
systems.

The learning enabler receives the WSDL documents from the discovery en-
abler and then interacts with deployed instances of the Lime merchant and the
SOAP merchant implementations in order to create the behaviour models for
both the consumer and the merchant in this case. The interactions possible in

Towards an Architecture for Runtime Interoperability 217

Fig. 8. Behaviour Model of Consumer produced by learning enabler. Messages with a
bar are emitted while others are received

Fig. 9. Model of the textscConnector mediator between Lime and SOAP

these systems are produced as LTS models and are illustrated for the SOAP
merchant in Figure 7 and for the Lime Consumer in Figure 8. Here we can see
that a merchant receives a BuyProduct SOAP message and either responds with
a yes or no BuyResponse SOAP message. If yes, the merchant moves towards the
consumer and when close sends the LocatedNear SOAP message. In the con-
sumer case, a ProductPurchaseRequest is sent as a Lime out message (along
with a SubscribeForResponse reactsTo message to be informed when there is a
response in the tuple space). When the merchant replies, a VendorNotification
is received by the consumer and they read this reponse from the tuple space us-
ing a Lime rd message (GetVendorResponse). If the response is yes, then the
consumer subscribes for the buzz message which is then read when the merchant
is near.

The final step in the Connect process is to create the Connector that
will mediate between the consumer’s request and the merchant’s response. To
complete this the two LTS models are passed to the synthesis enabler. This
performs two tasks:

218 A. Bennaceur et al.

– Behaviour matching. An ontology is provided for the domain that
states where sequences of operations are equivalent e.g. that the
ProductPurchaseRequest and the SubscribeForResponses in the Lime

implemented application are the same as the BuyProduct SOAP request.
Further information about how the ontology-based behavioural matching is
given in the companion paper [2].

– Model synthesis. The enabler produces an LTS that will mediate between
the two systems; this LTS is shown in Figure 9. Here you can see how the in-
teroperation is co-ordinated; when the Lime requests are received these then
produce a BuyProduct SOAP request, which eventually leads to a response
that is converted into a response that can be read from the tuple space.
A more detailed version of the mediator (and in particular how it operates
on the more detailed LTS models of this scenario) and its behaviour and
outputs is again provided in the companion paper [19].

6 Conclusions and Future Work

In this paper we have shown that in spite of the major research and industrial ef-
forts to solve the problem of interoperability, current solutions demonstrably fail
to meet the needs of modern distributed applications especially those that em-
brace dynamicity and high levels of heterogeneity. An important observations is
that there is a significant disconnect between middleware solutions and semantic
interoperability solutions, which in turn severely hampers progress in this area.
We have introduced the Connect architecture as a fundamentally different way
to address the interoperability problem; this intrinsically supports middleware
and application level interoperability and embraces learning and synthesis. The
initial experiment with the architecture provides early evidence of the validity
of the proposed approach and we believe that as the architecture matures it will
provide further novel and rich contributions to the field of interoperability.

Future work will continue to explore a broader range of issues in the het-
erogeneity space. Much of this will focus on the important requirements that
have been introduced in the companion papers, and their integration into the
Connect software architecture. These include:

– Non-functional properties. That is creating Connectors that conform to
the non-functional requirements of both interacting parties in the same way
they meet the functional requirements currently.

– Dynamic monitoring of Connectors will be further investigated to ensure
that all requirements are maintained over time. In[19] we illustrate a first
integration of synthesis and monitoring.

– Dependability. Ensuring that the deployed Connectors are dependable,
trustworthy and secure; this is especially important given the nature of the
pervasive computing environments where these solutions will be deployed.

Towards an Architecture for Runtime Interoperability 219

Acknowledgments

This work is done as part of the European FP7 ICT FET Connect project
(http://connect-forever.eu/).

References

1. Autili, M., Chilton, C., Inverardi, P., Kwiatkowska, M., Tivoli, M.: Towards a

connector algebra. In: ISoLA 2010, Part II. LNCS, vol. 6416, pp. 278–292. Springer,

Heidelberg (2010)

2. Bertolonio, A., Inverardi, P., Issarny, V., Sabetta, A., Spalazzese, R.: On-the-fly

interoperability though automated mediator synthesis and monitoring. In: ISoLA

2010, Part II. LNCS, vol. 6416, pp. 251–262. Springer, Heidelberg (2010)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-

chard, D.: Web services architecture. In: W3C (February 2004),

http://www.w3.org/TR/sawsdl/

4. Bromberg, Y., Issarny, V.: Indiss: Interoperable discovery system for networked

services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183.

Springer, Heidelberg (2005)

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-

tion language (wsdl) 1.1. In (March 2001), http://www.w3.org/TR/wsdl

6. Duftler, M., Mukhi, N., Slominski, S., Weerawarana, S.: Web services invocation

framework (wsif). In: OOPSLA 2001 Workshop on Object Oriented Web Services

(2001)

7. Farrell, J., Lausen, H.: Semantic annotations for wsdl and xml schema (August

2007), http://www.w3.org/TR/sawsdl/

8. Flores, C., Blair, G., Grace, P.: An adaptive middleware to overcome service dis-

covery heterogeneity in mobile ad hoc environments. IEEE Distributed Systems

Online (2007)

9. Gang, H., Hong, M., Qian-xiang, W., Fu-qing, Y.: A systematic approach to com-

posing heterogeneous components. Chinese Journal of Electronics 12(4), 499–505

(2003)

10. Di Giandomenico, F., Kwiatkowska, M., Martinucci, M., Masci, P., Qu, H.: Depend-

ability analysis and verification for Connected systems. In: Margaria, T., Steffen,

B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 263–277. Springer, Heidelberg

(2010)

11. Grace, P., Blair, G., Samuel, S.: A reflective framework for discovery and interaction

in heterogeneous mobile environments. ACM SIGMOBILE Mobile Computing and

Communications Review 9(1), 2–14 (2005)

12. Object Management Group. The common object request broker: Architecture and

specification version 2.0 (1995)

13. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Frystyk Nielsen, H., Kar-

markar, A., Lafon, Y.: Soap version 1.2 part 1: Messaging framework (April 2001),

http://www.w3.org/TR/soap12-part1

14. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in

automata learning: Considerations from the Connect perspective. In: Margaria,

T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235. Springer,

Heidelberg (2010)

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/soap12-part1

220 A. Bennaceur et al.

15. Limam, N., Ziembicki, J., Ahmed, R., Iraqi, Y., Li, D., Boutaba, R., Cuervo, F.:

Osda: Open service discovery architecture for efficient cross-domain service provi-

sioning. Computer Communications 30(3), 546–563 (2007)

16. Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K.,

Mcguinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with

owl-s. World Wide Web 10(3), 243–277 (2007)

17. Murphy, A., Picco, G., Roman, G.: Lime: A coordination model and middleware

supporting mobility of hosts and agents. ACM Transactions on Software Engineer-

ing Methodology 15(3), 279–328 (2006)

18. Nakazawa, J., Tokuda, H., Edwards, W., Ramachandran, U.: A bridging framework

for universal interoperability in pervasive systems. In: 26th IEEE International

Conference on Distributed Computing Systems, ICDCS 2006 (2006)

19. Issarny, V., Inverardi, P., Spalazzese, R.: A theory of mediators for eternal Con-

nectors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416,

pp. 236–250. Springer, Heidelberg (2010)

20. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning and experimen-

tation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 377–380.

Springer, Heidelberg (2006)

21. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,

A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied On-

tology Journal 1(1), 77–106 (2005)

22. Roman, M., Kon, F., Campbell, R.: Reflective middleware: From your desk to your

hand. IEEE Distributed Systems Online 2(5) (August 2001)

23. Artix Enterprise Service Bus Software (2010),

http://web.progress.com/en/sonic/artix-esb.html

24. IBM Software WebSphere, http://www-01.ibm.com/software/websphere/

http://web.progress.com/en/sonic/artix-esb.html
http://www-01.ibm.com/software/websphere/

On Handling Data in Automata Learning�

Considerations from the CONNECT Perspective

Falk Howar2, Bengt Jonsson1, Maik Merten2, Bernhard Steffen2,
and Sofia Cassel1

1 Department of Computer Systems, Uppsala University, Sweden

{bengt,sofia.cassel}@it.uu.se
2 Technical University Dortmund, Chair for Programming Systems, Germany

{falk.howar,maik.merten,steffen}@cs.tu-dortmund.de

Abstract. Most communication with real-life systems involves data val-
ues being relevant to the communication context and thus influencing the

observable behavior of the communication endpoints. When applying

methods from the realm of automata learning, it is necessary to handle

such data-occurrences. In this paper, we consider how the techniques of

automata learning can be adapted to the problem of learning interaction

models in which data parameters are an essential element. Especially, we

will focus on how test-drivers for real-word systems can be generated au-

tomatically. Our main contribution is an analysis of (1) the requirements

on information contained in models produced by the learning enabler in
the Connect project and (2) the resulting preconditions for generating

test-drivers automatically.

1 Introduction

Interoperability remains a fundamental challenge when connecting heterogeneous
systems which encounter and spontaneously communicate with one another in
pervasive computing environments. In this paper, we consider how the techniques
of automata learning can be adapted to the problem of learning interaction
models in which data parameters are an essential element. Especially, we will
discuss how test-drivers for real-word systems can be generated automatically.
Our main contribution is an analysis of (1) the requirements on information
contained in models produced by the learning enabler in the Connect project
and (2) the resulting preconditions for generating test-drivers automatically.

The Connect Integrated Project [15] aims at overcoming the interoperability
barrier by synthesizing on the fly the Connectors via which networked systems
communicate. Connectors are implemented through a comprehensive dynamic
process [6] based on (i) extracting knowledge from, (ii) learning about and (iii)
reasoning about, the interaction behavior of networked systems, together with
(iv) synthesizing new interaction behaviors out of the ones exhibited by the
systems to be made interoperable, and further (v) generating and deploying
corresponding Connector implementations.
� This work is supported by the European FP 7 project CONNECT (IST 231167).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 221–235, 2010.
� Springer-Verlag Berlin Heidelberg 2010

222 F. Howar et al.

One of the challenges in the Connect project is to develop techniques for
learning models of exploratory interaction with the component, while analyzing
the messages exchanged between the component and its environment. The chosen
approach in Connect is based on existing techniques for learning the temporal
ordering between a finite set of interaction primitives. Such techniques have
been developed for the problem of regular inference (i.e., automata learning),
in which a regular set, represented as a finite automaton, is to be constructed
from a set of observations of accepted and unaccepted strings. The most efficient
such techniques use the setup of query learning (aka. active learning), where
information is obtained by posing a sequence of membership query, each asking
how the automaton would respond to a particular input string.

Related Work: Previous work on automata learning has assumed the set of
interaction primitives to be an unstructured finite set [5,18,22], implying that
the alphabet must be made finite, e.g., by suppressing parameters of messages.

The influence of data on control flow is taken into account by model-based
test generation tools, such as ConformiQ Qtronic [13]. Recent contributions
began transferring automata learning methods to systems that comprise com-
plex parameterized interface alphabets [23] and to systems with (bounded) non-
determinic behavior [3].

The automata we will propose have (some) similar properties to the ones that
are constructed in [10], like e.g. both contain information about causal relations
between parameters. Only, our approach (based on active learning) will construct
successively the smallest representation while the approach in [10] will construct
the universe (cf. [17,25]) of possible interaction sequences.

Outline: The remainder of the paper is structured as follows. In the next section,
we recapitulate the technique of query learning for unstructured Mealy machine
models. Section 3 describes the challenges involved in finding a framework to
handle data from the special perspective of the Connect project. Section 4
discusses the prototypical application of techniques to overcome these challenges
along a case study.

2 Query Learning

2.1 The L∗
M

Learning Algorithm

Query learning (or active learning) attempts to construct a deterministic finite
representation, e.g., a Mealy machine, that matches the behavior of a given
target system on the basis of observations of the target system and perhaps
some further information on its internal structure. Here, we only summarize the
basic aspects of our realization L∗

M for Mealy machines [18], which is based on
Angluin’s learning algorithm L∗ for finite state acceptors [5]. A more elaborate
version of this summary and an extended discussion of the practical aspects of
active learning is given in [24].

On Handling Data in Automata Learning 223

Definition 1. A Mealy machine is defined as a tuple Sys = 〈Q,q0,Σ,Ω,δ,λ〉
where

– Q is a finite nonempty set of states (be n = |Q| the size of Sys),
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : Q×Σ → Q is the transition function, and
– λ : Q×Σ → Ω is the output function.

Intuitively, a Mealy machine evolves through states q ∈ Q, and whenever one
applies an input symbol (or action) a ∈ Σ, the machine moves to a new state
according to δ(q,a) and produces an output according to λ(q,a)1. We write

q
i/o−→ q′ to denote that on input symbol i the automaton moves from state q to

state q′ producing output symbol o.
Query learning is also referred to as active learning as it constructs Mealy

machine models by actively querying the target system. It poses membership
queries that test whether certain strings (potential runs) are contained in the
target system’s language (its set of runs), and equivalence queries that compare
intermediately constructed hypothesis automata for equivalence with the target
system. Learning terminates successfully as soon as an equivalence query signals
success.

In its basic form, active learning starts with a hypothesis automaton with only
one state and refines this automaton on the basis of query results iterating the
three main steps shown in Fig. 1: refining the hypothesis, conformance testing,
and analyzing counterexamples, until a state-minimal deterministic (hypothesis)
automaton consistent with the target system is produced. Key to achieving this
result is the Nerode-like dual characterization of states:

– by a set, S ⊂ Σ∗, of access sequences. This characterization of state is too
fine, as different words s1,s2 ∈ S may lead to the same state in the target
system. L∗

M will construct such a set S, containing access sequences to all
states of the target automaton. It will also maintain a second set, SA, which
together with S will cover all transitions of the target system (SA will during
the course of learning always be SA = (S ·Σ)\ S).

– by an ordered set, D ⊂ Σ∗, of distinguishing sequences. L∗
M realizes the char-

acterization of hypothetical states q simply in terms of vectors row(s) =
〈r1, . . . ,rk〉 (with ri ∈ Ω), characterizing states by means of subsequent
outputs: For rows(s), let ri = λ(δ(q0,s),di).

The set S will be initialized as {ε}, containing only the access sequence to the
initial state; SA will accordingly be initialized as Σ, covering all transitions orig-
inating in the initial state. The ordered set D will be initialized as Σ, allowing to
identify a state by the output that is produced along the transitions originating
in this state. The learning procedure then proceeds as shown in Fig. 1 by:
1 In the remainder of this paper, we will use an extended version of the transition

function: δ′ : Q×Σ∗ → Q with δ′(q,aw) = δ′(δ(q,a),w)), where q,q′ ∈ Σ, symbols a ∈ Σ,
and w ∈ Σ∗. The same holds for the output function.

224 F. Howar et al.

Fig. 1. Structure of Active Learning Algorithms (modeled in XPDD [16])

Refining the Hypothesis: This first step again iterates two phases. The first phase
checks whether the constructed automaton is closed under the one-step transi-
tions, i.e., each transition from each state of the hypothesis automaton ends in
a well defined state of this very automaton. This is the case if for every r ∈ S ·Σ
there exists a s ∈ S with row(s) = row(r). Otherwise, S will be extended by the
corresponding r until closedness is established (and SA will be extended accord-
ingly). This extension is guaranteed to result in a unique fixpoint, independent
of the order in which the rows are processed.

The second phase then checks whether two access sequences s1,s2 ∈ S with
the same bit vector, row(s1) = row(s2), have also the same outgoing transitions,
a necessary precondition for them to represent the same state. This condition,
which is called consistency, can be formalized as follows:

∀s1,s2 ∈ S ∀a ∈ Σ . row(s1) = row(s2)
?⇒ row(s1 ·a) = row(s2 ·a).

It is easy to see that detected inconsistencies can be removed by elaborating
the set D of distinguishing futures in a way that makes some of the difference
observed on a distinguishing transition visible before that transition: one simply

On Handling Data in Automata Learning 225

needs to prefix the distinguishing future that separates the two target states on
the distinguishing transition by the label of this very transition.

Unfortunately, such additions to D may break the previously achieved com-
pleteness, which requires to re-iterate the completion procedure. This, in turn,
may lead to new violations of consistency. However, successive iteration of these
two steps is guaranteed to result in a unique, well-defined, closed, and complete
hypothesis automaton whose states are characterized by the bit vectors. In more
detail:

– every state q ∈ Q of the hypothesis automaton is reachable by at least one
word s ∈ S, i.e., row(s) corresponds to q,

– there exists a transition δ(q,a) = q′ iff there exists s ∈ S with s reaching q (or
with row(s) corresponding to q) and row(s ·a) corresponding to q′,

– The ouput function can be constructed from the row()-vectors as well. As D
is initialized as Sigma, the values for all λ(q,a), where a ∈ Σ, are contained
in the row(s) vector corresponding to q.

Conformance Testing & Counterexamples: After closedness and consistency have
been established, an equivalence query checks whether the language of the hy-
pothesis automaton coincides with the language of the target automaton. If this
is true, the learning procedure successfully terminates. Otherwise, the confor-
mance test returns a counterexample, i.e., a word which distinguishes the hy-
pothesis from the target automaton. All prefixes of a counterexample will be
added to S (SA will be extended accordingly). This will lead to inconsistency,
which in turn will lead to a new distinguishing suffix [18].

The correctness argument for the whole approach follows a straightforward
pattern.

1. The state construction guarantees that the number of states of the hypothesis
automaton can never exceed the number of states of the smallest (minimal)
automaton, behaviorally equivalent to the target system.

2. The treatment of counterexamples guarantees that at least one additional
state is added to the hypothesis automaton each round. Thus, due to 1),
such treatments can happen only finitely often.

3. The conformance testing (or equivalence query) provides new counter exam-
ples as long as the language of the hypothesis automaton does not match
the desired result.

Put together, this guarantees that the learning procedure terminates after at
most n rounds with a minimal automaton, behaviorally equivalent to the target
system, where n is the number of states of this automaton.

2.2 Practical Aspects in Active Learning

Automata learning can be considered a key technology for dealing with black box
systems, i.e., systems that can be observed, but for which no or little knowledge
about the internal structure or even their intent is available. Active automata

226 F. Howar et al.

Fig. 2. Test-driver and Alphabet Generation (modeled in XPDD [16])

learning is characterized by its specific means of observation, i.e., its proactive
way of posing membership queries and equivalence queries. Thus it requires
some effort to realize this query-based interaction for the considered application
contexts. The general requirements are shown in Fig. 2.

Reset: Active learning requires membership queries to be independent. Whereas
this is no problem for simulated systems, this may be quite problematic in
practice. Solutions range here from reset strategies via homing sequences
[21] or snapshots of the system state to the generation of independent fresh
system scenarios. Indeed, in certain situations, executing each membership
query with a separate independent user scenario may be the best one can do.

Abstraction: Learning systems which comprise parameterized interface
alphabets will usually require abstraction: The learning algorithm will invoke
primitives from the input alphabet on the system under test. Usually these
primitives are complex actions comprising parameters over infinite domains.
The system under test will react by producing complex and parametrized
outputs. To work on infinite alphabets, a sensible abstraction will be needed.
Usually these abstractions are hand-tailored [2,1,12,19], but there also ex-
ist some approaches to automate abstraction and refinement of the input
alphabet [7,8,11].

Interfacing Systems: While real systems require certain actual actions to be
taken in the course of interaction, a learning algorithm will formulate a test
case that is to be executed on the system in an abstract language (as words
that are build from an abstract interface alphabet). It will also expect the
reaction of the system to be encoded into words over an output alphabet. To
connect a learning algorithm and a real system, a test-driver is needed, which

On Handling Data in Automata Learning 227

translates input words into sequences of real actions (e.g., method calls) and
real outputs (e.g., return values) into output words.

As shown in Fig. 2, a test-driver can be generated from an interface description of
the system under test (SUT), an instance pool, and a reset strategy. Sometimes,
by considering a learning purpose, uninteresting parts of the SUT can be hidden
from the learning algorithm. The interface description will be used to generate
code to instrument the SUT. The instances that shall be assumed for data values
in the communication with the SUT and the purpose allow the formulation of a
mapping between abstract interface symbols and concrete actions on the SUT.
Finally, the reset strategy will ensure that all tests on the SUT will be executed
under the same initial conditions.

The primary focus of this paper are the preconditions for an automatic gen-
eration of test-drivers that allow the production of models, which are sensible
in the context of Connect. We therefore will make quite strong assumptions
about already present means of abstraction, knowing that these assumptions
have to (and can) be lowered subsequently.

3 Connect Learning Challenges

3.1 Connect Model Requirements

To better understand the requirements connected with learning relevant (in the
context of the Connect project) behavioral models for networked systems, let
us first describe the communication, which we assume to happen between a pair
of networked systems that are explicitly designed and developed to interact with
each other properly. Figure 3 schematically shows the scenario: Two components
communicate via protocol messages (1),(5). The components together realize
some protocol. Both components are actual implementations of their specified
interfaces. Without giving a formal definition, we can imagine both parties to
comprise a control part (2), and a data part (3). The control part can be imagined
as a labeled transition system with actual blocks of code labeling the transactions
(4). Each code block in the components of Fig. 3 would consist of

– an entry point for one interface method,
– conditions over parameters and local variables,
– assignments and operations on local variables,
– a return statement.

The data parts may be best described as a set of local variables. We will refer
to such a set of local variables as a parameter structure.

To infer the behavior of one component (e.g., the right one from Fig. 3), the
part of the other component has to be taken by a learning algorithm, which
will be equipped with the interface alphabet of the component to be learned.
Obviously, it will not be possible to present a solution to the problem of gener-
ating a model that captures all the behavior defining the component. This task

228 F. Howar et al.

=

Fig. 3. Communicating Components

would correspond to reverse engineering the component on the basis of its be-
havioral profile. Fortunately, the models required in the Connect project are
of a different kind.

While, usually, models produced by active learning are used in model based
verification or some other domain that requires complete models of the system
under test (e.g., to prove absence of faults), in Connect, the inferred mod-
els will be used to explain how to interact with the system. This special focus
allows us, to apply goal-oriented learning techniques (and the goal here is gath-
ering enough information to interact with a component successfully): From the
Connect perspective, complete models are rather uninteresting and would even
make the synthesis of Connector models more expensive. This may have a posi-
tive impact on the costs of producing models. However, to achieve this (capturing
how to interact successfully), two kinds of information will have to be captured
by the models:

Effects of Primitives: The learned models will only be useful for Connector
synthesis within a given semantic context (cf. [14]). Most networked systems
have well-defined purposes (or effects), e.g., electronic commerce systems. A
subset of the offered communication primitives, when certain preconditions
are met, will lead to successful conclusion of transactions directly relating to
the respective purpose. There may, e.g., in a vending system, be a “purchase”
communication primitive, that, when providing additional information like
a product-identifier, will conclude the process of buying a desired product.
Other communication primitives may not directly lead to a successful con-
clusion of a business transaction, but may, e.g., be prerequisites for commu-
nication primitives serving the immediate purpose of the given system. A
vending system may, e.g., have a communication primitive that results in
the delivery of a list of products-identifiers, which is a prerequisite for the
“purchase” primitive.

It will be necessary to capture in the produced models, at which points
in model what effects are achieved (e.g., when a seat is actually booked

On Handling Data in Automata Learning 229

in a system). But, these effects will in general not be observable in the
communication with a system; the information about effects of primitives
rather has to be provided as an additional input to the learning algorithm.

Preconditions of Primitives: (or Data Causalities) Many systems of interest
for the Connect project operate on communication primitives which con-
tain data values relevant to the communication context and having a direct
impact on the exposed behavior. One example would be session identifiers or
sequence numbers which are negotiated between the communication partici-
pants and included in every message. The models will have to make explicit
causal relations between data parameters that are used in the communica-
tion (e.g, that always the exact session identifier that was returned when
opening a new session has to be used in subsequent calls).

Information about causal relations between data parameters is in the scope
of active learning. Using sensible interface alphabets will enable inferring
data-related behavior.2 While in classical automata learning these causal
relations would implicitly be encoded in the state-space, there exist already
methods to make explicit such preconditions in the model [7,8].

Without formalizing, this will lead to models of the following kind. The learned
models will have transitions, like the one in Fig. 4, which

– are labeled with statements, the left component in Fig. 3 would execute,
– expose the causal influences of parameter values in form of preconditions,

resembling the conditions in the component from the right side of Fig. 3,
– are annotated with corresponding effects.

←

Fig. 4. Transition in Inferred Model

Models comprising preconditions and effects for a given primitive will make
it possible to generate sequences of communication primitives that (i) fulfill
preconditions successively and (ii) finally conclude a process reaching a special
effect. This can be directly used in code synthesis. Also, reachability of the effects
can be checked in the learned models: if a given effect cannot be reached this
may be an indication that the learning process hasn’t yet explored enough parts
of the system. On the other hand, if all effects are reachable the learning process
may be terminated safely, making sure only relevant parts of the system are
being explored.
2 Active learning classifies states and transitions by the output that is produced by a

system. We assume here that as classifying output the information about success or

failure of the invocation of a primitive can be used.

230 F. Howar et al.

3.2 Example

Let us introduce a small example to illustrate the discussed ideas. Imagine a
system for booking seats in events. A user of this system has to provide his
credentials and can then browse through a list of venues. For each venue a list
of available seats can be accessed. Finally, from these lists of seats a single seat
can be booked, which will be confirmed in a corresponding receipt.

Table 1. Interface Descriptions

Interface 1 Interface 2
- session ← openSession(user,pwd)
venue[] ← getVenues(user,pwd) venue[] ← getVenues(session)
seat[] ← getSeats(user,pwd,venue) seat[] ← getSeats(session,venue)
receipt ← bookSeat(user,pwd,seat) receipt ← bookSeat(session,venue,seat)

For this system we will define two slightly different interfaces. The signatures of
the interfaces’ methods are given in Table 1. The differences between the two
interfaces are:

1. In Interface 1 credentials have to provided in all invocations, while in Inter-
face 2 the credentials are only used once to create a session identifier. This
identifier will then be used in subsequent invocations.

2. Assuming that the methods of the interfaces will be called from top to bottom
in order to actually book a seat, calling the first method of Interface 1
corresponds to calling the first two methods of Interface 2.

3. While in Interface 1 to book a seat, only the identifier for this seat has to
be provided, in Interface 2 the identifier of the corresponding venue has to
be provided as well.

We now want to connect a front-end of the system, which uses Interface 1, to a
back-end using Interface 2. While the actual construction of a Connector for
the two parties is out of the scope of this paper, we will consider here the general
requirements on the inferred models of the two networked components that can
be derived from this example. Naturally, there will arise a number of other prob-
lems when generating a Connector, like transforming data parameters from one
format into another, or actually instrumenting the components, etc. However,
these problems do not directly lead to requirements on the obtained models.

In the message sequence chart in Figure 5, it is shown how the two implementa-
tions can be connected. The first column of the figure shows the synchronization
of the two implementations on the shared effects. The second column shows the
communication between the component using Interface 1 and the Connector,
while the fourth column shows the communication between the Connector and
the second implementation using Interface 1. In the third column, the data-flow
between the two implementations is visualized. Here, it is interesting to observe
that there exist parameters which do not exist in both interfaces (e.g., session).

On Handling Data in Automata Learning 231

Fig. 5. Message Sequence Chart for Connected Implementations

We refer to those parameters as control-parameters as they are only used to
control one party and need not to be passed to the other party. The model that
is to be constructed by regular inference is now expected to expose exactly this
kind of causal relations between the formal parameters of the different primitives
(that is has to be same session identifier in all the calls).

4 Experimental Results

We now present experimental results highlighting various aspects of the concepts
described above. Basis for the experiments was a Web-service realizing the seat
booking system and using the interface from the right half of Table 1. For the
interface description WSDL-S [4] was used, which allows

1. annotating primitives with effects,
2. annotating parameters with (abstract) data types.

Technically, this is realized by references into an ontology. A common ontology
can then be used to link several heterogeneous systems with the same intention
on a semantic level.

We generated Java proxy-classes for the Web-service. Using standard Java
APIs, the proxy classes were inspected for methods, which are used as learning
alphabet. Also, the WSDL-S document was analyzed for data types and effects.
Using the information about data types, a parameter structure was generated:
The return values of method invocations were stored in the local parameter
structure of the test-driver for usage in future invocations of the target system.
The type and name of the output symbol determined the parameter, a returned
(output-)value will be stored in. The resulting parameter structure is shown in
Table 2. Input-values for method invocations were either

232 F. Howar et al.

Table 2. Parameter Structure and Effects

Symbol Output-Parameters Store as Effect
openSession(user,pwd) Session Identifier session -
getVenues(session) List of Venues venues GetVenues
getSeats(session,venue) List of Seats seats GetSeats
bookSeat(session,venue,seat) Receipt receipt BookSeat

– predetermined values, e.g., for user and pass in the openSession primitive,
– references to parameters, e.g, for session in all primitives, or
– simple expressions over parameters, e.g., !session (not session) and

(in)venues (denoting a venue from a list of venues).

The abstract interface alphabet was generated over all possible combinations of
data and primitives. The resulting abstract input alphabet is shown in Table 3.
The corresponding test-driver (cf. Section 2.2) invokes methods on the WSDL
proxy according to the alphabet symbol currently processed.

Table 3. Abstract Input Alphabet

Interface Symbol Input-Parameters
openSession(u,p) u=’test’,p=’test’
getVenues(si) si=session

si=!session
getSeats(si,v) si=session, v=(in)venues

...
si=!session, v=(!in)venues

bookSeat(si,v,s) si=session, v=(in)venues, s=(in)seats
...
si=!session, v=(!in)venues, s=(!in)seats

All data values used in this examples were sequences of characters. The !-
function was realized by adding some characters to the corresponding sequence.
The (in)-function was realized by picking the first element of a list, which would
also ensure that two subsequent applications of (in) return the same value. The
(!in)-function was realized by constructing a value, which was not contained in
the corresponding list.

To distuingish (i.e., classify) states in active learning, some kind of output is
needed from the system under test. As the returned values in this example are
stored in the parameter structure and thus are treated symbolically, we used
the WSDL ’fault’ returns as classifiers: In WSDL, every interface method can
return with a normal or with a fault answer. In Java, this fault case corresponds
to an exception being thrown. The test-driver would simply catch and evaluate

On Handling Data in Automata Learning 233

←←

←

←
Σ

Σ Σ
Σ

Σ

Fig. 6. Behavioral Model of the Seat Booking System

these exceptions. In the example, three effects were annotated to the normal
return of the interface methods (cf. Table 2). The behavior of the Web-service
was learned using LearnLib [20], the automata learning framework developed at
TU Dortmund. The resulting model with 5 states is shown in Figure 6.

In this experiment, the test-driver was put together manually from

– automatically generated instrumentation code,
– manually constructed and analyzed information from the WSDL-S description,
– manually provided fixed values,
– manually implemented functions on data parameters.

To fully automate the generation of adequate test-drivers, the single steps will
subsequently have to be automated (where possible) and the information that
is required additionally in order to learn such networked systems will have to
be provided from the Connect framework [6] (e.g., by means of the method
proposed in [10] for determining relations between the types of parameters).

5 Conclusion

In this paper we have discussed the requirements on information that is to be
contained in models produced by the learning enabler (cf. [9]) in the Connect

project: causal relations between data parameters and effects of primitives. Bas-
ing on these requirements we have given ideas of (1) what kind of information the
corresponding models will comprise, and (2) what the preconditions for produc-
ing these models are. Namely: semantically rich annotated interface descriptions.
Finally, we have presented the (promising) results from a prototypical applica-
tion of a parameter structure and semi-automatic test-driver generation. Future
work will include automatic analysis and reasoning of/on semantically rich in-
terface descriptions in order to generate parameter structures automatically and
a more sophisticated way of realizing functions on data values.

234 F. Howar et al.

References

1. Aarts, F., Blom, J., Bohlin, T., Chen, Y.-F., Howar, F., Jonsson, B., Merten, M.,

Nagel, R., Sabetta, A., Soleimanifard, S., Steffen, B., Uijen, J., Wilk, T., Wind-

muller, S.: Establishing basis for learning algorithms (2010)

2. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communica-

tion Protocols using Regular Inference with Abstraction. Accepted for ICTSS 2010

(2010)

3. Aarts, F., Vaandrager, F.: Learning I/O Automata. Accepted for CONCUR 2010

(2010)

4. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma,

K.: Web service semantics-WSDL-S. W3C member submission, 7 (2005)

5. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-

tion and Computation 75(2), 87–106 (1987)

6. Bennaceur, A., Blair, G.S., Chauvel, F., Georgantas, N., Grace, P., Howar, F.,

Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Steffen, B.,

Souville, B.: Towards an Architecture for Runtime Interoperability. In: Margaria,

T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 206–220. Springer,

Heidelberg (2010)

7. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with param-

eters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.

Springer, Heidelberg (2006)

8. Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines Using

Domains with Equality Tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008.

LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)

9. Bertolino, A., Blair, G., Chauvel, F., Cortes, C.F., Georgantas, N., Grace, P.,

Howar, F., Huyn, T., Jonsson, B., Paolucci, M., Pathak, A., Souville, B., Tivoli,

M.: Initial CONNECT Architecture. Technical report, 02 (2010)

10. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-

havior protocols for composable web-services. In: ESEC/FSE 2009: Proceedings

of the the 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering, pp.

141–150. ACM, New York (2009)

11. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata

using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.

LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

12. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.D.: Efficient

regression testing of CTI-systems: Testing a complex call-center solution. Annual

review of communication, Int. Engineering Consortium (IEC) 55, 1033–1040 (2001)

13. Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M., Tret-

mans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 1–12.

Springer, Heidelberg (2007)

14. Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Con-

nectors. In: ISoLA 2010, Part II. LNCS, vol. 6416, pp. 236–250. Springer, Heidel-

berg (2010)

15. Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z.,

Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT

Challenges: Towards Emergent Connectors for Eternal Networked Systems. In:

ICECCS, pp. 154–161 (2009)

On Handling Data in Automata Learning 235

16. Jung, G., Margaria, T., Wagner, C., Bakera, M.: Formalizing a Methodology for

Design- and Runtime Self-Healing. In: IEEE International Workshop on Engineer-

ing of Autonomic and Autonomous Systems, pp. 106–115 (2010)

17. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose

Programming. In: QUATIC 2010 - 7th International Conference on the Quality of

Information and Communications Technology (accepted, 2010) (in submission)

18. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model genera-

tion for legacy reactive systems. In: HLDVT 2004: Proceedings of the Ninth IEEE

International Workshop on High-Level Design Validation and Test, pp. 95–100.

IEEE Computer Society, Los Alamitos (2004)

19. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-

cient system-level test-based model generation. Innovations in Systems and Soft-

ware Engineering 1(2), 147–156 (2005)

20. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-

olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407

(2009)

21. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.

Inf. Comput. 103(2), 299–347 (1993)

22. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R.

(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

23. Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized compo-

nents through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.

(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg

(2007)

24. Steffen, B., Howar, F., Merten, M., Margaria, T.: Practical Aspects of Active Learn-

ing. In: FMICS Handbook. Wiley, Chichester (to appear, 2010)

25. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model

Construction (1993)

A Theory of Mediators for
Eternal Connectors�

Paola Inverardi1, Valérie Issarny2, and Romina Spalazzese1

1 University of L’Aquila, Italy
2 INRIA, CRI Paris-Rocquencourt, France

http://connect-forever.eu/

Abstract. On the fly synthesis of mediators is a revolutionary approach
to the seamless networking of today’s and future digital systems that

increasingly need be connected. The resulting emergent mediators (or

Connectors) adapt the interaction protocols run by the connected sys-

tems to let them communicate. However, although the mediator concept

has been studied and used quite extensively to cope with many hetero-

geneity dimensions, a remaining key challenge is to support on-the-fly

synthesis of mediators. Towards this end, this paper introduces a theory

of mediators for the ubiquitous networking environment. The proposed

formal model: (i) precisely characterizes the problem of interoperability

between networked systems, and (ii) paves the way for automated rea-

soning about protocol matching (interoperability) and related mediator

synthesis.

1 Introduction

Today’s ubiquitous networked environments embed networked devices from a
multitude of application domains, e.g., home automation, consumer electron-
ics, mobile and personal computing domains to name a few. Middleware then
positions itself as a core architectural paradigm to enable the heterogeneous net-
worked systems to actually interact together. Middleware provides upper layer
interoperability, bridging the gap between application programs and the lower-
level hardware and software infrastructure in order to coordinate how appli-
cation components are connected and how they interoperate, especially in the
networked environment. However, ubiquitous networking has introduced new
challenges for middleware. Devices need to dynamically detect services available
in the ubiquitous networked environment and adapt their own communication
protocols to interoperate with them, since networked applications are imple-
mented on top of diverse middleware. As discussed in companion paper [5], a
number of systems have been introduced to provide middleware protocols inter-
operability. However, these address only interoperability at the middleware-layer.
Interoperability between networked software systems further concerns the sys-
tems’ interfaces and behaviors at the application-layer, which calls for supporting
mediators.
� The work is partly supported by the Connect European Project No 231167.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 236–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Theory of Mediators for Eternal Connectors 237

The mediator concept was initially introduced to cope with the integration of
heterogeneous data sources [23,22], and as design pattern [4]. However, with the
significant development of Web technologies and given abilities to communicate
openly for networked systems, many heterogeneity dimensions shall now be me-
diated. Heterogeneity effectively spans [19]: terminology, representation format
and transfer protocols, functionality, and application-layer protocols. The first
heterogeneity dimension is addressed by data level mediation, while the second
relies on a combination of data level and protocol mediations. Functional me-
diation then depends on the reasoning about logical relationships between the
functional descriptions of networked systems, similar to the notion of behav-
ioral subtyping [14]. Protocol mediation is further concerned with behavioral
mismatches that may occur during interactions. Other approaches that share
the same formal settings as protocol mediation have been proposed quite some
time ago to solve mismatches in the field of supervisory control theory of dis-
crete event systems [12] and, more recently, in the field of software architectures
to address communication problems by proposing ad hoc wrappers [18]. How-
ever, while the concept of mediator has received a great deal of attention over
the last two decades, on-the-fly synthesis of mediators, or emergent mediation
for short, which is central to seamless interactions in the ubiquitous networked
environment, remains a key challenge.

Towards enabling emergent mediation, this paper sets the underlying theory
from which protocol matching (interoperability) and mediation may be formally
reasoned upon. The work is part of the Connect

1 European research project,
which investigates the development, from design to prototype implementation,
of an overall framework for the seamless networking of heterogeneous networked
systems [8,5]. The contribution of this paper is specifically a theory of mediators
to precisely characterize:

(i) The interaction protocols that are functionally matching but behaviorally
mismatching. Note that we assume given the specification of protocols,
either as part of the advertisement of networked systems using some dis-
covery protocol or based on some learning technique like the one discussed
in companion paper [7].

(ii) The interoperability notion between protocols based on functional match-
ing. Note that in a first step, we restrict ourselves to interoperability
between pairs of protocols and we further do not address data-level hetero-
geneity, which is being extensively addressed elsewhere [16].

(iii) The behavior of mediators to achieve interoperability under functional
matching despite behavioral mismatch.

The paper is organized as follows. We first set the principles of our approach, fur-
ther describing the terminology we use and giving an illustrative scenario (Sec-
tion 2). Then, we introduce a formalization for protocols, which paves the way
for automated reasoning about protocols functional matching and for the auto-
mated synthesis of mediators (Section 3). Finally, we position our contribution

1 http://connect-forever.eu/

238 P. Inverardi, V. Issarny, and R. Spalazzese

with respect to related work (Section 4) and we conclude with perspectives for
future work (Section 5).

2 Eternal Interoperability through Emergent Mediation

The focus of this paper is the protocol interoperability problem and our goal is
to find an automated solution to solve it dynamically. In the following, we give
the necessary definitions that set the context of the work.

2.1 Definitions

With the term protocols, we refer to application-layer interaction protocols (or
application-layer observable protocols). That is, a protocol is the behavior of
a system in terms of the sequence of messages visible at the interface level,
which it exchanges with other systems. We further focus on compatible or func-
tionally matching application-layer interaction protocols. Functional matching
means that protocols can potentially communicate by performing complemen-
tary sequences of actions. “Potentially” means that communication may not be
achieved because: (i) the languages of the two protocols are different, although
semantically equivalent, (ii) the sequence of actions performed by a protocol is
different from the sequence of actions of the other one because of interleaved
actions related to third parties communications (i.e., other systems, the environ-
ment). In the former case, (i), it is necessary to properly perform a translation
of the two languages. In the latter case, (ii), it is necessary to provide an ab-
straction of the two sequences that results in sequences containing only relevant
actions to the communication. Communication is then possible if the two ab-
stracted sequences are complementary, i.e., are the same sequences of actions
while having opposite send/receive “type” for all actions.

With interoperability, we mean the property referring to the ability of hetero-
geneous application-layer interaction protocols that functionally match to coor-
dinate where the coordination is expressed as synchronization, i.e., two systems
succeed in coordinating if they are able to synchronize.

As said before, we want to approach the protocol interoperability problem
in an automated fashion. The solution we propose here, is to automatically
synthesize mediators (also referred to as mediating connectors or Connectors
in our work) that allow the protocols to interoperate by solving their behavioral
mismatches. A mediator is then a protocol that is elicited according to the
automated mediation paradigm.

2.2 Towards Emergent Mediators

The interoperability problem we specifically want to attack concerns automated
and on-the-fly mediation between behaviorally mismatching, yet functionally
matching application-layer interaction protocols. Starting from two protocols,
the first condition we check is if they share some complementary sequence of
actions.

Figure 1 depicts the main elements of our methodology:

A Theory of Mediators for Eternal Connectors 239

OP

AP AQ

QP

U E

M
(mediator)

OPQ OQ

IPQ

Protocols

Ontologies

Abstracted
protocols

Common
abstracted
protocol

Fig. 1. An overview of our approach

(i) Two application-layer protocols P and Q whose representation is given in
terms of Labeled Transition Systems (LTS s) [11], where the initial and final
states on the LTSs define the sequences of actions (traces) that characterize
the coordination policies of the protocols.

(ii) Two ontologies OP and OQ describing the meaning of P and Q’s actions,
respectively.

(iii) Two ontology mapping functions defined from OP and from OQ to a com-
mon ontology. The intersection OPQ on the common ontology identifies
the “common language” between P and Q. For simplicity, and without loss
of generality, we consider protocols P and Q that have disjoint languages
and that are minimal where we recall that every finite LTS has a unique
minimal representative LTS.

(iv) Then, starting from P and Q, and based on the ontology mapping, we build
two abstractions AP and AQ by the relabeling of P and Q respectively,
where the actions not belonging to the common language OPQ are hidden
by means of silent actions (τs);

(v) After, we check the compatibility of the protocols by looking if there exist
complementary traces in the set of traces TP and TQ generated by AP

and AQ respectively. If this is the case, then we are able to synthesize a
mediator that makes it possible for the protocols to coordinate.

(vi) Finally, given two protocols P and Q, and an environment E, the mediator
M that we synthesize is such that when building the parallel composition
P ||Q||E||M , P and Q are able to coordinate by reaching their final states.

2.3 The Popcorn Scenario

To better illustrate protocol mediation, and to make the theory more concrete,
we consider a scenario called Distributed Marketplace or Popcorn scenario that
we describe in the following and that is detailed in [1]. Consider an event held
within a stadium populated by heterogeneous authorized merchants and con-
sumers. During the event, consumers (respectively merchants) may want to buy
(respectively sell) some product by exploiting the applications on their devices.
Consider further a consumer application implemented using Lime tuple space

240 P. Inverardi, V. Issarny, and R. Spalazzese

Rdg(Browse)

TupleList(Browse)

Rdg(GetInfo)

TupleList(Info)

Out(Request)

reactsTo(Response) Notification(Response)

In(Response)

Tuple(No) Tuple(Yes)

reactsTo(Proximity)

Notification(Proximity)

Tuple(Proximity) In(Proximity)

Tuple(No)

Tuple(Proximity)

FINAL STATE

Fig. 2. The LTS of the tuple space consumer

and a merchant application implemented using UPnP. Figures 2 and 3 give their
respective behavioral representation in terms of LTS.

Informally, the consumer application (Fig. 2) behaves as follows: first, it
browses the tuple space to retrieve the list of all merchants. Once it gets it,
it looks for details about the merchants that sell a specific product (popcorn
in our case) with a certain price (for example, less than a threshold) within
some distance (for example, within a given range). Then, the application writes
into the tuple space a request of a given quantity of the product to the chosen
merchant and waits for a response. If the request can be satisfied, the consumer
receives a positive response and waits for a signal of proximity that the merchant
application will send when close enough. Otherwise, the consumer receives a neg-
ative response (e.g, because the merchant has no sufficient quantity of product
to satisfy the request). In both cases, the consumer can either send a new request
or restart from the beginning, i.e., from browsing the tuple space.

The behavior of the merchant application (Fig. 3) can be described as follows:
it gets authorization from the event organizers, it receives queries from consumers
and sends answers to them advertising its information. Then, the application
receives more requests of information from the consumers and answers them
providing the required information. Further, it receives requests of ordering of
products from consumers and answers a consumer either: positively sending a
proximity message when it is physically close to the consumer, or negatively in
case it is not able to satisfy the request.

Even though these two applications have some complementary behaviors (pro-
tocols are functionally matching), they are very different and they are not able
to interoperate (because of protocol behavioral mismatches). Note that the mer-
chant needs first to be authenticated by a third party. In addition, mediating the

A Theory of Mediators for Eternal Connectors 241

MSEARCH

Response

HTTPGET

HTTPGETResponse

SOAPRequest(GetInfo)

SOAPResponse(Info)

SOAPResponse(No)
SOAPResponse(Yes)

SOAPRequest(Request)

SOAPMessage(Proximity)

FINAL STATE

Authorized

RequestAuthorization

Fig. 3. The LTSs of the UPnP merchant

protocols of the consumer and merchant to achieve interoperability, is far from
trivial, especially if one wants to achieve this automatically. This is such an auto-
mated support that we aim at in our work, where first results of our approach are
presented in [17], which presents a high level description of the theory.

3 A Formalization of Protocols

As discussed in Section 2, the “application-layer interaction protocol” is the be-
havior of a system in terms of the actions it exchanges with its environment, i.e.,
other application-layer interaction protocols. We further exploit LTS to charac-
terize such behavior.

3.1 Protocols as LTS

LTSs constitute a widely used model for concurrent computation and are often
used as a semantic model for formal behavioral languages such as process alge-
bras. Let Act be the set of observable actions (input/output actions), we get the
following definition for LTS:

Definition 1 (LTS)
A LTS P is a quadruple (S, L, D, s0) where:
- S is a finite set of states;
- L ⊆ Act

⋃{τ} is a finite set of labels (that denote observable actions) called the
alphabet of P. τ is the silent action. Labels with an overbar in L denote output
actions while the ones without overbar denote input actions. We also use the
usual convention that for all l ∈ L, l = l.
- D ⊆ S × L × S is a transition relation;
- s0 ∈ S is the initial state.

242 P. Inverardi, V. Issarny, and R. Spalazzese

We then denote with {L ⋃{τ}}∗ the set containing all words on the alphabet L.
We also make use of the usual following notation to denote transitions:

si
l−→ sj ⇔ (si, l, sj) ∈ D

We consider an extended version of LTS, where the set of the LTS’ final states is
explicit. An extended LTS is then a quintuple (S, L, D, F, s0) where the quadru-
ple (S, L, D, s0) is a LTS and F ⊆ S. From now on, we use the terms LTS and
extended LTS interchangeably, to denote the latter one. The initial state to-
gether with the final states, define the boundaries of the protocol’s coordination
policies. A coordination policy is indeed defined as any trace that starts from the
initial state and ends into a final state. We get the following formal definition of
traces/coordination policy:

Definition 2 (Trace)
Let P = (S, L, D, F, s0).
A trace t = l1, l2, . . . , ln ∈ L∗ is such that:
∃(s0

l1−→ s1
l2−→ s2 . . . sm

ln−→ sn) where {s1, s2, . . . , sm, sn} ∈ S ∧ sn ∈ F .
We also use the usual compact notation s0

t⇒ sn to denote a trace, where t is
the concatenation of actions of the trace.

We adopt the notion of parallel composition à la CSP [6]. We recall that the
semantics of the parallel composition is that processes P and Q need to synchro-
nize on common actions while can proceed independently when engaged in non
common actions.

Definition 3 (Parallel composition of protocols)
Let P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q).
The parallel composition between P and Q is defined as:
the LTS P ||Q = (SP ×SQ, LP∪LQ, D, FP ∪FQ, (s0P , s0Q)) where the transition
relation D is defined as follows:

P
m−→ P ′

P ||Q m−→ P ′||Q m �∈ LQ

Q
m−→ Q′

P ||Q m−→ P ||Q′ m �∈ LP

P
m−→ P ′; Q m−→ Q′

P ||Q τ−→ P ′||Q′ m ∈ LP

⋂
LQ

Note that when we build the parallel composition of protocols P and Q with the
environment E and the mediator M , the composed protocol is restricted to the
languages of P and Q thus forcing them to synchronize.

A Theory of Mediators for Eternal Connectors 243

3.2 Abstract Protocol

Given the definition of enriched LTS associated with two interaction protocols
run by networked systems, we want to identify whether such two protocols are
functionally matching and, if so, to synthesize the mediator that enables them to
interoperate, despite language differences, third parties communications, and be-
havioral mismatches. With functional matching we mean that given two systems
with respective interaction protocols P and Q, ontologies OP and OQ describing
their actions, ontology mapping functions of P and Q, and their common ontol-
ogy OPQ, there exist at least two complementary traces that allow P and Q to
coordinate. That is, sequences of actions of one protocol can synchronize with
sequences of actions in the other. This can happen by properly taking into ac-
count translation of the languages and communication with third parties. Thus,
at a given level of abstraction, we expect to find a common protocol that rep-
resents their potential interactions. This leads us to formally analyze such alike
protocols to find, if it exists, a suitable mediator that allows the interoperability
that otherwise would not be possible.

In order to find the protocols’ abstractions, we exploit the information con-
tained in the ontology mapping to suitably relabel the protocols. The relabeling
function allows us to substitute (sequences of) actions of the original language
into action(s) on the common language thanks to the ontology mapping. Af-
ter the relabeling operation on the LTSs, we obtain new LTSs labeled only by
common actions and τs, that is more abstract than before, e.g., sequences of
actions may have been compressed into single actions. In the following, we give
the formal definitions concerning the abstract protocol. With respect to the
popcorn scenario, Figure 4 summarizes the ontological information of the con-
sumer (first column) and of the merchant (third column). The second column
shows the common language mapping where Figures 2 and 3 illustrate the two
protocols. Thanks to the ontology mapping, labels of consumer and merchant’s
protocols (expressed on two different ontologies) are mapped onto labels of the
common ontology (more abstract). We specialize the usual ontology mapping
definition [9,10] by considering pairs of elements made by more than one label.
We use the specialized ontology mapping on protocols’ ontology where the vo-
cabularies are represented by the languages of the protocols. That is, we consider
P = (SP , LP , DP , FP , s0P), OP = (L∗

P , AP) the ontology of P , and O = (L∗, A)
another ontology. maps : L∗

P → L∗ is the ontology mapping function that maps
P ’s ontology into the ontology O.

By applying this ontology mapping, we relabel protocols with words of their
common language (ontology) and τs for the thirds parties languages. To identify
which is the common language, we first map each protocol’s ontology into an-
other one, resulting from ontology mediation, and then by intersection we find
their common language.

Figure 5 depicts the abstraction of protocols. We consider two protocols P and
Q with respective ontologies OP and OQ and ontology mapping functions mapsP

and mapsQ. We first use the mapping functions to map OP and OQ into a target
ontology where COP and COQ represent the codomain sets of mapsP and mapsQ

respectively. The subsets of DP and DQ of OP and OQ, respectively, represent

244 P. Inverardi, V. Issarny, and R. Spalazzese

Tuple Space Consumer Common Language
Mapping

UPnP+SOAP Merchant

Rdg(Browse).
TupleList(Browse)

1 1

2 2

MSEARCH.
Response

Rdg(GetInfo).

TupleList(Info)

1

1

2 2

HTTPGET.
HTTPGETResponse.
SOAPRequest(GetInfo).
SOAPResponse(Info)

Out(Request).
reactsTo(Response)

1

1

SOAPRequest(Request)

Notification(Response).
In(Response).
Tuple(No)

1

1

SOAPResponse(No)

Notification(Response).
In(Response).
Tuple(Yes).
reactsTo(Proximity).
Notification(Proximity).
In(Proximity).
Tuple(Proximity)

1

2

1

2

SOAPResponse(Yes).
SOAPMessage(Proximity)

Fig. 4. Ontology mapping between tuple space consumer and UPnP Merchant

AP
AQ

QP

OPQmapsP
mapsQ

COQ

COP

OP
OQDP

DQ

w OPQ

w OPQ

Fig. 5. The abstract protocol building

the portion of the domains of mapsP and mapsQ respectively corresponding to
COP and COQ. Note that we consider protocols such that for each element of the
codomain corresponds only one element of the domain. The common language
between P and Q is defined as the intersection OPQ of COP and COQ. The
relabeled (abstracted) protocols, AP and AQ of P and Q respectively, are built
as follows: (i) the chunks (states and transitions) of P and Q labeled by words of
DP and DQ, respectively are substituted by building a single transition labeled
with words of OPQ ; (ii) all the other transitions labeled with actions belonging
to the thirds parties language, are relabeled with τs . Having P , Q, OP , OQ,
mapsP , and mapsQ, the relabeling function is applied after the computation of
COP , COQ, DP , DQ, and OPQ. The relabeling function on P takes as input
P, DP , OPQ, {OP \ DP } and gives as result an abstracted LTS AP (it applies
similarly for Q). More formally, having P , Q, OP , OQ, mapsP , mapsQ, COP ,
COQ, DP , DQ, and OPQ the relabeling function is defined as follows:

A Theory of Mediators for Eternal Connectors 245

(a) Consumer (b) Merchant

Fig. 6. Abstracted LTSs of consumer and merchant protocols

Definition 4 (Relabeling function)
Through the function relabels : (P, DP , OPQ) → AP , AP is built as follow:
each chunk of P labeled with a trace t belonging to DP is substituted by one
transition with label w ∈ OPQ and each transition labeled with a word belonging
to {OP \ DP } is maintained and relabeled with a τ .

In the popcorn scenario, the only label that is not abstracted in the common
language is the authorization that represents a third party coordination. The con-
sumer and merchant’s abstracted LTSs are shown in Figure 6. The subsequent
step is to check whether the two abstracted protocols share a complementary co-
ordination policy, i.e., whether the abstracted protocols may indeed synchronize,
which we check over protocol traces as discussed next.

3.3 Towards Automated Matching and Mediator Synthesis

The formalization described so far is needed to: (1) characterize the protocols and
(2) abstract them into protocols on the same alphabet. As illustrated previously,
to establish whether two protocols P and Q can interoperate we have to check
the existence of portions of their respective abstracted protocols (AP and AQ)
that can interoperate. That is, AP and AQ have to share complementary policies.
To establish this, we use the functional matching relation between AP and AQ.
This relation succeeds if AP and AQ have complementary traces. More formally:

Definition 5 (Functional matching)
Let P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q).
Let AP and AQ be the abstracted protocols of P and Q, respectively.
Let TAP and TAQ be the set of all the traces of AP and AQ, respectively.
Let C be a coordination policy denoted by final state fC
P and Q have a functional matching under ontology mapping mapsP and mapsQ

with respect to policy C iff: fC ∈ mapsP (FP), fC ∈ mapsQ(FQ), Let TCAP =
{s0P

t⇒ fC ∈ TAP} and TCAQ = {s0Q

t⇒ fC ∈ TAQ}, then TCAP =s/r TCAQ

where the equality of sets of traces over send-receive (noted s/r) denotes equality
modulo complementary send-receive actions.

The functional matching relation defines necessary conditions that must hold
in order for a set of networked systems to interoperate through a mediator. In

246 P. Inverardi, V. Issarny, and R. Spalazzese

Fig. 7. Mediating connector for the popcorn scenario (MT and MC)

our case, till now, the set is made by two networked systems and the matching
condition is that they have complementary traces regarding a given coordination
policy. Note that these traces are computed on the abstracted protocols and
might contain τ actions that represent third parties synchronization.

Then, given given two protocols P and Q that functionally match, we want
to synthesize a mediator M such that the parallel composition P ||M ||Q, allows
P and Q to evolve to their final states. An action of P and Q can belong either
to the common language or the third parties language, i.e., the environment. We
build the mediator in such a way such that it lets P and Q evolve independently
for the portion of the behavior to be exchanged with the environment (denoted
by τ action in the asbracted protocols) until they reach a “synchronization state”
from which they can synchronize on complementary actions. Note that the syn-
chronization cannot be direct since the mediator needs to perform a suitable
translation according to the ontology mapping, e.g. α1 = Rdg(Browse) in one
protocol and α1 = MSEARCH in the other.

The mediator is made of two separate components: MC and MT . MC speaks
only the common language and MT speaks only the third parties language. MC

is a LTS built starting from the common language between P and Q whose aim
is to solve the protocol-level mismatches occurring among their dual interactions
(complementary sequences of actions) by translating and coordinating between
them. MT , if it exists, is built starting from the third parties language of P and
Q and represents the environment. The aim of MT is to let the protocols evolve,
from the initial state or from a state where a previous synchronization is ended, to
the states where they can synchronize again. Formalization of mediator synthesis

A Theory of Mediators for Eternal Connectors 247

given the specification of functional matching is part of our current work, while
we summarize below the principles of our approach using the popcorn scenario.

In our illustration, we assume to have with the behavioral specification of
consumer and merchant applications as LTSs (Figures 2 and 3), their coordi-
nation policies (thanks to the initial and final states on LTSs), their respective
ontologies describing their actions, and the ontology mapping that defines the
common language between consumer and merchant, i.e., represents their possible
interactions (Figure 4). The first step is to abstract the protocols exploiting the
ontology mapping. Following the theory, the abstracted protocols for the pop-
corn scenario are illustrated in Figure 6. The second step is to check whether they
share some coordination policies. In this scenario we recall that the merchant is
able to simulate the consumer. Then the coordination policies that they share
are exactly the consumer’s ones. Then, with the application of the theory to the
scenario, we obtain the connector of Figure 7. In this case only the merchant
have third parties language actions and then the mediator is made by the part
that translates and coordinates regarding the common language and the part
that simulates the environment.

4 Related Work

A number of solutions to automated protocol mediation have recently emerged,
leveraging the rich capabilities of Web services and Semantic Web technologies
[21,20,15,24]. They differ with respect to: (a) a priori exposure of the process
models associated with the protocols that are executed by networked resources,
(b) knowledge assumed about the protocols run by the interacting parties, (c)
matching relationship that is enforced. However, most solutions are discussed
informally, making it difficult to assess their respective advantages and draw-
backs.

What is needed is a new and formal foundation for mediating connectors from
which protocol matching and associated mediation may be rigorously defined
and assessed. These relationships may be automatically reasoned upon, thus
paving the way for on the fly synthesis of mediating connectors. To the best
of our knowledge, such an effort has not been addressed in the Web services
and Semantic Web area although proposed algorithms for automated mediation
manipulates formally grounded process models.

However a work very close to our is [25] that proposes a theory to characterize
and solve the interoperability problem of augmented interfaces of applications.
The authors formally defines the checks of applications compatibility and the
concept of adapters. The latter can be used to bridge the differences discovered
while checking the applications that have functional matching but are protocol
incompatible. Furthermore they provide a theory for the automated generation
of adapters based on interface mapping constraints. The main disadvantages
of this work are that the approach is semi-automatic because of the interface
mapping. Additionally, applications are assumed to agree on the ordering of
messages, thus not solving ordering mismatches.

248 P. Inverardi, V. Issarny, and R. Spalazzese

A recent work [3] addresses the interoperability problem between services and
provide experimentation on real Web2.0 social applications. The paper deals
with the integration of a new service implementation, to substitute a previ-
ous one with the same functionalities. The new implementation does not still
guarantee behavioral compatibility despite complying with the same API of the
previous one. They hence propose a technique to dynamically detect and fix
interoperability problems based on a catalogue of inconsistencies and their re-
spective adapters. This is similar to our proposal to use ontology mapping to
discover mismatches and mediator to solve them. Our work differs with respect
to theirs because we aim at automatically synthesizing the mediator. Instead,
their approach is not fully automatic since although they discover and select
mismatches dynamically, the identification of mismatches and of the opportune
adapters is made by the engineer.

References [13,2] are related to our work since they identify and classify basic
types of mismatches that can possibly occur when compatible but mismatching
processes try to interoperate. Moreover, they provide support to the developers
by assisting them while identifying protocol mismatches and composing media-
tors. In [13], the authors also take into consideration more complex mediators
obtained by composition of basic ones. The main difference between these two
works and ours is the semi-automation issue. Indeed, they require the developer
intervention for detecting the mismatches, configuring the mediators, composing
basic mediators while, thanks to formal methods, we are able to automatically
derive the mediator under some conditions.

5 Conclusion

In this paper, we have formally investigated the interoperability of protocols that
are observable at the interface level. Key issue is to solve behavioral mismatches
among the protocols although they are functionally matching. We have specif-
ically introduced a theory towards interoperability as a means to: (1) clearly
define the problem, (2) show the feasibility of the automated reasoning about
protocols, i.e., to check their functional matching and to detect their behavioral
mismatches, (3) show the feasibility of the automated synthesis of abstract medi-
ators under certain conditions to dynamically overcome behavioral mismatches
of functionally matching protocols. Our theoretical framework is a first step to-
wards the automatic synthesis of actual mediators and we believe that it is very
important to devote investigation to this goal. Significant part of our current
work is on leveraging practically the proposed theory in particular dealing with
automated reasoning about protocol matching and further automated protocol
mediation. Our current work is further concerned with the integration with com-
plementary work ongoing within the Connect project so as to develop an overall
framework enabling the dynamic synthesis of emergent connectors among net-
worked systems. Relevant effort includes the study of: learning techniques to dy-
namically discover the protocols that are run in the environment, dependability
assurance, data-level mediation, as well as algorithms and run-time techniques

A Theory of Mediators for Eternal Connectors 249

towards efficient synthesis. Such effort is presented in the Connect companion
papers of the Isola’2010 conference, and detail about overall Connect results
may be found from the project Web site at http://connect-forever.eu/.

References

1. The popcorn scenario dry-run experiment’s details,

http://www.connect-forever.eu/connect-dry-run/

2. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing

adapters for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.)

CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

3. Denaro, G., Pezzè, M., Tosi, D.: Ensuring interoperable service-oriented systems

through engineered self-healing. In: Proceedings of ESEC/FSE 2009. ACM Press,

New York (2009)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Resusable Object-Oriented Software. Addison-Wesley, Reading (1995)

5. Grace, P., et al.: Towards an architecture for runtime interoperability. In: Margaria,

T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 206–220. Springer,

Heidelberg (2010)

6. Hoare, C.A.R.: Communicating sequential processes. ACM Commun. 26(1), 100–

106 (1983)

7. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in

automata learning: Considerations from the connect perspective. In: Margaria, T.,

Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235. Springer,

Heidelberg (2010)

8. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-

nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-

lenges: Towards Emergent Connectors for Eternal Networked Systems. In: 14th

IEEE International Conference on Engineering of Complex Computer Systems,

Postdam Germany (2009)

9. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.

Eng. Rev. 18(1), 1–31 (2003)

10. Kalfoglou, Y., Schorlemme, M.: Ontology mapping: The state of the art. In:

Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Semantic

Interoperability and Integration, Dagstuhl, Germany. Dagstuhl Seminar Proceed-

ings, vol. 04391, IBFI, Schloss Dagstuhl (2005)

11. Keller, R.M.: Formal verification of parallel programs. ACM Commun. 19(7), 371–

384 (1976)

12. Kumar, R., Nelvagal, S., Marcus, S.I.: A discrete event systems approach for pro-

tocol conversion. Discrete Event Dynamic Systems 7(3) (1997)

13. Li, X., Fan, Y., Wang, J., Wang, L., Jiang, F.: A pattern-based approach to de-

velopment of service mediators for protocol mediation. In: Proceedings of WICSA

2008, pp. 137–146. IEEE Computer Society, Los Alamitos (2008)

14. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.

Lang. Syst. 16(6) (1994)

15. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions. In: WWW 2007: Proceedings of the

16th international conference on World Wide Web, pp. 993–1002. ACM, New York

(2007)

http://www.connect-forever.eu/connect-dry-run/

250 P. Inverardi, V. Issarny, and R. Spalazzese

16. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD

Rec. 33(4) (2004)

17. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating

connectors for on the fly interoperability. In: Proceedings of the Joint Working

IEEE/IFIP Conference on Software Architecture and European Conference on

Software Architecture, WICSA/ECSA 2009 (2009)

18. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.

In: ICSE 2003: Proceedings of the 25th International Conference on Software

Engineering (2003)

19. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation archi-

tecture. In: Proceedings of the 1st Canadian Semantic Web Working Symposium

(CSWWS 2006). Springer, Heidelberg (2006)

20. Vacuĺın, R., Neruda, R., Sycara, K.P.: An Agent for Asymmetric Process Mediation

in Open Environments. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,

Vo, Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006, pp. 104–117. Springer, Heidelberg

(2008)

21. Vacuĺın, R., Sycara, K.: Towards automatic mediation of OWL-S process models.

In: IEEE International Conference on Web Services, pp. 1032–1039 (2007)

22. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE

Computer 25, 38–49 (1992)

23. Wiederhold, G., Genesereth, M.: The conceptual basis for mediation services. IEEE

Expert: Intelligent Systems and Their Applications 12(5), 38–47 (1997)

24. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol mediation for adaptation

in semantic web services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,

vol. 4011, pp. 635–649. Springer, Heidelberg (2006)

25. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM

Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

On-the-Fly Interoperability through
Automated Mediator Synthesis and Monitoring�

Antonia Bertolino1, Paola Inverardi2, Valérie Issarny3,
Antonino Sabetta1, and Romina Spalazzese2

1 CNR-ISTI, Pisa, Italy
2 Università degli Studi dell’Aquila, L’Aquila, Italy

3 INRIA, CRI Paris-Rocquencourt, France

Abstract. Interoperability is a key and challenging requirement in to-
day’s and future systems, which are often characterized by an extreme

level of heterogeneity. To build an interoperability solution between the

networked systems populating the environment, both their functional

and non-functional requirements have to be met.

Because of the continuous evolution of such systems, mechanisms that

are fixed a-priori are inadequate to achieve interoperability. In such chal-

lenging settings, on-the-fly approaches are best suited.

This paper presents, as an interoperability solution, an approach that

integrates an automated technique for the synthesis of mediator pro-

tocols with a monitoring mechanism. The former aims to provide in-

teroperability taking care of functional characteristics of the networked

systems, whereas the latter makes it possible to assess the non-functional

characteristics of the connected system.

1 Introduction

The realization of the Ubiquitous Computing vision [18] is still nowadays chal-
lenged by the often extreme level of heterogeneity in the system’s underlying
infrastructures, which in turns impacts on the ability to seamlessly interoperate.

Interoperability is a primary requirement in such systems, and, in order to
achieve it, two aspects have to be considered: functional interoperability and non-
functional interoperability. The first one solely refers to functional properties
and aims at allowing the Networked Systems (NSs) to communicate. Instead,
non-functional interoperability refers to the assessment and achievement of the
non-functional characteristics which qualify the communication (how it should
be provided). Indeed, while building an interoperability solution, both functional
and non-functional properties of the connected system under-construction must
be taken into account and ensured.

The fast pace at which technology evolves at all the abstraction layers ad-
ditionally hampers the interoperability achievement between NSs in the digital
environment. Interoperability should be “future-proof”, i.e., NSs should be able
to interoperate in spite of technological evolution and contextual changes.
� This work is partly supported by the Connect European Project No. 231167.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 251–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 A. Bertolino et al.

To face emerging functional and non-functional requirements in such heteroge-
nous and evolving setting, relying on interoperability mechanisms that are fixed
a-priori, can be proved to be inadequate, and on-the-fly approaches would be
best suited.

Overcoming the interoperability barriers in the Ubiquitous Computing sys-
tems is at the heart of Connect [13]. The Connect Integrated Project aims
at dropping the interoperability barrier by adopting a revolutionary approach to
the seamless and eternal networking of systems, that is, by synthesizing on-the-
fly the Connectors (or mediators) via which NSs communicate. The synthesis
process is based on a formal foundation for Connectors, which allows learning,
reasoning about, and adapting the interaction behavior of NSs at run-time. Syn-
thesized connectors are concrete emergent system entities that are dependable,
unobtrusive, and evolvable, while not compromising the quality of Connected
systems.

In this paper, as an excerpt of the Connect solution, we present an integrated
approach to on-the-fly interoperability that combines automated mediator syn-
thesis and monitoring. The former (based on a theory of mediator synthesis
presented in [11]) aims at providing functional interoperability, whereas the lat-
ter takes care of non-functional interoperability.

One of the Connect underlying principle is to make minimal assumptions
on the NSs. In particular, the project considers that NSs information, needed to
compute an interoperability solution, is either declaratively provided by them or
derived from them exploiting learning techniques. However, for the purpose of
this paper, we assume NSs to come with their behavioral description and a set
of policies describing their non-functional constraints, which may involve perfor-
mance, dependability, security and trust requirements. In order to achieve a com-
plete Connection, the functional interoperability is pursued by construction
through synthesis, whereas non-functional interoperability is addressed by suit-
ably combining differing analysis, verification and enforcement techniques. An
overview of the approaches under development in Connect for non-functional
interoperability is given in [3]. In particular, we foresee to apply some approaches
at synthesis time (see, e.g., the companion Connect paper by Di Giandomenico
and coauthors [8]), in synergy with mediator construction. However, some opera-
tional constraints expressed as policies cannot be assessed statically at synthesis
time. This paper focuses on this problem: we overview here the approach through
which we combine the mediator synthesis with a runtime checking mechanism,
implemented through monitoring.

Several other works in the literature relate to ours, both concerning the au-
tomated synthesis of mediators [19,17], and monitoring [12,5], especially in the
context of service-oriented systems. The emphasis of this work however is on the
combination of the two aspects and the approach we follow is mostly independent
of specific technological frameworks.

The paper is organized as follows. We give an illustrative scenario and we
present our approach at a high level (Section 2). Then, we recall our automated
synthesis of mediators and we describe the integration with the monitoring of

On-the-Fly Interoperability through Automated Mediator Synthesis 253

mediators (Sections 3 and 4 respectively). Finally, we conclude with perspectives
for future work (Section 5).

2 Approach Description

This section outlines our approach by introducing a running example first, and
then we explain the principles of our approach applied to that example.

2.1 Running Example

Let us consider a Photo-Sharing system in a stadium; the system allows specta-
tors to exchange pictures of the most significant happenings, e.g., goals in the
case of football games. The spectators can be producers (respectively consumers)
of pictures and hence they can upload (respectively search, download) pictures.

Different kind of interaction may be envisioned for the Photo-Sharing, in-
cluding centralized and peer-to-peer ones. In a centralized implementation, the
stadium would offer the Photo-Sharing service and the spectators’ smartphones
run service clients to upload, search, and download pictures; typical supporting
middleware solution would be RPC-based, e.g., using a service-oriented middle-
ware. In a peer-to-peer implementation, the spectators’ smartphones would run
a peer-to-peer application for photo exchanges (implementing the upload, search
and download functionalities), for which a distributed shared memory à la tuple
space would be the middleware of choice.

Fig. 1. High-level view of the Photo-Sharing NSs

The behavior of the producers consists in uploading the photo, and the behav-
ior of the consumer lies in searching and then downloading photos of interest.

Considering the shared memory implementation, the Photo-Sharing producer
writes first the metadata and then the file associated with the given photo into
the shared memory; while the consumer seeks the list of metadata descriptors
matching a given metadata template into the shared memory and then itera-
tively reads the files of interest. With respect to the RPC implementation, the
producer and consumer exchange photos calling the proper services on the server
and receiving the corresponding replies. The producer calls the upload opera-
tion with both metadata and file as parameters. The consumer, instead, calls
the search operation with a certain metadata and receives as reply the list of el-
ements matching the request. Then iteratively the consumer calls the download
of selected pictures specified thanks to their identifier ID and receives as reply
the corresponding files.

254 A. Bertolino et al.

We consider, as a running example, the case in which an NS (NS1) running a
shared-memory-based photo producer protocol is in a stadium and the stadium
is equipped with the shared-memory infrastructure. Another NS (NS2) run-
ning an RPC-based photo consumer protocol accesses the stadium and wants
to share pictures. Although apparently simple, this scenario presents substan-
tial challenges to interoperability. In fact, despite the different implementations,
the intents of the producers and consumers are compliant being upload and
download pictures respectively. While there is an obvious behavioral (or proto-
col) mismatch between the RPC-based and the shared-memory implementations
from the application down to the middleware layers. This type of mismatch can
be addressed by emergent mediators, synthesized on the fly [11]. However, this
does not solve the problem entirely because constraints on non-functional prop-
erties are still not taken into account. Our proposal to manage these aspects is
outlined in the following.

2.2 On-the-Fly Connector Synthesis and Monitoring

The networked systems1 populating the open environment, e.g. the Photo-Sharing
producers and consumers, are characterized by: intent, behavioral description,
ontological description, and by constraints (expectations) about non-functional
properties. The above characterization could be either declaratively advertised
by the NSs or inferred exploiting learning techniques [10,4].

The NSs constraints or requirements on the non-functional properties charac-
terize “how” the interoperable connection should be provided. These constraints
need to be expressed in a format that allows their automated interpretation and
processing. In principle, different NSs could use many different languages to rep-
resent this information; in this paper we take the simplifying assumption that
a mapping from such languages to a common Connect reference model exists
and thus they are expressed in the same language.

To give an example of a NSs requirement, the photo-sharing consumer may
require that the time it takes to get a list of photos that match a query be less
than x ms.

We recall that a necessary condition for the networked systems to communi-
cate is to be compatible. That is, to make sense for the NSs to communicate,
they have to expose complementary (provided/required) intents. From a func-
tional point of view, despite the complementarity of intents, the RPC-based
consumer and the shared-memory-based producer cannot interoperate (commu-
nicate) directly with each other because their concrete protocols are different.
In order to bridge this difference, a suitable functional mediator is synthesized
on-the-fly [11]. The synthesis process happens at the time when the intention
to communicate is manifested by either party. The goal of the synthesis process
is to realize the “functional interoperability” by producing a protocol mediator
that allows the two NSs to communicate dealing only with functional aspects.

1 For the sake of simplicity, we explain the mediation process assuming only two NSs;

in general, the same principles can be extended to scenarios with more NSs.

On-the-Fly Interoperability through Automated Mediator Synthesis 255

Fig. 2. An overview to mediators synthesis approach

In order to ensure that the functional mediator satisfies the non-functional
constraints, we propose to couple the synthesized mediator with a suitable mon-
itoring system whereby the non-functional constraints imposed by each NS can
be checked at runtime. In this way, the monitoring is used to make sure that the
connected system (i.e., the result of assembling the two NSs with the synthesized
mediator) satisfies the expectations, in terms of non-functional characteristics,
of both sides of the connection.

Thus, our approach addresses: 1) functional interoperability pursued by-
construction at synthesis time (i.e.,a-priori), and 2) non-functional interoper-
ability, that is compliance to non-functional constraints, continuously assessed
at execution time (a-posteriori), by passive monitoring. Figure 2, whose elements
are explained in the following, summarizes the main ingredients of our approach
whose theory is presented in the companion paper [11].

We call affordance [9] the description of the functionality that is offered/re-
quested by a networked system, i.e., to provide/require pictures in our Photo-
Sharing scenario. In other words, an affordance is a high-level action-possibility
(or functionality or capability) that characterizes the intended and/or possible
interactions between the networked system and its environment.

We specialize this notion of affordance, to characterize our networked systems
as mentioned in the beginning of this section.

More precisely, we consider that an affordance includes: (i) an intent (I1, I2

in Figure 2), that is used to perform a first check about the NSs compatibility in
terms of complementarity of intents, i.e., provided/required functionalities; (ii)
a protocol (PR1, PR2 in Figure 2), run by the system to carry on its capability,
which is used to perform another check about protocol/behavioral compatibility;
(iii) middleware and applications’ ontologies (OMW and O1, O2 respectively in
Figure 2), describing protocol’s actions exploited during the protocol translation
done before the check of protocol compatibility; (iv) a set of policies (P1, P2 in
Figure 2) that qualify the conditions that are required for the NS to function

256 A. Bertolino et al.

correctly. The policies are used to express constraints on the operational condi-
tions under which a connection may take place.

In Connect certain types of policies, namely security policies, are not just
checked but also enforced (see [7] for details). Other non-functional properties,
such as those related to performance and reliability, business rules are assessed
by passive observation on the live system and thus we can deal with them.

Our approach to the automated synthesis of mediators is briefly recalled in
the next section, while monitoring integrated with the synthesis is the topic of
Section 4.

3 Automated Synthesis of Mediators

In this section we introduce the necessary information about our synthesis
approach to explain the integration with the monitoring. We summarize the
automated synthesis of mediators that builds on the early theory of application-
layer mediators presented in [16] and deals with the interoperability of both
application- and middleware-layer. Additional details can be found in the com-
panion paper on the theory of mediators [11] and in [1].

Given two NSs affordances, first we check (from a functional standpoint) that
they have compliant intents, i.e. if they amount on the same capability (provid-
ed/required respectively).

Having checked the intent compliance, our goal is to synthesize a media-
tor to solve the mismatches occurring between the protocols. We use Labeled
Transition Systems (LTSs) [14] to represent the protocols associated with the
behavioral description of affordances.

Let Act be the set of observable input/output actions and τ be the silent
action (we use the usual convention that the output actions are denoted by an
overbar while the input actions have no overbar). An extended LTS, which makes
final states explicit, is a quintuple (S, L, D, F, s0) where: (i) S is a finite set of
states, (ii) L ⊆ Act

⋃{τ} is a finite set of labels called the alphabet of the LTS,

Fig. 3. Heterogeneous protocols in pervasive photo sharing

On-the-Fly Interoperability through Automated Mediator Synthesis 257

(iii) D ⊆ S × L × S is a transition relation, (iv) F ∈ S is the set of final states,
and (v) s0 ∈ S is the initial state.

As an illustration, Figure 3 depicts the LTSs of the affordance protocols
associated with the Photo-Sharing scenario that we informally introduced in
Section 2.1.

In particular, an action of Act is specifically structured as: MW< AP, IN,
OUT >, where MW denotes the middleware function that is called to interact
with the peer system through the application function AP that is parameterized
by input and output parameters, IN and OUT respectively.

Given the two LTSs, PR1 and PR2, characterizing the behaviors of func-
tionally matching affordances, they are translated into LTSs PR′

1 and PR′
2 for

the sake of comparison. The translated protocols are defined in a middleware-
agnostic way over common application actions following application ontology
alignment.

The translation of protocols in particular relies on the alignment of application
layer functions into common application-specific ontologies (O in Figure 2) and
on the translation of middleware functions from reference middleware ontology
(OMW in Figure 2) into primitive send/receive actions [1].

Once PR′
1 and PR′

2 have been produced, we check their compatibility (also
referred to as mediated matching) according to the set of traces T1 and T2 as-
sociated with PR′

1 and PR′
2, respectively. If the two protocols are compatible,

then we are able to synthesize a mediator M that is such that when building
the parallel composition PR1||PR2||M, PR1 and PR2 are able to coordinate
by reaching their final states.

Figure 4 shows the mediator protocols synthesized by our approach for the
Photo-Sharing example.

Fig. 4. Mediator protocol in pervasive photo sharing

258 A. Bertolino et al.

4 Automated Monitoring of Mediators

The synthesis procedure described in the previous section yields a mediator
that is able to bridge behavioral mismatches between NSs. However, affordance
descriptions includes policies, which are used to express non-functional require-
ments imposed by the NS, or declarations of non-functional characteristics, guar-
anteed by the NS. In the Photo-Sharing example, a client may require that the
time to obtain a list of photos that match a query must be less than X time
units. This is an example of latency property. Similarly, the client may declare
that it will never invoke the search operation more than three times in a minute
(i.e., it guarantees it will generate a bounded workload).

In order to ensure that the Connected system as a whole satisfies the require-
ments imposed by each NS participating in the connection, we adopt a runtime
checking approach, supported by a dedicated monitoring infrastructure. This
infrastructure (shown in Figure 5) is structured according to a generic, flexible
architecture that decouples business-level (or high-level) event specification from
the underlying observation and detection mechanisms. From a technical perspec-
tive, this decoupling is achieved by delegating to a probe, paired with mediator,
the task of collecting low-level (i.e., primitive) event occurrences, which happen
when a transition on the mediator LTS is taken. Primitive event occurrences are
collected from the probes through a message-oriented backbone. The detection
of complex events, defined as combinations of primitive events, is done using a
Complex Event Recognizer [15]. Finally, complex event occurrences are notified
to the interested consumers, again using the message-oriented backbone.

The monitoring manager is responsible for converting non-functional con-
straints coming from affordance specifications into directives to derive the
probe(s), to instruct the Complex Event Recognizer, and to configure the routing

consumers

out ports
(topics)

Probe

Synthesised Protocol Mediator

CONNECTor

Networked Networked

non-functional
constraint specification

Fig. 5. Connect monitoring infrastructure

On-the-Fly Interoperability through Automated Mediator Synthesis 259

of monitoring information over the monitoring bus (i.e., from the probes to the
event recognizer and then to the consumers interested in specific complex events).

As an example, in this paper we consider a constraint that defines the accept-
able latency for operations used by the RPC photo-sharing client. As already
mentioned, other properties can be checked using the same framework, as long
as they can be translated onto the complex event specification language used in
the Connect monitoring system.

We assume that latency constraints are expressed in terms of operations be-
longing to the interface of the NS. For example, the already mentioned constraint
imposed by the RPC client on the time it takes to get a list of photos that match
a query, can be expressed as:

Δ(Call(SearchPhotos,-,-),ReceiveReply(SearchPhotos,-,-) < X

which means “the time elapsed from calling the operation SearchPhotos to the
receiving a reply for that invocation must be less than X time units”.

This policy is expressed in terms of high-level functionalities (i.e., operations
included in the public interface of the NS) and using the RPC middleware primi-
tives (in this example, Call, ReceiveReply). It must be processed in order to derive
a specification that is used to configure the monitoring system so that the policy
can be checked.

In order to do so, the policy is converted into its corresponding formulation
in terms of complementary actions performed by the mediator. In this example,
Call(SearchPhotos,-,-) translates to ReceiveCall(SearchPhotos,-,-) and analogously
ReceiveReply(SearchPhotos,-,-) translates to Reply(SearchPhotos,-,-). The resulting
constraint on the behavior of the mediator is therefore:

Δ(ReceiveCall(SearchPhotos,-,-),Reply(SearchPhotos,-,-) < X ′

Although in general, X ′ = X+Xn, where Xn is the delay due to the network, for
the sake of simplicity, here we assume that this delay is negligible (i.e., Xn = 0)
and therefore X ′ = X .

In real-life scenarios, Xn is typically not negligible, so a client policy that
requires the delay to be less than X (observed on the client) translates into
a requirement that the delay observed on the mediator be less than X − Xn.
This is a general problem entailed by observing latency (or other time-related
properties) in networked settings. However, this is beyond the scope this paper
and we do not discuss it further.

Finally, the expression obtained for the constraint on the mediator is trans-
lated into a language that is readily understood by the event-correlation engine.
The example in Listing 1.1 shows the latency constraint expressed the specifica-
tion language used by Drools Fusion [6], an open source rule engine with complex
event processing capabilities.

The rule PhotoSearchLatency matches a ReceiveCall event followed by a Reply
event (lines 4 and 8 respectively), ensuring that both refer to the same session

260 A. Bertolino et al.

1 rule ”PhotoSearchLatency ”

2 when
3 // t h i s i s the complementary o f Ca l l
4 $ c a l l : Rece iv eCa l l (

5 operat ion == ”SearchPhotos” ;

6 $ s e s s i on : s e s s i o n i d)

7 from entry−point ”PhotoSharingMediator”

8 $rep ly : Reply (

9 s e s s i o n i d == $se s s i on ;

10 operat ion == ”SearchPhotos” ;

11 this after [1200ms] $ c a l l)

12 from entry−point ”PhotoSharingMediator”

13 then
14 // i n j e c t alarm on the monitoring bus
15 end

Listing 1.1. Sample rule for checking a latency policy

(lines 6 and 9) and that the latter happens no earlier than 1200 ms2 after the
former (line 11). If all these conditions are verified, an alarm is injected into the
monitoring bus (line 14) so that the subscribers for that kind of complex event
can be notified.

5 Conclusion

The high degree of heterogeneity in the current digital system’s underlying in-
frastructures thwarts the realization of the long-standing Ubiquitous Computing
vision. Interoperability is a key requirement in such systems, where both func-
tional and non-functional aspects expressed by Networked Systems have to be
met while making them able to work together.

The continuous evolution characterizing the Ubiquitous environment, asks for
on-the-fly approaches rather than relying on interoperability mechanisms fixed
a-priori that are not adequate to completely address the problem.

In order to achieve a complete Connection (functional and non-functional
interoperability), this paper presented a combined interoperability approach.
It is made by the integration of an automated technique for the synthesis of
mediators with a monitoring mechanism. The mediators provide functional in-
teroperability and the monitors make it possible to assess the non-functional
characteristics of the connected system at runtime that cannot be assessed stat-
ically at synthesis time.

As future work, we plan to investigate the following aspects that are important
in the larger Connect picture [2].

We need to propose a language to express non-functional constraints and
properties.
2 In this example, we assume 1200 ms is the concrete value for X ′.

On-the-Fly Interoperability through Automated Mediator Synthesis 261

We need to provide reaction policies or reaction policy patterns that can be
undertaken when something wrong is detected by the monitoring. Examples are:
to use predictive approaches that try to prevent the wrong behaviors; to adapt
the Connect architectural infrastructure, if possible, for improving the provided
connection; eventually, to notify the Networked Systems about the unexpected
behavior, and let them directly handle the problem.

As a long-term goal, we will work towards including reasoning about non-
functional properties into the synthesis process [8].

References

1. Bennaceur, A., Blair, G., Georgantas, N., Grace, P., Inverardi, P., Issarny, V.,

Pathak, A., Saadi, R., Spalazzese, R.: Revisiting the Middleware Paradigm: On-

the-fly Interoperability in Highly Complex Distributed Systems. Technical Report,

INRIA Rocquencourt - Paris (May 2010)

2. Bennaceur, A., Blair, G.S., Chauvel, F., Georgantas, N., Grace, P., Howar, F.,

Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Steffen, B.,

Souville, B.: Towards an architecture for runtime interoperability. In: ISoLA 2010,

Part II. LNCS, vol. 6416, pp. 206–220. Springer, Heidelberg (2010)

3. Bertolino, A., Di Giandomenico, F., Di Marco, A., Issarny, V., Martinelli, F., Masci,

P.M., Matteucci, I., Saadi, R., Sabetta, A.: Dependability in dynamic, evolving and

heterogeneous systems: the CONNECT approach. In: 2nd International Workshop

on Software Engineering for Resilient Systems SERENE 2010, London, U.K (2010)

4. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-

havior protocols for composable web-services. In: ESEC/FSE 2009: Proceedings

of the the 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering, pp.

141–150. ACM, New York (2009)

5. Bianculli, D., Ghezzi, C.: Monitoring conversational web services. In: IW-SOSWE

2007: 2nd international workshop on Service oriented software engineering, pp.

15–21. ACM, New York (2007)

6. Browne, P.: JBoss Drools Business Rules. Packt Publishing (2009)

7. Costa, G., Matteucci, I.: Enforcing private policy via security-by-contract. Special

issue Identity and Privacy Management. UPGRADE Journal XI(1), 43–53 (Febru-

ary 2010)

8. Di Giandomenico, F., Kwiatkowska, M., Martinucci, M., Masci, P., Qu, H.: De-

pendability analysis and verification for connected systems. In: ISoLA 2010, Part

II. LNCS, vol. 6416, pp. 263–277. Springer, Heidelberg (2010)

9. Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin (1979)

10. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in

automata learning: Considerations from the connect perspective. In: Margaria, T.,

Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235. Springer,

Heidelberg (2010)

11. Inverardi, P., Issarny, V., Spalazzese, R.: A theory of mediators for eternal connec-

tors. In: ISoLA 2010, Part II. LNCS, vol. 6416, pp. 236–250. Springer, Heidelberg

(2010)

12. Inverardi, P., Mostarda, L.: Desert: a decentralized monitoring tool generator. In:

ASE 2007: Proceedings of the twenty-second IEEE/ACM international conference

on Automated software engineering, pp. 529–530. ACM, New York (2007)

262 A. Bertolino et al.

13. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-

nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-

lenges: Towards Emergent Connectors for Eternal Networked Systems. In: 14th

IEEE International Conference on Engineering of Complex Computer Systems,

Postdam Germany (2009)

14. Keller, R.M.: Formal verification of parallel programs. ACM Commun. 19(7), 371–

384 (1976)

15. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-

ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,

Inc., Amsterdam (2001)

16. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating con-

nectors for on the fly interoperability. In: Proceedings of the Joint Working IEEE/I-

FIP Conference on Software Architecture and European Conference on Software

Architecture (WICSA/ECSA 2009), pp. 345–348 (2009)

17. Vacuĺın, R., Sycara, K.: Towards automatic mediation of OWL-S process models.

In: IEEE International Conference on Web Services, pp. 1032–1039 (2007)

18. Weiser, M.: The computer for the 21st century. Scientific American (Septmeber

1991)

19. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol mediation for adaptation

in semantic web services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,

vol. 4011, pp. 635–649. Springer, Heidelberg (2006)

Dependability Analysis and Verification
for Connected Systems�

Felicita Di Giandomenico1, Marta Kwiatkowska2,
Marco Martinucci1, Paolo Masci1,3, and Hongyang Qu2

1 Information Science and Technologies Institute, CNR, Pisa, Italy
2 Oxford University Computing Laboratory, Oxford, UK

3 Dept. of Information Engineering, University of Pisa, Italy

Abstract. The Connect project aims to enable the seamless compo-

sition of heterogeneous networked systems. In this context, Verification

and Validation (V&V) techniques are sought to ensure that the Con-

nected system satisfies dependability requirements. Stochastic model

checking and state-based stochastic methods are two appealing V&V

approaches to accomplish this task. In this paper, we report on the ap-

plication of the two approaches in a typical Connect scenario. Specif-

ically, we make clear (i) how the two approaches can be employed to

enhance the confidence in the correctness of the analysis, and (ii) how

the complementarity of these approaches can be fruitfully exploited to

extend the analysis.

1 Introduction

The Connect project [14] aims at dropping the barriers that prevent hetero-
geneous networked systems from being Connected, by enabling their seamless
composition in spite of technological evolution. To achieve this aim, Connect

intends to dynamically synthesise the Connectors that allow the networked sys-
tems to communicate. The resulting emergent Connectors compose and adapt
interaction protocols run by the Connected systems.

In addition to functional properties, Connectors generally need to satisfy
non-functional properties as well. Therefore, an evaluation to assess whether the
Connector specification is adequate to satisfy the dependability requirements
is highly desirable. Indeed, Verification and Validation (V&V) techniques are
sought in Connect to ensure that networked systems, as well as the generated
bridging Connectors, satisfy specified levels of accomplishment for dependabil-
ity requirements, according to pertinent dependability metrics. Note that, in
Connect, dependability is used as a term inclusive of several non-functional
properties [4], e.g., including also performance aspects.

In Connect we are interested in quantitative, or probabilistic, dependability
evaluation. To this purpose, as indicated in [1], the two main approaches are
modelling and (evaluation) testing. Since evaluation testing assumes that a test

� This work is supported by the European FP 7 project CONNECT (IST 231167).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 263–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

264 F. Di Giandomenico et al.

suite is run on the system under test, which in the Connect vision is not a
priori available, for the analysis we focus on modelling.

Modelling is composed of two phases: (i) building a model for the system from
the elementary stochastic processes that represent the behaviour of the compo-
nents of the system and their interactions (these elementary stochastic processes
relate to failures, to repair, service restoration and possibly to system duty cycle
or phases of activity); (ii) processing the model to obtain the expressions and
the values of the dependability measures of the system.

Research in dependability analysis has developed a variety of modelling tech-
niques, each of which focuses on particular levels of abstraction and/or system
characteristics. As reported in [18], important classes of model representation in-
clude combinatorial methods (such as Reliability Block Diagrams), model check-
ing, and state-based stochastic methods. We are not interested in combinatorial
methods, which are simpler approaches and do not easily capture certain fea-
tures, such as stochastic dependence and imperfect fault coverage. Therefore, in
the context of Connect, we consider as evaluation techniques:

– Stochastic model checking, which is a formal verification technique for the
analysis of stochastic systems. It is based on the construction of a proba-
bilistic model from a precise, high-level description of a system’s behaviour.

– State-based stochastic methods, which use state-space mathematical models
expressed with probabilistic assumptions about time durations and tran-
sition behaviours. They allow explicit modelling of complex relationships
(e.g., concerning failure and repair processes), and their transition structure
encodes important sequencing information.

In this paper, these two approaches are applied to a Connect scenario to per-
form various dependability analyses, thus showing their complementarity in as-
sessing dependability properties. First, both approaches are used to validate two
basic dependability properties. Next, extra properties are checked by the ap-
propriate approach, selected according with its ability to cope with the specific
type of analysis. Indeed, the different formalisms and tools implied by the two
methods allow: (i) on the one hand, to complement the analysis from the point
of view of a number of aspects, such as level of abstraction/scalability/accuracy,
for which the two approaches may show different abilities to cope with; and (ii)
on the other hand, through the inner diversity, provide cross-validation to en-
hance confidence in the correctness of the analysis itself. The rest of the paper
is structured as follows. Section 2 introduces the tools implementing the ap-
proaches, and properties supported by the tools. A Connect scenario, namely,
a model of a distributed market scenario, is presented in Section 3, and analysed
in Section 4. We conclude the paper in Section 5.

2 Analysis and Verification Tools

In this section, we present a brief description of PRISM and Möbius, which
implement stochastic model checking and state-based stochastic methods re-
spectively.

Dependability Analysis and Verification for Connected Systems 265

2.1 PRISM

PRISM [12] is a popular probabilistic model checker, which can handle discrete
and continuous time Markov chain models (DTMCs and CTMCs), as well as
Markov decision processes (MDPs). DTMC and MDP models may be verified
against probabilistic temporal logic formulae given in terms of PCTL (Probabilis-
tic Computational Tree Logic) [11,6], as well as cost/reward-based properties,
and LTL (Linear Temporal Logic) formulae [19]. CTMCs may be verified against
CSL (Continuous Stochastic Logic) [2,3] formulae. Both states and transitions
in a system can be associated with rewards, which allow for the checking of both
instantaneous and cumulative properties.

So far PRISM has been applied to numerous probabilistic models, such as net-
work protocols, security protocols, randomised distributed algorithms, biological
processes, etc.

Modelling formalism. As Connected systems evolve in a manner where
a system stays in a state for a certain period of time and then moves to a
successor state, we model such systems using CTMCs because they preserve the
memoryless property. For CTMCs, the memoryless property not only requires
that the probability of firing a transition totally depends on the current state, but
also asks the probability to be independent of the elapsed time so far. The only
continuous probability distribution exhibiting this property is the exponential
distribution, which associates a rate to each transition in CTMCs. The rate can
be understood as the average number of times we can execute the transition per
unit of time. The probability of executing a transition from the current state
within t time units is 1 − e−λ·t. The rates associated with all transitions in a
CTMC can be stored in a transition rate matrix R, where each entry represents
a rate between a pair of states. A transition can only occur from state s to state
s′ if R(s, s′) > 0. If more than one transition can be executed in state s, the
successor state is determined by the first transition being taken. Let S be the set
of states in a CTMC. The amount of time for which the system stays in s before
any transition occurs is governed by an exponential distribution with rate E(s)

such that E(s)
def
=

∑
s′∈S R(s, s′). The probability of going to successor state s′

from state s is calculated as follows.

P(s, s′) =

⎧⎨
⎩

R(s, s′)/E(s) if E(s) �= 0,
1 if E(s) = 0 and s = s′,
0 otherwise.

(1)

Properties of interest. Using formula (1), we can compute the probability
of reaching a set of target states through all paths. Steady-state behaviour is
another interesting property for CTMC models. The steady-state probability
for a state s is the probability of being in s in the long run, which can be used
to infer the percentage of time that the model spends in s in the long run.

In addition to path and steady-state probabilities, we consider two additional
types of reward for instantaneous and cumulative rewards separately. Every

266 F. Di Giandomenico et al.

transition is associated with an instantaneous reward and every state has a
cumulative reward. The former is the actual reward obtained when the system
executes a transition, and the latter is the coefficient, at which the reward is
computed in a state, for the amount of time spent in that state. We can define
the expected reward of reaching a set of target states F through paths. The
reward for a path that does not pass any target state is set to ∞. Thus, the
expected reward of reaching a state in F from state s is finite if all non-zero
probability paths starting from s pass a state in F .

2.2 Möbius

Möbius [8] is a popular software tool that provides a comprehensive framework
for model-based dependability and performance evaluation of systems. The main
features of the tool include: (i) multiple high-level modelling formalisms, includ-
ing, among others, Stochastic Activity Networks (SANs) [20] and PEPA fault
trees [10]; (ii) a hierarchical modelling paradigm, allowing one to build com-
plex models by first specifying the behaviour of individual components and then
by combining the components to create a model of the complete system; (iii)
customised measures of system properties; (iv) distributed discrete-event simu-
lation, to evaluate measures using efficient simulation algorithms to repeatedly
execute the system and gather statistical results of the measures; (v) numerical
solution techniques, to obtain exact solutions for Markov models.

Modelling formalism. We model the system with Stochastic Activity Net-
works (SANs). SANs are stochastic extensions of Petri Nets; they have a graph-
ical representation and consist of four primitive objects: places, activities, input
gates and output gates. Places in SANs have the same interpretation as in Petri
Nets, i.e., they hold tokens. The number of tokens in a place is referred to as
the marking of that place, and the marking of the SAN is the set of all place
markings. There are two types of activities: instantaneous and timed. Timed ac-
tivities represent actions that have a duration that impacts the performance of
the modelled system, e.g., message transmission time, recovery time, time to fail.
The duration of each timed activity is expressed via a time distribution function.
Both instantaneous and timed activities may have case probabilities. Each case
probability stands for a possible outcome of the activity, and can be used to
model probabilistic aspects of the system, e.g., probability for a component to
fail. Input gates control the enabling of activities, and output gates define the
state change that will occur when an activity completes.

SAN models can be composed with Join and Rep operators. Join is used
to compose two or more SANs. Rep is a special case of Join, and is used to
construct a model consisting of a number of replicas of a SAN. Models in a
composed system interact via Place Sharing. Place Sharing is a composition
formalism based on the notion of sharing places via an equivalence relation.

Properties of interest. Properties of interest are specified with reward func-
tions. Each reward function is a C++ function that specifies how to measure a

Dependability Analysis and Verification for Connected Systems 267

property on the basis of the marking of the SAN. There are two kinds of reward
functions: rate reward and impulse reward. Rate rewards can be evaluated at any
time instant. Impulse rewards are associated with specific activities and they can
be evaluated only when the associated activity completes. Measurements can be
conducted at specific time instants, over periods of time, or when the system
reaches the steady state.

3 The Distributed Market Scenario

We consider a case study based on a distributed market, where consumers
execute a discovery protocol to gather information on the products sold by mer-
chants. The discovery phase is performed in two steps. In the first step, con-
sumers interoperate with all merchants to gather a list of all available products.
In the second step, consumers select a product type and continue to interoperate
with a subset of merchants (those that sell the selected product type) to gather
additional information on the product.

Since consumers and merchants have heterogeneous devices that execute dif-
ferent protocols, interoperability among them is obtained via a Connector that
bridges the functional mismatches between the protocols. Without loss of gen-
erality, we assume that all merchants have the same protocol P1, and that all
consumers have the same protocol P2 (P2 �= P1).

Figure 1 illustrates the LTSs (Labelled Transition Systems) for consumer,
merchant, Connector and Connected system. For simplicity, in Figure 1(c),
we assume that there are two merchants in the market, one of which sells the
product requested by a consumer. A larger number of merchants is handled by
the Connector in the same way. In the first discovery step, the Connector
receives the consumer’s request rdgBrowse and sends a message mSearch to
all merchants. Each merchant responds with a message resp. Note that the
Connector can handle any order of responses from the merchants. The Con-

nector then sends back to the consumer a message tupleListBrowse. In the
second step, the Connector converts the consumer’s request rdgGetInfo into
two requests httpGet and httpGetResp to the merchant selling the product,
and obtains the responses soapReqGetInfo and soapRespInfo respectively. In
the end, the Connector returns a response tupleListInfo to the consumer.
The LTS for the composed system is illustrated in Figure 1(d). The complete
description of the scenario for a Connected system with one consumer and one
merchant is presented in [13].

Basic dependability properties. In this paper, we consider two basic prop-
erties that will be analysed using both PRISM and Möbius. In Section 4, further
properties will be analysed in order to extend the analysis in accordance with
the capabilities of the approaches.

– Coverage in the first step. We are interested in the percentage of merchants
that can give a response to the Connector in a given time interval during
the first step. This property is affected by the network characteristics in the

268 F. Di Giandomenico et al.

(a) Consumer (b) Merchant

(c) Connector

(d) System

Fig. 1. LTS models for distributed market scenario

market, e.g., the number of consumers, the number of merchants, and the
reliability of the channel. In the rest of the paper, we analyse the result for
the case in which there is one consumer and three merchants. The trans-
mission speed is modelled by different values of the rate associated with the
transitions among consumer, Connector, merchants.

– Latency in the second step. Latency is more interesting in the second step,
as the communication between the Connector and the merchants involves
more message exchanges. Similarly to coverage, we assume there is a single
consumer in addition to three merchants, all of which are selling the re-
quested product. We measure the time spent by the consumer from when it
starts to send rdgGetInfo to the arrival of tupleListInfo.

Dependability Analysis and Verification for Connected Systems 269

4 Dependability Analysis and Verification

In this section, we model the Connect scenario using PRISM and Möbius
respectively, and perform dependability analysis on the models.

4.1 PRISM Models

The LTSs for the scenario in Figure 1 can be translated into the PRISM CTMC
model in a straightforward manner. In detail, each component LTS in Fig-
ure 1(a)-1(b) is translated into a PRISM module in the following way. We define
a variable in each module, whose domain is the set of states in the corresponding
LTS and whose initial value is the initial state of the LTS. Each transition in
the module has the same label as the corresponding one in the LTS. Since the
LTSs do not contain information for rates, we deliberately assign rate R1 = 1 to
all transitions between the consumer and the connector, and assign R2 (which
may vary) to those between the connector and the merchants.

In order to check the basic properties specified in Section 3, we need to add
the timeout mechanism to the model. Two timeouts T1 and T2 are introduced
to model the maximum time for the first step and second step respectively.
However, the deterministic delay in timeout breaks the basic rule of CTMCs:
all delays in a CTMC model respect exponential distributions, and this makes
the model difficult to verify. In this paper, we use an Erlang distribution to
approximate a deterministic delay T by a sequence of transitions, each of which
has an exponential distribution of rate k/T , where k is the number of transitions
in the sequence. The accuracy of the approximation, as well as the verification
time, increases as k increases. In the experiments, we choose k to be T ×10, i.e.,
the rate in the Erlang distribution is 10, which is a reasonable trade-off between
speed and accuracy.

4.2 Stochastic Verification

In this section, we first show the verification results for the basic properties, and
then discuss additional properties that can be verified using CSL. For each prop-
erty, we construct a set of experiments by choosing different values for timeouts
T 1 and T 2, and letting R2 range over values 0.1, 0.5 and 1.0 respectively. This
way, we can illustrate the trend as T 1 (resp. T 2) increases.

Coverage. This property is specified by the following CSL reward formula on
the reward structure Coverage:

R=?[C≤T], (2)

where C≤T represents the cumulative reward up to time bound T . The structure
Coverage associates the real value m/n to states where, among the total number
n of merchants, m merchants send back their response to the connector within
T 1 time units after they receive the request mSearch. We choose T to be T 1 +

270 F. Di Giandomenico et al.

(a) Coverage (b) Latency

Fig. 2. Verification results

10 to take into account the time for transmitting message rdgBrowse. This
formula calculates the expected cumulative reward within T time units, and the
verification results are shown in Figure 2(a).

Latency. In the second step of the discovery, the connector triggers a timeout
after T 2 units of time when it receives message rdgGetInfo from the consumer.
When the timeout occurs, the connector does not wait for pending responses
from merchants, and returns tupleListInfo to the consumer. To verify this
property, we use formula (2) on the reward structure Latency, which assigns
1/(T 2/k) = 10 to each transition used to approximate the timeout. The results
are depicted in Figure 2(b).

Probability of receiving replies from all merchants in the second step.
In addition to the basic properties, we are also interested in the probability
of receiving responses from all merchants contacted within deadline T 2 in the
second discovery step. This property is formulated as follows:

P=?[F≤T (m = n)], (3)

where T = T 2 + 2, n is the total number of merchants contacted and m is the
number of merchants that reply before the timeout. This formula computes the
probability of all paths that can reach a state satisfying m = n within T units.

In formula (3), T = T 2 + 2 is a reasonable bound to take into account the
transmission time for rdgGetInfo and tupleListInfo, given R1 = 1 for these
two messages. However, it is still possible that it takes longer than 2 units of time
to transmit these messages, which generates a small error in the experimental
results. Steady state probability can be used to overcome this problem. If we
ignore truncation errors, formula (4) gives an accurate value for the required
probability at a cost of longer verification time.

Dependability Analysis and Verification for Connected Systems 271

Fig. 3. Verification results for probability and steady-state probability

S=?[m = n] (4)

In Figure 3, the curves labelled R2 = 0.1, R2 = 0.5 and R2 = 1.0 are probabilities
computed using formula (3), and the others are computed using formula (4)
for the same rates, respectively. Note that the accurate result for the coverage
property can be computed by the steady-state reward formula:

R=?[S] (5)

on the corresponding reward structure. However, the difference between the val-
ues computed by formulae (2) and (5) in this example is negligible.

Maximum probability of receiving replies from all merchants in the
second step. In the second discovery step, a certain number n1 of merchants,
instead of the total number n of merchants, are contacted for the information of
the request product. This number n1 may vary depending on many factors, such
as the traffic in the network. The property considers the maximum probability
of receiving responses from all n1 merchants in the following situation. At the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

M
ax

im
um

 P
ro

ba
bi

lit
y

Timeout T2

R2=0.1

R2=0.5

R2=1.0

Fig. 4. Verification results for maximum probability

272 F. Di Giandomenico et al.

beginning of the second step, when the consumer is in state 2 in Figure 1(a),
(formulated as Consumer = 2), the number of merchants that will be contacted
is beyond a certain bound, i.e., n1 ≥ n · a (a ∈ (0, 1]). Let m1 be the number
of responses received before timeout occurs at T 2. The property can be checked
by formula (6):

P=?[F (m1 = n1){n1 ≥ n · a ∧ Consumer = 2}{max}]. (6)

The results for a = 1
3 and n = 3 are illustrated in Figure 4.

4.3 SAN Models

The SAN models of merchant, consumer and Connector are shown in Figure 5.
The model of the Connected system is obtained by composing, via place shar-
ing, the SAN models of consumer, Connector and merchants (the SAN model
of the merchants is obtained by replicating a merchant with the Rep operator).
There is a shared place for each pair of activities that represent send/receive
actions: send activities add tokens in the shared place, while receive activities
remove tokens from the shared place and use the marking of the shared place
as enabling condition. Note that, in general, a send activity may control n > 1
receive activities (e.g., in the case of a message with multicast/broadcast ad-
dresses); in this case, the send activity will add n tokens to the shared place to
allow the simultaneous enabling of the receive activity of n receivers.

Timing aspects for send/receive actions are taken into account in the SAN
models as follows: when n receive activities complete simultaneously after a send
action completes, the receive activities are instantaneous and the send activity
is timed; when n receive activities complete independently after a send action
completes, the receive activities are timed and the send activity is instantaneous.
Timeouts are modelled with timed activities that force the enabling of other
activities.

In the following we describe in detail the behaviour of the model of Con-

nected system during the first step. In the description, we will use the prefixes
C, M[i], and CON to disambiguate the names of local places, activities and gates
of consumer, merchants, and Connector.

Initially, all places in the models have zero tokens, except P0, which con-
tains one token in all models. The consumer starts the communication, because
C.rdgBrowse is the only enabled activity. When C.rdgBrowse completes, one to-
ken is placed in C.P1 and one token in SharedC0. At this point, CON.rdgBrowse
is enabled. When CON.rdgBrowse completes, one token is moved from SharedC0
to CON.P1, and CON.mSearch becomes enabled.

When CON.mSearch completes, the marking changes as follows: n tokens are
placed in SharedM0, because n merchants must be involved in the communi-
cation; n tokens are placed in CON.P2, because the Connector must wait for
one resp from each merchant; one token is placed in CON.start1, because the
Connector has a timeout on the maximum waiting time.

Dependability Analysis and Verification for Connected Systems 273

(a) Consumer (b) Merchant

(c) Connector

Fig. 5. SAN models

Each token in SharedM0 enables the instantaneous activity M[i].mSearch of
a merchant. All such activities complete immediately1 and enable M[i].resp.
Whenever a M[i].resp completes, a token is placed in SharedM1 to enable the in-
stantaneous activity CON.resp of the Connector, which places a token in CON.P3
and CON.Nresps. The number of tokens in CON.Nresps represents the number of
merchants that will participate to the interactions during the second step. This be-
haviour continues until CON.tupleListBrowsebecomes enabled, i.e., either when
CON.timeOut1 completes (one token is placed in CON.stop1), or n responses are
received from the merchants (n tokens are present in CON.P3 and CON.Nresps).

4.4 State-Based Stochastic Analysis

In this section, we present the analysis performed with Möbius: first, we cross-
validate the results obtained by PRISM for coverage and latency; second, we
1 When instantaneous activities and timed activities are enabled at the same time, all

instantaneous activities complete first.

274 F. Di Giandomenico et al.

scale up to large systems with hundreds of merchants; third, we refine the SAN
models to take into account some real-world aspects that have an impact on
coverage and latency, such as traffic patterns and communication failures.

Cross validation. The reward functions are expressed as follows.

Coverage. This property is specified by accumulating over time the following
impulse reward on CON.resp (NMerchants is a parameter of the composed model,
and holds the number of merchants):

double coverage() {

if (CON->start1->Mark() > 0) { return 1.0/NMerchants; }

return 0;

}

Latency. This property is specified by accumulating over time the following rate
reward function:

double latency() {

if (CON->P4->Mark() > 0 || CON->start2->Mark() > 0

|| CON->stop2->Mark() > 0) { return 1; }

return 0;

}

We were able to successfully reproduce with Möbius the verification results of
PRISM. We used simulation, and the relative difference between the average
results was always below 2%.

Scalability of the models. Connected systems may include an arbitrary
large number of networked systems. Therefore, we investigated the scalability
of the SAN model of the Connected system by analysing large networks. The
developed SAN model of the Connected system is parametric with respect
to the number of merchants: networks with different number of nodes can be
modelled by changing only one model parameter.

We successfully assessed coverage and latency for scenarios with hundreds of
merchants. Figure 6(a) shows the analysis results for latency in scenarios with
at most 100 merchants. The number of batches needed to reach a confidence
level of 95% and a confidence interval of 10% for the considered models was
always below 10K, because the models are relatively simple. Figure 6(b) reports
the average time to complete 10K simulation batches for different number of
merchants on a system with a 2.8GHz Intel Core2 Quad processor.

Latency for different traffic patterns. Connected systems are expected
to be a mix of heterogeneous user applications, each of which may have different
characteristics and requirements. Currently, there is no single traffic distribution
that can efficiently capture the traffic characteristics of all types of networks un-
der every possible situation. A large number of empirical studies have shown that
network traffic is self-similar and that it generally exhibits multiple time-scale

Dependability Analysis and Verification for Connected Systems 275

(a) Latency (b) Analysis Time

Fig. 6. Latency and time required for the analysis for different system size

(a) Latency for different traffic patterns (b) Coverage for different PrxResp

Fig. 7. Latency and coverage in different settings

behaviour [16]. These aspects can be modelled with subexponential distributions,
such as Weibull and Lognormal.

We investigated the effect of different subexponential distributions on latency
by changing the probability distribution function of the timed activities. For a
fair comparison, we have chosen distribution parameters that allow the same
mean value in all cases. The analysis results are shown in Figure 7(a). We can
notice that different traffic patterns lead to different latency profiles.

Coverage in the case of failures. Communication in the real-world can be
subject to failures. Therefore, failure modes need to be accounted for when set-
ting up the system model. Failure modes can pertain the value domain (e.g.,
wrong output), and/or the time domain (e.g., omission). In this section, we as-
sess coverage in the case of omission failure of the multicast search received
by the merchants (M[i].mSearch) and omission failure of the responses sent

276 F. Di Giandomenico et al.

by the merchants (M[i].resp). Figure 7(b) shows the coverage profiles for dif-
ferent probability PrxResp of failures of resp; in the figure, the probability of
failure of M[i].mSearch depends on the timeout value and is derived from the
analysis results reported in [17]; e.g., for T 1 = 10, the probability of failure of
M[i].mSearch is 0.87.

5 Conclusions

We have shown two approaches to analyse dependability properties for a Con-

nect scenario. As can be seen in the previous section, the experimental results
produced by one approach match those by the other approach for a significant
range of properties. Each approach has its own advantages regarding modelling
capability, specification of properties, scalability, etc. For example, bounded until
formula φ1UIφ2, steady state formula S��p[φ] and more complex CSL formulae
can be verified in PRISM without manually augmenting models, while Möbius
can deal with larger sized models and can mix exponential distributions with
other distributions.

During the case study, we also found that the cross validation was particularly
useful to improve the confidence in the correctness of the models. For example, by
analysing the mismatches between results produced by PRISM and Möbius on the
common properties, we were able to remove subtle non-deterministic behaviours
that were erroneously present in the models, and eliminated the mismatches.

In the future, we are planning to apply both approaches to a more complex
case study, and explore further the cross-fertilisation capabilities of PRISM and
Möbius. In particular, we would like to exploit the assume-guarantee reasoning
method [15,9] implemented in PRISM to analyse large models. We were unable to
apply this here because the assume-guarantee approach has only been developed
for Markov decision processes and safety properties at present. In addition, we
are also interested in speeding up our approaches via incremental verification
and analysis, and developing online techniques to provide support for on-the-fly
Connector synthesis [5], such as those based on [7].

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-

omy of dependable and secure computing. IEEE Transactions on Dependable and

Secure Computing 1(1), 11–33 (2004)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov

chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–

276. Springer, Heidelberg (1996)

3. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of

continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR

1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)

4. Bertolino, A., Di Giandomenico, F., Di Marco, A., Issarny, V., Martinelli, F., Masci,

P., Matteucci, I., Saadi, R., Sabetta, A.: Dependability in dynamic, evolving and

heterogeneous systems: the connect approach. In: Proc. 2nd International Work-

shop on Software Engineering for Resilient Systems, SERENE2010 (2010)

Dependability Analysis and Verification for Connected Systems 277

5. Bertolino, A., Inverardi, P., Issarny, V., Sabetta, A., Spalazzese, R.: On-the-fly

interoperability though automated mediator synthesis and monitoring. In: ISoLA

2010, Part II. LNCS, vol. 6416, pp. 251–262. Springer, Heidelberg (2010)

6. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026. Springer,

Heidelberg (1995)

7. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-

namic QoS management and optimisation in service-based systems. IEEE Trans-

action on Software Engineering (to appear)

8. Clark, G., Courtney, T., Daly, D., Deavours, D.D., Derisavi, S., Doyle, J.M.,

Sanders, W.H., Webster, P.G.: The Möbius modeling tool. In: 9th Int. Workshop on

Petri Nets and Performance Models, pp. 241–250. Aachen, Germany, Los Alamitos

(September 2001)

9. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic

systems using learning. In: Proc. 7th International Conference on Quantitative

Evaluation of Systems (QEST 2010). IEEE CS Press, Los Alamitos (2010)

10. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic

fault trees. In: Annual Reliability and Maintainability Symposium, pp. 57–63. IEEE

Computer Society Press, Los Alamitos (1997)

11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

Aspects of Computing 6(5), 512–535 (1994)

12. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-

matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)

TACAS 2006. LNCS, vol. 3920, Springer, Heidelberg (2006)

13. Inverardi, P., Issarny, V., Spalazzese, R.: A theory of mediators for eternal con-

nectors. In: ISoLA 2010, Part II, 2010. LNCS, vol. 6416, pp. 236–250. Springer,

Heidelberg (2010)

14. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-

nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: Connect Challenges:

Towards Emergent connectors for Eternal Networked Systems. In: 14th IEEE Inter-

national Conference on Engineering of Complex Computer Systems, pp. 154–161.

IEEE Computer Society, Los Alamitos (2009)

15. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification

for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) Tools and Algo-

rithms for the Construction and Analysis of Systems. LNCS, vol. 6015, pp. 23–37.

Springer, Heidelberg (2010)

16. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar na-

ture of ethernet traffic (extended version). IEEE/ACM Transactions on Network-

ing 2(1), 1–15 (1994)

17. Masci, P., Chiaradonna, S., Di Giandomenico, F.: Dependability analysis of diffu-

sion protocols in wireless networks with heterogeneous node capabilities. In: 8th

European Dependable Computing Conference (EDCC2010), pp. 145–154. IEEE

Computer Society, Los Alamitos (2010)

18. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-

ability to security. IEEE Transactions on Dependable and Secure Computing 1,

48–65 (2004)

19. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium

on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE Computer

Society Press, Los Alamitos (1977)

20. Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: formal definitions and

concepts, pp. 315–343 (2002)

Towards a Connector Algebra�

Marco Autili1, Chris Chilton2, Paola Inverardi1,
Marta Kwiatkowska2, and Massimo Tivoli1

1 Dipartimento di Informatica - Università degli Studi di L’Aquila, Italy

{marco.autili,paola.inverardi,massimo.tivoli}@di.univaq.it
2 Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK

{chris.chilton,marta.kwiatkowska}@comlab.ox.ac.uk

Abstract. Interoperability of heterogeneous networked systems has yet
to reach the maturity required by ubiquitous computing due to the

technology-dependent nature of solutions. The Connect Integrated

Project attempts to develop a novel network infrastructure to allow het-

erogeneous networked systems to freely communicate with one another

by synthesising the required connectors on-the-fly. A key objective of

Connect is to build a comprehensive theory of composable connectors,

by devising an algebra for rigorously characterising complex interaction

protocols in order to support automated reasoning. With this aim in

mind, we formalise a high-level algebra for reasoning about protocol mis-

matches. Basic mismatches can be solved by suitably defined primitives,

while complex mismatches can be settled by composition operators that

build connectors out of simpler ones. The semantics of the algebra is

given in terms of Interface Automata, and an example in the domain of
instant messaging is used to illustrate how the algebra can characterise

the interaction behaviour of a connector for mediating protocols.

1 Introduction

Ubiquitous computing is an emerging paradigm that is rapidly changing the
way we use technology to perform everyday tasks. The widespread availability
of digital systems, together with the introduction of new communication infras-
tructures, make it possible to run and interact with software systems on a vari-
ety of networked devices. However, computing and networking technologies have
yet to reach the maturity required by ubiquitous computing since technology-
dependent limitations reduce the effectiveness of integrating and composing het-
erogeneous networked systems.

The Connect Integrated Project1 attempts to develop a novel networking
infrastructure to allow heterogeneous networked systems to freely communicate
with one another. This would be achieved by the synthesis of emergent con-
nectors on-the-fly. Towards this aim, a key objective of Connect is to build
� This work is partly supported by the Connect European Project No 231167, and

EPSRC project EP/D076625/2.
1 http://connect-forever.eu/

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 278–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards a Connector Algebra 279

a comprehensive theory of composable connectors, by devising an algebra that
can model complex interaction behaviours with respect to both functional and
non-functional properties. The algebra will serve as a baseline for automated
reasoning and learning about system interaction behaviours, in addition to au-
tomated synthesis, matching, refinement, composition, evolution, and (possibly
partial) re-use of connectors. This also concerns finding an adequate formalism
to express and quantify, for each connector, the desired Quality of Service levels
for end-to-end properties of the networked systems.

The comprehensive characterisation of such a connector algebra is our long-
term goal. In this paper, as a starting point for developing such an algebra, we
focus only on the functional behaviour of connectors that act as protocol me-
diators. Consequently, our algebra will characterise the behavioural mismatches
that occur during interactions among heterogeneous networked systems. Quanti-
tative aspects of networked systems and connectors are not considered hereafter;
that is left as future work.

As discussed in [14,19] (and references therein), a possible approach to proto-
col mediation involves the categorisation of recurring protocol mismatches that
must be solved by means of mediator patterns. For each type of mismatch, a
pattern can be defined as a solution to the interaction incompatibility. Clearly,
a catalogue of such problems and their related solutions would not solve all pos-
sible mismatches, but combining multiple sub-solutions should facilitate their
solution.

Inspired by the set of basic mediator patterns described in [19], this paper
presents a high-level algebra that reasons about protocol mismatches. Solutions
to basic mismatches are modelled as primitives of the algebra, while complex
mismatches can be solved by combining suitable primitives in a variety of ways.
The semantics of the algebra is given in terms of Interface Automata (IA) of de
Alfaro and Henzinger [11]. Thus, composition of terms in the algebra reduces
to composition of the underlying IA. Some of these compositions are already
defined on IA, but we will also present specific compositions that we conjecture
are necessary for a meaningful connector algebra.

Our choice of using IA for the semantics of the algebra is heavily influenced
by a previous survey of connector notations we conducted as part of Connect

[1]. In that report we surveyed a number of formalisms against eight dimensions
deemed to be of particular interest to the project. These were compositionality,
incrementality, scalability, compositional reasoning, reusability, evolution, ability
to express and reason about non-functional properties, and the existence of a
specialised notation supported by automated tools for architectural analysis.

The choice of formalisms was decided to give a thorough coverage of the space
of connectors. To give an indication: some formalisms were control-oriented [2],
while others were data-flow based [7]; some supported hierarchy [9], whereas
others provided mobility [18]. In the spirit of Connect, we also surveyed quan-
titative extensions of [7]; these included an extension involving discrete proba-
bilities with non-determinism [6], a stochastic extension [4], and an extension
with Quality of Service attributes [5]. Beyond the surveyed approaches, we also

280 M. Autili et al.

investigated a number of other formalisms, but space limitations prevents us
from elaborating upon them here.

Summarising the results of our survey and investigations led us to the opinion
that IA are the most suitable formalism for modelling connectors. This was based
on the fact that IA can be extended to support reasoning on non-functional
properties, together with compositionality results implying reuse and evolution
of connectors. IA are by no means complete in satisfying the properties we
require of a connector algebra, but they do give us a good starting point and
seem extensible enough to gain a good coverage of the dimensions of interest.

The remainder of this paper is organised as follows. Section 2 recalls back-
ground notions concerning IA, and offers justification for choosing these devices.
Section 3 describes a scenario that we will use to demonstrate the effectiveness
of our algebra, with models given in terms of IA. Following on, Section 4 intro-
duces the algebra in a formal way and concludes by relating the algebra to the
case study presented in Section 3. Finally, Section 5 summarises our work and
discusses possible future research directions.

2 Semantics for Connectors

As clarified in Section 1, it is our intention to ascribe semantics to our algebra
in terms of Interface Automata (IA) [11]. As we shall see later on, IA do not give
us all of the desired functionality and properties that we require to interpret our
algebra, but they do give us a good starting point.

IA may be seen as finite state machines whose actions are partitioned into
input and output sets. At the syntactic level this classification has no significance,
but examination of the semantics reveals a notion of communication well suited
to components interacting in a heterogeneous environment.

Definition 1. An Interface Automaton is a tuple (V, v0,AI ,AO,→), where:

– V is a set of states
– v0 ∈ V is the designated initial state
– A = AI ∪ AO is the set of actions. AI and AO are disjoint sets referred to

as the input actions and output actions respectively.
– →: V ×A ⇀ V is the transition (partial) function.

For brevity, we write v
a→ v′ iff → (v, a) = v′. The partial transition function

ensures that the automaton is loosely deterministic (there is at most one succes-
sor for each state-action pair). This contrasts with the I/O automaton model of
Lynch and Tuttle [16], where every state must be fully input-enabled.

The automaton behaves in a manner similar to that for finite state machines;
it starts in the initial state and evolves over time according to its transition
function. However, special consideration must be given to the transition types.
Following the finite state case, a transition labelled by an input action may only
be picked when the environment is offering that action. Output actions are non-
blocking, so may be taken at any time if they are enabled in the current state.

Towards a Connector Algebra 281

Since outputs are non-blocking, it follows that the environment must be willing
to accept any action it is offered.

Until now, IA have appeared as marginally generalised I/O automata. Their
overarching power becomes apparent when we consider the composition of mul-
tiple IA, and observe how they interact with the environment.

From hereon let C = (V C , vC
0 ,AC

I ,AC
O,→C) and D = (V D, vD

0 ,AD
I ,AD

O ,→D)
be two IA. C and D may only be composed if their action sets are compatible
with each other. Consequently, not every pair of IA can be composed.

Definition 2. IA C and D are said to be composable just if AC
O ∩ AD

O = ∅.
Outputs must be disjoint to prevent synchronisation.

To define the (parallel) composition on composable IA we begin by constructing
the product of the automata. Unfortunately, this can introduce a number of
illegal states, whereby one of the automata is willing to offer an output action
in the common alphabet, but the second is not able to offer the corresponding
input action. This is a consequence of not requiring IA to be fully input-enabled.

Definition 3. The product of C and D is an interface automaton C ⊗ D =
(V C × V D, (vC

0 , vD
0),AI ,AO,→), where:

– AI = (AC
I ∪ AD

I) \ ((AC
I ∩ AD

O) ∪ (AC
O ∩ AD

I))
– AO = AC

O ∪AD
O

– The transition function is given by

(s, t) a→ (s′, t′) ⇔
⎧⎨
⎩

s
a→C s′ ∧ t

a→D t′ if a ∈ AC ∩AD

s
a→C s′ ∧ t = t′ if a ∈ AC \ AD

t
a→D t′ ∧ s = s′ if a ∈ AD \ AC .

We must now identify the illegal states in the product C ⊗ D, denoted by
Illegal(C,D). The kernel of the illegal states is taken to be the set of states
(p, q) for which there is some a ∈ (AC

I ∩ AD
O) ∪ (AC

O ∩ AD
I) such that one of p

and q can make an a-labelled output transition, but the other cannot match it
with the corresponding input transition. The illegal set is then taken to be all
those states in the kernel, plus those that can reach a state in the kernel by a
sequence of transitions labelled by output actions.

Definition 4. The composition of two composable IA C and D, written as C ||
D, is defined to be C ⊗ D after pruning all states in Illegal(C,D), providing the
initial state (vC

0 , vD
0) is contained within the remaining automaton. Otherwise,

the composition is undefined.

In the words of de Alfaro and Henzinger [11], the pruning yields an optimistic
notion of composition. The pruning is equivalent to making the assumption
that the environment will not issue inputs that can lead to illegal states. Con-
sequently, composed IA place an assumption on the environment about what
inputs will be issued and when. This is in stark contrast to I/O automata where
the composition must handle any input the environment offers.

282 M. Autili et al.

From a system designer’s point-of-view, we are interested in modelling con-
crete connectors by means of a term in our algebra. We could certainly develop
an algebra that addresses this sole goal, however we are looking for something
considerably more high-level. To that extent, and conflating the desiderata from
Section 1, we believe that our algebra should also support abstractions of con-
nectors, or more precisely specifications.

IA have an explicit correspondence with specification theories, which is why
we are using them to express the semantics of our algebra. In [11], de Alfaro
and Henzinger define a refinement relation �2 on IA in terms of alternating
simulation3 [3]. Consequently, we have a test for when a connector can be safely
substituted with another. Since refinement on IA is a congruence with respect to
composition (see next theorem), substitution can be performed compositionally.

Theorem 1. For suitable restrictions on the composability of C, C′ and D, if
C || D is defined and C � C′, then C′ || D is defined and C || D � C′ || D.

Besides parallel composition, a conjunctive operator ∧ can be defined on IA. C∧D
yields the least specified interface automaton that refines both C and D. This
is of direct use in defining a connector that must satisfy multiple specifications.
More verbosely, this means we can build up specifications in a distributed and
compositional manner. This supports the separation of concerns principle, and
again allows for compositional development.

IA can be synthesised in a specification theory by means of a quotienting
operator \, as described in [8]. Given IA D and E , E \D yields the least specified
interface automaton C such that E � C || D. Thus, given a specification of
what a connector should do, together with an implementation of a connector
that implements part of that behaviour, we can synthesise a connector that
when composed with the partial connector fulfils the desired behaviour. The
advantages of such a feature are self-evident.

Applicability to notions of specification was a key justification for adopting IA,
yet another essential reason relates to their extensibility. We would eventually
like to develop an algebra that can handle a number of quantitative extensions,
such as time and probability. A timed-extension of I/O automata has already
been developed [10], and the model completely supports all of the specification
constructs and relations we have mentioned. Furthermore, there is a probabilistic
extension of I/O automata [20], although this is not given in terms of a specifica-
tion theory. Nevertheless, recent work has augmented interactive Markov chains
with specification notions [21], with a bridge between these and probabilistic
I/O automata seeming highly plausible.

Since IA and I/O automata are closely related to each other, we would like to
combine the aforementioned quantitative extensions with the optimistic compo-
sition techniques of IA. Accordingly, IA appear to support many of the features

2 P � Q if, and only if, P is refined by Q. Refinement tends to be one of the most
prevalent relations in any specification theory.

3 The simulation must be alternating as the inputs and outputs of a refining automaton

must be related contravariantly to those of the original.

Towards a Connector Algebra 283

we would like of a connector algebra. Section 4 will demonstrate just how effec-
tive they are when we assign semantics to the algebra.

3 Case Study

To illustrate in Section 4 the efficacy with which our algebra can model and
reason about protocol mediators, we present a simple yet challenging example
of universal instant messaging inspired by [14].

Fig. 1. (A) MSN messaging service. (B) XMPP messaging service. (C) CFring client.

Fring4 is an instant messaging program that allows one to exchange text mes-
sages between a predefined set of heterogeneous messaging services. At present,
the service supports connection to the MSN Messenger and XMPP Messenger
services, amongst many others, with the collection of supported services being
static. This contrasts with the evolving world of Connect, where messaging
services to be bridged should not be known a priori. We therefore propose a
generalisation of Fring, let it be called CFring, where connectors between un-
known messaging services are generated on-the-fly. This generalisation will allow
us to express the full power of the algebra.

As the interface automaton in Figure 1.C shows, the CFring service provides
only core functionalities for “abstract” authentication and message exchange.
In particular, when receiving (resp., sending) a message mi (resp., mo), CFring
expects to receive (resp., send) the identity idi (resp., ido) of the sender (resp.,
receiver) as well.

The behavioural models of MSN and XMPP, which are unknown to CFring,
are expressed as IA in Figures 1.A and 1.B. In contrast to the behavioural model
for CFring, both MSN and XMPP when receiving (resp., sending) a message
expect to have provided (resp., provide) the identity of the sender (resp., receiver)
first. Furthermore, unlike the others, MSN expects to receive (resp., send) an
acknowledgement for the message sending (resp., receiving).

4 http://www.fring.com

284 M. Autili et al.

It is obvious that the MSN and XMPP services should both be able to inter-
operate with CFring, since they amount to supporting authentication and then
message exchange. This requires “specialising” the CFring communication proto-
col in order to mediate the communication between the other messaging services.
Note that this is far from trivial, especially if one wishes to rigorously charac-
terise the achieved interoperability (e.g., for supporting automated reasoning,
detecting possible mismatches, etc.). Nevertheless, in Section 4 we realise such a
connector that mediates the communication between CFring and MSN/XMPP
as a term of our algebra.

4 Towards a Connector Algebra: Primitives and
Operators

Section 1 briefly mentioned a number of existing connector formalisms that we
had surveyed in [1]. The formalisms vary quite considerably; some support hi-
erarchical development, whereas others have resolute granularity. Some support
mobility, while others assume a fairly static environment. In essence, the for-
malisms have niche environments where they work well, while outside their haven
of assumptions the quality of modelling is often variable.

In Connect, we are interested in generating connectors on-the-fly to bridge
communication inconsistencies at both the application and middleware layers.
For the purposes of this paper, we are concerned with exchanging structured
messages between components, rather than worrying about, say, data transfer
at the transport level.

In [19], the authors attempt to characterise mismatches between functionally
equivalent yet behaviourally different protocols that wish to communicate. For
each type of communication discrepancy they provide a mediating connector that
can handle and resolve the mismatch. This is a high-level approach to analysing
and addressing interoperability issues.

Following this insight, it is our intention to develop a high-level algebra for
reasoning about mismatches. We shall model each basic mismatch solution as
a primitive of our algebra, with semantics given in terms of IA. Complex mis-
matches can be decomposed into combinations of basic ones, and so an algebraic
connector for a complex mismatch can be obtained by composing primitive con-
nectors. For most cases, composition of terms in the algebra will reduce to com-
position of the underlying IA as described in Section 2. However, as we shall see,
we will also require our own specific operators on connectors.

Components wishing to communicate with each other are modelled by arbi-
trary IA, which we assume have disjoint action sets5. We will treat the action
sets associated with IA as sets of message ports that can send (resp., receive) a
signal depending on whether they are an output (resp., input) port. Hence, at
this stage we do not allow for the exchange of data over a domain.

5 Under the aegis of Connect, equivalence of actions is assumed to be specified in an

ontology. This allows us to assume disjoint component actions.

Towards a Connector Algebra 285

From hereon let A be a global set of message ports. The primitives of the
connector algebra AP(A) corresponding to the mismatches in [19] are described
below.

1. Extra send. This first mismatch considers a component that generates a
redundant message a. Such a mismatch may be resolved by introducing a
consumer that swallows the superfluous message. We model this by a pa-
rameterised primitive Cons(a).

2. Missing send. This mismatch describes the case in which a component ex-
pects a message a that is not sent by another component. A mismatch of this
type may be resolved by introducing a producer that generates the required
message. This may be modelled by a parameterised primitive Prod(a).

3. Signature mismatch. There are occasions when a message to be exchanged
between two components is functionally compatible yet syntactically incon-
sistent. In the case of Connect, the functional equivalence of the messages
a and b is assumed to be specified in an ontology. Such a mismatch may
be resolved by means of a translating primitive Trans(a, b) that accepts
message a as input and produces message b as output.

4. Split message mismatch. A component may expect to receive a mes-
sage a as a sequence of fragments of a. If message a can be decom-
posed into a1, . . . , an, then the mismatch may be resolved with a primitive
Split(a, [a1, . . . , an]) which accepts message a as input and offers a1, . . . , an

as output in that order.
5. Merge message mismatch. Similar to the previous case, some components

expect to receive a single message a in place of a fragmented version of
a. If messages a1, . . . , an can be composed into a, then the mismatch may
be resolved with a primitive Merge([a1, . . . , an], a) which accepts messages
a1, . . . , an as input in that order, and generates a as output.

6. Ordering mismatch. A component can expect to receive messages
in an order different from the order used by the sending component.
The mismatch can be resolved by introducing an ordering primitive
Order([a1 , . . . , an], π, [a′

1, . . . , a
′
n]), where π is a permutation of {1, . . . , n}.

The primitive accepts inputs from one component in the order a1, . . . , an,
and produces outputs for the other in the order a′

π(1), . . . , a
′
π(n). Note that

port ai is related to port a′
i.

Besides the mismatch primitives above, a further primitive is required to force
the algebra to work in a sensible way. The primitive does not perform any inter-
actions, so is fittingly called NoOp. Equipped with all of the basic primitives, a
term s of the algebra is given by the following grammar:

s ::= s � s | s + s | s ∧ s | s \ s | s⊥ | (s) | p

p ::= NoOp | Cons(a) | Prod(a) | Trans(a, b) | Split(a, [a1, . . . , an]) |
Merge([a1, . . . , an], a) | Order([a1, . . . , an], π, [a′

1, . . . , a
′
n])

286 M. Autili et al.

where a, ai, a
′
i, b ∈ A and π is a permutation of {1, . . . , n}. The symbols �,

+, ∧, and \ are binary operators called plugging, alternation, conjunction and
quotienting respectively, and ⊥ is a unary operator called inversion.

The semantics of the algebra AP(A) is given in terms of a function �·� :
AP(A) → IA ∪ {Err}, where IA is the universal set of IA and Err represents
the undefined IA. For any term s, the denotation �s� is defined inductively.

First and foremost, if s is a primitive, then �s� is the corresponding interface
automaton defined in Fig. 2, providing the parameters are well-defined (otherwise
the semantics of the primitive is taken to be Err). The parameters of each
primitive are single or lists of uninterpreted message ports of A. Lists must
have finite length, and message ports in the parameters of a primitive must be
pairwise disjoint. In the case of Merge and Split, we require that a and a1 . . . an

are equated in the ontology. Furthermore, for the case of the Order primitive,
we require that both lists have the same length.

Fig. 2. Semantics of the primitives

If s is a compound term (i.e., consists of operators), then �s� is given by the
mappings below. However, an informal description is in order first. An operator
on terms of the algebra induces a behaviour on the behaviours of the operands.
The operator � connects terms of the algebra on common message ports; this
is equivalent to plugging the corresponding IA into each other, or synchronising
them. On the other hand, the operator + behaves like alternation in regular
expressions; a connector defined in terms of + behaves like one of its operands.
The operators ∧ and \ were both defined in Section 2. Finally, ⊥ acts like the
inverse of its operand by interchanging inputs and outputs.

– s = t � u. If either of �t� or �u� is equal to Err, then �s� = Err. Alter-
natively, if �t� and �u� are not composable or �t� || �u� is not defined, then
�s� = Err. Otherwise, �s� = �t� || �u�.

– s = t + u. If either of �t� or �u� is equal to Err, then �s� = Err. Otherwise,
�t� and �u� are IA C and D. If AC

I ∪AD
I and AC

O ∪AD
O are not disjoint, then

Towards a Connector Algebra 287

the alternation is not defined and �s� = Err. For the case when the action
sets do agree, �s� = Determinise(C + D), where C + D is defined to be the
IA (V, v0,AC

I ∪ AD
I ,AC

O ∪AD
O ,→) such that:

• V = V C
·∪ V D

·∪ {v0} i.e., V C , V D and {v0} are pairwise disjoint
• → = →C ∪ →D ∪ {(v0, a, v) : vC

0
a→C v} ∪ {(v0, a, v) : vD

0
a→D v}.

Determinise(C + D) is the deterministic IA equivalent to the possibly non-
deterministic IA C+D. Thus, Determinise is a function on IA which imple-
ments a suitable variant of the algorithm described in [13], that determinises
a finite state automaton.

– s = t ∧ u. If either of �t� or �u� is equal to Err, then �s� = Err. Otherwise,
�t� and �u� are IA C and D. If AC

I ∪AD
I and AC

O ∪AD
O are not disjoint, then

the conjunction does not exist and �s� = Err. For the case when the action
sets do agree, �s� is an IA (V C ×V D, (vC

0 , vD
0),AC

I ∪AD
I ,AC

O∩AD
O ,→), where

→ is the smallest relation satisfying the following rules:

1. If p
a→C p′ and q

a→D q′ with a ∈ AC
O ∩ AD

O , then (p, q) a→ (p′, q′)
2. If p

a→C p′ with a ∈ AC
I \ AD

I , then (p, q) a→ (p′, q)
3. If q

a→D q′ with a ∈ AD
I \ AC

I , then (p, q) a→ (p, q′)
4. For a ∈ AC

I ∩ AD
I :

(a) If p
a→C p′ and q � a→D, then (p, q) a→ (p′, q)

(b) If p � a→C and q
a→D q′, then (p, q) a→ (p, q′)

(c) If p
a→C p′ and q

a→D q′, then (p, q) a→ (p′, q′).

– s = t \ u. Based on [8], it follows that quotienting is a derived operator of
the algebra. Thus, �s� = �(t⊥ � u)⊥�.

– s = t⊥. If �t� = Err, then �s� = Err. Otherwise, �s� is equal to �t� with the
input and output sets exchanged in the signature of �t�.

– s = (t). Simply �s� = �t�.

The operators �, +, ∧, \ and ⊥ satisfy a number of axioms, as we briefly
elaborate below.

1. Plugging � is commutative and associative, but is not idempotent. It has
an identity element NoOp, so (AP(A),�,NoOp) is a commutative monoid
(i.e., an abelian semigroup with an identity). Plugging does not distribute
over +, ∧ nor \.

2. Alternation + is commutative, associative, and idempotent. The identity of
+ is also NoOp, so (AP(A),+,NoOp) is a commutative monoid. Alternation
does not distribute over � nor \, however it does distribute over ∧.

3. Conjunction ∧ is commutative, associative, and idempotent. The operator
does not have an identity element in the algebra, and does not distribute
over � nor \, but it does distribute over +.

288 M. Autili et al.

4. Quotienting \ is not associative, commutative, nor idempotent. NoOp is a
right-identity element for the operator. Quotienting does not left or right
distribute over �, +, nor ∧.

5. Inversion ⊥ distributes over +, but not �, ∧ nor \. Double inversion of a
term is an identity function on that term.

As we remarked in Section 2, a desirable property of a connector algebra is
its ability to support notions of specification. Consequently, there should be a
concept of refinement on terms, and indeed our algebra does support this.

Definition 5. Let s and t be terms of the algebra, and let � be the alternating
simulation refinement relation defined on IA �s� and �t�. Term t refines term
s, written as s � t, iff the denotation of t refines the denotation of s at the
semantic level or �s� = Err. Formally, s � t ⇔ �s� � �t� ∨ �s� = Err.

Establishing refinement on terms allows us to define equivalence. Semantic equal-
ity of terms is too strong for equivalence of connector behaviours, so we choose
to express it in terms of the weaker refinement relation.

Definition 6. Term s is said to be equivalent to term t, written as s ≡ t, if,
and only if, s � t and t � s.

Our choice of equivalence seems most natural for connector behaviours, as it
allows for seamless substitutivity. However, it is unfortunate that the equivalence
is expressed in terms of the underlying semantics, rather than the syntax of the
terms. Nevertheless, this correspondence with the IA semantics means that the
algebra is trivially both sound and complete, even after equating all incompatible
and undefined terms with Err.

Theorem 2. Let � denote the equivalence of IA (i.e. mutual refinement). For
any terms s and t it holds that s ≡ t ⇔ (�s� � �t�) ∨ (�s� = Err = �t�).

Having defined equivalence and established that the algebra is sound and com-
plete, it is an easy consequence that our axiomatisation is correct. The reason
for � failing to be idempotent is closely related to the reason that �s� || �s� is
not defined in general, because of restrictions on composability.

The formal definition of the semantics, as well as the example of idempotence
failing, has a notable consequence for the algebra. If s and t are well-formed
terms whose semantics are not equal to Err, then it is not the case that the
semantics of s � t, s + t, s ∧ t and s \ t are not equal to Err, because of the
restrictions imposed by these operators. This seems undesirable, but it is a direct
consequence of IA.

This shortcoming might seem unpalatable at first, but we do not believe it to
be a problem; in fact, it is an advantage. In the context of Connect, we are
concerned with generating connectors in a compositional manner. If we take two
connectors, each of which is expressed by a term in the algebra, we can combine
the two terms and observe if the outcome is equal to Err. If it is, then it follows

Towards a Connector Algebra 289

that the two connectors do not work with each other. Thus the algebra allows
for compositional reasoning.

Another requirement of Connect is the ability of our algebra to serve as a
baseline for automated connector synthesis, as stated below. This is closely re-
lated to the quotienting operator defined in [8], but requires suitable modification
to be applicable to the algebra.

Connector Synthesis

Instance: Components E and F represented by IA.
Problem: Find a term x ∈ AP(A) such that inv(E) � F || �x� and

inv(F) � E || �x�, where inv inverts input and output actions.

The connector synthesis problem aims to find a connector x expressible in our
algebra that can mediate interoperability incompatibilities between components
represented by arbitrary IA. We require that (i) every interaction exhibited by
inv(F) is allowed by �x� || E , and (ii) every interaction exhibited by inv(E) is
permitted by �x� || F . This allows us to formally characterise interoperability
between components in our algebra.

CFring example. A connector for the scenario described in Section 3 may be
expressed in terms of the algebra AP(A) as the following compound term:

((Trans(aut,handshake) � Cons(handshake ok) � Prod(auth) � Trans(auth ok,aut ok)) �
(Trans(quit,close) � Trans(close ok,quit ok)) �
(Order([mo,ido],(2,1),[mo’,ido’]) � Trans(ido’,desti) � Trans(mo’,messagei) � Cons(acko))�
(Order([desto,messageo],(2,1),[desto’,messageo’]) � Trans(messageo’,mi) �
Trans(desto’,idi) � Prod(acki)))

+

((Trans(aut,log) � Trans(log ok,aut ok)) �
(Trans(quit,out) � Trans(out ok,quit ok)) �
(Order([mo,ido],(2,1),[mo’,ido’]) � Trans(ido’,di) � Trans(mo’,msgi)) �
(Order([do,msgo],(2,1),[do’,msgo’]) � Trans(msgo’,mi) � Trans(do’,idi)))

This expression seems quite complex, but it is worthwhile noticing how it can
easily be decomposed into distinct portions corresponding to the original pro-
tocols. There is close correspondence between the four branches of the CFring
protocol shown in Figure 1.C, and the paths of the MSN and XMPP protocols
shown in Figures 1.A and 1.B, respectively. Each of these branches neatly map
onto a sub-term of the connector expression above. This suggests that connec-
tor terms can be defined by analysis of the corresponding protocols’ transition
systems. Unfortunately, the connector only allows the sending and receiving of
a single message, but we shall elaborate on this observation further in Section 5.

Relating the connector synthesis problem to our example, we built our con-
nector by constructing two sub-connectors x′ and x′′. The term x′ was used
to mediate MSN and CFring. Note how inv(MSN) � �x′� || CFring and
inv(CFring) � �x′� || MSN . Analogously, x′′ mediates XMPP and CFring.

290 M. Autili et al.

We combined x′ and x′′ by means of a suitable composition operator (i.e., +),
thus obtaining x. Automating this kind of reasoning represents a specific area
that we wish to explore, in order to develop a comprehensive theory of compos-
able connectors in Connect.

5 Concluding Remarks

In this paper, we formalised an initial high-level connector algebra for reason-
ing about protocol mismatches. Solutions to basic mismatches are modelled as
primitive terms and complex mismatches are solved by combining primitives of
the algebra by means of different composition operators. The semantics of the
terms and operations on them are given by IA, which is a suitable candidate for
expressing the behaviour of connectors that reside within a highly heterogeneous
environment, as we shall remark later.

Our formulation sets the scene for a yet-to-come comprehensive algebra facil-
itating the rigorous characterisation of complex interaction behaviours. Such an
algebra should allow reasoning with respect to both functional and non-functional
properties, in addition to supporting automated reasoning and learning about sys-
tem interaction behaviour, as well as automated synthesis, matching, refinement,
composition, evolution, and (possibly partial) re-use of connectors.

The case study highlights a shortcoming of our current algebra, in that we
cannot construct a connector that exhibits looping behaviours. The form of
our algebra dictates that for any term whose semantics are equivalent to an
IA (as opposed to Err), the structure of the automaton is a directed graph in
which every state is visited at most once. Such a restriction on the behaviour of
the connector is unduly restrictive. This is evident from our case study, where
the connector only supports the sending and receiving of a single message. If the
number of messages to be sent and received is known in advance, then we can
build a connector whose size is related polynomially to the number of messages
to be transmitted. This, however, is inadequate.

In a future version of the algebra, the restriction on looping would need to be
lifted. We already have an idea of how this could be done, by introducing looping
equivalents of the primitives. It also seems likely that we would need a fix-point
operator to encode complex looping behaviours in the algebra, beyond those at
the primitive level. It would be interesting to see whether looping operators make
it easier to model connectors in our algebra or not. Naturally, we would hope so.

This shortcoming of the algebra is not to say that IA are a bad choice of model
for assigning semantics to terms; after all, it is the algebra that is restricting
the behaviour of IA. As a consequence of having chosen IA as the semantic
model, our algebra supports specifications of behaviours, which we claim are
necessary for building scalable connectors. Furthermore, IA support a notion of
refinement which is a congruence with respect to a number of our composition
operators. Accordingly, substitution (e.g., for connector reuse or evolution) can
be performed compositionally. We have also defined a notion of equivalence over
the terms of the algebra and, based on this, we established that the algebra

Towards a Connector Algebra 291

is sound and complete. These properties advocate the adoption of IA as the
semantic model for the algebra, based on how closely they align with the key
dimensions of Connect that we specified in Section 1.

Our case study shows that the algebraic term representing a connector maps
intuitively onto the models of the protocols to be mediated. The purpose of the
algebra was to give system designers a high-level tool for specifying and reasoning
about connector behaviours, which is why we favoured the utilisation of high-
level primitives rather than developing yet another low-level process calculus.
It seems that our high-level algebra allows a designer to easily and intuitively
specify complex connectors, although further justification would be required for
this claim based on further case studies.

We have not considered quantitative aspects of connectors as part of our
algebra. As a minimum we would like to support time and probability. Although
we have not introduced such aspects to our algebra yet, we have been looking
at interactive Markov chains [21] and quantitative extensions of I/O automata
[10,20]. Further work in this area involves looking at how these extensions may
be carried across to IA. Besides having a quantitative model for expressing the
semantics of our algebra, we would also need to consider how the syntax of
our algebra would change. Clearly, primitives of the algebra will need to be
annotated with quantitative values, but it will also be necessary to see whether
it is meaningful to combine these values under the operators of the algebra.

In addition to IA, we are looking at modal specifications as a formalism for
connectors [15]. These models are to some extent dissimilar to IA, yet they do
share some common functionality [17]. We would like to compare and contrast
these models with IA so that we can try to combine the best features of both for our
algebra. Besides this future work, it is also our intention to determine whether the
set of identified primitives is complete enough. Increasing the set of basic solutions
should allow us to increase the types of behaviours that our algebra can capture.
Discovery of such primitives is likely to come from analysis of further scenarios.

As broached at the end of Section 4, we need to take a closer look at automated
connector synthesis. This is likely to be a definitive area on which our algebra is
judged as to whether it has made a meaningful contribution to component-based
design. We already have ideas relating to this in terms of rewriting systems [12],
although the details require further fleshing out.

Thus, our preliminary algebra has raised a number of issues that we should
take account of in formalising a comprehensive algebra to meet the demands
imposed by Connect. Moving on from here, we intend to combine the positive
features of our current algebra and refine its limitations in order to develop an
algebra suitable for modelling connectors that reside in a truly heterogeneous
world of ubiquitous devices.

References

1. CONNECT consortium. CONNECT Deliverable D2.1: Capturing functional and

non-functional connector behaviours. CONNECT EU project no. 231167,

http://connect-forever.eu/

http://connect-forever.eu/

292 M. Autili et al.

2. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.

Softw. Eng. Methodol. 6(3), 213–249 (1997)

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement

Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,

pp. 163–178. Springer, Heidelberg (1998)

4. Arbab, F., Chothia, T., Mei, R., Meng, S., Moon, Y., Verhoef, C.: From coordina-

tion to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.) COORDI-

NATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009)

5. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS

guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,

vol. 4467, pp. 286–304. Springer, Heidelberg (2007)

6. Baier, C.: Probabilistic models for reo connector circuits. Journal of Universal

Computer Science 11(10), 1718–1748 (2005)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-

tors in reo by constraint automata. SCP 61(2), 75–113 (2006)

8. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.

Comput. 20(2), 205–224 (2008)

9. Bliudze, S., Sifakis, J.: The Algebra of Connectors - Structuring Interaction in BIP.

IEEE Transactions on Computers 57(10), 1315–1330 (2008)

10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O Au-

tomata: A Complete Specification Theory for Real-time Systems. In: HSCC 2010,

pp. 91–100 (2010)

11. de Alfaro, L., Henzinger, T.A.: Interface-based Design. In: Engineering Theories

of Software-intensive Systems. NATO Science Series: Mathematics, Physics, and

Chemistry, vol. 195, pp. 83–104. Springer, Heidelberg (2005)

12. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Hand-

book of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp.

243–320. Elsevier, MIT Press (1990)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-

guages, and Computation. Prentice-Hall, Englewood Cliffs (2007)

14. Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Con-

nectors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416,

pp. 236–250. Springer, Heidelberg (2010)

15. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,

pp. 232–246. Springer, Heidelberg (1990)

16. Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. CWI

Quarterly 2, 219–246 (1989)

17. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:

Modal interfaces: unifying interface automata and modal specifications. In: EM-

SOFT 2009, pp. 87–96. ACM, New York (2009)

18. Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order distributed

process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.

146–178. Springer, Heidelberg (2005)

19. Spalazzese, R., Inverardi, P.: Mediating connector patterns for components inter-

operability. In: ECSA 2010, LNCS (to appear, 2010)

20. Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and Behaviors of Probabilistic

I/O Automata. Theor. Comput. Sci. 176(1-2), 1–38 (1997)

21. Xu, D.N., Gössler, G., Girault, A.: Probabilistic Contracts for Component-based

Design. In: ATVA 2010 (to appear, 2010)

Certification of Software-Driven Medical Devices

Mark Lawford, Tom Maibaum, and Alan Wassyng

McMaster Centre for Software Certification

Department of Computing and Software

McMaster University, Hamilton, Canada L8S 4K1

{lawford,wassyng}@mcmaster.ca, tom@maibaum.org

Abstract. This track focuses on the issue of certification for modern
medical devices. These devices rely more and more on software and are

paradigmatic examples of safety critical systems. Existing approaches to

software safety and certification are invariably process based; at best,

this gives us only indirect, statistical evidence of safety. Thus, they do

not offer the kinds of product based guarantees expected by engineers in

other classical disciplines as a basis for product certification. This track

focuses on the state of the art and proposals for improvement in this

crucial area of research. The track includes four papers on relevant top-

ics and a panel discussing the crucial scientific issues involved in making

certification judgements.

Keywords: software certification, safety critical systems, safety cases,
assurance cases, formal methods, medical devices.

1 The Certification of Software-Driven Medical Devices
Track

Software certification is in the news. From automotive recalls to radiation device
malfunctions, deaths caused by faulty software have woken people up to the fact
that software embedded in devices of all kinds has the capability of both help-
ing us and killing us. It is quite obvious to many that software is an incredible
enabling technology. It is so good in fact, that there is now almost no new de-
vice/technology on the market that does not depend on software in some way.
We have also been remarkably successful in building huge numbers of software-
enabled devices, with a rather limited number of known serious problems. How-
ever, this is quite misleading, and has resulted in severe over confidence, both
on the part of manufacturers and the public at large. As software and devices
become increasingly complex and safety features get further intertwined with
functional features, the chance of creating serious disasters also dramatically
increases. Every now and again, just to remind us, software faults in critical
applications feature prominently in the world’s news - but establishing software
certification and regulation as the norm is not on most people’s horizon, never
mind establishing real improvements in software certification. [1]

Certifying software based systems for critical applications remains a serious
challenge for the software engineering research community, not just for industry.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 293–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

294 M. Lawford, T. Maibaum, and A. Wassyng

The problems for industry are very serious, due to lack of sufficient engineering
principles to make this possible and due to the focus by regulators and industry
on process based approaches to quality when, typically, classical engineers take
a very product focused approach to quality and certification. Medical devices
have become dependant on software for their operation and have proven to be
an increasing challenge for regulators and manufacturers. This track focuses on
approaches that the formal methods community could recommend to regulators
and to industry to improve the predictability of the certification process for both
the regulator and the manufacturer, as well as the effectiveness of the certification
itself.

Process based certification is common because we have been able to do it and
software engineering research has largely focused on it; it gives us the illusion,
rather than a guarantee, that we have produced a safe system. It is a lot easier
to evaluate a development process than it is to decide on required attributes
in dependable software products and then be able to measure them effectively.
Because process based standards model the products of the process superficially,
if at all, it is impossible to characterise properly the properties of the entity we are
actually interested in, namely the application we have built. Any process-based
definition of quality ends up guaranteeing only that certain steps and activities
were undertaken, but does not offer direct evidence of the presence of desirable
properties. A high quality process is not a reliable indication of a high quality
product. Nevertheless, we believe that it is essential that the product be built
by an organization that has excellent processes and excellent people, because
this is likely to result in good products. It follows that certifying agents will be
interested in these aspects, but they can usually be audited in a straightforward
manner, often by a third-party with no specific knowledge about the products
developed by the audited organization, or its potential problems in relation to
safety. As a result, because process- based approaches are inherently unable to
guarantee what a regulator wants, it is product-focused certification that should
currently be more of a focus - and essential to evaluating the quality of the actual
product. [1]

One approach that exhibits elements of both process based and product fo-
cused certification, is that of the safety case, and its cousin the assurance case.
A safety case provides a structure in which the producer makes claims related
to the safety of the product, and presents an argument as to why the claims are
valid, using evidence related to and/or derived from the product. Latterly, argu-
mentation theory has been proposed as a way of better presenting/structuring
the safety case. This may make the safety case more comprehensible, but there
are some serious issues remaining about the scientific basis for safety (and as-
surance) cases, as well as their objective evaluation by regulatory bodies.

The track consists of four technical papers, followed by a panel discussion on
one of the most important topics we can think of in the current state of software
certification: In general, the formal methods and software engineering communi-
ties have not established an adequate scientific understanding of the coverage ob-
tained through applying various inspection, testing and mathematical verification

Certification of Software-Driven Medical Devices 295

strategies and techniques to a specific problem. One specific consequence of this is
that there appears to be no commonly accepted basis for making a scientific judge-
ment about the adequacy of assurance cases. Judgement is based, more or less com-
pletely, on expert opinion and educated guesses rather than objective, scientific
criteria.

We believe that the technical papers presented in this track are representative
of different levels of formality as well as different points of view as to what are
important problems to tackle in relation to software certification.

The first paper by Michaela Huhn and Axel Zechner, puts forward a proposal
for a framework that uses international standards to derive quality criteria that
can then be used by software developers to build the software/system and the
accompanying assurance case, and by assessors from certification authorities to
evaluate the assurance case. The idea is to take a recommended process based
standard like IEC 62304 for the design of medical device software and use tech-
niques and measures recommended in IEC 61508-3 to populate identified process
activities in the former with proven techniques from the latter. They can thus
build a quality assessment model based on this and apply it to assess both the
software and the assurance case associated with it.

The second paper is by Dominique Mèry and Neeraj Kumar Singh. This pa-
per represents a development paradigm built on ideas from formal methods and
model driven engineering. The development progresses from informal require-
ments, through formal requirements and refinement based verification and vali-
dation steps. The paper also discusses the application of the methodology in the
modelling of a cardiac pacemaker.

The third paper by Sebastian Fischmeister and Akramul Azim examines how
design choices can positively or adversely affect the difficulty in mathematically
analyzing the system, and also the black box predictability of the system. An ex-
ample that involves distributed monitoring of the human cardiovascular system
is used to demonstrate their ideas.

Finally, the fourth paper is by Eunkyoung Jee, Insup Lee, and Oleg Sokolsky.
This paper considers the problem of developing an assurance case for a real time
cardiac pacemaker. It focuses on the construction of an assurance case for real
time software developed using a model driven safety assured process based on
formal modeling, rigorous code generation from the verified model, and subse-
quent validation of the timing characteristics of the developed code. The authors
ultimate goal is to arrive at a commonly accepted assurance case template that
can be applied to a variety of safety critical, software based systems.

Reference

1. Hatcliff, J., Heimdahl, M., Lawford, M., Maibaum, T., Wassyng, A., Wurden, F.: A

software certification consortium and its top 9 hurdles. In: SafeCert 2008 Proceed-

ings (2008) (to appear in ENTCS)

Arguing for Software Quality in an IEC 62304
Compliant Development Process

Michaela Huhn and Axel Zechner

Institut für Informatik

Technische Universität Clausthal

Clausthal-Zellerfeld, Germany

{michaela.huhn,axel.zechner}@tu-clausthal.de

Abstract. Safety regulations for medical device software are stipulated
in numerous international standards. IEC 62304 addresses software life-

cycle processes and identifies core processes, software development ac-

tivities, and tasks that aim for high-integrity software as a prerequisite

for dependability of medical devices controlled by this software. However,

these standards prescribe neither a process model nor particular software

engineering methods to accomplish the normative requirements. Hence,

the manufacturer has to argue in the software development and quality

management plans that the selected methods cover the required tasks

and are appropriate in order to accomplish high-quality artifacts.

We propose a method for assessing quality- and engineering-centric

arguments in dependability cases to assure IEC 62304-compliant soft-

ware development. Our method is based on an activity-based quality

model representing the impact of facts about methods and design arti-
facts on development activities. The impact makes the relation between

characteristics of design artifacts and activities contributing to the soft-

ware safety process explicit. It is derived from state-of-the-art software

engineering knowledge and best practices recommended in current safety

standards like IEC 61508-3.

1 Introduction

Software-controlled medical devices are an emerging market. New applications
are developed, increasing the diversity in the field in several dimensions: Medical
devices range from small systems with restricted functionality like pace makers or
infusion pumps to complex medical imaging for diagnostics or surgery navigation.
We find one of a kind compounds of devices, e.g. in intensive care wards in
specialized medical centres, and the mass market of simple living assistance and
health monitoring systems for elderly and disabled people.

As software has become an integral part in realizing a medical device’s func-
tionality, software dependability is gaining importance. This is an immediate
consequence of regulatory obligations and product liability, but also of the in-
creasing number of software related faults and product recalls [18,4].

Besides hundreds of standards that comprise functional requirements on par-
ticular medical products, there are also a number of standards addressing system

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 296–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Arguing for Software Quality 297

safety and software development: The process standard for medical devices IEC
62304 [12] is accompanied by standards for quality and risk management, ISO
14971 and ISO 13485, respectively, whereas the medical device product standards
IEC 60601-1 and IEC 61010-1 direct the development at the system level.

Compared to dependability standards addressing other domains, like avionics
RTCA-Do-178B [1] or the IEC 61508 as the fundamental standard for functional
safety of E/E/EP systems [6], the standard for software life-cycles for medical
devices IEC 62304 is more explicit with respect to the goals that shall be achieved
by a certain process activity. But IEC 62304 does not name software engineering
methods and techniques that are considered adequate for the required activities.

Thus, manufacturers have the freedom to tailor the process and to select soft-
ware engineering methods according to their specific needs in the medical device
sector. On the other hand, a lack of concrete technical advice on process and
product qualities leads to uncertainness about the appropriateness of software
development measures on both sides, the manufacturers who have to argue for
their processes in the quality management plan and for the dependability of the
product in the associated safety case when they apply for the approval of a prod-
uct, as well as the certification authorities which have to assess these documents
(see [9,2,3] for a detailed discussion of these difficulties).

Here, we propose an assessment method for quality-centric arguments pro-
vided in the certification procedure of dependable medical device software. The
method adapts our previous work on dependability case arguments in the rail-
way domain [11]. The core of our method is an activity-based quality model
relating facts about artifacts to detailed development activities. The refined list
of activities as well as the concrete software engineering techniques are taken
from the IEC 61508-3 which is recommended in the IEC 62304, annex C.7. By
associating the goals given in IEC 62304 with concrete activities in a meaningful
way, arguments and hence the selection of techniques can be evaluated for suffi-
ciency wrt. the required software safety classification. We refine and extend the
assessment of arguments by checking for coverage and dependencies of artifacts
and activities which reflects requirements that are stated explicitly in IEC 62304.

The paper is structured as follows: In Sec. 2 we sketch the IEC 62304 and
contrast it with the approach taken in the IEC 61508. Section 3 is dedicated to
our assessment method and describes how to derive a quality matrix. The usage
of the quality model is demonstrated in Section 4. In Section 5 we discuss our
approach in the context of related work and conclude.

2 Software Quality Assurance in Safety Standards

2.1 IEC 62304 - Process Requirements for Medical Device Software

IEC 62304 standardizes life-cycle processes of medical device software. For
each subprocess (SW-development, maintenance, risk-management, ..., change)
it identifies key activities, subdivided into tasks, recommended in a safety-related

298 M. Huhn and A. Zechner

software process. IEC 62304 follows a risk-based approach to quality manage-
ment, meaning that the fundamental classification determining the required rigor
of software quality assurance is inferred from the risk that emanates from a med-
ical device or its malfunctioning, respectively. To avoid controversy about the
probability of software defects originating from systematic errors, only the sever-
ity of software induced hazards is considered. The software safety classification
ranges from A - no harm or injury - to C - death or severe injury is possible. The
classification defines the principle level of rigor, and consequently the efforts to
be undertaken, required for all software development and maintenance activities.

IEC 62304 sketches a process-based argumentation towards software safety:
software does not contribute to hazardous failure of the system because its de-
velopment and maintenance follows a systematic safety-oriented process and a
dependable implementation of functional requirements can be guaranteed by
carefully performing the required activities. The development process consists of
the well-known phases (requirement analysis, architecture, design, implementa-
tion and integration) which help to control and cope with the complexity of the
development. For each phase IEC 62304 recommends activities to plan, track,
control and communicate possible problems to prevent the risk of systematic
errors, following a generic risk management paradigm as described in [5].

2.2 IEC 61508-3 - Software Safety in E/E/EP Systems

ISO/IEC 61508 [6] constitutes a generic standard for functional safety of E/E/EP
systems. It provides a generic development approach in order to achieve a ratio-
nal and consistent technical policy for all electrically-based safety-related sys-
tems. Part 3 addresses software. It defines a life-cycle for safety-critical software
considering best practices and recommendations from early phases of require-
ments and development to operation, maintenance and disposal. In contrast to
IEC 62304, IEC 61508-3 complements activities by recommendation lists (see
Fig. 1) of specific artifacts, engineering methods and technologies giving de-
tailed information about which tasks to perform and how to perform them in a
dependable software’s life-cycle.

Fig. 1. Recommendations on Software Architecture Design from IEC 61508-3 CDV

Arguing for Software Quality 299

2.3 Comparison

Both safety standards agree on a process- and quality-oriented line of argu-
mentation and a risk-based approach to quality management. They coincide on
the principal design phases and activities in the development process. However,
IEC 62304 focuses on the principal activities, artifacts and goals. Compared to
IEC 61508-3, it defines the role of artifacts wrt. the preceding and subsequent
process steps more explicitly, but it is less concrete concerning properties of arti-
facts and how they may be achieved by performing specific software engineering
techniques. This observation will shape the quality model and the assessment
wrt. coverage and dependencies of activities (see Sec. 4.1). For illustration, we
compare the statements on software architecture.

IEC 62304 mentions six subactivities for the architectural design step, namely
(1) realization of the requirements, (2) interface design, (3) specification of func-
tional and non-functional SOUP components, (4) specification of the environment
of SOUP (SW of unknown provenance) components, (5) partitioning due to the
risk mitigation strategy, and (6) verification of the architecture. Generic quality
goals are stated like consistency, consideration of dependencies and traceability
for all artifacts, but also exemplified for specific artifacts. For the software archi-
tecture, risk and safety analysis is recommended to be performed on the archi-
tectural design and these analyses shall consider the identified components which
are specified wrt. to their structure and behavior (Annex B), etc.

IEC 61508-3 contains three main objectives for software architecture design,
one of them addresses the design activity itself and is further subdivided into six
parts: (1) selection of techniques and measures to satisfy the safety requirements,
(2) partitioning, (3) software/hardware interaction, (4) unambiguous represen-
tation of the architecture, (5) treatment of safety integrity of data, and (6)
specification of architecture integration tests. Besides generic quality goals, IEC
61508-3 lists input and output documents for architectural design which refer to
process dependencies and concrete characteristics of the architecture, i.e. com-
pleteness and correctness wrt. the requirements, freedom from intrinsic design
faults, simplicity and understandability, predictability of behaviour, verifiable
and testable design, fault tolerance and defense against common cause failure.
Annex A contains a table of 27 recommended software engineering techniques
for architectural design related to software integrity levels (SILs). The upcoming
revised version [7] supports the selection of appropriate techniques even further:
Each technique is ranked wrt. the rigour with which it is considered capable of
achieving a stated characteristic (see Annex C and Fig. 1).

Both standards have strong points and blind spots, i.e. to align the argument
with the principal activities and overall quality goals (IEC 62304) vs. directing
engineers to proven, well-accepted software engineering methods and stressing
their contribution to concrete properties of the required artifacts (IEC 61508-3).

From the view-point of software safety assurance - for medical devices or
in general - a seamless, holistic argumentation has the following cornerstones:
(1) principal goals and activities of a software safety process at the top-level,
(2) achieved by performing a mature, harmonized set of software engineering

300 M. Huhn and A. Zechner

techniques, which lead to (3) high-quality artifacts with defined safety-related
properties and for which (4) evidence is provided in an agreed way.

3 A Quality Model for Argumentations

3.1 A Staged Assessment Process

According to Kelly [15], assessment of software assurance can be thought to con-
sist of, at least, four consecutive steps: (1) Argument Comprehension, (2) Well-
formedness checks, (3) Expressive sufficiency checks, (4) Argument criticism and
defeat. The presented approach addresses all four steps and especially concen-
trates on the latter steps in two parts:

1. Structure and Well-Formedness Analysis
2. Conclusiveness of Argumentation

The first part - Structure and Well-Formedness Analysis - covers the syntac-
tical aspect of assessment. The argumentation, often represented as a quality
assurance plan, is revised for key claims, assumptions and evidence and put into
a unified representation for arguments (here GSN [14]). This representation is
then automatically evaluated for well-formedness of an argumentation.

The second part deals with validation of the arguments regarding conclusive-
ness and coverage. The structured arguments, evidence and facts about develop-
ment artifacts are fed into an activity-based quality model. The model represents
domain knowledge and expert judgement on expressiveness and relevance of argu-
ments which can be derived from best practices, norms and standard for software
engineering. Evaluation, as described in Sec. 4, will then yield possibly flawed ar-
guments, missing evidence and implicit trade-offs.

3.2 Structure and Well-Formedness Analysis

Structured Representation of Quality Arguments. As a first step to-
wards assessment, the line of arguments being presented has to be understood.
Therefore it is inevitable that the basic elements of the argumentation will be
identified: claims, assumptions, strategies, context of the system, and argumen-
tation and evidence. Then, links between those elements have to be captured in
order to represent the structure of the argumentation.

For easier and tool-supported handling of the presented argument the ele-
ments and links shall be represented using a unified structure. We have chosen
the Goal Structuring Notation (GSN) as specified by Kelly in [14]. GSN is a
well-accepted notation for safety-case arguments and provides infrastructure for
claims as Goals, assumptions, strategies, context and evidence as Solutions, and
representation of the links.

To benefit from model-integration, we propose a UML-profile (see Fig. 2)
for GSN. The profile constitutes the types of argumentation elements (Goal,
Solution, etc.) of the GSN with Stereotypes.

Arguing for Software Quality 301

Goal

isUndeveloped: Boolean

subgoals

*

1..*

0..1

ContextStrategy

Solution

Choice
isUndeveloped: Boolean

0..1

subgoals

refinedBychoice

0..1
{subsets alternatives}

alternatives

selection

2..*

*justifiedBy
* justifiedBy

*justifiedBy

0..1inContextOf

inContextOf

inContextOf inContextOf

0..1

0..1 0..1

«abstract»
Reason

Justification Assumption

Fig. 2. Basic meta-model for the representation of goal structures

Structural Well-formedness. Next we are able to check for structural cor-
rectness of arguments. For example, a cycle in argumentation is definitely wrong,
or unrelated arguments indicate an unclear line of of argumentation. This knowl-
edge is captured in rules: Each claim (Goal) must be

- either directly backed by evidence (Solution),
- or immediately refined by sub claims decomposing the higher level claim,
- or, GSN-specifically, refined following a Strategy which in turn decompose

into subgoals.
- No other type of element but a Goal may be the root of a goal structure.

The rules concerning the relations between elements are encoded in the profile
itself and have been implemented using the Object Constraint Language (OCL)
resulting in 19 formulas. Details about the profile can be found in [20].

Argumentation Patterns. In [13,10,14] it is proposed to reuse well proven
arguments from the engineering domain as more abstract “argument patterns”.

Fig. 3. Example of an argument pattern: Functional Decomposition

302 M. Huhn and A. Zechner

Argument patterns describe a fragment of an argumentation, where several
place-holders (pattern roles) must be replaced with appropriate arguments or
evidence. An example pattern is “Functional Decomposition” (see Fig. 3).

To assure that a pattern is instantiated correctly, it has to be proven that
there exists a proper embedding from the pattern roles onto the goal structure:
(1) For each pattern role there must exist at least one corresponding instance
in the goal structure. (2) The goal structure respects the pattern relations, i.e.
whenever two pattern roles A and B are related, then from each instance ar-
gument associated with A there exists a path to an instance associated with
B respecting the direction of the relation. We extend the profile for GSN with
concepts for pattern specification, pattern instance, pattern roles and refinement
mapping. Rule checking is also realized via OCL formulae (see [20]).

3.3 Conclusiveness of Argumentation

Completeness, validity and strength of the argumentation have to be inspected
next. Software assurance cases are usually assessed by experienced experts pro-
viding an adept judgement on the line of argument and its foundation on best
practices in software engineering. In part, this knowledge is captured in domain-
specific standards, by defining processes and activities, as shown in Sec. 2.

We seize the argument given by Maibaum and Wassyng in [16] that an as-
sessment procedure should focus on activities and products to be reviewed from
a domain-specific point-of-view relying on profound engineering expertise: Does
the development plan consider all relevant risks for systematic error by including
suitable activities? Are the selected techniques appropriate for their purpose in
activities and safety classification? Do the provided evidence and facts about the
software development artifacts1, support strength and validity of the arguments?

To answer this we developed an activity-based quality model [11]. Our key
ideas of an activity-centric assessment are (1) to associate a claim with those
life-cycle activities it addresses and (2) to evaluate whether facts have either
supportive or prejudicial impact on the activities. Interpreting this impact leads
to a judgement on the compelling power of the lines of argument.

A Quality Model for Quality-Oriented Arguments. The quality model
is inspired from Deissenboeck et al. [8] and presents activities and facts on the
system and the process in a matrix. The first dimension lists facts derived from
evidence provided in the case and other information known in the system context,
from standards or domain specific best practices. Facts characterize evaluable
and measurable properties of artifacts of the development process. The type of a
fact’s value can be quantitative or qualitative. Qualitative means either nominal
values (e.g. existent, non-existent) or ordinal values (e.g. low, high).

Along the second dimension we align detailed activities which are carried out
within the life-cycle: e.g. in the argument ”Functional safety (goal) is supported by

1 Like e.g. investigation of the identified risks, of the software architecture, of test

reports, or other verification results.

Arguing for Software Quality 303

IEC 61508-3 IEC 62304 SW Architecture Activities

properties

(IEC 61508-7)

document & define

structure and compo-

nents 5.3.1

document & define

interfaces between

components 5.3.2

document & verify SW

architecture against re-

quirements 5.3.6

Modelling Lan-

guage

view B/C view B/C view B/C

data / control

flow / logic

× �→ −,	 �→ ++

input/output × �→ −,	 �→ ++ × �→ −,	 �→ ++

function blocks

/ actions

× �→ −,	 �→ ++ × �→ −,	 �→ ++

hierarchy × �→ −,	 �→ ++

states/places × �→ −,	 �→ ++ × �→ −,	 �→ ++

time × �→ 0,	 �→ + × �→ 0,	 �→ +

animation × �→ −,	 �→ ++

automatic

checks

× �→ −,	 �→ ++

Fig. 4. Mapping of IEC 61508 criteria to IEC 62304 with effect relation

a straight architectural design (subgoal)” the subgoal addresses the ”architectural
design” activity qualified as ”straight”’. The performance-degree of activities has
a principal impact on what we regard as a quality. Hence, we will annotate the
required quality level as an attribute of the activity.

The connection between a fact and an activity is called an effect. An effect
describes the impact of an evaluated fact on the activity denoted as entry in the
quality matrix. The fact’s value has to be translated to the effect’s domain, e.g.
by a table. For simplicity, we consider the ordinal scale (e.g. −−,−, 0, +, ++) as
the set of effect values, expressing strength and direction of the effect. A positive
effect value improves, a negative impairs the performance of an activity:

Fact |Value
+/−Strength−→ Activity

The effect relation (translation table) encodes domain knowledge which is made
explicit this way. Fig. 4 depicts an excerpt from our quality model. The column
headers contain activities from IEC 62304, the rows contain relevant properties of
the modelling language2 from IEC 61508-3. The cells hold the effect relationship.

The basic assessment is performed on arguments and evidence presented in the
dependability case only. The qualified activities are taken from the arguments and
arranged along the activity-dimension, evidence along the facts-dimension. Fill-
ing the matrix yields a set of effects on each activity column. The analysis discov-
ers inconsistencies and tacit trade-offs: Uniform negative impact corresponds to
strong counter-evidence that the activity is performed adequately. Mixed direc-
tions of effects indicate implicit rebuttal of arguments. Even a uniform positive
2 Taken from Table A.2 semi-formal methods, properties from part 7 B.2.3.

304 M. Huhn and A. Zechner

effect may be below the quality level required for that activity which alludes to
lack of strength of backing arguments resulting in undercutting defeat. A conclu-
sive argumentation relies on activities supported by uniform impact from evidence
to the required quality level.
Example: We consider a part of an argumentation regarding meaningful back-
ward and forward traceability to create requirement-related test cases. By evalu-
ating the coverage of traceability links on the development documents, the metric
full depth and coverage yields [DECO | 100%Coverage]. Measuring the fan-out3 of
requirements links in the traceability matrix evaluates to [FAN-OUT, 30% req.�
MaxFAN-OUT], meaning that for 30% of the (functional) requirements fan-out
significantly exceeds the recommended maximum. In the quality model, a senior
validator recorded the effect of full-depth coverage and FAN-OUT on Forward
Tracing and Backward Tracing activities. Evaluation results in ”+” on For-
ward/Backward Tracing, but ”−−” on the Create Requirement-related test cases
activity. Mixed effect directions occur: Although requirements are traced forward
and backward along the development, the argumentation is seriously weakened
by the fact of lack of coherence from requirements to implementation units,
probably indicating an inept, poorly testable architecture design.

Representing Engineering Knowledge as Quality Model Criteria. In
[11] we showed how to derive the dimensions of activities and facts using a de-
pendability taxonomy as a guideline. In general, activities are deduced from the
whole life-cycle of a system, including operation, but we examine in detail the
activities (identify, analyse, plan, track and control) of dependability manage-
ment to avoid the risk of systematic errors. Artifacts, i.e. the products of the
development process, modelling language, modelling infrastructure, modelling
strategies (where modelling also includes detailed design or programming, e.g.
C++, UML, written text) and verification strategies serve as input for facts.

As mentioned in Sec. 2, standards regarding functional safety and software
provide a rich source of software engineering knowledge on techniques and meth-
ods which are accepted as appropriate in a specific domain. IEC 62304 com-
prises recommendations on activities to be performed with a certain quality, in
particular to achieve higher levels of dependability (safety classification B,C in
IEC 62304). Hence, we take these activities for the activity dimension of the
quality model. Requirements for certain qualities are stated as a minimum level
of performance for the activities. An argument referring to such an activity is
regarded as conclusive if the facts contributing with their effects to the activity
establish at least the defined quality level.

Example: IEC 62304 declares structural decomposition and behavioural speci-
fications at the architectural design level as mandatory for safety-critical software
to assign a risk mitigation measure and for safety analysis and assurance. Thus,
the sub-activities assign risk mitigation measures and perform safety analysis
and safety assurance are added as parts of the architectural design activity to

3 FAN-OUT measures the dissemination of functional requirements over design com-

ponents.

Arguing for Software Quality 305

the quality model (even if they are not mentioned in the case) and we impose a
requirement that an impact of ++ has to be contributed for these activities from
the facts about the architecture. Consequently, an acceptable argument needs
backing evidence (facts) whose effect evaluates to ++.

We adapted the quality model to EN 50128 and IEC 61508-3 specific views in
a similar manner in [11]: We processed the description of the life-cycle processes
to identify activities. The facts were obtained from the recommendations in the
annexes (e.g. Fig. 1). The resulting quality model for EN 50128 is a matrix of
67 facts by 54 activities; most entries can be evaluated in a check-list manner.
The effect relation was derived from the rating of recommended techniques.

Model Criteria for IEC 62304. The previously described approach cannot
immediately be adapted to IEC 62304 since the standard does not explicitly rec-
ommend any methods or techniques. So what is needed is an alternative source
(1) which provides us with facts related to the goals and activities required by
the standard, (2) for which sound, expert-based ratings for their appropriate-
ness exist and (3) which could be accepted by authors and assessors of software
assurance cases in practice. As already indicated by the discussion in Sec. 2, we
choose IEC 61508-3 to gather facts on techniques. We justify our approach us-
ing the following reasons: Firstly, IEC 61508-3 represents a generic standard for
E/E/EP systems providing recommendations and ratings on techniques, mea-
sures and tools. Secondly, as an international standard, it can be taken as widely
accepted among experts and assessors. Thirdly, a closer look in IEC 62304 An-
nex C.7 reveals that IEC 61508 can be used as a source for appropriate methods
and techniques to realize the activities of the life-cycle processes.

Examination of IEC 62304 yields the list of activities grouped by the cor-
responding phase of the development process (see column heading of Fig. 4).
Since activities and goals of IEC 61508-3 cannot be directly mapped to any in
IEC 62304, we have chosen to map activities and facts via the process phases.
IEC 61508-3 recommends certain measures in annexes B and C for the realization
of each process phase. In most cases the measures (e.g. semi-formal methods)
are refined to concrete techniques (e.g. Time Petri nets). Relevant details of the
methods are explained in part 7 of the standard. From these descriptions we
extract the facts (e.g. hierarchy) and then combine similar concepts (e.g. data
flow, control flow, logic) to one fact. For the mapping of facts to activities we
compare the descriptions of an activity in IEC 62304 to the description of the
fact in the context of the related measure or technique in IEC 61508-3. If in-
tended use and recommendation of a measure matches the goal of the activity,
we have identified an effect relation. This procedure is systematically applied to
the IEC 62304 list of activities.

Example: In sections 5.3.1 & 5.3.2 (IEC 62304) we find the activities: document
& define structure and components and document & define interfaces between
components, both belonging to the software architecture phase. The IEC 61508-
3 recommends in table A.2, e.g., Structured methods, semi-formal methods
... exhibiting facts like systematic partitioning of a system and hierarchy. As

306 M. Huhn and A. Zechner

proposed above we deduce: an appropriate technique for documenting and defin-
ing the structure and components and the documentation of structure must pro-
vide systematic partitioning of a system and hierarchy.

To derive the effect relation we propose to map the level of recommendation
(NR,-,R,HR) of a certain technique to the ordinal values (–,0,+,++). To abstract
from specific techniques in the quality model, a technique is not directly taken
as a fact, but we map the values to the above identified set of key facts about it.
Thereby, we are able to integrate and evaluate “new” technologies not mentioned
in the standards like model-based development on the basis of the existing facts.
In case of a binary fact, presence will be evaluated to the associated value of
the level of recommendation, in case of absence the effect direction is reverted.
Sometimes there is a choice between techniques recommended for an activity,
but the techniques are not equivalent wrt. the facts they support. Then we adjust
the emphasis: a missing fact is assigned the neutral value 0 and for presence the
effects magnitude is lowered.

In addition to recording the effect of facts we also collect the relation between
activities which IEC 62304 states as prerequisites for later activities (see Sec.
2.1). These relations will be evaluated further as explained in Sec. 4.2.

Now we have both missing points: (1) relevant, accredited facts to evaluate
the activities of an argumentation and (2) an approved rating of the facts, with
a potential to evaluate unlisted techniques. In this way, we were able to populate
our quality matrix with facts, activities and the effect relationship.

4 Assessment Procedure

We assume that the underlying quality model has been stated. The assessment
of the conclusiveness of quality management plans and dependability case argu-
ments is carried out in three phases:

1. Prepare the assessment
(a) Go through the argument structure and fill in the facts and performed

activities addressed in the arguments (see (1.) and (2.) in Fig. 5)
(b) Add the requirements according to the view representing the assigned

safety classification (see (3.) in Fig.5)
2. Evaluate the argument wrt. the quality model

(a) Evaluate effects according to an assessment strategy (see (4.) in Fig.5)
3. Review potentially flawed arguments. (see (5.) in Fig.5)

To prepare for the assessment, the quality model has to be populated with ac-
tivities and facts from the argumentation or a view, respectively. The underlying
reference model then yields a set of effects on each activity.

Evidence is naturally deduced from properties gained from the subject of
investigation. The representation of evidence either is itself a value or can be
evaluated to a value. The interpretation of evidence is left to the argument.

Arguing for Software Quality 307

Fig. 5. Illustration of the Assessment

4.1 Using the Quality Model for Assessment

For the analysis, the assessor associates the argument to the concrete activity.
That way, the evaluation of the impact of an activity is traceable to an argument.
The evaluation strategy depends on the purpose of the assessment:

Evaluate Consistency and Strength of Argumentation. The evaluation is
performed only on evidence and arguments presented in the case and it embraces
the validity check of the provided artifacts. This strategy aims at discovering
intrinsic deficiencies in the line of argument as it is provided. Findings may be:

– missing evidence and defective artifacts, e.g. an incomplete test report;
– the techniques are insufficient or neutralize each other, i.e. supportive impact

is missing or below the required quality level, see the example in Sec. 3.3;
– a technique misses a quality fact required for an activity, e.g. a design model

is verified against a partial (=incomplete) specification by model checking.

Evaluate Arguments against Available Evidence. In addition, all available
facts about the system are represented in the quality model and taken into
account. This strategy will additionally find possible counter-evidence that is
recorded in the factual basis but neglected in the dependability case, i.e.

– properties of techniques and artifacts that have a negative impact on certain
activities that have not been considered in the argumentation.

Check Coverage of Activities wrt. a Normative View. Now the quality
model explicitly highlights activities and fact classes recommended by the spe-
cific standard it is derived from and compares them to those addressed in the
case. The comparison may yield

308 M. Huhn and A. Zechner

– activities required by the view, but neglected in the argumentation or not
adequately performed;

– some facts about the system for which the standard recommends a particular
treatment and evidence has to be provided, e.g. using SOUP components
requires a specification of the functional and non-functional enviroment of
that component on the architectural level (IEC 62304 Sec. 5.3.3).

Check Dependencies and Usage of Artifacts wrt. a Normative View.
The quality model, in particular if induced by the IEC 62304, will state depen-
dencies between activities and a proper usage of artifacts. In the quality model
a dependency is reflected by fact classes about artifacts or techniques that have
to be evaluated wrt. their effects on the dependent activities. If this required
impact is missing, it indicates,

– a lack of integration of activities, artifacts or techniques, e.g. abnormal con-
ditions were specified but not decomposed on the architectural design level;

– a lack of completeness wrt. verification requirements, e.g. testing does not
cover all classes of acceptance criteria stated for software components.

The importance of the latter two kinds of assessment is emphasized by the
empirical study on recall data of medical device software [18]: A majority of
failures arose either from incomplete artifacts (e.g. recommended aspects of the
requirements like value ranges, default values, exceptions were not specified) or
from losing sight of these issues during the subsequent phases.

4.2 Argument Review

Negative findings in the evaluation only indicate a possible flaw in the pre-
sentation of arguments. Further interpretation is needed to decide whether the
underlying rationale has to be revised or a better presentation of the arguments
is needed or a recalibration of effects can remedy the problem. Nevertheless, the
evaluation directly points to a cause in terms of facts and activities.

Based on the evaluation, three steps are performed: (1) look for reasons ex-
plaining the impairment, (2) reevaluate arguments, (3) create a report.

The evaluation yields suspicious activities for which the conclusiveness of ev-
idence may be doubted because uniform supportive impact from the facts is
missing. These activities trace to arguments associated with the population of
the quality model. The assessor then looks for additional explanations putting
even strong findings into a perspective: Often, contextual information defines
and constrains the actual system requirements. Claims may be additionally sup-
ported by implicit or explicit assumptions and justifications. Some arguments
may already suffice (e.g. mixed directions in weak effects, cumulative effect of
weak facts) or may be justified by providing new evidence. The assessor reevalu-
ates the adjusted arguments and facts. Results are captured in the review report.

Arguing for Software Quality 309

4.3 Discussion

Assuring high confidence in the software controlling safety-critical systems is
the basis for software certification. Principles such as the need for a rigid safety-
oriented process with extensive verification activities or the documentation of
the safety arguments in quality management plans and safety cases are agreed.
Also the advantages of formal methods in providing conclusive product-specific
evidence are becoming more and more accepted.

However, when instantiating such principles for a product development, i.e.
when manufacturers have to frame a standard-compliant process or an assessor
has to evaluate a software assurance case, the conclusiveness, strength and com-
pleteness of arguments may be challenged: Controversy about the right answers
arises in particular in the following situations: (1) the corresponding standard
does not recommend concrete techniques, artifacts, and quality characteristics
like the IEC 62304, (2) manufacturers and certification authorities do not agree
on a de-facto standard procedure, or (3) the technical state-of-the-art is passing
by the standard’s state and new techniques shall be introduced. Since there exist
hardly any systematic studies on the impact of methods and techniques applied
in industrial software development on software safety, a scientific fundament is
still missing. Moreover, the long standing (simplified) credo of ”more formal
methods will bring more safety” has to be revised as recent work indicates [19].

For medical device software these difficulties are discussed by Maibaum and
Wassyng [16] and Feldmann et al. [9]. An answer heading in the same direction
as ours is given by Manleitner [17] who used the software quality standard ISO
9126 to derive a quality model from the IEC 62304. As our approach, Manleiter’s
quality model goes beyond the analysis of structural or logical fallacies, and
purely process-oriented arguments. Both quality models offer a systematically
constructed, transparent starting point founded on shared software engineering
expertise stipulated in standards for assessing software assurance.

What is intentionally left open is a mapping of software engineering tech-
niques recommended in IEC 61508-3 for the different SILs to the software safety
classification of IEC 62304.

5 Conclusion

We adapted our 2-phase method for the assessment of IEC 62304-compliant
software assurance cases for medical devices. Based on a representation of the
arguments in the Goal Structuring Notation, syntax and well-formedness of the
argumentation can be automatically checked against common, logical and struc-
tural fallacies. To assess the conclusiveness of argumentation, our approach fea-
tures an activity-based quality model describing the effect of facts on activities
relevant to the development of a dependable system. By encoding the impact
of properties of the system, artifacts or techniques on the process activities and
their required qualities, the assessor’s trust in the conclusiveness of an argumen-
tation are made transparent and founded on a software engineering rationale.

310 M. Huhn and A. Zechner

The investigation of IEC 62304 and IEC 61508-3 leads to an integrated view.
We combine in a quality matrix the concrete facts about artifacts and tech-
niques gathered from IEC 61508-3 with the dependencies and goals stated in
IEC 62304. Based on that matrix, the assessment may reveal inconsistent or
missing arguments or even neglected counter-evidence. Negative findings can be
traced back to arguments and facts about the process or the system. One may
object that with the impact relation still a core element depends on experts
judgement. However, this judgement is brought to a statement about concrete
facts and their impact on a detailed development activity with a specified goal.
From that, concrete steps for rebuttal or improvement can be deduced in terms
of a detailment of the justification or additional safety-oriented measures which
we consider a major advantage of our approach.

References

1. RTCA: Software considerations in airborne systems and equipment certification

(December 1992)

2. Abdeen, M.M., Kahl, W., Maibaum, T.: Fda: Between process & product eval-

uation. In: Joint Workshop on High Confidence Medical Devices, Software and

Systems and Medical Device Plug-and Play Interoperability. pp. 181–186 (2007)

3. Becker, U.: Model-based development of medical devices. In: Buth, B., Rabe, G.,

Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 4–17. Springer, Hei-

delberg (2009)

4. Bliznakov, Z., Mitalas, G., Pallikarakis, N.: Analysis and Classification of Medical

Device Recalls. In: World Congress on Medical Physics and Biomedical Engineering

- Imaging the Future Medicine. Springer, Heidelberg (2007)

5. Carr, M., Kondra, S., Monarch, I., Ulrich, F., Walker, C.: Taxonomy-based risk

identification. Tech. Rep. CMU/SEI-93-TR-006, CMU/SEI (93)

6. Commission, I.E.: IEC 61508: Functional safety of electrical / electronic / pro-

grammable electronic safety-related systems (1998)

7. Commission, I.E.: 65A/524/CDV: IEC 61508-3: Functional safety of electri-

cal/electronic/programmable electronic safety-related systems Part 3: Software

requirements, Committee Draft for Voting (2008)

8. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-

based quality model for maintainability. In: Proceedings of the 23rd International

Conference on Software Maintenance, ICSM 2007 (2007)

9. Feldmann, R.L., Shull, F., Denger, C., Höst, M., Lindholm, C.: A survey of software

engineering techniques in medical device development. In: Joint Workshop on High

Confidence Medical Devices, Software and Systems and Medical Device Plug-and-

Play Interoperability, pp. 46–54 (2007)

10. Graydon, P., Knight, J.: Success arguments: Establishing confidence in software

development. Tech. Rep. CS-2008-10, University of Virginia (2008)

11. Huhn, M., Zechner, A.: Analysing dependability case arguments using quality mod-

els. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775,

pp. 118–131. Springer, Heidelberg (2009)

12. International Electrotechnical Commission: Medical device software - Software life-

cycle processes, IEC62304:2006 (2006)

13. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns. In:

Intl. Conf. on Computer Safety and Reliability (SAFECOMP), pp. 55–69 (1997)

Arguing for Software Quality 311

14. Kelly, T.: Arguing Safety – A Systemic Approach to Managing Safety Cases. Ph.D.

thesis, University of York (1998)

15. Kelly, T.: Reviewing assurance arguments - a step-by-step approach. In: Pro-

ceedings of Workshop on Assurance Cases for Security - The Metrics Challenge,

Dependable Systems and Networks (DSN) (July 2007)

16. Maibaum, T.S.E., Wassyng, A.: A product-focused approach to software certifica-

tion. IEEE Computer 41(2), 91–93 (2008)

17. Manleitner, M.: Quality attributes in IEC 62403 - a practical implementation of a

process standard (2010)

18. Wallace, D., Kuhn, D.R.: Failure modes in medical device software: An analysis

of 15 years of recall data. Intern. Journal of Reliability, Quality and Safety 8(4)

(2001)

19. Yang, F., Jacquot, J.P.: Prouvé? et aprés? In: Actes10es Journées Francophones

Internationales sur les Approches Formelles dans l’Assistance au Développement

de Logiciels - AFADL 2010, pp. 133–147 (2010)

20. Zechner, A., Huhn, M.: Structural analysis of safety case arguments in a model-

based development environment. In: Tagungsband Modellbasierte Enwicklung

eingebetteter Systeme V, MBEES 2009 (2009)

Trustable Formal Specification for Software
Certification

Dominique Méry and Neeraj Kumar Singh

Université Henri Poincaré Nancy 1

LORIA, BP 239, 54506 Vandoeuvre lès Nancy, France

{mery,singhnne}@loria.fr

Abstract. Formal methods have emerged as a complementary approach
to ensuring quality and correctness of high-confidence medical systems,

overcoming limitations of traditional validation techniques such as sim-

ulation and testing. In this paper, we propose a new methodology to

obtain certification assurance for complex medical systems design, based

on the use of formal methods. The methodology consists of five main

phases: first, informal requirements, resulting in a structured version of

the requirements, where each fragment is classified according to a fixed

taxonomy. In the second phase, informal requirements are represented

in formal modeling language, with a precise semantics, and enriched

with invariants and temporal constraints. The third phase consists of

refinement-based formal verification to test the internal consistency and

correctness of the specifications. The fourth phase is the process of deter-

mining the degree to which a formal model is an accurate representation

of the real world from the perspective of the intended uses of the model

using model-checker. Last phase provides an animation framework for

the formal model with real-time data set instead of toy-data, and offers a
simple way for specifiers to build a domain specific visualization that can

be used by domain experts to check whether a formal specification cor-

responds to their expectations. Furthermore, we show the effectiveness

of this methodology for modeling of a cardiac pacemaker system.

1 Introduction

Since software plays an increasingly important role in medical devices and more
generally in healthcare-related activities, regulatory agencies such as the US
Food and Drug Administration and certification bodies (FDA QSR (Quality
System Regulation) and ISO’s 13485) [1,2] need effective means for ensuring that
the developed software-based healthcare device is safe and reliable. Regulatory
agencies, as well as medical device manufacturers, have been striving for a more
rigorous engineering-based review strategy providing this assurance.

Providing assurance guarantees for medical devices makes formal methods
appealing. Formal model-based methods have been successful in targeted appli-
cations [3,4,5] of medical devices. Over the past decade, there has been consid-
erable progress in the development of formal methods [6] to improve confidence
in complex software-based devices.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 312–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Trustable Formal Specification for Software Certification 313

Formal methods are usually used in analysing assumptions, relationships,
and requirements of a system. To apply formal methods for developing high-
confidence medical devices, we consider basic objectives as follows,

– Requirements and metrics for certifiable assurance and safety.
– Establishing a unified theory of medical device development.
– Building a comprehensive and integrated suite of tools for a medical device

that support verification activities, including formal specification, model val-
idation and real-time animation.

– Refinement-based formal development to achieve accurate models, easier
specification for system and reuse of such specification for further designs.

– Evidence-based certification

Only simulation and testing are usual validation techniques [7] for given spec-
ification of any high-confidence medical devices. This is an operational way to
check whether a given system realization conforms to an abstract specification.
By nature, testing can be applied only after a prototype implementation of the
system has been realized. Formal verification, as opposed to testing, works on
models (rather than implementation) and amounts to mathematical proof of cor-
rectness of a system. There are several other approaches that provide higher level
modeling and verification solutions for medical devices. Software verification is a
core technology for formal methods. The role of verification and validation is very
important in the development of safety critical medical devices. Functional test-
ing and environmental modeling start verification from the requirements analysis
stage where design reviews and checklists are used for the validation stage. The
results of the verification and validation process is an important component in
the safety case, which is heavily used to support the certification process.

Although formal methods are part of the standard recommendations [2] for
developing and certifying medical devices, how to integrate formal methods into
the certification process is, in large part, unclear. Especially challenging is how to
demonstrate that the final developed system, behaves safely. This paper describes
formal methods and tools that we have applied to produce evidence for the
certification, based on the Common Criteria (CC) [8], of a medical software
based device. It also describes the most effective aspects of our methodology for
certification and research that could significantly increase the utility of formal
methods in software certification.

Software certification as performed by e.g. the FDA [1,2] does not prove cor-
rectness. If a product receives certification, it simply means that it has met all
the requirements needed for certification. It does not mean that the product is
fault free. Therefore, the manufacturer cannot use certification to avoid assuming
its legal or moral obligations.

We propose a certification model that does focus on correctness. In summary,
we can say that we do not encounter any model addressing product quality in
the same sense that we do, related to correctness and consistency. There are
however many approaches to software certification, that mostly rely on formal
verification or expert reviews to determine the product quality.

314 D. Méry and N.K. Singh

The contribution of our paper is to propose a refinement-based methodology
for medical devices. This methodology provides the solutions for all the require-
ments enumerated above. A refinement-based combined approach of formal ver-
ification, model validation using a model checker and real-time animation [9] is
proposed in this methodology for designing high confidence medical devices [2].
It can help a specifier gain confidence that the model that is being specified,
refined and implemented, does meet the domain requirements. The formal ver-
ification and model validation offer to obtain that challenge of complying with
FDA QSR and ISO’s 13485 quality system directives [1]. According to the FDA
QSR, validation is the “confirmation by examination and provision of objective
evidence that the particular requirements for a specific intended use can be con-
sistently fulfilled.” Verification is “confirmation by examination and provision
of objective evidence that specified requirements have been fulfilled” [2]. An as-
sessment of the proposed methodology is given through a case study, relative to
the development of a cardiac pacemaker [10,11].

Considering related works, C.L. Heitmeyer et. al have presented an approach
for software certification using formal methods [12,13]. They describe how for-
mal methods are used to produce evidence in a certification, based on facts of a
security-critical software system. The evidence includes a top level specification
(TLS) of the security-relevant software behavior, a formal statement of security
requirements, proofs that the specification satisfied properties, and a demon-
stration that the source code, which has been annotated with preconditions and
postconditions, is a refinement of the TLS. A research report [14] is presented
by John Rushby, which is based on certification issues for advanced technology.
Its purpose is to explain the use of formal methods in the specification and ver-
ification of software and hardware requirements, designs, and implementations,
to identify benefits, weaknesses, and difficulties in applying these methods to
digital systems used in critical applications, and to suggest factors for consid-
eration when formal methods are offered in support of certification. Software
certification as performed by e.g. the FDA [1,2] does not prove correctness. If a
product receives certification, it simply means that it has met all the require-
ments needed for certification. It does not mean that the product is fault free.
Therefore, the manufacturer cannot use certification to avoid assuming its legal
or moral obligations. We propose a certification model that does focus on correct-
ness. In summary, we can say that we do not encounter any model that address
product quality in the same sense that we do: related to correctness and consis-
tency. There are however many approaches to software certification, that mostly
rely on formal verification or expert reviews to determine the product quality.
We believe that our approach adds value with its comprehensiveness (to obtain
trustable formal model), its focus on correctness and by establishing a standard
to perform software certification that also includes formal verification and real-
time animation [9] under domain experts review. It uniformly establishes what
to check and how to check it and provides certain evidence of correctness.

Section 2 presents the related work. Section 3 presents a verification and val-
idation methodology for a high confidence medical device. An assessment of the

Trustable Formal Specification for Software Certification 315

proposed methodology is given through a case study, relative to the development
of a cardiac pacemaker in Section 4. Section 5 describes benefits of our proposed
methodology. Finally, section 6 presents concluding remarks.

2 Overview of the Methodology

In recent years, medical devices have grown more complex and providing certi-
fication assurance, is a common crucial issue for certification body [1,2]. Under
consideration of all kind of requirements of certification body, we propose a novel
methodology that addresses the issue of certification for all high-confidence med-
ical devices. Different phases of the methodology are shown in Fig.1 and this is
used in development process of critical system. Our methodology consists of the
following five main phases,

Fig. 1. Trustable verification and validation methodology

Informal Requirements
This phase of our methodology presents informal requirements of a given system.
Software requirements specifications are widely used in restricted form of natural
language. Natural language is convenient because it allows non-technical users
to understand systems requirements. On the other hand, the lack of precise se-
mantics increases the possibility of errors being introduced due to interpretation
mistakes and inherent ambiguity. Under or over specification are also common
problems when using natural language. Software requirement specification con-
sists of the categorization and structuring of the informal requirement fragment
described in the requirements document to produce categorized requirement
fragments. An objective of informal requirements is to provide a precise, yet

316 D. Méry and N.K. Singh

understandable description of the safety-relevant behavior of the system and to
make explicit assumptions on which the safety of the system is based.

Formalization Phase
In our methodology, the required security requirements are formally expressed
as properties of the state-based model that underlies the informal requirements.
The categorized requirement fragments are described through the set of formal
notations in any formal language like Event-B , Z,VDM, etcetera. Formal spec-
ification languages have a mathematical (usually formal logic) basis and employ
a formal notation to express system requirements. The formal specification is
typically a mathematically based description of system behavior, using state ta-
bles or mathematical logic. Using the formal notation, precision and conciseness
of specifications can be achieved. Formal specification will not normally describe
lowest level software, such as mathematical subroutine packages or data struc-
ture manipulation, but will describe the response of the system to events and
inputs to a degree necessary to establish critical properties.

Formal Verification Phase
This phase has a very important role in formal development. To demonstrate
that informal requirements satisfy the safety properties of interest, the informal
requirements and the properties are passed to a theorem prover and the prover
applied to prove formally that the informal requirements satisfy the properties.
A formal notation can be analysed and manipulated using mathematical opera-
tors, mathematical proof procedures can be used to test (and prove) the internal
consistency (including data conservation) and syntactic correctness of the spec-
ifications. Furthermore, the completeness of the specification can be checked in
the sense that all enumerated options and elements have been specified. How-
ever, no specification language can ensure completeness in the sense that all of
the users requirements have been met, because of the informal human-intention
nature of the requirements specifications [15]. Finally, the implementation of the
system will be in a formal language (i.e., the programming language), it is eas-
ier to avoid misconceptions and ambiguities in crossing the divide from formal
specifications to formal implementations. A formal verification phase is done to
ensure that the model is designed correctly, the algorithms have been imple-
mented properly and the model does not contain errors, oversights, or bugs. In
summary, we can say that verification ensures that the specification is complete
and that mistakes have not been made in implementing the model. But veri-
fication does not ensure that the model solves an important problem, meets a
specified set of model requirements and correctly reflects the workings of a real
world process.

Formal Validation Phase
Formal validation phase is the process of determining the degree to which a
model is an accurate representation of the real world from the perspective of
the intended uses of the model that is not covered by formal verification. It
consists of the identification of a subset of the formalized requirement fragments
for an automatic validation analysis. Validation ensures that the model meets

Trustable Formal Specification for Software Certification 317

its intended requirements in terms of the methods employed and the results
obtained. The ultimate goal of model validation is to make the model useful in the
sense that the model addresses the right problem, provides accurate information
about the system being modeled, and to makes the model actually used.

Model checking [16] is a complementary technique to validate the formal
model. Model checkers attempt to make formal techniques easier to use by pro-
viding a high degree of automation at the expense of generality. Inputs to a
model checker are typically a finite state model of a system, along with a set
of properties that are expected to be preserved by the system. Properties to be
verified can usually be categorized as one of the following,

1. Correct sequences of events
2. Proper consequences of activities
3. Simultaneous occurrences of particular events
4. Mutual exclusion of particular events
5. Required precedence of activities

The model checker explores all possible event sequences of the model to de-
termine that system is always holding required safety properties. If properties
hold, the model checker confirms correctness of the system. If a property fails
to hold for some possible event sequences, the tool produces counter-examples,
i.e., traces of event sequences that lead to failure of the property [17,18].

In Fig.1, this phase gives the feedback to the formalization phase in case of any
error is occurring or model is not satisfying expected behavior of the system. The
feedback approach is allowed to modify the formal model and verify it through
formal verification phase and finally validate it using a model checker tool [16,17].
The verification and validation processes are applied continue until not find the
correct formal model according to the expected system behavior.

Real-Time Animation Phase
This phase is the new validation technique to verify the formal system in real-
time environment using real-time data set instead of using toy-data set. This
phase is applied for rigorous testing of the formal model under domain experts.
Real-time animation shows the behaviors of the system using real environment
in early phase of the development without generating the source code. Such kind
of techniques are very useful when a domain experts are also involved in system
development [9].

We give a brief introduction for creating visual animations from formal mod-
els. The main contributions of this phase are: these animations are driven by
real-time datasets instead of “toy world” datasets; the approach allows for sim-
ulation and validation early in the development process. The implementation of
real-time animation is described in the form of a toolchain [9]. Fig.2 depicts the
overall functional architecture that can use the real-time data set to animate
the Event-B model without generating source code of the model in any target
language (C, C++, VHDL etc.). This architecture has six components, which
are described as follows,

• Data acquisition is the process of sampling of real world physical condi-
tions and conversion of the resulting samples into digital numeric values. The

318 D. Méry and N.K. Singh

Fig. 2. Real-time animation architecture

data acquisition hardware can vary from environment to environment (i.e cam-
era, sensor etc.).

• Data preprocessing transforms the data into a format that will be more
easily and effectively processed for the purpose of the user.

• Features extraction unit is a set of algorithms that is used to extract
the parameters or features from the collected data set. Theses parameters or
features are numerical values that are used by animated model at the time of
animation.

• Database stores the feature or parameter values in the database file in any
specific format. This database file of parameters or features can be used in future
to execute the model.

• Macromedia Flash tool is used to create the animated model of the
physical environment and use the Brama plug-in to connect the Flash animation
and the Event-B model.

• Brama provides the elements required to connect your Flash animation and
Event-B model and animating and inspecting a model using Flash animations.

• Event-B is a formal method for system-level modeling and analysis using
set theory modeling notation with incremental refinement approach at different
abstraction levels to verify a given system.

In Fig.1, this phase also gives the feedback to the formalization phase in
case of unexpected behavior of the system. The feedback approach is allowed
to modify the formal model and verify it using any theorem prover tool and
finally validate it using a model checker tool. The verification, validation and
real-time animation processes are applied continue until not find the correct
formal model according to the expected system behavior. In this phase of the
formal development, most of the errors are discovered by the domain experts.

Most simulation researchers agree that animation may be dangerous too, as
the analysts and users tend to concentrate on very short simulation runs so the
problems that occur only in long runs go unnoticed. Of course, good analysts,
who are aware of this danger, will continue the run long enough to create a rare
event until not cover all possible events, which is then displayed to the users.

Each phase of the methodology is supported by a specific tool. In the fol-
lowing sections, we show the effectiveness of the methodology using as grand

Trustable Formal Specification for Software Certification 319

challenge example a cardiac pacemaker specification in term of obtaining a
certification assurance.

3 Case Study: A Cardiac Pacemaker

A challenging problem is offered by Boston Scientific in the area of system spec-
ification of a cardiac pacemaker [19]. They have released a specification that
defines functions and operating characteristics, identifies system environmen-
tal performance parameters, and characterizes anticipated uses. We have used
the same specifications to test the effectiveness of our methodology for obtain-
ing trustable formal model that can help to obtain certification assurances, as
follows.

Informal Requirements
We start by analysing the specification of the cardiac pacemaker described
at [19]. An informal requirement of the cardiac pacemaker is proposed by the
software quality research laboratory at McMaster University as a pilot project for
the Verified Software Initiative [19,20]. We have used this informal requirement
of a cardiac pacemaker for generating the formal specification.

Formalization Phase
Our methodology requires proceeding with the formalization of the categorized
requirement fragment version of the requirements produced as artifact of the
informal analysis phase. The formalization phase presents formal specification
of each requirement fragment identified in the informal requirements documents
using Event-B modeling language [6,17].

In one- and two-electrode pacemaker, pacing and sensing activities are de-
fined abstractly using action-reaction [6] and time patterns [21]. We apply the
actions-reaction and time patterns in modeling to synchronize the sensing and
pacing stimulus functions of the cardiac pacemaker in continuous progressive
time constraint. We present here only summary informations about each refine-
ment of one- and two-electrode pacemakers and omit detailed formalization and
proof details. To find more detailed information see the technical reports [22,23].
The following outline is given about every refinement level to understand the
basic formal notion of the cardiac pacemaker model.

We present a block diagram (see Figure 3) of hierarchical tree structure of
the possible bradycardia operating modes for a pacemaker. The hierarchical tree
structure depicts a stepwise refinement from abstract to concrete model of formal
development for a pacemaker. Each level of refinement introduces new features
of a pacemaker as functional and parametric requirements.

The root node indicates a cardiac pacemaker system. The next two branches
show two classes of pacemaker, namely one-electrode pacemaker and two-electrode
pacemaker. The one-electrode pacemaker branch is divided in two parts to indi-
cate different chambers of the heart, namely atrium and ventricular. Atrium and
ventricular are the right atrium and the right ventricular. The atrium chamber
uses the three operating modes; AOO, AAI and AAT. Similarly, the ventricular

320 D. Méry and N.K. Singh

Fig. 3. Refinement structure of bradycardia operating modes of the pacemaker

chamber uses three operating modes: VOO, VVI and VVT. In the part of two-
electrode pacemaker, there is only one branch for both chambers. Both chambers
of the heart use the five operating modes: DOO, DVI, DDI, VDD and DDD. In
the abstract model, we introduce the bradycardia operating modes of the pace-
maker abstractly with required properties. From first refinement to last refine-
ment, there is only one branch in every operating modes of the pacemaker. In one
and two-electrode pacemaker pacemaker, there are three refinements. First thresh-
old refinement; second hysteresis refinement; and third rate adaptive or rate mod-
ulation refinement. The subsequent refinement models introduce new features or
functional requirements for the resulting system. The triple dots (...) in the hier-
archical tree represents that there is no refinement at that level in particular op-
erating modes (AOO, VOO, DOO etc.). In last refinement level, we have achieved
the additional rate adaptive operating modes (i.e. AOOR, AAIR, VVTR, DOOR,
DDDR etc). These operating modes are different from the previous levels of op-
erating modes. This refinement structure is very helpful to model the functional
requirements of the cardiac pacemaker.

The formal development of the one- and two-electrode cardiac pacemaker
is made up of the following models from abstract to concrete models through
refinement steps.

Abstract Model: Specifies the pacing and sensing under real-time properties
using action-reaction and real-time patterns for defining abstractly initial events
like Pace ON, Pace OFF,Sense ON, Sense OFF and tic events.

Refinement 1: This refinement introduces additional features for filtering the
exact sensing value through the pacemaker’s sensor by introducing standard
threshold constants for both atrial and ventricular chambers, and new events
are introduced as refinement of skip for capturing the sensors value from the
single or both chambers. A pacemaker has a stimulation threshold measuring
unit which measures a stimulation threshold voltage value of a heart and a pulse
generator for delivering stimulation pulses to the heart. The pulse generator is
controlled by a control unit to deliver the stimulation pulses with respective
amplitudes related to the measured threshold value and a safety margin.

Trustable Formal Specification for Software Certification 321

Refinement 2: This refinement introduces a hysteresis operating mode to
prevent constant pacing. The hysteresis is a programmed feature whereby the
pacemaker paces at a faster rate than the sensing rate. For example, pacing at
80 pulses a minute with a hysteresis rate of 55 means that the pacemaker will
be inhibited at all rates down to 55 beats per minute, having been activated
at a rate below 55, the pacemaker then switches on and paces at 80 pulses a
minute [24,25]. The main purpose of hysteresis is to allow the patient to have
his or her own underlying rhythm as much as possible. In this refinement only
new variables are introduced for applying hysteresis operating modes.

Refinement 3: In the final refinement, we describe a rate adapting pacing
technique of the cardiac pacemaker. Rate modulation term is used to describe
the capacity of a pacing system to respond to physiologic needs by increasing
and decreasing pacing rate. The rate modulation mode of the pacemaker can
progressively pace faster than the lower rate, but no more than the upper sensor
rate limit, when it determines that heart rate needs to increase. This typically
occurs with exercise in patients that can not increase their own heart rate. The
amount of rate increase is determined by the pacemaker on the basis of maxi-
mum exertion performed by the patient. This increased pacing rate is sometimes
referred to as the sensor indicated rate. When exertion has stopped, the pace-
maker will progressively decrease the paced rate down to the lower rate. Two
new events are introduced as refinement of skip for increasing and decreasing
the pacing rate using accelerometer.

Formal Verification Phase
Table 1 shows proof statistics for the formal development of the pacemaker us-
ing the RODIN platform [17]. These statistics measure the size of the model,
the proof obligations generated and discharged by the RODIN prover, and those
are interactively proved. The complete development of the cardiac pacemaker
results in 781(100%) proof obligations, in which 674(86%) are proved automati-
cally by the RODIN tool. The remaining 107(14%) proof obligations are proved
interactively using RODIN tool. In Event-B models, many proof obligations
are generated due to the introduction of new functional behaviors and their pa-
rameters (threshold, hysteresis and rate modulation) under real-time constraints.

Table 1. Proof statistics

Model Total number Automatic Interactive
of POs Proof Proof

One-electrode pacemaker
Abstract Model 159 134(84%) 25(16%)
First Refinement 44 40(91%) 4(9%)
Second Refinement 36 24(66%) 12(34%)
Third Refinement 80 80(100%) 0(0%)

Two-electrode pacemaker
Abstract Model 166 125(76%) 41(24%)
First Refinement 211 190(90%) 21(10%)
Second Refinement 18 15(90%) 3(10%)
Third Refinement 67 66(99%) 1(1%)
Total 781 674(86%) 107(14%)

In order to guarantee the cor-
rectness of these functional be-
haviors, we have established
various invariants in stepwise
refinement. Proofs are quite
simple, and achieved with the
help of do case operation.
Guards of some events are very
complex, so for proving invari-
ants and theorems, we simplify
guards using do case. The step-

wise refinement of the cardiac pacemaker helps to achieve a high degree of
automatic proofs.

322 D. Méry and N.K. Singh

Formal Validation Phase
Model analysis, which is done by the ProB tool, consists in exploring traces or
scenarios of our consistent Event-B models. For instance, the ProB [17] may dis-
cover possible deadlocks or system behaviors that are not expressed by generated
proof obligations. “Validation” refers to the activity of gaining confidence that
the developed formal models are consistent with the requirements, expressed in
the requirements document [19]. We have used the ProB tool [17] that supports
automated consistency checking of Event-B machines via model checking [16]
and constraint-based checking [18]. ProB is used to validate the Event-B pace-
maker formal model. This tool assists us to find potential problems, to improve
invariants expressions in our Event-B models, for instance by generating counter-
examples when it discovers an invariant violation. ProB may help in improving
invariant expression by suggesting hints for strengthening the invariant and each
time an invariant is modified, new proof obligations are generated by the RODIN
platform. It is the complementary use of both techniques to develop formal mod-
els of critical devices, where high safety and security are required. More errors
are corrected during the elaboration of the specifications while discharging the
proof obligations and careful cross-reading than during the animations. A model
animation using model checker helps to discover some unexpected behaviors of
the device and this information is used as feedback information to correct the
formal specification (see Fig.1). We have validated all operating modes of the
pacemaker in each refinement of models. The pacemaker specification is devel-
oped and formally proved by the RODIN tool.

ProB was very useful in the development of the pacemaker specification, and
was able to animate all of pacemaker models and able to prove the absence of
error (no counter-example exist). The ProB model checker also discovered several
invariant violations, e.g., related to incorrect responses or unordered pacing and
sensing activities.
Real-Time Animation Phase
This phase shows an implementation of real-time data sets with formal model of
the pacemaker. Fig.4 represents an implementation of the proposed architecture
for the formal model of a cardiac pacemaker case study. According to the ar-
chitecture, data acquisition unit collects the ECG signal and features extraction
are done by the feature extraction or parameter estimation unit. The extracting
features are stored in the database in XML file format. Macromedia Flash tool
helps to design the animated graphics of the heart and pacemaker. In next unit,
Brama plug-in helps to communicate between animated graphics and Event-B
formal model of the cardiac pacemaker. Finally, we have tested a real-time data
set in the formal models without generating the source code with the help of
Brama existing animation tool [9].

One- and two-electrode pacemaker’s pacing and sensing behaviors are vali-
dated through cardiologist experts using real-time data; ECG signal. We found
some unexpected behaviors of the model according to the cardiologist experts
in visualization. We have modified the pacemaker model according cardiologist
experts in this animation phase of our methodology. So, we consider that this

Trustable Formal Specification for Software Certification 323

Fig. 4. Real-time animation of cardiac pacemaker

phase is very important role in development of formal methods and it can help
to obtain the trustable formal model, which can be helpful to obtain the certifi-
cation assurance.

4 Benefits of Using Our Proposed Approach

In our methodology, we have provided an architecture to obtain a trustable
formal model using formal verification, validation and real-time animation (see
Fig.1). Our methodology has the potential for increasing safety of certifying high
confidence medical-critical systems. Specific benefits include improving require-
ments, reducing error introduction, improving error detection, and reducing cost.
Secondly, the proposed architecture of methodology allows us to carry out rig-
orous analyses. Such analyses can verify useful properties such as consistency,
deadlock-freedom, satisfaction of high level requirements, correctness of a pro-
posed system design and expected system behavior according to the domain
experts using real-time environment in early phase of the development without
generating the source code.

Improving Requirements. Using our methodology to capture requirements pro-
vides a simple validation check in early stage of medical-system development.
Requirements expressed in a formal notation can also be analysed early to detect
inconsistency and incompleteness for removing errors that are normally found
later in the development process.

Reducing Error Introduction. Formalized requirements prevent misunderstand-
ings due to ambiguities that lead to error introduction. As development proceeds,
compliance can be continually checked using a formal analysis to ensure that er-
rors have not been introduced. A further advantage of using our methodology at
the requirements level is the ability to derive or refine from these requirements the
code itself, thus ensuring that no error is introduced at this stage. Alternatively
their use at the requirements level allows formal analysis to establish correctness
between requirements and final generated source code of the complex system.

Improving Error Detection. Our methodology can provide exhaustive veri-
fication at whatever levels it is applied, high level requirements or low level

324 D. Méry and N.K. Singh

requirements. Exhaustive verification means that the whole structure is verified
over all possible inputs and states. This can detect errors that would be difficult
or impossible to find using only a test based approach.

Reducing Development Cost. Our methodology is based on formal techniques.
In general, software errors are less expensive to correct the earlier in the de-
velopment lifecycle they are detected in high confidence medical devices. The
effort required to generate formal models is generally more than offset by the
early identification of errors. That is, when formal methods are used early in the
lifecycle, they can reduce the overall cost of the project development. When re-
quirements have been formalized the costs of downstream activities are reduced.
Formal notations also reduce cost by enabling the automation of verification
activities.

5 Conclusion

One valuable byproduct of applying formal methods in software certification is
that the process produces a formal specification of the required software be-
havior. Developing this specification has at least two benefits. First, a formal
specification can be valuable when a new version of the software is developed.
Second, the process of developing a formal specification by itself may expose
errors.

This paper has described methodology to applying formal methods and to
achieve correct model for certification of high confidence medical devices. Build-
ing on existing software certification standards, such as ISO’s 13485 and the
Common Criteria [8], more and improved approaches which use formal methods
in software certification are needed. Applying these new approaches for highly
critical systems should have many benefits; the exposure of errors which might
have not been detected without formal methods.

That guidance, as proposed by NITRD [2], allows adoption of formal meth-
ods into an established set of processes for development and verification of a
high confidence medical device to be an evolutionary refinement rather than an
abrupt change of methodology. Formal methods might be used in a very selective
manner to partially address a small set of objectives, or might be the primary
source of evidence for the satisfaction of many of the objectives concerned with
development and verification.

In this article, we have presented evidence of proposed methodology for mod-
eling of a cardiac pacemaker. Formal development of the cardiac pacemaker and
refinement based hierarchical structure (see Fig.3) of operating modes are pre-
sented in this case study. Most important contribution in certification process is
the introduction of real-time animation using real-time data set. The pacemaker
case study suggests that such an approach can yield a viable model that can be
subjected to useful validation against system-level properties at an early stage in
the development process. Cardiac pacemaker case study shows the usefulness of
this methodology in a high-confidence medical device. This methodology is not
limited to only medical devices but it can be applied to design a highly critical
device for certification assurance.

Trustable Formal Specification for Software Certification 325

Two reliable facts of formal methods have demonstrated by last decades of
research and experience - they are not the “silver bullet” to eliminate all soft-
ware failures, but neither are they beyond the budget constraints of software
developers. In critical system, formal methods are commonly demonstrating the
absence of undesired behaviors and preserving essential properties. A model
checkers, theorem provers and real-time animation make it possible to analyses
of formal specifications in an automated or semi-automated mode, making these
tools for certification use. On the other hand, the ability to generate complete
test cases from formal specifications can result in overall savings, despite the cost
of developing the specification. The process of developing a specification is often
the most valuable phase of a formal verification, and “lightweight formal meth-
ods” approaches make it possible to formally analyse partial specifications and
early requirements definitions. Experience with mandated use of formal tech-
niques and other standards provides empirical evidence that these methods can
be successfully incorporated into the development process for hight confidence
medical devices and other critical systems.

References

1. Keatley, K.L.: A review of the fda draft guidance document for software validation:

guidance for industry. Qual. Assur. 7(1), 49–55 (1999)

2. A Research and Development Needs Report by NITRD: High-Confidence Medical

Devices: Cyber-Physical Systems for 21st Century Health Care,

http://www.nitrd.gov/About/MedDevice-FINAL1-web.pdf

3. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards.

Software Engineering Journal 8(4), 189–209 (1993)

4. Jetley, R.P., Carlos, C., Iyer, S.P.: A case study on applying formal methods to med-

ical devices: computer-aided resuscitation algorithm. STTT 5(4), 320–330 (2004)

5. Jetley, R., Purushothaman Iyer, S., Jones, P.: A formal methods approach to med-

ical device review. Computer 39(4), 61–67 (2006)

6. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)

7. Magee, J.H.: Validation of medical modeling & simulation training devices and

systems. Stud. Health Technol. Inform. 94, 196–198 (2003)

8. Common Criteria, http://www.commoncriteria.org/

9. Méry, D., Singh, N.K.: Real-time animation for formal specification. In: Complex

Systems Design & Management (CSDM), Paris (2010)

10. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.

ACM 50(1), 63–69 (2003)

11. Goldman, B.S., Noble, E.J., Heller, J.G., Covvey, D.: The pacemaker challenge.

CMAJ 110(1), 28–31 (1974)

12. Heitmeyer, C.L.: On the role of formal methods in software certification: An expe-

rience report. Electr. Notes Theor. Comput. Sci. 238(4), 3–9 (2009)

13. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Applying formal methods

to a certifiably secure software system. IEEE Trans. Software Eng. 34(1), 82–98

(2008)

14. Rushby, J.: Formal methods and their role in the certification of critical systems.

Technical report, Safety and Reliability of Software Based Systems (Twelfth An-

nual CSR Workshop) (1995)

http://www.nitrd.gov/About/MedDevice-FINAL1-web.pdf
http://www.commoncriteria.org/

326 D. Méry and N.K. Singh

15. Jackson, M.: The problem frames approach to software engineering. In: APSEC,

p. 14 (2007)

16. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge

(1999) ISBN 978-0262032704.

17. Project RODIN: Rigorous open development environment for complex systems:

RODIN Toolset and ProB. (2004), http://rodin-b-sharp.sourceforge.net/

18. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol. 11(2), 256–290 (2002)

19. Boston Scientific: Pacemaker system specification, Technical report, Boston Scien-

tific (2007), http://www.cas.mcmaster.ca/sqrl/SQRLDocuments/PACEMAKER.pdf

20. Macedo, H.D., Larsen, P.G., Fitzgerald, J.S.: Incremental development of a dis-

tributed real-time model of a cardiac pacing system using vdm. In: Cuellar, J.,

Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 181–197. Springer,

Heidelberg (2008)

21. Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for event b development.

In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 140–154.

Springer, Heidelberg (2006)

22. Méry, D., Singh, N.K.: Functional behavior of a cardiac pacing system. Interna-

tional Journal of Discrete Event Control Systems 1(2) (in Press, 2010)

23. Méry, D., Singh, N.K.: Technical Report on Formal Development of Two-Electrode

Cardiac Pacing System (2010),

http://hal.archives-ouvertes.fr/inria-00465061/en/

24. Malmivuo, J.: Bioelectromagnetism. Oxford University Press, Oxford (1995) ISBN

0-19-505823-2

25. Hesselson, A.: Simplified Interpretations of Pacemaker ECGs. Blackwell Publishers,

Malden (2003) ISBN 978-1-4051-0372-5

http://rodin-b-sharp.sourceforge.net/
http://www.cas.mcmaster.ca/sqrl/SQRLDocuments/PACEMAKER.pdf
http://hal.archives-ouvertes.fr/inria-00465061/en/

Design Choices for High-Confidence
Distributed Real-Time Software

Sebastian Fischmeister and Akramul Azim

Department of Electrical and Computer Engineering

University of Waterloo, Canada

sfischme@uwaterloo.ca, aazim@uwaterloo.ca

Abstract. Safety-critical distributed real-time systems, such as net-
worked medical devices, must operate according to their specification,

because incorrect behaviour can have fatal consequences. A system’s de-

sign and architecture influences how difficult it is to provide confidence

that the system follows the specification. In this work, we summarize

and discuss three design choices and the underlying concepts that aim

at increasing predictability and analyzability. We investigate mandatory

resource reservation to guarantee resource availability, separation of re-

source consumptions to better manage resource inter-dependency, and

enumerative reconfiguration. We use the example of a distributed mon-

itoring system for the human cardiovascular system to substantiate our

arguments.

1 Introduction

Networked medical devices are good examples of distributed real-time systems
with safety-critical functionality. They assist medical staff by automatically mea-
suring physiologic parameters such as blood pressure, oxygen level, and heart
rate, or actively influence the patient’s parameters by means of infusion pumps
for analgesia and insulin or breathing support. As a consequence, incorrect be-
haviour of the system can result in fatal outcomes for the patient. As such,
patients must have confidence that the devices operate according to their spec-
ification. One way to establish confidence in the system is by making systems
predictable and analyzable, which permits developers and certification authori-
ties to inspect the system before deployment.

Many researchers have looked into the problem of how to make a system
predictable and analyzable. By predictable, we mean that an external observer,
for example the developer, can predict the system’s behaviour with respect to
input values and their timing without knowing the internal state. This allows
the developer to build a system that implements a specification with strict con-
straints. By analyzable, we mean that the system can be subjected to formal
analysis methods such as model checking which allows the developer to formally
check the correct behaviour of the system.

In this work, we summarize and discuss three design choices made in previous
and related works that aim at raising the predictability and analyzability of real-
time systems. Our contribution is to abstract from these systems and provide

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 327–342, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

328 S. Fischmeister and A. Azim

a general description of the concept underlying the design choices. This allows
developers to quickly understand the choices and adapt the concept for their own
system. The following paragraphs introduce the necessary concepts of resources,
resource reservation, and resource consumption. We then discuss the three design
decisions: mandatory resource reservation (in Section 2), separation of resource
consumptions (in Section 3), and enumerative reconfiguration (in Section 4). We
illustrate all three concepts with an example of a distributed patient monitoring
system for the human cardiovascular system.

Applications require resources to execute. Classical resources include compu-
tation time (i.e., access to a processing unit to execute instructions), memory
(i.e., temporary or permanent data storage), and communication bandwidth (i.e.,
access to a shared medium to transmit information to remote stations). One can
extend this concept to logical resources such as locks or peripherals.

Before an application can use such resources, it must acquire them. A resource
broker mechanism usually provides resources to applications. For some resources,
the system implicitly allocates resources to applications. For example, when
considering computation time, the dispatcher in the operating system decides at
each scheduling point which process is ready to execute. For other resources, the
application must explicitly request them. For example, programs usually make
system calls to request memory during their execution or to statically request
memory at their start time.

Systems can include mechanisms to reserve resources for applications. In
such systems, the developer can specify that the system must provide a cer-
tain amount of resources to an application. For example, the developer might
specify that a station can always receive 50kB/s of communication bandwidth to
guarantee that the station can communicate the video stream of the surgical de-
vice or other patient data. Resource reservation schemes are well studied across
the different resource types and come in great variety. For example, for compu-
tation time there are scheduling algorithms (e.g. [1,2,3]) and for communication
bandwidth there is quality of service (e.g. [4,5]).

For this work, we assume that the resources are reservable, meaning that we
can build a resource reservation policy. For all examples involving networking, we
assume that the system consists of a set of stations (e.g., patient monitors, bio-
metric sensing devices, nurse workstation) and they are interconnected through
a shared bus network.

2 Mandatory Resource Reservation

Using resources without an appropriate reservation scheme can make systems
unpredictable. For example in networks without resource reservation, message
transmission time can be unbounded. In Ethernet [6], developers are unable to
predict the duration it will take to send an updated value from the sensor to
the monitor or an alarm message from the monitor to the nurse station. One
problem causing this is the Ethernet capture effect [7] that results in transient or
short-term unfairness. This effect leads to incorrect behaviour, because Ethernet
was designed to provide fair access to all stations, and during these periods of

Design Choices for High-Confidence Distributed Real-Time Software 329

unfairness a single station can monopolize the channel. Thus, the developer is
unable to predict how long it will take to transmit a message and thus is unable
to know whether the system correctly implements a specification that requires
a time bound on the transmission delay.

Bandwidth reservation as a means of resource reservation can solve this prob-
lem. Using bandwidth reservation, the developer can allocate bandwidth for each
station and bound the transmission delay. Several different real-time protocols on
top of Ethernet have demonstrated that this is technically feasible by extending
the drivers in the stations [8,9,10,11] or switches [12,13,14].

Resource reservation can thus increase the predictability of medical device
software. Using resource reservation, developers can rely that sufficient resources
will be available for the application whenever it needs these resources. Therefore,
the application will never have to wait for the system to free up resources.

Resource reservation can be either mandatory (driven by the system) or dis-
cretionary (driven by the applications). Mandatory means that the system guar-
antees the resource reservation for applications, and applications are unable to
alter these reservations. In contrast to this, discretionary resource reservation
allows applications to request more or less resources at run time. For example,
the partitioning scheme specified by ARINC 653 [15] and cyclic executives [3]
implement mandatory resource reservation. Works such as FTT-Ethernet [10]
and RETHER [11] provide discretionary resource reservation, since applications
can choose to request changes for their present reservations.

Mandatory resource reservation fits well for networked medical devices. Since
mandatory resource reservation prohibits applications from changing their reser-
vations, it is easier to provide evidence on the behaviour of such systems than
systems with discretionary resource reservation. Mandatory resource reservation
remains static and provides a complete specification of how the broker will dis-
tribute resources at run time. The resource reservation itself can then become
evidence for establishing confidence in the system’s correctness. Examples of this
type can be a fully specified time-triggered schedule as found in TTP [5], the
dispatch table of a cyclic executive [3], or the tree schedule encoded in a Network
Code program [9].

We now exemplify the concept of mandatory resources reservation by looking
at our previous work on tree schedules [16,9]. We assume a set of network stations
that exchange messages with each other. Stations store messages in queues before
they can transmit them. A message can either contain arbitrary contents or a
specific variable v. Message ordering in queues is local to each station.

We assume that time is given in discrete units, and that time is measured on a
global clock. The communication medium provides an atomic broadcast service,
so either all of the stations or none of them receive a message. All messaging
behaviours for which developers want to give guarantees are known a-priori.

An informal description of a tree schedule is then a tree structure with a root
and a set of leaves where each vertex in the structure specifies a messages to be
transmitted and each edge a possible state transition. Edges contain enabling
conditions. At run time, for each vertex exactly one edge is enabled at any given

330 S. Fischmeister and A. Azim

time. Whenever an execution reaches a leaf of the tree, it will loop back to the
root. For a formal definition, we refer the reader to related work [16,9].

Figure 1 shows a tree schedule. Labels on vertices show which variable needs
to be communicated. An assignment of ε means that nobody will transmit. To
simplify the example, we assume that each location has a duration of one time
unit and that the system is already synchronized.

The system executes the tree schedule as follows: First one station transmits v1

followed by a message containing v2. Then, the enabling condition g1 determines
which edge to follow. If ¬g1 holds, then v3 will be transmitted; otherwise, the
system will leave the medium idle for one time unit.

ε

¬g1

g1

g1 := (v1 < vthr ∧ v2 < vthr)∨

(v1 ≥ vthr ∧ v2 ≥ vthr)

v1 v2 v3

Fig. 1. Example of a tree schedule

Tree schedules can still lead to unbounded communication delays, because
the tree schedule itself may encode collisions on the medium and thus force
retransmissions. Developers must choose the right type of communication to
prevent this. Tree schedules can model and execute two different types of traffic:
guaranteed and best effort. Also, developers can increase the level of detail by
either communicating individual variables or using general message passing. The
difference between these types of communication lies within the ownership of the
queues, meaning which stations know the different types of queues.

For example, the communication type of guaranteed variable updates will oc-
cur, if only one station transmits in that state of the tree schedule, and the
transmission is specifically bound to a variable. The update is guaranteed since
no other station will transmit and thus the communication will be free of col-
lisions. On the other hand, best effort messaging will occur, if more than one
station is permitted to transmit data from their send queue in the state of the
tree schedule. If more than one station has a message in its send queue, then
communication problems such as collisions or packets drop might occur. These
different types of communication are visible from the specification of the tree
schedule, and the system also directly executes the tree schedule as it gets en-
coded in the Network Code language [9].

Since the system will execute the tree schedule at run time, developers can
use the tree schedule itself and state-space exploration on the schedule as evi-
dence that the system works correctly. In the later sections, we will demonstrate
the advantages of hard coded enabling decisions. Here, we only argue that the
schedule enables developers to, for example, provide upper bounds on the re-
source allocations for specific applications. For the tree schedule in Figure 1, the

Design Choices for High-Confidence Distributed Real-Time Software 331

developer can claim that the variables v1 and v2 will always receive bandwidth
and stations will always receive updated values every three time units.

3 Separation of Resource Consumptions

Another element reducing predictability and analyzability is the high degree of
internal dependencies of resources within programs. A program requires many
different resources and uses them as the program code specifies. Consequently,
consecutive lines in the program code can use different resources. This causes
a dependency between the resources that is hidden in the program. While such
dependencies are of no concern in traditional systems, they become a major
concern for safety-critical systems, because variations in the use of resources in
one line can affect subsequent lines.

1 thread_run () {
f loat ∗d=NULL ;

3 while (1) {
d = malloc (s izeof (f loat)∗ 1 0) ; // mem: allocating memory

5 acquireFilteredValues (d) ; // cpu: computing
msg_send (d) ; // net: communicating

7 free (d) ; // mem: deallocating memory
milliSleep (1 0 0) ; // time: controlling time

9 }}

Listing 1.1. Sample C program for computing a value and transmitting it

Listing 1.1 shows a short example of a program that performs a simple task,
but it is hard to predict the timing behaviour. The program first allocates mem-
ory to read some sensor values. Then, it sends them to another station through
the network, and frees the memory again. The program then delays for 100 mil-
liseconds before it repeats this behaviour. Now, the interesting question is: Does
the program really send a new message every 100 milliseconds?

Unfortunately, several plausible scenarios can prevent the program from send-
ing a message every 100 milliseconds. The scenarios range from memory allo-
cation to preemption, to collisions on the network to the clock granularity. For
example, in Lines 4 and 7, the program executes memory operations. Depend-
ing on the current state of the memory manager, allocating memory might take
more or less time. For example, the memory manager might need to swap out
processes to free a memory frame, it might decide to flush buffered pages, or it
might change the resident set sizes for processes. In Line 8, the exact time of the
delay depends on the clock granularity supported by the operating system and
the actual crystal. The actual duration of the milliSleep() call varies depending on
these factors. Worst of all, the individual effects influence each other, so for ex-
ample, the program might send the message late (see Line 6), because of a delay
in the memory allocation. Individual small modification can cause ripple effects
throughout the system and manifest at parts of the program. This complicates
tracing the effect back to the source.

Industry and academia know this problem and provide approaches for indi-
vidual effects. For example, work on synchronous languages [17] addressed the

332 S. Fischmeister and A. Azim

precision problem by reducing reaction intervals to reaction instants. Another
work investigated jitter of conventional sleep functions in operating systems [18].
Other work addresses the problem of predictability of execution at the hardware
level [19]. Industry uses static allocation of memory and other resources to min-
imize the dependencies. The Ravenscar profile [20], RavenSPARK [21] and work
on MISRA-C [22] provide evidence for this.

With the observation that resource dependencies cause problems, we argue
for factoring out the reservation and consumption parts into separate programs.
While overall, the number of inter-dependencies remains the same, encapsulating
them and joining them through a well-defined mechanism makes the program
predictable and more analyzable. The approach mimics divide-and-conquer in
that it splits the whole program into several pieces where each piece has a mini-
mal set of resource dependencies—in the optimal case only dependencies for one
resource—we make the programs easier to understand and analyze. After the
developers specify the pieces, they can join them together for example through
specified timed interactions such as timed interfaces [23] and retain predictability.
For medical system software, this means that the developers write independent
pieces of code with little resource interdependencies and then, for example, join
them through a pipe and filter architecture with well-known temporal behaviour.

Several systems have already tried to lower the resource interdependency by
encapsulating resource use in separate layers. For example, Giotto [24] sepa-
rates the value and execution domain. In this system, the reading and writing
of values is independent of the program execution. Changing one does not nec-
essarily require changes in the other. TTP [5], similar to other communication
protocols, separates the communication from the execution domain. A schedule
defines when nodes send and receive messages which are independent when tasks
running on the nodes produce new values. In PEACOD [25], the authors pro-
vide a framework for specifying resource consumptions for small pieces of code
to provide compositionality and predictable behaviour for multiple resources.

In the following, we show how we separate computation and communication
in the Network Code framework [9] that implements tree schedules. Figure 2
provides the overview of the architecture. Computation tasks on the top imple-
ment the application logic. The communication tasks on the bottom implement
the communication behaviour. Both layers interact through buffers and queues.
The typical data flow is as follows: the computation tasks produce new data and
write it into the buffers. The communication tasks read and encapsulate this
data in messages and transmit them on the communication medium. At the re-
mote station, the communication tasks will receive the messages and write their
contents into the buffers. Finally, the computation tasks at the remote station
will process the new data.

The computation tasks can only use computation and associated resources
such as memory. Computation tasks never directly access the medium. Com-
munication tasks only use the communication medium as a shared resource, all
other resources need to be provided separately.

Building such a system is feasible and robust [26] as the hardware implemen-
tation shows. It isolates the computation part from the communication part in

Design Choices for High-Confidence Distributed Real-Time Software 333

resource

Computation tasks

Communication tasks

Comm. medium

Write newly
produced data

Encapsulate data
in messages

Transmit
messages

Receive
messages

Process new
data

Buffers
Write extracted
data

(and other resources)
Computation

Communication

Fig. 2. Overview of the Network Code framework

the program. Since we use tree schedules to specify the communication tasks,
we can verify the communication behaviour on the shared medium and for ex-
ample performing static checks for collisions, buffer underrun, buffer overruns,
sender/receiver pairing, and incorrect messaging lifecycle.

For the example shown in Listing 1.1, the developer will specify a communi-
cation task on the sending station that reads the value of d from the buffers and
transmits it precisely every 100 milliseconds. The receiving stations will run the
matching tasks that receive the transmitted value and store it in the buffers.
On the computation layer, tasks will now only be concerned with memory and
computation resources, which the developer can easily resolve by statically allo-
cating the memory and then performing schedulability analysis for the compu-
tation parts. We acknowledge that such a system still contains jitter caused by,
for instance, hardware effects, however, we argue that the developers can place
more confidence in the system. This increase in confidence originates from the
better handling of the dependencies and using the interaction between the tasks
and the buffers as well as the tree schedule as evidence.

4 Enumerative Reconfiguration

Reconfiguration in systems has been shown to allow developers to build systems
that can adapt to new use cases, increase system survivability [27], and improve
efficiency in the use of system resources [28]. Any mass-produced safety-critical
device benefits from these properties. Medical devices also benefit, as reconfig-
uration enables an integrated clinical environment [29] which improves service
quality and reduces cost. However, the increase in complexity by providing a
reconfiguration mechanism must not compromise the system’s correctness, so an
important question is how to provide the reconfiguration mechanism and still
establish confidence in the system’s correctness.

We want systems to be reconfigurable, but without knowing whether the
system works in a different configuration, the system will be unusable for safety-
critical applications. Reconfigurable systems can either be space constrained
(bounded state-space) or unconstrained (unbounded state-space). In general,
space unconstrained reconfiguration schemes provide more flexibility but are

334 S. Fischmeister and A. Azim

unable to provide evidence that the system behaves as it should, which makes
it hard to provide guarantees on the behaviour of the systems. For this reason,
we argue that reconfiguration must be bounded by constraints.

Bounding the reconfiguration space can either use a constraint-based or an
enumerative approach. In the constraint-based approach, the developer specifies
constraints at a high-level within which the system can choose its point of opera-
tion. For example, the developer can specify a range of acceptable data rates for
transmitting the patient’s parameters to the monitor. Then at run time depend-
ing on the actual situation the system will choose a data rate within the range.
The advantage of constraint-based reconfiguration is that it provides a large state
space within which the system can choose the best point of operation for the
current situation. In the enumerative approach, the developer exhaustively lists
all possible configurations and the system picks one configuration at run time. In
the example with the data rates, the developer will, for instance, specify three
possible data rates and the system will select one of the three rates. Systems
with multiple modes of operation usually provide exhaustive lists in which a
mode usually realizes a system’s functionality for a particular configuration.

One advantage of using the enumerative approach instead of the constrained-
based approach is the guarantee that the system supports reconfiguration but
remains analyzable. If system’s state-space is small, then verifying the system
will be tractable. However, the size depends on the constraints and the appli-
cation, and a system with loose constraints can easily run into the state-space
explosion problem. In the enumerative approach, the state space is automatically
constrained by the requirement to list all possible reconfigurations.

Note that fast checks for safe reconfiguration are available [30,31], however,
they only apply to the resource reservation parts and developers still need to
establish confidence in the functional correctness for all possible configurations
once they have sufficient resources.

Several systems support reconfiguration. For example TTP/C [5] supports up
to 30 modes with a safe mode-change protocol. Tree schedules [9] can encode
modes in the structure that can have safe transitions. Endochronous clocked
graphs [32] can encode different modes similarly to tree schedules.

Section 2 demonstrates how we can encode different configurations in tree
schedules. The tree schedule shown in Figure 1 includes two modes of operation:
one where values v1 and v2 agree and the other where the two values disagree.
Similar to this configuration, we can encode the list of configurations in the tree
structure and verify properties as already mentioned in the previous sections.

5 Illustrative Example

We use the following example to summarize and substantiate our point about
the three concepts mentioned in the previous sections. The aim is to integrate
all three concepts into one example and show how one can provide evidence
using formal verification. We go through the following steps of building the sys-
tem: (1) we build the resource reservation scheme using tree schedules, (2) we
provide evidence that the resource reservation works by means of formal verifi-
cation enabled by the separation of resource consumptions and the enumerative

Design Choices for High-Confidence Distributed Real-Time Software 335

reconfiguration, and (3) we show the simulation framework for tree schedules in
Matlab Simulink to test tree schedules before deployment.

5.1 Overview

We assume a distributed patient monitoring system in which body sensors trans-
mit physiological parameters to the patient monitor. When the pulmonary vascu-
lar resistance (PVR) of the patient passes a given threshold, the patient monitor
will send an alarm message to the nurse station within bounded time.

PVR [33] is the resistance in the pulmonary vascular bed against which the
right ventricle must eject blood. To calculate the pulmonary vascular resistance,
the patient monitor requires the left atrial pressure (LAP) or the pulmonary
capillary wedge pressure (PCWP), the pulmonary artery pressure (PAP), and
the cardiac output (CO). PCWP provides an indirect estimate of LAP. PCWP
is measured by wedging a catheter into a small pulmonary artery tightly enough
to block flow from behind. LAP can be measured by placing a special catheter
into the right atrium and then pushing through the inter-atrial septum. Since
the patient monitor only requires the LAP or the PCWP, we can create several
modes for the operation of the monitor:

– Configuration 1: The patient monitor uses the PAP, CO, and LAP.
– Configuration 2: The patient monitor uses the PAP, CO, and PCWP.
– Configuration 3: The patient monitor uses the PAP, CO, and LAP. If an

alarm is pending, then the monitor will make a safety check and also acquire
the PCWP, before signaling the nurse alarm. This will lower the number of
false alarms as it eliminates the problem of incorrect LAP measurements.

– Configuration 4: This is similar to configuration 3 but the patient first uses
PAP, CO, and PCWP, and then uses LAP for the fail safe.

We treat calculating the pulmonary vascular resistance as a single transaction.
This means that the system should always complete all data transmissions that
the patient monitor requires before reconfiguring (e.g., changing configuration).
This assumption is important, because we model setting the configuration with
a physical button which the nurse can press with a frequency of at most once
in a fixed amount of time. In addition, the patient monitor must signal the nurse
alarm within a bounded time when the pulmonary vascular resistance exceeds a
specific threshold.

5.2 Developing the Tree Schedule

Based on the specification in Section 5.1, we can develop the tree schedule for the
resource reservation. We assume that communicating one value takes one time
unit, and the inter-arrival time of button pressed events is set accordingly. Fig-
ure 3 shows the tree schedule that implements the specification (or so we claim).
A vertex labeled ε takes zero time and we use it to encode branches with more
than two choices or for early termination of the schedule. The PVR monitoring
station can operate in four configurations. In any of the four configurations, the
monitoring system at first receives the value of the PAP from the circulatory

336 S. Fischmeister and A. Azim

system to calculate the PVR. If the received value is out of the normal range
for PAP values (i.e. 10-20 mmHg), the system will enter the safety interlock
state. In the safety interlock state, the system checks the important functions of
the human cardiovascular system such as the patient’s pulse rate while resting
(60-100 beats per minute) to determine the patient’s safety. This assumption is
implicit and not shown in the Figure 3. After receiving the value of CO within the
normal range (4 L/min-8 L/min), the system can either receive LAP (normal
range 6-12 mmHg) or PCWP (normal range 6-12 mmHg) based on the current
configuration. The patient monitor will receive PCWP after PAP, if the system
uses configuration 3. On the other hand, the monitor will receive LAP after the
PAP, if the system runs in the default configuration (i.e., any configuration other
than 1, 2, and 3). The system will enter into the safety interlock state for out
of the normal range of CO, LAP, or PCWP. The system will generate an alarm
and notify the nurse, when the PVR exceeds normal value (> 250 dyn.s/cm5).
The nurse can change the configuration of the monitoring system at any point
in time, but not in the middle of a transaction.

Guards g1 and g2 define the enabling conditions whether the PVR value of
the patient exceeds the defined threshold thr. Guards g3 to g6 are enabling
conditions depending on the configuration setting. We assume configuration 4
to be the default configuration.

For demonstration purposes, we walk through one configuration for which we
assume conf = 4 and PVR ≥ thr. In the root location labeled ε0, only g6 will
be enabled. The tree schedule specifies that the next three messages on the bus
will be PAP, CO, and PCWP. At that point PV R exceeds the threshold thr
(PVR ≥ thr), so g1 is true and the patient monitor will also receive the LAP
measurement. Finally, g1 will again be true and the patient monitor will signal
the nurse alarm before the tree schedule restarts at its root location.

g3 ← (conf = 1)

g1

g1

g1

g5

g4

g3

g6

g2

g2

g2

g2

g1

g2

g1

g2

ε1

ε2

ε4

ε3

ε5

ε6

ε0

LAP

g4 ← (conf = 2)

g5 ← (conf = 3)

g6 ← (conf �= 1) ∧ (conf �= 2) ∧ (conf �= 3)

PAP

PAP

PAP

PAP CO

CO

CO

CO LAP

PCWP

LAP

PCWP

PCWP

Nurse

Nurse

Nurse

g1
Nurse

g2 ← (PVR < thr)

g1 ← (PVR ≥ thr)

Fig. 3. The tree scheduling for the patient monitoring system

Design Choices for High-Confidence Distributed Real-Time Software 337

5.3 Verifying the Tree Schedule

To provide evidence that our system meets the specification with respect to
the communication requirements, we provide the following guarantees for our
reservation mechanism. Note that we can verify these properties, because we
separate communication from computation in our framework (see Section 3)
and we can enumerate all configurations (see Section 4).

– P1: In every t time units and in all configurations, the PVR monitoring
system will receive all data necessary to compute and display the new PVR
value.

– P2: When PVR ≥ thr, then the nurse will be notified no later than x time
units in all configurations.

– P3: Calculating PVR is atomic and when the system is in a particular
configuration mode, it is not possible to switch to different modes.

– P4: The system will always make progress and never gets stuck.

Fig. 4. Modeling PVR monitoring system in UPPAAL

To provide evidence that these properties hold in our system, we encode the
tree schedule in a timed automaton and check the properties using UPPAAL.
UPPAAL [34] is a timed-automata based model checker that allows formal ver-
ification of temporal logic properties in finite systems. Figure 4 shows the tree
schedule part of the UPPAAL model. The whole system comprises three dif-
ferent processes: one modeling the tree schedule, one modeling the nurse, and

338 S. Fischmeister and A. Azim

one modeling the alarm condition. All three processes run in parallel. The nurse
process can alter the conf variable at most once every time unit. The nurse alarm
will sound, if the variable nurse is set to one. We use channel a to synchronize
the alarm process with the tree schedule process. The alarm process implements
the non-deterministic choice whether an alarm happened or not. In Figure 4, the
clock c constraints state changes (one transmission requires one time unit), the
clock t counts for the cycle, and the clock tall always increases. We use t and tall

for verification purposes only. We can now check the properties defined above
using UPPAAL’s query language:

– P1: A�(P.end → (pap = 1∧ co = 1∧ lap = 1)∨ (pap = 1∧ co = 1∧ pcwp =
1)) ∧ (P.end → (t ≤ 5)): Whenever the system reaches the end, PAP, CO,
and LAP or PCWP have been transmitted. And, the system always reaches
the end withing five time steps.

– P2: A�((adly ≥ 3) ∧ (adly ≤ 4) → ((alarm = 0) ∨ (nurse = 1))): The
system will notify the nurse within three to four time units after an alarm
happened.

– P3: A�((pap conf1 = 1) ∨ (co conf1 = 1) ∨ (lap conf1 = 1)) →
¬((pap conf2 = 1) ∨ (co conf2 = 1) ∨ (pcwp conf2 = 1) ∨ (pap conf3 =
1) ∨ (co conf3 = 1) ∨ (lap conf3 = 1) ∨ (pcwp conf3 = 1) ∨ (pap conf4 =
1)∨(co conf4 = 1)∨(lap conf4 = 1)∨(pcwp conf4 = 1)): When the system
is in configuration 1, the system cannot enter into configuration 2, 3, or 4.
Therefore, The system cannot be switched to different configurations while
it is in a configuration mode.

– P4: A�¬deadlock: The system will always make progress and not deadlock.

Note, compare the complexity involved in checking such properties for general
programs that mix computation and communication in a programming language
like C. We can easily now connect the communication layer with the computation
layer through buffers and a specification when values get read and written in
these buffers (as we have done in [9]). Also note that we generate the schedule
from high-level specifications [35].

5.4 Simulating the System

We use Simulink to simulate our patient monitoring system. We implement the
patient monitor and connect it to a model of a human cardiovascular system [36]
using TrueTime [37]. TrueTime supports simulating network communication for
real-time control systems. The human cardiovascular system implements a heart
model and produces different physiological parameters of the heart.

In our simulation, we implement the tree schedule defined in Section 5.2. Fig-
ure 5(a) provides an overview of the Simulink model and Figure 5(b) shows the
resulting PVR value of a sample run of the simulation. The human cardiovascu-
lar system abstracts the implanted body sensors that report PAP, LAP, CO, and
PCWP to the external PVR monitoring system. The tree schedule runs inside
the network code machine (NCM) implemented on top of TrueTime. We can
implement the tree schedule inside a state machine using the StateChart block.

Design Choices for High-Confidence Distributed Real-Time Software 339

Systemic circulatory system

Right heart

Monitor

Pulmonary circulatory system

NCM

Left heart

Heart beat

(a) Human cardiovascular system model in

Simulink

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

Time (seconds)

P
ul

m
on

ar
y

V
as

cu
la

r
R

es
is

ta
nc

e
(P

V
R

)
(d

yn
.s

/c
m

5)
(b) Monitoring the PVR

Fig. 5. Simulation of tree schedules for the human cardiovascular system example

The human cardiovascular system components connect with the TrueTime
network, and the monitoring system receives the physiological parameters
through the network. The basic elements of TrueTime are the TrueTime send
block, the TrueTime network block, and the Network Code Machine block that
implement the tree schedule. The monitoring system use TrueTime receive blocks
to receive data over the network. If we enter the subsystems of the system model,
we will see the detailed interactions of Matlab, Simulink, and TrueTime elements
for each subsystem. Before starting the simulation, we set the parameters of dif-
ferent elements of the system model such as network type, number of nodes,
data rate and frame size in the TrueTime network block.

6 Conclusion

In this work, we discussed three useful concepts following design decisions that
aim at increasing the predictability and analyzability of real-time systems: re-
source reservation, different types of resource consumptions, and constrained
reconfiguration. Our work on tree schedules created the guiding example for
each of these three mechanisms. Finally, we showed an illustrative example of a
distributed patient monitoring system in which we went through the phases of
specifying, checking, and finally simulating the system.

The mentioned concepts open up many avenues for future work. One can ex-
plore each of the mentioned concepts in more detail for different resource types and
investigate how to join them together into one framework for multiple resources.
Another interesting problem is compositionality of resource consumptions and ev-
idence. This points to the question of how can one place confidence in the whole
system from having evidence that all the individual modules work as specified.

340 S. Fischmeister and A. Azim

Acknowledements

We would like to thank the members of the Embedded Software group at the
University of Waterloo for their feedback on an early draft as well as Hiren Patel
for in-depth discussions and Steven Dain for information on the medical parts
of the work. This research was supported in part by NSERC DG 357121-2008,
ORF RE03-045, and ISOP IS09-06-037.

References

1. Buttazzo, G.: Hard Real-Time Computing Systems. Kluwer Academic Publishers,

Dordrecht (2000)

2. Leung, J. (ed.): Handbook on Scheduling. CRC Press, Boca Raton (2004)

3. Liu, J.: Real-Time Systems. Prentice-Hall, New Jersey (2000)

4. Coulouris, G., Dollimore, J., Kingberg, T.: Distributed Systems: Concepts and

Design. Queen Mary and Westfield College, University of London (1996)

5. Kopetz, H.: Real-time Systems: Design Principles for Distributed Embedded Ap-

plications. Kluwer Academic Publishers, Dordrecht (1997)

6. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local com-

puter networks. Commun. ACM 19(7), 395–404 (1976)

7. Ramakrishnan, K., Yang, H.: The Ethernet Capture Effect: Analysis and Solution.

In: Proc. 19th Local Computer Networks Conference (1994)

8. Court, R.: Real-time Ethernet. Comput. Commun. 15(3), 198–201 (1992)

9. Fischmeister, S., Sokolsky, O., Lee, I.: A Verifiable Language for Programming

Communication Schedules. IEEE Transactions on Computers 56(11), 1505–1519

(2007)

10. Pedreiras, P., Almeida, L., Gai, P.: The FTT-Ethernet protocol: merging flexibility,

timeliness and efficiency. In: Proceedings of the 14th Euromicro Conference on

Real-Time Systems (ECRTS), pp. 134–142. IEEE Press, Los Alamitos (June 2002)

11. Venkatramani, C., Chiueh, T.: Supporting real-time traffic on Ethernet. In: Pro-

ceedings of Real-Time Systems Symposium (RTSS), pp. 282–286. IEEE Press, Los

Alamitos (December 1994)

12. Carvajal, G., Fischmeister, S.: A TDMA Ethernet Switch for Dynamic Real-Time

Communication. In: Proc. of the 18th IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), Charlotte, United States (May 2010)

13. Jasperneite, J., Neumann, P., Theis, M., Watson, K.: Deterministic Real-Time

Communication with Switched Ethernet. In: Proceedings of 4th IEEE International

Workshop on Factory Communication Systems, WFCS (2002)

14. Steinhammer, K., Grillinger, P., Ademaj, A., Kopetz, H.: A Time-Triggered Ether-

net (TTE) Switch. In: Proceedings of the Conference on Design, Automation and

Test in Europe (DATE), 3001 Leuven, Belgium, Belgium, European Design and

Automation Association, pp. 794–799 (2006)

15. Aeronautical Radio, I.A.: ARINC 653 (Avionics Application Standard Software

Interface). ARINC Standard (2003)

16. Anand, M., Fischmeister, S., Lee, I.: Composition Techniques for Tree Communi-

cation Schedules. In: Proceedings of the 19th Euromicro Conference on Real-Time

Systems (ECRTS), Pisa, Italy, pp. 235–246 (July 2007)

Design Choices for High-Confidence Distributed Real-Time Software 341

17. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer, Dordrecht

(1997)

18. Dubey, A., Karsai, G., Abdelwahed, S.: Compensating for Timing Jitter in Com-

puting Systems with General-Purpose Operating Systems. In: Proceedings of

the IEEE International Symposium on Object/Component/Service-Oriented Real-

Time Distributed Computing (ISORC), Tokyo, Japan (March 2009)

19. Lickly, B., Liu, I., Kim, S., Patel, H., Edwards, S., Lee, E.: Predictable Program-

ming on a Precision Timed Architecture. In: Proceedings of the 2008 Interna-

tional Conference on Compilers, Architectures and Synthesis for Embedded Sys-

tems (CASES), pp. 137–146. ACM, New York (2008)

20. Dobbing, B., Burns, A.: The Ravenscar Tasking Profile for High Integrity Real-

time Programs. In: Proceedings of the 1998 annual ACM SIGAda international

conference on Ada (SIGAda), pp. 1–6. ACM, New York (1998)

21. Systems, P.C.: SPARK 95 - The SPADE Ada 95 Kernel (including RavenSPARK).

RavenSPARK S.P0468.73.62 version 4.8 (January 2008)

22. McCall, G.: Misra-C: 2004. MIRA Limited, Warwickshire, United Kingdom (2004)

23. de Alfaro, L., Henzinger, T., Stoelinga, M.: Timed Interfaces. In: Sangiovanni-

Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.

Springer, Heidelberg (2002)

24. Henzinger, T.A., Kirsch, C.M., Horowitz, B.: Giotto: A Time-triggered Language

for Embedded Programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT

2001. LNCS, vol. 2211. Springer, Heidelberg (2001)

25. Anand, M., Fischmeister, S., Lee, I.: Resource Scopes: Toward Language Support

for Compositional Determinism. In: Proceedings the 12th IEEE International Sym-

posium on Object/component/service-oriented Real-time Distributed Computing

(ISORC), Tokyo, Japan, pp. 295–304 (May 2009)

26. Fischmeister, S., Trausmuth, R., Lee, I.: Hardware Acceleration for Conditional

State-Based Communication Scheduling on Real-Time Ethernet. IEEE Transac-

tions on Industrial Informatics 5, 3 (2009)

27. Shelton, C., Koopman, P.: Improving System Dependability with Functional Al-

ternatives. In: Proceedings of the 2004 International Conference on Dependable

Systems and Networks (DSN 2004), p. 295. IEEE Computer Society, Los Alamitos

(2004)

28. Buttazzo, G.C., Lipari, G., Caccamo, M., Abeni, L.: Elastic Scheduling for Flexible

Workload Management. IEEE Transactions on Computers 51(3), 289–302 (2002)

29. Schrenker, R.: Software engineering for future healthcare and clinical systems.

Computer 39(4), 26–32 (2006)

30. Real, J., Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey

and a New Proposal. Real-Time Systems 26(2), 161–197 (2004)

31. Almeida, L., Anand, M., Fischmeister, S., Lee, I.: A Dynamic Scheduling Approach

to Designing Flexible Safety-Critical Systems. In: Proceedings of the 7th Annual

ACM Conference on Embedded Software (EMSOFT), Salzburg, Austria, pp. 67–75

(October 2007)

32. Potop-Butucaru, D., de Simone, R., Sorel, Y., Talpin, J.: Clock-driven Distributed

Real-time Implementation of Endochronous Synchronous Programs. In: Proceed-

ings of the 7th ACM International Conference on Embedded Software (EMSOFT),

pp. 147–156. ACM, New York (2009)

33. Abbas, A.E., Fortuin, F.D., Schiller, N.B., Appleton, C.P., Moreno, C.A., Lester,

S.J.: A Simple Method for Noninvasive Estimation of Pulmonary Vascular Resis-

tance. Journal of the American College of Cardiology 41(6), 1021–1027 (2003)

342 S. Fischmeister and A. Azim

34. UPPAAL—An Integrated Tool Environment for Modeling, Validation, and Verifi-

cation of Real-Time Systems, http://www.uppaal.com (visited June 2010)

35. Potop-Butucaru, D., Azim, A., Fischmeister, S.: Semantics-preserving Implemen-

tation of Synchronous Specifications over Dynamic TDMA Distributed Architec-

tures. In: Proceedings of the 10th International Conference on Embedded Software,

EMSOFT (2010)

36. Hu, Z., Diao, Y.: Primary Model of Heart-systemic-pulmonary System. Journal of

Tongji University 30(1), 61–65 (2002)

37. Henriksson, D., Cervin, A., Årzén, K.E.: TrueTime: Real-time Control System Sim-

ulation with MATLAB/Simulink. In: Proceedings of the Nordic MATLAB Confer-

ence (2003)

http://www.uppaal.com

Assurance Cases in Model-Driven Development
of the Pacemaker Software�

Eunkyoung Jee, Insup Lee, and Oleg Sokolsky

PRECISE Center

Department of Computer and Information Science

University of Pennsylvania, Philadelphia PA 19104, USA

eunkjee@seas.upenn.edu, {lee,sokolsky}@cis.upenn.edu

Abstract. We discuss the construction of an assurance case for the pace-
maker software. The software is developed following a model-based tech-

nique that combined formal modeling of the system, systematic code

generation from the formal model, and measurement of timing behavior

of the implementation. We show how the structure of the assurance case

reflects our development approach.

Keywords: assurance case, pacemaker challenge, model-driven devel-
opment, real-time software.

1 Introduction

We consider the problem of developing an assurance case for the real-time car-
diac pacemaker software, representative of life-critical systems in which many
complex timing constraints are imposed. This work was motivated by the Pace-
maker Grand Challenge, the first certification challenge problem issued by the
Software Certification Consortium (SCC) [1]. Boston Scientific has released into
the public domain the system specification for a previous-generation pacemaker
to have it serve as the basis for a challenge to the formal methods community.
In [2], we proposed a safety-assured approach for the development of pacemaker
software. In this paper, we consider how the features of our development process
are reflected in the structure of the assurance case.

When we develop a real-time system, guaranteeing timing properties on its
implementation is an important but non-trivial issue. It becomes essential if
the real-time system is a safety-critical one in which violation of timing prop-
erties can result in loss of life. We focus on how to systematically implement
time-guaranteed real-time software from a given model and how to convincingly
demonstrate the safety of the software.

Several concepts and approaches can be effectively integrated to contribute
to the development of safety-assured real-time software. The model-driven de-
velopment (MDD) approach is steadily gaining popularity in the development of
embedded software. According to the MDD concept, we create a formal model
� This research was supported in part by NSF CNS-0834524 and NSF CNS-0930647.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 343–356, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

344 E. Jee, I. Lee, and O. Sokolsky

of the real-time system, verify the model, and generate an implementation code
from it. In order to validate the result and check the timing constraints on the
implementation, we perform measurement-based timing analysis on the imple-
mentation and revise the implementation and the model according to the timing
analysis result, repeating the verification process if necessary.

Many safety critical systems, such as avionics systems and medical devices, are
subject to regulatory approval. Once the system is implemented, it is necessary
to present development documentation to the regulators for review. Currently,
this process is lengthy and expensive. Certification costs constitute a significant
fraction of the development costs for regulated systems.

Assurance cases are currently seen to be holding a promise of both reducing
certification costs and improving the quality of certification by tying it to the
evidence. An assurance case is a documented body of evidence that provides
a convincing and valid argument that a specified set of critical claims about a
system’s properties are adequately justified for a given application in a given
environment [3]. Yet, there are few commonly accepted ways of constructing
assurance cases. There is evidence that a poorly structured assurance case can
hamper the evaluation process, rather than help it [4]. Clearly, there is no “one
size fits all” structure, and software developed through different processes is
likely to require different arguments about its safety. The case study put forth in
this paper aims to discover appropriate structures for one development approach,
namely model-driven development.

The contribution of this paper is the construction of an assurance case for real-
time software developed using a model-driven safety-assured process based on for-
mal modeling, rigorous code generation from the verified model, and subsequent
validation of the timing characteristics of the developed code. We believe that
other model-driven development frameworks will be amenable to similarly struc-
tured assurance cases. Our ultimate goal is to arrive at an accepted assurance case
template that can be applied to a variety of safety-critical software-based systems.
Having such a template will simplify regulatory approval of these systems, by mak-
ing the argument easier for the evaluators to follow. While this goal still lies ahead
of us, this work can be seen as the first step in the right direction.

The remainder of the paper is organized as follows: Section 2 explains the back-
ground of the case study. Section 3 presents the overview of our development
process and demonstrates its application to the development of the pacemaker
software. Section 4 presents the assurance case for the pacemaker software in
its relation to the evidence generated during the development. We discuss re-
lated issues in Section 5 and present a review of previous work related to topics
addressed in this paper in Section 6. Section 7 concludes the paper.

2 Pacemaker Operation

2.1 Heart

A human heart has four chambers: right and left atria, and right and left ven-
tricles. De-oxygenated blood from the body is collected in the right atrium and

Assurance Cases in Model-Driven Development 345

then pumped into the lungs via the right ventricle. In the lungs, carbon dioxide
in the blood is replaced with oxygen. This oxygenated blood then passes through
the left atrium and enters the left ventricle, which pumps it out to the rest of
the body.

From an electrical point of view, the heart is a pump made up of muscle
tissue, controlled by an intrinsic electrical system. An electrical stimulus gener-
ated periodically (normally about 60-100 times per minute) by the sinus node,
located in the right atrium, travels through the conduction pathways and causes
the heart’s chambers to contract and pump out blood. The atria are stimulated
and contract shortly before the ventricles are stimulated and contract.

Under some conditions, this intrinsic cardiac system does not work properly
and the heart rate becomes overly fast or slow, or irregular. In these situations,
the body may not receive enough blood, which causes several symptoms such
as low blood pressure, weakness, and fatigue. To avoid these symptoms, a pace-
maker can be used to regulate the heartbeat [5].

2.2 Pacemaker

A cardiac pacemaker is an electronic device implanted into the body to regulate
the heart beat by delivering electrical stimuli over leads with electrodes that are
in contact with the heart. These stimuli are called paces. The pacemaker may
also detect natural cardiac stimulations, called senses. We refer to cardiac paces
and senses collectively as events.

A pacemaker must satisfy three fundamental medical requirements: the rate
at which the cardiac chambers contract must not be too high; the rate at which
the cardiac chambers contract must not be too low; the ventricles must contract
at a particular interval after the atria contract. These general requirements are
concretized by setting specific values or ranges to configurable parameters for
the pacemaker.

The pacemaker can operate in a number of modes, distinguished by which
chambers of the heart are sensed and paced, how sensed events will affect pac-
ing, and whether the pacing rate is adapted to the patient state. In this paper,
we concentrate on the VVI mode, in which the pacemaker senses only ventric-
ular contractions and performs only ventricular pacing. In this mode, pacing is
inhibited if ventricular contractions are sensed.

A pacemaker in the VVI mode operates in a timing cycle that begins with a
paced or sensed ventricular event. The basis of the timing cycle is the lower rate
interval (LRI), which is the maximum amount of time between two consecutive
events in one chamber. If the LRI elapses and no sensed event occurs since the
beginning of the cycle, a pace is delivered and the cycle is reset. At the beginning
of each cycle, there is a ventricular refractory period (VRP), usually 200-350 ms.
Chaotic electrical activity in the heart immediately following a pace may lead
to spurious detection of sensed events that can interfere with future pacing. For
this reason, sensing is disabled during the VRP period. Once the VRP period is
over, a sensed ventricular event inhibits the pacing and resets the LRI, starting
the new timing cycle. Hysteresis pacing can be enabled in the VVI mode, when

346 E. Jee, I. Lee, and O. Sokolsky

the pacemaker will delay pacing beyond the LRI to give the heart a chance of
resuming normal operation. In that case, the timing cycle is to a larger value,
namely the hysteresis rate interval (HRI). In our implementation, hysteresis
pacing is applied after a ventricular sense is received, and disabled after sending
a pacing signal.

3 Model-Driven Development of Pacemaker Software

3.1 Overall Process

We propose a safety-assured development process for real-time software. The
proposed process follows a model-driven development approach with the em-
phasis on ensuring that the implementation satisfies timing properties that are
satisfied in the model. Fig. 1 shows the overall process.

During the requirements and design phases of the software life cycle, devel-
opers first start from formal modeling with timed automata of the real-time
software. Second, model checking is performed on the timed automata model
with respect to desired properties using a real-time model checker such as Up-

paal. We focus on safety properties, especially timing properties which require
that a certain event should happen no later than a specific delay. Given a verified
formal model, an implementation code is synthesized in the third step.

In the fourth step, we check to see if the same properties checked on the
model are still satisfied by the code running on a target platform. If some timing
properties are not satisfied by the code, we measure how much actual time
deviates from the expected. During the fourth step, we find a timing tolerance
value, Δ, through the measurement-based timing analysis. Guards in the code
are modified with this Δ to make the code satisfy timing properties. Once it
is confirmed that the code satisfies the desired timing properties with the Δ,
changes of the code, i.e., modified guards with the Δ, are reflected to the model
in the fifth step. If the modified model still satisfies all the properties, the overall
process ends. Otherwise, the process is repeated by revising the problematic
model and the code. We describe each step with the pacemaker example in the
following subsections.

3.2 Formal Modeling

We used the Boston Scientific’s system specification for a pacemaker [6]. Be-
cause timing constraints are so prevalent in the specification of the pacemaker,
it is intuitive and straightforward to use timed automata [7] as our modeling
language. Here we use the Uppaal tool [8] to specify a timed automata model
of the pacemaker in VVI mode.

We extracted properties to be satisfied by the VVI mode pacemaker from the
system specification. LRI, HRI, and VRP are considered the most important
timing periods which should be guaranteed by the VVI mode pacemaker. Fig. 2
shows two automata for Ventricle and Heart, representing the controller for ven-
tricular pacing in the VVI mode and a heart model as the environment for model

Assurance Cases in Model-Driven Development 347

System
spec.

C code

Model
checking

with UPPAAL

Measurement
based

timing analysis

Timed
automata
model of

pacemaker

Software
life cycle

Requirement
analysis ImplementationDesign Integration

synthesis
Develop-

ment
process

Verification
and

validation
process

compiled
into

 �

�

�

�

�
Rechecking

with ∆

Fig. 1. Overall process of a safety-assured development for a real-time pacemaker
software

verification, respectively. Our heart model is the most permissive environment
that is ready to accept a pacing signal whenever it is sent and can choose to
deliver a sensing signal at any time.

The Ventricle automaton shown in Fig. 2(a) represents sensing signals from
the ventricle and emission of ventricular pacing signals to the heart, according
to the LRI, HRI, and VRP timing periods. Values of these intervals are captured
as parameters of the automaton.

Event channels are used to communicate between pacemaker and its environ-
ment. VPace and VSense are channels for sending pacing signals and for receiving
sensed events, respectively. A question mark after the channel name represents
input from the channel, while an exclamation mark denotes output to the chan-
nel. The automaton has two states, WaitRI and WaitVRP, described below.

– WaitRI: The pacemaker starts from this state (denoted by the double circle)
and waits for a ventricular sensing or pacing event. If sensing does not occur
before the RI period ends, the ventricle controller sends a pacing signal to
the heart (Transition 2) and the timer x is reset. The RI value is reset to
LRI and hp is set to false, indicating that hysteresis pacing is not used in
this case. When a ventricular sense occurs, Transition 3 is taken, where the
timer x is reset, hp is set to true and HRI is assigned to RI, which allows a
longer period to elapse before pacing . Once the ventricle is paced or sensed,
current state is changed to WaitVRP.

– WaitVRP: In this state the pacemaker waits for a VRP period to elapse. It
returns to the WaitRI state after a VRP period by setting hpenable to hp
and started to true. hpenable and started are auxiliary variables to be used

348 E. Jee, I. Lee, and O. Sokolsky

(a) Ventricle controller model

(b) Heart model

Fig. 2. Uppaal model for a pacemaker in VVI mode

in property description for model checking. started is initially false and holds
true after the first visit of WaitVRP.

3.3 Formal Verification

We mapped the timing requirements to the following verification queries in Up-

paal. Below, A� means that the property must hold in every state along every
execution. Notation P.x denotes a variable x defined in the automaton P.

– PropDeadlock: A�(¬deadlock). This property expresses the deadlock free-
dom in the model.

– PropLRI: A�(¬Ventricle.hpenable ⇒ Ventricle.x ≤ Ventricle.LRI). When hys-
teresis pacing is disabled, the LRI period should not be exceeded between
any two pacing or sensing events.

– PropHRI: A�(Ventricle.hpenable ⇒ Ventricle.x ≤ Ventricle.HRI). When hys-
teresis pacing is enabled, the HRI period is used in place of LRI.

– PropVRP: A�(Ventricle.WaitRI ∧ Ventricle.started ⇒ Ventricle.x ≥
Ventricle.VRP). Except the initial state, the pacemaker can be in the state
WaitRI, where sense signals are accepted, only after the VRP period expires.

When we performed model checking on the model shown in Fig. 2 with the above
four properties, we confirmed that the model satisfied all these properties.

3.4 Code Generation

We implemented the pacemaker software on a hardware reference platform of
the Pacemaker Formal Method Challenge [1], which is based on a Microchip

Assurance Cases in Model-Driven Development 349

8-bit PIC18F4520 MicroController Unit (PIC18 MCU) [9] running at 40 MHz
clock speed. We generated a single-threaded code where the timed automata
models are implemented inside a single loop. The code checks the current enabled
transitions and takes one of them in each iteration.

The code generation algorithms adapts the techniques used in the Times

tool [10] to produce code for the PIC18 MCU board. While the platform is
substantially different from the one supported by Times, the code structure is
essentially the same and we can reuse the correctness properties of the Times

algorithm.

3.5 Validation of the Generated Code

We utilized MPLAB SIM, a software simulator for PIC18 MCU in the MPLAB
Integrated Development Environment (IDE) [9] to execute the code and measure
its timing. We tested the generated code under a variety of testing scenarios
that cover all sequences of sensing and pacing events of length two that are
qualitatively different with respect to the VRP and LRI periods.

Timing analysis of the observed event sequences was used to validate the
code. An iteration of the validation cycle (see Fig. 1) was necessary to obtain
the bounds on event processing delay, update the model to reflect these delays,
repeat the verification, and re-generate the code. Testing of the re-generated code
did not reveal any violations of the timing properties. Details of the validation
process and timing analysis can be found in [2].

4 Assurance Cases

We created an assurance case to demonstrate that the implemented code is
safe to operate, with the intention of providing a guiding example of assurance
cases to be possibly used in the certification process of pacemaker software. The
assurance case went through multiple review cycles within our group until we
were satisfied that no unaddressed arguments result in significant risk to the
pacemaker software.

Fig. 3 shows the top-level goal (G1) that the pacemaker software for the
VVI mode, implemented as described in Section 3, is acceptably safe. The as-
surance case is implemented using the goal-structuring notation (GSN) [11]. It
concentrates on the pacemaker software, assuming that the hardware platform
is reliable (A1). Two context references (C1) and (C2) were added to clarify
the goal statement. The assurance case is intended to be a part of the larger
case that considers the overall system and makes claims about the assumptions
made here.

The element (S1) describes the strategy we are using to argue the goal (G1):
it is achieved by satisfying requirements, assuming that the designer extracted
all the important properties related to the software safety from the system spec-
ification (A2). With this strategy, the goal (G1) is converted into the goal (G2),
to show that the implementation satisfies all the desired safety properties within

350 E. Jee, I. Lee, and O. Sokolsky

G1

The implemented
pacemaker software is
acceptably safe to operate in
VVI mode

C1

This pacmaker software
was implemented by a
research group at Penn

C2

Pacemaker in VVI mode
paces and senses only in the
ventricle and pacing is
inhibited when the pacemaker
gets sensing S1

Arguement by
satisfaction of
requirementsC3

Requirements are
extracted from the system
specification provided by
Boston Scientific

A

A2

The designer extracted all the
important properties related to
the software safety from the
system specification

G2

The implementation satisfies
all the desired safety
properties within acceptable
timing tolerances

S2

Argument by model-
driven development

C4

Timing tolerance is allowable
timing interval within which
functionalities or safety of the
system are not harmed
significantly

G3

The model satisfies all
the desired properties

G4

The code generation process
transforms the model into the
code correctly

G5

The synthesized code satisfies
all the desired properties with
the timing tolerance

A

A1

The hardware platform on
which this software runs
is reliable

Fig 4
Fig 5 Fig 6

Fig. 3. The pacemaker assurance case - the pacemaker software is acceptably safe

acceptable timing tolerances. Context reference (C4) clarifies the meaning of
timing tolerances in this context. Arguing by following the model-driven devel-
opment approach (S2), the goal (G2) is supported by three subgoals: the model
satisfies all the desired properties (G3), the code generation process transforms
the model into the code correctly (G4), and the synthesized code satisfies all the
desired properties with timing tolerance (G5).

Fig. 4 presents the argument for goal (G3). The model (M1) is the timed
automata model of the pacemaker shown in Fig. 2. Four desired properties de-
scribed in (C5) are described in Section 3.3. Conformance of the model to each
property is argued by a separate subgoal ((G6)–(G9)), using model checking
results as evidence.

Fig. 5 argues the goal (G4). Two strategies (S4) and (S5) were used to split
the goal (G4). One of the subgoals supporting (G4) is that, in the context of
using the Times tool (C10), the code synthesis of the Times tool for the verified
model is correct (G10). Correctness arguments for the the code synthesis of the
Times tool given in [12] are used as evidence (Ev5) to support (G10). Since we
had to manually modify the code generated by the Times tool to port it on the

Assurance Cases in Model-Driven Development 351

G3

The model satisfies all
the desired properties

Fig 3M1

Timed automata model of
the pacemaker software

(Ref UPPAAL model)

S3

Argument over all
desired properties

G6

The model satisfies
deadlock-freeness property

C6

The property for
deadlock freeness is
A[](not deadlock) in
Uppaal

Ev1

Model checking
result of
deadlock
freeness

G7

The model satisfies the
property PropLRI

C7

The property PropLRI is
A[] (!Ventricle.hpenable
imply Ventricle.x <=
Ventricle.LRI)

Ev2

Model checking
result of
PropLRI

G8

The model satisfies the
property PropHRI

C8

The property PropHRI is
A[] (Ventricle.hpenable
imply Ventricle.x <=
Ventricle.HRI)

Ev3

Model checking
result of
PropHRI

G9

The model satisfies the
property PropVRP

C9

The property for PropVRP is
A[] ((Ventricle.WaitRI \&\&
Ventricle.started) imply
Ventricle.x >=
Ventricle.VRP)

Ev4

Model checking
result for
PropVRP

C5

Desired properties: deadlock
freeness; waiting for LRI (Lower Rate
Interval) under disabled hysteresis
pacing; waiting for HRI (Hysteresis
Rate Interval) under enabled
hysteresis pacing; no sensing during
VRP (Ventricular Refractory Period)

Fig. 4. The pacemaker assurance case - The model satisfies all the desired properties

G4

The code generation process
transforms the model into the
code correctly

Fig 3

S4

Argument by use of
a reliable tool set

G10

The code synthesis of the
Times tool for the verified
model is correct

Ev5

Correctness
argument of the

TIMES code
synthesis

S5
Argument by
harmless manual
modification

C10
We use the TIMES
tool as a reliable
tool set

G12

The manual modifications confined
to platform-specific parts do not harm
the correctness of the Times code
generation

Ev7

Code level
property

checking result

Ev6

The code
showing manual

modifications
(main.c)

G11

The manual modifications
are confined to platform-
specific parts

Fig. 5. The pacemaker assurance case - The code generation process is correct

352 E. Jee, I. Lee, and O. Sokolsky

pacemaker platform, we have to supplement this argument with the claim that
manual modifications do not alter correctness of the code. Two subgoals, (G11)
and (G12) identify the nature of the modifications, with code review results as
evidence (Ev6), and demonstrate that they do not affect the functionality. In
the latter case, results of code validation are used as evidence (Ev7).

G5

The synthesized code satisfies
all the desired properties with
timng tolerance

Fig 3

S6

Argument over all
desired properties

G13

The code satisfies
deadlock-freeness property

G14

The code satisfies the
property PropLRI with
timing tolerance

G15

The model satisfies the
property PropHRI with
timing tolerance

G16

The code satisfies the
property PropVRP

Ev8

Proof for the
property

preservation of
the TIMES tool

S9

Argument by testing

G19

Software test result for the
PropVRP showed no
violation

Ev11

Test result of the
PropVRP in the

instrumented
code

J

J1

The property of the form of
A[](P) can be checked by
checking if P is true at the end
of every loop of the
check_trans function in main.c

Fig 7 Fig 7

Fig. 6. The pacemaker assurance case - the code satisfies the properties

Fig. 6 addresses the third subgoal of (G2). It argues that the synthesized
code satisfies all the desired properties with the timing tolerance (G5). Again,
the argument is presented as a separate subgoal for each of the properties. The
deadlock freedom property (G13), which does not involve tolerances, is ensured
by the guarantees provided by the Times tool, which is used as evidence (Ev8).
The other three subgoals, (G14)–(G16), are established through the code level
checking based on the justification (J1) that a property in a form of A�(P) can
be checked in the code by checking if P is true at the end of every loop with a set
of test cases. As shown in Fig. 6 and Fig. 7, (G14), (G15), and (G16) are argued
by testing and rephrased by subgoals (G17), (G18), and (G19), respectively.

Assurance Cases in Model-Driven Development 353

G14

The code satisfies the
property PropLRI with
timing tolerance

Fig 6

S7

Argument by testing

G17

Software test result for the
PropLRI showed no violation
when the corresponding guard is
relaxed

Ev9

Test resut of the
PropLRI in the
instrumented

code

C11
The corresponding guard {X
<= L} is relaxed by {X <= L

} where X is a clock variable,
L is a timing limit, and is a
timing tolerance value.

J

J2

Relaxed guards can make the
desired events occur no later
than certain desired time
instants

G15

The code satisfies the
property PropHRI with
timing tolerance

Fig 6

S8

Argument by testing

G18

Software test result for the
PropHRI showed no violation
when the corresponding guard is
relaxed

Ev10

Test result of the
PropHRI in the

instumented code

Fig. 7. The pacemaker assurance case - the code satisfies PropLRI/PropHRI

Note that the argument structure for the claim (G16) is simpler than the
ones for (G14) and (G15) because the property PropVRP had been satisfied in
the code all the time and no alterations were made to the corresponding guards
in the code and the model. On the other hand, the properties PropLRI and
PropHRI were satisfied in the modified code which involves relaxation in the
corresponding guards (See (G17) and (G18) in Fig. 7). The context information
for the guard relaxation was described in (C11) which can be instantiated with
concrete values.

5 Discussion

Limits of the case study. We begin the construction of the assurance case with
the requirements phase of the development. In a real system, the safety argument
would also cover hazard analysis and offer claims that hazards are appropriately
mitigated by the requirements. We omitted this phase to concentrate on the
model-drive aspect of the development process. This decision also matches the
current setting of the Pacemaker challenge, which begins with the pacemaker re-
quirements by Boston Scientific. It makes sense to assume that the requirements
were properly engineered with respect to hazard.

Similarly, we assume the nominal behavior of the underlying platform. We
thus omit the questions of fault tolerance both in the development process and

354 E. Jee, I. Lee, and O. Sokolsky

in the assurance case construction. An assurance case for a complete system will
of course have to deal with these issues.

Alternative ways to organize the assurance case. There can be alternative ways
to construct the assurance case. When an assurance case has the same or similar
structures within it, those common structures can be possibly merged and placed
in an upper level. For example, the argument structures for (G14), (G15), and
(G16) are similar and they have a common strategy “Argument by testing” as
found in (S7)–(S9). “Argument by testing” can be placed in an upper level of
(G14)–(G16), accompanied with logically consistent modifications to other parts.

Similarly, “Argument over all desired properties” are also commonly found
under (G3) in Fig. 4 and under (G5) in Fig. 6 because we used the same strat-
egy for arguing the property satisfaction in the code as well as by the model. It is
possible to change the overall structure of the assurance case by placing “Argu-
ment over all desired properties”, found in (S3) and (S6), above “Argument by
model-driven development” (S2) and modifying other parts consistently. Note
that these modifications do not change the logic of the argument, but may affect
the size of the assurance case as we combine common nodes in different branches.

Alternative sources of evidence. In general, argument for a claim can vary and
be supported by different kinds of evidence. For example, in our case study we
relied on testing to establish timing properties of the generated code. If a higher
level of safety is desired, we would resort to more rigorous worst-case execution
time analysis using, for example, the aiT tool [13]. However, this change in
technology affects only one claim, and the overall structure of the assurance case
is not affected.

Ideally, when multiple alternatives can be used as evidence, we should aim
to quantify the level of assurance each alternative brings and match it against
the level of assurance required for the system. However, quantitative comparison
cannot be achieved given today’s state of the art. Even qualitative comparison
of alternatives is difficult in many cases. This is an important direction of future
work for our group.

Significance of the work. We believe that our case study is the first step towards
developing assurance case templates for systems developed through model-driven
processes. Model-drive development typically includes stages of modeling and
model verification, code generation (manual or automatic) with respect to the
model, and validation of the generated code and the whole system. In our ap-
proach, each of these stages correspond to a separate claim (or, in general, a set
of claims) in the assurance case. This structure makes it more intuitive to follow
during the evaluation and provides a clear connection to the evidence obtained
in each phase.

6 Related Work

In [14], the authors considered a practice of using assurance cases in the devel-
opment and approval of medical devices and addressed some of the important

Assurance Cases in Model-Driven Development 355

issues surrounding the possible adoption of assurance cases by the medical de-
vice community. It was mentioned that a set of agreed argumentation patterns
(templates) would be useful to manufacturers and reviewers. They suggested
that creating and publishing a series of FDA-approvable archetypes for different
kinds of medical devices be undertaken to ease the transition of assurance cases
into the medical device community. With the same intention as theirs, we took
a step forward by developing an argumentation template for another medical
device, the pacemaker.

The process of assurance case construction and reuse can become more sys-
tematic through documentation of reusable safety case elements as patterns.
In [15], ‘Safety Case Patterns’ for the reuse of common structures in safety
case arguments were suggested. Assurance case patterns for security have been
studied [16]. Our approach to the assurance case construction presented in this
paper may lead to the development of assurance case patterns for model-driven
development.

There are other case studies for assurance cases. In [17], the authors described
an industrial application of assurance cases to the problem of ensuring that a
transition from a legacy system of the Global Positioning System (GPS) to its
replacement will not compromise mission assurance objectives. The assurance
case demonstrated to the Air Force that the transition posed no major mission
assurance concerns and this conclusion was validated by a successful transition.

7 Conclusion

We presented an approach for the construction of assurance cases for the model-
driven development of safety-critical software. As a case study, we considered
software for a cardiac pacemaker in the VVI mode. The assurance case ties
together all the evidence collected during the development process. Several sim-
plifications were applied in the process of constructing the assurance case, to
keep the size of the case study under control and to concentrate on the aspects
specific to model-driven development.

Future work includes the development of rigorous methods for the evaluation
of assurance cases. For bigger systems, we also plan to study compositional
construction of assurance cases. This will allow us to simplify certification of
component-based systems based on product-line architectures.

References

1. Software Quality Research Laboratory: Pacemaker formal methods challenge,

http://sqrl.mcmaster.ca/pacemaker.htm

2. Jee, E., Wang, S., Kim, J.K., Lee, J., Sokolsky, O., Lee, I.: A Safety-Assured

Development Approach for Real-Time Software. In: The Proceedings of the 16th

IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications, pp. 133–142 (August 2010)

3. Adelard: ASCAD – The Adelard Safety Case Development (ASCAD) Manual

(1998)

http://sqrl.mcmaster.ca/pacemaker.htm

356 E. Jee, I. Lee, and O. Sokolsky

4. Wassyng, A., Maibaum, T., Lawford, M.: Software certification: The case against

safety-cases. In: Proceedings of the Workshop on Modeling, Development, and

Verification of Adaptive Computer Systems (to appear, April 2010)

5. Oregon Health and Science University: Overview of pacemakers,

http://www.ohsu.edu/health/health-topics/topic.cfm?id=10395

6. Boston Scientific: Pacemaker system specification (January 2007),

http://sqrl.mcmaster.ca/_SQRLDocuments/PACEMAKER.pdf

7. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-

ence 126, 183–235 (1994)

8. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal (November 2004)

9. Microchip: PIC18 family microcontroller, http://www.microchip.com/

10. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool for

schedulability analysis and code generation of real-time systems. In: Proceedings

of the 1st International Workshop on Formal Modeling and Analysis of Timed

Systems, pp. 60–72 (September 2003)

11. Kelly, T., Weaver, R.: The goal structuring notation – a safety argument nota-

tion. In: Proceedings of the Dependable Systems and Networks 2004 Workshop on

Assurance Cases (2004)

12. Amnell, T., Fersman, E., Pettersson, P., Yi, W., Sun, H.: Code synthesis for timed

automata. Nordic Journal of Computing 9(4), 269–300 (2002)

13. Ferdinand, C., Heckmann, R.: aiT: Worst-case execution time prediction by static

programm analysis. In: Jacquart, R. (ed.) IFIP Congress Topical Sessions, pp.

377–384. Kluwer, Dordrecht (2004)

14. Weinstock, C.B., Goodenough, J.B.: Towards an assurance case practice for medical

device. Technical Report CMU/SEI-2009-TN-018, CMU/SEI (October 2009)

15. Kelly, T., McDermid, J.: Safety case construction and reuse using patterns. In:

Proceedings of the 16th International Conference on Computer Safety, Reliability

and Security, pp. 55–69. Springer, Heidelberg (1997)

16. Bloomfield, R.E., Guerra, S., Miller, A., Masera, M., Weinstock, C.B.: International

working group on assurance cases (for security). IEEE Security and Privacy 4(3),

66–68 (2006)

17. Nguyen, E.A., Greenwell, W.S., Hecht, M.J.: Using an assurance case to support

independent assessment of the transition to a new GPS ground control system. In:

Proceedings of the International Conference on Dependable Systems and Networks,

Anchorage, Alaska (June 2008)

http://www.ohsu.edu/health/health-topics/topic.cfm?id=10395
http://sqrl.mcmaster.ca/_SQRLDocuments/PACEMAKER.pdf
http://www.microchip.com/

Improving Portability of Linux Applications by
Early Detection of Interoperability Issues

Denis Silakov and Andrey Smachev

Institute for System Programming at the

Russian Academy of Sciences, Moscow, Russia

{silakov,biga}@ispras.ru
http://www.ispras.ru

Abstract. This paper presents an approach aimed at simplifying devel-
opment of portable Linux applications, suggesting a method of detecting

compatibility problems between any Linux application and distribution

by means of static analysis of executable files and shared libraries.

In the paper we concern the idea of successful launching of application

in a distribution. A formal model is constructed that describes interfaces

invoked during the program launching. A set of conditions is derived

that should be satisfied by application’s and distribution’s files in order to

make it possible for application to successfully launch in distribution. The

Linux Application Checker tool is described that supports the approach

and allows to detect portability problems of applications at early stage

of development.

Keywords: Software portability, Software maintenance, Linux.

1 Introduction

Nowadays hundreds of Linux distributions exist. Most of them are based on the
same set of components – Linux kernel, GNU utilities and libraries, KDE or
Gnome desktop environment, etc. Many of these components follow the “Re-
lease Early, Release Often” principle, and new versions can be released every
month or even every week. As a result, different distributions provide different
versions of the same components. Unfortunately, though changes between succes-
sive versions can be relatively small, it is not uncommon for developers to break
backward compatibility. In addition, distribution vendors often modify original
code of components in order to fix known issues, to increase performance or to
add some features that would be unique for their distribution. Thus, there are
a lot of differences in functionality of the same components in different Linux
distributions. This significantly complicates the task of development of Linux
applications that could be launched on as many Linux distributions as possible.

Developers of open source applications usually rely on distribution vendors –
most distributions have a maintainer for every application, who is responsible
for correct functionality of the application in the distribution and can modify its
code, if necessary. However, application should be rather popular to be included

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 357–370, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.ispras.ru

358 D. Silakov and A. Smachev

in many distributions; and even for open source programs, increasing portability
allows to save maintainers’ efforts. Finally, sometimes modifications introduced
by distribution developers are criticized by original application authors.

Developers of proprietary software cannot rely on distribution vendors, since
they don’t publish the code and only provide compiled binary files. In this case,
it is application vendor who is responsible for proper functionality of software
product on all supported platforms. However, large amount of existing Linux-
based systems makes systematic testing of application on every platform quite
expensive even for large vendors. Moreover, not only hundreds of different Linux
distributions exist, but many Linuxes run on dozen of hardware architectures.
Many hardware platforms are not broadly accessible, while they are still poten-
tially interesting for application vendors (for example, IBM zSeries platform is
even more interesting for some developers of large enterprise software then the
’usual’ x86).

Very often impossibility of guarantying proper functionality of the product in
many distributions leads to limitation of officially supported systems – usually
to a very few number of distributions that have the major market share, such
as SUSE Enterprise Linux (SLES) or Red Hat Enterprise Linux (RHEL). That
is, vendors do not tend to cover the whole Linux market. But as for end users,
they normally want to have applications for ’Linux’, not for ’RHEL’ or ’SLES’.

Thus, it is desired for application developers to be able to achieve compatibil-
ity of their product with as many Linux distributions as possible. Since manual
testing of applications in every existing system is a very hard task, it is important
to detect as many portability problems as possible without performing runtime
testing. One of the possible approaches that can help here is static analysis of
application binary files. In general, such analysis may not guarantee the full
compatibility of application and distribution, but can allow developers to save
their efforts by decreasing time of problem detection.

The remainder of the paper is structured as follows: Section 2 gives a review
of existing approaches to allow Linux application developers to support as many
distributions as possible. Section 3 introduces a formal approach to analysis
of compatibility of any pair of application and distribution by means of static
analysis of their executable files and shared libraries. Section 4 presents the Linux
Application Checker tool that supports the suggested approach and allows to
detect issues in compatibility between any given application and most popular
Linux distributions. Finally, Section 5 summarizes the main ideas.

2 Existing Approaches

Importance of improving portability of Linux applications is realized by all mem-
bers of the Linux community and all participants of the market – distribution
vendors, developers of open source projects, independent vendors of proprietary
software and end users. Naturally, initiatives and approaches to increasing appli-
cation portability come from different categories of community members. In this

Improving Portability of Linux Applications 359

section we consider the most popular ways for application vendors to achieve
compatibility of their product with existing Linux distributions.

2.1 Using a Testing Farm

The most straightforward way for developers to guarantee compatibility of their
program with some distribution is to thoroughly test the program in this distri-
bution. In order to perform such testing, one should set up a separate machine
(either physical or virtual), install the target distribution there, then install the
program itself and run the tests. During the development process, developers
should have a set of machines with target distributions, where their application
is periodically built and subjected to testing. Such a set of machines is often
referred to as a testing farm.

Large set of target platforms requires large set of machines to be set up. Even
if machines are virtual, this can consume significant resources. Testing farms are
usually served by automated scripts that schedule regularly builds, testing and
other actions. Such infrastructure does not require much efforts for maintenance,
but in general it increases the duration of ’detect problem – fix it – test again’
chain (if compared to the case when developer is able to perform testing directly
on his machine).

In addition, if developers want to cover hardware platform which is not
broadly accessible, then they can find that time of real machines is expensive,
while performance of emulators (if any) is usually poor.

Thus, though runtime testing in all target platforms is a really important
thing, it is desired to detect as many problems as possible before running the
tests inside the testing farm. It is especially important to detect critical issues
whose presence will make the further testing useless.

2.2 OpenSUSE Build Service

An interesting initiative is provided by the OpenSUSE Build Service (OBS) – an
infrastructure that can used by developers to build their applications for different
distributions without direct access to the target systems. Nowadays, the OBS
supports OpenSUSE, Mandriva, Fedora, Debian and Ubuntu; more systems to
be added in future [4]. Though it is clear that periodic build of a large variety of
applications requires significant resources, so it is not cheap to add a new target
distribution.

As for portability, the service allows to handle several kinds of differences
between distributions, such as package format or system file location. However,
many aspects (e.g., differences in the behavior of the same function) are out of its
scope. Surely, developers can integrate execution of automated tests in the build
process – this will allow them to use OBS as a testing farm, whose disadvantages
were discussed above.

Finally, the OBS approach makes sense only for developers of the open source
products, since one have to provide application source code to the service.

360 D. Silakov and A. Smachev

2.3 Creating Standard-Compliant Applications

One more way to create a portable application is to focus on standards for op-
erating systems that specify the set of interfaces that every compliant system
should provide. The advantage of this approach is that standards not only guar-
antee the presence of interfaces, but also specifies all their characteristics that
should be accessible by applications (e.g., behavior of functions). In order to be
able to give such guarantees to its users, every standard usually provides a set of
tests (usually referred to as certification test suite) that perform thorough test-
ing of the standardized interfaces and should be passed by every implementation
in order to confirm its compliance with the standard. Thus, if application uses
only standard interfaces, it is guaranteed that application will demonstrate the
same behavior in all standard-compliant distributions.

In the Linux world, the most famous standards are POSIX and Linux Stan-
dard Base (LSB), that concern Application Programming Interface (API) and
Application Binary Interface (ABI) correspondingly. Both POSIX and LSB take
into account existing systems (UNIX-like systems in case of POSIX and Linux
in case of LSB) and try to standardize only those items that are implemented
in all major distributions and proved to be mature, stable and useful. In those
cases when some interface is provided by all systems but with slightly different
characteristics, both POSIX and LSB try to specify only those aspects that are
common for all implementations; relying on other aspects is not recommended
for developers.

However, no standard can cover all possible interfaces – for example, POSIX
only concerns the core system libraries (specifying about 1.000 of functions) and
utilities. LSB covers more libraries, including some desktop and multimedia ones;
however even its scope is still not broad enough for many programs – LSB 4.0
contains specifications for 57 libraries and about 38.000 functions, but a usual
Linux distribution on a single DVD disc provides about several thousands of
libraries and hundreds of thousands of functions [6]. Finally, trying to specify
the ’common core’ of existing systems often leaves many interface characteristics
unspecified or declared to be ’implementation defined’.

Thus, among the existing methods described above, only the latter approach
allows developers to avoid runtime testing of their applications in every target
distribution. However, the main disadvantage of the approach (small coverage of
existing interfaces) is hard to fix – standardization can be even more complicated
and expensive task than development of tests, since creation of tests is usually
only a part of the standardization process [10].

In this paper we suggest an approach that can be used to detect certain
portability issues without runtime testing, allowing to decrease the time spent on
problem detection. To detect portability problems, a lightweight static analysis
of binary files of application and target distributions is used. The approach
can be also used in cooperative with the standard-oriented method in order to
analyze portability of those application parts that are not covered by existing
standards.

Improving Portability of Linux Applications 361

3 Static Analysis of Interfaces Involved in Interaction
between Distributions and Applications

Let Distros and Apps be the sets of all the Linux distributions and applications
respectively. Below we will consider compatibility aspects of some application
A ∈ Apps and some distribution D ∈ Distros. First, let’s clarify what do we
mean under compatibility.

In general, interaction between two systems is performed by means of inter-
faces – one participant provides interfaces, the other uses them. For example, op-
erating systems provides libraries that export functions, applications load these
libraries and call their functions.

If distribution D provides a set of interfaces Ip and application A uses a set
of interfaces Ir, then in order for successful interaction between A and D to be
possible, the following condition is necessary:

Ir ⊆ Ip (1)

This is a very general criterion – in every particular case one should point out
concrete kinds of interfaces that should be taken into account. Provided that all
possible kinds of interfaces and their properties are taken into account, this is
also a sufficient condition.

For practical usage, it is important to have a way to analyze which interfaces
are provided by distribution and which are used by application. Every interface
may have a large set of different properties, all of which can be divided on two
groups:

1. Properties that can be checked statically, without a need to invoke the in-
terface (e.g., function signature).

2. Properties that require runtime testing (e.g., function behavior).

Surely, this classification is not ultimate – for example, one may claim that
function behavior can be verified statically if its source code is available; and
on the opposite side, even checking function signature in some situations may
require function invocation (e.g., when there is no access to its declaration, but
only to binary library that exports this function).

In this paper, we consider only those interfaces between Linux distributions
and applications for which the condition 1 can be checked statically at a relatively
low cost. Though the resulting set of interfaces is quite limited (in particular, it
doesn’t include any behavioral aspects), satisfaction of the condition 1 for this set
guarantees that the application can be successfully launched in the distribution.
To start with, let’s clarify what we mean under these two words.

In our work, we consider binary applications – that is, applications that consist
of binary executable files and shared libraries (shared objects, in Linux termi-
nology). Any application in our model is a set of binary files, every of which is
either a shared library or an executable file. Similarly, every Linux distribution
is considered to be a set of shared libraries and binary executables.

362 D. Silakov and A. Smachev

Let’s say that the application A successfully launches in distribution D, if
dynamic loader in this distribution is able to form an executable image of the
application in memory and pass the control to the application’s entry point.

In Linux, for executable files and shared objects the Executable and Linking
Format (ELF) is used, described in [1] and [2]. An ELF file can be self-sufficient
in that sense that it may not require any external interfaces to be present in the
system and work directly with hardware (maybe using low-level kernel interfaces,
if direct access to hardware is not allowed). In this case dynamic loader just
loads the file into memory and right after that passes control to its entry point;
however, such files are used rarely and are not interesting for us.

Most programs nowadays use the advantage of dynamic linking, leaving the
task of implementing routine functions for system libraries and concentrating
only on unique features of their own. In this case dynamic loader has to per-
form much more actions to form a memory image for application. The precise
algorithm is quite complex [5], but we are interested only in the following steps
where the process can fail because distribution doesn’t provide interfaces with
required properties:

– Check that ELF files participating in dynamic linking have format acceptable
for the loader – don’t contain unknown ELF sections, have proper target
hardware architecture, etc.

– Resolve dependencies on libraries – detect which shared libraries should be
loaded to satisfy application’s needs.

– Check that all dependencies on versions of binary symbols required for the
loaded files are satisfied.

– Resolve addresses of external binary symbols of every loaded file – for every
such symbol the actual implementation should be found among the loaded
libraries.

After these tasks are complete, a memory image is constructed and dynamic
loader passes control to the entry point of the file being launched. If this point
is reached, we can say that the application has been successfully launched (in
our terms).

Using the terms from the dynamic loading algorithm description, we can make
our representation of Linux applications and distributions more accurate – every
application and every distribution is considered as a set of ELF files, every of
which can provide and require libraries, binary symbols and symbol versions.
Using this representation, in the next sections we will derive a set of conditions
that should be satisfied in order for the application A to be successfully launched
in the distribution D. All these conditions can be checked statically by analyzing
ELF files of application and distribution without a need to actual installation and
launching. Moreover, there is no need to emulate the work of the dynamic loader
– all conditions can be checked in a much more simple way and a lightweight
analyzer can be developed to automate this process.

Now let’s consider every kind of interfaces involved in the dynamic loading
process.

Improving Portability of Linux Applications 363

3.1 ELF Sections

The ELF format evolves quite slowly (if compared to other parts of the Linux
ecosystem). However, from time to time significant additions are introduced and
files that use these additions cannot be used in older systems. The most notable
example of the last years is introduction of the .gnu.hash section aimed to pro-
vide hashing with higher performance than the ’usual’ .hash section. Introduced
in 2006, this change led to the fact that programs compiled in new generation
of distributions (such as RHEL 5 or Fedora 6) failed to run in previous releases
of the same systems (RHEL 4, Fedora 5) [3].

Though such significant changes are introduced very rare, one should remem-
ber about them and check that dynamic loaders in target distributions support
all aspects of the ELF format that are used in the application files. Thus, if
SysSupportedELF (D) is a set of ELF features supported by the distribution
D, and FileReqELF (f) is a set of ELF features used by the file f , then the
following condition should be satisfied in order to launch application A in D:

∀f ∈ A → FileReqELF (f) ⊆ SysSupportedELF (D) (2)

3.2 Shared Libraries

Let SharedLibs be a set of all shared objects in the Linux ecosystem. Every
library lib ∈ SharedLibs is characterized by its soname (a special name visible
to dynamic loader which may or may not be equal to the library file name) and
hardware architecture: lib = (soname, arch). It is the soname that is ’required’
by ELF files; however, when looking for library that provides the requested
soname, dynamic loader takes into account both library’s soname and name of
its file – if any of them matches the requested soname, than the loader picks the
library up to satisfy the request. Thus, if soname of some library differs from its
file name, then this library should be represented in the SharedLibs set by two
entities: (soname, arch) and (filename, arch). Let FileProvLibs(f) to be a set
of SharedLibs elements provided by a file f (this set consists of either one or
two elements).

Every ELF file can have a set of DT NEEDED entries in its dynamic section
that store sonames of libraries required by the file. Let’s designate this set of
required libraries as FileReqLibs(f). This is a subset of our SharedLibs set,
with target hardware architecture of every FileReqLibs(f) element been equal
to target architecture of the file f itself (that can be detected on the basis of
Class and Machine fields of the ELF header, as described in [6]).

For every distribution D, we are interested in the whole set of libraries pro-
vided by it, which is a union of libraries provided by all distribution files:

SysProvLibs(D) =
⋃

f∈D

FileProvLibs(f)

For applications, on the opposite, one should build a set of required libraries
that are not provided by the application itself and thus are expected to be present
in the system:

364 D. Silakov and A. Smachev

AppReqLibs(A) =

=
⋃

f∈A

FileReqLibs(f) \
⋃

f∈A

FileProvLibs(f)

The second necessary condition that should be satisfied in order for the ap-
plication A to be launched in the distribution D is that all libraries required by
A should be provided by D:

AppReqLibs(A) ⊆ SysProvLibs(D) (3)

3.3 Symbol Versions

A specific feature of ELF files in Linux is possibility of assigning a particular
version to any binary symbol – different (from the source code point of view)
functions or global variables can be made visible on the binary level under the
same name but with different versions. This allows to keep backward compat-
ibility with old applications when library developers decide to change function
behavior – the old function implementation in this case becomes frozen and vis-
ible on the binary level with the same name as before. The new implementation
is also visible under this name, but with a different version.

Every version is a simple literal string. Information about versions exported
by file and versions required by it is stored in the appropriate ELF sections.
When loading a file into memory, the system loader compares the set of required
versions with versions provided by libraries loaded as file dependencies. Let’s
designate the latter set as FileLoadedLibs(f, D); it is built using the following
algorithm:

1. Set FileLoadedLibs(f, D) = ∅.
2. Put all FileReqLibs(f) elements to FileLoadedLibs(f, D) and to a tempo-

rary AddedLibs set.
3. For each library l ∈ AddedLibs, calculate dependencies FileReqLibs(l) of

the ELF file that represents the library, calculate its difference with the
FileLoadedLibs(f, D) and union such differences to a new set:

FileIndirectDeps(f, D) =

=
⋃

l∈AddedLibs

FileReqLibs(l) \ FileLoadedLibs(f, D)

4. If FileIndirectDeps(f, D) is not empty, then put all its elements to the
FileLoadedLibs(f, D) set.
Rebuild AddedLibs to be equal to FileIndirectDeps(f, D).
Set FileIndirectDeps(f, D) = ∅ and go to step 3.

5. Otherwise, everything is done and FileLoadedLibs(f, D) is built.

Thus, the FileLoadedLibs(f, D) set consists of libraries directly required by the
file (that is, FileReqLibs(f) ⊆ FileLoadedLibs(f, D)), expanded with libraries

Improving Portability of Linux Applications 365

recursively loaded as dependencies of these libraries in a particular distribution.
Since dependencies of system libraries are specific to a particular distribution,
the FileLoadedLibs set for the same file f can be different on different systems.
That’s why we write that this set is a function of both file f and distribution D.

Let SysProvV ers(f, D) to be a union of versions provided by files from
FileLoadedLibs(f, D). With FileReqV ers(f) standing for versions required by
the file f , we can formulate the following necessary condition that should be
satisfied for the application A to be launched in the distribution D:

∀f ∈ A → FileReqV ers(f) ⊆ SysProvV ers(f, D) (4)

3.4 Binary Symbols

If all previous checks are completed successfully, the dynamic loader proceeds
with resolution of external binary symbols for the files been loaded. Every binary
symbol is unambiguously identified by name and version: s = (name, version).
The resolution process is similar to the one for versions of binary symbols – the
loader takes a set of binary symbols required by file (FileReqSyms(f)) and then
compares it with SysProvSyms(f, D) – a set of symbols provided by libraries
from the FileLoadedLibs(f, D) set. So one more necessary condition for the
successful launch is like the following:

∀f ∈ A → FileReqSyms(f) ⊆ SysProvSyms(f, D) (5)

Strictly speaking, there can be a situation that if f ∈ A is a shared object,
then it is never launched directly, but only loaded along with other files. In
this case some symbols required by it can be provided not by libraries from the
SysProvSyms(f, D) set, but by libraries from SysProvSyms sets for files that
are loaded together with f , since finally all these files are joined to a single im-
age. Build tools in Linux allow programmers to perform such tricks. However,
dependencies of the same library in different systems can vary (and may change
as time goes by), so these tricks are not considered to be a good practice, espe-
cially from portability point of view. In our work, we ignore such possibility and
treat 5 as required condition.

Now let’s consider the fact the sets of required and provided versions are con-
structed automatically during application or library build as unions of versions
of required and provided symbols respectively. That is,

version ∈ FileReqV ers(f) ⇔ ∃s = (name, version) ∈ FileReqSyms(f)

version ∈ SysProvV ers(f) ⇔ ∃s = (name, version) ∈ SysProvSyms(f, D)

So if 5 is satisfied, then 4 is also satisfied, that is, 5 ⇒ 4, and it is actually
enough to only check the condition 5. However, in real systems a number of
required symbols is usually much more greater than number of required versions,
so 4 can be checked much more faster. Thus, it may still make sense to check
4 in order to detect possible problems at early stage, without deep analysis of
binary symbols.

366 D. Silakov and A. Smachev

3.5 Sufficient Requirement

Up to this moment, we have considered the four necessary conditions 2, 3, 4 and
5 that should be met in order for the application A to be successfully launched
in the distribution D. Since we have considered all interfaces involved in the
launching process, then the sufficient condition of the successful launching is a
conjunction of these conditions. As we have shown above, 5 ⇒ 4, so the final
sufficient condition can be formulated as a conjunction of 2, 3 and 5:

∀f ∈ A → FileReqELF (f) ⊆ SysSupportedELF (D)
AppReqLibs(A) ⊆ SysProvLibs(D)

∀f ∈ A → FileReqSyms(f) ⊆ SysProvSyms(f, D)

3.6 Method Value

It is clear that the approach suggested allows to detect only a limited set of
compatibility problems; many kinds of issues (such as runtime function behavior)
are out of its scope. In order to estimate the value of the approach in the real
world, we have performed investigation of issue trackers of several Open Source
projects and calculated percentage of issues that could be avoided if our approach
were applied before the product release. We took into account errors concerning
missing libraries and symbols; errors concerning symbol versions are relatively
rare so they are joined with other symbol-related issues in the ’Failed symbols’
column. Finally, it was found that issues related to the ELF format are very
rare, so we haven’t included them in the table below.

For our analysis, we have selected three popular applications that are broadly
used in all Linux distributions – OpenOffice.org, Firefox and MySQL. In addi-
tion, we have investigated issues reported in the Launchpad software portal that
provides hosting for more than 18,000 of Open Source projects. In our research,
we have considered only critical bugs (either issues with severity set to ’Criti-
cal’ or ’Blocker’, or issues with the highest priority). Results of the analysis are
shown in Table 1. The ’Total issue’ column contains number of all critical bugs
reported for the project; it would be also useful to calculate total number of
bugs that concern portabilty, but this will require detailed investigation of every
issue and is too time-consuming, so we haven’t gathered such statistics.

Table 1. Number of issues in different projects that could be detected using the
approach

Product Total issues Failed symbols Failed libraries Percentage

OpenOffice.org 20,000 190 110 1.5

Firefox 19,000 254 114 1.9

MySQL 6,400 98 20 1.8

Launchpad 42,000 95 60 0.3

Improving Portability of Linux Applications 367

It is clear that large applications that are actively used on almost all Linux
distributions have greater percentage then relatively small projects hosted at
the Launchpad whose target audience is, in general, much more smaller. Some
projects from the Launchpad are not the binary ones, but created using inter-
preted languages (such as Perl or Python). For such programs, our approach is
not applicable. Also note that our investigation only concerned bugs detected by
customers, not by developers – that is, these are primarily bugs in the released
products missed by QA teams.

Thus, using the approach suggested, large applications could decrease the
number of critical issues discovered by customers by 1-2%. At the first glance,
this is not a very high number, but it can be achieved at a very low cost –
for example, the Linux Application Checker tool described below can perform
all necessary analysis fully automatically, so developers will only have to spend
several minutes launching the tool and checking the reports.

4 Linux Application Checker

The approach presented in this paper is implemented into an automated tool
called Linux Application Checker. The tool can be used to analyze application
binary files (in a form which is usually distributed to users) and check conditions
2, 3 and 5 for application and every distribution known to the tool. For every
distribution, a verdict is given if application can be successfully launched there,
and if not, a detailed list of compatibility problems is provided.

Data about distributions is collected by separate automated tools as described
in [6] and is shipped with the tool, so the set of supported distributions is fixed
for every tool version. The data collection process is fully automated and doesn’t
require for distribution to be installed – the analysis is performed on the basis
of distribution installation packages (RPM and Deb packages are supported). In
order to collect information about binary symbols and their versions exported
by distribution libraries, these libraries are analyzed using ’readelf’ and other
tools from GNU Binary Utilities [7]. The same tools are used by the Application
Checker to analyze application binary files on the user side.

The set of supported distributions is constantly updated; as of April, 2010,
the tool contains knowledge about 63 distributions on Intel x86 architecture
and 51 systems on x86-64 one (also known as AMD64). The tool supports five
more hardware architectures: PowerPC, PowerPC64, IA64 (Itanium), S390 and
S390X (IBM zSeries); for every of these platforms, knowledge about two dozens
of distributions is collected (this number is smaller than for x86 and x86-64 due
to the fact that many Linux variations don’t support these platforms).

Finally, since the data collection process is fully automated and all necessary
tools (including the Application Checker itself) are open, it is not hard for users
to add data about any distribution they like.

It is important to note that Application Checker contains knowledge not about
all libraries in every distribution, but only about a limited set of them (about
1,500 for every system). The thing is that according to empirical studies, there

368 D. Silakov and A. Smachev

are a lot of libraries in the Linux ecosystem that are used very rarely (usually
only by their developers), so it is unlikely that they will be required by any
third-party applications [9].

In addition to data necessary to check the conditions 2, 3 and 5, the Appli-
cation Checker also contains information about libraries and functions included
in the latest version of the LSB specification. For LSB-compliant distributions,
these libraries and functions are guaranteed not only to be present in the system,
but to provide all the functionality required by LSB. Thus, if application under
analysis uses only interfaces included in LSB, developers can be sure that the ap-
plication will not only successfully launch, but will also be able to work properly
in all distributions compliant with LSB. For symbols and libraries that were once
considered as LSB candidates but were rejected by the LSB workgroup (usually
due to their deprecated status or known bugs in the existing implementations),
the tool provides developers with appropriate warning messages, suggesting an
alternative, if possible.

While a positive result from the Application Checker does not guarantee that
application will run correctly in all distributions, it can notably reduce the port-
ing and testing costs; the tool it is easy to use, doesn’t require much user actions
and still able to detect a noticeable set of errors. Data from the LSB knowledge
base makes the tool even more valuable, allowing people to combine standard-
oriented development with the approach suggested in this paper.

Nowadays, Linux Application Checker is recommended by the Linux Foun-
dation [8] to all software developers who want to improve cross-distribution
portability of their applications. Moreover, it is possible for application vendors
to apply for LSB certification using Application Checker reports – the tool has
possibility to automatically submit reports to the LSB Certification System.

5 Conclusion

Existence of Linux applications that can be used in any Linux distribution with-
out modifications are greeted with applause by all members of the Linux commu-
nity – distribution vendors (who don’t want to maintain huge sets of patches for
every application in their systems), independent software vendors (who would
like to support as many platforms as possible) and end users (who don’t want
to be bound to a particular distribution just because their favorite software
doesn’t support the other systems). However, large variety of existing distribu-
tions makes it hard to develop and to support a product that would run every-
where, especially for proprietary vendors who cannot rely on any third parties
when solving portability problems.

Development of products compliant with some standard may help in some
respect, but existing standards cover only a small piece of the Linux ecosystem.
So systematic runtime testing on every target platform remains the most popular
approach for guarantying compatibility, but in case of large variety of platforms
it becomes too expensive.

In this paper, we have suggested an approach to detect portability problems of
applications by means of lightweight static analysis, without a need for runtime

Improving Portability of Linux Applications 369

tests. In general, the approach doesn’t guarantee full compatibility of application
and distribution, but it allows to check that the application at least can be
successfully launched in the distribution. Problems concerning impossibility of
launching of application are not rare in the real world.

The approach is based on the formal model of interfaces involved in the pro-
cess of application launching. In the paper we use formalization to derive unam-
biguous conditions (both necessary and sufficient) of this process. Existence of
clearly formulated and unambiguous requirements allows to create automated
tools that can check these requirements.

The Linux Application Checker tool combines two techniques of increasing ap-
plication portability without runtime testing. First, it allows to analyse program
compatibility with different distributions using the approach described in this
paper. Next, it supports development of applications that meet requirements of
the Linux Standard Base specification by checking application compliance with
LSB and suggesting alternatives for libraries and functions that are not included
in the standard.

In our work, we have considered only programs represented as binary exe-
cutable files and shared objects in ELF format. Applications that are written
using interpreted languages (such as Java, Perl or Python) are beyond the scope
of this paper. The approach can be extended to cover interpreted languages, too,
since they also usually have some analogues of libraries exporting sets of func-
tions that are used by applications. However, the concept of successful launch is
not so clear for such applications, since there is no analogue of dynamic loader
that resolves all external dependencies before passing control to the application
itself. It can appear that even if a system doesn’t provide all necessary interfaces,
the application still can function correctly inside it until the missing interface is
invoked. Nevertheless, it can still be desired to require that all interfaces that can
be potentially invoked by the application should be present in the system. Our
approach can be extended to cover this area, but derivation of formal necessary
and sufficient conditions of compatibility will require investigation of interaction
between application and interpreter, and this interaction can be actually specific
to every particular interpreter language.

References

1. System V Application Binary Interface Draft (April 24, 2001),

http://refspecs.linuxfoundation.org/elf/gabi4+/contents.html

2. Linux Standard Base Core Specification 4.0. Executable And Linking Format

(ELF), http://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-generic/

LSB-Core-generic/elf-generic.html

3. Proffitt, B.: More Compatibility Issues Easily Managed With LSB. Linux Developer

Network (October 2008), http://ldn.linuxfoundation.org/node/7141

4. Schroter, A.: OpenSUSE.org Build Service – a Short Introduction. In: Free and

Open Source Software Developers’ European Meeting, FOSDEM (2008),

http://files.opensuse.org/opensuse/en/2/21/

FOSDEM2008-OBS-short-introduction.pdf

http://refspecs.linuxfoundation.org/elf/gabi4+/contents.html
http://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/elf-generic.html
http://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/elf-generic.html
http://ldn.linuxfoundation.org/node/7141
http://files.opensuse.org/opensuse/en/2/21/FOSDEM2008-OBS-short-introduction.pdf
http://files.opensuse.org/opensuse/en/2/21/FOSDEM2008-OBS-short-introduction.pdf

370 D. Silakov and A. Smachev

5. Drepper, U.: How To Write Shared Libraries. Red Hat, Inc. (August 20, 2006),

http://people.redhat.com/drepper/dsohowto.pdf

6. Silakov, D.: Linux Distributions and Applications Analysis During Linux Standard

Base Development. In: Proceedings of the Second Spring Young Researchers’ Col-

loquium on Software Engineering (SYRCoSE 2008), St.Petersburg, Russia, May

29-30, vol. 1, pp. 11–18 (2008)

7. GNU Binary Utilities, http://sourceware.org/binutils/docs/binutils/

8. The Linux Foundation: Building a Portable Application For Linux,

http://ldn.linuxfoundation.org/lsb/check-your-app

9. Rubanov, V.: Automatic Analysis of Applications for Portability Across Linux

Distributions. In: Proceedings of the Third International Workshop on Foundations

and Techniques for Open Source Software Certification (OpenCert 2009), York,

United Kingdom, March 28, pp. 44–53 (2009)

10. Khoroshilov, A.V., Rubanov, V.V., Shatokhin, E.A.: Automated Formal Testing of

C API Using T2C Framework. In: Proceedings of the Third International Sympo-

sium on Leveraging Applications of Formal Methods, Verification and Validation

(ISoLA 2008), Part 3, Porto Sani, Greece, October 13-15, pp. 56–70 (2008)

http://people.redhat.com/drepper/dsohowto.pdf
http://sourceware.org/binutils/docs/binutils/
http://ldn.linuxfoundation.org/lsb/check-your-app

Specification Based Conformance Testing for
Email Protocols�

Nikolay Pakulin and Anastasia Tugaenko

Institute for System Programming of the Russian Academy of Sciences,

Moscow, Russia

npak@ispras.ru, tugaenko@ispras.ru

Abstract. The paper presents a method for conformance testing of In-
ternet electronic mail protocols. The method is based on formal specifica-

tion of the standards following the approach of the contract specification,

and designing tests as traversal of a state machine. The paper presents

the implementation of the method for the most widely used e-mail proto-

cols SMTP, POP3 and IMAP4 and is illustrated by the results of testing

of popular e-mail servers.

1 Introduction

Emails are fundamental to modern communications between people. Hundreds of
millions of emails float every day around the Internet. Reliability and correctness
of the emailing infrastructure is vital to the modern information society. In this
article we concern two aspects of these questions: (1) reliability of mail transfer in
the Internet and (2) delivery of the email to recipient, typically a human being.

Most of emails in the Internet are transferred by means of SMTP – Simple Mail
Transfer Protocol [1]. It is a text-based protocol with two parties: a client and a
server. Client issues commands and server executes them, returning status code
and other details if needed. SMTP has its own overlay network over TCP/IP
comprised by numerous mail servers and relay agents used to forward emails
between various domains. A feature of SMTP is that each physical server could
operate as both SMTP client and SMTP server: being a server it accepts an
incoming email and becomes a client to forward it to a next hop.

SMTP is used to send messages, but when an SMTP implementation identifies
itself as the final destination of an email it stops forwarding the mail and places it
in an internal implementation-specific storage. To retrieve emails from the stor-
age end-users utilize other protocols: POP3 (Post-Office Protocol, version 3 [2])
or IMAP4 (Internet Mail Access Protocol version 4 [3]). Both protocols are text-
based with distinct roles of clients and servers. Clients get access to the storage
through issuing protocol commands and servers provide required information in
their replies. Typical POP3 and IMAP4 implementations support only one role
at a time - either the server or the client.
� This work was supported by RFBR grant 10-07-00145-a and by Rosnauka grant

2009-04-1.4-00-01-006.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 371–381, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

372 N. Pakulin and A. Tugaenko

On its way from the originator to the recipient an email is processed by a
number of intermediate mail agents. A typical case is that those servers come
from different vendors thus having different implementations of the email pro-
tocols. The total reliability of emailing infrastructure substantially depends on
the compatibility between implementations as well as functional correctness of
each implementation.

Nowadays protocol conformance testing is the basic method of attesting im-
plementations compatibility. The rationale for this statement bases on the sug-
gestion of good protocol design: if two implementations conform to the protocol
specification then they are compatible, they can correctly communicate with
each other. In this paper we do not consider whether this assumption holds for
the Internet mail protocols, we provide an approach to the conformance testing
of such protocols.

The proposed approach allows to sequentially seamless transform test cases
based tests into model based tests with saving the functionality and workability.
On the first steps only testing approach transformation and testing protocol
model forming take place while further steps allows easily extending of test suite
for certain functionality checking.

2 Related Works and Motivation

Despite of more than twenty-year history of mail protocol service and existence
of dozens of SMTP/POP3/IMAP4 implementations still there are no open and
implementation-agnostic conformance test suites for those protocols. We believe
there are several reasons to explain the absence of such test suites:

1. the mail protocols seems simple;
2. developers focus testing on the aspects of mail server development that are

unrelated to conformance: parameter processing, security, internal storage,
performance, etc.

Let’s consider these reasonings in more detail. First, the simplicity of the mail
protocols is seeming. One can easily see that SMTP, POP3 and IMAP4 manifest
a number of non-trivial issues:

1. mail protocols are underspecified: a large part of functionality is left to im-
plementation developers; specifications prescribe several variants of possible
system behavior;

2. mail protocols are nondeterministic, the standard allows various system be-
havior alternatives including refusal in mail message delivering or connection
tear;

3. mail protocols requirements differ in the level of obligations (MUST, SHOULD,
MAY and others);

4. protocol architecture is extensible, protocols implementation may use
different extensions for supplemental functionality or even overlapping
functionality.

Specification Based Conformance Testing for Email Protocols 373

Listed features demonstrate complexity of the task of conformance test for email
protocols.

Second, developers has to focus testing on another big issue of mail server
development: processing of a large number of settings necessary for practical
use – parameters of routing, authentication, security, mail messages depository,
etc. We studied test suites developed by several open source implementations:
Apache James, Sendmail, Dovecot, Qmail, Postfix. The test suites turned out to
be tightly coupled with the implementations under test (IUT) and non-portable
to servers from other vendors, they utilize implementations features setting
parameters, access to the internal state, execution in the same process with
the implementation. Tests designed for one implementation could not be ap-
plied to other implementations. Moreover, as the analysis showed, these tests
are inappropriate for conformance testing, they are oriented to verification of
implementation-specific settings that are not directly connected with SMTP,
POP3 and IMAP4 standards. The problem is that such approach to testing
doesn’t guarantee servers’ compatibility to the standard. The situation is even
worse: our conformance tests detected a serious functional defect in James server
– cycling at certain conditions – that was overlooked by the James functional
tests.

Also it is necessary to note that there is a special tool developed in Apache
Project – Mail Protocol Tester (MPT) – for verifying correctness of server replies.
The input data for this tool is a script that specifies server stimuli and expected
server replies. The program uses regular expressions for specify expected replies
of IUT. If a reply mismatches the regex program stops and throws the mistake
message. Apache James MPT provides only basic testing facilities and does not
support branching, cycles and parameters usage in tests.

Exact relationship between tests and standard’s requirements allows hard
confidence in terms of a user of mail service. As the example with server James
shows, thorough testing of internal functions of implementation doesn’t guaran-
tee the functional quality of implementation in real environment.

We believe that the problem of conformance testing to the standards of mail
protocols has significant practical importance. The ultimate goal of our research
is to propose new test system architecture and the technique for developing sys-
tem elements which are suitable for specific mail protocols features. In this paper
the new technology for conformance test suite development is presented. This
technology includes several test development steps with steps being constructed
in a way that each step may be final. The novelty of presented method is the abil-
ity of sequentially transformation of testing model in which in each step testers
get workability tests (model, program, depends on step). At the beginning of
test suite development one have to write test cases or take available test cases.
In the further steps the interface model is building, then the addition of states
to already built model is performing. After these steps have executed tester got
test suite with same functionality as after first step. But on this step it is more
easily to extend the test suite by extending the specification. The presented ap-
proach is model-based and focuses solely on conformance and does not consider

374 N. Pakulin and A. Tugaenko

other aspects of email infrastructure validation, such as interoperability testing,
performance testing, reliability testing etc.

As an example of proposed method application an opensource conformance test
suites for basic functions of SMTP, POP3 and IMAP4 protocols was delevoped by
the instrumentality of this method.

The paper is structured as follows: Section 3 gives an overview of the existing
approaches to protocol conformance testing and discusses why model-based test-
ing and UniTESK technology is used in our approach. Section 4 provides a quick
introduction to UniTESK technology that lays in the basis of our approach and
Section 5 introduces the approach used to develop test suite for SMTP, POP3
and IMAP4. In section 6 we present the test suites for SMTP, POP3 and IMAP4
developed so far and Section 7 discusses pros and cons of the proposed approach.
Section 8 summarizes results achieved by now and highlights directions of future
research.

3 Mail Protocol Testing

In the contemporary industry conformance testing of protocol implementations
is mostly based on manual development of test suites consisting of independent
test programs written in specialized or general-purpose programming language.
Such programs are referred to as test cases; they implement stimulus construc-
tion, passing generated test inputs to the IUT, reading and analysis of observed
outputs [4].

Academic researchers and practitioners typically consider test cases as one of
the traditional testing methods [5,6,7] while model based testing is considered
as new method solving many unsolved with traditionally methods problems (for
instance, imprecise coverage of IUT functionality and manually development of
requirements traceability). The method proposed in this paper considers model
based testing as extension of test cases based approach. In the capacity of pro-
posed method demonstration the development of test suites for SMTP, POP3
and IMAP protocols are presented.

Let’s consider requirements for test suite. Test suite for conformance testing
must possess the following properties.

1. Requirements traceability. Tests must correlate with the requirements stated
in the standards. It must be clear for each requirement which test it is covered
by.

2. Variety of settings for implementations features (MUST, SHOULD, MAY
and others). There must be an option to define the set of requirements sup-
ported by an IUT and avoid requirements that IUT does not implement.

3. Completeness of test suite in terms of requirements coverage. Resulting test
suite must cover at least all obligation requirements.

Test cases approach doesn’t provide evident traceability of requirements. Re-
quirements completeness in terms of coverage in such approach is also compli-
cated. Approaches based on TTCN-3 [8] and JUnit [9] require external tools to

Specification Based Conformance Testing for Email Protocols 375

establish connections between tests and requirements such as traceability ma-
trixes. The weakness of such tools is that the requirements are not an integral
part of the tests.

Besides that large number of tests presented as separate programs results
in code redundancy or complex and complicated connections. It is necessary to
use methods permitting decomposition of test suites and providing requirements
traceability.

Required possibilities are given by tools based on formal method approach.
Utilizing of formal specifications allows to:

1. define formal connections between requirements and tests; automatically
backtrace quality of testing in terms of specification coverage;

2. using model repeatedly for checking correctness of implementations behavior;
3. generate test stimuli in terms of model and automatically filter redundant

stimuli.

Also when choosing a method for generating test sequences it is necessary to take
into account features of mail protocols. Particularly because of protocol behavior
is nondeterministic and underspecified, one should choose approaches providing
test sequences generation with a glance of IUT replies. As well when testing mail
protocols it is complicated to make prediction for result or define equivalence
of traces. Automatic verdict generation from specifications postconditions may
solve the problem of verifying correctness of IUT behavior.

There are many instruments and approaches for testing. NModel [10] repre-
sents model system in C# language and provides basic facilities for on-the-fly
testing and coverage maximization. But for on-the-fly testing test developer must
write separate program describing complex traversal strategy.

The previous version of SpecExplorer (2004) [11] was implementing on-the-
fly testing ability but this version is no longer supported. In the last version of
SpecExplorer (2010) [12] on-the-fly testing is not documented. Toolkit Conformiq
Qtronic [13] does not provide on-the-fly testing, instead it generates TTCN-3 test
scripts.

Toolkit UniTESK [14,15] supports formal specifications notation, automated
on-the-fly test stimuli generator (code-level, there is no need to write separate
program) and automated test results analysis. So we decided to use this tech-
nology for this project.

In UniTESK technology formal specifications which formalize requirements as
pre- and post- conditions are used for generation of test sequences. Also for test
sequences generation must be given a certain finite state machine (test state ma-
chine). The test process in UniTESK is automatic traversal of test state machine
in which IUT behavior is automatically verified by test oracles; test oracles are
generated from formal specification. The utilizing of formal specifications allows
automating verification of behavior correctness and estimation of hard confi-
dence; presenting test as state machine makes possible to automatically generate
long and various sequences of test events.

Authors used presented method for developing test suites for protocols SMTP,
POP3 and IMAP4. From tools implementing the UniTESK approach JavaTESK

376 N. Pakulin and A. Tugaenko

[16] was chosen. JavaTESK uses the programming language Java with a number
of extensions for record formal specifications and specify tests.

4 UniTESK Technology Overview

The standard format for Internet protocol standardized documentation is de-
fined by documents RFC (Request for Comment). Requirements in these docu-
ments are stated in English and correspond informal text that describes desirable
system behavior. In the UniTESK technology (Fig. 1) specialized specification
languages – extensions of Java and C – are used for record requirements.

Fig. 1. UniTESK test suite architecture

Recording the informal requirements of standardized documentation in formal
language represents the protocol model. In UniTESK approach the formal model
is constructed in terms of finite state machine. Transitions between states may
be given in explicit or in implicit way. In case of explicit definition of transition
the model contains algorithm for calculating next state and protocol reaction.
Presentation of implicit transition is a predicate which defines restrictions on
acceptable states and protocol reactions.

Specification in JavaTESK usually consists of one or few specification classes
which describe states and transitions of modeling protocol. Protocol transitions
are presented as special methods (specification methods). In addition there is
a possibility to define restrictions on acceptable set of states by means of type
invariants (type restrictions) and state variable invariants.

Definition of implicit transitions realized as pre- and postconditions. In pre-
conditions there are restrictions on acceptable stimulus parameters values and
on states from which stimuli may be given. The IUT may react on stimuli by
changing state, giving a reaction or both. Postconditions define acceptability of
demonstrated behavior.

For modeling IUT behavior one uses the set of data structures which referred
to as abstract states. For verdict pronouncement about the correctness of IUT
behavior UniTESK uses data from model abstract state.

Specification Based Conformance Testing for Email Protocols 377

In UniTESK both stimuli for the IUT and its reactions are described in terms
of model; model is defined by the formal specifications. Correlation between the
model and the IUT is established by an intermediary – mediator – which trans-
lates stimulus parameters from model form to protocol messages, IUT reactions
to model representation and if necessarily transports changes from the IUT state
to the abstract state.

Test scenario defines stimulus sequence applied to IUT. The metamodel of
finite state machine is used as the theoretical basis for constructing scenarios. In
JavaTESK test state machine is defined in scenario class which contains the pro-
cedure for calculating current state and iterator of test stimuli. The JavaTESK
tool contains test engine for constructing test stimuli sequences from test state
machine description.

5 The Proposed Method for Mail Protocols Conformance
Testing

Mail protocols may be in several states. When receiving certain stimulus they
generate and send reactions and jump to another state or leave in current. With
a glance of this fact on the basis of instrument UniTESK the method for test-
ing mail protocols was developed. The proposed method may be considered as
method with sequentially seamless transformation from test cases based test-
ing to the model based testing (if tester already has test cases) or as method
for sequentially model based tests creation. The proposed method contains the
following main steps.

1. Analysis of knowledge domain. Developing of examples and elementary tests.
This step doesn’t give any visible results but it is important for detailed
protocol understanding and helps in implementation of next steps.

2. Creation of requirements catalogue. Requirements catalogue is a database or
a table with description of requirements. Catalogue’s record contains not only
requirement’s description but also requirement’s identifier, type (syntax or
functional), severity, link to the place in the RFC and maybe other attributes.

3. Designing of lite protocol model. Lite protocol model includes information
about commands and about possible reactions to these commands. Experi-
mental test consists of specification, mediator and scenario classes. Specifica-
tion class on this step includes only signatures of methods; all verifications are
making in scenario class. Such test referred to as linear test; applying stimuli
and reading reactions are process in certain order defined in scenario class.

4. Designing of conceptual protocol model. Extracting states of basic protocol.
Creation of test state machines with dedicated states. Expanding experi-
mental test – addition the block which makes transitions between states.
Conceptual model defines behavior of observing system as operations on
some set of abstract components and composing objects. These components
are used only for behavior modeling and may not conform to the model
extraction. Addition of block for making system transitions between states

378 N. Pakulin and A. Tugaenko

turns test from linear to automatic test. In this step construction of stimu-
lus sequence is made from test state machine traversal; applying stimuli and
reading reactions are made only from acceptable states.

5. Requirements formalization. Relocation of verification of IUT responses into
specification class. Checking completeness and consistency of requirements
is made while formalizing requirements. The result of this step is the formal
protocol specification written on one of the special program languages.

6. Enhancement of scenario and specification for covering all requirements. In
this step scenario classes contain only stimuli. The order of stimuli is formed
from state machine traversal and depends on applying stimuli in certain
states conditions. Usually one scenario class is responsible for the certain re-
quirements section. For covering all formal requirements few scenario classes
may be needed.

7. Execution of test suites and analyzing the results. Analysis may show that
not all requirements are covered by generated test suite. If not all require-
ments are covered then step 6 must be repeated until covering all require-
ments from catalogue.

If at the beginning of test suite development tester has test cases or if tester is
experienced in model based tests creation then the first step may be skipped.
Also we note that given order of steps is not singular. So, steps 3 and 4 may be
combined. And step 5 may be performed in parallel with steps 3 and 4. Also a
number of iterations may be executed within the bounds of the described steps
sequence.

6 Method Application for Protocols SMTP, POP3 and
IMAP4 Testing

The first step of test suite development for SMTP, POP3 and IMAP4 implemen-
tations was analysis of knowledge domain and familiarizing the testers with the
protocols. Then the requirements from RFCs were elicited and categorized for
commands and replies, routing, notifications, server settings, mail headers, mail
body, etc. On this basis of the catalogue the lite protocol models were designed;
test state machines sent commands:

1. for SMTP: EHLO, HELO, MAIL, RCPT, DATA, and others;
2. for POP3: USER, PASS, LIST, STAT, RETR, DELE, TOP and others;
3. for IMAP4: tag plus command word LOGIN, EXAMINE, CREATE, DELETE,

RENAME, SELECT and others.

Protocol replies were specified – for SMTP: three digit numeric code – reply
code; for POP3: “+OK” or “-ERR” replies; for IMAP4: non-obligatory tag plus
“OK”, “NO”, “BAD”, “PREAUTH” or “BYE”.

At that step the test suites generationhada formal interface, specification classes
was consisted of only methods’ signatures; all IUTs behavior correctness verifica-
tions were made in scenario classes. Scenario classes consisted of methods applying

Specification Based Conformance Testing for Email Protocols 379

(by means of mediator classes) stimuli to the IUTs, reading servers responses and
returning verdicts about correctness of severs behavior. Mediator classes trans-
formed the IUT stimuli format to model systems format and vice versa.

Then the basic protocol states were introduced. On this step the new blocks
responsible for making model system’s transitions between states were added to
the scenario classes. Specification classes were not changed.

In the next step blocks responsible for verification of IUT behavior correctness
and blocks that make transitions between systems states were relocated from
scenario classes to specification ones. Scenario classes solely applied stimuli to the
IUT. From now certain commands could be passed only from acceptable states
of state machines. The possibility of such verification is achieved by recording
acceptable states in preconditions of specifications. Iterator every time checks
the current state and whether the applying of the next command is allowed in
current state. Also it gives the opportunity to check the fact that servers don’t
send commands from forbidden for such commands states.

7 Discussion

To the lows of the method based on formal specifications one may attribute
the absence of the quick test suites updating ability. To develop new test it is
necessary to thoroughly study requirements, formalize and classify them. Only
after these preparations one may set out to write specification, adaptor and tests.
Due to the preparation stage including specification development the period for
new test development is increasing.

On the other hand, after specification, mediator and scenario classes are imple-
mented one gets not a single test but a set of tests responsible for the corresponding
requirements class. Also it is necessary to note that the lengthy preparatory stage
happens only in case of incomplete formal specification. If formal specification is
available tests may be generated quickly – just by modification of scenario class.
Moreover, if the task is to make complex test then the utilizing of formal specifi-
cation approach gives result more easily and quickly than test cases approach.

The major drawback of the proposed method is availability of an implementa-
tion: at every stage the tests and specifications are being validated against a real
implementation. As a result, this method is not directly applicable for protocols
that do not have existing implementations.

One of important advantages of this method is separating the verdict as-
signement from test sequence generation. The oracle which is generated from
specification postconditions is responsible for verdict assignement. Thanks to
this separation test developer does not need to handle verdicts while testing cor-
rectness of IUT behavior. Having a dedicated place (specification) in which all
checks of IUT behavior correctness are kept helps reusing the oracle in different
test scenarios.

Utilizing of formal specifications allows formulation the exact unambiguous
hard confidence criteria – testing may be completed when all elements of appro-
priate formal specifications are covered. UniTESK provides support to dynam-
ically access covered requirements and allows to define some selecting criterion

380 N. Pakulin and A. Tugaenko

for scenarios – if applying of certain scenario doesn’t increase test coverage then
system misses it and moves to the next scenario.

8 Results and Further Research

For SMTP we elicited 51 basic requirements, 43 of them are related to server
commands and replies (11 of them are mandatory and 4 are optional), 8 re-
lated to routing (all are mandatory). For POP3 we elicited 58 requirements for
basic commands, 5 of them are mandatory and 6 are optional. For IMAP4 43
requirements were elicited for basic commands, 7 of them are mandatory and 2
are optional. The scope of the project was the basic functions of the protocols,
other functions such as notifications messages for delivery failures message, mail
gateways to non-SMTP domains were left out of our project.

All requirements are covered by the developed test suites. The tests were
applied to open source mail servers – Apache James, hMail Server, Postfix and
Dovecot. Generated tests have detected the following disagreements between
protocol implementations and standards [1,2,3]:

– missing required commands;
– protocol rules violation, such as accepting commands in illegal states;
– wrong reply codes to the protocol commands;
– cycling while redirecting mail.

8.1 Further Research

The common characteristic of mail protocols is that mail protocols are extensible.
Certain extensions complement the existing functionality, i.e. add new require-
ments which do not contradict the requirements from basic standard. But there
are also such extensions which radically alter the protocol structure thereby dis-
carding some requirements from the basic standard. For checking such extensions
one should modify test suites in such a way that requirements that are amended
by extensions have not been verified. Otherwise there will be no opportunity
to reach 100% coverage of all obligatory requirements. Since many protocols be
extensible there is a need for tools providing capability for generating test suites
for various extensible protocols’ implementations – both supporting extensions
and supporting only basic standard functionality. The direction of the future
research is to develop such tool based on JavaTESK.

9 Conclusion

The paper presents an approach to specification-based testing of mail protocol.
Novelty of the method is ability to sequentially transform test cases into formal
model and tests using that model as oracle. Furthermore, in each step tester gets
executable test suite which cover the same functionality as tests produced at the
previous step and may add more checks.

Specification Based Conformance Testing for Email Protocols 381

The approach belongs to model-based testing domain, it uses contract spec-
ifications to formalize protocol specification and on-the-fly test sequence gener-
ation. The implementation of the approach is based on UniTESK technology.
Distinctive features of this method are automated test sequences generation on
basis of formal specifications, test coverage calculating which allows constructing
stimuli in optimal way and also the presence of separate component – oracle –
responsible for verdict about IUT behavior correctness returning.

Developed method was applied for testing of long used mail protocols imple-
mentations. In one implementation (Apache James Server) was found a critical
defect – under specific circumstances while redirecting message the server is
resending the mail to itself and the message never reaches the recipient. The
notification to the originator about undeliverable mail is absent. Description of
steps for reproducing defect is reported to Apache Software Foundation.

References

1. IETF RFC 5321. J. Klensin. Simple Mail Transfer Protocol (2008)

2. IETF RFC 1939. J. Myers, M. Rosem, Post Office Protocol – Version 3 (1996)

3. IETF RFC 3501. M. Crispin. Internet Message Access Protocol – version 4rev1

(2003)

4. ISO/IEC 9646. Information technology – Open Systems Interconnection – Confor-

mance testing methodology and framework – Part 1: General concepts. Geneva:

ISO (1994)

5. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-

gan Kaufmann, San Francisco (2007)

6. Blackburn, M., Busser, R., Nauman, A.: Why Model-Based Test Automation is

Different and What You Should Know to Get Started. Software Productivity Con-

sortium, NFP (2004)

7. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C.,

Horowitz, B.M.: Model-Based Testing in Practice. In: Proceedings of the ICSE

1999 (May 1999)

8. ETSI ES 201 873-1 V3.1.1. Methods for Testing and Specification (MTS); The

Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.

Sophia-Antipolis, France: ETSI (2009)

9. Unit testing framework, http://www.junit.org

10. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing

and Analysis with C#. Cambridge University Press, Cambridge (2008)

11. http://research.microsoft.com/pubs/77383/bookChapterOnSE.pdf

12. http://research.microsoft.com/en-us/projects/specexplorer/

13. End-to-End Testing Automation in TTCN-3 environment using Conformiq Qtronic

and Elvior MessageMagic (2009)

14. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., Burdonov, I.B.: The UniTesK

Approach to Designing Test Suites. Programming and Computer Software 29(6),

310–322 (2003)

15. http://www.unitesk.com

16. Functional testing of list using JavaTESK. Moscow (2008)

http://www.junit.org
http://research.microsoft.com/pubs/77383/bookChapterOnSE.pdf
http://research.microsoft.com/en-us/projects/specexplorer/
http://www.unitesk.com

Covering Arrays Generation Methods Survey

Victor Kuliamin and Alexander Petukhov

Institute for System Programming Rassian Academy of Sciences,

25 Alexander Solzhenitsyn st., Moscow, 109004, Russia

kuliamin@ispras.ru

Abstract. This paper is a survey of methods for covering arrays gen-
eration. Covering arrays are used in test data generation for program

interfaces with many parameters. The effectiveness and the range of ap-

plication of these methods are analysed. The algorithms used in these

methods are analysed for their time complexity and memory usage. In

this paper combinatorial, recursive, greedy algorithms are observed. Sev-

eral heuristics for reducing the size and the time for construction of cov-

ering arrays are observed.

Keywords: covering array, interaction testing, pair-wise testing, cover-
age criteria, combinations of factors, interfaces with many parameters,

finite fields, heuristic search, greedy algorithm.

1 Introduction

High complexity of modern computer systems and the necessity of the tasks they
perform make the correctness assurance (i.e. verification) of such systems essen-
tial. To have a notion about the quality and the completeness of the verification
one has to do it methodically. For the methodical verification the testing is used.
Testing is a creation of special test cases and an analysis of the behaviour of the
system in these cases. To assure the quality and the completeness of the verifi-
cation it is required to have as many tests as possible. However, full testing is
unrealisable in practice because the amount of cases in which the real world sys-
tems must be verified is infinite. That’s why a finite (often rather small) amount
of test cases is chosen. The test cases are chosen so that by analysing the be-
haviour of the system in these cases the behaviour of the whole system can be
judged. The choice is usually done by dividing the whole space of test cases into
equivalence classes so that the behaviour of the system varied very little inside
the class and varied a lot if the class is changed. Then for each equivalence class
tests are organised. During the execution of the tests the behaviour of the system
is analysed and the verification is done. The quality of testing is estimated as a
test coverage of equivalence classes.

The amount of classes is always chosen to be finite, because the testing is
limited. However, this amount could still be too big for the effective testing of
the particular project. Often the test cases and the scenarios of the system under
test behaviour are classified by some set of factors, properties and parameters

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 382–396, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Covering Arrays Generation Methods Survey 383

each of which can take a finite number of possible values. In this case, different
test cases correspond to all possible combinations of values of selected factors.

Examples of factors used in the test case classification:

• successful/unsuccessful execution of some operation
• branching in the code of the component under test, the value of the corre-

sponding factor is the execution of either ’if’ or ’else’ branch
• rules’ alternatives when testing is based on grammars[33], the values in this

case are possible ways to solve the alternative
• categories when testing is based on division on categories[32]

Often (including the cases above) single occurrence of a factor in the resulting
test suite is not enough for a qualitative testing. It is required to check the
interaction of the factors among them selves i.e. their combined influence on
the system. To perform this check it is required to combine the factors to raise
the quality of testing and to reduce the test suite at the same time because full
examination of all combinations for real systems is very costly.

In this paper methods for combining factors which allow to create test suites
covering pairs, threes etc. of factors are surveyed. These methods generate rela-
tively small test suites and increase the quality of testing for systems possessing
following properties:

• there is a sort of cases or influences on the system which has quite a lot of
parameters or factors which have impact on it’s work.

• the possible values of each input parameter can be divided into rather small
finite number of equivalence classes so that all considerable changes in system
behaviour appear only because of change in class of a single parameter.

• it is known that the errors in the system are mainly caused by some combi-
nations of factors defined by the input parameters’ values

When there is no additional information about dependence between system’s
errors and input parameters or other conditions on values of input parameters
these methods effectively create test suites which cover a big variety of cases.
Otherwise the additional information can be used to create smaller aimed tests.
The methods described in this paper were successfully applied for testing differ-
ent type of systems see [31,25,37]. For example, in [25] a system under test has
4 input parameters with 3 possible values each. If we try to make up all possible
combinations of the parameters’ values we will have 34 = 81 tests. It is not many
but it is obvious that the execution of all of them is quite costly.

The empirical researches [11,37] confirm that in these kind of situations the
majority of errors (up to 70%) are mainly related to some combinations of values
of only two factors. In other papers [20] is shown that the combinations of pairs
of factors in testing improve code coverage up to 80%. In other words if the tests
contain all possible combinations of pairs of parameters’ values then the majority
of the errors will be found. The minimum amount of tests in the example given
in [25] is 9 because covering all pairs of the first two parameters takes 3*3=9
tests. A test suite for this example covering all pairs of possible parameters’

384 V. Kuliamin and A. Petukhov

values containing 9 tests can be generated using the techniques described in this
paper. The resulting test suite can be found in [25].

We can try to generate a test suite which would still be rather small but also
would contain all possible threes of parameters’ values. For the example above
at least 27 = 33 tests are required. It is possible to generate such a suite using
the techniques described in this paper. Using in testing a test suite containing
all possible threes of parameters’ values can find even more errors[11,37].

This paper surveys methods for test suites creation containing all pairs, threes
and lager sets of parameters’ values. Section 2 contains definitions for covering
arrays and the main information about them. Section 3 is devoted to the survey
itself. Finally, conclusion summarises the paper.

2 Preliminaries

Test suites covering all pairs, threes etc. of possible values of input parameters
correspond to mathematical term of covering arrays. Consider there are k factors
which have influence on system behaviour. First factor has n1 possible values,
second has n2 values etc. k-th has nk values. Covering array depth t is a Nxk
matrix, where the values of an i-th factor are in i-th column and any combination
of possible values of any t factors occurs in at least one row of the matrix.

It is not essential what are the exact values, therefore they can be designated
by numbers from 0 to ni−1. A set of numbers (t; k, n1...nk) is called a covering
array configuration, and a set of covering arrays corresponding to this configura-
tion is designated CA(t; k, n1...nk). In configuration (t; k, n1...nk) t – is a depth
of a covering array, k – is an amount of parameters and ni – is an amount of pos-
sible values of i-th parameter. All numbers in configuration are called attributes
of a covering array. Covering array of depth t is also called a t-covering array.

Covering array is minimal if there does not exit covering array for the same
configuration containing less amount of rows. The amount of rows in minimal
covering array for configuration (t; k, n1...nk) is designated CAN(t; k, n1...nk).

If the amount of values for all parameters is the same, i.e. n1 = n2 = ... =
nk = n, corresponding covering array is called homogeneous. It’s configuration
is designated as (t; k, n), a set of such covering arrays – CA(t; k, n).

There are more complex cases of covering arrays - variable strength cov-
ering arrays. In such covering arrays occur all pairs of values of parameters
i1, ..., ip2(2 ≤ p2 ≤ k), all threes of parameters j1, ..., jp3(3 ≤ p3 ≤ k) etc. all
t-tuples of parameters l1, ..., lpt(t ≤ pt ≤ k, t ≤ k), where ip, jp, ..., lp are the
numbers of parameters from 1 to k. These numbers designated with different
letters can coincide. For example, if there are 7 parameters we can be interested
in combinations of all pairs for all 7 parameters, threes of 1st, 2nd, 3rd and 4th
parameter, 4-tuples for 3rd, 4th, 5th, 6th and 7th parameter (see Fig. 1).
We will designate variable depth covering array configurations as
(t1; k, n1...nk; t2, j1...jp2 ; ...; tm; l1, ..., lpm). Fig. 1 gives a visual representa-
tion for configuration (2; 7, n1...n7; 3; 1, 2, 3, 4; 4; 3, 4, 5, 6, 7).

When test suite is described using covering arrays every row of covering array
corresponds to a test and the value in j-th column corresponds to the ordinal

Covering Arrays Generation Methods Survey 385

Fig. 1. Graphical representation of a variable depth covering array configuration

number of equivalence class for j-th parameter. This mapping allows us to use
the mathematical theory of covering arrays for test suite creation. Because of
necessity of reducing the size of test suite it is convenient to use minimal or close
to minimal covering arrays.

In general case there is no effective solution for covering array generation
problem. Seroussi and Bshouty in [19] proved that generation of CA(t; k, n) is
NP-complete using a reduction to the problem of graph 3-colouring. Lei and Tai
in [18] proved that generation of CA(2; k, n) is NP-complete using a reduction to
the problem of finding a minimum vertex cover. Thereby generation of covering
array is NP-complete.

The the amount of rows in minimal covering arrays there is an estimation
[40]:CAN(t; k, n) ≤ (t−1)log(k)/log(nt/(nt−1))∗(1+o(1)) when k, which gives
CAN(t; k, n) ≤ (t−1)ntlog(k)∗ (1+o(1)) when nt, k → ∞. The obvious bottom
bound for the amount of rows in minimal covering arrays is CAN(t; k, n) ≤ nt,
which is based on the notion that all possible combinations of t values each of
which can be chosen n different ways must occur in such an array. As we can see
the amount of rows grows logarithmically when k → ∞, which makes the usage
of covering arrays effective for construction of small and qualitative test suites.

The researches on covering arrays are mainly concentrated on finding minimal
covering arrays for different configurations and on creation of effective (polyno-
mial) algorithms for generation of close to minimal covering arrays. There are
many well known algorithms possessing these properties but they either work
only for particular configurations, either for the majority of configurations give
covering arrays far from minimal.

The goal of this paper is to analyse covering arrays generation methods, reveal
their area of application where they give minimal or close to minimal covering
arrays and finally introduce a new combined technique which will effectively
using the most effective known method generate close to minimal covering arrays
for different configurations.

3 Survey of Algorithms for Covering Arrays Generation

In this survey we tried to cover all algorithms found in papers [4,22,27,28]. Several
additional algorithms were also covered: algorithm for covering arrays genera-
tion using initial homogeneous covering array with similar configuration [5] and
algorithm for combining blocks of homogeneous covering arrays and additional
arrays [25]. We also give such characteristics as time complexity and memory
usage which absent for mentioned above survey papers.

386 V. Kuliamin and A. Petukhov

Existing algorithms for covering array generation can be classified as follows:

• Combinatorial (direct) algorithms use the mapping between covering arrays
and other combinatorial schemes (e.g. sets of Latin squares, finite groups
etc.) which allows to create covering array when the corresponding scheme
is simple enough.

• Recursive algorithms construct covering arrays out of other covering arrays
with e.g. smaller number of parameters or smaller depth

• Reduction algorithms generate covering arrays by modifying and reducing
covering arrays with larger values of the attributes.

• Greedy algorithms consider covering array generation as an optimization
problem for minimizing the number of rows in generated array using tech-
niques for local extremum search.

This survey describes known solutions in particular cases of the NP-complete
problem of covering array generation. The goal of this survey is to find effec-
tive algorithms and heuristics for some particular cases because the problem in
general due to it’s NP-completeness most likely does not have an effective (poly-
nomial) solution. Following properties for the methods found will be defined:

• The range of application of an algorithm i.e. for which covering arrays config-
uration attributes this particular method generates minimal or near minimal
covering arrays and has good time complexity estimations.

• Classes of algorithms used. The dependence of these algorithms on other
algorithms or methods

• Algorithm time complexity, memory usage. For recursive and reduction al-
gorithms time complexity will be calculated only for the algorithm itself
(without calculation of time for initial array construction)

• Dependence of the next row on already generated rows or the rows specified
before. The possibility of generation an array row by row which will give a
memory optimization.

• Possibility of addition the semantic constraints reducing the size of an array.
Semantic constraints do not allow forbidden combinations for test values,
which is very convenient for real world systems.

3.1 Homogeneous Covering Arrays Generation Algorithms

3.1.1 Boolean Covering Array Generation Algorithm [28,29,30]
This direct algorithm generates covering array form CA(2; k, 2) for any k ≥ 1.
The algorithm description can be found in [28]. An array constructed is a minimal
covering array. Time complexity is O(k), memory usage is O(k ∗ log2(k)).

3.1.2 Affine Covering Array Generation Algorithm [25,28]
This direct algorithm generates covering array form CA(t; n + 1, n) where n is
a prime power, n = pk, k ≥ 1, and any t ≤ n + 1. If t = 3 and n = 2k an array
from CA(t; n+2, n) can be built. The algorithm description can be found in [28].
An array constructed is a minimal covering array (either for (t; n + 1, n), either

Covering Arrays Generation Methods Survey 387

for (t; n + 2, n)). Time complexity is O(nt), memory usage is O(n), because an
array can be built row by row. However, for the implementation it is required to
simulate the arithmetic of polynomials in Galois Field, i.e. create multiplication
and addition tables. The table creation will consume O((logpn)4) operations,
storing tables in memory will consume O((logpn)3).

3.1.3 Multiplication Covering Array Generation Algorithm [22,28]
This recursive algorithm generates covering array from CA(t; k, n1 ∗ n2) using
covering array A from CA(t; k, n1) and B form CA(t; k, n2). The number of rows
in the final array is equal to multiplication of number of rows in the initial arrays.
Algorithm is not effective when the number of rows is large because in this case
the generated covering arrays are far from minimal. The algorithm description
can be found in [28]. The final covering array may not be minimal even if the
initial covering arrays are minimal. Time complexity is O(k ∗ (1 + N1 + N2)),
where N1 is the number of rows in the first initial array and N2 is a number of
rows in the second initial array. The required memory is the same because the
array may be built row by row but the initial arrays must be kept in memory.

3.1.4 Generating a Homogeneous Covering Array with Strength of
2 Using Recursive Constructions [22,28]
This recursive algorithm generates covering array form CA(2; m∗n+1, n) using
covering array A from CA(2; m, n), where n is a prime power, n = pk, k ≥ 1.
If the number of rows in the initial array is N, then the number of rows in the
final array is N + p2k − pk. Algorithm is effective when the number of rows
in the final array is logarithmically proportional to the number of parameters.
The algorithm description can be found in [28]. The final covering array may
not be minimal even if the initial covering array is minimal. Time complexity is
n2 + (n + 1) ∗ log2(n + 1) + n ∗ m ∗ ((2 ∗ n + 1)(n3n) + n + 1) [28] and required
memory is O(N +((2∗n+1)(n3n)+n+1)+m), where N is the number of rows
in initial array.

3.1.5 Generating a Homogeneous Covering Array with Strength
of More than 2 Using Recursive Constructions(Roux Theorem)
[2,3,4,5,6,9,22]
This recursive algorithm generates a covering array form CA(3; 2 ∗ k, n) using a
covering array A3 from CA(3; k, n) and A2 from CA(2, k, n). If the number of
rows in the first initial array is N3 and the number of rows in the second initial
array is N2 then the number of rows in the final array is N3 + (n − 1) ∗ N2.
When t > 3 the algorithm generates a covering array form CA(t; 2 ∗ k, n) using
t− 1 initial covering arrays respectively from CA(t; k, n), ..., CA(t− 2; k, n) with
number of rows Nt, ..., Nt−2 respectively. The algorithm description can be found
in [4]. The final covering array may not be minimal even if the initial covering
arrays are minimal. Time complexity is O(2 ∗ Nmax ∗ k ∗ (n + Nmax ∗ (t − 3)))
and required memory is O(2 ∗ k ∗ N2

max) (where Nmax is the maximum number
of rows in the initial arrays (Nt)).

388 V. Kuliamin and A. Petukhov

For all the algorithms above there is no possibility of addition semantic con-
straints reducing the size of the array.

3.2 Heterogeneous and Variable Depth Covering Arrays Generation
Methods

3.2.1 Generation Using Initial Homogeneous Covering Array with
Similar Configuration [5]
This reduction algorithm generates a heterogeneous covering array basing on
a close configuration homogeneous covering array e.g. a covering array from
CA(2; 6, 3, 2, 5, 4, 3, 5) basing on initial array from CA(2; 6, 5). Further research
of particular cases in which this method works effectively is required. Several
ideas can be found in [5].

If we have a homogeneous covering array B from CA(t; k, n), which has al-
ready been constructed, where n is chosen to be so that array B contains
all rows of required to generate covering array A from CA(t; k, n1...nk) (e.g.
n = max(n1...nk)), then we can change the values from B which does not fit in
possible values of A with the values which do fit in. And finally, delete all the
unnecessary (e.g doubling) rows.

The resulting array depends on the way the unnecessary values are eliminated
i.e. it is possible to get different covering arrays for the same configuration. The
minimality of the covering array generated using this method cannot be guar-
anteed, however there are techniques to estimate how close to minimal is the
resulting array [5]. Algorithm requires detailed analysis of arrays’ configuration
and unconventional heuristics. Time complexity and memory usage depend on
particular case. The array construction cannot be optimized by addition of se-
mantic constraints while it is possible to introduce the constraints. Also it is not
possible to optimize the memory usage because the whole initial array must be
kept in memory.

3.2.2 Heterogeneous Arrays Depth t=2 Generation Using Combi-
nations of Blocks of Homogeneous Covering Arrays and Additional
Arrays [25]
This recursive algorithm generates covering array A from CA(2; k, n1...nk),
where k > max(n1...nk). Further research is required to generalise this method
for the cases of t>2 and variable depth covering arrays. The algorithm descrip-
tion can be found in [25]. The final covering array may not be minimal. The
examples given in [25] show that the arrays generated by this algorithm are
rather small. An estimation of the final array size is logn+1(k)! ∗ (n2 − 1) + 1.
Time complexity is n2 + k ∗ log2(k) and required memory is O((n2 ∗ (n+1)+ k∗
(logn+1(k)!∗(n2−1)+1)), where n ≥ max(n1...nk) is the smallest prime degree
integer. It is not possible to optimize the memory usage because the whole array
is generated at once but not row by row. It is not possible to extend the existing
test suite with this method. It is not possible to add semantic constraints.

Covering Arrays Generation Methods Survey 389

3.2.3 Recursive Generation of Covering Arrays with Depth 2
[1,14,22,28]
The Profile of an Array
Let’s mark by * the entries in the covering array, which can be replaced by any
value and the array would still be covering. The profile (d1...dk) of an Nxk array
is a k-tuple in which the entry di is the number of * entries in the i-th column.

This recursive algorithm generates covering arrays depth 2 if the following con-
ditions are satisfied: ∃A ∈ CA(2; k, v1...vk), number of rows is N, with profile
(d1...dk), and ∀i ∈ [1, k]∃Bi ∈ CA(2; li, wi,1...wi, li), number of rows is Mi, with
profile (fi,1...fi, li) and for which wij ≤ vi∀j ∈ [1, li]. Then using this algorithm a
covering array from CA(2; l1+...+lk, w1,1...w1, l1, ..., wk,1...wk,lk), number of rows
isT = N+max(Mi−di), canbegenerated.Thealgorithmdescription canbe found
in [1]. The final covering array may not be minimal. In [35] a method for lowering
a size of the final array is shown. Time complexity is (N + M) ∗L +

∑k
i=1(Mi ∗ li)

and required memory is (N + M) ∗L +maxk
i=1(Mi ∗ li), where N is the number of

rows in the initial array, M = maxk
i=1(Mi − di), L =

∑k
i=1 li. It is not possible to

optimize the memory usage because the whole array is generated at once but not
row by row. It is not possible to add semantic constraints reducing size of the array.

Further we will consider so called greedy algorithms. This type of algorithms
is often used to solve NP-complete problems. The common principle of such algo-
rithms ismaking the locally optimal choice at each stagewith thehopeoffinding the
global optimum[26]. For covering arrays generation algorithms it means choosing
thenext rowcovering asmanyuncovered tuples as possible.Greedyalgorithmsgen-
erate covering arrays for any configuration, they allow extend existing test suites,
they do not depend on other algorithms but can be significantly improved by cross-
ing with other techniques and, moreover, semantic constraints addition is possible.
However, the array constructed is not always minimal and often is far from min-
imal. For the majority of greedy algorithms the following is true: the better the
time complexity the larger the resulting covering array would be. Also greedy al-
gorithms require more memory than others because all uncovered tuples must be
stored. Generated for the same configuration covering arrays may differ from each
other because several values are taken randomly in process of generation[27].

A separate research should be performed to find the classes of covering arrays
configurations for which particular greedy algorithm will be the most efficient.
We will leave this problem out of scope in this paper. We will consider greedy
algorithms are applicable for generation of covering arrays for any configuration.

3.2.4 Algorithm Based on Addition of a New Parameter (IPO) [18]
This greedy algorithm can be effectively applied for extending the existing cov-
ering array from CA(t; k, n1...nk) to array from CA(t; k + p, m1...mk...mk+p),
where ni ≤ mi, i ∈ [1, k], and j : j ∈ [1, k], nj < mj and/or p > 0.

First a covering array depth t for the first t parameters (all combinations) is gen-
erated. Add (m+1)st parameter. Horizontal growth: set the next parameter values
into a new column to cover as many t-tuples as possible. Vertical growth: add rows
to the array to cover the rest t-tuples. Carry on until all parameters are added.

390 V. Kuliamin and A. Petukhov

In [18] the algorithms of horizontal and vertical growth for case when t=2 are
described. When t>2 these algorithms can be simply modified. Time complexity
is: O(t ∗ k6 ∗ dt(dt + k + dt ∗ k)) Total required memory: O(t ∗ k ∗ dt), where
d = max(n1...nk). It is not possible to optimize the memory usage because the
whole array is generated at once but not row by row. It is not possible to add
semantic constraints reducing size of the array in the initial algorithm, but it
can be modified so that the constraints would be considered.

3.2.5 Family of Greedy Algorithms Based on Choosing the Best Row
from Candidates [7,22,23,24,36]
This family of greedy algorithms can be effectively used for extension of an
existing covering array. To implement variable depth covering arrays generation
corresponding heuristics should be introduced (see below). For particular config-
urations the area of application for a heuristic can be found experimentally. For
creation a covering array from scratch see [7,17,21,22,23,24,36]. For extension of
existing arrays – no researches were found.

The array is built row by row until all t-tuples are covered. Each row is
generated N2 times and the row covering most tuples is chosen. Row is generated
by inserting values into parameters in some order. Order is formed by heuristic
PR1 which tells which parameter to be chosen first and heuristic PR2 to solve
the ties. Value for chosen particular parameter is chosen using heuristics V R1

and V R2. Algorithm is repeated N1 times and the best solution is chosen.
The majority of commerce and open source test data generating tools use greedy

algorithms for covering array generation. See Table 1 for the heuristics used.

Table 1. Heuristics used in programming tools for covering array generation

PR1 PR2 V R1 V R2 N1 N2

AETG [7,23] RAND - V IN MAX UC RAND ≤ 50 ≤ 50

TCG [36] MAX N BY ORD V IN MAX UC BY ORD 1 max(n1...nk)

DDA [24] δ BY ORD δ BY ORD 1 1

Jenny[17] RAND - No heuristics, exponential time - 1 1

Symbols used: RAND – the best is chosen randomly, MAX N – the param-
eter having the most possible values is chosen first, δ – the parameter which
is included in some set number (=δ, see [22]) of uncovered t-tuples is chosen
first (or the value covering δ uncovered t-tuples is considered to be the best),
BY ORD – pick the first by order, V IN MAX UC – the value covering in the
most uncovered t-tuples (the values of the previous parameters are already fixed)
is considered to be the best.

Several tools for which no descriptions of heuristics used were found [21]:
CATS, TestCover.com, CaseMaker, Pro-test.

Time complexity depends on heuristics used and can be estimated as: (k ∗
(f(PR1)+ f(PR2)) ∗ d ∗ (f(V R1)+ f(V R2))), where d = max(n1...nk),f(PR1),
f(PR2),f(V R1), f(V R2) – time complexities for corresponding heuristics. Re-
quired memory: O(t ∗ k ∗ dt), where d = max(n1...nk). Covering array can be

Covering Arrays Generation Methods Survey 391

built row by row but it is required to store all already built rows in memory –
no possibility to optimise. Algorithm allows addition of semantic constraints.

Further greedy algorithms based on solving an optimization problem are con-
sidered. The optimization problem for covering arrays generation is defined as
follows: Σ – is a set of feasible solutions, arrays which can contain uncovered
tuples. Cost c(S) associated with each array S ∈ Σ, c(S) – is a number of uncov-
ered tuples. An optimal solution corresponds to a feasible solution with overall
(i.e. global) minimum cost. If c(S)=0, then S is a covering array. For each S ∈ Σ,
a set TS of transformations (or transitions) i.e. changes in array size or array
elements’ values. Each of this transitions can be used to change S into another
feasible solution S’. The set of solutions that can be reached from S by applying
a transformation from TS is called the neighbourhood N(S) of S.

3.2.6 Hill Climbing [22]
This greedy algorithm is only effectively applied for improving (in our case - re-
ducing) of existing covering arrays for any configuration. In this case the existing
covering array must be chosen as the initial feasible solution.Random transitions
are generated for current feasible solution S changing it to S’. If c(S)≤c(S), then
S becomes a current feasible solution. The algorithm can get stuck in a local
minimum so stopping heuristics are required. To increase the chance of forming
a good solution the algorithm should be repeated N1 times.

In general case time complexity is exponential and has exponential memory
usage. It is not possible to optimize the memory usage because the whole array
is generated at once but not row by row. It is not possible to add semantic
constraints reducing size of the array in the initial algorithm.

3.2.7 Tabu Search [8,22]
This greedy algorithm is effective for the same cases as Hill Climbing. In this
case the existing covering array must be chosen as the initial feasible solution.
The algorithm for transition generation for current feasible solution can be found
in [8]. The next feasible solution has to be accepted by tabu constraints. The al-
gorithms stops when covering array is obtained and it is not possible to generate
a smaller covering array for N2 times. The whole process is repeated N1 times.

In general time complexity is exponential. However if lower and upper bounds
of final covering array size are Nmin and Nmax respectively then the time com-
plexity is N1 ∗ k ∗ Nmax ∗ d ∗ (k + logT) + O(d ∗ k ∗ Nmax ∗ (T + k2)), where
d = max(n1...nk), required memory is O(k∗Nmax∗T), where T number of stored
arrays for tabu implementation. It is not possible to optimize the memory usage
because the whole array is generated at once but not row by row. Tabu work as
semantic constraints.

3.2.8 Simulated Annealing [6,10,12,22]
This greedy algorithm is effective for the same cases as Hill Climbing. Further
research is required to gather statistics for this algorithm.

This algorithm is a generalization of hill climbing which allows to choose
the next solution with less quality than the current solution with probability

392 V. Kuliamin and A. Petukhov

= e−(c(S)−c(S))/KT , where K is constant, and T is controlling temperature of the
simulation. The temperature is lowered by setting T = αT , where α ∈ R < 1 is
the control decrement. After an stopping condition is met, the current feasible
solution is taken as an approximation to the solution of the problem.

In general case time complexity is exponential. If lower and upper bounds of
final covering array size are Nmin and Nmax respectively then the time complex-
ity is N1 ∗ k + O(k3 ∗Nmax), required memory is O(k ∗Nmax). It is not possible
to optimize the memory usage because the whole array is generated at once but
not row by row. It is not possible to add semantic constraints reducing size of
the array in the initial algorithm.

3.2.9 Great Deluge Algorithm [13,15,22]
This algorithm - great deluge algorithm is a variant thereof called threshold
accepting. This algorithm is similar to simulated annealing but instead of using
probability to decide on a move when the cost is higher, a worse feasible solution
is chosen if the cost is less than the current threshold - water level. As the
algorithm progresses, the water level would be falling in this case rather than
raising as in a profit maximizing problem. Sometimes this method shows faster
convergence than simulated annealing [13,15].

Algorithms based on solving an optimization problem are almost not used
in industrial test data generation tools because of their high memory and time
requirements. However these algorithms generate covering arrays closer to mini-
mal than other greedy algorithms. That’s why they are mainly used for research
purposes. These algorithms are easily generalised for the case of variable depth
covering arrays by defining another cost function.

3.2.10 Genetic Algorithms [16,22]
The main idea of genetic algorithms is to maintain a population of putative
solutions and to evolve the population from one generation to the next by two
operations: mutation makes small local changes in putative solutions, crossover
combines part of one solution and part of another. The new generation survives
if it is considered to be good enough by some criterion.

In case of covering arrays population of putative solutions is a set of arrays
(which may contain uncovered tuples) with fixed size (number of rows) – N. The
size of the population is kept constant, equal to M. On each step of algorithm
crossovers and mutations are happening. Crossover is a selection of two random
arrays and recombination of their rows for obtaining two new arrays having some
properties of both parents. Mutation is a change of two new arrays by some rules
[16]. Then only M best arrays are kept – the ones having the least number of
uncovered tuples.

There were to few researches on application of genetic algorithms to generation
of covering arrays. In paper [16] Stardom published the first of results of such
an application. Time complexity is N1 ∗ M ∗ k2(Nmax + d2), where N1 – is the
number of times algorithm is repeated, d = max(n1...nk), Nmax – the upper
bound of array size, required memory: O(M ∗ k ∗ Nmax). Additional research
must be done to gather some statistics on this method.

Covering Arrays Generation Methods Survey 393

3.3 Survey Results

In the table 2 all methods described above are collected. The configurations for
which the methods work effectively are shown.

Table 2. Algorithms for covering array construction

Algorithm Area of application Algorithm
class

Time complexity and memory usage ME S
C

Homogeneous covering arrays construction

Boolean (2; k, 2) Direct O(k), Memory:k ∗ log2(k) + - -

Affine (t;n+1,n), n-prime power,

(3;2k+2,2k), k-natural

Direct nt +(n+1)∗ log2(n+1)+O((logp(n))4),

Memory: O(n) + O((logp(n))3)

+ - -

Multipli-
cation

(t; k, n1 ∗ n2) from (t; k, n1), size
N1 and (t; k, n2), size N2

Recursive O(k ∗ (1+N1 +N2)), Memory: O(k ∗ (1+
N1 + N2))

- - -

Homogeneous,
Rec t=2

(2;m*n+1,n) from (2;m,n),size N,
n-prime power

Recursive n2 +(n+1)∗ log2(n+1)+n∗m∗((2∗n+
1)(n3n)+n+1), Memory: O(N +n2+m)

- - -

Roux Theo-
rem

(3;2*k,n) from (3;k,n) and
(2;k,n), (t;2k,n) from (t;k,n)...(t-
2;k,n),t ≥ 4

Recursive O(2 ∗ Ntmax ∗ k ∗ (n + Ntmax ∗ (t −
3))),Memory:O(2 ∗ k ∗ N2

tmax), Ntmax-
number of rows in the largest initial array

- - -

Heterogeneous covering arrays construction

Reduction Further research required Reduction Depends on particular case - + +

Block com-
bining

(2; k, n1...nk), k > max(n1...nk)
Further research required

Recursive n2+k∗log2(k), Memory: O((n2∗(n+1)+
k∗(�logn+1(k)�∗(n2−1)+1)), n ≥ d–the
smallest prime degree integer

- - -

Hetero-
geneous,
Recursive
t=2

(2; l1+...+lk, w11...w1l1,...,wk1
...wklk) from (2; k, v1...vk)
with profile (d1...dk) and
(2; li, wi1...wili) with profile
(fi,1...fi,li), ∀i ∈ [1, k] and
wij ≤ vi∀j ∈ [1, li]

Recursive (N + M) ∗ L +
∑k

i=1
(Mi ∗ li), Mem-

ory: (N + M) ∗ L + maxk
i=1(Mi ∗ li),

L =
∑k

i=1
li, M = maxk

i=1(Mi − di),

Mi-size of initial arrays

- - -

IPO Extension (t; k, n1...nk) to (t; k +
p, m1...mk...mk+p), ni ≤ mi, i ∈
[1, k], ∃j : j ∈ [1, k], nj < mj

and/or p > 0

Greedy O(t ∗ k6 ∗ dt(dt + k + dt ∗ k)), Memory:
O(t ∗ k ∗ dt)

- + +

Methods easily modified for variable depth covering arrays construction

Greedy, Row
by row

Any configurations for which
there are no more effective meth-
ods. Extension of initial arrays to
larger

Greedy (k ∗ (f(PR1) + f(PR2)) ∗ d ∗ (f(V R1) +
f(V R2))), f(PR1), f(PR2), f(V R1),
f(V R2), Memory: O(t ∗ k ∗ dt)

- + +

Hill Climbing Search for minimal covering array OptimizationExponential time and memory - - -

Tabu Search Search for minimal covering array OptimizationN1 ∗ k ∗ Nmax ∗ d ∗ (k + logT) + O(d ∗
k ∗ Nmax ∗ (T + k2)), Memory: O(k ∗
Nmax ∗ T),T-number of arrays stored for
tabu implementation

- - +

Simulated
Anneal.

Search for minimal covering array OptimizationNe ∗ k + O(k3 ∗ Nmax), Memory: O(k ∗
Nmax)

- - -

Great Deluge Search for minimal covering array OptimizationNe ∗ k + O(k3 ∗ Nmax), Memory: O(k ∗
Nmax)

- - -

Genetic Search for minimal covering array Genetic Ne ∗M ∗k2(Nmax +d2), Memory: O(M ∗
k ∗ Nmax), M–size of population

- - -

Symbols used: M – is generated array minimal, E – is extension of given array
possible, SC – is addition of semantic constraints possible, d = max(n1...nk)
– for configurations like (t; k, n1...nk, ...), Ne – number of times of algorithms’
relaunch, Nmax – upper bound for number of rows in generated covering array.

394 V. Kuliamin and A. Petukhov

The class of covering arrays configurations for which an effective solution ex-
ists can be extended by combining methods. To find the effective combination
initial covering array configuration should be analysed. Principles for combining
method basing on initial configurations are: use direct algorithms combined with
recursive for the configurations where it is possible. The resulting arrays will be
close to minimal and with good time complexity, use greedy algorithms for ex-
tending covering arrays constructed by direct and recursive algorithms. Use IPO
for horizontal growth and DDA heuristics for vertical, use reduction algorithms
to reduce covering arrays with close configurations constructed by direct and
recursive algorithm. The survey has shown that none of the known industrial
tools is analysing the input configuration for covering array, and hence, is not
using all known techniques for optimal generation. Therefore in known particu-
lar cases the tool either will generate a covering array which is larger either will
generate it consuming more resources. It seems reasonable and possible to create
a tool which would analyse input configuration of a covering array and choose
the most effective method or combination of methods for that particular case.
This kind of tool would be the most effective solution because it would use and
apply in appropriate cases all known methods for covering arrays generation.

4 Conclusion

In this paper the analysis of application area for the algorithms for covering
arrays generation is done. The advantages and disadvantages of the algorithms
were shown as well as time complexity and required memory. The direct, re-
cursive, greedy algorithms were surveyed. Also the heuristics for reducing the
size and the time for construction of covering arrays were surveyed. The area of
application for these heuristics was analysed.

The analysis of known methods for covering arrays generation draw a conclu-
sion that the analysis of a covering array configuration and combining methods
for covering array generation allows to extend the classes of covering array con-
figurations for which the effective solution exists. None of the existing tools for
covering array generation analyses the configuration of the covering array and
uses the advantages of all known algorithms and their heuristics for effective
covering array generation.

One of the promising direction of further research is the analysis of a covering
array configuration and choosing the most effective algorithm or a combination
of algorithms for such a configuration. In this paper the principles for combining
different algorithms for minimising the size of the array are formalized.

References

[1] Stevens, B., Mendelsohn, E.: New recursive methods for transversal covers. Jour-

nal of Combinatorial Designs 7(3), 185–203 (1999)

[2] Sloane, N.: Covering arrays and intersecting codes. Journal of Combinatorial De-

signs 1(1), 51–63 (1993)

Covering Arrays Generation Methods Survey 395

[3] Chateauneuf, M., Kreher, D.: On the state of strength-three covering arrays. Jour-

nal of Combinatorial Designs 10(4), 217–238 (2002)

[4] Martirosyan, S., Van Trung, T.: Tran Van Trung: On t-covering arrays. Designs,

Codes and Cryptography 32, 323–339 (2004)

[5] Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discrete

Math. 284, 149–156 (2004)

[6] Cohen, M., Colbourn, C., Ling, A.: Constructing Strength Three Covering Arrays

with Augmented Annealing. Discrete Mathematics 308, 2709–2722 (2008)

[7] Cohen, D., Dalal, S., Fredman, M., Patton, G.: The AETG System: an approach

to testing based on combinatorial design. IEEE Transactions on Software Engi-

neering 23(7), 437–444 (1996)

[8] Nurmela, K.: Upper bounds for covering arrays by tabu search. Discrete Applied

Math. 138, 143–152 (2004)

[9] Colbourn, C., Martirosyan, S., Van Trung, T., Walker II, R.: Roux-type Con-

structions for Covering Arrays of Strengths Three and Four Designs. Codes and

Cryptography 41(1), 33–57 (2006)

[10] Stevens, B.: Transversal Covers and Packings. PhD. Thesis, Mathematics, Uni-

versity of Toronto (1998)

[11] Patton, G.: DAT (Defect Analysis Team)1986-1990 Overview. Internal Bellcore

Technical Memo (1991)

[12] Cohen, M., Colbourn, C., Ling, A.: Augmenting Sumulated Annealing to Build

Interaction Test Suites. In: Proc Intl. Symposium Software Requirements Engi-

neering, pp. 394–405 (2003)

[13] Dueck, G.: New Optimization Heuristic – The Great Deluge Algorithm and the

Record-To-Record Travel. Journal of Computational Physics 104, 86–92 (1993)

[14] Stevens, B., Ling, A., Mendelsohn, E.: A direct construction of transversal cover-

susing group divisible designs. Ars. Combin. 63, 145–159 (2002)

[15] Dueck, G., Scheuer, T.: Threshold Accepting: A general purpose optimization

algorithm appearing superior to simulating annealing. Journal of Computational

Physics 90, 161–175 (1990)

[16] Stardom, J.: Metaheuristic and the search for covering and packing arrays. Mas-

ter’s thesis, Simon Fraser University (2001)

[17] Jenkins, B.: Tool for pairwise testing (2005),

http://burtleburtle.net/bob/math/jenny.html

[18] Lei, Y., Tai, K.: In-parameter order: A test generation strategy for pairwise test-

ing. In: Proc. 3rd IEEE High Assurance System Engineering Symposium, pp.

254–161 (1998)

[19] Seroussi, G., Bshouty, N.: Vector sets for exhaustive testing of logic circuits. IEEE

Trans. Information Theory 34, 513–522 (1988)

[20] Cohen, D., Dalal, S., Parelius, J., Patton, G.: The Combinatorial Design Approach

to Automatic Test Generation. IEEE Software, 83–87 (September 1996)

[21] Pairwise Testing, Combinatorial Test Case Generation,

http://www.pairwise.org/tools.asp

[22] Colbourn, C.: Combinatorial aspects of covering arrays. Le Matematiche (Cata-

nia) 58, 121–167 (2004)

[23] Cohen, D., Dalal, S., Fredman, M., Patton, G.: The Automatic Efficient Test

Generator (AETG) System. In: Proceedings of 5th International Symposium on

Software Reliability Engineering, November 6-9, pp. 303–309 (1994)

[24] Colbourn, C., Cohen, M., Turban, R.: A deterministic density algorithm for pair-

wise interaction coverage. In: Proc. of the IASTED Intl. Conference on Software

Engineering, pp. 242–252 (February 2004)

http://burtleburtle.net/bob/math/jenny.html
http://www.pairwise.org/tools.asp

396 V. Kuliamin and A. Petukhov

[25] Williams, A.: Determination of Test Configurations for Pairwise Interaction Cov-

erage. In: Proceedings of the 13th International Conference on Testing Commu-

nicating Systems (Test-Com 2000), pp. 59–74 (2000)

[26] Cormen, T., Stein, C., Rivest, R., Leiserson, C.: Greedy algorithms // Introduc-

tion to Algorithms, 2nd edn., vol. 16. Moscow Viliyams (2006)

[27] Grindal, M., Offutt, A., Andler, S.: Combination testing strategies: A survey.

Software Testing, Verification, and Reliability 15(3), 167–199 (2005)

[28] Hartman, A.: Software and Hardware Testing Using Combinatorial Covering

Suites. In: Proc. Graph Theory, Combinatorics and Algorithms: Interdisciplinary

Applications, pp. 266–327 (2005)

[29] Edelman, A.: The mathematics of the Pentium division bug. SIAM Review 39,

54–67 (1997)

[30] Greene, C.: Sperner families and partitions of a partially ordered set. In: Hall Jr.,

M., van Lint, J. (eds.) Combinatorics, Dordrecht, Holland, pp. 277–290 (1975)

[31] Williams, A., Probert, R.: A measure for component interaction test coverage. In:

Proc. ACS/IEEE Intl. Conf. on Computer Systems and Applications, pp. 301–311

(2001)

[32] Ammann, P., Offutt, J.: Using Formal Methods to Derive Test Frames in

Category-Partition Testing Safety, Reliability, Fault Tolerance, Concurrency, and

Real Time Security. In: Proc. Ninth Ann. Conf. Computer Assurance (COMPASS

1994), pp. 69–79 (1994)

[33] Zelenov, S., Zelenova, S.: Automated negative and positive test generation for

testing a syntax analysis phase. Works of Institute for System Programming RAS,

russian (2004)

[34] Documentation on Webmoney interface WM Keeper Light,

http://www.wmtransfer.com/eng/about/demo/light/index.shtml

[35] Colbourn, C., Martirosyan, S., Mullen, G., Shasha, D., Yucas, J., Sherwood, G.:

Products of Mixed Covering Arrays of Strength Two. J. Combin. Des. 14, 124–138

(2006)

[36] Tung, Y.-W., Aldiwan, W.: Automating test case generation for the new gen-

eration mission software system. In: Proc. IEEE Aerospace Conf., pp. 431–437

(2000)

[37] Bryce, R., Colbourn, C.: One-Test-at-a-Time Heuristic Search for Interaction Test

Suites. In: Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO), Search-based Software Engineering track (SBSE), London, England,

pp. 1082–1089 (2007)

[38] Lidl, R., Niederreiter, H.: Finite fields, vol. 2. Mir, Moscow (1988)

[39] Tables for the smallest known covering arrays,

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

[40] Godbole, A., Skipper, D., Sunley, R.: t-Covering arrays: upper bounds and Poisson

approximations. Combinatorics, Probability and Computing 5, 105–118 (1996)

http://www.wmtransfer.com/eng/about/demo/light/index.shtml
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

A Scalable Approach for the Description of
Dependencies in Hard Real-Time Systems�

Steffen Kollmann, Victor Pollex, Kilian Kempf, and Frank Slomka

Ulm University
Institute of Embedded Systems/Real-Time Systems

{firstname.lastname}@uni-ulm.de

Abstract. During the design iterations of embedded systems, the schedulability
analysis is an important method to verify whether the real-time constraints are
satisfied. In order to achieve a wide acceptance in industrial companies, the anal-
ysis must be as accurate as possible and as fast as possible. The system context
of the tasks has to be considered in order to accomplish an exact analysis. As this
leads to longer analysis times, there is a tradeoff between accuracy and runtime.
This paper introduces a general approach for the description of dependencies be-
tween tasks in distributed hard real-time systems that is able to scale the exactness
and the runtime of the analysis. We will show how this concept can be applied to
a real automotive application.

1 Introduction

In the last years, designing embedded systems has become a great challenge because
more and more applications have to be covered by one system. As a special issue of this
development, many new features are only realizable by the connection of different con-
trollers. New cars, for example, have up to 75 ECUs (electronic control units) connected
by several buses, which leads to a highly networked system with many requirements,
like energy consumption, space or timing behavior.

One specific challenge for the design process are the hard real-time constraints of
many applications such as an engine management system or an ABS (anti-lock braking
system). Therefore it is necessary to verify in each design iteration whether the real-
time constraints of single applications are satisfied or not. A schedulability analysis
can be performed in order to determine the worst-case response times of the tasks in a
system. To achieve a wide acceptance of such real-time analysis techniques by industrial
software developers, tight bounds of the real worst-case response times of the tasks and
short runtimes of the analysis are important.

A possibility to get tight bounds is the consideration of dependencies of chained
tasksets. Previous work considers different kinds of dependencies, like mutual exclusion
of tasks, offsets between task stimulation, task chains or tasks competing for the same
resource. But the integration of many other types of dependencies is still unsolved.
Especially a holistic model as a new abstraction layer for dependencies is missing.
Approximation techniques can be used to achieve low runtimes of the analysis. But this
is in conflict to tight worst-case response time bounds.

� This work is supported in part by the Carl Zeiss Foundation.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 397–411, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

398 S. Kollmann et al.

Design
Iterations

A
na
ly
si
sO

ptim
ization

System
Model

SystemSpecification

mm2

Fig. 1. Design flow of embedded systems

The integration of such real-time analysis techniques into a design process is de-
picted in figure 1. Starting at the specification, the system model is extracted. The
system architecture is then analyzed regarding the different requirements and it is
optimized based on the verification results. In early design iterations many different
solutions should be considered and therefore it is necessary to have fast verification
algorithms. This can be achieved by approximation techniques. In each following it-
eration the system model is refined and the possible design solutions are bounded. So
more and more information about the architecture is available and the verification can
work more accurately. While unfortunately this results in longer analysis runtimes, the
runtime increase is reasonable because less design solutions have to be considered in
consecutive iterations. So it is necessary to have a scalable model which can exploit this
tradeoff between runtime and accuracy.

We present such a new holistic model that integrates different types of dependen-
cies into real-time analysis and enables to adjust the level of detail. We show how this
general model can be integrated into the schedulability analysis of fixed-priority sys-
tems and outline how this approach can be used to approximate the consideration of
dependencies in the system and therefore improve the analysis time.

This paper is organized as follows: In section 2 an overview of the related work is
given. The model and the corresponding real-time analysis are defined in section 3. Sec-
tion 4 defines the limiting event stream model and shows how it can be used to describe
dependencies in a system in a scalable way. The impact of the introduced analysis is
illustrated by a real automotive case-study. The work closes with a conclusion.

2 Related Work

The real-time analysis for distributed systems was introduced by Tindell and Clark [16].
In this holistic schedulability analysis, tasks are considered as independent. This idea
has been improved by the transaction model [15], which allows the description of static
offsets between tasks. Gutierrez et al. [3] extended this work to dynamic offsets so that
the offset can vary from one job of a task to another. Furthermore they have introduced
an idea about mutual exclusion of tasks [4] which bases on offsets between tasks. Since

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 399

Gutierrez et al. have considered simple task chains, Redell has enhanced the idea to tree-
shaped dependencies [13] and Pellizoni et al. applied the transaction model to earliest
deadline first scheduling in [12].

Henia et al. used the SymTA/S approach [14] to extend the idea of the transaction
model in order to introduce timing-correlations between tasks in parallel paths in dis-
tributed systems [5]. This idea has then been improved in [6]. Recently, Rox et al. [7]
have described a correlation between tasks caused by an non-preemptive scheduler.

A scalable and modular approach to analyse real-time systems is the real-time calcu-
lus (RTC) as presented by Wandeler in [17]. Unfortunately it is not possible to describe
dependencies like offsets or mutual exclusion of tasks with the RTC.

Because of the lack of generality or exactness the RTC and the SymTA/S approach
are combined in [10], but the authors do not consider any kind of dependency. An-
other disadvantage of the combination of the models is that the transformation from
one model into the other model leads to inaccuracy.

3 Real-Time Analysis

3.1 Model of Computation

In this section we introduce the model necessary for the real-time analysis discussed in
section 3.2.

Task Model. Γ is a set of tasks mapped onto the same resource Γ = {τ1, ...,τn}. A
task is a tuple τ = (c+,c−,b,d,ρ ,Θ+,Θ̇+) consisting of : c+ the worst-case execution
time, c− the best-case execution time, b the blocking time, d the relative deadline of
the task, ρ the priority of the task, Θ+ the maximum incoming stimulation and Θ̇+ the
maximum outgoing stimulation.

Let τi j be the j-th job/execution of task τi. We assume that each job of a task generates
an event at the end of its execution to notify other tasks. Furthermore we define Γhp,τ as
a taskset including only tasks having a higher priority than task τ .

Event Model. Event streams have been first defined in [2]. Their purpose is to provide
a generalized description for any kind of stimulation. The basic idea is to define an event
function η(Δ t,Θ+) which can calculate for every interval Δ t the maximum number of
events occurring within Δ t (when speaking of an interval, we mean the length of the
interval). The event function needs a properly described model behind it which makes
it easy to extract the information.

The idea of the maximum event streams is to note for each number of events the
minimum interval which can include this number of events. Therefore we get an inter-
val for one event, two events and so on. The interval for one event is infinitely small
and therefore considered to be zero. The result is a sequence of intervals showing a
non-decreasing behavior. This is because the minimum interval for n events cannot be
smaller than the minimum interval for n− 1 events, as the first interval also includes
n−1 events.

400 S. Kollmann et al.

Definition 1. An event stream is a set of event stream elements θ : Θ+ = {θ1,θ2, ...,θn}
and each event stream element θ = (p,a) consists of an offset-interval a and a period
p. The event stream complies to the characteristic of sub-additivity: η(Δ t1 + Δ t2,Θ+)
≤ η(Δ t1,Θ+)+η(Δ t2,Θ+) and is monotonically increasing: ∀Δ t1,Δ t2 : Δ t1 ≤ Δ t2 ⇒
η(Δ t1,Θ+) ≤ η(Δ t2,Θ+)

Each event stream element θ describes a set of intervals {aθ + k · pθ |k ∈ N0} of the
sequence. With an infinite (∞) period it is possible to define a single interval in order
to model irregular behavior. Event tuples having infinity as period are called aperiodic
elements and event tuples having a period less than infinity are called periodic elements.
The event function is defined as follows:

Definition 2. The event function denotes for an event stream Θ+ and an interval Δ t the
maximum number of events1:

η(Δ t,Θ+) = ∑
θ∈Θ+
aθ≤Δ t

⌊
Δ t −aθ

pθ

⌋
+ 1 (1)

As pseudo-inverse function we define the interval function which denotes the minimum
interval in which a given number of events can occur.

Definition 3. The interval function denotes for an event stream Θ+ and a number of n
events the corresponding minimum interval in which these events can occur:

Δ t(n,Θ+) = inf
Δ t≥0

{Δ t|η(Δ t,Θ+) ≥ n} (2)

A detailed definition of the concept and the mathematical foundation of the event
streams can be found in [1].

An event pattern can be described by the event stream model in several ways. For an
efficient implementation of the approach we normalize the event streams as introduced
in [8]. With this normalization, the interval function can be efficiently computed. For a
detailed description on how to transform an event stream to a normalized event stream
and how the interval function can be described efficiently see [8]. In the following we
use definition 4.

Definition 4. A normalized event stream Θ̃+ has the form

{(∞,a1), . . . ,(∞,am),(p,am+1), . . . ,(p,an)} : (1 ≤ m ≤ n∧ai ≤ a j ⇔ i ≤ j∧an −am+1 ≤ p)

which means that the event stream has first an aperiodic part and then a periodic part
where each periodic element has the same period and the events occur within the same
periods. All elements are sorted by their offsets. We also define that N∞

Θ̃+ is the number
of aperiodic elements of an event stream and N p

Θ̃+ is the number of periodic elements of
an event stream. With this definition and the methodologies introduced in [8] and [9] an
efficient real-time analysis for distributed systems is possible. For the rest of the paper
we assume that we use only normalized event streams.

1 Since in this case study we consider a fixed priority non-preemptive scheduler, the floor oper-
ation is used. This is also a bound for preemptive schedulers, but for these, better bounds can
be given.

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 401

3.2 Holistic Real-Time Analysis

Based on previous work we define the real-time analysis with event streams. As de-
scribed in [16], in each global iteration step of the real-time analysis the worst-case
response time and the outgoing stimulation for each task in the system are computed
until a fix-point is found. The real-time analysis with event streams is described in [9].
In that paper the computation of the worst-case response time, the best-case response
time, and the outgoing stimulations are given. Since the paper at hand focuses on the
improvement of the worst-case response time of a task, only that part of the analysis
will be reproduced here.

Based on the worst-case response time analysis in [11] we can define the analysis for
event streams as follows:

Lemma 1. The worst-case response time of a task is bounded by:

r+(τ) = max
k∈[1,...,m]

{r+(k,τ)−Δ t(k,Θ+
τ)} m = min

k∈N

{k|r+(k,τ) ≤ Δ t(k + 1,Θ+
τ)}

r+(k,τ) = min{Δ t|Δ t = bτ + k · c+
τ + ∑

τi∈Γhp,τ

η(Δ t,τi) · c+
τi
} (3)

Proof. The proof is given in [9].

4 Considering Dependencies

The lack of the previously discussed model is that dependencies between stimulations
caused by the system context are not considered during the real-time analysis. Therefore
we will extend the model introduced in section 3 by the limiting event streams. Via this
extension we are able to describe different kinds of dependencies with a single holistic
model.

The idea of this new technique is depicted in figure 2. Four tasks are mapped onto
a resource that is scheduled non-preemptively with fixed-priorities. For each task we
determine the worst-case response time. Assume task τ4 as the analyzed task. If no
correlations between the stimulations are considered the worst-case response time of
the task is computed by equation (3). This means the interference produced by the tasks
τ1 to τ3 is maximal concerning τ4.

Now assume that the stimulations have an offset dependency to each other. In order
to model such a correlation, the stimulations can be considered as vertices in a graph
and the correlation between them as edges. For each maximal clique in the graph of
size 2 or bigger, a set Si is build which contains all stimulations that are represented by
the nodes of the clique. Note that these cliques are usually given as input and are not
being searched for. To consider every possibility which is described by the correlations,
the power set P(Si) of such a previously mentioned set is taken. For each element
M ∈ P(Si) of such a power set a limitation for the number of events that can occur by
the combined stimulations in M is computed.

This very modular concept permits to consider correlations in a scalable way by
choosing only a subset of the power set which should be considered in the analysis. See
the three possibilities in figure 2. In part a) only one limitation over all stimulations is

402 S. Kollmann et al.

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

a) b) c)

Θ1

Θ2

Θ3

Θ4

Θ1

Θ2

Θ3

Θ4

Θ1

Θ2

Θ3

Θ4

FPNP FPNP FPNP

Fig. 2. Possible consideration of relations by limiting event streams

used. Out of all stimulations of the corresponding power set P(Si) the second example
uses only those that contain exactly the stimulations of the k-highest priority tasks that
are mapped on the resource, where 2 ≤ k ≤ n and n is the number of tasks mapped
on a resource. The last one c) considers only the pairwise correlations. That way the
developer has the chance to determine the level of detail in the analysis. Next we will
formulate the limiting event streams formally.

Definition 5. The limiting event stream is an event stream that defines the maximum
occurrence of events for a set of event streams. The limiting event stream is defined as
Θ = (Θ+,

−→
Θ). Θ+ describes the limitation for a set of event streams

−→
Θ . The limiting

event stream fulfills the condition:

η(Δ t,Θ+
Θ) ≤ ∑

Θ∈−→
Θ Θ

η(Δ t,Θ)

Example 1. If no correlations between event streams are defined, the limiting event
stream is definded by: Θ = (∪Θ∈−→

Θ Θ ,
−→
Θ).

Example 2. Assume Θ+
A = Θ+

B = {(20,0)} and an offset of 10 t. u. between these two
event streams. The cumulated occurrence of events when the offset is not considered
is described by η(Δ t,Θ+

A ∪Θ+
B). The cumulated occurrence considering the offset

of the events can be described by the limiting event stream Θ = ({(20,0), (20,10)},
{ΘA,ΘB}). If we consider the event streams as independent, two events occur in an in-
terval Δ t = 5 t. u. (η(Δ t,Θ+

A ∪Θ+
B)). In contrast, in the same interval only one event

occurs if the dependency is considered (η(Δ t,Θ+
Θ)).

Next we define how a limiting event stream can be calculated.

Definition 6. Let Δβ : N → R be a limiting interval function which assigns a minimal
time interval from a given number of events in subject to a relationship of event streams−→
Θ := {Θ1, . . . ,Θn}, then a limitation for a limiting event stream Θ can be determined
by:

Θ+
Θ := ν(

−→
Θ Θ ,Δβ (n))

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 403

τ1

τA

τB

τC

τA

τB

τ1

τ2

a) b)

CPU

bus

mode(A,B,C)

mutual exclusion offset

ΘA

ΘB

CPU bus

Fig. 3. Two possible dependencies in a system

Note that ν(
−→
Θ Θ ,Δβ (n)) and Δβ (n) are abstract functions which have to be concretized

for the different types of dependencies. Next we will show how it is possible to describe
two completely different kinds of dependencies with this new technique.

4.1 Mutual Exclusion

The first dependency we will consider is the mutual exclusion of event streams. Assume
a task is transmitting different messages over a bus as depicted in figure 3 a). The
transmission mode of the task depends on its input data. Only one message type can be
sent in a transmission mode. In this case the message types exclude each other. Such a
behavior can be described by the following lemma.

Lemma 2. Let
−→
Θ Θ be a set of event streams having a mutual exclusion relation to each

other. The limiting interval function is given by:

Δβ (n) = min
Θ∈−→

Θ Θ

{Δ t(n,Θ)} (4)

Proof. Mutual exclusion of event streams means that only one event stream Θ ∈−→
Θ Θ is

active at the time. Since the activation of these event streams is switching arbitrarily in
a time interval it is necessary to determine for each time interval Δ t which event stream
delivers the most events in this interval. Therefore the maximum number of events in
an interval is bounded by η(Δ t,Θ+

Θ) = maxΘ∈−→
Θ Θ

{η(Δ t,Θ)}. This can be transformed

using equation (2) as follows:

η(Δ t,Θ+
Θ) = max

Θ∈−→
Θ Θ

{η(Δ t,Θ)}

Δβ (n) = inf
Δ t≥0

{Δ t| max
Θ∈−→

Θ Θ

{η(Δ t,Θ)} ≥ n}

Δβ (n) = min
Θ∈−→

Θ Θ

{ inf
Δ t≥0

{Δ t|η(Δ t,Θ) ≥ n}} = min
Θ∈−→

Θ Θ

{Δ t(n,Θ)}

Therefore the assumption holds. �

404 S. Kollmann et al.

After defining the limiting interval function we will formulate how the concrete limiting
event stream can be derived. Note that mode changes of tasks result in different exe-
cution times and have influence on the outgoing event streams. Therefore the outgoing
event streams of one task are not necessarily identical in their aperiodic behavior. Only
the periodic behavior is the same for all.

Lemma 3. Via lemma 2 the limiting event stream for mutual exclusion for event streams−→
Θ Θ having the same period and equal parameters concerning N∞ and NP can be de-
rived as follows:

ν(
−→
Θ Θ ,Δβ (n)) =

N∞
Θ⋃

i=1

(∞,Δβ (i))∪
N∞

Θ +NP
Θ⋃

i=N∞
Θ +1

(p,Δβ (i)) (5)

where Θ ∈−→
Θ Θ .

Proof. Let the minimum of two event tuples be defined as:

min(θ1,θ2) := (min(pθ1 , pθ2),min(aθ1 ,aθ2))

Furthermore let θi, j be the i-th event tuple of the j-th event stream and Θ ∈ −→
Θ Θ . Ac-

cording to [8] each event stream Θ ∈ −→
Θ Θ can be transformed so that ∀Θi,Θ j ∈ −→

Θ Θ :
|Θi| = |Θ j| holds. From this it follows that

|Θ |⋃
i=1

min
Θ j∈−→

Θ Θ

{
θi, j

}

is a general upper bound for mutual exclusion.
As we consider only event streams produced by the same task, all outgoing event

streams have the same periodic behavior. Therefore in conjunction with [8] all event
streams in

−→
Θ Θ can be transformed so that N p

Θ and N∞
Θ are equal for all Θ ∈ −→

Θ Θ . From
this we can follow:

|Θ |⋃
i=1

min
Θ j∈−→

Θ Θ

{
θi, j

}
=

N∞
Θ⋃

i=1

min
Θ j∈−→

Θ Θ

{
θi, j

}∪
N∞

Θ +P∞
Θ⋃

i=N∞
Θ +1

min
Θ j∈−→

Θ Θ

{
θi, j

}

=
N∞

Θ⋃
i=1

(∞,Δβ (i))∪
N∞

Θ +P∞
Θ⋃

i=N∞
Θ +1

(p,Δβ (i))

Therefore the assumption holds. �

With the lemma stated above it is possible to consider mutual exclusion in distributed
systems.

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 405

4.2 Offsets

In order to show the generality of our new approach we show how static offsets between
tasks can be described by limiting event streams. For simplicity we consider here only
strictly periodic stimulations, which are used in our case study. The methodology can
also be used for arbitrary stimulations.

See figure 3 part b) where two different tasks are depicted each sending a message
on a bus. All sending tasks have an offset to each other in order to prevent a peak load
on the bus. This kind of modeling is often used for CAN bus communications. First of
all we give a definition of the offsets.

Definition 7. When a set of event streams
−→
Θ Θ has an offset based relation to each

other, each event stream has an offset attribute φΘ+ describing an offset to a specific
point in time.

Next we define how the limiting interval function can be derived.

Lemma 4. Let
−→
Θ Θ be a set of event streams having an offset relation to each other.

And let Θ̃+∪ =
⋃

Θ∈−→
Θ Θ

⋃
θ∈Θ (pθ ,aθ +φΘ) be the normalized union of the offset-shifted

event streams. Then the limiting interval function is given by:

Δβ (n) = min
j=1,...,|Θ̃+∪ |

(Δ t(j +(n−1),Θ̃+
∪)−Δ t(j,Θ̃+

∪)) (6)

Proof. Since only static offsets are considered, the union of the offset shifted event
streams describes the cumulated occurrence of the events. From this union we have to
extract the minimum interval for each number of events. So we have to search over all
possible combinations, which can be done by a sliding window approach. From this
consideration it follows:

Δβ (n) = min
j∈N

(Δ t(j +(n−1),Θ̃+
∪)−Δ t(j,Θ̃+

∪))

So we have to show that the bound j = 1, . . . , |Θ̃+∪ | in lemma 4 includes the minimal
interval for a number of events. The following condition holds:

Δ t(q,Θ̃+
∪)−Δ t(q−N p

Θ̃+∪
,Θ̃+

∪) = pΘ̃+∪ : q > |Θ̃+
∪ |

So it follows for j > |Θ̃+∪ | that Δ t(j +n−1,Θ̃+∪)−Δ t(j +n−1−N p
Θ̃+∪

,Θ̃+∪) = pΘ̃+∪
and Δ t(j,Θ̃+∪)−Δ t(j−N p

Θ̃+∪
,Θ̃+∪) = pΘ̃+∪ holds. From this we can follow:

Δ t(j + n−1,Θ̃+
∪)−Δ t(j,Θ̃+

∪)
= Δ t(j + n−1,Θ̃+

∪)−Δ t(j,Θ̃+
∪)− pΘ̃+∪ + pΘ̃+∪

= (Δ t(j + n−1,Θ̃+
∪)− pΘ̃+∪)− (Δ t(j,Θ̃+

∪)− pΘ̃+∪)

= (Δ t(j + n−1,Θ̃+
∪)−Δ t(j + n−1,Θ̃+

∪)+ Δ t(j + n−1−N p
Θ̃+∪

,Θ̃+
∪))−

(Δ t(j,Θ̃+
∪)−Δ t(j,Θ̃+

∪)+ Δ t(j−N p
Θ̃+∪

,Θ̃+
∪))

= (Δ t(j + n−1−N p
Θ̃+∪

,Θ̃+
∪))−Δ t(j−N p

Θ̃+∪
,Θ̃+

∪)

406 S. Kollmann et al.

So we have shown that a minimum interval must also occur one period earlier and
therefore also in the bound of the search interval. �
After having shown how the limiting interval function can be defined we will now
introduce how the concrete event stream can be derived.

Lemma 5. With the help of the last lemma we can derive the concrete limiting event
stream for an offset-based dependency with j = N∞

Θ̃+∪
by the following equation:

ν(
−→
Θ Θ ,Δβ (n)) =

j⋃
i=1

(∞,Δβ (i))∪
j+N p

Θ̃+∪⋃
i= j+1

(
pΘ̃+∪ ,Δβ (i)

)
(7)

Proof. We have to show that the periodic behavior starts at the assumed value. Assume
the following variables: 1 ≤ j ≤ |Θ̃+∪ |, e = N∞

Θ̃+∪
+m+ kN p

Θ̃+∪
and 1 ≤ m ≤ N p

Θ̃+∪
and the

following equation giving the minimum interval for N∞
Θ̃+∪

+ m events where j is chosen

accordingly:

Δβ (N∞
Θ̃+∪

+ m) = Δ t(j +(N∞
Θ̃+∪

+ m−1),Θ̃+
∪)−Δ t(j,Θ̃+

∪)

So we have to show that the following assumption holds for e events :

Δβ (e) = Δβ (N∞
Θ̃+∪

+ m)+ kpΘ̃+∪ (8)

Assume 1 ≤ j1 ≤ |Θ̃+∪ | and Δ t(j1 +(e−1),Θ̃+∪)−Δ t(j1,Θ̃+∪) is the smallest interval
for e events then it follows:

Δ t(j1 +(e−1),Θ̃+
∪)−Δ t(j1,Θ̃+

∪)
= Δ t(j1 +(N∞

Θ̃+∪
+ m+ kN p

Θ̃+∪
−1),Θ̃+

∪)−Δ t(j1,Θ̃+
∪)

= Δ t(j1 +(N∞
Θ̃+∪

+ m+ kN p
Θ̃+∪

−1),Θ̃+
∪)−Δ t(j1,Θ̃+

∪)+

Δ t(j1 +(N∞
Θ̃+∪

+ m−1),Θ̃+
∪)−Δ t(j1 +(N∞

Θ̃+∪
+ m−1),Θ̃+

∪)

= Δ t(j1 +(N∞
Θ̃+∪

+ m−1),Θ̃+
∪)−Δ t(j1,Θ̃+

∪)+ kpΘ̃+∪

But this cannot be smaller than assumption (8) because kpΘ̃+∪ can not be smaller than

kpΘ̃+∪ and Δ t(j1 +(N∞
Θ̃+∪

+ m−1)−Δ t(j1,Θ̃+∪) cannot be smaller than Δ t(j +(N∞
Θ̃+∪

+

m−1),Θ̃+∪)−Δ t(j,Θ̃+∪). So the assumption holds. �
After having derived how static offsets can be described by limiting event streams we
will now describe the worst-case response time analysis with the limiting event streams.

4.3 Worst-Case Response Time Analysis with Limiting Event Streams

In order to use limiting event streams it is necessary to adapt this new concept to the
worst-case response time analysis from section 3.2. For this we have to determine the
worst-case interference of tasks in an interval Δ t when limiting event streams are con-
sidered. Due to space limitation we show only the sketch of the proof.

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 407

Lemma 6. Let τ be the task under analysis and Θ be a limiting event stream and
ΓΘ ,τ,τi

:= {τ j ∈ Γhp,τ |(c+
τ j

> c+
τi
∨ (c+

τ j
= c+

τi
∧ρτ j > ρτi))∧Θ+

τ j
∈ −→

Θ Θ}, then the worst-
case response time is bounded by:

r+(τ) = max
k∈[1,...,m]

{r+(k,τ)−Δ t(k,Θ+
τ)} m = min

k∈N

{k|r+(k,τ) ≤ Δ t(k +1,Θ+
τ)} (9)

r+(k,τ) = min{Δ t|Δ t = bτ +k · c+
τ + ∑

τi∈Γhp,τ

η(Δ t,τi,k,τ) · c+
τi
} (10)

η(Δ t,τi,k,τ) = min(max(min
∀Θ |Θ+

τi
∈−→

Θ Θ

{η(Δ t,τi,k,τ,Θ)},0),η(Δ t,Θ+
τi

)) (11)

η(Δ t,τi,k,τ,Θ) =

⎧⎪⎪⎨
⎪⎪⎩

η(Δ t,Θ+
Θ)− ∑

τ j∈ΓΘ,τ,τi

η(Δ t,τ j,k,τ) Θ+
τ �∈ −→

Θ Θ

η(Δ t,Θ+
Θ)− ∑

τ j∈ΓΘ,τ,τi

η(Δ t,τ j,k,τ)−k Θ+
τ ∈−→

Θ Θ
(12)

Proof. Compared to (3), (10) differs only in the interference of the higher priority tasks.
Equation (11) describes the number of task activations in a given interval Δ t of higher
priority tasks. It is the minimum of the amount described by the limiting event streams
max(min

∀Θ |Θ+
τi
∈−→

Θ Θ

{η(Δ t,τi,k,τ,Θ)},0) and the amount described by the regular event

stream of the task η(Δ t,Θ+
τi

). If none of the event streams of the higher priority tasks
is part of a limiting event stream, (11) is reduced to the regular event stream

min(max(min
∀Θ |Θ+

τi
∈−→

Θ Θ

{},0),η(Δ t,Θ+
τi

)) = min(max(∞,0),η(Δ t,Θ+
τi

)) = η(Δ t,Θ+
τi

))

resulting in (3) and (10) being identical.
So we have to show that the interference is maximal if limiting event streams are

considered. Let ∑τi∈Γhp,τ η(Δ t,τi,k,τ) ·c+
τi

be the maximum load of higher priority tasks

in an interval Δ t. Since every Θ : Θ+
τi

∈−→
Θ Θ is a valid bound for the number of events in

an interval of a task τi, and η(Δ t,Θ+
τi

) is the regular bound for the maximum stimulation
of a task in an interval Δ t, we can follow:

η(Δ t,τi,k,τ) = min(max(η(Δ t,τi,k,τ,Θ),0),η(Δ t,Θ+
τi

)) (13)

where η(Δ t,τi,k,τ,Θ) is the maximum number of events limited by the liminting event
stream Θ for task τi. Since for one limiting event stream the condition η(Δ t,Θ+

Θ) ≤
∑Θ∈−→

Θ Θ
η(Δ t,Θ) holds we can follow η(Δ t,Θ+

Θ) = ∑τi|Θ+
τi
∈−→

Θ Θ
η(Δ t,τi,k,τ). From

this it follows: η(Δ t,τi,k,τ,Θ) = η(Δ t,Θ+
Θ)−∑τ j |Θ+

τ j
∈−→

Θ Θ /Θ+
τi

η(Δ t,τ j,k,τ). This can

be inserted in (13) and we get:

η(Δ t,τi,k,τ) = min(max(η(Δ t,Θ+
Θ)− ∑

τ j |Θ+
τ j
∈−→

Θ Θ /Θ+
τi

η(Δ t,τ j,k,τ),0),η(Δ t,Θ+
τi

))

In order to achieve that the interference of the higher priority tasks Γhp,τ is maximal, the
events must be distributed so that the task with the greatest worst-case execution time is
triggered as often as possible then the task with the second greatest worst-case execution

408 S. Kollmann et al.

time and so on. For tasks having the same worst-case execution time, the order for the
distribution is given by the priority. From this it follows that the task τi is subject to the
maximum interference when the available events η(Δ t,Θ+

Θ) are first distributed on the

tasks in the taskset ΓΘ ,τ,τi
:= {τ j ∈Γhp,τ |(c+

τ j
> c+

τi
∨(c+

τ j
= c+

τi
∧ρτ j > ρτi))∧Θ+

τ j
∈−→

Θ Θ}
and the remaining events on task τi:

η(Δ t,τi,k,τ) = min(max(η(Δ t,Θ+
Θ)− ∑

τ j∈ΓΘ,τ,τi

η(Δ t,τ j,k,τ),0),η(Δ t,Θ+
τi

))

Since all limting event streams are a bound for the number of events we have to take
the overall minimum and we finally get:

η(Δ t,τi,k,τ) = min(max(min
∀Θ |Θ+

τi
∈−→

Θ Θ

{η(Δ t,Θ+
Θ)− ∑

τ j∈ΓΘ ,τ,τi

η(Δ t,τ j,k,τ)},0),η(Δ t,Θ+
τi

))

Therefore the assumption holds. The proof of equation (12) case two includes only k
jobs, because the task τ under analysis is part of the limitig event stream. The proof for
this case is analog to the last one. �

As initial value for the fix-point iteration in equation (10) we take Δ t(k,Θ+
τ)+c+

τ . Note
that the complexity of the response time analysis is still pseudo-polynominial. The com-
plexity to calculate the limiting event streams depends on the kind of the dependency
which is considered. The analysis, however, is not affected by this problem. So it is
reasonable to find upper bounds for the limiting event streams to improve the runtime
performance.

5 Example and Results

In order to show the impact of the introduced new technique we consider a 500 kBit/s
CAN bus. This automotive application is depicted in figure 4. The system comprises
nine electronic control units transmitting data on the CAN bus. The number of different
messages sent by each ECU is stated as ”Tx” in the illustration. There are 47 messages
in total, which all are transmitted periodically. All stimulations have an initial offset
to each other in order to prevent peak load on the bus and to provide smaller response
times of the messages. These offsets are defined by the designer of the system. Further-
more two pairs of messages (one pair on ECU3 and one pair on ECU6) have a mutual
exclusion dependency.

ECU1

CAN
500 kBit/s

Tx: 15 Tx: 1 Tx: 12 Tx: 4 Tx: 3

Tx: 6 Tx: 2 Tx: 1 Tx: 3

ECU2 ECU3 ECU4 ECU5

ECU6 ECU7 ECU8 ECU9

Fig. 4. Can bus communication of an automotive architecture

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 409

Fig. 5. Absolute worst-case response times of the messages

The system has been analyzed in five different levels of detail. In the first variation
we have analyzed the system without considering any dependencies. As second varia-
tion only the mutual exclusion of the messages has been considered. The third variation
additionally includes the offsets with only one limiting event stream over all message
stimulations from an ECU as depicted in figure 2 part a). The fourth variation increases
the level of detail of the offset consideration by the variation represented in figure 2
part b). The last and therefore the fifth variation increases also the level of detail of the
offset dependencies by the variation c) of figure 2. The results are depicted in figure 5.

As expected, including more dependencies and therefore increasing the level of detail
leads to better worst-case response times of the tasks. The consideration of the mutual
exclusion leads to a nearly constant improvement of the response times of all messages,
which can be seen in figure 5. This does not apply to the consideration of the offset
dependencies. As can be seen for variation 3, the impact on the messages is different.
The next level of detail leads to an improvement of the response times of messages
10 to 47. The last curve describes the highest level of detail and leads to a further
improvement of the response times for messages with a small priority. So it can be seen
that the different possibilities to integrate the dependencies into the analysis lead to
very different results. For a better impression of the improvements we have described
the worst-case response times of message 42 in table 1.

Based on the discussion above we now consider the corresponding runtimes shown
in the table 2. All runs were performed on a machine with a 2.66 GHz Intel processor

Table 1. Worst-Case response times of message 42

Variation 1 Variation 2 Variation 3 Variation 4 Variation 5

10020 μs 9528 μs 3618 μs 3126 μs 2142 μs

410 S. Kollmann et al.

Table 2. Runtimes of the different variations

Variation 1 Variation 2 Variation 3 Variation 4 Variation 5

82 ms 92 ms 301 ms 821 ms 1428 ms

and 4 GB of system memory. The runtime when considering no dependencies is the
shortest. The inclusion of mutual exclusion leads to almost no increase of the runtime.
The inclusion of offsets results in a noteworthy increase of the runtime. The simple
case of consideration of the offset dependency leads to nearly 209 ms of more runtime.
The next improvement gains an additional 520 ms of runtime with the benefit that many
messages have better worst-case response times. The last variation and therefore the
most detailed has a runtime of 1428 ms, but only some messages have a better response
time in this variations.

Variation 3 is best suited for a design space exploration because here the quotient of
the runtime increase and the average reduction of response times is minimal. As men-
tioned in the introduction, another possibility is to start the design process with nearly
no dependency correlation and to increase the level of detail in later design iterations
where more accurate results are necessary.

6 Conclusion

In this paper we have introduced a holistic model to describe task dependencies in
distributed real-time systems. The new approach has been applied to a real automotive
architecture. We have shown for two different dependencies how they can be described
by this new model. We have cut the complexity of the dependencies from the real-time
analysis, which has not been achieved in previous work. Additionally we have shown
how the consideration of dependencies can be approximated very easily by this new
concept.

Finally a case study has been conducted to show the improvements of the approach. It
has been shown that our model works for different kinds of dependencies. Furthermore
we have shown that the introduced new approximation technique can lead to signifi-
cant improvements of the runtimes. In the future we will show how to integrate other
dependencies into this new model.

References

1. Albers, K., Slomka, F.: An event stream driven approximation for the analysis of real- time
systems. In: ECRTS 2004: Proceedings of the 16th Euromicro Conference on Real-Time
Systems, pp. 187–195. IEEE, Los Alamitos (July 2004)

2. Gresser, K.: An event model for deadline verification of hard real-time systems. In: Proceed-
ings of the 5th Euromicro Workshop on Real-Time Systems (1993)

3. Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis for tasks with static and dynamic
offsets. In: RTSS, p. 26 (1998)

A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems 411

4. Gutierrez, J.C.P., Harbour, M.G.: Exploiting precedence relations in the schedulability anal-
ysis of distributed real-time systems. In: IEEE Real-Time Systems Symposium, pp. 328–339
(1999)

5. Henia, R., Ernst, R.: Context-aware scheduling analysis of distributed systems with tree-
shaped task-dependencies. In: DATE 2005: Proceedings of the conference on Design, Au-
tomation and Test in Europe, pp. 480–485 (2005)

6. Henia, R., Ernst, R.: Improved offset-analysis using multiple timing-references. In: DATE
2006: Proceedings of the conference on Design, automation and test in Europe, pp. 450–455
(2006)

7. Jonas Rox, R.E.: Exploiting inter-event stream correlations between output event streams of
non-preemptively scheduled tasks. In: Proc. Design, Automation and Test in Europe (DATE
2010) (March 2010)

8. Kollmann, S., Albers, K., Slomka, F.: Effects of simultaneous stimulation on the event stream
densities of fixed-priority systems. In: Spects 2008: Proceedings of the International Simu-
lation Multi-Conference, IEEE, Los Alamitos (June 2008)

9. Kollmann, S., Pollex, V., Slomka, F.: Holisitc real-time analysis with an expressive event
model. In: proceedings of the 13th Workshop of Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (2010)

10. Kuenzli, S., Hamann, A., Ernst, R., Thiele, L.: Combined approach to system level per-
formance analysis of embedded systems. In: CODES+ISSS 2007: Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and system synthesis,
pp. 63–68. ACM, New York (2007)

11. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In:
Proceedings of the 11th IEEE Real-Time Systems Symposium, pp. 201–209 (December
1990)

12. Pellizzoni, R., Lipari, G.: Improved schedulability analysis of real-time transactions with
earliest deadline scheduling. In: RTAS 2005: Proceedings of the 11th IEEE Real Time on
Embedded Technology and Applications Symposium, pp. 66–75 (2005)

13. Redell, O.: Analysis of tree-shaped transactions in distributed real-time systems. In: ECRTS
2004: Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 2004),
pp. 239–248 (2004)

14. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models - The
SymTA/S Approach. Ph.D. thesis, University of Braunschweig (2005)

15. Tindell, K.: Adding time-offsets to schedulability analysis. Tech. rep., University of York,
Computer Science Dept, YCS-94-221 (1994)

16. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems.
Microprocessing and Microprogramming 40, 117–134 (1994)

17. Wandeler, E.: Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. Ph.D. thesis, ETH Zurich (September 2006)

Verification of Printer Datapaths Using Timed
Automata�

Georgeta Igna and Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University Nijmegen, the Netherlands

{g.igna,f.vaandrager}@cs.ru.nl

Abstract. In multiprocessor systems with many data-intensive tasks,
a bus may be among the most critical resources. Typically, allocation
of bandwidth to one (high-priority) task may lead to a reduction of the
bandwidth of other tasks, and thereby effectively slow down these tasks.
WCET analysis for these types of systems is a major research challenge.
In this paper, we show how the dynamic behavior of a memory bus and
a USB in a realistic printer application can be faithfully modeled using
timed automata. We analyze, using Uppaal, the worst case latency of
scan jobs with uncertain arrival times in a setting where the printer is
concurrently processing an infinite stream of print jobs.

1 Introduction

Modern embedded systems are characterized by distributed implementation plat-
forms that include a heterogeneous mix of several processors, one or more buses
for communication, and a variety of sensing and actuating devices. They have
to operate in dynamic and interactive environments, and need to carry out a
mix of data-intensive computational tasks and event-processing control tasks.
Not only functional correctness is important, but also quantitative properties
related to timeliness, quality-of-service, resource usage and energy consumption.
The complexity of embedded systems and their development trajectories is thus
increasing rapidly. At the same time, development trajectories are expected to
deliver products that are inexpensive and performing, while meeting stringent
time-to-market constraints. The complexity of the designs and the constraints
imposed on the development trajectory dictate a systematic, model-driven design
approach that leverages reuse and is supported by tooling whenever possible.

In multiprocessor systems with many data-intensive tasks, a bus may be
among the most critical resources, and severely degrade the timing predictabil-
ity. The problem is that allocation of bandwidth to one (high-priority) task may
lead to a reduction of the bandwidth of other tasks, and thereby effectively slow
down these tasks. If we do not want this to occur, for instance in the case of
� Research supported by the Netherlands Ministry of Economic Affairs under the Bsik

program within the Octopus project, and by the European CommunityâĂŹs Seventh
Framework Programme under grant agreement no 214755 (QUASIMODO).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 412–423, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verification of Printer Datapaths Using Timed Automata 413

safety critical systems, then we may use e.g. a time division multiple access
(TDMA) strategy on the buses in order to give each task a guaranteed band-
width. However, for most systems such a solution is too expensive. According to
Williams et al. [1], for the foreseeable future off-chip memory bandwidth will of-
ten be the constraining resource in system performance of multicore computers.
Clearly, WCET analysis for such systems is a major research challenge. Existing
performance analysis techniques are not able to accurately predict WCETs for
systems with this type of highly dynamic resource behavior. Simulation of de-
tailed models certainly provides insight, but fails to provide WCETs in settings
with uncertain job arrival times, dynamic and interactive environments and/or
uncertain processing times.

In this paper, we show how the dynamic behavior of a memory bus and a USB
in a realistic printer application can be faithfully modeled using timed automata.
In addition, we show how to compute WCETs (latencies) for the application
using the model checker Uppaal [2,3,4]. The case study that we describe here
originates from the Octopus [5] project. Octopus is a cooperation between Océ
Technologies, the Embedded Systems Institute and several academic research
groups in the Netherlands. Its objective is the development of new methods
and techniques to support model-driven design space exploration for embedded
systems. Some preliminary work from the Octopus project was reported in [6].
There, we considered a simplified version of an Océ printer architecture. Using
this architecture, we studied the differences among three modeling formalisms
and supporting tools used in the project: Uppaal [2,4,3], Colored Petri Nets [7,8]
and Synchronous Dataflow Graphs [9,10]. In this paper, we present a detailed
model of a realistic printer design which, in particular, includes a description
of the scheduling rules used by the Océ printer controller1. We analyze, using
Uppaal, the worst case latency of scan jobs with uncertain arrival times in a
setting where the printer is concurrently processing an infinite stream of print
jobs.

The purpose of this paper is to show that the Uppaal model checker can han-
dle the complexity of dynamic memory bus behavior in a realistic model of a
complex industrial application. To the best of our knowledge, no other analysis
technique/tool, except maybe the hybrid method of [11], is currently able to
do a performance analysis for this type of systems (involving a dynamic mem-
ory bus and uncertain arrival times). Existing techniques for WCET analysis of
distributed embedded systems, such as Modular Performance Analysis [12,13],
SymTA/S [14] and MAST [15] are not applicable since they lead to overly con-
servative analysis results. In [11], a hybrid method is proposed for analyzing
embedded real-time systems that integrates modular performance analysis and
timed automata. It would be interesting to use our detailed Uppaal models of
the memory bus and USB as part of this hybrid method.

1 For reasons of confidentiality, we have changed resource names, some other details
and all the numerical data in our model. As a consequence, the outcomes of our
analysis do not apply to any design of Océ. However, as part of the project we have
succeeded to carry out a similar analysis for an actual Océ design.

414 G. Igna and F. Vaandrager

The structure of this paper is as follows. The next section introduces the
printer case study. In Section 3, the timed automata models are described. The
analysis results is detailed in Section 4. Concluding remarks and discussions of
future work follow in Section 5.

2 Case Study

The hardware architecture analyzed in this paper is depicted in Figure 1. A
user can utilize this machine for copying, scanning or printing. He can either use
paper or digital files. In case of paper, he must first scan it. With digital files,
he can connect to Data Store both remotely and locally via USB. The upload
and download through the USB behave differently depending on the bus usage:
if the transfer is unidirectional, it is faster than when it is bidirectional. A user
has a large variety of image processing (IP) options like zooming, rotation, or
filtering, etc. Depending on these preferences, there are different components
needed to process the files. A datapath is the complete trajectory of an image
data from source (i.e. Scanner) to target (i.e. Printer). The performance of the
various datapaths is of critical importance in the Océ printer design.

Fig. 1. An Océ Printer Architecture

Here we analyze two common datapaths2 (Figures 2a and 2b). Since they are
often used in practice, it is important to see what can happen in the worst case.
In the figures, we can also observe the dependencies among the resources used.
They are of three types. In the first category, two resources end in the same time
(see Scanner - IP1). The second refers to the sequential dependency between two
resources (e.g IP2 - IP3). The last case is the parallel execution between Upload
and Printer.

A user specifies his input in the form of a job. A job is a tuple made of an
input file, a datapath and some image processing settings. We use the term scan
2 The resources marked with * are optional.

Verification of Printer Datapaths Using Timed Automata 415

(a) Scan to Email (b) Print From Docbox

Fig. 2. Datapaths

job for a job which uses the Scan to File datapath and print job for a job which
uses the Print from DocBox datapath. In addition, the scan jobs utilize Scan
Memory and print jobs only Print Memory. These memories limit the number
of concurrent images in the system.

The machine uses specific scheduling rules to solve the conflicts that may
occur among the concurrent jobs. We present here the most important ones,
which we have also implemented in our model.

The first rule is files non-overtaking: files that use the same datapath are
processed in the order they enter the system.

The second rule is referred to as bus throttling. Memory bus is shared by all
the resources when they transfer data to memories. Each resource claims differ-
ent percentage of the memory bus, but the maximum bandwidth available is not
enough for all the resources. Further, the execution time of a resource is lim-
ited by the bandwidth it occupies, the internal processing time being negligible.
Therefore, a good bandwidth management is important for improving system’s
performance. When more than one job occupies the system, often incoming jobs
do not have enough bandwidth available to start. In such situations, the Océ
bus throttling rule is applicable. It uses a priority list to solve the bus conflicts
(Figure 3). The resources at the top of the list have the highest priority. If a
resource with high priority needs some bandwidth to process a job, it receives
it. This potentially enforces a reduction of the bandwidth used by other running
resources with lower priority, such that the total bandwidth used does not ex-
ceed a maximum (Algorithm 1). For the case when the resource has low priority,
it gets the difference between the maximum bandwidth allowed and the current
bandwidth used (line 11). Similarly, when one resource with high priority has
finished a job, it releases the bandwidth, which is then redistributed back to
other running resources based on their priority level (Algorithm 2). The band-
width redistribution is reflected in the resource processing speed. As mentioned
above, the speed of a resource directly depends on the bandwidth used. This

416 G. Igna and F. Vaandrager

means that, whenever its bandwidth is modified, the expected completion time
for the current job is also changed. From another perspective, this rule induces
dynamic behavior in the Océ machines, which is not easy to predict.

Fig. 3. Resource priority order

bandwidth allocation algorithm 1 void allocateBandwidth(resource r,
bw_claimed)
1: bandwidth(r)=bw_claimed;
2: bandwidth available− = bandwidth(r);
3: if (bandwidth available ≤ 0 then
4: if there are resources with lower priority in the priority list then
5: repeat
6: take the resources from the bottom up
7: adjust their bandwidth
8: until the bandwidth available gets greater or
9: equal to 0 or we arrived at resource r

10: else
11: bandwidth(r)=-bandwidth available;
12: bandwidth available = 0;
13: end if
14: end if

The third rule is ’upload in order’. The USB client is one of the slowest
resources in the system. Therefore often many jobs wait for uploading and they
should be served in order. A list is used for keeping track of the waiting jobs.
There is a strict rule when jobs are added to it. A scan job is inserted after the
scanner has completed it, whereas the jobs which use the Print from Doc Box
datapath are added after IP4 has processed them. The same also happens when

Verification of Printer Datapaths Using Timed Automata 417

bandwidth deallocation algorithm 2 void deallocateBandwidth(resource r,
bw_claimed)
1: available_bandwidth+ = bandwidth(r)
2: bandwidth(r)=0;
3: if there are resources with lower priority in the priority list and their bandwidth

used is less than the maximum bandwidth that they can use then
4: repeat
5: take them from top down
6: increase their bandwidth up to their maximum
7: until the bandwidth available gets equal to 0
8: end if

IP2 is shared but in this case we add scan jobs after scanning and print jobs
after downloading.

The next rule modeled refers to the conflicts between the scan and the print
jobs in case of shared resources. Whenever a scan and a print job claim a resource
simultaneously, the print job gets priority.

Finally, we assume that all the resources in the system are non-lazy. This
means that if a resource is available when a job claims it, it should be granted
immediately. This restriction greatly reduces the complexity of the control soft-
ware, and also the state space.

3 Model Description

The timed automata model is structured as follows. Each resource is described
by a specific automaton (Figure 4), except the two memories and the memory
bus, which are simply modeled as shared integer variables. A resource stays in
the IDLE location until is claimed by a job. When a job grabs it, the resource
computes the bandwidth it can use and its processing speed, applying the bus
throttling rule when needed. Then, the resource stays in the RUNNING loca-
tion until either the job is processed or its speed is changed. For the latter case,
the transition between RUNNING and UPDATE_WORK is urgently taken. On
the transition back to the RUNNING state, the current job’s data is updated.
First we under-approximate the clock which monitors the execution time of the
job to the closest integer lower or equal to the clock value (select statement:
i:int[0,max_exec_time] and guard: i≤x && i+1>x). Then the current job’s un-
processed data is computed. Using this resource template, the model is accurate.
However, the state space is fragmented with every speed change, which is a prob-
lem for scalability. All the resources, except for the Printer and the Scanner, use
this template. The Printer and the Scanner are never interrupted after they
start. Therefore, they do not need the UPDATE_WORK location.

Each job type is modeled as a separate automaton. Figure 5 displays an
automaton representing a simplified version of the Print from DocBox job. We
see there actions specific to both the datapath and memory management. In
addition to these, we also observe the implementation of the upload in order

418 G. Igna and F. Vaandrager

UPDATE_WORK

RUNNING

(crt_rate[res_id]!=old_rate) ||
 (crt_rate[res_id]>0 imply
x <= divide(work,crt_rate[res_id]))

IDLE

old_rate!=crt_rate[res_id]
urg!

start_component?
work=memory_used,
addTask(component_id, work),
recomputeWork(),
old_rate=crt_rate[component_id],
x := 0

i:int[0,max_exec_time]
i<=x && (i+1)>x
update_work(i),
old_rate=crt_rate[res_id],
x=0

(crt_rate[res_id]==old_rate) &&
(crt_rate[res_id]>0 &&
x >= divide(work,crt_rate[res_id]))
end_resource!
removeTask(res_id),
work=0

Fig. 4. Resource Automaton

scheduling rule. For simplicity, the variables regarding job non-overtaking are
not specified.

4 Verification

We considered the following concurrent datapaths:
Scan To Email: Scanner � IP1 � IP2 �IP4 � USB Upload
Print From Docbox: USB Download� IP4� Print� USB Upload, with

dependencies as in Figures 2a and 2b. Our goal was to find the worst case latency
for the files coming from Scanner when they had uncertain arrival time and the
print jobs formed an infinite stream3.

The scheduling rules implemented in our model simplified the analysis. How-
ever, the model was nondeterministic. One cause was the uncertain arrival times
of scan jobs. The other cause was the lack of partial order reduction techniques
implemented in Uppaal: when multiple independent actions occurred simultane-
ously, Uppaal analyzed all the alternatives, and this led to state space explosion.
Therefore, we searched for modalities to simplify the latter type of nondeter-
minism. The solution adopted was to specify priorities among all the channels
3 All the experiments were performed using Uppaal version 4.1.2 on a Sun Fire X4440

server with 16 cores (AMD Opteron 8356, 2.3GHz), with 128 GB of DDR2 RAM.

Verification of Printer Datapaths Using Timed Automata 419

x_clock<=delay_h

DONE

ip2_req

x_clock>=delay_h
chan_delay_h!

end_ip2_pj?
print_memory+=download_memory,
x_clock=0!ip2_req

start_ip2_pj!

print_done!
update()

end_up_pj?
updateUploadOrderArray()

printing_finished[page_id]?
print_memory+=ip4_memory

upload_buffer_page_ids[0]==page_id
&& upload_buffer_job_ids[0]==job_id
start_up_pj!

printing_claimed[page_id]!
res_memory=printing_memory

end_ip4_pj?
release_memory_after_ip4(),
upload_buffer_page_ids[lastUploadIndex]=page_id,
upload_buffer_job_ids[lastUploadIndex]=job_id,
lastUploadIndex++

start_ip4_pj!

end_down?

print_memory>=getPrintMemory()
start_down!
setPrintMemory()

Fig. 5. Print from Doc Box Automaton

declared in the system. However, when scan and print jobs accessed shared re-
sources, they used the same channels. Due to this, we declared separate chan-
nels and gave higher priority to the channels employed for the communication
between print jobs and resources.

The property verified was

A[] ((forall (i:int[0,max_scan_jobs-1])
!A1S(i).INIT imply A1S(i).latency_clock<=worst_latency)),

where worst_latency was found manually.
Figure 6 shows the monotonic increase of the worst latency with the increase

of the number of concurrent scan jobs. In these experiments, no print job was
allowed in. As we can see, the increase stops when the machine reaches the
maximum scan job capacity that it can process, 19 in this case. The last point
in the figure shows that, if the system is fully loaded with scan jobs, a user has
to wait more than two times for his outcome comparing to the case when there

420 G. Igna and F. Vaandrager

Fig. 6. Worst scan job latency without print jobs in the system

are no other concurrent jobs. In these experiments, the Uppaal running time is
insignificant and bus throttling is not needed.

The analysis results of the worst scan job latency in the presence of print jobs
is listed in Table 1. All these experiments contained 19 scan jobs with uncertain
arrival times and a number of infinite concurrent print jobs indicated in the
first column. Table 1 also shows the Uppaal analysis details. Unfortunately, due
to long Uppaal running time, we could not observe the worst scan job latency
in combinations with high number of infinite print jobs. The current model
configuration allows far more than 20 print jobs present in the system. However,
the important observation which we can make is that the influence of the print
jobs upon the worst case latency of scan jobs is not negligible.

Table 1. Worst scan job latency with print jobs in the system

Infinite Print Peak Mem Running States Worst
Job No Usage(KB) Time(s) Explored Latency(ms)

0 121784 4376.03 723 5341
5 473952 6459.28 349951 6711
10 1107012 15274.40 996693 9843
15 1561524 8934.50 897307 12411
20 - no result in 24 hours - -

During the analysis, we observed that the bus throttling rule had two negative
effects. On one hand, as Table 1 also shows, this bus arbitration rule worsened
the scan job latency by slowing the execution time of the resource required within
their datapath. On the other hand, it increased the analysis time due to many
changes in the speed of some resources which the analysis had to explore.

Verification of Printer Datapaths Using Timed Automata 421

Further, we searched for improvements in the bus throttling rule but firstly we
dimensioned the model such that we were able to analyze it fully with Uppaal.
In this sense, the scan memory was reduced by a factor of 2, whereas the print
memory was reduced by a factor of 4. Except for these, nothing else was changed
(the scan jobs had an uncertain arrival time and the print jobs formed an infinite
stream). As a result, fewer jobs occupied the machine at some point in time. The
analysis of this configuration is detailed in Table 2. This model allowed maximum
5 concurrent scan jobs and 13 concurrent print jobs.

When we searched for changes of the bus arbitration rule, we had to take into
account that only the last four resources in the priority list (see Figure 3) could
be interrupted while processing a job. The optimization we found, was to switch
the order between USB upload and USB download. With this simple change, we
obtained the worst latencies showed in Table 3. The improvement was between
4.8% and 7.6%.

Table 2. Worst scan job latency of the dimensioned model

Infinite Print Peak Mem Running States Worst
Job No Usage(KB) Time(s) Explored Latency(ms)

5 195700 2082.01 147806 4941
10 315540 2232.54 294789 6426
12 384896 2315.72 464711 6767
13 434572 2478.34 555770 6940
14 6940

Table 3. Worst scan job latency with the improved bus throttling rule

Infinite Print Peak Mem Running States Worst
Job No Usage(KB) Time(s) Explored Latency(ms)

5 205684 1940.63 153259 4701
10 304464 2074.39 271351 5933
12 339864 2240.14 331047 6274
13 539340 2539.96 921847 6445

To conclude, we analyzed a timed automata model built for an Océ printer ar-
chitecture. The model contained many design details. We searched for the worst
latency of one of the concurrent applications. During the analysis the Uppaal
running time was long, on the order of days. Further, for a better understand-
ing of the system, we dimensioned the model such that we saw the peak value
of the worst latency and searched for optimization of one important scheduling
rule. Currently, we discuss this improvement with the Océ engineers if it can be
implemented in the controller of a printer with similar characteristics.

422 G. Igna and F. Vaandrager

5 Conclusions

We have analyzed an Océ printing machine and two of its datapaths. We com-
puted the worst latency of one datapath which has uncertain arrival time and
the other datapath is infinitely often used. Our results show a strong dependency
between the two datapaths.

As usual with model checking, long running time was a key issue within our
case study. In order to be able to do the model checking (within reasonable
time), we had to slightly scale down some of the parameters in the model. Still,
the current version of Uppaal is close to the point where it can handle the com-
plexity of industrial designs. One technical issue that we faced is that although
essentially the behavior of the model is fully deterministic when all the schedul-
ing rules are added, the resulting Uppaal model is not (and suffers from state
space explosion) due to interleaving of internal actions of the various resources.
We resolved this by using the channel and process priorities from Uppaal, but a
better solution would be to extend Uppaal with support for confluence detection
and/or partial order reduction.

We computed the worst latency by repeatedly checking an invariant property.
Using a binary search we managed to find the exact value of certain parameters.
However, this type of parametric analysis requires a lot of time and it would be
most helpful to mechanize it using Uppaal, possibly using multiple processors to
parallelize computations.

A lesson that we have learned is that it is extremely difficult to maintain
correctness of the model in a setting where the object of modeling has such a
high complexity. There was not a single document describing the design. In fact
there was not a single person who was able to answer all our questions: the
knowledge was spread over a large design team. For the engineers it is difficult
to understand the intricacies of our Uppaal model. The syntax of Uppaal is not
sufficiently expressive to describe the design in such a way that a small change in
the design corresponds to a small change in the model. Due to these difficulties,
the Octopus project has decided to develop a high level language for describing
the designs, together with a translation to Uppaal: on one hand this will make
it much easier to communicate with the engineers, and on the other hand it will
reduce the chances of introducing errors in the Uppaal model.

References

1. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

2. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: Third International Conference on the Quantitative
Evaluation of SysTems (QEST 2006), Riverside, CA, USA, September 11-14, pp.
125–126. IEEE Computer Society, Los Alamitos (2006)

3. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer 1(1-2), 134–152 (1997)

Verification of Printer Datapaths Using Timed Automata 423

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

5. Homepage Octopus project, http://www.esi.nl/short/octopus
6. Igna, G., Kannan, V., Yang, Y., Basten, T., Geilen, M., Vaandrager, F., Voorho-

eve, M., Smet, S., Somers, L.: Formal modeling and scheduling of datapaths of
digital document printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS,
vol. 5215, pp. 170–187. Springer, Heidelberg (2008)

7. Jensen, K., Michael, L., Wells, K.L., Jensen, K., Kristensen, L.M.: Coloured petri
nets and cpn tools for modelling and validation of concurrent systems. International
Journal on Software Tools for Technology Transfer (2007)

8. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. EATCS Series. Springer, Heidelberg (1992)

9. Ghamarian, A.H., Geilen, M.C.W., Stuijk, S., Basten, T., Moonen, A.J.M., Bekooij,
M.J.G., Theelen, B.D., Mousavi, M.R.: Throughput analysis of synchronous data
flow graphs. In: Proc. ACSD 2006, pp. 25–34. IEEE, Los Alamitos (2006)

10. Stuijk, E., Geilen, M., Basten, T.: Sdf 3: Sdf for free. In: Proceedings of Application
of Concurrency to System Design, ACSD 2006, pp. 276–278. IEEE, Los Alamitos
(2006)

11. Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis and timed
automata: a hybrid method for analyzing embedded real-time systems. In:
Chakraborty, S., Halbwachs, N. (eds.) Proceedings of the 9th ACM & IEEE In-
ternational conference on Embedded software, EMSOFT 2009, Grenoble, France,
October 12-16, pp. 107–116. ACM, New York (2009)

12. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system
properties in platform-based embedded system designs. In: DATE 2003: Proceed-
ings of the conference on Design, Automation and Test in Europe, Washington,
DC, USA, p. 10190. IEEE Computer Society, Los Alamitos (2003)

13. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping applications to tiled mul-
tiprocessor embedded systems. In: Proceedings of the Seventh International Con-
ference on Application of Concurrency to System Design, Washington, DC, USA,
pp. 29–40. IEEE Computer Society Press, Los Alamitos (2007)

14. Hamann, A., Jersak, M., Richter, K., Ernst, R.: Design space exploration and
system optimization with symta/s– symbolic timing analysis for systems. In: Pro-
ceedings of the 25th IEEE Real-Time Systems Symposium (RTSS 2004), Lisbon,
Portugal, December 5-8, pp. 469–478. IEEE Computer Society, Los Alamitos (2004)

15. Harbour, M.G., García, J.G., Gutiérrez, J.P., Moyano, J.D.: Mast: Modeling and
analysis suite for real time applications. In: 13th Euromicro Conference on Real-
Time Systems (ECRTS 2001), Delft, The Netherlands, June 13-15, pp. 125–134.
IEEE Computer Society Press, Los Alamitos (2001)

http://www.esi.nl/short/octopus

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 424–433, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Resource Analysis of Automotive/Infotainment Systems
Based on Domain-Specific Models – A Real-World

Example

Klaus Birken1, Daniel Hünig1, Thomas Rustemeyer1, and Ralph Wittmann2

1 Harman Becker Automotive Systems, Raiffeisenstr. 34,
70794 Filderstadt, Germany

2 Harman Becker Automotive Systems, Becker-Göring-Str. 16,
76307 Karlsbad, Germany

{klaus.birken,daniel.huenig}@harman.com,
{thomas.rustemeyer,ralph.wittmann}@harman.com

Abstract. High-end infotainment units for the Automotive domain have to pro-
vide a huge set of features, implemented in complex software on distributed
embedded system hardware. In order to analyse the computational resources
necessary for such systems, abstract models can be created which are used as a
starting point for simulation and static analysis methods. In this paper, a do-
main-specific modeling method and derived analysis methods will be presented.
A real-world scenario will be shown which could also serve as a challenging
example for future tools and formal methods.

Keywords: Domain-specific modeling, timing simulation, resource analysis,
Automotive, Infotainment.

1 Introduction

In the Automotive/Infotainment realm, there is an increasing pressure on improving
quality while reducing development and per-unit cost. For system designers and soft-
ware architects, this implies that the focus has to move to early design phases during
the development process. Additionally, performance commitments are required in
RFQ1 phase, based only on hardware and software specs without the possibility of
feasibility verification. Usually, target hardware and software implementations will
not be available at this early phase. Thus, abstract models of the planned system have
to be used to reason about requirements and design decisions.

For smaller Automotive-ECUs2, it has already been shown that modeling, analysis
and simulation methods can be applied successfully in industry (e.g., [1]). For
infotainment devices, this is not as well-established yet. In this paper, we present a
modeling methodology based on domain-specific languages and a non-trivial real-
world example model (i.e., a premium-headunit startup scenario). We further show

1 Request for quote phase, where manufacturer request a valid offer from their suppliers.
2 Electronic Control Unit.

 Resource Analysis of Automotive/Infotainment Systems 425

how the model can be utilized in various ways to predict resource usage and gain
design confidence.

2 Domain-Specific Modeling

It is an early and most important experience when starting to model real-world sys-
tems that the expressiveness of the model is defined by the features of the available
language. On the other hand, the right formulation of the problem is already half-way
to the solution. The model bridges the gap between a given set of requirements and
the properties and APIs of the target platform which is being used.

Automotive/infotainment domain experts like system engineers or software archi-
tects should be able to create and extend their models easily and without having to
learn tool details or wade through syntactic overhead. Furthermore, the models should
be mergeable, modularized to leverage reuse of model parts and support fine-grained
version history. Thus, we use domain-specific, textual modeling instead of general-
purpose graphical modeling approaches like SysML and UML. This allows a specific
and streamlined, but at the same time complete specification of the models.

As technological basis we are using an Eclipse environment, which hosts the EMF3
framework with Xtext on top [2]. During the past years, the Xtext toolchain has
gained a level of maturity which is well applicable for industrial applications; Eclipse
and EMF are established in industry already. From an EBNF-like definition of a do-
main-specific language (DSL), Xtext is able to generate EMF-based metamodels
(Ecore models). It also provides a powerful framework for generator development and
a convenient text editor with many useful features, among them syntax highlighting,
an outlook view and code completion – all adapted to the domain-specific language
under development. Among other benefits, the toolchain is available as open-source
software and offers a friendly community with optional commercial support by com-
panies being active as committers.

In order to develop the DSL and a couple of generators for various target formats,
we applied an incremental-iterative approach, where the domain experts and the mod-
eling experts collaborated closely. All sources, i.e., the grammar defining the DSL,
tool extensions, generators and also all resulting models are managed in a state-of-the-
art source code control system. The resulting DSL and a non-trivial example model
will be described in the following sections.

3 The Hbsim DSL for Infotainment System Models

State-of-the-art automotive infotainment systems exhibit complex behaviour, which is
due to a huge set of features (e.g., about 30,000 requirements for a current high sys-
tem), a multifaceted system environment (automotive busses, multiseat / multimodal
user interface) and a heterogeneous, distributed hardware design. This complexity can
only be handled in a simulation model by abstracting away details along several
dimensions:

3 Eclipse Modeling Framework (see http://www.eclipse.org/modeling/emf).

426 K. Birken et al.

• Only system-relevant requirements will be taken into account.
• Hardware entities (e.g., mass storage devices, CPUs) and basic software layers (e.g.,

operating systems, drivers) will be represented only by their primary parameters.
• On the software side, we model abstract functional blocks instead of concrete

software components and processes.

Table 1. Overview of language elements (i.e., vocabulary) of the hbsim DSL

hbsim element purpose examples
cpu processors and controllers CPU1, DSP, …
resource bandwidth-bounded resource SD-Card, harddisk, …
pool allocate&free resources RAM, DMA channels,

…
fb functional block, incl. dynamic

behaviour and dependencies
tuner, navigation, media,
browser, GUI, …

partitioning mapping of functional blocks
to processors

browser runs on CPU1

usecase set of triggers for functional
blocks

play mp3, start guidance

scenario collection of concurrent use
cases

startup lastmode tuner

The resulting core DSL we defined for modeling the infotainment systems is named
hbsim [3]. The main language elements are listed in Table 1. It is focused on specifi-
cation of available hardware, the functional blocks running on that hardware and the
use cases and scenarios which can be executed. There is a strong focus on dynamic
aspects and system behaviour, which eventually allows to execute these models either
statically (with analysis tools) or operational (with simulation tools).

In order to illustrate our approach, two examples will be shown subsequently.
Fig. 1 shows a screenshot of a modeled resource (here: NAND flash storage). Each
resource interface models a special way to access the resource (e.g., raw device ac-
cess, file system, DMA). Each resource interface is defined by its access bandwidth,
the induced CPU load (e.g., by the device driver) and the context switching time
(short: cst), which defines a penalty for simultaneous access from multiple clients.
In general, sufficient accuracy can be gained by this level of abstraction. It is not
necessary to model resources with more details, e.g., latencies of mechanical parts or
low-level caches.

The second example in Fig. 2 demonstrates how the Multimedia application of an
infotainment system is modeled using the functional block concept. The behaviour of
each functional block is specified as a sequence of steps. Each step may define CPU
load needed to accomplish this step, resource accesses (e.g., reading of data from file
systems) and preconditions for this step. In actual hbsim models, we extended this
concept by supporting multiple behaviours for each functional block. These behav-
iours may contain control structures (e.g., loops) and trigger other functional blocks
after their execution. Multiple behaviours per functional block will also be used to
express concurrent execution, e.g., processes, threads or tasks.

 Resource Analysis of Automotive/Infotainment Systems 427

Fig. 1. The resource NAND_Flash as modeled using the hbsim DSL (editor screenshot). Each
resource may offer one or more interfaces, which can be used to read data from that resource.

Fig. 2. Example model (editor screenshot with syntax highlighting): functional block Multime-
dia with startup behaviour. In several steps of execution, read operations from the resource
NAND_Flash (cf. Fig. 1) have been defined.

An additional, orthogonal modeling aspect is related to variability requirements. In
the Automotive domain, there is a lot of variability concepts which should be 1st class
citizens in our modeling language, among them OEM4 variants on top of a product
line, market variants, hardware samples, customization variants, and many more. The
variants can be expressed easily and concise by using feature diagrams [4]. We are

4 Original Equipment Manufacturer, i.e., the car manufacturing companies.

428 K. Birken et al.

using an approach combining feature models and domain models similar to [5]. Vari-
ant points can be inserted at proper locations into the hbsim model. By defining con-
figurations, feature sets can be selected which define slices of the actual model. Each
slice represents one instance of the model configuration space and can be input for
subsequent generator steps.

4 Example: Infotainment Head-Unit Startup

A real-world example which is relevant and important in Automotive/Infotainment
systems is the startup process. There are multiple different scenarios depending on the
wake-up reason and on persistent lastmode conditions. Examples: The infotainment
system may be woken by a trigger on CAN-bus (e.g., door opened), by the driver
pressing the On-key while the car is parked, or by a diagnostic session during produc-
tion or in the garage. The system has to fulfil a plethora of timing requirements,
ranging from safety-relevant, legal aspects of different markets, system-architecture
requirements on car-level, production issues and usability expectations from the end-
customer (represented by human factors and marketing experts on the OEM side).

Fig. 3. Example model: System startup of a simplified Automotive/Infotainment system. Grey
boxes represent functional blocks, arrows indicate dependencies between those blocks. The
diagram has been automatically generated from the hbsim model (backend: graphviz).

 Resource Analysis of Automotive/Infotainment Systems 429

The resulting model describes the startup behaviour of all relevant functional
blocks, together with their resource needs and technical dependencies. A typical model
defines 50-60 functional blocks and various processors and resources (e.g., flash mem-
ory, RAM, harddisk). It additionally incorporates aspects like multi-core/multi-cpu,
inter-processor communication and partition-based scheduling algorithms.

Fig. 3 shows a simplified example of this kind of model. In this example, all func-
tional blocks are deployed to a hardware processor named Main CPU. The arrows in
the diagram indicate different kinds of inter-block dependencies, e.g., triggers (yel-
low, hollow arrowheads), technical preconditions (blue) or resource dependencies
(red). With hbsim, complex simulation scenarios can be created by combining exist-
ing usecases. In the top of this diagram, it is shown how three usecases (map visible,
mp3 playing, infrastructure) are combined to the scenario Startup. This represents a
system startup where the navigation map is visible and mp3 is audible.

Analysing the dependency structure revealed in the automatically generated graph
of Fig. 3, one can see that the NAND flash filesystem is a common prerequisite for all
other functional blocks. We can also see that the HMI (i.e., the graphical user inter-
face) depends on nearly all other functional blocks except the Multimedia application,
which is needed for audio output only. However, there might be scenarios where the
HMI is also dependent on the Multimedia application (e.g., for displaying a current
track screen).

Thus, with this kind of models defined using the hbsim DSL, the structure and dy-
namic behaviour of infotainment systems can be defined on the appropriate level of
abstraction. They collect the knowledge of various system and software experts with
multiple years of domain experience each. The models represent an important part of
the company’s intellectual property. The hbsim DSL defines a powerful combination
of executable architecture model and system design properties.

5 Model-Based Analysis and Simulation

The abstraction level of the infotainment system models (as described above) is well-
suited for describing all major timing and resource usage aspects of this kind of prod-
uct. By using the Xtext generator framework, the models can be transformed into a
variety of target formats:

• graphical representation (based on automatic layout, e.g., graphviz [6])
• static analysis (e.g., critical-path, theoretical limits for timing requirements)
• guidance for automated trace analysis (gaining input for the model details, e.g.,

CPU loads of single steps)
• input for simulation tools (e.g., discrete-event or task-level simulation)

Our current main focus is on executing the model on a simulator in order to under-
stand the dynamic behaviour of the system. We apply different simulators depending
on the accuracy we want to achieve and the simulation performance we need. The
interpretation of the simulation results is usually done by applying graphical
tools (e.g., chronSIM by Inchron [7]) and/or extracting information from simulation
traces automatically. This approach, together with other backends like visualization
generation and static analysis, provides a new level of understanding for the domain

430 K. Birken et al.

Fig. 4. Typical model/simulate/analyse cycle as applied when working with the model-
ing/simulation toolchain presented here

experts, architects and developers and helps to fulfil especially the non-functional
customer’s requirements.

After the creation of an initial model, the typical usage of the simulation toolchain
is iterative (as with many other workflows in software development). Fig. 4 depicts
the typical model/simulate/analyse cycle. It is important to note that the typical cycle
is accomplished within 1-3 minutes (depending on simulation tool and model size),
whereas implementing the real change would last at least hours, if the necessary
changes are possible at all. E.g., even hardware changes can be modeled and simu-
lated easily, but would be expensive to check in a real system.

Previous examples have shown that hbsim models contain detailed data describing
cpu loads, resource bandwidths etc. (e.g., example model in Fig. 2). For big models, it
is tedious and sometimes even not feasible to keep all those values up-to-date manu-
ally. A mechanism is needed which extracts the proper detail values from real system
traces and injects them into the model.

Fig. 5 shows the principle of guided automatic analysis, which is a tool for provid-
ing real-world measurements as detail data for the simulation models. Traces from the
real system are analysed automatically guided by concise information extracted from
the simulation model. Basically, all resource loads detected in the real-world traces
are mapped onto the functional blocks and their steps of execution. Thus, the usage of
each resource is computed for each step. Moreover, correspondences between abstract
markers in the model and concrete markers in the trace are evaluated by the analysis
tool. This technique is indispensable for harvesting detail data for the model out of
real-world traces. It allows keeping the model up-to-date with the real implementa-
tion. We will provide more information about this current subject of research in a
follow-up publication.

 Resource Analysis of Automotive/Infotainment Systems 431

Fig. 5. Principle of guided automatic analysis

6 Example Results

Based on detailed models of infotainment unit startup scenarios, the methodology
described above proved to be a valid and useful tool for aiding the system and soft-
ware design. There is a variety of examples which could be described here, among
them startup in diagnostic mode (needed during production and in the garage), reac-
tion times on CAN messages (e.g., showing the rearview camera picture quickly in a
park distance control usecase) and early audio usecases. In this section, we explain the
latter scenario in more detail.

Typical early audio usecases require the infotainment unit to be able to support au-
dio output very quickly after system wake-up. One relevant example is to provide
audible warning messages triggered by the park-distance control ECU if the system is
woken with activated reverse gear. The reaction time should not violate its limit even
if the startup is loaded with additional compute-intense usecases, e.g., calculation of a
navigation route. In order to ensure that the system always meets this requirement, we
modeled this scenario as part of the overall infotainment startup model.

Fig. 6 shows a part of the simulation result, represented as a system state graph.
The graph has been generated from the simulation trace output and layouted by the
graphviz toolset. Each grey box in that graph indicates the execution of one step,
which is a part of a functional block’s behaviour. The label of each block gives the
functional block, the behaviour currently active (both in the first line) and the name of
that step (second line). For each such block, the time in milliseconds when the step
starts its execution (running) is given as well as the time for the completion of that

432 K. Birken et al.

Fig. 6. Example simulation result, represented as system state change graph. In this example,
the step EarlyAudioAvailable could be reached only after AudioManagement finished its avail-
able state. Times are in milliseconds.

step (done). Incoming arrows indicate all preliminaries for each step. The critical path
is indicated by bold arrows.

In the example shown in Fig. 6, the target step for the early audio usecase is Early-
AudioAvailable (yellow box) of the functional block WavePlayer. This is completed
at time 2,373 seconds after wakeup, which is too slow for state-of-the-art infotain-
ment systems. In order to find out why that is too late we analyse the incoming
arrows. The bold arrow leads us back along the critical path to the state available of
the functional block AudioManagement. I.e., the WavePlayer component is available
at 2034 milliseconds and has to wait for 2373-2034=339 more milliseconds until
AudioManagement can be accessed. If we further follow the critical path backwards,
we are able to track down the causal chain based on the graphical simulation results.
Eventually, the system engineer will find valid optimizations, apply them to the
model and start the cycle again.

7 Conclusion and Next Steps

Applying domain-specific modeling of infotainment systems on system level is a
valuable approach for analysis of timings and resource usage. The method can be
applied early during the development phase, even as decision-making aid in RFQ
phases. We also successfully introduced hbsim-based modeling and timing simulation
as a continuous activity throughout the development process. This ensures that re-
source usage limits and boundary conditions are met. The development process is
such directed towards the planned implementation as envisioned by system architects
and designers. Thus, the models represent executable design documentation.

It has been shown that by this method significantly complex examples can be tack-
led which require a solid system design and domain know-how. The model serves as

 Resource Analysis of Automotive/Infotainment Systems 433

an expert system where this kind of knowledge is accumulated. By applying various
kinds of generators, the model can be transformed to useful target formats, among
them graphical representations and input for simulators. This ensures that the accumu-
lated knowledge is not a black hole, but is actively used and refined instead.

As the resulting models are defined concisely and completely based on a formally
defined meta-model, we expect that formal methods and corresponding tools for veri-
fication, validation and timing analysis can be attached seamlessly. Therefore, one of
our next steps is the application of state-of-the-art formal analysis methods comple-
menting our current simulation approach.

References

1. Wirrer, G.: Scheduling Simulation for Engine Control Systems all along the Development
Cycle. In: Fachkonferenz Echtzeitentwicklung 2009 (2009),
http://echtzeitkongress.de

2. Eclipse/Xtext: Homepage of the Xtext project as part of the Eclipse-platform,
http://www.eclipse.org/modeling/tmf/?project=xtext

3. Birken, K.: Forward-looking system development with domain-specific modelling and tim-
ing simulation. In: 2nd Real-time Development Congress (2010),
http://echtzeitkongress.de

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Methods, Tools, and Applica-
tions. Addison-Wesley Longman, Amsterdam (2000)

5. Völter, M.: Architecture As Language, Part 2: Expressing Variability (2008),
http://www.voelter.de/data/articles/ArchitectureAsLanguage-
Part2-PDF.pdf

6. graphviz Graph Visualization Software, http://www.graphviz.org
7. Kramer, T., Münzenberger, R.: Echtzeitverhalten simulieren und validieren, verstehen und

absichern. In: Proceedings Design&Elektronik Entwicklerforum (2009),
http://www.inchron.de/fileadmin/INCHRON/3-PDFs/DE/Embedded-
System-Entwicklung_09_INCHRON.pdf

Source-Level Support for Timing Analysis�

Gergö Barany and Adrian Prantl��

Institute of Computer Languages
Vienna University of Technology

{gergo,adrian}@complang.tuwien.ac.at

Abstract. Timing analysis is an important prerequisite for the design
of embedded real-time systems. In order to get tight and safe bounds for
the timing of a program, precise information about its control flow and
data flow is needed. While actual timings can only be derived from the
machine code, many of the supporting analyses (deriving timing-relevant
data such as points-to and loop bound information) operate much more
effectively on the source code level. At this level, they can use high-
level information that would otherwise be lost during the compilation to
machine code.

During the optimization stage, compilers often apply transformations,
such as loop unrolling, that modify the program’s control flow. Such
transformations can invalidate information derived from the source code.
In our approach, we therefore apply such optimizations already at the
source-code level and transform the analyzed information accordingly.
This way, we can marry the goals of precise timing analysis and optimiz-
ing compilation.

In this article we present our implementation of this concept within
the SATIrE source-to-source analysis and transformation framework.
SATIrE forms the basis for the TuBound timing analyzer. In the ALL-
TIMES EU FP7 project we extended SATIrE to exchange timing-relevant
analysis data with other European timing analysis tools. In this context,
we explain how timing-relevant information from the source code level
can be communicated to a wide variety of tools that apply various forms
of static and dynamic analysis on different levels.

1 Introduction

Many aspects of our lives are controlled by embedded computer systems with
real-time constraints. Embedded real-time systems used in aerospace and
� This work was supported by the Austrian Science Fund (Fonds zur Förderung der wis-

senschaftlichen Forschung) under contracts P18925-N13, Compiler Support for Tim-
ing Analysis (CoSTA), http://costa.tuwien.ac.at/ and P21842, Optimal Code
Generation for Explicitly Parallel Processors, http://www.complang.tuwien.ac.at/
epicopt/, and the Commission of the European Union within the 7th EU R&D
Framework Programme under contract 215068, Integrating European Timing Anal-
ysis Technology (ALL-TIMES), http://www.mrtc.mdh.se/projects/all-times/

�� The author is now at Lawrence Livermore National Laboratory, P. O. Box 808, 94551
Livermore, CA.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 434–448, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://costa.tuwien.ac.at/
http://www.comp lang.tuwien.ac.at/epicopt/
http://www.comp lang.tuwien.ac.at/epicopt/
http://www.mrtc.mdh.se/projects/all-times/

Source-Level Support for Timing Analysis 435

automotive applications are especially delicate: Since errors in such computer
systems may endanger lives, these systems are deemed safety-critical. Adher-
ence to the specification, both functionally and in non-functional aspects such
as timing, is therefore of the utmost importance. Timing analysis aims to predict
worst-case timing behavior in order to give feedback to developers and provide
information to validation processes.

There are many forms of timing analysis, each having a number of specific advan-
tages and disadvantages. Static analysis predicts timing behavior based on the pro-
gram’s code. This form of analysis is able to cover all possible eventualities; however,
static analyses must typically make some simplifying assumptions that coarsen
the analysis information, suggesting possible program behaviors that cannot be
realized in actual executions. This may lead to overestimations of the worst-case
execution time (WCET). Various kinds of static analysis techniques can reduce
overestimations, but often at considerable costs in analysis time and memory con-
sumption and, thus, scalability. Wilhelm et al. [WEE+08, pp. 39–41] summarize
studies which found that practical static analysis methods overestimate cache miss
penalties by 15–30 %, and up to 50 % on more modern and complex architectures.

In contrast to static approaches, dynamic analysis observes actual executions
of the program and examines dynamically collected information. Such informa-
tion can include things such as traces of paths taken through the program,
relationships between program paths (such as mutual exclusion), numbers of
iterations of loops in the program, and execution times of basic blocks or larger
pieces of code. These data points describe actual executions and are therefore
very precise. However, the major difficulty of dynamic analysis is that one must
ensure that measured data are also safe: The application must be run under
conditions and with input data that are capable of eliciting worst-case behavior.
Finding such input data can be a very difficult task.

In practice, several forms and levels of analysis can be combined: For example,
static analysis may be used in the search for worst-case inputs for subsequent dy-
namic analysis. Dynamically measured (safe) timings of parts of a program may be
combined with statically derived information on worst-case execution frequencies.

This paper provides a high-level overview of past work at Vienna University of
Technology’s Compilers and Languages group. We focus on the combination of anal-
ysis levels: The derivation of symbolic auxiliary information at the source-code level
and its relevance to timing analysis (Section 3); and communication of the results
to tools that perform lower-level timing analysis, usually involving the application
binary (Section 4). As far as information about the program’s control flow is con-
cerned, source-level information may be invalidated by optimizing compilers dur-
ing translation. For this reason, we also discuss how to perform some optimizations
at the source-code level and update the flow information accordingly (Section 5).

2 Static Timing Analysis Techniques

The standard approach to static timing analysis consists of three conceptual
stages (that need not be implemented separately in actual tools): high-level
analysis, low-level analysis, and calculation.

436 G. Barany and A. Prantl

High-level analysis derives information about the control- and data flow of
the program. In particular, this involves finding static bounds on the number
of iterations of each loop in the program; if it is not known after how many
iterations some loop terminates, the WCET must be conservatively estimated
to be infinite. Other kinds of flow information may include conflicting paths: For
instance, whenever some path π1 is taken at some branch, it may be impossible
to take another path π2 at a subsequent branch.

Low-level analysis is concerned with finding actual timing information for
parts of the program, typically basic blocks. As a very rough approximation,
this may consist simply of adding up individual worst-case instruction timings.
However, this approach gives much too high numbers on modern processor archi-
tectures that feature pipelines and caching mechanisms. Sophisticated low-level
analyzers therefore track models of the pipeline and cache states, which allows
them to compute a safe approximation of the performance gain due to overlapped
execution of instructions as well as cache hits.

Finally, the calculation phase integrates flow information with low-level tim-
ings. The common approach is the implicit path enumeration technique (IPET):
The entire timing analysis problem is formulated as an integer linear program.
Each basic block’s execution frequency is represented by a variable in the ILP
formulation; flow constraints such as loop bounds and mutual exclusions are ex-
pressed as linear inequalities. Basic block timings are encoded in the problem’s
objective function, which is then maximized using an off-the-shelf ILP solver.
The maximal solution gives the worst-case execution time, and the values of the
ILP variables give some information about the worst-case path.

Both high-level and low-level analysis may profit from various kinds of aux-
iliary information: For instance, precise information about pointer targets may
both eliminate false paths due to indirect function calls (high-level) and improve
the prediction of cache effects (low-level). In the following section, we describe
our source-level analyses supporting timing analysis.

3 Source-Level Analyses for Timing Analysis

We use the SATIrE (Static Analysis Tool Integration Engine)1 framework to per-
form high-level parts of timing analysis. SATIrE is a source-level analysis and
transformation framework that has been under development at Vienna Univer-
sity of Technology since 2004.

3.1 The SATIrE Framework

SATIrE allows users to build tools that analyze or transform C (and, to some
extent, C++) programs. Its internal program representation is based on the
object-oriented abstract syntax tree (AST) provided by the ROSE2 source-to-
source transformation system. The AST may carry arbitrary annotations as
1 http://www.complang.tuwien.ac.at/satire/
2 http://www.rosecompiler.org

http://www.complang.tuwien.ac.at/satire/
http://www.rosecompiler.org

Source-Level Support for Timing Analysis 437

extracted from annotations in the program or computed by program analyzers.
The AST is either built by ROSE, which is based on the C and C++ frontend
by Edison Design Group3, or by a modified version of the Clang frontend4.

Given the AST, there are several ways of analyzing and manipulating the pro-
gram it represents. ROSE includes a number of analyses and transformations,
including a loop optimizer that can perform common operations such as loop un-
rolling. SATIrE includes a component that builds an interprocedural control flow
graph (ICFG) suitable for data-flow analysis. Bindings to the Program Analyzer
Generator (PAG)5 allow the generation of such data-flow analyzers from sim-
ple functional specifications. Another component6 can export and import ASTs
represented as Prolog terms. Prolog’s symbolic processing capabilities provide
excellent tools for the manipulation of tree-shaped data, which makes it a good
match for our purposes.

ASTs that have been transformed or annotated with analysis results (in the
form of comments or #pragma statements) can be unparsed to C source code.
This code can then be passed to any other source-based tool or regular C compiler
for further processing.

3.2 High-Level Analyses Supporting Timing Analysis

SATIrE allows us to implement a number of program analyses supporting the
high-level component of timing analysis. On the source-code level, we can derive
information regarding pointer relationships, including function pointer targets;
information about the possible ranges of the values of integer variables; and,
based on these, tight bounds for the number of iterations of many loops and
loop nests. This section describes our implementations of these analyses.

Points-To Analysis. SATIrE includes a flow-insensitive unification-based anal-
ysis based on Steensgaard’s well-known analysis [Ste96]. The basic analysis per-
forms a single pass over the program, assigning an ‘abstract memory location’ to
each program variable, function, or dynamic memory allocation site. Locations
representing structures have special edges to their members’ locations. All ele-
ments of an array are collapsed into a single summary location. Several distinct
objects may be assigned the same location, as described below.

The effects of pointer assignments are modeled using points-to edges between
locations: There is a points-to edge from location �1 to location �2 if at some
point during some execution of the program, one of the objects represented by �1
may hold a pointer value that points to one of the objects represented by �2.

Each location is constrained to have at most one outgoing points-to edge; if
some location might point to two or more different locations, those locations are
merged into a new combined location. If merged locations pointed to different
3 http://www.edg.com
4 http://clang.llvm.org
5 http://www.absint.de/pag/
6 http://www.complang.tuwien.ac.at/adrian/termite/

http://www.edg.com
http://clang.llvm.org
http://www.absint.de/pag/
http://www.complang.tuwien.ac.at/adrian/termite/

438 G. Barany and A. Prantl

locations before, those target locations must also be merged recursively. This
merging ensures that the analysis can be implemented in almost-linear time
using a fast Union/Find data structure [Tar75]; however, it is also a source
of imprecision as it may introduce spurious points-to relations that cannot be
realized in any actual run of the program.

In its basic form, the algorithm suffers from imprecision because it is context-
insensitive: If a function that receives a pointer argument is called at several
different sites, the analysis will merge all the objects that may be pointed to at
any call site. We made the analysis context-sensitive by analyzing each function
several times (once for each context), and linking the analysis data according
to the calling structure between contexts. This approach of cloning contexts is
similar to Lattner et al.’s context-sensitive points-to analysis [LLA07].

The points-to analysis supports other source-level analyses in SATIrE. How-
ever, it is also directly relevant to timing: Precise points-to information can help
other tools reduce the number of candidates at indirect call sites; allow better
value analysis by reducing the number of candidates for indirect data accesses;
and allow better modeling of cache effects.

Value Interval Analysis. SATIrE uses a flow-sensitive interval analysis (or
‘value range analysis’) to associate each integer variable with a value interval
for each location in its scope. If at some point a variable is associated with an
interval [a, b], this means that at that point, the variable’s value is definitely
somewhere between a and b. The interval analysis is implemented as an abstract
interpretation [CC77]. The declarative analysis specification is translated to an
executable program by PAG.

In certain cases, the analysis can make use of assert statements in the pro-
gram that were inserted by programmers with domain knowledge, or by some
other program analysis/transformation. The information in a statement like
assert(x >= 0 && x <= 10); can be used by the interval analysis to infer that
at the program point following that statement, the value of variable x must be in
the range [0, 10], regardless of what was known about its value before. SATIrE
includes a component that annotates a program with such assertions capturing
the results of interval analysis; thus, such assertions are well suited for storing
analysis information for later use without full-scale recomputation. These asser-
tions are also useful in testing the analysis itself, and in verifying annotations
provided by users or by other tools [PKK+09].

The analysis is integrated with SATIrE’s points-to analysis. Integer assign-
ments or reads through pointer expressions can therefore be resolved to sets
of possibly referenced variables. This allows us to avoid some conservative as-
sumptions that would be necessary without points-to information: Indirect reads
yield the union of all involved variables’ intervals, indirect writes only affect the
analysis data associated with the possible pointer targets. Similarly, arrays are
modeled as sets of aliased variables.

The interval analysis is inter-procedural, i. e., intervals associated with argument
expressions of function calls are propagated into the corresponding functions. For
programs that use indirect calls through function pointers, the points-to analysis

Source-Level Support for Timing Analysis 439

is consulted to propagate information to and from all possible targets of the given
call. Using facilities provided by PAG, the interval analysis can be used in a context-
sensitive way with arbitrarily long call strings.

In the context of timing analysis, interval analysis is mostly of interest for
the computation of loop bounds (see below). It some cases, it can also identify
infeasible paths: Branches on the values of function parameters may be resolved
statically (in context-sensitive ways) if the analysis can identify the value ranges
of actual arguments.

Loop Bounds Analysis. To implement the TuBound timing analysis tool,
SATIrE was extended with a component which computes bounds for loops based
on iteration variables [PKST08]. It uses results of the interval analysis and struc-
tural information about the program to build equations or set of inequalities,
which are solved to yield bounds on the number of loop iterations.

The loop analyzer looks for loops preceded by the initialization of an iteration
variable, a loop condition consisting of an inequality involving the variable (or
a set of such inequalities connected by ‘logical or’ operations), and exactly one
increment or decrement of the variable inside the loop with a bounded (but not
necessarily constant) step size. Assuming the loop variable is i, the initialization
expression is Init, the test expression is i < Max , and the minimum step size Step
is known to be positive, we can set up an equation like n = (Max − Init)/Step
to describe the number of loop iterations.

This expression can be evaluated using interval arithmetic to provide an
upper bound. Before numeric evaluation, we also perform a symbolic simplifi-
cation step that attempts to eliminate common subexpressions between Max
and Init. This allows us to handle some loops that involve unknown quan-
tities, such as the common idiom of iterating over an array using a pointer:
for (p = a; p < a + 10; p++). Here, our interval analysis cannot determine
an interval for a; however, none is needed because after simplification, no occur-
rences of a are left in the loop bound expression.

The above analysis works well for single loops, but it can overestimate nested
loops with a triangular or irregular iteration space. We analyze nested loops using
more general flow constraints. This analysis works for counting loops as described
above, but now we require a constant step size. For each (upwards-counting) loop,
we set up a system of inequalities {i ≥ Init, i ≤ Max , (i− Init) mod Step = 0}.

This translation can be performed recursively for nested loops. The set of dis-
tinct integral solutions to the resulting system of inequalities describes the entire
iteration space, i. e., the set of all tuples of values that the iteration variables
of the loops can take. The size of this set gives the number of iterations of the
innermost loop in the nest. The clpfd solver distributed with SWI-Prolog7 allows
efficient computation of the number of solutions without producing them.

Precise data on loop bounds is directly relevant to timing analysis as pro-
grams typically spend most of their time in loops, and an overestimation of loop
trip counts directly translates into an overestimation of the WCET. Automatic

7 http://www.swi-prolog.org

http://www.swi-prolog.org

440 G. Barany and A. Prantl

analysis, especially of complex irregular loop nests, is both less time-consuming
and less error-prone than manual annotation.

4 Integration of Timing Analysis Tools

This section explains how we integrate the high-level analyses described in the
previous section with other timing analysis tools. Such integration is needed
because actual timing information cannot be derived at the source code level: An
intervening compiler is needed to produce actual machine code. (Compilation to
an abstract machine may suffice if a precise timing model of the abstract machine
on a given physical machine is available [HBH+07].) Such compilers may be, but
need not be, aware of the real-time nature of the software they are compiling.

Here we describe SATIrE’s integration with four other tools with different
approaches to the WCET analysis problem: Compiler integration; dynamic anal-
ysis; static analysis on the binary; flow analysis on a lower-level representation.
All of these connections make heavy use of annotation capabilities provided by
the respective tools.

The integration with CalcWCETC167 was implemented as part of the Austrian
CoSTA project, while the other three integrations were part of the ALL-TIMES
EU FP7 project. We have working research prototypes for each tool integration.

4.1 Integrated Compilation and WCET Calculation

One compiler designed for integrated compilation and WCET calculation is
CalcWCETC167 [Kir01] targeting Infineon’s C167 family of microcontrollers.
This is a modified version of GCC which understands wcetC, an extension of
C that provides a custom syntax to specify flow constraints and loop bounds in
addition to the input program. During code generation, it computes execution
times for each basic block it generates; the flow information and basic block
timings are used to set up an IPET problem, which is solved using standard
techniques. One drawback of this approach is that the compiler is prohibited
from performing optimizations that alter the control flow of the program. Sec-
tion 5 discusses how we can sidestep this problem by performing optimizations
on the source-code level.

CalcWCETC167’s approach to timing analysis relies on good source-level flow
annotations. Without tool support, such annotations must be placed in the pro-
gram by the programmer, which is a tedious and error-prone task. The TuBound
tool implemented using SATIrE is able to leverage its loop bounds analysis to
compute the necessary information for many loops. Its program transformation
capabilities can then be used to insert the annotations in the source code.

4.2 Annotations for Measurement-Based Analysis

RapiTime by Rapita Systems Ltd8 is a dynamic analysis toolkit. It instruments
target applications with measurement code and uses the measurement data to
8 http://www.rapitasystems.com

http://www.rapitasystems.com

Source-Level Support for Timing Analysis 441

profile performance, provide code coverage information, and perform WCET
analysis. As RapiTime uses dynamic analysis to gather information at run-time,
one cannot always be sure that all possible executions of certain parts of the code
have been covered by its analysis. RapiTime therefore provides the possibility
for users to annotate the program’s source code with high-level knowledge about
issues such as points-to relations or flow constraints. SATIrE can compute some
of the relevant information, as detailed below.

In order to compute a worst-case timing for a function call, RapiTime must know
all the possible functions that may be called at that site (in a certain context). Since
embedded system programs often contain indirect calls through function pointers,
this information is typically not immediately available. During the execution of
the system, the code instrumented by RapiTime can record all observed functions
called from a certain site, but as noted above, it may not always be sure that these
were all the possible call targets for that call site. Without this information, it must
make a conservative approximation or reject the program.

SATIrE’s points-to analysis statically computes conservative approximations of
the sets of targets of each indirect function call. This automatic analysis is much
faster and more reliable than manual annotations; this isparticularly true for context-
sensitive annotations. Thus SATIrE’s information can tell RapiTime whether it has
observed all possible call targets during its tests, or which other possible targets it
must take into account. Similarly, RapiTime may observe certain numbers of iter-
ations for loops in the application. SATIrE’s static analysis of loop bounds may
confirm that the observed iterations are indeed the worst case, or provide informa-
tion for appropriate computation of a guaranteed time bound.

Our source-level static analysis thus helps in ensuring the safety of the dynamic
analysis, or in proving that a given dynamic analysis result is indeed safe.

4.3 Annotations for Binary-Level Static Analysis

The aiT family of WCET analysis tools from AbsInt Angewandte Informatik
GmbH9 performs static analysis directly on the application binary. Using ab-
stract interpretation, aiT derives possible value ranges of registers and memory
locations; it also computes upper bounds on the WCET of basic blocks, taking
cache and pipelining effects into account. The overall WCET is computed using
the IPET approach.

While the analyses of aiT and SATIrE compute some similar information, they
have different ways of computing that information. aiT’s value analysis subsumes
its pointer analysis, treating pointer values simply as integers. A value interval
determined for a pointer thus implicitly denotes the set of all objects that could
be addressed by that pointer. In contrast, SATIrE’s points-to analysis is symbolic,
identifying objects by abstract symbols, not by memory addresses. Where a pointer
points to non-adjacent functions or global symbols in the program, aiT’s analysis
will determine that it may also point to any intervening function or object. In such
cases, SATIrE’s symbolic analysis can derive the possibly much more precise result
9 http://www.absint.com

http://www.absint.com

442 G. Barany and A. Prantl

that the pointer may only reference one of a discrete set of functions or objects, but
not any arbitrary memory address in between. This more precise pointer analysis
may also add precision to SATIrE’s interval analysis in some cases. We express
results using aiT’s existing annotation mechanism.

aiT’s annotation mechanism includes a notion of ‘user-defined registers’, which
are virtual machine registers whose values can be read or written by annotations.
In particular, annotations can be made conditional on a user-defined register’s
value. This allows us to formulate context-sensitive annotations by encoding call
string information in virtual registers. Such annotations may, in turn, tighten
aiT’s timing results computed for certain contexts.

4.4 Integration with Other High-Level Tools

SWEET is a research tool from Mälardalen University’s WCET group10. Its
flow analysis is based on abstract execution [GESL06] and can derive complex
flow constraints relating execution frequencies for different points in the program.
The integration of SWEET and SATIrE involves various issues. First, as SWEET
works on programs represented in the ALF format [GEL+09], it needs translators
to ALF in order to analyze source code. The connection between SATIrE and
SWEET in the ALL-TIMES project therefore included a C-to-ALF compiler.11

One advantage of having control over this translator is that it can output useful
meta-information besides the ALF code.

The translator therefore outputs information mapping ALF code positions
(identified by jump labels) to SATIrE’s internal position identifiers as well as
to source code locations. It also exports information on the call strings used
by SATIrE. Using this information, SATIrE’s context-sensitive analysis results
regarding points-to information and value intervals can also be communicated
to SWEET. In contrast to the other connections described above, SWEET and
SATIrE have similar notions of program objects (ALF allows named, scoped
variables like C does). Thus SATIrE’s analysis information referring to program
variables and pointer relations is directly useful to SWEET. The tight corre-
spondences between program positions as well as variables allow SATIrE to
exchange even flow-sensitive information with SWEET, which is not the case for
the other connections. This tight integration can ease the implementation bur-
den on SWEET’s developers, who at the time of writing do not have a context-
sensitive points-to analysis.

5 Source-Level Optimization and Timing Analysis

As mentioned in Section 4.1, some types of compiler optimizations alter the pro-
gram’s control flow and invalidate flow information annotated at the source-code
level. One prominent example for this is loop unrolling: An unrolled loop will per-
form fewer iterations than expected from the source code, but will accordingly
10 http://www.mrtc.mdh.se/projects/wcet/
11 http://www.complang.tuwien.ac.at/gergo/melmac/

http://www.mrtc.mdh.se/projects/wcet/
http://www.complang.tuwien.ac.at/gergo/melmac/

Source-Level Support for Timing Analysis 443

do more work in each iteration. For a loop unrolled by a factor of k, preserving
the original annotation will result in an overestimation of the WCET by a similar
factor of about k. For this reason, such optimizations must be disabled in the
back-end compiler if source-level annotations are to be used. The CalcWCETC167
compiler disables all loop optimizations that change the control flow.

However, such optimizations are desired because they can often result in con-
siderable speedups. We have therefore combined source-level optimization with
corresponding transformation of source-code annotations. This way, programs
can take advantage of loop optimizations at the source level, while such op-
timizations are still disabled in the back-end. At the same time, annotations
remain correct and tight. The result is usually a reduction in the calculated
WCET.

5.1 Transformation of Flow Information

We consider flow information represented by a variable fe for each edge e in the
program’s control-flow graph. Flow constraints are given as inequalities of linear
expressions involving possibly scaled flow variables, which we write as 〈n · fe〉.
We transform constraints by replacing expressions referring to transformed edges
with other expressions [KPP10]. In general, there are two cases to consider:

– The flow fe at edge e is split into multiple edges e′i. We replace the corre-
sponding scaled flow variable by appropriately scaled variables for the new
edges:

〈n · fe〉 −→ 〈n1 · fe′1〉+ 〈n2 · fe′2〉+ · · ·
– The flow of several edges ei is merged into one edge e′. For each ei, we

perform the following transformations for ≤ or < constraints:

〈n · fei〉 −→
{ 〈nlhs · fe′〉 on the left-hand-side of the constraint
〈nrhs · fe′〉 on the right-hand-side of the constraint

and vice versa for ≥ or > constraints.

In either case, the values of the newly introduced scalar factors depend on the
details of the program transformation.

Transformation of flow annotations is guided by an optimization trace. The
trace, a log of each modification of the control flow, is produced by the loop opti-
mizer. We use it to access data about the original and transformed loops as well
as the flow variables involved. Our implementation of optimization traces and
the transformation rules can handle the correct transformation of annotations
for loop unrolling, loop blocking, loop fusion, and loop interchange.

Example. Figure 1 illustrates the transformation of flow constraints for inter-
changed loops. Note that each occurrence of fl1 is replaced by the flow vari-
able fl2 , scaled appropriately according to the analyzed lower or upper bounds
of iterations of the new outer loop.

444 G. Barany and A. Prantl

Original program Loop-interchanged program′

for (i = 0; i < 8; ++i) {
// l1
for (j = 0; j < n; ++j) {

// l2
if (even(i))

// then
...

else ...

for (j = 0; j < n; ++j) {
// l1
for (i = 0; i < 8; ++i) {

// l2
if (even(i))

// then
...

else ...

Loop bounds Loop bounds′

〈l1, 8 . . . 8〉 〈l1, 1 . . . 4〉
〈l2, 1 . . . 4〉 〈l2, 8 . . . 8〉

Constraints Constraints′

fl1 ≤ 8
fthen ≤ fl1 · 2
fl1 ≤ fthen · 2

fl2/4 ≤ 8
fthen ≤ fl2/1 · 2
fl2/4 ≤ fthen · 2

Fig. 1. Example: Transformation of annotations after loop interchange [Pra10]

5.2 Experimental Evaluation

We evaluated the impact of source-level loop optimization and annotation trans-
formation on the analyzed WCETs of the programs from the WCET benchmark
suite from Mälardalen University and the DSPstone benchmark suite. On aver-
age, our source-based optimizations succeed in reducing the analyzed WCET by
about 13 % on the Mälardalen benchmarks and by about 21 % on DSPstone.

Figure 2 shows results for the standard WCET analysis benchmarks collected
by Mälardalen University12. In Figure 3 results for the fixed-point version of the
DSPstone benchmarks [ŽVSM94] are shown: Using the benchmarks that could
be fully analyzed (and automatically annotated at the source code level) by
an unassisted TuBound, the diagrams show how the WCET bound is affected
by the source-level loop optimizations. Each value is normalized by the WCET
bound of the program with just the low-level optimizations applied, marked as
the ‘original’ analyzed WCET in the graphs. The WCET bound calculation was
done using the CalcWCETC167 back end of TuBound. The source-level loop op-
timizations use the upper and lower loop bound information found by TuBound.
All low-level optimizations performed by the target compiler do not alter the
control flow any more. The rightmost bar represents the geometric mean of the
scaled execution speed of each of the benchmarks.

The benchmarks show that the potential for optimizations is significant. Un-
surprisingly, the implemented optimizations (loop unrolling, fusion, interchange,
12 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Source-Level Support for Timing Analysis 445

0%

20%

40%

60%

80%

original

120%

bs bsort100

cnt
cover

crc edn
expint

fdct
fibcall

janne_complex

jfdctint

lcdnum

ludcmp

matmult

minver

ndes
ns nsichneu

qurt
recursion

statemate

sqrt
st whet

[geom. avg.]

Fig. 2. Tighter analyzed WCETs due to high-level loop optimizations: Mälardalen
benchmarks

0%

20%

40%

60%

80%

original

120%

biquad_N_sections

biquad_one_section

complex_multiply

complex_update

convolution

dot_product

fir fir2dim
lms

mat1x3

matrix1

matrix2

n_complex_updates

n_real_updates

real_update

[geom. avg.]

Fig. 3. Tighter analyzed WCETs due to high-level loop optimizations: DSPstone
benchmarks

splitting), perform well on DSP kernels (e. g., matrix2) and show little to no
impact on branch-intensive code (e. g., nsichneu) that lacks tight loops with a
high trip-count.

Outliers like crc show that careful selection of the different optimization
phases is very important. This process, however, can be supported by an au-
tomatic WCET analysis, which can be used to guide the optimizer by judging
the improvement of a program transformation [LM09].

446 G. Barany and A. Prantl

6 Related Work

Wilhelm et al. [WEE+08] present a thorough discussion of the worst-case execu-
tion time problem and various tools and methods to approach it. Gustafsson et
al. [GLS+08] give a more detailed overview of the ALL-TIMES project and the
tools involved. Schordan [Sch08] presents the SATIrE system in more detail and
considers some challenges of annotating source code with analysis information.

There does not appear to be much previous work that deals specifically with
integration of source code analysis and WCET calculation. This paper sum-
marizes and unifies several threads of work in this area performed at Vienna
University of Technology in between 2006 and 2010 within the ALL-TIMES
and CoSTA projects. Prantl et al. discuss the TuBound tool in much more de-
tail [PSK08, Pra10], while Barany [Bar09] gives more details on the integration
of SATIrE in the ALL-TIMES project.

Schulte [Sch07] as well as Engblom et al. [EEA98] discuss the transformation
of flow annotations along with control-flow altering program optimizations.

Herrmann et al. [HBH+07] use a (conceptual) virtual machine as an interme-
diate step for combining high-level and low-level analysis of programs written
in the functional language Hume: For each target machine, timings of abstract
machine instructions are derived using aiT. Source-level analysis and knowledge
of compiler internals allows their framework to determine the set of abstract ma-
chine instructions that would be generated for each input program. Straightfor-
ward composition of this information with the low-level timings yields a WCET
bound.

7 Conclusions

We have presented our approach to supporting timing analysis on the source code
level using the SATIrE analysis framework. Using this framework, we built the
TuBound tool for WCET analysis, combining source-level analysis, source-level
optimization, and a back-end compiler performing WCET analysis. We have also
implemented connections to several other timing analysis tools of various kinds,
demonstrating that source-level analysis information can be useful for a wide
range of timing-related analyzers that cover different analysis approaches.

Acknowledgements. The authors would like to thank Viktor Pavlu and Alexander
Jordan for many helpful comments on earlier versions of this article. We are
grateful to the anonymous reviewers for their comments that helped us improve
the paper’s focus and presentation.

References

[Bar09] Barany, G.: SATIrE within ALL-TIMES: Improving timing technology
with source code analysis. In: Kolloquium Programmiersprachen und
Grundlagen der Programmierung (KPS 2009), ch. 15, Maria Taferl, Aus-
tria, p. 230 (October 2009)

Source-Level Support for Timing Analysis 447

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL 1977: Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, pp. 238–252. ACM, New
York (1977)

[EEA98] Engblom, J., Ermedahl, A., Altenbernd, P.: Facilitating worst-case execu-
tion time analysis for optimized code. In: Proc. 10th Euromicro Real-Time
Workshop, Berlin, Germany (June 1998)

[GEL+09] Gustafsson, J., Ermedahl, A., Lisper, B., Sandberg, C., Källberg, L.: ALF
– a language for WCET flow analysis. In: Proceedings of the 9th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2009)
(June 2009)

[GESL06] Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic deriva-
tion of loop bounds and infeasible paths for wcet analysis using abstract
execution. In: The 27th IEEE Real-Time Systems Symposium, RTSS 2006
(December 2006)

[GLS+08] Gustafsson, J., Lisper, B., Schordan, M., Ferdinand, C., Jersak, M.,
Bernat, G.: ALL-TIMES - a European project on integrating timing tech-
nology. In: Proc. Third International Symposium on Leveraging Appli-
cations of Formal Methods (ISOLA 2008), October 2008, pp. 445–459.
Springer, Heidelberg (2008)

[HBH+07] Herrmann, C.A., Bonenfant, A., Hammond, K., Jost, S., Loidl, H.-W.,
Pointon, R.: Automatic amortised worst-case execution time analysis. In:
Proceedings of the 7th International Workshop on Worst-Case Execution
Time (WCET) Analysis (2007)

[Kir01] Kirner, R.: User’s Manual – WCET-Analysis Framework based on wcetC.
Vienna University of Technology, Vienna, Austria, 0.0.3 edition (July
2001), http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

[KPP10] Kirner, R., Puschner, P., Prantl, A.: Transforming flow information during
code optimization for timing analysis. Real-Time Systems 45(1-2), 72–105
(2010)

[LLA07] Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to
analysis with heap cloning practical for the real world. In: PLDI 2007:
Proceedings of the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pp. 278–289. ACM, New York (2007)

[LM09] Lokuciejewski, P., Marwedel, P.: Combining Worst-Case Timing Models,
Loop Unrolling, and Static Loop Analysis for WCET Minimization. In:
The 21st Euromicro Conference on Real-Time Systems (ECRTS), Dublin,
Ireland, pp. 35–44. IEEE Computer Society, Los Alamitos (July 2009)

[PKK+09] Prantl, A., Knoop, J., Kirner, R., Kadlec, A., Schordan, M.: From trusted
annotations to verified knowledge. In: Proceedings of the 9th International
Workshop on Worst-Case Execution Time Analysis (WCET 2009), Dublin,
Ireland, Österreichische Computer Gesellschaft, pp. 39–49 (June 2009)
ISBN: 978-3-85403-252-6

[PKST08] Prantl, A., Knoop, J., Schordan, M., Triska, M.: Constraint solving for
high-level WCET analysis. In: The 18th Workshop on Logic-based meth-
ods in Programming Environments (WLPE 2008), Udine, Italy, pp. 77–89
(December 2008)

[Pra10] Prantl, A.: High-level compiler support for timing analysis. PhD thesis,
Vienna University of Technology (2010)

http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

448 G. Barany and A. Prantl

[PSK08] Prantl, A., Schordan, M., Knoop, J.: TuBound – A Conceptually New
Tool for Worst-Case Execution Time Analysis. In: 8th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2008), pp. 141–148,
Prague, Czech Republic, Österreichische Computer Gesellschaft (2008)
ISBN: 978-3-85403-237-3.

[Sch07] Schulte, D.: Modellierung und Transformation von Flow Facts in einem
WCET-optimierenden Compiler. Master’s thesis, Universität Dortmund
(2007)

[Sch08] Schordan, M.: Source-to-source analysis with SATIrE - an example revis-
ited. In: Scalable Program Analysis, Dagstuhl, Germany, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany. Dagstuhl Seminar Proceed-
ings, vol. 08161 (2008)

[Ste96] Steensgaard, B.: Points-to analysis in almost linear time. In: POPL 1996:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pp. 32–41. ACM, New York (1996)

[Tar75] Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J.
ACM 22(2), 215–225 (1975)

[WEE+08] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whal-
ley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller,
F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case
execution-time problem—overview of methods and survey of tools. ACM
Trans. Embed. Comput. Syst. 7(3), 1–53 (2008)

[ŽVSM94] Živojnović, V., Velarde, J.M., Schläger, C., Meyr, H.: DSPstone: A DSP-
Oriented Benchmarking Methodology. In: Proceedings of the International
Conference on Signal Processing and Technology (ICSPAT), Dallas (Oc-
tober 1994)

Practical Experiences of Applying Source-Level
WCET Flow Analysis on Industrial Code�

Björn Lisper1, Andreas Ermedahl1, Dietmar Schreiner2,
Jens Knoop2, and Peter Gliwa3

1 School of Innovation, Design, and Engineering, Mälardalen University,

SE-721 23 Väster̊as, Sweden
2 Institute of Computer Languages, Vienna University of Technology,

A-1040 Vienna, Austria
3 GLIWA GmbH embedded systems, Dollmann Str. 4, D-81541 München, Germany

Abstract. Code-level timing analysis, such as Worst-Case Execution
Time (WCET) analysis, takes place at the binary level. However, much

information that is important for the analysis, such as constraints on

possible program flows, are easier to derive at the source code level

since this code contains much more information. Therefore, different

source-level analyses can provide valuable support for timing analysis.

However, source-level analysis is not always smoothly applicable in in-

dustrial projects. In this paper we report on the experiences of applying

source-level analysis to industrial code in the ALL-TIMES FP7 project:

the promises, the pitfalls, and the workarounds that were developed. We

also discuss various approaches to how the difficulties that were encoun-

tered can be tackled.

1 Introduction

Today, over 99 percent of all processors are embedded in products or systems.
Many of these embedded systems are real-time systems, i.e., computer systems
that must react within a certain time to events in their environment. Failure of
such systems to meet their timing constraints could endanger human life and
cause substantial economic losses. Thus, improved methods for timing verifica-
tion are of paramount importance.

The purpose of timing analysis is to find out whether the timing constraints
of a system are met. It is usually divided into system-level analysis, dealing with
the combined execution of different programs (“tasks”), and code-level analysis
dealing with the timing of individual tasks. The most important entity to esti-
mate on code level is the worst-case execution time (WCET) of a task. WCET
estimates are needed for many system-level analyses. For these to yield reliable
results, the WCET estimates must be safe meaning that they never will un-
derestimate the true WCETs. Unsafe WCET estimates can also be useful, in
situations like early design phases where they can help dimensioning the system.
� This work was supported by the EU FP7 project ALL-TIMES (Integrating European

Timing Analysis Technology, grant agreement no. 215068).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 449–463, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

450 B. Lisper et al.

WCET analysis assumes that the code is running to completion in isolation,
without being interrupted. The two main kinds of analysis are measurements
and static analysis. In general, measurements cannot give safe estimates and are
thus suitable for less time-critical software. For time-critical software, where the
WCET must be safely estimated, static analysis is preferable. Hybrid analysis
combines elements of static and measurement-based analysis.

Static WCET analysis derives a WCET estimate analysing mathematical
models of the code and the hardware. If the models are correct, then a static
WCET analysis will always derive a safe WCET estimate. The static analysis
is usually divided into three phases: a flow analysis where information about
the possible program execution paths is derived, a low-level analysis where the
execution times for atomic parts of the code, like basic blocks, are decided from
a performance model of the target architecture, and a final calculation where
the flow and timing information is combined to derive a WCET estimate.

The flow analysis must handle a possibly very large number of paths. Thus,
approximations are needed. If the approximations are safe (representations in-
clude at least the possible paths) then a WCET analysis is still safe, although
it might become pessimistic. Flow analysis research has mostly focused on loop
bound analysis [11], since upper bounds on the number of loop iterations must
be known in order to derive finite WCET estimates. Automatic methods to find
these exist, but often some loop bounds must still be bounded manually. Flow
analysis can also identify other types of program flow constraints like infeasi-
ble paths [10]. constraining the number of times different program parts can be
executed together.

To be accurate, flow analysis should be performed on the binary level, for
the code actually being executed. However, much information is often missing in
this code. Therefore, flow analysis is sometimes performed on source code. The
advantage is that there is much more high-level information in the code that
can help obtaining a precise flow analysis. On the backside, the program flows in
source and binary are sometimes not exactly the same, especially if the compiler
applies heavy optimizations. Program flow constraints derived from the source
code can then be unsafe for the program flows of the binary. But there are still
many situations where this is tolerable, for instance when making rough timing
estimates in early design phases. Also, the technique is applicable for safety-
critical applications where safety standards demand that compiler optimizations
are turned off.

In this paper, we report on some practical experiences of source-level flow
analysis in the ALL-TIMES FP7 project. The purpose of this project was to
create methodologies and toolchains for combinations of different timing tools
and techniques, including source-level flow analysis. The techniques were finally
tried out on an industrial project from the automotive area. We ran into a
number of problems when attempting to analyse the source code for the project.
We describe these problems, and the workarounds that we had to make to be
able to proceed. The problems that we encountered seem to be quite general for

Practical Experiences of Applying Source-Level WCET Flow Analysis 451

source-level analysis of this kind of code, and we discuss a number of possible
ways to tackle them.

The rest of this article is organized as follows: in Section 2 we give an account
for related work. Section 3 describes the ALL-TIMES project briefly. In Section 4
we describe the target system for which we applied source-level flow analysis.
Section 5 describes how the source-level analysis was used, and which aspects
were tested. Section 6 describes our analysis tool SWEET, which was used in the
case study, and its flow analysis. Section 7 reports on the results and experiences
of the case study. Section 8, finally, wraps up and discusses possible directions
for future work.

2 Related Work

There have been a number of studies of WCET analysis of industrial code.
There are some reports on using commercial, static analysis WCET tools to
analyze code for space applications [13,12,17], and in avionics industry [8,20,15].
In [4,18], time-critical parts of the commercial real-time OS Enea OSE were
analysed. Experiences from WCET analysis of real-time communication software
for automotive was reported in [3]. All these case studies concern analysis of
binary code only. A problem detected in several of them is the need to provide
manual annotations for program flow properties at binary level. This was often
found to be cumbersome and error-prone.

[19] reports on WCET analysis of a number of tasks in the transmission control
of an articulated hauler. This analysis was done on binary level. In a follow-up
study [1], the program flow analysis was done on source level, and the results
passed to the binary level analysis be hand. The experiment was successful in
the sense that almost all program flow constraints on the binary level could
be automatically derived on source level. Compiler optimizations changing the
control structure did not pose any big problems for the translation. What did
pose a problem was the fact that the tasks communicate through data stored
in intricate data structures. Value annotations had to be provided for some
of these values, which proved to be difficult for two reasons: the inability of the
annotation language to express accurately the value fields in the data structures,
and the difficulty to find proper value ranges for data stored and updated by
several tasks. For this case study, there was access to all the source code. The
code was strictly ANSI-C, and parsing did not pose any problems.

There are a number of general-purpose academic or commercial tools for
source-level static analysis. Some examples are ASTRÉE [6], Coverity [2], Poly-
space, and Klocwork. These tools can check for a variety of possible errors such
as possible division by zero, array index out of range, or potential memory leaks
to name a few. A comparative evaluation of Coverity, Polyspace, and Klocwork
is found in [7].

In [2], a number of practical problems for source-level static analysis tools,
when applied to industrial code, were reported. Among the experiences reported
were the need to handle different environments for program development, prob-
lems parsing code accepted by the customers’ compilers, and the need to reduce

452 B. Lisper et al.

the ratio of false to true positives. Clearly these experiences apply to supporting
source-level analyses for WCET analysis as well, and they are in line with what
we report here.

3 The ALL-TIMES Project

ALL-TIMES (Integrating European Timing Analysis Technology)1 is an FP7
small to-medium focused researchproject (STREP) with six partners: Mälardalen
University (coordinator), Vienna University of Technology, AbsInt Angewandte
Informatik GmbH, Gliwa GmbH, Symtavision GmbH, and Rapita Systems Ltd.
The partners are either research groups, with academic tools applicable to timing
analysis, or vendors of timing analysis tools. The project has brought the following
main results:

– integrated methodologies for timing analysis,
– prototypes of integrated tool chains,
– new/improved code and timing analysis tools,
– new tool connections, including open tool interfaces, and
– a validation of the integrated tool chains.

Fig. 1 shows the different tools, and the different tool connections that have
been created within the project. The connections enable the integrated tool
chains that in turn support the integrated methodologies.

The tools have the following functions: SymTA/S is a system-level timing
analysis tool performing tasks like schedulability analysis. aiT is a static WCET
analysis tool, and RapiTime is a tool for WCET analysis and worst-case per-
formance profiling which uses a hybrid method. T1 is a tool for timing- mea-
surement, -analysis and -visualisation. SWEET is a static WCET analysis tool:
however, only its program flow analysis part has been of concern in ALL-TIMES.
SATIrE, finally, is a source-code program analysis and transformation workbench
built on top of the Rose compiler framework2.

With the new tool connections that have been implemented in the project,
a number of integrated tool chains can be formed. An example is RapiTime
passing estimated WCETs for tasks to SymTA/S through tool connection M.
RapiTime, in turn, may have its analysis enhanced by source-level analyses. For
instance, SATIrE may pass information about possible function pointer values
through tool connection P, and SWEET may provide program flow constraints
through tool connection T. (SWEET must then use SATIrE as a frontend using
tool connection Q, see below.) In all, this constitutes a tool chain involving four
of the tools in the project.

An outspoken goal of ALL-TIMES has been to provide support for timing
analysis in early, explorative design phases. Early indications of timing proper-
ties can help avoiding costly redesigns in situations where a late timing verifica-
tion shows that the timing constraints are not met. For this purpose, a version
1 Website: www.all-times.org
2 www.rosecompiler.org

Practical Experiences of Applying Source-Level WCET Flow Analysis 453

Fig. 1. ALL-TIMES integrations between timing analysis tools

of aiT called “TimingExplorer” was implemented. TimingExplorer sacrifices ab-
solute safety of WCET estimates for analysis speed, and has means to do quick
design space exploration varying the hardware configuration. It has the same in-
terfaces as aiT, and can thus take part in various tool chains for providing early
timing estimates. For instance, it can use information from source-level analyses
performed by SATIrE and SWEET.

Another goal of ALL-TIMES has been to provide support for timing analysis
from source-level analyses. Two kinds of program flow information were deemed
to be of high interest: information about possible values of function pointers
in different program points, and traditional program flow information such as
bounds on the number of loop iterations, and infeasible path constraints. These
analyses are provided by SATIrE and SWEET. SATIrE uses the C frontend of
Rose to parse C source code before analysing it: it can then deliver function
pointer sets to aiT and RapiTime using each tool’s native format for manual
source-level annotations. SATIrE also has an experimental loop bounds analysis.
SWEET can compute a number of program flow constraints, ranging from simple
loop bounds to complex infeasible path constraints, and can export these to aiT
and RapiTime using the same annotation formats as SATIrE. SWEET’s flow
analysis analyses the ALF code format (see Section 6). SATIrE can convert
Rose’s internal program representation to ALF through the “melmac” tool, and
can thus act as a C frontend to SWEET. Thus, the source-level analysis of
SWEET always uses SATIrE as a frontend.

454 B. Lisper et al.

The results of ALL-TIMES were validated using industrial code from the
automotive domain, see Section 4. The validation included an estimation of the
productivity increase brought by the technologies developed in ALL-TIMES.
Two typical timing analysis scenarios were analysed, where for each step the
time to perform it was estimated with and without the support of the ALL-
TIMES technologies, respectively. The results indicate that the improved timing
analysis support brought by ALL-TIMES can have a very significant impact on
the efficiency of the timing analysis process.

4 The Target System

The target system that was used for the final validation in ALL-TIMES is an
automotive embedded control unit. For this unit, the project could obtain access
to the source code. This was crucial for the validation of the source-level tools and
-connections. The unit has a Freescale MPC 564 processor. It has no hardware
trace facilities, and it uses the ETAS ERCOSEK operating system. The source
code consists of ca. 685k lines of code, divided on 1297 C files (.c), 768 C header
files (.h), and 28 assembly files (.a). The C files range in size from less than
1 KB to 1997 KB (22910 lines of code). The source code is compiled with the
Windriver compiler (Diab Data).

In addition to the source code, the project had access to a test environment
including compiler, debugger, and hardware.

5 Source Code Analysis Validation

The source code analyses developed within ALL-TIMES were validated as parts
of larger tool chains, involving also the WCET analysis and system-level tim-
ing analysis tools in the project (see Section 3). The tool chains were validated
using two scenarios, in the following way. The first validation scenario was an
“early design exploration” scenario, where TimingExplorer is used to select an
appropriately upgraded hardware platform for an existing application. For this
purpose, a set of approximate WCETs of the tasks were computed for each inves-
tigated hardware configuration, and they were subsequently sent to SymTA/S for
a schedulability analysis. Computing bounded WCETs require that all loops in
the code are bounded. TimingExplorer does perform an automatic loop bounds
analysis: however, this analysis is done on the binary code, and so, for the tar-
get code of the validator, TimingExplorer was unable to bound 102 loops. The
source-level analysis validation for this scenario was to see how many loops
SWEET could additionally bound by a source-level analysis, and pass the results
to TimingExplorer to avoid the time-consuming process of manually annotating
the loop bounds.

The second scenario was a “late stage verification” scenario, where SATIrE,
SWEET, and RapiTime are used to analyse/measure the code and determine
the WCETs of the tasks in the target system. RapiTime produces traces that
are visualised using one of the so-called “trace-viewers” provided with T1 or

Practical Experiences of Applying Source-Level WCET Flow Analysis 455

SymTA/S. SymTA/S also performs a scheduling analysis to verify schedulability
under worst-case conditions.

Here, it was tested how well SATIrE could determine function pointer sets,
which RapiTime needs to cut down the set of possible execution paths when
calling a function that is indirectly referenced through such a pointer. SWEET’s
loop analysis was used in a different way than for the first scenario. RapiTime
measures execution times for program fragments, and combines this informa-
tion into a WCET estimate using program flow constraints. The validator has
no hardware tracing facilities, and thus the code has to be instrumented for
measuring execution times. The instrumentation has to be sparse since other-
wise buffers would overflow and data would be lost. Therefore it is interesting
to identify parts of the code with little variability of the execution time, since
such parts are prime candidates not to instrument. Loops that always execute
the same number of times are likely to have low execution time variability. Since
SWEET can compute both upper and lower iteration bounds for loops, it was
tested how many loops SWEET could find where these bounds were equal (and
thus the loop always executes the same number of times). This information could
help reduce a time-consuming inspection of the code to find those parts of the
code where instrumentation could be reduced.

6 SWEET, and Its Flow Analysis

SWEET3 is a WCET analysis research tool from MDH. It has the standard
WCET analysis tool architecture with a flow analysis, a low-level analysis, and
a final WCET estimate calculation.

The flow analysis of SWEET is the part currently being actively maintained
and developed, and this is the part of SWEET that has been of concern for
the ALL-TIMES project. The analysis is able to produce a number of program
flow constraints, ranging from simple upper and lower loop iteration bounds
to complex infeasible flow constraints. The analysis is context-sensitive as well
as input-sensitive, the latter meaning that the analysis can take restrictions on
input values into account when computing the program flow constraints.

The main analysis method of SWEET is called abstract execution (AE) [10].
AE can be seen as a fully context-sensitive abstract interpretation, where each
loop iteration (or recursive function call) is analysed separately. It is therefore a
“deep” analysis method, based on the semantics of the program. Alternatively,
AE can be seen as a kind of symbolic execution where program variables store
abstract values, and where operators and functions are given their interpretations
in the abstract value domain. Fig. 2 illustrates how AE works for a simple
loop. Note the input-sensitivity: the restricting interval for the initial value of
i will directly influence the resulting iteration bounds for the loop. A simpler,
non-input-sensitive analysis would not be able to bound this loop. The current
implementation of AE in SWEET uses the abstract interval domain for numerical
values, but AE can in principle use any abstract domain.
3 www.mrtc.mdh.se/projects/wcet/sweet.html

456 B. Lisper et al.

i = INPUT; // i = [1..4]

while (i < 10) {
// point p

...

i=i+2;

}
// point q

(a) Code example

iter i at p i at q

1 [1..4] impossible

2 [3..6] impossible

3 [5..8] impossible

4 [7..9] [10..10]

5 [9..9] [10..11]

6 impossible [10..11]

(b) Analysis

min.
#iter: 3

max.
#iter: 5

(c) Result

Fig. 2. Example of abstract execution

The computed flow constraints are arithmetic constraints on so-called execu-
tion counters, virtual variables that count the number of executions in different
program points. (In Fig. 2, “#iter” is such a counter.) SWEET has a general
method to collect information about possible executions into different kinds of
program flow constraints. The resulting constraints can be directly used in the
final WCET estimate calculation.

The analysis method of SWEET is general and not a priori tied to any lan-
guage or instruction set. To take advantage of this generality, SWEET’s flow
analysis analyses the code format ALF [9]. ALF is an intermediate format de-
signed to be able to faithfully represent code on different levels, from source
to binary level. It therefore contains high-level concepts, such as functions and
function calls, as well as low-level concepts like dynamic jumps. Thus, SWEET
can analyse code both on binary and source level provided that a translator into
ALF is present. As mentioned, the melmac tool is such a translator that maps
the internal format of Rose into ALF, thereby enabling SATIrE to be used as a
C frontend to SWEET.

7 Results and Experiences

We now describe our experiences from doing source-level analysis on the validator
(automotive ECU) code in the ALL-TIMES project. We discuss the problems
encountered for the source-level program flow analysis performed by SWEET.
Most of the problems are common to SATIrE’s analyses as well, and indeed they
should be common to “deep”, semantics-based source-level analyses in general.

The steps necessary to perform SWEET’s flow analysis are basically the fol-
lowing. This scheme should hold for source-level analysis in general:

1. identify the source files that are needed for the analysis,
2. convert the files to a format suitable for the static analyses to be applied,
3. “link” the converted files to enable inter-procedural program analyses,
4. perform the program analyses, and
5. map the results back to the source code, in a format suitable for other tools.
We now describe our experiences for each step in turn.

Practical Experiences of Applying Source-Level WCET Flow Analysis 457

7.1 Step 1: Identify Needed Source Files

Academic benchmarks for WCET analysis research tend to consist of small, self-
contained programs where each program to analyse resides in a single source file.
Not so in real projects: they may consist of thousands of files, where the code
that needs to be analysed is scattered over many different files.

The first step is to identify the entry points for the code to analyse. For WCET
analysis, this typically amounts to finding the start functions for the tasks, or
runnables, in the system. If the application uses an operating system, then the
tasks can usually be found from some of its configuration files. This is the method
that we used. It requires knowledge of how the specific operating system used is
configured.

Second, the files containing code that is needed for the analysis are to be
identified. This may sound trivial: a brute force approach that should work
would seemingly be to include all source files in the project. But this requires
knowledge of where the source files are located, which typically has to come
from the build tool (which, if unlucky, may be some set of obscure scripts). A
complication is that some source files may include assembler, or that they are
simply missing (only binaries available): more on the consequences of this in
Section 7.4.

A further complication, which we encountered in the project, is late binding.
Functions with the same name may be defined in different compilation units, and
first at linking time it is selected which of these functions to actually call, by
including the corresponding object file. Late binding seems to be very common
for embedded codes. With late binding, the source code simply does not contain
sufficient information which source files to include, information from the build
tool is needed.

To summarize: Step 1 in general requires information both from the operating
system configuration and the build tool, and a source-level analysis tool must
somehow acquire it.

7.2 Step 2: Converting Source Files

For SWEET’s flow analysis, the conversion is done in two steps: first, the source
files are parsed into the internal format of Rose, and then a translation to ALF
is done by the melmac tool.

SWEET needs to generate flow constraints in the annotation formats of aiT
and RapiTime. Both these annotation formats relate the flow constraints to loca-
tions in the source code. Therefore, in addition to the code conversion, melmac
generates a so-called map file relating code locations in ALF with the corre-
sponding locations in the original source code.

The two first steps presented problems. The Rose compiler framework uses
a commercial C/C++ frontend which is distributed with Rose as a binary, so
it cannot be changed. It turned out that the parser could not process some of
the target system’s source files. We had to rewrite some source files by hand to
get them through the parser. Some source files also contained inlined assembler,

458 B. Lisper et al.

which the frontend could not process either. We dealt with this mainly by com-
menting out the assembler, although this is not a strictly safe solution. Other
constructs causing problems were compiler specific pragmas, and preprocessor
directives. The problems encountered were very similar to those reported in [2].

It also turned out that Rose itself had problems to handle some features of
the target system’s C code. We had to rely on the Rose developers to for fixing
the problems, which took time.

The morale of this is that an industrial strength source analysis tool, at least
for C, must be able to adapt to the variety of C dialects defined by the C
compilers that are in use. It is hard to accomplish this without being in full
control of the translation chain.

7.3 Step 3: Link the Converted Files

When analysing code that stretches several files or compilation units, a global
namespace has to be created where symbols have an unambiguous meaning. This
process can be seen as a kind of linking [14], but on source-code level.

Source-level linkers exist. One example is cilly, from the CIL framework [5],
which merges a number of C file into one large C file. However, cilly changes the
line numbers of statements in a way that cannot be easily traced. The original line
numbers are required for flow constraint annotations in the annotation format
for aiT, so if they are lost then such annotations cannot be generated. For this
and other reasons, we decided to create or own linker for ALF code instead.

Our ALF linker works similarly to cilly, and merges all the ALF files into one
big file. However, it also maintains the relation between program code locations
in C and ALF files by creating a global map file from the merged ALF files. To
differ between local entities with the same name, the ALF linker has to perform
some “name mangling” to create unique names.

A problem, similar to the late binding problems described in Section 7.1, was
caused by the fact that some header (.h) files contained full function definitions.
Since the C preprocessor’s semantics of including header files is to copy them
verbatim, the result was the creation of several instances of an identical function
with the same name in different C files. The C preprocessor would then be used to
select which copy to include in the end. However, since the C files were translated
into ALF one by one, the result would be several ALF files with identical function
declarations. The ALF linker, righteously, did not accept this. Our solution was
to change the linker to eliminate all identical copies of a function declaration
but one.

7.4 Step 4: Performing the Flow Analysis

The linked ALF file should in principle be ready for analysis. Alas, a successful
flow analysis for real industrial codes typically requires additional information
not present in the available source code. This information must then somehow
be provided, or approximated.

Practical Experiences of Applying Source-Level WCET Flow Analysis 459

When analysing the possible program flows of a task, typically some bounds
must be known for inputs that may affect the program flow (see Fig. 2 for an
example). Inputs can be either arguments to the start function of the task, if
any, and values of global variables when the start functions begin executing.

Especially important is to restrict the possible values of input pointers. If
the abstract value of a pointer is TOP (any address), and an assignment is done
using the pointer value as target, then the analysis must assume that the written
value may possibly be written to any data address. This typically destroys the
information needed to identify any interesting program flow constraints.

SWEET provides value annotations for arguments and variables, which allow
the user to provide simple interval bounds for these. Inputs that are not an-
notated will assume the abstract value TOP (any value is possible). However,
the problem remains how to identify the important inputs and find proper value
ranges for these.

Since we had little time to make elaborate annotations in the ALL-TIMES
project, we would mostly let input values default to TOP. We suspect that this
affected the precision of the analysis adversely in many cases.

For systems that allow parallel or pre-emptive execution of tasks accessing
shared data areas, the additional complication arises that during the execution of
a task, a variable can be reassigned a new value by some other task. Such shared
variables must be treated differently in the analysis. If there is no knowledge
about the possible preemption points, then the value of such a variable must
be considered possible to change, due to the actions of some other task in the
system, at any program point. An analysis that does not take this into account
is potentially unsafe. As far as we know, all current WCET analysis tools ignore
this problem.

C has a keyword “volatile”, which is a hint to the compiler that the vari-
able might be changed by some other activity in the system. A variable might
be marked volatile for many other reasons, though, and conversely any “non-
volatile” global variable could potentially be shared between tasks. Analyses that
identify shared data and compute safe value bounds for these are conceivable:
however, we had no time to develop such analyses in the project. SWEET cur-
rently deals with the problem by forcing volatiles to assume the abstract value
TOP throughout the program, but as explained this is potentially unsafe.

The second problem is that vital source code often is missing. For the valida-
tor, the big problem turned out to be that important parts of the code came
from a subcontractor, and we had no access to its source code. Apparently this
is a common situation in the automotive domain, and the trend towards compo-
nentising the software and use third-party code seems to become stronger. This
means that missing source code will be a significant problem for source-level
analysis in the future.

We tackled this problem in two ways. First, we added a mode to SWEET
where it will assume a certain default semantics for unknown entities. Unknown
variables will be set to TOP, which is a safe overapproximation but may lead to
very imprecise results especially of the variable holds pointer values. The default

460 B. Lisper et al.

semantics for unknown functions is that their return value is TOP, and that
they do not affect any global variables (no side-effects). The latter assumption
is clearly unsafe, but without knowledge of the function a safe analysis will have
to assume that it can set any global variable to anything, which will render the
resulting analysis extremely imprecise.

Second, we extended the annotation language of SWEET to give it some lim-
ited capability to express the semantics of unknown functions. These annotations
allow to specify bounds on return values, and for possible side effects on given
global variables.

Missing code, and uncertainty about the nature of volatile-declared variables,
posed a problem for the source-level validation. As mentioned, TimingExplorer
failed to bound 102 loops, located in 50 different C functions. Of these, only 19
functions could be translated into ALF (mostly due to that the source code was
missing). 24 of the not bounded loops were present in those functions. Two of
these 19 functions refer to unknown entities, and 18 functions refer to volatiles.
Of the total number of functions that could be translated into ALF, about 49%
contained neither undefined entities nor volatiles (and should thus be possible to
analyse with safe results, assuming that no non-volatile globals can be affected
from outside the analysed task).

There were 18 start functions for tasks in the system. Of these 10 referred to
undefined functions, and 16 to undefined data. Nine contained loops for which
we had ALF code, and which TimingExplorer could not bound. For a number
of reasons, we could not obtain any bounds for any of the not bounded loops
by analysing the start functions. This was due to imprecision from unknown
entities (especially unknown pointers), but also presence of volatiles whose safe
treatment required them to be set to TOP, and infinite for(;;); loops that
pose problems for the abstract execution algorithm used by SWEET. Thus, we
resorted to analyzing functions deeper in the call tree, containing (possibly in-
direct) calls to the functons with the interesting loops. This had the advantage
of avoiding to analyse much problematic code. On the other hand, calling con-
text information was lost which would decrease the precision. By analysing these
functions, we were able to bound three of the previously unbounded loops by
a safe analysis (w.r.t. undefined entities and volatiles), and two more by a po-
tentially unsafe analysis making default assumptions about undefined entities,
and treating volatiles as “ordinary” variables. We believe that the low number of
interesting loops that we were able to bound mainly is due to imprecision from
undefined entities, and lack of knowledge about the calling contexts.

7.5 Step 5: Map Results Back to Source Code

The last step is to map flow constraints back to TimingExplorer or RapiTime
using their native source-level annotation formats. Also here, we encountered
some practical problems. One problem is that some precision was lost in the
translation to these formats: for instance, SWEET can generate highly context-
sensitive flow constraints which cannot be expressed to the same degree in them.
Another issue is that SWEET derives loop bounds as bounds on the number of

Practical Experiences of Applying Source-Level WCET Flow Analysis 461

times the loop header executes, while both annotations formats use the number
of times that the loop body executes. This forced us to make adjustments in the
generated loop annotations.

8 Conclusions

We have identified a number of problems with source-level program flow analysis.
Some problems are due to important information not being present in the source
code, some to weak language standards (allowing different compilers to define dif-
ferent dialects), and some to missing source code. Most problems should be com-
mon to deep, semantics based source-level analysis in general. Thus, solutions are
important not only for WCET analysis, but also for general source-level analysis.

It is not easy to change industrial practices. However, we can still make a
“wish list”. One thing on the list would be standardised formats for build pro-
cesses, which an analysis tool could read to find the relevant source code to
analyse. On the task level, clean standards for task communication are very de-
sirable. Metadata should be provided, in standardised formats, that describes
the task communication as well as the task entry points. Metadata should also
be available to describe possible value restrictions on inputs to the system, like
values read from sensors.

It should also be possible for third-party code providers to ship metadata
describing the semantics of the delivered code. This metadata could then be
used by an analysis tool when the source code is not provided. Examples of
useful metadata are input-output relations for functions, possible side effects,
and value restrictions for global variables. Function side effects can be expressed
in types, and found by a type-based analysis [16].

The natural place to standardise metadata formats is in component-oriented
frameworks such as AUTOSAR. However, also without them, there are improve-
ments to be done. One interesting option is to develop mixed source/binary-level
analyses, that use the binaries when sources are not available. Using a multilevel
language as ALF for the analysis, which allows translations from both source- and
binary level code, is then clearly an advantage. Analysis tools also need better an-
notation languages to let the user provide precise information when needed.

Finally, note that most problems described above will not appear for a binary
level analysis of a statically linked executable. All the code will then be available,
and all ambiguities will have been resolved by the compiler and linker. This com-
pensates for the disadvantages of binary level analysis to some degree. However,
we think that source-level analysis offers distinct advantages warranting efforts
to make it applicable to real embedded production codes.

References

1. Barkah, D., Ermedahl, A., Gustafsson, J., Lisper, B., Sandberg, C.: Evaluation of

automatic flow analysis for WCET calculation on industrial real-time system code.

In: Proc. 20th Euromicro Conference of Real-Time Systems (July 2008)

462 B. Lisper et al.

2. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,

Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: Using static

analysis to find bugs in the real world. Comm. ACM 53(2) (February 2010)

3. Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.: Applying static WCET anal-

ysis to automotive communication software. In: Proc. 17th Euromicro Conference

of Real-Time Systems (ECRTS 2005) (July 2005)

4. Carlsson, M., Engblom, J., Ermedahl, A., Lindblad, J., Lisper, B.: Worst-case

execution time analysis of disable interrupt regions in a commercial real-time op-

erating system. In: Pettersson, P., Yi, W. (eds.) Proc. 2nd International Workshop

on Real-Time Tools, Copenhagen (August 2002)

5. CIL - infrastructure for C program analysis and transformation (2008),

manju.cs.berkeley.edu/cil

6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The ASTRÉE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.

21–30. Springer, Heidelberg (2005)

7. Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis

tools (extended version). Technical report, Linköping University (January 2008),

http://www.ep.liu.se/ea/trcis/2008/003/

8. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,

H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a

real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,

vol. 2211, Springer, Heidelberg (2001)

9. Gustafsson, J., Ermedahl, A., Lisper, B., Sandberg, C., Källberg, L.: ALF – a

language for WCET flow analysis. In: Proc. 9th International Workshop on Worst-

Case Execution Time Analysis (WCET 2009), Dublin, Ireland, pp. 1–11 (June

2009)

10. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of

loop bounds and infeasible paths for WCET analysis using abstract execution. In:

Proc. 27th IEEE Real-Time Systems Symposium (RTSS 2006) (December 2006)

11. Healy, C., Sjödin, M., Rustagi, V., Whalley, D., van Engelen, R.: Supporting tim-

ing analysis by automatic bounding of loop iterations. Journal of Real-Time Sys-

tems 18(2-3), 129–156 (2000)

12. Holsti, N., L̊angbacka, T., Saarinen, S.: Using a worst-case execution-time tool for

real-time verification of the DEBIE software. In: Proc. DASIA 2000 Conference

(Data Systems in Aerospace 2000, ESA SP-457) (September 2000)

13. Holsti, N., L̊angbacka, T., Saarinen, S.: Worst-case execution-time analysis for

digital signal processors. In: Proc. EUSIPCO 2000 Conference (X European Signal

Processing Conference) (2000)

14. Levine, J.: Linkers and Loaders. Morgan Kaufmann, San Francisco (2000) ISBN

1-55860-496-0

15. Montag, P., Goerzig, S., Levi, P.: Challenges of timing verification tools in the

automotive domain. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proc. 2nd

International Symposium on Leveraging Applications of Formal Methods (ISOLA

2006), Paphos, Cyprus (November 2006)

16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn.

Springer, Heidelberg (2005) ISBN 3-540-65410-0

17. Rodriguez, M., Silva, N., Esteves, J., Henriques, L., Costa, D., Holsti, N., Hjort-

naes, K.: Challenges in calculating the WCET of a complex on-board satellite

application. In: Proc. 3rd International Workshop on Worst-Case Execution Time

Analysis (WCET 2003), Porto (July 2003)

manju.cs.berkeley.edu/cil
http://www.ep.liu.se/ea/trcis/2008/003/

Practical Experiences of Applying Source-Level WCET Flow Analysis 463

18. Sandell, D., Ermedahl, A., Gustafsson, J., Lisper, B.: Static timing analysis of

real-time operating system code. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004.

LNCS, vol. 4313, pp. 146–160. Springer, Heidelberg (2006)

19. Sehlberg, D., Ermedahl, A., Gustafsson, J., Lisper, B., Wiegratz, S.: Static WCET

analysis of real-time task-oriented code in vehicle control systems. In: Margaria, T.,

Philippou, A., Steffen, B. (eds.) Proc. 2nd International Symposium on Leveraging

Applications of Formal Methods (ISOLA 2006), Paphos, Cyprus (November 2006)

20. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,

Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of

hard real-time avionics software. In: Proc. of the IEEE Int. Conf. on Dependable

Systems and Networks, DSN 2003 (June 2003)

Worst-Case Analysis of Heap Allocations�

Wolfgang Puffitsch1, Benedikt Huber1, and Martin Schoeberl2

1 Institute of Computer Engineering, Vienna University of Technology, Austria

wpuffits@mail.tuwien.ac.at, benedikt@vmars.tuwien.ac.at
2 Dept. of Informatics and Mathematical Modeling, Technical University of Denmark

masca@imm.dtu.dk

Abstract. In object oriented languages, dynamic memory allocation is
a fundamental concept. When using such a language in hard real-time

systems, it becomes important to bound both the worst-case execution

time and the worst-case memory consumption. In this paper, we present

an analysis to determine the worst-case heap allocations of tasks. The

analysis builds upon techniques that are well established for worst-case

execution time analysis. The difference is that the cost function is not

the execution time of instructions in clock cycles, but the allocation in

bytes. In contrast to worst-case execution time analysis, worst-case heap

allocation analysis is not processor dependent. However, the cost function

depends on the object layout of the runtime system. The analysis is

evaluated with several real-time benchmarks to establish the usefulness

of the analysis, and to compare the memory consumption of different

object layouts.

Keywords: Worst-Case Analysis, Memory Allocation, Real-Time Java.

1 Introduction

In hard real-time systems, failing to deliver results in time may lead to catas-
trophic consequences. Deadlines must be met even in worst-case scenarios. As
such situations cannot be reliably provoked through measurements, hard real-
time systems must be statically analyzed to ensure that all deadlines will be
met. Scheduling analysis determines whether all tasks can meet their deadlines.
The input for this analysis are the worst-case execution times (WCETs) of the
individual tasks and their respective deadlines. However, it is not only important
to consider the tasks’ timing. An application that runs out of memory cannot
deliver its result on time either. Therefore, it is important to bound not only
the WCET, but also the worst-case heap allocations (WCHAs). With the known
WCHAs, the memory management system, be it scoped memory or a real-time
garbage collector (GC), can be correctly dimensioned.

� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement

number 216682 (JEOPARD).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 464–478, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Worst-Case Analysis of Heap Allocations 465

Allocations are often “hidden” behind syntactic features or in libraries. In
Java, even innocent-looking expressions such as println(”info: ”+i) allocate sev-
eral objects. The expression ”info: ”+i is processed as follows: a StringBuilder
object is allocated, which contains an array to store the actual characters. Then,
”info: ” is appended to that object, potentially allocating a larger character array.
The integer i is also appended to that object; converting a number to its decimal
representation requires another character array. Finally, the StringBuilder is con-
verted to a String, allocating yet another object. In total, two objects and two
to four arrays are allocated. Considering the simplicity of the above expression,
manual analysis of realistic programs is clearly not an option.

Manual analysis is also complicated by the fact that the requested amount
of memory is not always the same as the allocated amount. In object-oriented
languages, objects include some meta-information about the type of an object.
Some real-time GCs (RTGCs) split objects, either to avoid [19] or to overcome
[5] fragmentation issues. Programmers must have intimate knowledge about the
runtime system to find out how much memory is actually allocated.

Knowledge about heap allocations is useful both when using a RTGC and
when using scoped memory. Scoped memory was introduced in the real-time
specification for Java RTSJ [3] to eliminate the need for garbage collection. As
the size of the scoped memory area has to be provided when the area is created,
it is important to know how much memory will be allocated in that scoped
memory. The analysis helps to size the scoped memory area such that allocation
demands can be met even in worst-case scenarios.

RTGCs have gained more acceptance since the RTSJ was formulated, and
the use of scoped memory often can be avoided. Hard real-time GCs require
knowledge about the application for correct operation. A RTGC must be paced
correctly, otherwise it cannot keep up with the allocations from the application.
In such a case the system would fail, either because it runs out of memory or
because tasks are delayed beyond by the GC. The allocation rate alone is not
enough to determine an upper bound for the period of the GC thread [14,15].
However, the allocation rate is a necessary prerequisite for pacing the RTGC.

We propose to use the existing technologies for WCET analysis for the analysis
of heap allocations and provide cost formulas for several object layouts. While
we focus on Java, we believe that the presented ideas could also be applied to
other languages. We evaluate the tightness of our approach by comparing the
analysis results to measurements, and identify idioms that introduce pessimism.

The following section provides an overview of work related to this paper.
Background on WCET analysis is given in Sec. 3. In Sec. 4, we present the
analysis to automatically determine the WCHAs of tasks, which is evaluated in
Sec. 5. Section 6 concludes the paper and provides an outlook on future work.

2 Related Work

An early attempt at automated computation of upper bounds for different per-
formance measures was presented by Wegbreit [21]. The analyses are formulated

466 W. Puffitsch, B. Huber, and M. Schoeberl

for Lisp and computation takes place on a symbolic level. Aggregation of worst-
case results must be conservative and assume that all program fragments exhibit
their worst-case behavior at the same time. In contrast, our analysis uses a more
powerful approach based on integer linear programming, which allows expressing
cases where the execution of program fragments is not independent.

Unnikrishnan et al. presented analyses for both allocations and live memory
[20], which are to some degree similar to the analyses by Wegbreit. However,
recursion is handled implicitly rather than through explicit equations. The anal-
yses are formulated for a first-order functional language and assume that the
input programs are purely functional. It is not clear whether their findings can
be directly applied to imperative languages such as Java.

Albert et al. [1] developed an analysis framework where a sub-set of Java
bytecodes is transformed to a rule-based procedural representation. Loops are
transformed into recursions, and recurrence equations are generated to charac-
terize the program. The solution to these equations provides parametric bounds
for the memory consumption.

The analysis presented by Braberman et al. [4] computes the memory usage
of “regions” within a program. The memory consumptions of these regions are
combined to derive symbolic bounds on the minimum memory consumption and
the total amount of allocated memory.

A type-based heap-space analysis is proposed by Hofmann and Jost [8]. Pro-
grams are typed with a special type system that is used to establish bounds on
the memory consumption. While this approach seems to work reasonably well
for bounds that depend on the size of the input, it remains unclear whether
bounds that depend on input values can be handled efficiently.

Mann et al. [11] developed a data-flow analysis to determine worst-case allo-
cation rates. They use an instruction “window”, and determine how much data
is potentially allocated within such a window. Clustered allocations, as they are
common at the start of a task’s period, can lead to considerable pessimism when
using an instruction window. Considering the whole execution of a task, as our
analysis does, levels out such allocation spikes.

3 WCET Analysis

WCET analysis, similar to many other program analyses, is performed on a
program abstraction, the control flow graph (CFG). In a CFG the basic blocks
are represented by vertices and the directed edges represent possible control
flows. The cost of an edge is set to the maximum time needed to execute the
basic block it originates from. WCET analysis needs to find the most expensive
execution path between the program’s entry and exit node. In order to bound
the execution time of a task or method, an upper bound for the number of times
loops are executed and for recursion depths has to be known. Additionally, one
aims to exclude infeasible paths, which are never taken but are part of the CFG
abstraction.

Worst-Case Analysis of Heap Allocations 467

f o r (i n t i = 2 ; i <= 10; i++) { // ou t e r l oop
f o r (i n t j = i ; a [j] < a [j − 1] ; j−−) {
// @WCA loop <= 9
// @WCA loop <= 45 ou t e r

swap (a , j , j −1);
}

}
Listing 1.1. Loop bound annotation example

A common technique to find the WCET is implicit path enumeration (IPET)
[13,10]. The problem of finding the most expensive execution path is transformed
to a network flow problem. The variables of the problem correspond to the
execution frequency of CFG edges. Unique start and end vertices are created
with a single outgoing and a single incoming edge with execution frequency one.
For all other vertices, representing basic blocks in the CFG, the flow into the
vertex is equal to the flow out of the vertex. Furthermore, linear constraints
to bound the maximum number of loop iterations and to exclude infeasible
paths are added. Each edge is assigned a constant execution cost. The problem
of finding the WCET now amounts to finding the flow with maximal cost. The
solution to the resulting integer linear programming (ILP) problem can be found
by a standard ILP solver, such as lp solve.1

3.1 Loop and Recursion Bounds

In order to bound the WCET, it is necessary to bound the maximum number of
loop iterations and the maximum depths of recursions. Simple loop bounds can
be automatically extracted from the program source. For this purpose, a data-
flow analysis (DFA) framework providing a loop bound analysis is integrated in
our WCET analysis tool [17].

However, if a bound cannot be determined automatically, programmers must
provide annotations. An example annotation is shown in Listing 1.1. The anno-
tation @WCA loop<=9 tells the analysis that the loop body is executed at most
9 times whenever the loop is entered. The annotation @WCA loop<=45 outer
further restricts the number of times the body is executed by stating that it is
executed at most 45 times whenever the outer loop is entered. The analysis can
therefore compute tight bounds for triangular and other non-rectangular loops.

3.2 Data-Flow Analysis

The data flow analyses are run prior to the WCET calculation, and provide
information to deal with dynamic dispatch (receiver type analysis) and cycles
in the CFG (loop bound analysis). Both analyses are based on the techniques
described in [12], and operate directly on Java bytecode.

1 http://lpsolve.sourceforge.net/5.5/

http://lpsolve.sourceforge.net/5.5/

468 W. Puffitsch, B. Huber, and M. Schoeberl

Receiver Types. A receiver type analysis computes which types an object may
actually have. This is useful to reduce the pessimism that is introduced to the
WCET/WCHA analysis by virtual method calls. The term receiver refers to the
object which receives a message through the method call.

Our receiver type analysis take call strings into account and is similar to k-
CFA (“kth-order control-flow analysis”) [18]; a detailed description of the analy-
sis can be found in [17]. We acknowledge that techniques like the ones described
in [2] are more efficient than our approach. However, these techniques trade
precision for analysis time; the amount of pessimism introduced by this loss in
precision remains to be evaluated.

Loop Bounds. The loop bound analysis is based on an interval analysis that
computes an upper bound for the values integer variables may hold. It is aug-
mented with information whether a variable is only incremented or decremented.
From the value range of a loop variable and its possible increments/decrements,
it can be deduced how often a loop may be executed. As this analysis is not the
focus of this paper, please refer to [17] for details of the analysis.

A by-product of the loop bound analysis is that it also computes ranges for
array sizes. As the analysis computes ranges for all integer variables, it also
computes ranges for the values that are passed to newarray, anewarray, and mul-
tianewarray. The only necessary change in the analysis was to keep those ranges
available for further processing.

3.3 Execution Time Calculation

In addition to the high-level program analysis described above, the construc-
tion of a low-level timing model is necessary before calculating the WCET. The
low-level analysis provides a bound on the execution time of basic blocks, and
depends on the particular target platform.

Given the results of the low-level and high-level program analysis, an ILP
instance is generated, with variables corresponding to the edges in the CFGs.
The objective function for the ILP problem is obtained by summing up the cost
of all edges. The cost of an edge is the product of the edge’s frequency (a variable)
and the cost of executing the basic block the edge originates from. Finally, the
model is passed to an ILP solver, which calculates the edge’s execution frequency
on the worst-case path, as well as the WCET itself.

4 Heap Allocation Analysis

The WCHA analysis we propose is based on the WCET analysis described in
Sec. 3. Instead of using the execution time as cost function for the analysis, we
use the amount of memory a bytecode allocates. Apart from the cost function,
the problem to be solved for the WCHA is identical to the problem to be solved
for the WCET calculation. This implies that the infrastructure for calculating

Worst-Case Analysis of Heap Allocations 469

the WCET can be reused for calculating the WCHA. All path information ob-
tained from value and loop bound analysis and the information extracted from
annotations is available to the allocation analysis as well.

Obviously, most bytecodes do not allocate any memory. The amount of mem-
ory a new bytecode allocates is determined by the type it allocates. The size of
instances of that type are known at compile time, and can be obtained by adding
the sizes of all fields for a given class and its superclasses. When allocating arrays,
the allocation size is determined at runtime. The cost functions for bytecodes that
allocate data are detailed in Sec. 4.2. All other bytecodes have zero cost.

Note that we do not take into account the effects of garbage collection. Es-
pecially for multi-threaded applications, modeling the lifetime of data would
require taking into account also the timely behavior of the application and run-
time system, which is beyond the capabilities of the proposed technique.

In our analysis, we assume a “closed world”, i.e., the application must not
change during execution, and features like dynamic class loading are precluded.
This assumption is necessary, because we obviously cannot analyse unknown
code. However, our tool can handle virtual method calls; the cost of a call is the
maximum over all possibly invoked methods.

4.1 Array Size Bounds

To bound the maximum size of allocated arrays, the DFA has been extended to
provide array sizes at the allocation site. During the loop bound analysis, ranges
for all integer values have to be computed. As this also includes values on the
stack, the analysis has been extended to record bounds for array allocations.
When encountering a newarray or anewarray instruction, a mapping between the
allocation site and the value range for the array size is added to an allocation
bound table. For multianewarray instructions, the analysis must record multiple
ranges, to bound every level of the multidimensional array. When computing
the cost of an array allocation, the appropriate mapping is retrieved from the
allocation bound table.

If the analysis does not succeed in computing a bound, annotations have to be
provided by the programmer. An example for an array size annotation would be
arr = new int[n]; // @WCA size<=100, where the array is annotated to occupy
no more than 100 elements.

4.2 Object Layouts

When analyzing the WCET it is also necessary to include low-level details of
the processor in the analysis. Some of the low-level architecture details, such as
caches and branch predictors, are irrelevant for the WCHA analysis. However,
the analysis must take into account the object layout of the underlying JVM.

Figure 1 shows object layout variants that are used in JVMs with RTGCs.
White cells contain user data, while gray cells contain meta-information required
by the runtime system. Black cells denote memory which cannot be used due to
the object layout. The black cells are the result of internal fragmentation.

470 W. Puffitsch, B. Huber, and M. Schoeberl

handles heapstack

(a) Handles

stack heap

(b) Headers

stack heap

(c) Fixed Blocks

Fig. 1. Comparison of object layouts

In a RTGC, it is necessary to either defragment memory (by relocating ob-
jects) or to avoid unbounded fragmentation. In a handle-based layout (Fig. 1(a)),
a handle in a separate handle area points to the actual object. The handle area
does not need compaction, because the fixed length of the handles eliminates
fragmentation. Object relocation is simple, because only the indirection pointer
in the handle has to be updated. While the cost for an object is similar to a
header-based layout, it has to be taken into account that also the number of
allocated objects has to be bounded in order to fit the handle area.

A layout that incorporates header data (Fig. 1(b)) into the object eliminates
the indirection. However, when relocating objects, forwarding pointers have to
be followed. On average, such a layout speeds up object accesses, but in the
worst case, access times are similar to a handle-based layout due to the indirec-
tion through the forwarding pointer during object relocation. Such a layout also
complicates defragmentation, because all references in the objects and on the
thread stacks have to be updated to point to the new object location.

When using fixed block sizes for all allocations, external fragmentation can
be eliminated, albeit at the expense of internal fragmentation. Such a layout
is shown in Fig. 1(c). Objects that are too large to fit into a single block are
organized as linked list. Arrays are organized as a tree to achieve logarithmic
costs for accesses. Individual accesses may be more expensive than with the other
object layouts. However, when considering the whole system, this is alleviated
by the fact that no defragmentation is necessary.

4.3 Cost Functions

Different object layouts lead to different cost functions for the heap allocation
analysis. Object fields can be allocated packed or at word boundaries. Object
meta-data (e.g., object type, array size, . . .) can be organized differently to op-
timize for size or for speed. Furthermore, large objects can be split into constant
sized blocks to avoid heap compaction or to make object relocation interruptible.

In the following, F(o) are the fields of an object o, and Fk(o) is the k-th field
of object o (with indices starting at 1). With s(f) we denote the size of a field
f in bytes, and with a(f) the required alignment for the field f . For the total

Worst-Case Analysis of Heap Allocations 471

memory usage of an object o we write mu(o). To handle alignment requirements,
we define P (n, m) such that it pads the address n to a multiple of m.

P (n, m) =
⌈ n

m

⌉
m

S(n, f) returns the memory usage of an object after adding a field f to that
object at relative address n. For example, S(3, f) would evaluate to 8 for a
4-byte field f that requires alignment to 4-byte boundaries.

S(n, f) = P (n, a(f)) + s(f)

Handle-Based Layout. In a handle-based layout, header data is stored at the
handle site, while the payload is located in the remaining heap space. Together,
the handle and the payload must fit the total available memory. Furthermore,
it is necessary that the handle area is large enough for the handles, and the rest
of the heap is large enough for the object data.

The memory usage of an object can be computed with the following formulas:

muh(o) = s(handle)

mu0
f(o) = 0

muk
f(o) = S(muk−1

f (o),Fk(o)) k > 0

muf(o) = P (mu
|F(o)|
f (o), Afield)

mu(o) = mh(o) + muf (o)

We assume that handles are always aligned, and that any required padding
or unused fields are part of s(handle). Furthermore, the formulas assume that
object fields start at an address that never requires padding. The maximum
alignment for object fields is denoted by Afield. By padding the end of the user
data to such an alignment boundary, we ensure that the next object starts at
this boundary and its first field indeed does not require padding.

The equations for arrays are the same as for objects, except that arrays use
an array handle instead of a handle. The handle types can differ, because the
array handle must accommodate the size of the array and type information may
be treated differently.

When being interested in the overall memory consumption, mu(o) is the ap-
propriate cost function. When considering the handle area and the remaining
heap space separately, muh(o) and muf(o) provide the respective cost functions.

Layout with Header Data. Header data is located in the same place as the
payload. The memory usage can be computed as follows:

mu0(o) = s(header)

muk(o) = S(muk−1(o),Fk(o)) k > 0

mu(o) = P (mu|F(o)|(o), Aheader)

472 W. Puffitsch, B. Huber, and M. Schoeberl

Again, we assume that objects start appropriately aligned and add padding at
the end of the object as required. The equations for arrays are the same, except
that an array header is used instead of header.

Fixed-Block Layout. In the fixed-block object layout, the header data and
the start of the object are in the same block. If the header data and the payload
exceed the size of a single block, the object is split across several blocks. The
link to the next block may be located at the start or the end of a block, which
leads to slightly different equations for the memory usage computation. With B
we denote the size of a block; we assume that fields never require padding at the
beginning of a block.

Next Pointer at End of Block. If the pointer to the next block is located at the
end of a block, it must be checked whether the field and the next pointer fit the
current block when adding a field to an oject. The function Snext returns a value
greater than B if these two fields do not fit the current block.

Snext(n, f) = S(S(n mod B, f), next)

The function Sblock uses Snext to determine the actual memory usage when
adding field f at position n.

Sblock(n, f) =

{
S(n, f) if Snext(n, f) ≤ B

P (n, B) + S(0, f) if Snext(n, f) > B

Next Pointer at Beginning of Block. If the next pointer is located at the begin-
ning of a block, Snext and Sblock have a slightly different definition:

Snext(n, f) = S(n mod B, f)

Sblock(n, f) =

{
S(n, f) if Snext(n, f) ≤ B

P (n, B) + S(s(next), f) if Snext(n, f) > B

In this flavor of the fixed-block object layout, the next pointer must taken into
account for all blocks. This is especially true for the first block; the next pointer
for this block is considered as part of the object header.

Memory Usage of Objects. The memory usage for objects can be computed with
the following formulas:

mu0(o) = s(header)

muk(o) = Sblock(muk−1(o),Fk(o)) k > 0

mu(o) = P (mu|F(o)|(o), B)

The formulas are the same for both flavors of the fixed-block object layout; the
placement of the next pointer is already taken into account by Sblock.

Worst-Case Analysis of Heap Allocations 473

Memory Usage of Arrays. Arrays have a special header, that includes the size
of the array and depth of the tree representation. As all fields are the same size
and have the same padding requirements, we do not need to use a recursive
definition for the memory consumption. L(a) captures how many array fields fit
into a single block. N(a) is the number of blocks the array elements occupy. M
is the number of next pointers within an inner node of the tree representation.

L(a) =
⌊

B

s(F1(a))

⌋
N(a) =

⌈ |F(a)|
L(a)

⌉
M =

⌊
B

s(next)

⌋

depth(a) = logM (N(a))!
mu0(a) = s(array header)

mu(a) =

{
P (mu0(a), B) if |F(a)| = 0

P (mu0(a), B) +
∑depth(a)

i=0 B
⌈

N(a)
Mi

⌉
if |f(a)| > 0

5 Evaluation

To evaluate the heap allocation analysis, three benchmarks and two applications
are analyzed and the memory consumption is compared to measurements of the
five applications on the target JVM.Measurements cannot reliably capture the
the worst-case behavior; comparing the analysis results with measurements only
hints at bounds that might be overly pessimistic.

In order to compare our work with existing memory allocation analyses, we
use the JOlden benchmark suite [6], which was also used in [4,1]. We use the
subset of the benchmarks that does not require recursion and hence can be
analysed by our tool. The benchmarks were modified such that they do not
get their parameters via the command line arguments. We cannot compute a
worst-case bound for unknown input values and hence initialize the appropriate
variables internally. Where the DFA could not find loop bounds, we provided
manual annotations.

The first application we evaluate is based on the demo application presented
in [5].2 It emulates a multi-threaded financial transaction system, which must
react to market changes within a bounded amount of time. For the evaluation,
we chose the methods MarketManager.onMessage() and OrderManager.checkFor-
Trade(), both of which perform core functionality of the respective thread.

The application was adapted in three ways: First, the execution model of our
execution platform is closer to the thread model of safety-critical Java [7], than the
thread model of the RTSJ. The thread management therefore had to be reorga-
nized. Second, our platform does not support the libraries for receiving and trans-
mitting messages. This part had to be rewritten such that messages are read from
and sent to standard in- and output. Third, we used string buffers without auto-
matic resizing where suitable. The reasoning behind this is discussed in Sec. 5.3.
2 We thank Eric Bruno and Greg Bollella for open-sourcing this demo application. It

is available at http://www.ericbruno.com

http://www.ericbruno.com

474 W. Puffitsch, B. Huber, and M. Schoeberl

Table 1. Analysis and measurement results

Allocated Objects Allocated Words

Benchmark Method Analysed Measured Analysed Measured

MST MST.main() 242 221 501 459

Em3d Em3d.main() 814 805 11627 7298

BH Tree.createTestData() 464 464 1954 1954

Trading MarketManager.onMessage() 8 8 4104 2004

Trading OrderManager.checkForTrade() 35 29 7876 741

CDx Main.run() 197936 22907 590150 73841

The second application used for evaluation was extracted from the CDx bench-
mark for RTSJ [9]. The source code of the original benchmark is freely available.3

We analyze the real-time thread responsible for collisiondetection of airplanes.The
benchmark in its original form is unsuitable for WCET analysis, as it makes heavy
use of hash tables, which have poor worst-case performance. For heap allocation
analysis on the other hand, the benchmark is both challenging and, with a few
modifications, within the capabilities of our tool.

We first adopted the benchmark to meet the requirements of our target plat-
form. The recursive voxel intersection procedure, which needs large amounts of
stack space, was replaced by an efficient iterative version. The number of planes
and other constants were reduced to meet the memory restrictions of our embed-
ded system. For the analysis it was necessary to annotate some loops that use
iterator objects, as these are beyond the capabilities of our data flow analysis.

5.1 Results

The analysis results for the six benchmark methods is shown in Tab. 1. In order
to keep the pessimism within reasonable bounds, we used a modified version of
the Java development kit (JDK) suitable for real-time applications. It requires
to pass a maximum capacity for lists and maps in the constructor, and prohibits
on-demand reallocations, which cannot be handled by the analysis (see Sec. 5.3
for a discussion of the respective issues). Furthermore, the results for the trading
engine application were obtained under the assumption that input messages are
at most 1024 characters long. This is enforced by the input routines, but not a
constraint that is visible at the application level. For unbounded input messages,
the memory consumption of the trading engine would not be boundable.

Table 1 compares the results of the analysis with the results of a measurement;
the numbers in the last two columns of this table refer to the raw amount of
memory allocated by the application, excluding object meta-data. Results that
take into account the overhead of the object layout are discussed in the following
section.

3 http://adam.lille.inria.fr/soleil/rcd/

http://adam.lille.inria.fr/soleil/rcd/

Worst-Case Analysis of Heap Allocations 475

The figures in Tab. 1 show that the analysis yields relatively tight results for
some benchmarks, while introducing a considerable pessimism for others. One
reason for this pessimism is the fact that the measurement is not guaranteed to
actually trigger the worst case. Some of the pessimism is however introduced by
the analysis itself.

The three benchmarks from the JOlden benchmark suite are relatively simple
and their execution is independent from input data. The analysis can therefore
find reasonably tight bounds. The figures for the object count are tighter than
the figures for the memory consumption because array sizes are overestimated at
a few occasions. The pessimism for the object count is similar to the pessimism
reported in [4] for these benchmarks.

The analysis results for the MarketManager.onMessage() method are off by
a factor of around two. The method parses the input string for a name and
a price and updates the market price of a traded item accordingly. Although
the measurement was performed with a message that was designed to trigger as
much memory allocation as possible, the analysis fails to find tight bounds on
the string variables and assumes that all strings are 1024 characters long.

OrderManager.checkForTrade() shows considerably more pessimism. This is
mainly caused by conversions from numbers to strings. Within these conversions,
the analysis is not able to bound the length of the result string and assumes that
such strings are 1024 characters in size. It is notable that the number of objects
is overestimated by only about 20%, but the number of allocated words by about
an order of magnitude.

The heap allocations reported for the collision detector thread of the CDx

benchmark are relatively high. The main reason for the overestimation is that it
is difficult to find tight bounds for all collection sizes and loops in the benchmark,
and that our tool does not yet support context dependent manual annotations.
On the other hand, the benchmark showed that the analysis scales up for larger
programs, and helped us to identify many problematic language constructs which
complicate the analysis.

5.2 JVM Comparison

To compare the effects of different object layouts, we variated the cost function
for the WCHA analysis as described in Sec. 4.2. The results are shown in Tab. 2.
We assume 4 words for header data, and a blocks size of 8 words. We also include
the number of allocated objects in Tab. 2, as this number is crucial to correctly
dimension the handle area for a handle-based object layout.

As it is the case on our evaluation platform, the Java Optimized Processor
(JOP) [16], fields are always stored at word boundaries and do not require any
further padding. Due to the simple model for alignment requirements, a handle-
based layout and a header-based layout consume the same amount of memory.
The heap has to be large enough to fit the number of words given in the “Han-
dles/Headers” column. Similarly, the total memory consumption of a fixed-block
layout is provided in the “Blocks” column.

476 W. Puffitsch, B. Huber, and M. Schoeberl

Table 2. Analysis results for different object layouts

Allocated Words

Benchmark Method Objects Raw Handles/Headers Blocks

MST MST.main() 242 501 1469 2040

Em3d Em3d.main() 814 11627 14883 22776

BH Tree.createTestData() 464 1954 3810 5768

Trading MarketManager.onMessage() 8 4104 4136 4768

Trading OrderManager.checkForTrade() 35 7876 8016 9528

CDx Main.run() 197936 590150 1381894 1915336

For the handle-based layout, not only the total amount of memory must fit
the heap, but also the handle area has to be dimensioned correctly. The number
in the “Object Count” column times the handle size has to fit the handle area,
and the rest of the heap has to be large enough to fit the number of words given
in the “Raw” column.

When relating the total amount of allocated memory to the number of allo-
cated objects, the trading engine benchmarks differ considerably from the other
benchmarks. While the former allocate a few relatively large objects (mostly ar-
rays), the latter allocate many small objects. The overhead for the header data is
therefore considerably higher for these benchmarks than for the trading engine
benchmarks.

Using a fixed-block layout increases the memory consumption by 15 to around
50%, when comparing it to a simple header layout. A GC that uses such a layout
must be considerably more efficient in other areas to make up for this increased
memory consumption.

5.3 Programming Style

During the evaluation of the analysis, we encountered several times that rela-
tively simple operations resulted in seemingly excessive memory allocations. A
closer look at these operations revealed that this was due to the automatic resiz-
ing of data structures. Except for a few special cases, the analysis assumed that
such a resizing would always occur. For example, when appending characters to
a StringBuffer, the analysis assumed that the array to hold the actual characters
would be resized for each invocation of append(). Converting a float to a String
was reported to allocate several megabytes of memory, instead of a just few
dozen words. Similar effects were observed for other common data structures of
the Java library, such as ArrayLists.

Such situations can be circumvented in two ways. On the one hand, some
data structures exhibit more analysis-friendly behavior than others. For exam-
ple, adding an element to a LinkedList requires only the allocation of a single
list element. The drawback of this solution is that such data structures do not
always have the desired performance characteristics. On the other hand, it is

Worst-Case Analysis of Heap Allocations 477

sometimes possible to size the data structure upon allocation such that no resiz-
ing is necessary. However, this solution requires programmers to correctly predict
the sizes of data structures. We believe that further research is necessary to find
a suitable tradeoff between analyzable memory allocation and ease of use for the
respective data structures.

6 Conclusion

Bounds for the WCHAs of real-time tasks are needed to correctly size scoped
memories or to calculate the maximum period of the GC task. We have adapted
technologies from the WCET analysis field to analyze the heap allocations of
tasks. Instructions that allocate memory get a cost equivalent to the the size
of the allocated data structure. All other instructions have zero cost. Analyzing
the program with those costs gives the maximum memory allocation for a task
instead of its maximum execution time.

We have shown that our analysis can find reasonably tight bounds for mod-
erately complex programs. However, more realistic Java programs that are not
explicitly designed for real-time systems are hard to analyze and result in consid-
erable pessimism for the WCHA bounds. As future work we plan to investigate the
right Java based programming style for real-time applications. Furthermore, we
will investigate better analyzable replacements for library elements of the JDK.

References

1. Albert, E., Genaim, S., Gómez-Zamalloa Gil, M.: Live heap space analysis for

languages with garbage collection. In: ISMM 2009: Proceedings of the 2009 in-

ternational symposium on Memory management, pp. 129–138. ACM, New York

(2009)

2. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:

OOPSLA 1996: Proceedings of the 11th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, pp. 324–341. ACM,

New York (1996)

3. Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., Turnbull, M.: The Real-

Time Specification for Java. Java Series. Addison-Wesley, Reading (2000)

4. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric prediction

of heap memory requirements. In: ISMM 2008: Proceedings of the 7th international

symposium on Memory management, pp. 141–150. ACM, New York (2008)

5. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice

Hall PTR, Upper Saddle River (2009)

6. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked

data structures in java. In: PACT 2001: Proceedings of the 2001 International

Conference on Parallel Architectures and Compilation Techniques. pp. 280–291.

IEEE Computer Society, Washington (2001)

7. Henties, T., Hunt, J.J., Locke, D., Nilsen, K., Schoeberl, M., Vitek, J.: Java for

safety-critical applications. In: 2nd International Workshop on the Certification of

Safety-Critical Software Controlled Systems (SafeCert 2009). York, United King-

dom (March 2009)

478 W. Puffitsch, B. Huber, and M. Schoeberl

8. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft, P.

(ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

9. Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: Cdx: a family

of real-time java benchmarks. In: JTRES 2009: Proceedings of the 7th International

Workshop on Java Technologies for Real-Time and Embedded Systems, pp. 41–50.

ACM, New York (2009)

10. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit

path enumeration. In: LCTES 1995: Proceedings of the ACM SIGPLAN 1995

workshop on languages, compilers, & tools for real-time systems, pp. 88–98. ACM

Press, New York (1995)

11. Mann, T., Deters, M., LeGrand, R., Cytron, R.K.: Static determination of alloca-

tion rates to support real-time garbage collection. SIGPLAN Not. 40(7), 193–202

(2005)

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,

New York (1999)

13. Puschner, P., Schedl, A.: Computing maximum task execution times – a graph-

based approach. Journal of Real-Time Systems 13(1), 67–91 (1997)

14. Robertz, S.G., Henriksson, R.: Time-triggered garbage collection: robust and adap-

tive real-time GC scheduling for embedded systems. In: LCTES 2003: Proceedings

of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for em-

bedded systems, pp. 93–102. ACM Press, New York (2003)

15. Schoeberl, M.: Real-time garbage collection for Java. In: Proceedings of the 9th

IEEE International Symposium on Object and Component-Oriented Real-Time

Distributed Computing (ISORC 2006), pp. 424–432. IEEE, Gyeongju (April 2006)

16. Schoeberl, M.: A Java processor architecture for embedded real-time systems. Jour-

nal of Systems Architecture 54(1–2), 265–286 (2008)

17. Schoeberl, M., Puffitsch, W., Pedersen, R.U., Huber, B.: Worst-case execution time

analysis for a Java processor. Software: Practice and Experience 40(6), 507–542

(2010)

18. Shivers, O.: The semantics of scheme control-flow analysis. In: PEPM 1991:

Proceedings of the 1991 ACM SIGPLAN symposium on Partial evaluation and

semantics-based program manipulation, pp. 190–198. ACM, New York (1991)

19. Siebert, F.: Hard Realtime Garbage Collection in Modern Object Oriented Pro-

gramming Languages. aicas Books (2002) ISBN: 3-8311-3893-1

20. Unnikrishnan, L., Stoller, S.D., Liu, Y.A.: Automatic accurate stack space and

heap space analysis for high-level languages. Tech. Rep. 538, Indiana University

(April 2000)

21. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)

Partial Flow Analysis with oRange

Marianne de Michiel, Armelle Bonenfant, Clément Ballabriga,
and Hugues Cassé

Université de Toulouse, Institut de Recherche en Informatique de Toulouse (IRIT)
{michiel,bonenfant,ballabri,casse}@irit.fr

Abstract. In order to ensure that timing constrains are met for a Real-
Time Systems, a bound of the Worst-Case Execution Time (WCET) of
each part of the system must be known. Current WCET computation
methods are applied on whole programs which means that all the source
code should be available. However, more and more, embedded software
uses COTS (Components ...), often afforded only as a binary code. Par-
tialisation is a way to solve this problem.

In general, static WCET analysis uses upper bound on the number
of loop iterations. oRange is our method and its associated tool which
provide mainly loop bound values or equations and other flow facts in-
formation. In this article, we present how we can do partial flow analysis
with oRange in order to obtain component partial results. These par-
tial results can be used, in order to compute the flow analysis in the
context of a full application. Additionally, we show that the partial anal-
ysis enables us to reduce the analysis time while introducing very little
pessimism.

1 Introduction

Critical hard real-time systems are composed of tasks which must imperatively
finish before their deadline. Static WCET analysis is performed by a timing anal-
ysis tool which needs loops upper bounds. Such bounds may be given by manual
annotations of programs or automatic evaluation. All feasible paths through the
program have to be studied in order to extract some flow information which is
used to statically bound the number of times loops are iterated.

Several approaches have been proposed in Flow Analysis about loop bounds
[2,3,7,8,9,10,11,13].

The current WCET computation methods are designed to be used on a whole
program. However, there are some drawbacks to this approach. First, the anal-
yses used for WCET computation usually run in exponential time with respect
to the program size. Second, when the program to analyze depends on exter-
nal components (e.g. Components Off The Shelf (COTS) or libraries) whose
sources are not available, the lack of information about the components pre-
vents the WCET computation if information from the user is requested (and
not provided). Partial analysis becomes then crucial to improve the time needed
to compute WCET and more important the computation of the WCET itself.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 479–482, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

480 M. de Michiel et al.

This article presents how partial analysis is possible with oRange, our tool
which calculates upper bounds of loops in C programs. In section 2, we present
the partial analysis . Section 3 compares classical and partial analysis provided
by oRange. Finally, Section 4 gives our conclusions.

2 Partial Analysis

oRange[12] combines a) loop bound expression building of C program as in [7]
with b) abstract interpretation as in many previous works [9,10,11,13]. It is used
by OTAWA1[1] in order to obtain loop bounds expressions total and maxi. For a
loop Li, totali represents the total number of iterations in the overall execution
of the program and maxii represents the maximum number of iterations for each
loop startup.

2.1 Description

A partial result: When partialising a function, we build what we call a partial
result. It is a pair made of a tree representing loop and function calls included in
the partialised function and an abstract store2 which contains the assignments of
the non local variables (global, static variables and parameters being modified by
the function). The tree is a parametric flow fact, it is instantiated with the call
context in the full analysis. The abstract store is used to evaluate the impact of
the function on the rest of the application. These two results are called summaries
of the function.

Usage of a partial result: A partial result can be used to build either a partial
result of another function, or a complete analysis. The pair of the partial result
is combined with the caller context: the abstract store representing the caller
context is instantiated with the tree and composed with the abstract store of
the partial result.

Partial analysis and pessimism: The number of times we cannot determine if a
branch is executed or not is higher in partial analysis because we know less of
the context. Thus, we have to take into account the two possible branches and
usually add indeterministic results. This leads to pessimism, but is only effective
if the loop iteration number depends on at least a variable in an alternative
branch.

2.2 Automatization

It is possible to choose manually functions to be partialised. We can also do
an automatic partialisation. There are two options: a pessimistic option which
1 oRange is integrated in the OTAWA tool chain dedicated to WCET computation.
2 A set which maps each variable of the execution state to an expression which can

depend on the input of the instruction (i.e. preceding instructions).

Partial Flow Analysis with oRange 481

improves time computation by choosing to partialise large functions. The second
option partialises only non-pessimistic functions. In order to automatize, we first
select functions regarding the options. Potentially partialised functions are then
classified according to their nesting level.

We define an internal weight which depends on the number of internal function
calls, the weight of the function called, the number of assignments in loops, the
assignments of in and out parameters. We then obtain a total weight depending
on the imbrication level, the frequency of call of the function, the number of
nested loops in the function... During partialisation, the total weight of a function
can be re-evaluated.

Depending on its internal, total weight and the option chosen, functions are
potentially partialisable.

Levels are determined by the imbrication level of inside function calls where
functions are either partialisable themselves or not.

3 Results

In table 1 we present a comparison between classical full and partial analysis on
the debie application (WCET’07 challenge[5]) and its functions/sub functions.
Experiment has been done on a Core2 Duo Processor T7200 2GHz.

Table 1. Classical versus Partial Analysis

Classical Partial
Program LC LN % of B time C % of B time partialisation
class 2 2 100% 15.885s 6 100% 14.529s none
hw_if 3 3 66% 16.037s 16 66% 14.481s none
measure 12 6 25% 26.394s 124 25% 25.062s none
tc_hand 9 4 78% 6m42.573s 127 78% 1mn24.861s 2(2 levels)
harness 2379 43 >11h 50171 87% 46mn50.068s 55 (8 levels)
telem 4 4 50% 15.981s 9 50% 14.677s none
health 85 11 86% 92m12.706s 1344 86% 28.014s 11(8 levels)
debie 2390 1 >11h 50269 88% 47mn3.728s 56 (11 levels)

LC : number of loop calls from any file
LN : number of loops directly into the file
B: number of loops bounded
%B: % of B according to LC

C: number of function calls

Thanks to partialisation, there is a real gain of time computation. Fortunately,
the number of loops bounded is identical or greater.. In termof pessimism, tc_hand
and health could have obtain less accurate loop bounds because of partialisation,
but in these cases loopbounds do not dependonalternative branches for these cases
(see 2.1). In most cases, we think partialisation introduces pessimism.

482 M. de Michiel et al.

4 Conclusion

oRange, which computes flow facts information (especially loop bounds), can be
used to obtain partial results of functions and can use them. The main achieve-
ment of our approach is that partial evaluation may be processed for a function
independently of any call, partial results are then combined with each call con-
text in a complete evaluation. Experimental results show that the computing
time to get the flow facts can be greatly improved. oRange automatic analysis
supports options allowing pessimism reduction.

One of the main usage of partialisation is to obtain COTS summaries and to
be able to use them without analyzing the entire library as we have done in [6].
This study has been partially funded by the European Community under the
Merasa [4] project.

References

1. Otawa, http://www.otawa.fr
2. Bound-t tool (2005), http://www.tidorum.fi/bound-t/
3. ait tool (2007), http://www.absint.com
4. Merasa (2007), http://ginkgo.informatik.uni-augsburg.de/merasa-web/
5. Wcet project (2007), http://www.mrtc.mdh.se/projects/wcet/
6. Ballabriga, C., Cassé, H., De Michiel, M.: A generic framework for blackbox com-

ponents in wcet computation. In: 9th Intl. Workshop on Worst-Case Execution
Time Analysis, WCET 2009, Dublin, Ireland (2009)

7. Coffman, J., Healy, C.A., Mueller, F., Whalley, D.B.: Generalizing parametric tim-
ing analysis. In: Pande, S., Li, Z. (eds.) LCTES, pp. 152–154. ACM, New York
(2007)

8. Cullmann, C., Martin, F.: Data-flow based detection of loop bounds. In: 7th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, Pisa, Italy (2007)

9. Ermedahl, A., Sandberg, C., Gustafsson, J., Bygde, S., Lisper, B.: Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In: 7th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, Pisa, Italy (2007)

10. Kirner, M.: Automatic loop bound analysis of programs written in c. Master’s
thesis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria (2006)

11. Lokuciejewski, P., Cordes, D., Falk, H., Marwedel, P.: A fast and precise static loop
analysis based on abstract interpretation, program slicing and polytope models. In:
Cgo 2009: Proceedings of the 7th International Symposium on Code Generation
and Optimization, Washington, DC, USA (2009)

12. De Michiel, M., Bonenfant, A., Cassé, H., Sainrat, P.: Static loop bound analysis
of c programs based on flow analysis and abstract interpretation. In: RTCSA, pp.
161–166. IEEE Computer Society, Los Alamitos (2008)

13. Prantl, A., Knoop, J., Kirner, R., Kadlec, A., Schordan, M.: From trusted anno-
tations to verified knowledge. In: Holsti, N. (ed.) WCET. Dagstuhl Seminar Pro-
ceedings, vol. 09004, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
(2009)

http://www.otawa.fr
http://www.tidorum.fi/bound-t/
http://www.absint.com
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://www.mrtc.mdh.se/projects/wcet/

Towards an Evaluation Infrastructure
for Automotive Multicore Real-Time

Operating Systems

Jörn Schneider and Christian Eltges

Dept. of Computer Science

Trier University of Applied Sciences

Trier, Germany

{j.schneider,c.eltges}@fh-trier.de

Abstract. The automotive industry is on the road to multicore and
already included supporting features in their AUTOSAR standard, yet

they could not decide for a multicore resource locking protocol. It is

crucial for the future acceptance and possibilities of multicore systems to

allow for informed decisions on this topic, as it immediately impacts the

inter-core communication performance and thereby the value-cost ratio

of such systems. We present the design of a real-time operating system

simulator that allows to evaluate the different multicore synchronisation

mechanisms of the real-time research community regarding their fitness

for automotive hard real-time applications. You can reuse the key design

idea of this simulator for any simulation based tool for the early timing

evaluation of different real-time mechanisms, e. g. scheduling algorithms.

1 Problem

A challenging application area for multicore systems are hard real-time systems
in cars, e. g. electronic control units for airbags, electronic stability control, and
driver assistance systems. The automotive industry recently released the speci-
fication of a first multiprocessor real-time operating system (RTOS) as part of
the AUTOSAR standard [1]. The concept specifies a partitioned system with
tasks and interrupt service routines statically mapped to cores. Each core runs
a fixed priority scheduler for its particular task set and tasks can be activated
across cores. Transferring data is based on sharing memory between cores.

But how can this be done without deadlocks, priority inversion and unbounded
remote blocking? Traditionally, resource locking protocols are used in real-time
systems to achieve this. In the automotive domain the immediate ceiling priority
protocol (referred to as OSEK Ceiling Priority Protocol) is readily available in
any OSEK or AUTOSAR compliant RTOS. Yet, this works for uniprocessor
systems only.

The responsible AUTOSAR subcommittee, which was then headed by the first
author of this paper, initially planned to introduce a multicore resource locking
protocol for this release of the operating system specification. However, it turned

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 483–486, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

484 J. Schneider and C. Eltges

out that this goal was too ambitious given the short deadline for AUTOSAR re-
lease 4.0. The requirements document [2] still reflects the ambitious goal, yet the
specification itself clearly changed in this regard after the responsible person for
the topic changed. AUTOSAR release 4.0 lacks a multiprocessor synchroniza-
tion mechanism that is suitable for hard real-time systems — only spin locks are
supported.

One reason for this shortcoming is that it is unclear which resource lock-
ing approach is most suited to fulfil the requirements of the industrial practice.
Clearly, the performance impact plays a central role here. Investigating this im-
pact requires to look at two aspects. First, the blocking behaviour and second the
implementation overhead. The former one depends on the resource locking char-
acteristics of the application in combination with the particular resource locking
protocol. The quantity of the latter additionally depends on the chosen reali-
sation of the resource locking protocol within the RTOS. Naturally, the timing
aspects of the chosen protocol might seriously impact the communication effi-
ciency. Because the main value of multicore systems for the automotive domain
lies in its better cost-performance ratio, the timing behavior of the cross-core
communication is crucial for the adoption of the new hardware concepts.

The automotive industry cannot afford to go through the painful process of
implementing different resource locking protocols, applying them in various prod-
ucts, and making enough experience to differentiate good from bad approaches.
We designed a dedicated simulator to address this problem.

2 The Proposed Simulator

The key design idea that distinguishes our simulator from similar approaches is
to consequently separate the two concerns simulated functionality and simulated
time. In other words, if you specify a new mechanism to be simulated, e. g. a
resource locking concept, you have to specify the algorithm and its temporal
behaviour separately. You might think that this is an unnecessary and cumber-
some complication. But it even reduces your workload, if you use the simulator
for the intended purpose.

When considering the basic functionality of resource locking protocols (or real-
time operating systems as a whole) it becomes quite evident that there are a lot
of fundamental operations that need to be performed regardless of the specific
version. For instance, when deciding which task is to run next, it is in most cases
necessary to pick the task with the highest priority. Various implementations of
the operation identify highest priority task are possible, yet the result is always
the same. However, the timing might be completely different. When you use our
simulator you can simply take a provided library function getHighestPriorityJob
and specify the timing behaviour of the particular implementation you have in
mind without even implementing it (see Listing 1.3 and 1.4 below for examples).
To compare two RTOS A and B with compatible APIs but different implemen-
tations you just bind the corresponding timing functions to the API functions
for each simulation run.

Towards an Evaluation Infrastructure for Automotive Multicore RTOS 485

We believe that the idea to separate simulated functionality and simulated tim-
ing can be widely reused in simulation based tools for the early timing evaluation
of different real-time mechanisms, e. g. scheduling algorithms. As we conjecture
this makes such tools much more usable for different research groups to compare
their approaches on equal terms.

Our simulator allows to define tasks in an abstract language (instead of C
code). The only things to be specified in this language for a given task are the
scheduling relevant calls to API-functions and sections of the task that, from a
scheduling point of view, just consume time. An example that shows this idea
can be seen in Listing 1.1. It defines a task that executes some calculations that
do not influence the scheduling (denoted by the time x; expressions) and locks
a resource RES 1 for 5000 processor cycles.

Listing 1.1. Definition of a task

Task t1 = do {

time 10000;

GetResource RES_1;

time 5000;

ReleaseResource RES_1;

time 3000;

TerminateTask ;

}

Internals of API-calls can be specified with the help of basic functions. These
are the minimal building blocks of the simulator language. Listing 1.2 gives an
example API-call implementation using basic functions, like getHighestPriority-
Job and setState.

Listing 1.2. Definition of an API-call

TerminateTask = do {

setState currentJob SUSPENDED ;

j <- getHighestPriorityJob ;

dispatch j;

}

To compare different protocols, the execution times of the basic functions are
specified via timing functions for each protocol. When the simulator executes a
basic function, it calculates the number of cycles via the corresponding timing
function.

This makes it possible to have different timing functions that simulate differ-
ent implementations, without reimplementing the basic functions. For example,
consider the getHighestPriorityJob function. The priority queue could be imple-
mented as an unsorted list or as a sorted list. In the first case, getting the highest
priority job would take O(n) steps, in the second case it would take O(1) steps.
Examples are given in Listing 1.3 and Listing 1.4.

Listing 1.3. Timing function for linear runtime

linearTimeOfGetHighestPriorityJob

return 10 + 5 * length(readyQueue)

486 J. Schneider and C. Eltges

Listing 1.4. Timing function for constant runtime

constTimeOfGetHighestPriorityJob

return 10

Note that timing functions can use the complete state of the simulated code to
derive the proper execution time for each calling context. This feature is used in
Listing 1.3 to consider the current length of the ready queue.

3 Related Work

A multitude of simulators for different purposes were implemented by research
groups or companies. Naturally we did not investigate all of them and the ones
we investigated were usually different in many important aspects, like timing
granularity and so on. None of them seems to follow our concept of consequently
separating the two concerns simulated timing and simulated functionality. At
least one simulator nevertheless should be mentioned here. RTSSim [3] is closely
comparable with our work, it has an even broader scope regarding its intended
usage. The key differences are that we use an abstract language instead of C,
that we support multicore, and that our approach consequently separates the
two concerns timing and functionality.

4 Conclusion

We presented the design of a novel simulator for the specific purpose of evaluat-
ing multicore resource locking protocols for their fitness to be used by industry
in automotive electronic control units. The key idea to separate functional real-
isation from simulation time is one that, as we believe, is well suited to be used
in many simulation approaches in the field of timing analysis. We hope that the
final simulator as well as the simple idea of separating function and timing will
be (re-)used in the research community.

References

1. AUTOSAR release 4.0 — Specification of Multi-Core OS Architecture (December

2009), http://www.autosar.org/download/R4.0/AUTOSAR_SWS_MultiCoreOS.pdf

2. AUTOSAR release 4.0 — Requirements on Multi-Core OS Architecture (November

2009), http://www.autosar.org/download/R4.0/AUTOSAR_SRS_MultiCoreOS.pdf

3. Kraft, J.: RTSSim - a simulation framework for complex embedded systems. Tech-

nical Report, Mälardalen University (March 2009),

http://www.mrtc.mdh.se/publications/1629.pdf

http://www.autosar.org/download/R4.0/AUTOSAR_SWS_MultiCoreOS.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SRS_MultiCoreOS.pdf
http://www.mrtc.mdh.se/publications/1629.pdf

Context-Sensitivity in IPET for
Measurement-Based Timing Analysis�

Michael Zolda1, Sven Bünte1, and Raimund Kirner2

1 Institute of Computer Engineering

Vienna University of Technology, Austria

{michaelz,sven}@vmars.tuwien.ac.at
2 Department of Computer Science

University of Hertfordshire, Hatfield, United Kingdom

r.kirner@herts.ac.uk

Abstract. The Implicit Path Enumeration Technique (IPET) has be-
come widely accepted as a powerful technique to compute upper bounds

on the Worst-Case Execution Time (WCET) of time-critical software

components. While the technique works fine whenever fixed execution

times can be assumed for the atomic program parts, standard IPET does

not consider the context-dependence of execution times. As a result, the

obtained WCET bounds can often be overly pessimistic.

The issue of context-dependence has previously been addressed in the

field of static timing analysis, where context-dependent execution times

of program parts can be extracted from a hardware model. In the case

of measurement-based execution time analysis, however, contexts must

be derived from timed execution traces.

In the present extended abstract we present an overview of our work

on the automatic detection and exploitation of context dependencies

from timed execution traces.

1 Introduction

The well-known IPET approach [3,2] provides a scheme for formulating the prob-
lem of determining a WCET estimate of a software component as an integer
linear programming (ILP) [1] problem. Working on the level of the control flow
graph (CFG), the method introduces variables for the execution count of each
block, as well as for each control flow edge between blocks. These variables are
subject to linear constraints that can exclude some (but not all) infeasible control
flow through the CFG. Assuming the availability of a fixed local upper WCET
bound for each individual block, the determination of an upper bound of the
� The research leading to these results has received funding from the IST FP-7 research

project ”Asynchronous and Dynamic Virtualization through performance ANalysis

to support Concurrency Engineering (ADVANCE)” and the Austrian Science Fund

(Fonds zur Förderung der wissenschaftlichen Forschung) within the research project

“Formal Timing Analysis Suite of Real-Time Systems” (FORTAS-RT) under con-

tract P19230-N13.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 487–490, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

488 M. Zolda, S. Bünte, and R. Kirner

global WCET is reduced to the problem of maximizing the cost-weighted sum
of execution counts over all blocks.

When we want to use IPET in practice, two important problems emerge. Both
of them can be traced back to the fundamental assumption of a fixed local upper
WCET bound for each individual block. They are:

1. How to determine the required local WCET bounds on a real processor that
contains highly unpredictable hardware components, like caches, pipelines,
branch predictors, out-of-order execution, etc.?

2. How to overcome the high pessimism introduced by using a single local
WCET bound for each block, even for those blocks that show a broad spec-
trum of different execution times, the maximum of which possibly occurring
only in very special situations?

As the creation of accurate, precise, and effective formal analyses of the behavior
of modern microprocessors has become a highly complex and time-consuming
task, measurement-based timing analysis (MBTA) has been proposed as a quick,
effective, and easily deployable complementary approach.

MBTA allows for the derivation of empirical local WCET estimates from
an elaborate choice of representative execution traces. Once such local WCET
estimates have been determined for each block, they can be directly used as
block costs in an IPET problem.

2 Context-Dependent Execution Times

We are currently working on a method for extending IPET to distinguish between
different block execution times, based on empirically determined correlations
with the blocks execution history and future.

Figure 1 illustrates the settings of our approach from a bird’s eye view.
Our rationale is that the execution time of a block can show both, backward

and forward dependencies, with respect to the execution traces.
Backward dependency is the more prominent case, where the execution time

of a block depends on the concrete execution history. This is easily exemplified
by the distinction of execution times of a block in the presence of a cold vs.
a warm instruction cache: In a simple setting, a certain block might be absent
from the instruction cache during the first iteration of a loop, but present during
all subsequent iterations. A distinction of execution times of the block can then
be based on whether the loop body is entered via the back edge, or from outside.

Our archetype for a forward dependency concerns the execution time of con-
ditional jumps: The execution time of such a jump can depend on whether the
jump condition is true or false. Because the jump condition controls the subse-
quent flow of control, we observe an apparent dependency of a block’s execution
time on its execution future (a circumstance that might seem counterintuitive
at first thought).

It is infeasible and impractical to consider all possible dependencies of the
execution time of a block on its concrete execution traces. Also, we have to

Context-Sensitivity in IPET for Measurement-Based Timing Analysis 489

Coverage
Metric

Input Data Flow Graph

Source Code

Executable

Graph Structure
Constraints

Loop Bounds &
Flow Facts

IPET Problem

User Annotation

Infeasible Paths

Segment
Flow Facts Timed Traces

History / Future
Contexts

Dependent
Execution Times

Segments

Seg. Structure
Constraints

Objective
Function

WCET Estimate

Fig. 1. Pieces of information used in the generation of a context-sensitive IPET prob-
lem. The highlighted pieces of information in the center represent our present state

of research: Timed traces are obtained from runs of the software executable on the

target hardware and dependent block execution times are extracted. Considering the
possible flows in the software flow graph, suitable history / future contexts are derived
that separate the different execution times of each block. These contexts can be easily

mapped to graph segments (structural clusters of paths). It is then easy to derive seg-
ment structure constraints that model the control flow through each segment. Also, a
new objective function is derived that consists of the cost-weighted segment execution
frequencies. Adding the usual graph structure constraints, which can be derived auto-
matically from the flow graph, the necessary loop bounds, and possibly additional flow
facts, the context-sensitive IPET problem is derived.

consider a method to integrate such a distinction into IPET. In our approach,
we therefore consider a subset of dependencies that we consider particularly
interesting and apt to allow a reduction of the pessimism introduced by IPET.

490 M. Zolda, S. Bünte, and R. Kirner

3 Evaluation

To assess our approach, we used the following experimental setup: We analyzed
1000 traces obtained from running a slightly modified version of the bsort100
benchmark from the Mälardalen WCET suite. The modifications of the bench-
mark consisted of reduction of the input array to 15 elements and code refor-
mating for technical reasons. The program was compiled using GCC for the
TriCore 1796 processor without optimization. Our second benchmark was a
core routine of an elevator control application. To generate the input data we
used a mixed approach of systematic block coverage via model checking and a
pseudo random data generation. The traces were recorded using a Lauterbach
Power Trace device.

To estimate the overestimation introduced by IPET, we used the difference be-
tween the IPET result and the longest observed end-to-end execution time over
all generated traces. Comparing the results of our context-sensitive approach
with those of standard IPET, the experiments showed a marginal improvement
for the (tiny) bsort100 benchmark. For the second benchmark, the overestima-
tion was reduced by 8%.

4 Conclusion and Outlook

We have presented our approach towards using context-dependent execution
time measurements to reduce the pessimism in IPET, introducing history / fu-
ture sensitivity. We have also presented first results that show that our approach
can in fact help to reduce IPET pessimism in a experimental setting. The details
of the approach shall be presented in a full paper.

To improve the effectiveness of our approach, we are currently working on the
following two aspects1:

Firstly, the separation of contexts by history / future relies on the availability
of a suitable set of timed execution traces. To this end, we are currently working
on suitable coverage metrics and input-data generation methods.

Secondly, to exploit the full potential of context separation, it will be necessary
to derive additional flow facts that restrict the possible combinations of contexts.
With respect to this aspect, we are currently pursuing a method to extract such
constraints from control flow paths that are known to be infeasible.

References

1. Chvátal, V.: Linear programming. W.H. Freeman, New York (1983)

2. Li, Y.T.S., Malik, S.: Performance Analysis of Embedded Software Using Implicit

Path Enumeration. In: DAC 1995: Proceedings of the 32nd annual ACM/IEEE

Design Automation Conference, pp. 456–461. ACM, New York (1995)

3. Puschner, P.P., Schedl, A.V.: Computing maximum task execution times - a graph-

based approach. Real-Time Systems 13(1), 67–91 (1997)

1 In Figure 1, the corresponding pieces of information are marked by a dashed borders.

On the Role of Non-functional Properties in
Compiler Verification

Jens Knoop1 and Wolf Zimmermann2

1 TU Wien, Institut für Computersprachen,

A-1040 Wien, Austria

knoop@complang.tuwien.ac.at
2 Martin-Luther Universität Halle-Wittenberg, Institut für Informatik,

D-06099 Halle/Saale, Germany

zimmer@informatik.uni-halle.de

Abstract. Works on compiler verification rarely consider non-functional
properties such as time and memory consumption. This article shows

that there are situations where the functional correctness of a compiler

depends on non-functional properties; non-functional properties that are

imposed by the target architecture, not the application. We demonstrate

that this demands for an extended new notion of compilation correctness.

1 Motivation

Functional compilation correctness is informally most commonly considered se-
mantics preservation between source and target program up to deviations due
to resource limitations of actual hardware. This notion of correctness has been
formalized and made precise in projects on compiler verification such as ProCoS
[4] and Verifix [3]. Along these formalizations, compilation correctness essentially
boils down towards an appropriate simulation relation between the (binary) tar-
get program and the (high-level language) source program up to possible resource
limit violations. While intuitive, this notion of compilation correctness does not
consider compiler-influenced non-functional properties such as performance and
resource utilization, especially time and memory consumption. In fact, the clas-
sical notion of compiler correctness is blind wrt non-functional properties.

In this article, we argue that this classical notion of compiler correctness is of-
ten too close. We demonstrate this with a practically relevant example: The com-
pilation for programmable logic controllers (PLC). PLCs follow the control-loop
paradigm, i.e., PLCs execute programs iteratively within cycles of a predefined
fixed time length. Program portions whose execution has not not been completed
at the end of a cycle are skipped. This introduces timing constraints that are not
imposed by the application but by the PLC hardware, which makes the straight-
forward establishing of a simulation relation as required by the classical notion
of compilation correctness insufficient. Functional compiler correctness depends
in this scenario on adherence to non-functional properties imposed by the tar-
get architecture making them first-class citizens for compiler correctness. In this

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 491–495, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

492 J. Knoop and W. Zimmermann

article, we demonstrate this in detail. It shows the need for an enhanced and
extended notion of compiler correctness that in addition to functional properties
also takes non-functional properties into account.

2 Classical Compiler Correctness

The notion of compiler or translation correctness is often defined as refinement of
programming language constructs. In particular each state transition defined by
a source language concept (e.g. a conditional statement) must be implemented in
exactly the same way by the target machine. Although this is not important for
the purpose of this article, it is worth noting that this may forbid some global or
interprocedural optimizations. The detailed definition of the notion of compiler
correctness took in Verifix longer than expected as extensively discussed in [3].
Nowadays, the notion of compiler correctness is based on operational semantics
of the programming language and the target languages, respectively.

For this article, we assume that an operational semantics is given by a state
transition system. A state transition system is a triple (Q, I,→) where Q is
the (possibly infinite) set of states, I ⊆ Q is the set of initial states and →⊆
Q×Q is the state transition relation. An operational semantics of a programming
language L assigns to each program π ∈ L a state transition system �π�. An
execution of π is a finite or infinite sequence of states 〈qi|i ∈ {j|0 ≤ j < k}〉,
k ∈ N ∪ {∞} such that qi−1 → qi for 1 ≤ i < k and q0 ∈ I.

From the viewpoint of a compiler user, only the input/output relation of the
program is of interest. Each program has such an interaction with an environ-
ment which we call observable behaviour. The observable behaviour of a program
consists only of the observable states and state transitions between them induced
by the more fine semantics. Compiler users usually only require that the target
program preserves the observable behaviour of the source program.

q

q’

n1

0 1

0

q’ q’

qq

n

φ φ

I/O I/O

I/O

I/O

I/O

φ

σ

τ
I/O I/O

I/O

Fig. 1. Preservation of Observable
Behaviour

Since usually machine resources are limited
while it is easy to write e.g. Java programs
that would consume more than 10TByte
memory, the target programs may exception-
ally stop because of memory overflow. In
Verifix, we therefore came up with the fol-
lowing notion of correctness: Let τ be a
program of the target language with the ob-
servable behaviour (I, Q,→) and σ be a pro-
gram of the source language with observable
behaviour (I ′, Q′,→′). τ preserves the observ-

able behaviour of σ up to resource limitations iff there is a relation φ ⊆ Q × Q′

such that for any finite or infinite sequence q0 → q1 → · · · of τ with q0 ∈
I, q1, q2, . . . ∈ Q there is a finite or infinite sequence of states q′0 → q′1 → · · · of σ
with q′0 ∈ I ′ and qiφq′i for all i except possibly for the last state (if the sequence
of observable states of τ is finite). This means that τ halts with violation of
resource limitations (cf. Fig. 1). The preservation of observable behaviour up to

On the Role of Non-functional Properties in Compiler Verification 493

resource limitations is transitive and therefore can be applied stepwise for the
different phases in a compiler.

Next we apply this classical notion of compiler correctness to PLCs and discuss
immediate consequences. Surprisingly, the traditional way to look at embedded
systems does not work, i.e., to first ensure functional correctness and to then
consider non-functional constraints such as timing conditions. For PLCs it turns
out that compiler correctness must include timing constraints from the very
beginning as they are imposed by the hardware, not the application.

3 Compiler Correctness for PLCs

Programmable Logic Controllers (abbr. PLCs) are the dominating devices in
today’s industrial automation systems. The programming of PLCs follows the
International Standard IEC 61131-3 that specifies the programming languages.
They are rather popular among engineers because of their predictable timing
behaviour. Fig. 2 shows the behaviour of a PLC. A PLC-program is iterated
infinitely often and implements the control-loop paradigm. At the beginning of
each iteration an input phase reads sensor data into the memory of the PLC.
Then the PLC-program is executed, and at the end of the iteration an output
phase writes some memory cells into actors.

Input P
hase

O
ut

pu
t P

ha
se

Computation

Fig. 2. Execution of pro-

grams in PLCs

At first glance, there seems nothing special in
proving compiler correctness if the target is a PLC.
However, a special feature of PLCs is that the execu-
tion of the PLC-program is stopped if a certain time
limit (specified by the hardware) has been reached
and the next iteration starts again the program.

This behaviour of skipping the execution of pro-
gram portions on reaching the cycle deadline has
implications on the correctness of compilers (as e.g.
compilers for Structured Text into Instruction List).

For compilers for PLCs we thus need an addi-
tional requirement for the notion of correctness:
Let t be the cycle time, τ be a PLC-program of
the target language with the observable behaviour
(I, Q,→) and σ be a PLC-program of the source

language with observable behaviour (I ′, Q′,→′) such that states contain time
and state transitions an increment of time which allows to define the WCET in
terms of elapsed time for possible sequences of state transitions. τ preserves the
observable behaviour of σ up to resource limitations iff

i. the worst-case execution time of τ is at most t and
ii. there is a relation φ ⊆ Q × Q′ such that for any finite or infinite sequence

q0 → q1 → · · · of τ with q0 ∈ I, q1, q2, . . . ∈ Q there is a finite or infinite
sequence of states q′0 → q′1 → · · · of σ with q′0 ∈ I ′ and qiφq′i for all i except
possibly for the last state (if the sequence of observable states of τ is finite).

494 J. Knoop and W. Zimmermann

Hence, the notion of compiler correctness for compilers for PLCs depends on the
non-functional property execution time. This situation is different to the general
situation in embedded systems when general purpose processors are used. The
functional correctness of a compiler does not depend on the execution time, only
the correctness of the application may depend on execution times. The reason for
this difference is that in PLCs the functional behaviour of the target machine
depends on the execution time while this is not the case for general purpose
processors.

4 Related Work and Conclusions

Correctness of compilers was first considered by McCarthy and Painter [6]. They
discussed the compilation of arithmetic expressions. There are a number of works
using denotational semantics, e.g. [8,9]. Other works use the approach of refining
language constructs, e. g. [4,7,10], or structural operational semantics, e.g. [1].
More recent works [11,5] use a similar notion of correctness as described in this
article (although most of them do not consider resource limitations). Glesner et
al. considered correct compilers for embedded systems [2]. However, we are not
aware of works that consider correct compilation for PLCs as target systems.

In this article we have shown that for PLCs the notion of compiler correct-
ness cannot be based just on a simple simulation relation because the iteration
in cycles stops the execution of the program when the cycle time is reached.
This shows that non-functional properties can play a surprising and essential
role in compiler verification. They are not only needed e.g. to ensure real-time
constraints but also for verifying compilers. The classical notion of compiler
correctness is insufficient to capture this, and we are not aware of any work
that considers non-functional properties quantitatively and integrates them in
a verified (optimizing) compiler. In particular, the rapidly developing fields of
embedded software demand for such work. Similarities of PLCs and synchronous
languages such as Esterel and Lustre need to be further investigated.

References

1. Diehl, S.: Semantics-Directed Generation of Compilers and Abstract Machines.

PhD thesis, Universität Saarbrücken (1996)

2. Glesner, S., Geiß, R., Bösler, B.: Verified code generation for embedded systems.

In: 1st Workshop on Compiler Optimization meets Compiler Verification COCV

2002. Electronic Notes in Theoretical Computer Science, vol. 65 (2002)

3. Goos, G., Zimmermann, W.: Verification of compilers. In: Olderog, E.-R., Steffen,

B. (eds.) Correct System Design. LNCS, vol. 1710, pp. 201–230. Springer, Heidel-

berg (1999)

4. Hoare, C.A.R., Jifeng, H., Sampaio, A.: Normal Form Approach to Compiler De-

sign. Acta Informatica 30, 701–739 (1993)

5. Leroy, X.: Formal verification of a realistic compiler. Communications of the

ACM 52(7) (2009)

On the Role of Non-functional Properties in Compiler Verification 495

6. McCarthy, J., Painter, J.A.: Correctness of a compiler for arithmetical expressions.

In: Proceedings of a Symposium in Applied Mathematics, vol. 19. AMS, Providence

(1967)

7. Müller-Olm, M.: Modular Compiler Verification: A Refinement-Algebraic Ap-

proach Advocating Stepwise Abstraction. LNCS, vol. 1283. Springer, Heidelberg

(1997)

8. Palsberg, J.: An automatically generated and provably correct compiler for a subset

of Ada. In: IEEE International Conference on Computer Languages (1992)

9. Polak, W.: Compiler Specification and Verification. LNCS, vol. 124. Springer, Hei-

delberg (1981)

10. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine. Springer,

Heidelberg (2001)

11. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: Voc: A methodology for the translation

validation of optimizing compilers. Journal of Universal Computer Science 9(3),

223–247 (2003)

Author Index

Aarts, Fides I-673

Abdulla, Parosh Aziz I-60

Ait Ameur, Yamine I-58

Alencar, Paulo I-447

Andova, S. II-143

Autili, Marco II-278

Azim, Akramul II-327

Baier, Christel II-97

Ballabriga, Clément II-479

Barany, Gergö II-434

Barbosa, Simone Diniz Junqueira I-473,

I-488

Bartolini, Claudio I-425, I-488

Basten, Twan I-90

Bechhofer, Sean I-340

Bennaceur, Amel II-206

Berardi, Rita I-488

Bertolino, Antonia II-251

Bessler, Sandford I-367

Birken, Klaus II-424

Bisti, Luca I-152

Blair, Gordon II-206

Blechmann, Tobias II-97

Bohlin, Therese I-658

Bonenfant, Armelle II-479

Boniol, Frédéric I-58, I-167, I-243

Bouillard, Anne I-121

Boussard, Mathieu I-390

Boyer, Marc I-121, I-122, I-137

Breitman, Karin I-488

Bünte, Sven II-487

Buzzi, Julio I-625

Calejo, Miguel I-276

Cámara, Javier II-112

Campos, Glaucia Melissa I-488

Canal, Carlos II-112

Carvalho, André II-191

Carvalho, Joel II-191

Cassé, Hugues II-479

Cassel, Sofia II-221

Čaušević, Aida II-82

Cederberg, Jonathan I-60

Chakraborty, Joy I-549

Chakraborty, Samarjit I-121, I-198

Chauvel, Franck II-206

Chen, Yu-Fang I-643

Chilton, Chris II-278

Clarke, Edmund M. I-643

Clarke, Jim II-32

Coste, Nicolas II-128

Cottenceau, Bertrand I-184

Cowan, Donald I-447

Crespi, Noel I-399

da Cruz, Daniela I-106

Dalman, Tolga I-261

de Araujo, Renata Mendes I-435

De, Arnab I-519

de Bruin, Jeroen S. I-285

de Michiel, Marianne II-479

De Roure, David I-340

de Smet, Sebastian I-90

de Vink, E.P. II-143

Di Giandomenico, Felicita II-263

Dissaux, Pierre I-4

Droste, Peter I-261

D’Souza, Deepak I-519, I-549

Eidt, Erik I-488

Eltges, Christian II-483

Englander, Cecilia I-502

Ermedahl, Andreas II-449

Ermont, Jérôme I-167, I-243

Farzan, Azadeh I-643

Ferri, Felipe I-625

Fischmeister, Sebastian II-327

Fraboul, Christian I-228

França, Felipe M.G. I-462

Gang, Huang II-206

Garavel, Hubert II-128

Geilen, Marc I-90

Georgantas, Nikolaos II-206

Giannakopoulou, Dimitra I-640

Gilman, Ekaterina I-375

Gliwa, Peter II-449

Gomes, Adriano I-625

498 Author Index

Gonçalves, Vanessa C.F. I-462

Grace, Paul II-206

Groenewegen, L.P.J. II-143

Gu, Bin I-594

Haberl, Wolfgang I-18

Haeusler, Edward Hermann I-502

Hafner, Michael II-26

Hähnle, Reiner II-3, II-20

Hardouin, Laurent I-184

Haverkort, Boudewijn R. II-127

He, Fei I-643

He, Jifeng I-594

Hendriks, Martijn I-90

Henriques, Pedro Rangel I-106

Herhut, Stephan I-47

Hermanns, Holger II-128

Herrmannsdoerfer, Markus I-18

Holzer, Andreas I-33

Houben, Fred I-90

Hougaard, Poul II-175

Howar, Falk I-687, II-206, II-221

Howker, Keith II-32

Huber, Benedikt II-464

Huhn, Michaela II-296

Hünig, Daniel II-424

Igna, Georgeta I-90, II-412

Inverardi, Paola II-206, II-236,

II-251, II-278

Issarny, Valérie II-206, II-236,

II-251

Izquierdo, Ebroul II-13

Januzaj, Visar I-1, I-33

Jee, Eunkyoung II-343

Jianhua, Zhao I-564

Johansson, Richard II-30

Jonsson, Bengt I-658, II-221

Kaati, Lisa I-60

Karlsson, Johan I-328

Katoen, Joost-Pieter II-127

Kawas, Edward I-301

Kempf, Kilian II-397

Kirner, Raimund I-47, II-487

Klein, Joachim II-97

Klüppelholz, Sascha II-97

Knoop, Jens II-449, II-491

Kok, Joost N. I-258, I-285

Kollmann, Steffen II-397

Kremenek, Ted I-535

Kugele, Stefan I-1, I-18, I-33

Kuliamin, Victor II-382

Kwiatkowska, Marta II-263, II-278

Lamprecht, Anna-Lena I-258

Lanese, Ivan II-66

Langerak, Rom II-160

Langer, Boris I-1

Lang, Frédéric II-128

Larsen, Kim G. II-127, II-175

Lauer, Michaël I-167, I-243

Lavrač, Nada I-313

Lawford, Mark II-293

Le Corronc, Euriell I-184

Lee, Gyu Myoung I-399

Lee, Insup II-343

Legrand, Jérôme I-4

Leister, Wolfgang II-97

Lenzini, Luciano I-152

Li, Jianwen I-594

Li, Xiaoshan I-609

Li, Xiaoting I-228

Lima, Priscila M.V. I-462

Lisper, Björn II-449

Liu, Zhiming I-609

Lori, Alessandro I-138, I-214

Lucena, Carlos J.P. de I-447, I-473

Maculan, Nelson I-462

Magdaleno, Andréa Magalhães I-435

Maibaum, Tom II-293

Marshall, M. Scott I-340

Mart́ın, José Antonio II-112

Martin, Steven I-121

Martinovic, Ivan I-169

Mart́ın-Requena, Victoria I-328

Martinucci, Marco II-263

Masci, Paolo II-263

Massacci, Fabio II-9

Mateescu, Radu II-128

Mayer, Philip II-51

McCarthy, Luke I-301

McGarry, Fred I-447

Merten, Maik I-687, II-221

Méry, Dominique I-58, II-312

Mikučionis, Marius II-175

Mingozzi, Enzo I-152

Missier, Paolo I-340

Author Index 499

Montesi, Fabrizio II-66

Moschitti, Alessandro II-1, II-15

Mota, Alexandre I-625

Narayan Kumar, K. I-549

Navet, Nicolas I-122

Newman, David R. I-340

Nielsen, Brian II-175

Nöh, Katharina I-261

Nunes, Ingrid I-447, I-473

Ogata, Kazuhiro I-75

Olive, Xavier I-122

Ott, Jörg I-355

Ouranos, Iakovos I-75

Pagetti, Claire I-167, I-243

Pakulin, Nikolay II-371

Palm, Steen Ulrik II-175

Paolucci, Massimo II-206

Pathak, Animesh II-206

Pedersen, Jan Storbank II-175

Pettersson, Paul II-82

Petukhov, Alexander II-382

Piatrik, Tomas II-13

Pimentel, Ernesto II-112

Pinto, Jorge Sousa II-191

Plantec, Alain I-4

Podpečan, Vid I-313

Poizat, Pascal II-35

Pollex, Victor II-397

Prantl, Adrian II-434

Pu, Geguang I-594

Păsăreanu, Corina S. I-640

Puffitsch, Wolfgang II-464

Qi, Yanxia I-594

Qian, Li I-564

Qu, Hongyang II-263

Rasmussen, Jacob Illum II-175

Rautiainen, Mika I-375

Ravn, Anders P. I-579

Reckers, Frans I-90

Riekki, Jukka I-375

Ŕıos, Javier I-328

Roos, Marco I-340

Roychoudhury, Abhik I-519

Rustemeyer, Thomas II-424

Sabetta, Antonino II-251

Salaün, Gwen II-112

Salle, Mathias I-488

Sampaio, Augusto I-625

Scandariato, Riccardo II-9

Schaefer, Ina II-23

Schäf, Martin I-609

Schallhart, Christian I-1

Scharbarg, Jean-Luc I-121, I-228

Schätz, Bernhard I-3

Schmaltz, Julien I-673

Schmitt, Jens B. I-169

Schneider, Jörn II-483

Schoeberl, Martin II-464

Scholz, Sven-Bodo I-47

Schreiner, Dietmar II-449

Seceleanu, Cristina II-82

Serwe, Wendelin II-128

Silakov, Denis II-357

Singh, Neeraj Kumar II-312

Singhoff, Frank I-4

Skou, Arne II-175

Slomka, Frank II-397

Smachev, Andrey II-357

Soares, Carlos I-276

Sokolsky, Oleg II-343

Soleimanifard, Siavash I-658

Somers, Lou I-90

Sousa, Simão Melo de II-191

Sousa Pinto, Jorge I-106

Souville, Bertrand II-206

Spalazzese, Romina II-206, II-236,

II-251

Srba, Jǐŕı I-579

Stea, Giovanni I-121, I-152, I-214

Stefaneas, Petros I-75

Steffen, Bernhard I-687, II-206, II-221

Stoimenov, Nikolay I-198

Tautschnig, Michael I-18, I-33

Teeselink, Egbert I-90

Thébault, Pierrick I-390

Theelen, Bart D. II-160

Thiele, Lothar I-198

Thierry, Eric I-121, I-122

Tivoli, Massimo II-278

Trelles, Oswaldo I-328

Tretmans, Jan II-160

Tribastone, Mirco II-51

Trčka, Nikola I-90

500 Author Index

Tsai, Ming-Hsien I-643

Tsay, Yih-Kuen I-643

Tugaenko, Anastasia II-371

Vaandrager, Frits I-90, I-673, II-412

Vaglini, Gigliola I-214

van Benthum, Emiel I-90

van de Pol, Jaco II-160

Vandervalk, Benjamin I-301

Veith, Helmut I-1

Verriet, Jacques I-90

Vighio, Saleem I-579

Voeten, J.P.M. II-160

Voorhoeve, Marc I-90

Vukovic, Maja I-425

Wang, Bow-Yaw I-643

Wang, Hao I-169

Wang, Wei-Lun I-411

Wang, Zheng I-594

Wassyng, Alan II-293

Wechs, Martin I-18

Weitzel, Michael I-261

Werner, Cláudia Maria Lima I-435

Wiechert, Wolfgang I-261

Wiels, Virginie I-58

Wilkinson, Mark D. I-258, I-301

Wirsing, Martin II-51

Withers, David I-301

Wittmann, Ralph II-424

Wu, Quincy I-411

Xing, Jiansheng II-160

Xu, Zhongxing I-535

Xuandong, Li I-564

Yang, Yang I-90

Yan, Yuhong II-35

Yin, Ling I-609

Ylianttila, Mika I-375

Žakova, Monika I-313

Zechner, Axel II-296

Zhang, Jian I-535

Zhang, Qianni II-13

Zhao, Jun I-340

Zhao, Yongxin I-594

Zhou, Jiehan I-375

Zhu, Lei I-643

Zimmermann, Wolf II-491

Zolda, Michael II-487

	Title Page
	Preface
	Organization
	Table of Contents – Part II
	EternalS: Mission and Roadmap
	Introduction to the EternalS Track: Trustworthy Eternal Systems via Evolving Software, Data and Knowledge
	HATS: Highly Adaptable and Trustworthy Software Using Formal Methods
	Introduction
	Mind the Gap
	Main Results Achieved

	SecureChange: Security Engineering for Lifelong Evolvable Systems
	Introduction
	The Project at a Glance
	Key Results

	3DLife: Bringing the Media Internet to Life
	Introduction
	Highlights of 3DLife Activities
	Integration and Sustainability
	Cooperative Research
	Spreading Excellence

	Conclusion

	LivingKnowledge: Kernel Methods for Relational Learning and Semantic Modeling
	The Data Representation Problem
	Data Representation via Kernel Methods
	Using Kernels for Semantic Inference in LivingKnowledge
	Conclusion
	References

	Task Forces in the EternalS Coordination Action
	Introduction
	The EternalS Task Forces
	Organization of EternalS Task Forces
	Envisaged Outcomes of EternalS Task Forces
	Conclusion

	Modeling and Analyzing Diversity Description of EternalS Task Force 1
	Introduction
	Objectives and Vision
	Organization and Work Plan
	Conclusion

	Modeling and Managing System Evolution Description of EternalS Task Force 2
	Introduction
	Vision
	Objectives
	Work Plan
	Organization
	Conclusion

	Self-adaptation and Evolution by Learning Description of EternalS Task Force 3
	Overview
	Objectives and Vision
	Organization and Work Plan
	Conclusion

	Overview of Roadmapping by EternalS
	Introduction
	Goals for the Roadmap
	Approach
	Initial Roadmap Mindmap
	Relationship to Other Roadmapping Activity

	Outlook
	References

	Formal Methods in Model-Driven Development for Service-Oriented and Cloud Computing
	Adaptive Composition of Conversational Services through Graph Planning Encoding
	Introduction
	Preliminaries
	Modeling
	Conversation Modelling
	Semantic Structures
	Services
	Composition Requirements

	Encoding Composition as a Planning Problem
	DSS Encoding
	Workflow Encoding
	Composition Requirements Encoding
	Service Encoding
	Overall Encoding
	Plan Implementation

	Tool Support
	Related Work
	Conclusion
	References

	Performance Prediction of Service-Oriented Systems with Layered Queueing Networks
	Introduction
	Modelling Services in UML4SOA
	Mobile Payment Case Study
	The Layered Queueing Model
	LQN Models for UML4SOA
	Performance Annotations with MARTE
	Extracting the LQN Model
	Indices of Performance

	Numerical Example
	Conclusion
	References

	Error Handling: From Theory to Practice
	Introduction
	SOCK
	The Quest for Error Handling Primitives
	Error Handling in SOCK
	Full Specification
	Expressiveness
	Intuitiveness
	Minimality

	From SOCK to Jolie
	Usability
	Robustness
	Compatibility
	Property Preservation

	Conclusion and Future Works
	References

	Modeling and Reasoning about Service Behaviors and Their Compositions
	Introduction
	Preliminaries
	Remes Modeling Language
	Guarded Command Language

	Behavioral Modeling of Services in Remes
	Hierarchical Language for Dynamic Service Composition: Syntax and Semantics
	Example: An Autonomous Shuttle System
	Modeling the Shuttle System in Remes
	Applying the Hierarchical Language

	Discussion and Related Work
	Conclusions
	References

	Design and Verification of Systems with Exogenous Coordination Using Vereofy
	Introduction
	Constraint Automata
	Specifying and Verifying Components and Connectors
	Linear-Time Properties
	Branching-Time Properties

	Case Study: A Biomedical Sensor Network
	The Model
	Analysis of the Model

	Conclusion
	References

	A Case Study in Model-Based Adaptation of Web Services
	Introduction
	Case Study: Online Medical Management System
	Overview of the Adaptation Process
	Interface Model Extraction
	Adaptation Contract Specification
	Generation of the Adaptor Protocol
	Implementation

	Concluding Remarks
	References

	Quantitative Verification in Practice
	Quantitative Verification in Practice
	Ten Years of Performance Evaluation for Concurrent Systems Using CADP
	Introduction
	The Interactive Markov Chain Model
	The Interactive Probabilistic Chain Model
	CADP Tools for Extended Markovian Models
	State Space Generation Using CÆSAR.ADT and CÆSAR
	Compositional Verification Using EXP.OPEN
	Bisimulation Reduction Using BCG_MIN
	Nondeterminism Elimination Using DETERMINATOR
	Numerical Analysis Using BCG_STEADY and BCG_TRANSIENT
	On-the-Fly Steady-State Simulation Using CUNCTATOR

	Additional Tools for Interactive Probabilistic Chains
	Applications
	The Hubble Telescope Lifetime
	Mutual Exclusion Protocols
	The SCSI-2 Bus Arbitration Protocol
	The MPI Send/Receive and Barrier Primitives
	The xSTream Data-Flow Architecture

	Conclusion and Future Work
	References

	Towards Dynamic Adaptation of Probabilistic Systems
	Introduction
	As-Is Situation: Deterministic Round Robin Service
	To-Be Situation: Stationary Probabilistic Service
	From Deterministic to Probabilistic Service
	Adaptation Analysis with Prism
	Conclusions
	References

	UPPAAL in Practice: Quantitative Verification of a RapidIO Network
	Introduction
	POOSL Model of a Realistic Motion Control System
	Transformation from POOSL to UPPAAL
	Data Part Transformation
	Process Part Transformation

	Heuristics
	Scalability of the UPPAAL Model
	Heuristics

	Conclusions and Future Work
	References

	Schedulability Analysis Using Uppaal: Herschel-Planck Case Study
	Introduction
	The Herschel-Planck Mission
	Model-Based Schedulability Methodology
	Processor Scheduler
	Tasks Templates
	System Model Instantiation
	Verification Queries

	Results
	Discussion
	References

	Model-Checking Temporal Properties of Real-Time HTL Programs
	Introduction
	The HTL2XTA Toolchain
	Model Translation
	Inference of Properties
	Case Studies
	Towards Correctness
	Conclusion and Future Work
	References

	CONNECT: Status and Plans
	Towards an Architecture for Runtime Interoperability
	Introduction
	Motivating Scenario: The Distributed Marketplace
	Beyond State of the Art Interoperability Solutions
	The Connect Architectural Framework
	Discovery and Learning of Networked Systems
	Synthesis of Connectors

	Connect in Action
	Conclusions and Future Work
	References

	On Handling Data in Automata Learning Considerations from the CONNECT Perspective
	Introduction
	Query Learning
	The $L^*_M# Learning Algorithm
	Practical Aspects in Active Learning

	Connect Learning Challenges
	Connect Model Requirements
	Example

	Experimental Results
	Conclusion
	References

	A Theory of Mediators for Eternal Connectors
	Introduction
	Eternal Interoperability through Emergent Mediation
	Definitions
	Towards Emergent Mediators
	The Popcorn Scenario

	A Formalization of Protocols
	Protocols as LTS
	Abstract Protocol
	Towards Automated Matching and Mediator Synthesis

	Related Work
	Conclusion
	References

	On-the-Fly Interoperability through Automated Mediator Synthesis and Monitoring
	Introduction
	Approach Description
	Running Example
	On-the-Fly Connector Synthesis and Monitoring

	Automated Synthesis of Mediators
	Automated Monitoring of Mediators
	Conclusion
	References

	Dependability Analysis and Verification for Connected Systems
	Introduction
	Analysis and Verification Tools
	PRISM
	Möbius

	The Distributed Market Scenario
	Dependability Analysis and Verification
	PRISM Models
	Stochastic Verification
	SAN Models
	State-Based Stochastic Analysis

	Conclusions
	References

	Towards a Connector Algebra
	Introduction
	Semantics for Connectors
	Case Study
	Towards a Connector Algebra: Primitives and Operators
	Concluding Remarks
	References

	Certification of Software-Driven Medical Devices
	Certification of Software-Driven Medical Devices
	The Certification of Software-Driven Medical Devices Track
	Reference

	Arguing for Software Quality in an IEC 62304 Compliant Development Process
	Introduction
	Software Quality Assurance in Safety Standards
	IEC 62304 - Process Requirements for Medical Device Software
	IEC 61508-3 - Software Safety in E/E/EP Systems
	Comparison

	A Quality Model for Argumentations
	A Staged Assessment Process
	Structure and Well-Formedness Analysis
	Conclusiveness of Argumentation

	Assessment Procedure
	Using the Quality Model for Assessment
	Argument Review
	Discussion

	Conclusion
	References

	Trustable Formal Specification for Software Certification
	Introduction
	Overview of the Methodology
	Case Study: A Cardiac Pacemaker
	Benefits of Using Our Proposed Approach
	Conclusion
	References

	Design Choices for High-Confidence Distributed Real-Time Software
	Introduction
	Mandatory Resource Reservation
	Separation of Resource Consumptions
	Enumerative Reconfiguration
	Illustrative Example
	Overview
	Developing the Tree Schedule
	Verifying the Tree Schedule
	Simulating the System

	Conclusion
	References

	Assurance Cases in Model-Driven Development of the Pacemaker Software
	Introduction
	Pacemaker Operation
	Heart
	Pacemaker

	Model-Driven Development of Pacemaker Software
	Overall Process
	Formal Modeling
	Formal Verification
	Code Generation
	Validation of the Generated Code

	Assurance Cases
	Discussion
	Related Work
	Conclusion
	References

	Modeling and Formalizing Industrial Software for Verification, Validation and Certification
	Improving Portability of Linux Applications by Early Detection of Interoperability Issues
	Introduction
	Existing Approaches
	Using a Testing Farm
	OpenSUSE Build Service
	Creating Standard-Compliant Applications

	Static Analysis of Interfaces Involved in Interaction between Distributions and Applications
	ELF Sections
	Shared Libraries
	Symbol Versions
	Binary Symbols
	Sufficient Requirement
	Method Value

	Linux Application Checker
	Conclusion
	References

	Specification Based Conformance Testing for Email Protocols
	Introduction
	Related Works and Motivation
	Mail Protocol Testing
	UniTESK Technology Overview
	The Proposed Method for Mail Protocols Conformance Testing
	Method Application for Protocols SMTP, POP3 and IMAP4 Testing
	Discussion
	Results and Further Research
	Further Research

	Conclusion
	References

	Covering Arrays Generation Methods Survey
	Introduction
	Preliminaries
	Survey of Algorithms for Covering Arrays Generation
	Homogeneous Covering Arrays Generation Algorithms
	Heterogeneous and Variable Depth Covering Arrays Generation Methods
	Survey Results

	Conclusion
	References

	Resource and Timing Analysis
	A Scalable Approach for the Description of Dependencies in Hard Real-Time Systems
	Introduction
	Related Work
	Real-Time Analysis
	Model of Computation
	Holistic Real-Time Analysis

	Considering Dependencies
	Mutual Exclusion
	Offsets
	Worst-Case Response Time Analysis with Limiting Event Streams

	Example and Results
	Conclusion
	References

	Verification of Printer Datapaths Using Timed Automata
	Introduction
	Case Study
	Model Description
	Verification
	Conclusions
	References

	Resource Analysis of Automotive/Infotainment Systems Based on Domain-Specific Models – A Real-World Example
	Introduction
	Domain-Specific Modeling
	The Hbsim DSL for Infotainment System Models
	Example: Infotainment Head-Unit Startup
	Model-Based Analysis and Simulation
	Example Results
	Conclusion and Next Steps
	References

	Source-Level Support for Timing Analysis
	Introduction
	Static Timing Analysis Techniques
	Source-Level Analyses for Timing Analysis
	The SATIrE Framework
	High-Level Analyses Supporting Timing Analysis

	Integration of Timing Analysis Tools
	Integrated Compilation and WCET Calculation
	Annotations for Measurement-Based Analysis
	Annotations for Binary-Level Static Analysis
	Integration with Other High-Level Tools

	Source-Level Optimization and Timing Analysis
	Transformation of Flow Information
	Experimental Evaluation

	Related Work
	Conclusions
	References

	Practical Experiences of Applying Source-Level WCET Flow Analysis on Industrial Code
	Introduction
	Related Work
	The ALL-TIMES Project
	The Target System
	Source Code Analysis Validation
	SWEET, and Its Flow Analysis
	Results and Experiences
	Step 1: Identify Needed Source Files
	Step 2: Converting Source Files
	Step 3: Link the Converted Files
	Step 4: Performing the Flow Analysis
	Step 5: Map Results Back to Source Code

	Conclusions
	References

	Worst-Case Analysis of Heap Allocations
	Introduction
	Related Work
	WCET Analysis
	Loop and Recursion Bounds
	Data-Flow Analysis
	Execution Time Calculation

	Heap Allocation Analysis
	Array Size Bounds
	Object Layouts
	Cost Functions

	Evaluation
	Results
	JVM Comparison
	Programming Style

	Conclusion
	References

	Partial Flow Analysis with oRange
	Introduction
	Partial Analysis
	Description
	Automatization

	Results
	Conclusion
	References

	Towards an Evaluation Infrastructure for Automotive Multicore Real-Time Operating Systems
	Problem
	The Proposed Simulator
	Related Work
	Conclusion
	References

	Context-Sensitivity in IPET for Measurement-Based Timing Analysis
	Introduction
	Context-Dependent Execution Times
	Evaluation
	Conclusion and Outlook
	References

	On the Role of Non-functional Properties in Compiler Verification
	Motivation
	Classical Compiler Correctness
	Compiler Correctness for PLCs
	Related Work and Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

